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RESUME

Dans cette these nous étudions un opérateur différentiel elliptique linéaire de laforme P = A +V — \
sur une variété quasi-asymptotiquement conique (QAC) (M, g), ou g est une métrique polyhomogeéne, et
V' est un b—champ de vecteur non borné par rapport a la métrique g.

Au chapitre 4 nous étudions un opérateur elliptique plus général (3 coefficients non bornés) de la forme
A=A-+V +r— ) olr est une fonction bornée supérieurement, et nous prouvons une estimation de
Schauder globale pour I'opérateur A sur une variété Riemannienne non compacte.

Puis au chapitre 3, nous développons des espaces de Holder a poids qui prennent en compte le comporte-
ment asymptotique de I'opérateur P sur les variétés QAC, et démontrons un théoréme d’isomorphisme sur
les espaces a poids définis en utilisant le résultat prouvé au chapitre 4.

Le chapitre 2 contient quelques résultats sur les tenseurs polyhomogénes. Faute de référence, nous avons
décidé d’ajouter des preuves a certains résultats qui sont nécessaires pour le chapitre 3. Par exemple, nous
montrons que l'opérateur de Hodge-Laplace d'une métrique Q AC polyhomogeéne est de la forme
A=2a2 Py,,, 0u Py, estun polynéme du second ordre de champs de vecteurs Qb avec des coefficients
polyhomogénes et sans terme d’ordre O.

Mots clés: Opérateurs différentiels elliptiques, Espaces de Holder a poids, Variétés Riemanniennes non
compactes, Estimées de Schauder, Variétés quasi-asymptotiquement coniques, Metriques polyhomogénes.
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ABSTRACT

In this thesis we study a linear elliptic differential operator of the form P = A + V — X on a quasi-
asymptotically conical (QAC) manifold (M, g) where g is a polyhomogeneous metric and V' is a b—vector
field that is unbounded with respect to the metric g.

In chapter 4 we study a more general elliptic operator (with unbounded coefficients) of the form A =
A+V +r— X, where r is a function bounded above, and prove a global Schauder estimate for the operator
A on a non compact Riemannian manifold.

Then in chapter 3, we develop weighted Holder spaces that take into account the asymptotic behavior of
the operator P on QAC manifolds, and prove an isomorphism theorem on the defined weighted spaces
using the result proved in chapter 4.

Chapter 2 contains some results on polyhomogeneous tensors. For a lack of reference, we decided to add
proofs to some results that are needed in chapter 3. For example, we show that the Hodge-Laplace operator
of a polyhomogeneous Q AC'—metric is of the form A = :v%m Py,,, where Py, is a polynomial of second
order of Qb—vector fields with polyhomogeneous coefficients and without a term of order O.

Keywords: Elliptic differential operators, Weighted Hélder spaces, Non-compact Riemannian manifolds,
Schauder estimates, Quasi-asymptotically conical manifolds, Polyhomogeneous metrics.
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INTRODUCTION

Let (M, g) be a complete Riemannian manifold, and P a linear elliptic operator of second order defined by
P =A+V — A\ where V is a smooth vector field on M. When M is compact, the mapping properties of
P are relatively well understood (see for instance theorem 1.4.4). This ceases to be true on non compact
manifolds, where we need weighted Hoélder spaces adapted to the asymptotic behavior of A and V' at
infinity. One of the issues with the operator P is that the vector V is potentially unbounded. For instance,
in (Chaljub-Simon and Choquet-Bruhat, 1979) they consider a similar operator on AE manifolds but they

require that the coefficients of order 1 and O be decreasing at infinity.

The theory of elliptic operators on weighted Holder spaces was introduced by (Nirenberg and Walker, 1973)
and studied extensively by (Lockhart and Mc Owen, 1985) and (McOwen, 1979). It was also used by (Chaljub-
Simon and Choquet-Bruhat, 1979) to study regularity of linear elliptic operator of second order on asymp-
totically euclidean (AE) manifolds, the work of whom was adapted by Joyce to study asymptotically locally
euclidean (ALE) manifolds, and quasi-asymptotically locally euclidean (QALE) manifolds.

More recently, (Degeratu and Mazzeo, 2017) proved Fredholm results of generalized Laplace-type operators
for weighted Sobolev and Hélder spaces on quasi-asymptotically conical (QAC) manifolds. We also men-
tion the work of Conlon, Degeratu and Rochon (Conlon and al., 2019), where such a result is used to solve

a complex Monge-Ampeére equation on weighted Holder spaces in order to build Ricci-flat Q AC'—metrics.

Before we state our results, we would like to explain the motivation behind the choice of the differential

operator PP, which is related to the existence of Kihler Ricci solitons on non compact manifolds.

0.1 Ricci solitons

0.11 Riemannian Ricci soliton

On a Riemannian manifold (X, go), the Ricci flow is a heat-like equation of the form:

£0(t) = ~2Ric(g(0),

9(0) = go,

where Ric(g(t)) denotes the Ricci curvature of the metric g(¢). A Ricci soliton is a self-similar solution of



this equation. More precisely, (M, g(t)) is called a Ricci solition if

g(t) = o(t)¢; 9(0),

where ¢y : M — M is a time dependent family of diffeomorphisms of M, and o (t) a time dependent scale

factor, satisfying ¢ = Id and o(0) = 1. If we plug g(¢) in equation (1) (and evaluate at t = 0), we obtain:

— 2¢7 Ric(go) = o' (t)pigo — o(t)di Lx g0,

a’'(0)
2

. 1
Ric(go) — §EX90 + g0 =0,

where X = _%hfo(bt. Letting A = Uéo),the soliton is called shrinking, steady or expandingif A < 0,A =0

or A > 0 respectively.
We also could define a Ricci soliton as a triple (M, g, X') where (M, g) is a Riemannian manifold and X is
a smooth vector field satisfying

. 1
Ric(g) — §£Xg +Ag =0, (2)

for A € {—1,0,1}. When X = VYf, we say that (M, g, X) is a gradient Ricci soliton, and the above
equation translates to

Ric(g) — Hess(f) + Ag = 0. (3)

0.1.2 Kahler Ricci soliton

Suppose now that (M, J, g) is a Kahler manifold. If (M, g) is a Ricci soliton and the vector field X is real

holomorphic, then the soliton equation can be rewritten as:
1
P — §£Xw + Aw =0, (4)

w(.,.) = g(J.,.) being the Kahler form, and p,(.,.) = Ric(J.,.) the Ricci form. We say that (M, g, X)isa

Kahler Ricci soliton.

0.2 Motivation
0.21 Asymptotically conical Kahler-Ricci soliton
Let 7 : M — C be an equivariant (with respect to the real holomorphic torus action generated by the Reeb

vector field) crepant resolution of a Kéhler cone (C, J¢, gc), and let X denote the holomorphic lift of the

radial vector field on the cone. If we impose certain topological conditions on M (see propositions 3.1 and



3.2 of (Conlon and Deruelle, 2016)) we could define an asymptotically conical Kahler metric g on M and a

function F' € C°°(M) such that

Lixwg =0,

ﬁijZO,

(wgy being the Kahler form of g) and such that F’ satisfies the following equation
1 A
Pug — iﬁxwg + wy = 100F. (5)

Furthermore, the function F' can be chosen such that it decays at infinity together with its derivatives.
The metric g which is sometimes referred to as a background metric can also be chosen such that ¢ =
m*(gc + Ric(gc)) outside of a compact set. Suppose now that wy = wy + i00¢ is a Kdhler metric that

solve the soliton equation (4). Then combining equations (5) and (4) we obtain that

_ w?
100 <log

‘o
n
Wy

+ %X¢ - A¢>> = i0F.

Hence, if ¢ satisfies the following complex Monge-Ampére equation

w1
log —2 + ~X¢— o = F, (6)
wg 2

then wy, is automatically a solution of equation (4).

Then we ask the following question: does there exist a smooth function ¢ that solves the complex Monge-
Ampére equation (6)?

It turns out that if we choose our weighted spaces carefully, we should be able to solve it.

To show the existence of a solution we usually use the continuity method. The openness follows from the
fact that the linearization of the previous operator is exactly the operator P which is an isomorphism. The
closedness is the more difficult part, since we deal with an operator with unbounded coefficients on a non-
compact manifold.

As examples of Asymptotically conical Kahler-Ricci solitons, Conlon and Deruelle show that given any neg-
ative line bundle L over a projective manifold D, the total space of L®? admits an asymptotically conical
expanding gradient K3hler-Ricci soliton for any p such that ¢; (KD (03] (L*)®p) > 0. This is actually the

particular case of a more general construction described in Corollary B of (Conlon and Deruelle, 2016).



0.2.2 QAC Kahler-Ricci soliton

Let L be holomorphic line bundle over a compact complex orbifold D. The total space of L has singularities
going off to infinity. In this case, the crepant resolution of L will introduce some topology at infinity, which
make it harder to build QQ AC solitons using the same technique as in the AC case. For instance, if we take
the canonical bundle K x over a complex orbifold X with isolated singularities, then, the canonical bundle
over the crepant resolution of X is a crepand resolution of K x.

Conlon, Degeratu and Rochon solve this problem by using a natural compactification of L into an orbifold
with fibred corners L. Then, given a background metric of the right type (in their case a Calabi-Yau conic
orbifold metric) they proceed by gluing suitable local models near each singularity.

We think that it is possible to proceed in the same manner in order to build Q) AC Kahler-Ricci soliton. In fact
we could use the same technique as in the AC case to solve the soliton equation away from the singular
set, and use the technique in (Conlon and al., 2019) to glue suitable models near each singularity.

In this setting, the radial vector field with respect to the (background) conique metric on L\ D is a b—vector
field on L.

This work focuses on solving one of the needed steps in order to build examples of QAC Kahler-Ricci soliton.

0.3 Main results

In chapter 4 we prove a version of Lunardi’s theorem (Lunardi, 1998) which is a global Schauder estimate that
is essential in the proof of our main result. We modify and expand the proof in (Deruelle, 2015) to obtain a
more general version of the theorem. See chapter 3 (section 3.2) for the definition of the functional spaces

mentioned below.

Theorem 0.3.1 (Lunardi) Let (M™, g) be a complete Riemannian manifold with positive injectivity radius,
and V' be a smooth vector field on M. Let A be an elliptic differential operator acting on tensors over M
such that:

A=A+Vy+r(z), recC(M).
A
v

Suppose that supzenr(xz) = ro < oo and that there exists a positive constant C' such that Z?Zl ||Vir|| <

C. Assume also that there exists a positive constant K such:

[[Rm(9)||csar,e) + [|1Bm(g) * Vesr,g) + [IVVIIc2u,p) < K,

4



where Rm(g) xV = Rm(g)(V,.,.,.). Assume also that there exists a function ¢ € C*(M) and a constant

Ao > 1o such that:

lim ¢(z) = +00, supsens (A(9)(x) — Ao (x)) < oo.

T—r00

Then:

1. For any A > 7o, there exists a positive constant C' such that for any H € C° (M, E), there exists a

unique tensor h € D% (M, E), satisfying:
A(h) = A = H, ||l pz (ar,) < ClIH||co(m,E)-

Moreover D% (M, E) is continuously embedded in C® (M, E) for any 6 € (0,2), i.e. there exists a
positive constant C(0) such that for any h € D% (M, E),

2] 1—9
1Pllcoarzy = CONIRI B2 (01, 10| 0 (ar 1y

2. For any \ > r, there exists a positive constant C' such that for any H € C%? (M,E), 6 € (0,1),

there exists a unique tensor h € C*% (M, E) satisfying:

A(h) = Ah = H, ||hl[c20(0r,1) < ClIH || o0, 5)-

Then in chapter 3 we prove the main results. Given a Q AC'—manifold (X, g) such that g is a polyhomoge-
neous metric, and a b—vector field V on X (we will denote by M = )O(), we obtain the following Schauder

estimates for the linear elliptic operator P, (described in equation (3.7) and remark 3.3.4):

Theorem 0.3.2 Let C*79( M, F) be the functional space defined by:

loc max

Ck?j’e(M, E) = {h c Ck+j+L9J79—L9J (M, E) | =t ip e oitle).0-19] (M,E), Yi=0,.. .,k} .

such that 6 € (0, 2), and endowed with the norm:

k

1Pllessoan,my = D e V| ga+t01.0-160 s, )
=0

Suppose also that:

[[Bm(g) * Vlcow,e) + [IVV]lcow,p) < o0



Then, for any constant A € R such that:
A > max <sup Vin(v®zk ), sup Vln(vaxﬁméo
M M
we have that:
e There exists a positive constant C' such that for any H € Cg’be (M, E) there exists a unique h €
DI%(M, E) satisfying:

Pa(h) — Ah = H, HhHD;gJ;Zﬁ(Mﬂ) < CHHHCgf( 0 €l0,1)

M,E)’
i.e. the operator

Pa—A: D2 (M,E) — Cfyy (M, E)
is an isomorphism of Banach spaces. Moreover, D;“,f(M , E) embeds continuously in C*%%(M, E)

forany 6 € (0, 2), i.e there exists a positive constant C such that for any h € D;“{Q(M, E),

[4 1-3
HhHC’“?Ove(M,E) < C"h"E%‘;%M,E)HhHCS:(M’E)

e There exists a positive constant C such that, for § € (0,1)

HhHCk?ZvG(M,E) < CHHHCg:(M?E)
As a consequence of the previous theorem, we prove the following result:

Theorem 0.3.3 (Isomorphism theorem) Le (X, g) be a Q AC'—manifold such that g is polyhomogeneous.
We will denote by M = X. Let V be a b—vector field on X such that:

[[Rm(g) * V|coar,my + [IVVco,py < 00

Then, the operator Ay — X : Ditkf(M, E)— Cg’,fa(M, E) is an isomorphism of Banach spaces, for any

6 € (0,1) and any constant X € R such that:

A > max <Sup Vin(z%k ), sup Vln(:):”‘:r,’%é))
M M
Note that the b—vector V' is unbounded with respect to the QQ AC —metric g, which was taken into consid-
eration when defining the weighted Holder spaces used in this result.
It is also worth mentioning that this result generalizes a previous result of Deruelle (Deruelle, 2015) on
asymptotically conical manifolds that was used to build expanding K&hler Ricci solitons in (Conlon and Deru-

elle, 2016) and in the analogous problem of constructing QAC-expanders, proves openness.



0.4 Future projects

We hope that this result will allow us to build quasi-asymptotically conical Kahler Ricci expanding solitons.

That will be the logical sequel to this result.



CHAPTER 1
ANALYSIS ON RIEMANNIAN MANIFOLDS

We will try to summarize in this chapter the material needed in the following chapters, the main source

being (Jost, 2008) and the three first chapters of (Joyce, 2000).

Let (M, g) be a non compact, complete Riemannian manifold of dimension n with positive injectivity radius.
We will denote by dV the volume element induced by the metric g. When using coordinate notation, we
implicitly refer to some local frame (e, ..., e,) on T'M, and its dual frame (e7, ..., e}) on T* M.

11 Vector bundles

Definition 1.1.1 Let E a be a vector bundle over M. A connection V on E is a linear map V : ' (E) —

I'(E)QT (T*M) satisfying:

o V(fs)=fVs+s&df,foralls €T (E)and s € C*(M),

® Vavtws = aVys+ Vys, forallv,w € T(TM),s € I'(E)and o € C*°(M).

Remark 1.1.2 To prevent any confusion we use I'( F) to denote the space of smooth global sections of E, i.e

elements of C* (X, E).

Proposition 1.1.3 Let E be a vector bundle over M endowed with a connection V. Then, there exists a

unique section R (V) € T'(End(E)) @ A*T* M) called the curvature that satisfies the following equation:

R(V)(X,Y)e=[Vx,Vy|le—=Vxyje, forall X,Y € ' (TM) ande € ' (E) . (1.1)

Remark 1.1.4 Given two vector bundles E and F over M, endowed with connections V¥ and V¥ respec-

tively, we can define a connection V for each of the following vector bundles:

e EQF:V(e+ f)=VEe+ VIS



e FEQF:V(ex f)=VFPex f+ea VIf;

e E*: (VL) (e) = d(L(e)) — L(VFe).

Definition 1.1.5 Let (E, (.,.)) be a vector bundle over g endowed with a bundle metric. A connection V on

FE is compatible with the bundle metric (or just metric) if

X (S,T) = (VxS,T) + (S, VxT) , VS, T € T(E) , VX € T(TM).

Theorem 1.1.6 (Fundamental Theorem of Riemannian Geometry) There exists a unique torsion free (i.e.
VxY — VyX = [X,Y]), compatible connection on T'M (equipped with the bundle metric g), defined

by the following Koszul formula:

This connection is called the Levi-Civita connection of the metric g.

111 Tensor bundles

Using the musical isomorphisms, a Riemannian metric g on a manifold M induces an Euclidean metric ¢!

on the vector bundle T*M. Locally, we will use notation g;; and g*/ to refer to g(e;, e;) and g~' (e}, €)

Linduce a bundle metric {.,.) on each tensor bundle of the

respectively. The Euclidean metrics g and g~
form E = TM® @ T*M®" in the following manner:

Let T, S € I'(E) be two sections of £, then

(T,8) = Girpy - - Gigp, @' @ - .. g7o% Ty SELbr, (1.3)

where

— T . . * *
T - lejs 621 ® ® 67‘7‘ ® e]l ® ® 6]57

- SP1---p .. * *
S=50"q n® - Bep Deg ®--Deg,.

This allows us to define the norm of a tensor T"as |T'| = (T, T)%, which is a continuous function on M. We

will use this notation when defining function spaces.



The bundle of k—forms A*T* M is a sub-bundle of T+ M®" locally spanned by sections of the form

1
* A — i * - *
e N Nej = o g mgn(a)e%(l) @€ -
ocESk

Using this identification, we can compute product and norms of k—forms. We can also define the formal
adjoint d* of the exterior derivative d : T' (A*T*M) — I’ (A*"1T*M), in order to define the de Rham
Laplacian A = dd* + d*d.

The Levi-Civita connection V of g can be extended to a connection on a vector bundle of the form TM®" @ T* M®"
(using remark 1.1.4). In particular, the induced connection is compatible with the bundle metric previously

introduced.

1.2 Functional spaces

Let (E, (.,.), V) be a vector bundle over M endowed with a bundle metric and a compatible connection.
The space of continuous sections of E that have k continuous bounded derivatives we denote by C* (M, E),

and admits a norm: i
Isllorar,m) = ZS}\ZP V's], (1.4)
i=0

making it a Banach space.

1.2.1 Holder spaces

We define the Hélder space of continuous sections of E that have k + « (« € (0, 1)) continuous bounded

derivatives to be:
Che (M, B) = {5 € C*(M. B) | Ilsllcxeqr ) = lsllorarm + |V5s] <oof,  (15)

where the Hélder semi-norm [V*s] , Is defined by

T(x) - P7,T(y)|

T| = sup sup ,
[ ]a €M  yeM d(fUa y)a
0<d(z,y)<d

P, , being the parallel transport along the unique minimizing geodesic from x to y, and ¢ is the injectivity
radius of g. Notice that C*®(M, E) is a Banach space with the norm |[-l|cke (a1, )- When E'is a trivial line
bundle with the trivial connection, we denote those spaces by C* (M) and C*(M) respectively.

Now, we list some useful results regarding Holder spaces.

10



Proposition 1.2.1 For o € (0,1), u € C**(M),and T € C**(M, E), uT € C**(M, E). More precisely,
there exists a positive constant C' > 0 such that

k

uTloraanm < C | D uller @i Tl en-saar,my + llcra@n | Tl or-o,m)
p=0

Proof. Notice that u(z)T'(z) — u(y) Py, T(y) = u(x) (T(z) — P;7yT(y)) + Py, T(y) (u(r) — u(y)). Con-
sequently, we obtain that:
[uT]o, <|lullcon [Tlo + ITllcoa, ey [ul,
which then implies that
[uT|coear,py < Hullcoan I Tllco, gy + [T,

<Mlullcoan|ITl|coar,z) + Nullcoar [Ty + 1T coar,my [ul,

< ullgo.ean T llcoar,zy + [ullcoan Tl co.er,B)-

For k = 1 we use the Leibniz rule to obtain that V (uT')(z) — V(uT')(y) = Vu(z) ® (T(x) —T(y)) +
T(y) (Vu(z) — Vu(y)) + VT'(z) (u(z) —u(y)) + u(y) (VT (x) — VT(y)). This implies that:

VWD), < Vulleon [Tl + 1Tl cor,e) [Vuly + VT llco k) luly + [lullcon VT, (1:6)

Then we use the fact that |[uT'||c1(ar,5) < |[ullcoanlIT et ey + IVullcoan | Tl co(ar,zy combined

with equation (1.6) to prove the case k = 1. We proceed by induction to prove the result for k > 1. O

Remark 1.2.2 For any non-negative real value 6, we will denote by C? (M, E) the Hélder space CL9)0=191 (M| E).

Theorem 1.2.3 (The Mean Value Theorem) Let V and W be two normed vector spaces, 2 C V a convex

subsetof Vand f € C1(Q, W). Let a, b € €2, and suppose that there exists a positive constant M such that
|| f'(ta+ (t —1)b)|| < M, forallt €[0,1].

Then we have:

£ (a) = f(B)I] < M]la —bl|.

As a consequence of the previous theorem, we have

1



Proposition 1.2.4 Let E be a vector bundle over M and T € C'(M, E). Then there exist a positive constant

C depending only on the constant § used in the definition of Hélder spaces, such that:

I Tllcooar,py < ClITllcr (a1, Y0 € (0,1) (1.7)

1.2.2 Sobolev Spaces

Let p > 1, we define the Lebesgue space LP (M, E) as the set of locally integrable sections (elements of

Ll

loc

(M, E)) of E such that the norm

1

p

sl rar.z) = ( / |s|f’dv) ,
M

is finite. Given a non-negative integer k, we define the Sobolev space
WHP(M,E) = {s € LF(M,E) | V's € LP(M,E)},
with the norm

1

k P

Hsuwk,p(M,E):(}j / rVZs\pdv> .
i=0 /M

Notice that WP (M, E) is a Banach space with the norm ||| lwr.p(a,p)- Note also that the derivatives in
the previous definition are meant in the weak sense. The local Sobolev space W/Z’(f’(]\/[, E) consists of all

locally integrable sections s of E whose restriction to any pre-compact () € M lies on W"‘vp(Q, E).

loc

WEP(M, E) = {s € L (M,E) |[VQ € M : s, € W’“’p(Q,E)} .

1.3 Linear differential operators

Let (E, (.,.)p,V¥) and (F,(.,.)p, V") be two vector bundles over M of ranks s and ¢ respectively.

Before we proceed to the definition, let us recall that for any x € M there exists a neighborhood U C M
of z, (ei)1<i<s € T (E),), and (fi)i1<i<t € T (F),) such that (e;(y))1<i<s and (fi(y))1<i<: are basis of
E, and F), respectively for any y € U. (e;)1<i<s and (f;)1<i<; are called local frames. These frames can

be used to locally trivialize E and F’ respectively.

Definition 1.3.1 A linear map P : T'(E) — I'(F)) is called a smooth linear differential operator of order [ if

in local trivializing neighborhood it has the following form:

l
Pe = ZBe (1.8)
i=1
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where s € T'(E), and such that P; is ant x s matrix whose components are of the form:
> ag(x)v?
|B]=i
3 being a multi-index with indices ranging from 1. ..n, and ag are locally defined smooth functions.
Let & = (€1,...,€") € R™ and o¢(P, x) the t x s matrix obtained from P, by replacing V? by ¢° and
evaluated at x. o(P,x) is called the principal symbol of P. P is a linear elliptic differential operator if

o¢(P, x) is an isomorphism for any £ # 0.

Remark 1.3.2 Note that if a linear differential operator P : T'(E) — T'(F) is elliptic, then rank(E) =
rank(F).

Definition 1.3.3 The formal adjoint of a linear differential operator P : I'(E) — TI'(F') is a smooth linear

operator P* : T'(F') — T'(E) satisfying:
/ (Pe, fYp dV :/ (e, P*f)p dV foralle € C°(M, E),and f € CZ(M, F). (1.9)
M M

P is elliptic if and only if P* is. The formal adjoint P* depends on the choice of the bundles metrics on E

and F as well as the Riemannian metric g on M.

1.3.1 Linear elliptic differential operators

Theorem 1.3.4 (Schauder estimates) Let IZ and F' be vector bundles over M, ) € M be a bounded domain,
K a compact subset of Q, and L : T'(E) — T'(F) a linear elliptic differential operator of order k with
coefficients in C*?(Q), where k > 0and 6 € (0,1).

Then, there exists a positive constant C(K,Q, g, 0, 1, coefficients of L) such that for any u € C*+9(U, E)

we have that:

ullcrrio(r,my < C <|\L(u)||clﬂ(9,p) + HUHCO(Q,E)) : (1.10)

Remark 1.3.5 Let f € C%(M), and assume that f attains its maximum (minimum) at a point p € M. Then

Af(p) <0 (Af(p) 20) , anddf(p) =0

As a consequence, let A = A + X where X is a smooth vector field, and f € C?*(M). If f attains its
maximum (minimum) at a point p € M, then Af(p) < 0 (Af(p) > 0).
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1.4 Fredholm operators

Definition 1.4.1 Let V and W be two Banach spacesand P € L(V, W), L(V, W) being the set of continuous

linear maps from V to W. Then, P is a Fredholm operator if:

e dim(ker(P)) is finite.

e ran(P) is a closed sub-space of W with finite codimension. Actually, finite codimension implies closed-

ness.

In this case, we define the index of P by the equation:
index P = dim(ker(L)) — dim(coker(L)) . (1.11)

In particular, an isomorphism between V and W is Fredholm of index zero.

Definition 1.4.2 Let VV and W be two Banach spaces and P € L(V,W). Then, P is a compact operator if

the image under P of any bounded sequence in V' contains a convergent sub-sequence in WW.

Remark 1.4.3 The index of a Fredholm operator does not change under perturbation by a compact operator.
In other words, if P and K are a Fredholm operator and a compact operator respectively, then, P + K is

also Fredholm with the same index as P.

The following theorem is partly a consequence of theorem 1.3.4, which in particular states that linear elliptic

operators over a bounded domain are Fredholm.

Theorem 1.4.4 (Theorem 1.5.4 (Joyce, 2000)) Let kK > 0 and ! > k be integers, and 6 € (0,1). Suppose
that E and F' are vector bundles over a compact manifold M, equipped with bundle metrics. Suppose also

that P : T'(E) — T'(F) is a linear elliptic operator of order k with C? coefficients. Then

o P* s elliptic with C'—%9 coefficients, and both ker P, ker P* are finite sub-spaces of C”“*l’g(M, E)
and C“Y (M, F) respectively.
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o If f € CY9(M, F) then there exists u € C*+L9 (M, E) such that Pu = f if and only if f L kerP* (f

is in the subspace F'/ker P*), and if one requires that u L ker P then w is unique.

The notation _L refers to the L? inner product defined in equation (1.9). The previous theorem is a state-

ment of the Fredholm alternative.
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CHAPTER 2
QUASI-ASYMPTOTICALLY CONICAL MANIFOLDS

Manifolds with fibred corners are a powerful tool to encode the asymptotic behavior of Riemannian metrics
in term of the Lie algebra of vector fields. This chapter is a rather bare-bones introduction to the subject,
the main source of which are the work of Richard Melrose, (Albin and al., 2012), (Debord and al., 2015),
(Conlon and al., 2019) and (Kottke and Rochon, 2021).

2.1 Stratified spaces

Definition 2.1.1 A smoothly stratified space X of dimension n is a metrizable, locally compact, second
countable space which decomposes into a locally finite union of locally closed strata S = {S,}, where

each S, is a smooth manifold of dimension dim S, < n. The set of strata S obeys the following properties:

(1) Each strata S is endowed with a tubular neighborhood Ts and a radial function in the tubular neigh-

borhood pgs : Ts — [0, 1) such that pgl(()) = S, together with a continuous retraction rg : Tg — S.

(i3) If Sa,Sg € S, thenTs, NSz # 0 < Sa N Sp # 0 < S, C Sp. In this case we write S, < Sg. If

moreover S, # Sg then we write S, < Sg. This induces a partial order on the set of strata S.

(ii7) Theretraction g : Tg — S'is a locally trivial fibration with fibre the cone C' (Lg) over some compact

stratified space Lg.

(iv) If we let X; be the union of strata of dimension less than or equal to i, then we obtain a filtration

0cXyC - CX,=X, X,_1 being the singular set and X\ X,,_; the regular set.

Remark 2.1.2 Although we don’t specify any restriction on the codimension of the singular set, in some cases

(complex algebraic varieties) the singular set is at least of real codimension 2.

Definition 2.1.3 Let (X, S) be a smoothly stratified space. The depth of X is the largest k such that 51 <
Sy < -++ < Sy is a totally ordered chain in S.
The relative depth of a stratum S is the largest k such that S < S1 < --- < S}, is a totally ordered chain in

S. The relative depth of a point x € X is the relative depth of the unique stratum that contains it.
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Example 2.1.4 Orbifolds are a good example of stratified spaces. Indeed, let X be a complex orbifold. A
point x € X is singular if in an orbifold chart, its local isotropy subgroup H, is non trivial, and regular
otherwise. We will denote by S = { S, } the canonical stratification of X such that each Sy, is the union

of singular points with isotropy subgroups in the isomorphism class %, Sx;, being the regular stratum.

2.2 Manifold with corners

Let n be a positive integer and k an integer such that 0 < £ < n. Let us define R}} = [0, oo)k x Rk we
define the set
ORy = {x € R} | z; = 0 for exactly [ of the first k indices } . (2.1)

An open subset of R} is a set {2 = Qn R} for some open set Q) C R". We will denote by 9,02 = Qn ORE
the boundary of codimension [ of (). Given two open sets 2; and Q29 of R}, amap ¢ : 1 — Qs isa
diffeomorphism if there exists two open sets le and ﬁ; such that €2; = f): MR} fori = 1,2 and ¢ extends
to a diffeomorphism ¢ : ﬁ; — ﬁ; in the usual sense. Such a diffeomorphism restricts to a bijective map

between boundaries of the same codimension.

Definition 2.2.1 Let X be a paracompact Hausdorff topological space. A chart with corners (U, ¢) on X is
a homeomorphism ¢ : U — V C RZ¢ for some integer kg, such that U and V' are open sets of X and RZ¢

respectively. Two charts with corners (U, ¢) and (W, 1)) are compatible if U N W = () or

Yol p(UNW) = p(UNW)
is a diffeomorphism in the sense described earlier. A maximal set of compatible charts that covers X is
called a C* structure with corners on X of dimension n. A t—manifold is a pair (X, F = C*>°(X)) such

that C*°(X) is the set of smooth functions on X induced by some C*° structure with corners.

We denote by 0, X the set of boundaries of X of codimension [, defined by:
0,X = {p € X | charts around p maps p to O;R. } .

The boundary hypersurfaces of X are the closure of connected components of 01 X, the set of which will be

denoted by M, (X).

Definition 2.2.2 (Melrose) A manifold with corners X of dimension n and depth at most k, is a t—manifold
of dimension n such that the boundary hypersurfaces of X (corners of codimension 1) are embedded sub-

manifolds (with corners) and such that 9, X = () for any integer | > k.

17



Some definitions of manifold with corners drops the second part of the previous definition. For instance,
Joyce’s definition (see definition 2.2 of (Joyce, 2016)) doesn’t impose any requirements on hypersurfaces.
For example, the teardrop T = {(z,y) € R? | 2 > 0, y* < 2 — 2} fits the definition of Joyce of a mani-
fold with corners of dimension 2, but does not qualify as such according to definition 2.2.2 because 9T self

intersects.

Remark 2.2.3 We will assume that each boundary hypersurface H; of X has a defining function x; €

C>°(X) such that:

(2) z; is positive on X\ H;;
(3) dz; is nowhere vanishing on H;;

(4) Each point p € H; has a local coordinate system with x; as one of its elements.

Example 2.2.4 As an example of a manifold with corners, we can take the product X = X; x X5 of two
connected manifolds with boundaries. In this case, X has two hypersurfaces Hi = 0X1 x X5 and Hy =

0X9 x X1, the corner (of codimension 2) being 0.X1 x 9X5.

2.3 QFB-metric

2.3.1 Iterated fibration structure

The notion of iterated fibration structure was introduced by Melrose in the context of the resolution (blowup)
of smoothly stratified spaces. In fact, there is a one to one correspondence between smoothly stratified

spaces and manifolds with fibred corners; see for instance propositions 2.5 and 2.6 in (Albin and al., 2012).

Definition 2.3.1 (Melrose) Let X be a manifold with corners and (H;), <i<i the list of boundary hypersur-

faces of X. An iterated fibration structure on X is a collection of fibrations m = (m;), ;< such that:

(1) Each m; : H; — S, is a fiber bundle with fiber F; where both F; and S; are manifolds with corners.
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(’LZ) linj =H;N Hj 7& (O then dim F; 75 dim Fj.

(i17) We write H; < Hj if Hj; # 0 and dimF; < dim F;. In this case, m; : H;; — S; is a surjective

submersion.

(iv) The boundary hypersurfaces of S; are exactly the S;; = w; (H;;) with H; < Hj. Moreover, there

exists a surjective submersion m;; : S;; — S; such that when restricted to H,; we have m;; o m; = m;.

The iterated fibration structure induces a partial order on the set of boundary hypersurfaces. Thus, we
define the relative depth of a boundary hypersurface H as the largest k suchthat H < H1 < Hy < --- <
Hj,_, for some k — 1 hypersurfaces H;. Notice that if H; and H; are respectively minimal and maximal

hypersurfaces , then both F; and S; are closed manifolds.

Let Hq,..., H; be an exhaustive list of boundary hypersurfaces, and let z1, ..., z; be the corresponding
!
boundary defining functions. In what follows, we will denote by v = [] zj a total boundary defining
k=1
function.

Definition 2.3.2 A tube system for a hypersurface H is a triplet (N, , z5) with N an open neighbor-
hood of H in X, ry, : Ny — H a smooth retraction, and (ry, xp) : Ny — H x [0, 00) a diffeomorphism

onto its image.

Definition 2.3.3 A manifold with fibred corners is a manifold with corners endowed with an iterated fi-
bration structure (X, 7). We say that the boundary defining functions are compatible with the iterated
fibration structure, if for each boundary hypersurfaces H; < Hj, the restriction of x; to Hj is constant

along the fibers of m; : H; — S.

We will always assume that the boundary defining functions are compatible with the iterated fibration struc-
ture in sense of definition 2.3.3, and such that z; is identically equal to 1 outside of a tubular neighborhood
of Hi-

Definition 2.3.4 An iterated fibred tube system of a manifold with fibred corners X, is a family of tube
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systems (N, 73, ;) for H; € M;(X) such that for any hypersurfaces H; < H; we have:
ri (NiNN;) CN;, zjorj=x;, mjor;or; =mor;onN; NN (2.2)

and the restriction of x; to H; is constant along the fibers of w; : H; — S;.

The existence of an iterated fibred tube system on a manifold with fibred corners is proved in lemma 1.4 of

(Debord and al., 2015).

2.3.2 Quasi fibred boundary metrics

We will review the notion of Quasi fibred boundary metrics introduced in (Conlon and al., 2019). Let (X, )

be a manifold with fibred corners. We denote by:
WV = {§ € C°(X;TX) | {is tangent to the hypersurfaces of X'}, (2.3)
the Lie algebra of b-vector fields. This intrinsic definition is equivalent the following one
Vo ={§ € CF(X5TX) | £ (2:) € 2iC* (X))}, (2.4)

which is easier to use.

Definition 2.3.5 A quasi fibred boundary vector field (or QFB-vector field) is a b-vector field & such that:

(i) &|m, is tangent to the fibers of ;;

(ii) & (v) € v*C> (X), where v is a total boundary defining function.

These conditions are clearly still satisfied for the Lie bracket of two such vector fields. Thus, the set of

quasi fibred boundary vector fields is a Lie algebra, which will be denoted by Vg rp(X).

Remark 2.3.6 The definition of QFB-vector fields depends on the choice of a total boundary defining func-
tion v € C*°(X) (see lemma 1.1 of (Kottke and Rochon, 2021)).
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Using definition 2.3.1 we can give an explicit description of QFB-vector fields. Indeed, let H; < Hy < -+ <
Hj; be a totally ordered chain and (z1,y1,x2,v2, -+ , Zk, Yk, 2) a local coordinate system around a point

p € Hy N HyN---N Hy that straightens out the fibrations 7; : H; — S; such that:

e 1, is a boundary defining function of H;;
oy = (yzl, ,yfi> fori e {1,--- ,k}andz = (21, -+, 2g);

e Each fibration 7; corresponds to the map

(xhylv”' 7f’iuyi7"' 71’k73/k7z) = (xluylf" 7xi—17yi—17yi)- (25)

Using equation (2.5) we see that (241, yi+1, - - , 2) are coordinates on the fibers of 7;. Thus, the space of
b-vector fields tangent to the fibers of the fibrations 7; is locally spanned by:
0 0 0
—, —, vj— forj > 1. (2.6)
9z Oy 7O J
Now, using the second part of definition 2.3.5 we deduce that QFB-vector fields are spanned by:

9 ,9 .9 (. 0 0N . i L4 (2.7)
92" oyl Fory T\ M 0 0wy ) " '

k
where v; = [] z;.
j=i

Remark 2.3.7 Vo (X) is called a structural Lie algebra in the sense of definition 1.4 in

(Ammannand al., 2004). In particular, structural Lie algebras are finitely generated protective C'*°(X)-
modules. Thus, using the Serre-Swan theorem, there exists a smooth vector bundle (the QQ F B—tangent
bundle) "T'X — X such that Vgrp (X) ~ I' ("T X). This vector bundle is actually a boundary tangential
Lie algebroid (see definition 1.14 of (Ammann and al., 2004)). The same thing goes for V, (X) and V (X)
(definition 2.3.11 below).

We will denote by 7, : "T'X — T' X the natural bundle map that restricts to an isomorphism over )O(, such
that:
Vorg (X) = i7,C% (X;"TX). (2.8)
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The QFB-cotangent bundle "1™ X is then defined as the vector bundle dual to the QFB-tangent bundle

TT'X, and is locally spanned by:

d’l)i
dz Jr T3
Ui

dyg

. (2.9)
v;

Definition 2.3.8 A quasi fibred boundary metric (or QFB-metric) is a positive-definite tensor

gr € Coo(f.( :Sym? ("T*X )) that restricts to a Riemannian metric on X via the map i, : "TX — TX.
We say that g, is a smooth QQF B—metric if it is smooth up to the boundary. We say that (X, g.) is a
QF B—manifold.

Definition 2.3.9 If a manifold with fibred corners (X, ) is such that H; = S; and 7; = Id for each maximal
boundary hypersurface H;, then a QFB-vector field is called quasi-asymptotically conical vector field (or
QAC-vector field) and in the same manner, a QFB-metric is called a quasi-asymptotically conical metric (or

QAC-metric). If goac is a QAC —metric on X, then (X, ggac) is called a QAC-manifold.

2.3.3 Examples of QAC manifolds

2.3.31 Asymptotically Conical manifolds

As we said, manifolds with fibred corners can be used to encode asymptotic conditions on certain complete
manifolds. Let us for instance consider a non-compact Riemannian manifolds (), g) of dimension n + 1,
and a compact subset X' C M. Suppose that M\ K is diffeomorphic to the non-compact ends of the
Riemannian cone ((1,00) x Y, g. = dr? + r2h) with (Y, h) a compact Riemannian manifold (called the

link of the cone). Suppose also that under such an identification we have that:
IIV¥ (9 — ge) || = O(r—<7%) for all k € Ny, and some € > 0.

Then, (M, g) is called an Asymptotically Conical (or AC) manifold. In particular, (M, g) is called Asymptoti-
cally Euclidean (or AE) manifold if (Y, k) is S equipped with the round metric, and Asymptotically Locally
Euclidean (or ALE) if Y = S"\I" where the finite subgroup I' C O(n) acts freely on S™. So AC manifolds
can be seen as a generalization of AE and ALE manifolds.
Let (C, g) be a manifold with boundary, and g a Q AC'—metric on it. Then in a neighborhood of the bound-
ary, the QAC-cotangent bundle "7 is generated locally by

dp dy’

o
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with p is a boundary defining function, and such that the metric g is of the form

dp*> h
g=—Fpt-—=5*n
Pt p
——

g0
where 7 is some mixed terms tensor, and A is a Riemannian metric on dC. If we suppose that ||n||s, =
O(p°) (for some ¢ > 0), then it becomes clear that AC—metrics are a particular case of Q) AC —metrics
on manifold with boundary. In fact, in manifold with boundary, QAC-metrics corresponds the scattering

metrics of(Melrose, 1995).

2.3.3.2 Quasi- Asymptotically Conical manifolds

Let us start with the case of Quasi-Asymptotically Locally Euclidean (or QALE) manifolds. These were in-
troduced by Joyce (Joyce, 2001b) to study the existence of Kahler metrics on the resolution of C"\I" where
I’ C U(n) is a finite subgroup that does not act freely on C™\ {0}. In this case, fixed points are subspaces
of C™ with potentially different isotropy subgroups of I'. The main source of examples of () ALE —metrics
are crepant resolutions of C"\I" (see theorem 3.3 of (Joyce, 2001b)). Although, (Carron, 2011) showed that
the Nakajima metric (Nakajima, 1999) is a Q AL E—metric in the sens of Joyce.

Mazzeo gave a description of these singular sets in terms of iterated cone-edge spaces (Mazzeo, 2006), a
sub class of stratified spaces and together with Degeratu (Degeratu and Mazzeo, 2017) introduced Quasi-
Asymptotically Conical manifolds as resolution blow-ups of these manifolds (into a manifold with fibred
corners). An alternative description of these metrics was given in section 1 of (Conlon and al., 2019). In some
sense, (Q AC —manifolds generalize Q A L E—manifolds the way AC'—manifolds generalize AL E—manifolds.
In their work (Conlon and al., 2019), Conlon, Degeratu and Rochon built Calabi — Y au Q AC' —metrics that
are neither Q ALE—metrics nor Cartesian products of AC'—metrics. Concrete examples of such metrics

can be built using the following theorem

Theorem 2.3.10 (Corollary 4.10 of (Conlon and al., 2019)) Let (D, gp) be a Kahler-Einstein Fano orbifold
with isolated singularities of complex codimension at least two with each locally admitting a Kahler crepant
resolution, then D admits a Kdhler crepant resolution D and the QAC —compatctification )A(Q Ac of Kp
admits a Kdhler QQ AC'—metric asymptotic to g¢ (a quasi-regular Calabi-Yau cone metric on K\ D) with rate

6 forany § > 0.
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2.3.4 Qb manifolds

Definition 2.3.11 Let (X, 7) be a QAC-manifold and x,,., the product of boundary defining functions of the

maximal hypersurfaces of X. A smooth quasi b-metric (Qb-metric) is a metric g¢y, of the form:

9Qb = TonazIQAC- (2.10)

for some smooth QAC-metric gg ac. The Lie algebra of Qb-vector fields is defined as

Vo =1{§ € C7 (X, TX) | supggp (§,€) < oo}
X

or equivalently as b-vector fields such that for each i

e {|m, is tangent to the fibers of m; if H; is not a maximal hypersurface;

o {vE LC’OO(X).

Tmax

Remark 2.3.12 From the previous definition, it is easy to see that Vgac (X) = Zmaaz Vo (X).

Proposition 2.3.13 Given two QAC-vector fields V and T we have that [V, W} € TmazVoac(X).
In addition, X (f) € ®a.C°(X) for any Q AC'—vector field X and function f € C*°(X).

Proof. Using remark 2.3.12, any QAC-vector field V is of the form TmazV for some some Qb-vector field V.

Then, [f/, W} = [TmazV, Tmaz W] for some Qb-vector fields V and W. A straightforward computation

shows that:

$max xmaa:

V(zm W (Zm,
[:rm(mV, xm‘mW} = xgnax <[Vv7 W] + («’E ax) W — (.’L’ am) V) .

By definition 2.3.11, both WJE“:ZZE“) and Wifﬂ”;:l) are in C*°(X), which implies that (2,4, V, Tmaz W] €
Tmaz Yoac (X). The second assertion follows from the fact that £(f) € C°°(X) for any Qb—vector field &.
Ol

2.4 Polyhomogeneity

Note that when defining a Q AC'—metric we only require that the given tensor is defined on X. In some
cases, such tensors can be extended smoothly up to the boundary, but most of the time requiring a metric

to be smooth up to the boundary is restrictive. In this section we introduce a class of tensors that, while not
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smooth up to the boundary, have a Taylor like asymptotic expansion near the boundary. These are called

polyhomogeneous tensors.

Definition 2.4.1 An index set K is a subset of C x Ny such that:

(z,k) e K, |(z,k)| > 00 = Rez— o0, (2.11)
(z,k) e K,peN = (z+p,k) € K, (2.12)
(z,k) e K = (2,p) e KV0<p<k. (2.13)

An index set K is a non-negative index set if it also satisfies the following conditions:

No x {0} C K, (2.14)
(z2,k) € K = Imz=0and Rez > 0, (2.15)
(0,k) e K = k=0. (2.16)

Given two index sets GG and K, we define the index set G + K as follows:
G+ K ={(z1+22,k1 +k2) | (21,k1) € G, (22,k2) € K} (2.17)

Note that, if K and G are non-negative index sets, then K UG C K + G. In particular, given a non-negative
index set H, we define the index set
[e's] oo 1
Ho=Y H=[JY H (2.18)
i=1 i=1j=1
It is easy to see that H, + H = H... Before we define polyhomogeneous functions on a manifold with

corners, let’s start with the simpler case of a manifold with boundary.

Definition 2.4.2 Let M be a compact manifold with boundary, and p the boundary defining function of OM.
The set of polyhomogeneous functions on M with respect to an index set K, denoted by Affh g(M ), is the
the set of functions f € C (M) such that:
f~ Z (s ) P° (log p)* ac k) € C(OM), (2.19)
(z,k)eK
where ~ means that for any N € N we have that:

f= 2 aewet(ogp) e ¢ (), (2220

(z,k)eK
Rez<N
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where CN(M ) is the set of N differentiable functions on M that restrict to zero on OM together with all
their derivatives up to order N. We define

o = N &N o).
NeN

Remark 2.4.3 Note thatif K = Ny x {0} then Affhg(M) = C*°(M). Itis also easy to see that Aghg(M) =
C’OO(M ). Another important remark is that the multiplicative inverse of a positive polyhomogeneous func-
tion f that is bounded away from zero, is also polyhomogeneous. This is a direct consequence of theorems

B.1and B.6 of (Sher, 2023).

Now we are ready to define polyhomogeneous functions on a manifold with corners X.

Definition 2.4.4 An index family }C on a manifold with corner X, is an assignment of an index set IC(H ) to
each hypersurface H € M, (X). If F'is a boundary surface of X, then we will denote by K, the family index
that assigns KC(H) to the boundary hypersurface F'N H of F' (such that H € M;(X)). K is a non-negative
family index if KC(H ) is a non-negative index set for each H € M, (X).

Given two family indices G and IC, we define family indices G + K and G, as follows:

Goo(H) = (G(H))o »
(G+K)(H)=G(H)+ K(H) foreach H € M;(X).

We will denote by A%,

o g(X ) the space of polyhomogeneous functions on X with index family .

Definition 2.4.5 .Afh (X)) is the set of functions f € C>(X) such that near each boundary hypersurface

H:

K
freo > aempi logpn)t , agr € Ayl (H), (2.21)
(2.k)eK(H)

pr being the defining function of H.

Note that in the previous definition, the a; ;) coefficients are well defined since the induction will ends

when reaching a corner of maximal codimension which consists of a closed manifold.
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Definition 2.4.6 Let (X, 7) be a QAC-manifold, and E a vector bundle over X . The set of polyhomogeneous
sections of E with family index IC is defined by:

ALg(X,E) = A5 (X) Q) T(E). (2.22)
C>(X)

Definition 2.4.7 We define a polyhomogeneous QFB-metric as an euclidean metric g € Afh (X Sym? ("T* X))
such that K is a non-negative family index. We define polyhomogeneous QAC-metric in the same manner.
As a direct consequence of this definition, we have that ||£ ||, is uniformly bounded on X for any QF B—vector

field €.

Proposition 2.4.8 The inverse of a polyhomogeneous QFB-metric g is also a polyhomogeneous QFB-metric.
Thus, g induces a polyhomogeneous euclidean metric on the vector bundles E = "TX®" @ "T*X®",

Proof. Use remark 2.4.3 ]

Example 2.4.9 Using equations (2.6) and (2.7) we can see that V}, C A[g)hg(X, "T'X) such that G is an

index family satisfying G(H) C Z{>_1y x {0} for every H € M;(X).

2.5 Some results on polyhomogeneous QAC-metrics

Some of the work done in (Ammannand al., 2004) can actually be extended to polyhomogeneous QAC-
metric. For instance, let (X, Vgac, 9oac) be a QAC-manifold such that gg4c is polyhomogeneous with
respect to a non-negative family index G. We will denote by Diﬂ“VQAC (X)) the algebra of differential oper-

ators generated by vectors in Vg ¢ and with coefficients in C*°(X).

Definition 2.5.1 Given two vector bundles E; and E5 over X, we will denote by
Diffy,, (X, E1, Ez) = Diffy,,.(X) Q) T (Ef @ E) (2.23)
C>(X)
the algebra of differential operators taking sections of F to sections of Fo generated by vectors in Vgac

and with coefficients in C°°(X). To clarify this definition, let U be a local trivializing neighborhood of both
Ey and Es. Then, F(Equ) ~ C®(U) Q CVi fori = 1,2. So locally, the elements of Diffy,, , (X, E1, E2)
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are a linear combination of the composition of operators of the form X ® A, such that X in Vgac(X),
and A a smooth family of linear mappings in £ (C™,CN2). Note that this definition doesn’t depend on
the local trivialization since two local trivializations only differ by a smooth family of linear mappings €
L ((CN 1 (CNQ).

In the same manner, we define

Diffy,, ,..g(X, E1, Es) = A

phg (X) ® DiHVQAC (X> Ex, E2)7 (2.24)

C>(X)
the algebra of differential operators taking sections of F to sections of Eo generated by vectors in Vgac

and with polyhomogeneous coefficients in .Agh g(X ). When Ey = E, we will use the simpler notations

Diffy, (X, E) and Diffy, ,. ¢(X, E).

Proposition 2.5.2 Let V be the Levi-Civita connection of goac. Then, V can be extended to a differential
operator in x,,qx DiffVQ 10,6 (X, "TX,"TX* ® "T X). Consequently, the Riemannian curvature tensor R
AG (X, A2 ("T* X) @ End("TX)).

Proof. Let X,Y and Z be three (Q AC'-vector fields. Then, using the Koszul identity, we have that

is an element of 22, ,,

2(VxY,Z) = X (Y, Z))+Y (X, 2)) - Z ((X,Y)) +{[X,Y], Z)— (Y, 2], X) — (|X, Z],Y) . (2.25)

Then, using proposition 2.3.13we deduce that each term in the right side of equation (2.25) isin xmaxAgh g (X).
Thus, (VxY,Z) € xmaxAghg(X), which implies that VxY € xmaxAghg(X, TTX). Since R(X,Y) =

Vx,Vy] — Vx,y], the remaining statements are direct consequences of the previous one. []

As a consequence of proposition 2.5.2 , we have the following corollary.

Corollary 2.5.3 Letk € N. Then V¥R € a2tk A% (X, "T* X" © A? ("T* X) ® End("TX)). More gen-

erally,if T € AN, (X,"TX® @ T*X®"), then V*T € ak,,, A9~ (X, T XS @ TTXE ”T*X®S>.

Proposition 2.5.4 et T € A;fhg (X TX® @ T X ®s) be a polyhomogeneous tensor with respect to
some index family K such that IC(H) C Z x No forany H € M1(X). Then, |[T||g, 1 < o0 if and only if K
can be chosen to be a non-negative index family.

Proof. Let us choose a local frame near the boundary of X that diagonalizes the metric goac. Then, we
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have that:

2 _ J1j1 Jsds rpit...ir?
HTHgQAC - gQAcyilil T gQAcyirirgQAC Tt gQACThjZ .

The coefficients goAcC,iviy - - - 9QAC,ivi, géjﬁfc . géjjfc are positive and bounded on X. Thus, ||T| goac <

oo implies that the coefficients T]’f]’; are also uniformly bounded on X. Consequently, IC can be chosen to
be a non-negative index family. To prove the opposite direction we only use that polyhomogeneous functions

with respect to a non-negative index family are bounded. []

As a consequence of proposition 2.5.4 we have the following important corollary that is going to be essential

in the proof of the isomorphism theorem in the next chapter.

Corollary 2.5.5 Let V be a b—vector field such that:
HRm(gQAC) * VHcO(}() + HVVHCO(j() < o0 (2.26)

Then both (Rm(ggac) * V') and VV are polyhomogeneous tensors with respect to non-negative family

indices. Consequently, we have that:
[ Y VF (Rm(9gac) * V) llco i) + [@mee VET V] o) < 00 (2.27)

for any positive integer k. In particular, equation (2.26) is satisfied for any QQ AC —vector field V.

Proof. Let us note that both Rm(ggac)*V and VV are polyhomogeneous tensors. Then using proposition

2.5.4, the equation (2.26) implies that both (Rm(ggac) * V') and VV are polyhomogeneous tensors with
respect to a non-negative family indices. Equation (2.27) is a combination of propositions 2.5.3 and 2.5.4.
The last assertion follows from the fact that () AC' —vector fields are smooth up to the boundary. [

2.51 Adjoints of differential operators

Let (E,(,)) be a hermitian vector bundle over X, and Cgo()o(, E) the space of compactly supported

sections of E2. We consider the hermitian inner product on Cgo()of, E) defined by:

(o, B) = /X (a0, B)y AV (2.28)

such that dV is the volume element induced by gg ac over X.
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Lemma 2.5.6 Let D € Diffy,,, ¢(X, E) be a differential operator and D# its formal adjoint. Then,
D# ¢ Diffy, . x(X, E) for some non-negative index family K.

Proof. As we noted in definition 2.5.1, elements of Diffy,, ,. (X, E) are locally linear combination of the
composition of operators of the form X ® A such that X € Vgac(X) and A a smooth family of endomor-
phisms of CN. We know that the adjoint of an endomorphism is again an endomorphism. It only remains
to prove that the adjoint of an operator of the form X © 1is in Diffy, ,. (X, E).

Leta, B € CgO(X , E),and U a trivializing neighborhood of E with respect to a unitary frame. Then

ay, = i @z, (2.29)

ﬁ‘U = h]‘ & w; , fi,hj S COO(U),and Zi, Wj € cN. (2.30)

For the sake of simplicity we will suppose that o, = f ® z and 3, = h @ w. Then

/(X@la,ﬁ) V:/U<a,X#®1B>

/X (z,w)en dV = fX# (h) (z,w)en dV

where (, ) is the standard hermitian product on CV. So X# is such that

/DX(f)th:/ofX#(h)dV

forany f,h € Cg° (X). Since [5x X(f)h AV = [x X(fh) dV — [5 fX(h) dV and that
0= f_g(div th dV = fX fhdlv( dV—i—fX fh dV, we obtain :

/)?X(f)h dv = —Afhdiv(X) dV—/j(fX(h) dV:/)_zf— (divX +X (h)) dV

This implies that X# = —divX —X. We recall that divX = try,,. VX, which implies that divX €

:Emafoh g(X ) (by proposition 2.5.2) for some non-negative index family IC. O

Corollary 2.5.7 Let E1 and E5 be two Hermitian vector bundles over X and D & DiffVQAc’g(X, Eq, E»).
Then the formal adjoint of D is in DiffVQACJC(X, Es, E7) for some non-negative index family.

Proof. Let define E = Ey @ E5 and use the natural matrix (block) notation to describe Diff VoacG (X, Eq, E9)

as a subset of Diffy,, , . g(X, E), then apply lemma 2.5.6. [J

Proposition 2.5.8 The exterior derivative d is a differential operator in Diffy,, , . (X, AP"T* X, APTITT* X)),
In particular, d € xqq Diffy, (X, APTT* X, APHITT*X).
Proof. Let w € I' (AP™T* X), and {Xi}1§i§n a local frame of Q AC —vector fields. Then, we have :
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(dw) (Xio, ..., X)) :Zp: (—1) X, <w (Xio, o X ,Xip)) —
=0
p

P

Z (—1)S+tw ([ngath} 7Xi07~- . 7Xi37~- . 7Xit7"'7Xip)

0<s<t<p

Since [X;, X;] = cf; Xswhere cj; € 21,0,C>°(X), wededucethatd € Difty, ,. (X, APTT* X, APTITT* X)),
Actually we can see that d € xpqq Diffy,, (X, APTT* X, APHITT*X) O

Corollary 2.5.9 The Hodge-Laplace operator on <X .90 AC) defined by Ay, . = (d + d*)2 is a differen-
tial operator in DiffVQACJC(X, AP™T™* X') for some non-negative index family k. In particular, A

22,02 Diffy,, x (X, APTT*X).

goac €

Proof. The proof is a combination of corollary 2.5.7 and proposition 2.5.8. [
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CHAPTER 3
THE ISOMORPHISM THEOREM

3.1 Introduction

Let (X, ggac) be aQAC-manifold such that gg 4c is a polyhomogeneous metric. We will denote by (H;)1<i<k
the boundary hypersurfaces of X, and (z;)1<;< their respective defining functions. We define x4, as the
product of boundary defining functions of maximal hypersurfaces, and v = Hle ;.

The Riemannian manifold (M = X\0X, ggac) is a complete manifold of bounded geometry and positive
injectivity radius (proposition 1.3 in (Conlon and al., 2019)).

Let £ = (T*M®T ® TM®S) be a tensor bundle over M, and A the elliptic operator defined by:

A=A+ Vy =X (3.1)
—_——
Ay

acting on sections of F, such that:

e Vis a b-vector field on X.
e )\ is a positive constant.

e Aand V are the Laplacian and the Levi-Civita connection of g 4c respectively.

In this chapter, we will prove that A : Dgtz,fe (M,E) — Cg’bef (M, E) is anisomorphism of Banach spaces
for some positive function f to be defined later and such that DZJ‘?’J? (M, E) and Cg’ff (M, E) are as

defined below.

3.2 Function spaces

In the following functional spaces, we will consider the norm with respect to gg ac and the euclidean struc-
ture on E. Covariant derivatives will be taken with respect to the Levi-Civita connection of ggac and the
connection on E. Motivated by the work of (Siepmann, 2013) and (Deruelle, 2015), we define the following

weighted holder spaces:
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« Cy (M, E) = {h e cH (M, E)

loc

] HhHCgf(ME) < oo},where

k
Hh”cgb(M,E) = Z Sup %z V'R,
=0

— —k k
1Bl sy 2= I, on ) + [2mbaVR]

and
[T]g — g S | ( ) z,y (y)|

; (3.2)
zeM yeB(z,0)\{z} d(l‘, y)g

P, , being the parallel transport along the unique minimizing geodesic from x to y, and J the injec-

tivity radius of gpac.

Remark 3.2.1 The space C’g’be (M, E) defined here is different from the one considered in (Conlon
and al., 2019), since in (3.2) it is the distance of the QAC-metric which is used instead of the distance
of the Qb-metric.

Given an elliptic differential operator PP acting on sections of FE, we also define the following spaces:

o D72)+k(M’ E) = {h c ﬂp21 W2+k,p(M7 E)|he C&(M7E) : P(h) € (ng(M, E)},withthenorm

loc
Hh||D72;rk(M7E) = Hh”cgb(M,E) + ([P (h) Hcgb(M,E)-

. D%*k’H(M, E) = {h e OO (ML E) | h e C’g’f(M, E); P(h) e (]glf(M, E)},with the norm

loc

Hh|’D723+k’9(M7E) = HhHC’g’g(M7E) + HP (h) Hcgf(]\/LE)'
The following weighted spaces are defined using a positive function f to be defined later:

° Ck,é’

. p—1ok0 ;
Ob.f (M, E) := [~ Cg, (M, E) with the norm HhHCg’ﬁf(M

,E):=||fh||Cg’bg(M,E)'

k42,0 _1 k42,0 : -
o« D50 (M,E) = f71DEY (M, E) with the norm Hh\]D;sz,e(M?E).—\|thD;+2,e(M7E).

Remark 3.2.2 It is worth mentioning that weighted holder spaces were introduced to study the behavior
of the Laplacian on non compact manifolds. For instance, (Chaljub-Simon and Choquet-Bruhat, 1979) intro-

duced the following spaces:

P

k.0 L k.0 L k
Cﬁ’p (M7 E) T {h € Cloc (M7 E) ‘ HhHC’g‘g(M’E) T Hthlgp(M,E) + |:V h]e,ﬂfk‘fg,p < OO}?
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such that:

k
1hllet ) = ; 10" PV hll o, ).

T () = P, T(y)|
T := sup sup  inf(p(x), p(y)) " Y ,
Tlos veM yeB(z,0)\{z} (p(2), p()) d(z,y)°

to study linear elliptic operators on asymptotically euclidean manifolds (p being some distance function).
These spaces were adapted by Joyce in (Joyce, 2001a) and (Joyce, 2001b) to study asymptotically locally eu-
clidean manifolds and quasi-asymptotically euclidean manifolds. Note that C: ’9_1 (M,FE) C Cg’f (M, E).

»7Tmazx

Remark 3.2.3 It is also important to note that the space C’g’be (M, E) as defined here is not equal to the
interpolation space (Cgb (M, E),Ch (M, E)) . which can be identified as follows:

,O0

k k+1 _ k —k k
(CQb (M, E),Cl (M, E))G - {h € Chy(M,E) | [:cmmv h} oo < —|—oo}

,O0
such that:

- _ T(x) — Py T(y)|
[T} = Sup sSup min :Em?z;v(‘r)vl‘m?zx(y) Y
O e yepe st o) { } Az, y)?

Tmax

where ¢ is a positive constant depending on the lower bound of inj@ inj(z, 9QAC) Tmax ().
FAS

Proposition 3.2.4 Let P be an elliptic differential operator and X\ a constant such that
P—-A: D;“;LQ’Q(M, E) — Cg’f(]\/[, E) is an isomorphism. Then, the space D72,+k’9(M,E) is a Banach
space.

Proof. We are going to use the fact that C’g’bg (M, E) is a Banach space. Let (hy,),c be a Cauchy sequence

in D%JFIC’G(M , E). Then, there exists h € Cg’g (M, E) such that hy, converges to h in Cg’g (M, E).
Since ((P — A)(hy)) is also a Cauchy sequence in Cg’g (M, E), there exists h € Cg’g (M, E) such that

(P—A)(hg) convergesto (P—\)(h) . Notealso that (P—\)(hy) convergesto (P—\)(h) inthe Clko’f (M, E)
topology which implies that (P — A)(h) = (P — \)(h). Consequently, h € D?fkﬂ(M, E).O

3.3 Lunardi’s theorem on QAC manifolds

In order to prove the isomorphism theorem, we are going to use the following theorem:
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Theorem 3.3.1 (Lunardi) Let (M", g) be a complete Riemannian manifold with positive injectivity radius,
and V' be a smooth vector field on M. Let P be an elliptic differential operator acting on tensors over M
such that:

P=A+Vy+r(z), reC3M). (3.3)
A
14

Suppose that sup.cpr(x) = ro < oo and that there exists a positive constant C' such that Zle [|Vir|| <

C. Assume also that there exists a positive constant K such:

[[Bm(9)llcs ) + [|1Rm(9) * Vies ) + IVVIo2um) < K, (3.4)

where Rm(g) xV = Rm(g)(V, ., .,.). Assume also that there exists a function ¢ € C*(M) and a constant

Ao > 1o such that:

lim ¢(z) = 400, supzen (P(9)(x) — Ao (2)) < 0. (3.5)

T—r00

Then:

1. For any A > 7o, there exists a positive constant C' such that for any H € C° (M, E), there exists a

unique tensor h € D%, (M, E), satisfying:
P(h) = Ab = H, ||hl|pz, a1,y < ClIH||co(a,E)-

Moreover D2, (M, E)is continuously embedded in C° (M, E) for any 6 € (0,2), i.e there exists a
positive constant C(0) such that for any h € D3 (M, E),

6
1—3

0
Bllcoanzy < COIA By (pr 1l goas ey

2. Forany X > 7, there exists a positive constant C such that for any H € C%% (M, E), 6 € (0,1),

there exists a unique tensor h €¢ C*% (M, E) satisfying:

P(h) = Ah = H, [|h||lc20(ar,p) < ClIH]lco0(ar,5)-
We will prove theorem 3.3.1in the next chapter.

Remark 3.3.2 Note that in order to satisfy condition (3.4) for the b—vector field V, it is sufficient to have
[[Rm(g) * V|co,z) + [IVV]]cor,g) < oo (3.6)
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This is a direct consequence of corollaries 2.5.3 and 2.5.5. Note also that condition (3.6) is satisfied if the

vector field V' is a Q AC' —vector field.

Let’s start by showing that condition (3.5) is easily satisfied.

Proposition 3.3.3 There exists a smooth function ¢ : M — R such that:

lim ¢(p) = +oo, sup (Ax) (¢) < oo,
p—00 peEM

for any b-vector field X.
Proof. Let us set ¢(p) = — In(v(p)). Using the definition of a b-vector field and the fact that the Laplacian of

goAc can be expressed as a polynomial of degree at most 2 (without terms of order 0) in QAC-vector fields

(Ammann and al., 2004) we see that both A¢ and V x ¢ are bounded on M. [J

Let A be the differential operator defined by A (h) = fA(f'h). Then, since:
FA(FTIR) = f(fPAR+RAFT 42 < VL VR >)
= Ah+hfAf' —2 < Vin(f),Vh >

= Ah+h(]|VIn(f)|? = Aln(f)) — 2 < VIn(f), Vi >,

and
fYv(frh) = f(f'Vyh+hVy 1Y) f = Vvh — hVy In(f),

we have that:

Ap(h) = | A+ Vy oy — VIn(f) =2 | (h) + (IVIn(f)[[* — Aln(f)) A. (3.7)

Py Ky

Remark 3.3.4 The operator A : DZJ‘?’; (M,E) — Cg’f 1 (M, E) is an isomorphism of Banach spaces if
andonly if Ay : DZJ;Q’H (M,E) — C’g’g (M, E) is. In what follows, we are going to set f = v~ for some
positive real value .

We are also going to use the following notation:

o 7o :=aV In(v);
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Vo :=V +2aVin(v);

Py = AVa + Tas

Ko := a?||VIn(v)||? — aAln(v);

Cona(M,E) = Cgy (M, E);

Qb.f

k+2,0 k+2,0
DA(M, E) := DR (M, E).

Av,a
Proposition 3.3.5 Given a function f as defined in the previous remark, we have that:

(1) T4 is bounded on M.

(i4) Vln(v)is a QAC-vector field. Thus, both |[Rm(g) * V In(v)||ck a5y and [|[VV In(v)||cr-1(a, iy are
bounded for any integer k > 1.

(iii) lim |[|[Viq|| = 0fori > 0.
T—00

Proof. (i) : This follows from the proof of proposition 3.3.3.

(77) : dIn(f) = —avg% which is clearly a QAC-covector (see equation (2.9)) that tends to 0 near the bound-
ary. The rest follows from the fact that both Rm(gqgac) and V 1n( f) are tensors over the QAC-vector bundle
over X, thus bounded with respect to the QAC-metric together with its derivatives.

(7i1) : Since the Laplacian is a polynomial on (Q AC'—vector fields without a constant term, we have that
Aln(v) € vC*(X). Taking covariant derivatives will increase the decay towards maximal hypersurfaces.

O

Proposition 3.3.6 Forany h € C’gf(M, E) we have that KC, h € C’g’be(M, E), we also have that
Ay (h) € CEY (M, E) <= Pa(h) € C5y (M, E) (3.8)

As a consequence, we have that Df{i’za (M,E) = D;“;(:Q’G(M, E) = DZJ‘F/M(M, E).

Proof. K,h € Cg’g (M, E) follows from (iii) of proposition 3.3.5 and proposition 1.2.1. Since we have that
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1|Pa(R) + ICathgf(M,E) < ||‘Pa(h)‘|cgf(M,E) + H]CahHCSbG(M,E)?
and
| [IPa(h)

HCS;(ME) - HICC!hHCng(ME)‘ < H’Pa(h) + KahHCgf(M,E)’

which implies that (P, + K,) (h) € Cg’bo(M, E) < P.(h) € Cg’be(M, E). We proceed in the same

manner using (i) and (iii) of proposition 3.3.5 to prove (3.8). [

Remark 3.3.7 Going back to remark 3.3.4, in order to prove that Ay : DZJ\F/Q’G (M,E) — Cg’f (M, E)isan

isomorphism, it’s suffice to prove that P, — \ : D;“,iw (M,E) — Cgf (M, E) is an isomorphism and that

K« is a compact operator.

3.4 The isomorphism theorem

Theorem 3.4.1 (Isomorphism theorem) Let C’“?JV@(M , ) be the functional space defined by:

kit B) = {n e Cp O g By L agl, Vi e Il B), Wi =0,k

loc mazxr

such that 6 € (0, 2), and endowed with the norm:

k
12lleraoarm) = D mne VPl gatior0-100 (a1 )
i=0
Suppose also that:
[[Rm(g) * V|coa,my + [IVV|co,py < 00

Then, for any constant A € R such that:

A > max (sup Vin(v®zk ), sup V In(v®zk L )>
M M

max

we have that:

(3.10)

e There exists a positive constant C such that for any H € Cg’be (M, E) there exists a unique h €

D;‘“{Q’G(M , ) satisfying:

0e€0,1)

Pa(h) = M= H, ||hl| pszaqay gy < ClHesoas 5y

i.e. the operator

k+2,0 k,0
Pa — A : DR2%(M, E) — Cg5y (M, E)
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is an isomorphism of Banach spaces. Moreover, D;“DzQ(M , E) embeds continuously in C*%%(M, E)

forany 6 € (0, 2), i.e there exists a positive constant C such that for any h € D;“{Q(M VE),

2] 1-2
llekonarzy < Az o Bl

e There exists a positive constant C such that, for 6 € (0,1)

bllessea, ) < CIH L ons (3.13)

In order to prove the previous theorem, we are going to proceed by induction on k. Let us consider the case

k=0.

Theorem 3.4.2 (Isomorphism theorem (k=0)) Suppose that:
[[Bm(g) * V|coa,m) + IVVlcom,py < oo. (3.14)
Then, for any constant A € R such that:
A > S]l\l/[p (VIn(v?)), (3.15)

we have that:

e There exists a positive constant C' such that, for any H € CO(M , ), there exists a unique tensor

h € D3, (M, E) satisfying
Pa(h) = A= H, [|hl|pz, < C||H]|cow,p)-

Moreover, D%Q(M, E) is continuously embedded in C°(M, E) := CY9=19)(M, E) for any 6 €
(0,2), i.e there exists a positive constant C' such that for any h € D%a (M, E),

) 1-2
lloraney < Ol o gy Pllentar oy

e There exists a positive constant C' such that, for any H € C%%(M, E), with 6 € (0, 1), there exists a

unique tensor h € C*%(M, E) satisfying
Pa(h) = Ah = H, [|h||c2000,5) < ClIH||co.0(pm,B)-
Moreover, the operator A : Dii JME) — Cg’g +(M, E) is an isomorphism of Banach spaces.
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Proof. Condition 3.14 together with remark 3.3.2 implies condition (3.4) of theorem 3.3.1. We also have that
condition 3.5 is satisfied by proposition 3.3.3. This proves the first point and the first part of the second point.
In order to prove that A is an isomorphism of Banach spaces we are going to use the fact that the index of
a Fredholm operator remains unchanged under a perturbation by a compact operator. Thus, if P, — X isan

isomorphism and IC,, is compact, then P, + K, — X is of index 0. Then, injectivity of A implies surjectivity.

(1) A: Dii WM, E) — CY?(M, E) is injective.
Let h € Dii o(M, E) be such that A(h) = 0 and hy, = h — % with ¢ the smooth function of proposition

3.3.3. Then, sup hy, = hy(py) for some py, € M. Moreover limy,_, . sup hy = sup h.

pEM peEM peEM
4 su]}a[ A(o)
Since A(hy) = —%, we have that A(hy,) > —2< —— Evaluating the last inequality at point p;, we get
sup A(¢)
(A = sup VIn(v®))hg(pr) < ““*—. By taking the limit k — oo we find that sup h < 0. By applying
peEM peEM

the same method to —h we deduce that h = 0. Hence, A is injective.

(2) Ko : D%z(M, E) — C%(M, E) is a compact operator.

Let (hy) e be a bounded sequence in D?,’f(M, E) and (Uy),.cy be a sequence of precompact open sets of
M such that Uy, C Uk+1 and M = U,Uy. By Schauder estimates 1.3.4, the sequence (hy,),. is bounded in
C%%(U;, E|y,) for any i.

Since C*%(U;, E |57;) is compactly embedded into C*(U;,E |77;), there exists a sub-sequence (k%) that con-
verges uniformly in C*(U;, E \@). Let (gx )i be a sub-sequence such that g;, = h’,j. Then, (gx)x converges in
the topology of ClQOC(M ,E)toh € D?,’f (M, E) (since it converges uniformly on every compact of M).

Before we finish the proof, we need the following lemma:

Lemma 3.4.3 Let h € C%(M,FE) and f € C'(M). Then, for any compact set K C M there exists a

precompact set () containing K and a positive constant C' such that:

17hllcoszy < € (Ifller@Illcosq.e1g) + IFlleran IBllcos o i sl o))
Proof. Let () be a precompact set containing K such that Vx € K we have that B(x,0) C Q (0 being the

injectivity radius). Then:

I[fhllcoo ey < (HthCOﬂ(Q,E|Q) + HthCOﬂ(M\K,E\M\K))

< <Hf||COv9(Q)|’hHCoﬁe(Q,E|Q) + |‘f‘|Cov9(M\K)HhHCOﬁ(M\K,E\M\K)) ,
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Now using a local version of the mean value theorem, it is easy to see that there exists a positive constant

C (that depends only on the injectivity radius) such that:
I fllcoeq) < Cllfllcr@):
[ llcoean iy < Cllflleranx)-

Consequently, we have that

1£hllcosre < C (I llor@libllcosqeg) + IflloranmlIbllcosan i Bl ) -

Since limy,_, |ViK4|(p) = 0fori = 0,1 (by proposition 3.3.5); it follows that for all ¢ > 0 there exists a
compact set K C M such that || Ko ||c1 (i k) < €.

Using the previous lemma, we have that

1Ka (90 — 1) llcoo s,y < CUlIKallcr@ll (9n = R [lcos(@,10)F
K allerami) | (gn = 1) oo se 1 ) < C€

for some precompact set () containing K and n large enough. This proves that (I, gn)neN converges to

Kohin the Cove(M , E) topology, which proves that K., is a compact operator. [

Proposition 3.4.4 Let f be a C? (M) function such that:
T(f) = (Avizavine) + VIn(0*@h,,) — A (f) = 0and f = O(z,1,,), (3.16)
A being a constant such that:
A > max <s;1/[p Vin(v*ak .., sprln(vaxfn;;O . (3.17)
Then, sup f < 0.
Proof. If'\l{’st of all, let us note that f is only potentially unbounded near the maximal hypersurfaces (since

f = O(x,;} ). If f is bounded above then we will use the exhaustion function of proposition 3.3.3 to prove

0

the proposition. Otherwise, f is unbounded from above near maximal hypersurfaces, and we will use z;, ...

with @ < —1 as a barrier function.

Before we proceed, let us note that inequality 3.16 implies that:
AV—I—QaV In(v) (f) > (>‘ -V ln(vaxfnam))f' (3.18)

M



In addition, given a function f, that attains its supremum at a point p;, € M we have that:

AV+201V In(v) (fs)(ps) <0. (3.19)

First case: f is bounded above on M:
Let us define fs = f — % ¢ being the function in proposition 3.3.3. Since f is bounded above, f; attains its

supremum at some point p; € M. Using inequality (3.18) we deduce that:

1 a
AV+2CMV ln(v)(fs) = AV—&-20¢V In(v) (f) - ;AV—FQQV In(v) (¢) 2()‘ - Vln(v xl:nax))f

1
- gAV—&—QaVIn(U)(@Z))'
Combining this inequality with the fact that
ok 1 a k 1
A =V In(v*2pee))f = Avi2avine (@) = (A = V(v ay,..)) fs — S T(9)-
we obtain that:
1
Ay 209 in() (fs) = (A= VIn(o®z}.,)) fs — ST (@)

Finally, evaluating this inequality at ps; and using inequality (3.19) we obtain that:

= V(e )) fo(p) < T(0) (0.

By letting s — oo and using the fact that T (¢) is bounded above (proposition 3.3.3), we obtain that
sup f <0.

M
Second case: f is unbounded above near the maximal hypersurfaces:

Let 6 € (—2,—1) be a constant such that (see lemma 3.4.5 below for a proof of existence)

max max

A > max (sup Vin(v®zk ), sup V In(v¥zkto )) (3.20)
M M

6
andletusset fs = f— xm% Since f is unbounded above near maximal hypersurfaces, there exists sy € Ny

such that for s > sg there exists a point p; € M such that sup fs(p) = fs(ps)-
peEM
Using inequality (3.18), we have that:

1
Ay 4909 inw) (fs) = Avioavme) (f) — EAV—i-QaV In(v) (28 02)

1
> ()\ - Vh'l(va-r]:nax)) f= EAV—FQaVln(v) (xfmzm)

> ()\ — Vln(’t)axfnam)) fs - élp(l’g@am)
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When evaluating the previous inequality at ps, we have that:

(A= VI 2 () 03) = LT () ().

S

A simple computation shows that

AV—4—2O¢V In(v) (xgzax) - Awfnax + V( max) +2aV 1I1< )( fnax)

d d max
v

<C+a0,Vin(®

max m(m: )

since both Ax% = and vafFL <i§’, d;m” > are bounded by corollary 2.5.9.

Consequently, using inequality (3.20) we deduce that

(A= VI b)) (F)00) < - (2 (VI00) + VIn(oh,) = A) +C)

1
< g ( Lrmax (Vln( “ fnt?c) )‘> + C)
C
S i
s
This implies that when s — oo we have sup f(p) < 0 which contradicts the hypothesis of the second case.
peEM
g
Lemma 3.4.5 Let A € R be such that
A > max <supV1n( zk ), sulen( o fna;,)> . (3.21)

Then, there exists 0 € (—2, —1) such that

max

A > max <sup Vin(v2zk ), bulen( aghto )) . (3.22)
M
Proof. Since V' is a b-vector field, we have that V In(z,4.) € C*(X), thus is bounded on M.

Vin(zktl) = v 1n(vm9j0)) can be made arbitrary close to

Consequently, the difference V In(x

maac)

« k+€
ma:p

zero by choosing the constant § € (—2, —1) close enough to —1. This implies that sup Vin(v ) can

a,.k—1

x,o) by a choice of a constant 6 as descr:bed previously, which

be made arbitrarily close to sup V In(v
M

then preserves inequality (3.22). O

Corollary 3.4.6 Let h be a tensor such that h € ﬂp>1Wl P(M, E) and
T(h) = (AV+2CEV In(v) + Vln(vaxgmx) - )‘)(h) =0and h = O( mam)
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such that A > max (sup VIn(v¥zk ), sup V ln(vaxfﬁw}r))
M M
Then, h = 0.

Proof. Let us define f = ||h||%. Then we have :

T(f) =2 <AV+2aV1n(v)h7 h> - <)‘ - Vln(vaxfnax)) f =+ 2‘|Vh|’2

Since T'(h) = 0 we have that Ay, 50y ik = (A = V In(v@ak, ,.)) h.
Consequently,

T(f) = (A= VI k) ) £ + 21 Vh]
which implies that

T(f)=>0.

By applying proposition 3.4.4 we get that sup f < 0. Thus,f = 0. I
peM

3.4.1 Proof of theorem 3.4.1

Proof. Uniqueness follows from theorem 3.4.2. In order to prove the existence of a solution, we are going
to proceed by induction on k. The case k = 0 is exactly theorem 3.4.2. Let k be a positive integer and
H e Cg’be (M, E). Using the induction hypothesis and the fact that H < C'g;l’g(M , E), there exists h €
D3 7Y(M, E) such that Po(h) — Ah = H.

Let us define h; = 1, V'hfori = 0,... k. We want to prove that h € D} (M, E). This amounts to

proving that h;, € D%a (M, E). In order to do that, we are going to compute the evolution equation of hy,.

_ o —a
Let us recall that P, = A + VV 2V In(v®) Vin(v™?), so that
N——m— To

Va

Pa(hk:) = AVa (hk) + rohy

In order to compute P, (hj) we are going to use lemma 4.3.2 below. Consequently, we have that:

Vv (k) = V(@) VR + 2000 Vv, T
k—1
= (=VIn(zF ) +a)hp+axk VY hta k. Z VF IV, VI h 4 VR0 (Rm(ggac) * Va) * VIR
=0
= (=V I(Z00) +0) @ VEV VL IAY 2tV o I VE T (Rm(ggac)  Va) <hy
=0

(3.23)
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with a € x4, C°°(X). We also have that:

k
A(hg) = Ay )V R+ b b V4 ah VEAR + 2k S VR Rm(ggac) * VIR

=0
k-1 -

= bmazhi1 + (Rm(ggac) + ) # hy + 2ph, VEAL + ) "2, MIVEF I Rm(goac) « by (3.24)
=0

With b, ¢ € X, C*°(X).
Now, using equations (3.23) and (3.24) we deduce that

(Po + VIn(zk . ) (A1) — Mg =bZmachiy1 + Hy + (a + ¢+ Rm(ggac)) * hy

k—1
D T TV IV by + etV (Rm(ggac) * Va) * hy
=0

k—1
+ > @IV Rm(ggac) * by
=0
such that Hy = x,,k V*H. Thus

|(Pa + V In(2y,00)) (hi) — Al co.0ar, ) <0Zmazhit1llcoo ey + ([ Hillcooar,p)

+ [ (a+ ¢+ Bm(ggac)) * hillcos k)

k—1
—k+j+1xgk—j
+Z||$magj+ VE IV * hj+1||Co’e(M,E)+
7=0

(3.25)
|2t/ VET (Rm(ggac) = Va) * hyllcooarp)
k—1 A .
+ Z"$;nl§—£]vk_]Rm(gQAC) * h]’HCOvG(M,E)'
§=0
From the induction hypothesis, there exists a positive constant C such that:
Hh”D?Z;;k—l(M’E) < C’||H||Cg;1(M7E) (3.26)
8 1-9
]l er—1:0.0(a1, ) < C||hH2D72,Z’“*1(M,E)||h”cggl(M,E) forany 6 € (0,2). (3.27)
From inequality 3.13 and the induction hypothesis we have that
—(k— k—
megm l)v 1h|’0279(M,E') < CHHHCg;l(M,EV (3.28)

which then implies that
”mr_n(a];_l)vthCan(M,E) < CHHHCS}?(M,E)’

||x—(k—1)vk+1h||co,e(M,E) < C||H||Cgf(M,E)'

max
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Using the previous inequalities we get that :

16T maz . (M,E) Hffmaa; )VHIHCM (M,E)>
< B||H||Cg,g(M,E),
and
[ (a+ ¢+ Rm(ggac)) * hillcosam < C'Ha te +xizz(gQAC) o, [t 1)kaCO’9(M,E)a
< BIHl| oo 00y

for some positive constant B. We proceed in the same manner for the other terms in (3.25) using the fact that

—fe+q _ —k —1—j
zmes” VIVl o1 s |wmes? VET19 (Rm(gqac) * Va) ller(a,m) and |[zmas” VEI Rm(gqac)ller (k)
are bounded (corollary 2.5.5).

Thus, there exists a positive constant B such that:

[|(Po + V In(@5,0)) () = Mkl o0 a1,y < BllHllcxo 01,5y

Therefore, by theorem 3.3.1, there exists a solution ﬁk € D%’f(M , ) satisfying
(Pa + VIn(zh o)) (hi) = g, =bTmazhis1 + Hy, + (a + ¢ + Rm(ggac)) * hy,
+ 2l Va4 VD (Rmlggac) « Vo)
.

+) 2 VP Rm(ggac) * by,
=0

[ay

and such that

1wl |20 0,y < CHHHck,e with 6 € (0,1).

(M,E)
It remains to prove that hy, = hy. First of all, as H € ok Q(M E) we have that h € crt G(M E) (by

loc loc

elliptic regularity). As a consequence, the difference T = hy, — hy, satisfies:

T € Nyt W2P (M, E) ; ((73 +Vin(k ) - )\> (T) = 0.

Near the maximal hypersurfaces, we only have that xmgw )th is bounded, so we deduce that x,,,,.. 1T is

bounded (T = O(z;,}.)
Consequently, hy, € D%z(M, E)and

). By corollary 3.4.6 we have that T' = 0.

with 6 € (0, 1).

Pkl e,y < CHHHcgf(M,E)
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We also have that

] 1-9 .
allon(ansy < ClIRILS, (. Illinsy ) with 0 € (0.2)

As a consequence of theorem 3.4.1 together with remark 3.3.4, we have the following result:

Corollary 3.4.7 Suppose that:
[1Rm(g) * Vl|coar,ey + [IVVeoarm) < o0 (3.29)

Then, the operator A : DQAJFka(M JE) — C’g’be o(M, E) is an isomorphism of Banach spaces, for any ¢

(0,1) and any constant A € R such that:

A > max <sup Vln(:va:rfnm), sup VID(SCaiL“ﬁZ_a}E))
M M

Corollary 3.4.8 The spaces Ditk ’O(M ,E)and Ditkf(M , E') are Banach spaces.

Proof. We use proposition 3.2.4 and the previous corollary. [J
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CHAPTER 4
LUNARDI’S THEOREM

4.1 Introduction

In this chapter we study a class of linear elliptic operators of the form A + Vy + r with unbounded coef-
ficients. Such operators where studied by Alessandra Lunardi in (Lunardi, 1998) on R" then a version was

proven by (Deruelle, 2015) in the context of Riemannian manifold and such that » = 0.

Theorem 4.1.1 (Lunardi) Let (M™, g) be a complete Riemannian manifold with positive injectivity radius,
and V be a smooth vector field on M. Let A be an elliptic differential operator acting on tensors over M
such that:

A=A+Vy+r(z), reC3(M). (4.1)
A
14

Suppose that sup,e () = 1o < 0o and that there exists a positive constant C' such that 32 [|Vr|| <

C. Assume also that there exists a positive constant K such:

[[Rm(9)||csar,e) + [1Bm(g) * Viesr,p) + [IVVIIe2upy < K, (4.2)
where Rm(g) *V = Rm(g)(V, ., .,.). Assume also that there exists a function ¢ € C?(M) and a constant

Ag > 1o such that:

lim ¢(x) = 400, supsens (A(9)(x) — Aot (x)) < oo. (4.3)

T—00

Then:

1. For any A > 79, there exists a positive constant C' such that for any H € C° (M, E), there exists a

unique tensor h € Di‘ (M, E), satisfying:
A(h) = A= H, ||l pz2 (ar,6) < ClIH| o, E)-

Moreover D% (M, E) is continuously embedded in C? (M, E) for any 6 € (0,2), i.e. there exists a
positive constant C(0) such that for any h € D% (M, E),

%
1=3

o
HhHC"(M,E) < C(Q)HM’%i(M’E)||hHCO(M7E)'
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2. Forany \ > 7, there exists a positive constant C' such that for any H € C%% (M, E), § € (0,1),

there exists a unique tensor h € C*% (M, E) satisfying:

A(h) = A= H, ||hl[c20 0,y < ClIH|lcoo(ar,m)-

4.2 Uniqueness of the solution

Proposition 4.2.1 (Injectivity) Let h € N> 1I/Vli’f (M, E) be a bounded tensor and A\ > r( a constant such
that A(h) — Ah = 0. Then h = 0.
Proof. Let us define he = \/||h||? + €2 (for some positive constant €). Then:

_r 2 2 _ [IVIIRIPIP
A = e = - (@vnom = =y o - VR,

Since Ayh = (A —r) hand ||V||R||?||? = 4] (Vh, h) |?> < 4]|Vh||? ||h||?, we have that:

2 62 2
A(he) = Ahe = ; <— A —7)e + vaF-W) > " <— ()\—'r)—i—HVhZH) >—(A=7)e

€ €

Let us define h, j, = he — % for aninteger k > 1. Then, klim supnrhe i, = suparhe, and we also have:
—00

A(he ) = Ahe > —(A—1)e — supy (A]i¢> — )\(p)‘

Since ¢ is an exhaustion function (that can be chosen to be positive), h. ;. attains its maximum in a point

xp € M. When evaluating previous inequality at x;., we get that:

supy (A(9) — AP)
k (/\ — 7“())

suppher < €+

By letting k — oo and e — 0 we get suprh. < 0, and consequently h = 0. [

4.3 Existence of the solution

In order to study the existence and the regularity of the solution of the equation
A(h) — Ah = H, (4.4)
we need to study the semigroup 7'(t) associated to the following Cauchy problem:

w(t, z) = A(u)(t, z), (4.5)

u(0,z) = up(x).
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Using the interpolation procedure in (Lunardi, 1996) we will be able to characterize the domain of the
generator of 7'(¢) and provide an optimal description of the regularity of the solution of (4.4).
As a first step, we are going to find an estimate of ||T(¢)|| (o (a1, E),c0 (M, E)) SUchthat 0 <o <6 < 3. In

order to do that, we will be using the following version of the maximum principle:

Proposition 4.3.1 Let (z(%, ), be a classic bounded solution of the Cauchy problem

z(t, ) — A(2)(t,2) = g(t, x),

(4.6)
2(0,z) = z0(x),
and \g > ro. Then
1. If sup z > 0, and if g(t,x) < Oforallt € [0,T] and x € M, then
M
sup z < erot sup zg. (4.7)
M M
2. Ifij\ndf z < 0,andif g(t,x) > Oforallt € [0,T] and x € M, then
inf 2 > et inf 20. (4.8)
M M
3. In particular, if g = 0, then
[12]lo0 < €2 |20 [oo- (4.9)

Proof. In order to prove inequality 4.7, we define v(t, z) = e~ z(t, z) for A\ > Ao. Then,
vi(t,x) — A(v)(t, ) + v = e Mg(t, 2)
v(0,x) = 2zp(x)

We also define vy (t, z) = v(t, z)— @ For k large enough, vj, admits a positive maximum (since suppsz >

0) at (tx, xy). If tp, = O for all k, then
SUPo,T]x M Vk < Suppzo — infu =

Consequently

Xt
suplo,r)xm € 2 < Supp2o,
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hence inequality 4.7. Now, suppose that t;, > 0. Since 0;v(ty, xx) > 0 (because Oyv(tx, x)) = Ok (tr, xg) >
0), we have that:

.A(’U)(tk,l'k) - )\’U(tk,xk) >0

Adding —w to both sides of the previous inequality, we find that:

(A(9) — \@) (tk, k)
’ ,

(A = 7o) vg(tr, z) <

which is impossible for k large enough.
Inequality 4.8 can be proved by replacing z with —z in inequality 4.7 and using the fact that —supy; (—zo) >

infuyr zo. The last inequality is a combination of the previous ones. [

Before we proceed with the next theorem, we will need the following technical lemma.

Lemma 4.3.2 Let (M, g) be a Riemannian manifold and V and A the Levi-Civita connection and the Lapla-

cian respectively associated to g. Then, we have that:

k
[v’“, A} =" V¥ Rm(g) « V7,
j=0
k—1 . ‘ ' | (4.10)
[v’“, vv} — SO VR IV« VI L VR (Rin(g) ¢ V) 5 VI
§=0
where Rm/(g) is the Riemannian curvature tensor, and Rm(g) * V.= Rm(g)(V, ., .,.).

Proof. We will proceed by induction on k to prove equality (4.10). Let us prove the result for k = 1 using

normal coordinates. By definition of the curvature tensor , we have that
ViVvh =VyVih+ (Rm(g) * V)« h+ Vyyh =VyVih+ (Rm(g)* V) xh+ VV % Vh,

where (Rm(g) = V') % h corresponds to the action of the curvature tensor on tensors over M. This proves

the second relation for k = 1. Regarding the first the equality, a simple computation shows that:
2 2

which proves the first relation of (4.10) for k = 1.
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Now suppose that the result is true for k > 1. Then we have that:

k—1
VIV h =V | Vi VAR + Z VIV« It L+ VR0 (Rin(g) + V) « ViR
§=0
k—1
— Vvvvkh + Z \VAURRORVA VRS AR R § Y + YD =G+D) 4 yU+D+L,
§=0

+ VED=UD(Rm(g) V) * VIh + VEFD=0+D (Rim(g) « V)« VUTD R
= Vy V¥ h + (Rm(g) * V) « VER + VV 5« VFH

k
+ Z VD=V 5 vt 4 VD= (Rm(g) % V) * VIh

k
= VEEIY ity 4 EDZUED (Rm(g) « V) VA
7=0

This proves the second part of equality (4.10). We proceed in the same manner to prove the first one. [

Theorem 4.3.3 Let (u(t, .)),c[0,r) be a bounded solution of the Cauchy problem (4.5) with initial condition

ug € C*°(M, E). Assume that there exists an integer 1 < k < 3 and a positive constant K (k) such that:
[[Bm(9)|ck gy + [[Bm(9) * Vienar, gy + [V VIer-1a1,5) < K(K), (4.11)

where Rm(g) * V. = Rm(g)(V, ., .,.).

Then, for any T > 0, there exists a constant w = w(n, k, \g) such that :

k
[Ju(t HCO(ME +Z HCO(ME) < e HUOHCO ey VEE[0,T], (4.12)
=1

« being a positive constant that will be defined later in order to obtain the right estimates.

Proof. We are going to derive the evolution of the heat equation of the following function:

S~ (at) | oo
s(to) = [lul P (1) + 30 "5 1Vl (5, 2).
i=1

and then apply the maximum principle for some values of .. We compute that

k i-1
at
st = 2 (ug,u) + « g (at) ™| Viul|? + 2 E ) (Viug, Viu) .
i=1 i=1
Since w is a solution of (4.5), we obtain:

oty

k
1= 2 ((Aveu,u) + rull?) + me”uvmuuzz (V'Ayu+ Viru, Viu).
=1
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On the other hand, we have that:

i

k
A(s) =2 <\|Vu|2 + (Ayu,u) + Z HV”luH2 + <Avviu,viu>)> + rs.
=1

k i k
st — A(s) = 22 (a,t) ([V', Av] u, Viu) + (a = 2) [|Vul]* - Q(?I\V’“+1u|2+

=1
= 1,112 2 . (ot)' s ;
> (at)’ ( )y\vﬁ ul > = (s = 2fJul?) +2) == (Viru, Viu).
i=1 i
If we choose o < =7 if k > 2, and o < 2 if k = 1, we obtain the following inequality:
<2y <[vz,Av}u,vm>—r< ~ [Jul? - 22 2u H2>
i=1
P olat) &l
2 PV T, Vi) .
; ; 2 (Z_j)'j'<v V', >

Now, using the fact that:

k(t)Z

2 7,112

- — —2§ 2w =rs < rgs,
r <S HUH i || UH ) rs S 1os

i=1
and that there exists a positive constant C; (depending on T and using the fact that o« < 2) such that:

QZ(af)Z( — (VY Vi) < G0 YD STVl [Vl < kCas,

— 719!

we obtain that:

.

k
i=1

On the other hand, by lemma 4.3.2 we have:

<[Vi, AV] u, Viu> + (ro + kEC1)s.

7

[V, Al h =" V/h« V"I Rm(g),

j=0
and .
[V, Vv h=) VIV« VW h+ V1 (Rm(g) « V) * VA,
j=0

Using condition 4.11 we deduce that there exists a positive constant C5 such that:

| [VE, Av] bl < C2> || V7h]| fori < k.
7=0
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Consequently, there exists a positive constant C such that:

B

(at)’

7

Z (a;)l <[Vi, AV] u, Viu> < (9 Z
i=1 =1

> VIR IV < Cs
§=0

Finally, using the fact that s(0,t) = ||uo||> and by applying proposition 4.3.1 to the operator A=A+

(2@ + roszl) I (uy — A(u) < 0), we deduce that:
S(t,l') S €Wt||u0||%'0(M’E) (413)

such that w = ro + 2C + rokCy. O

Remark 4.3.4 The initial condition of the Cauchy problem (4.5) doesn’t need to be smooth. In fact, using
estimates (4.12) and the fact that C>°(M, E) is dense in C°(M, E) (in the strong topology), we can see
that ug can be chosen in C°(M, E).

Remark 4.3.5 The Cauchy problem 4.5 defines a semigroup of linear operators T (t) that acts on C°(M, E),
such that
(T(t)uo) (x) = u(t,x) t>0, €M, uy € C°(M,E).

The estimates of theorem 4.3.3 implies that for all integers 0 < s < k < 3andt € (0, 1], we have that:

Cewt
Tl 25 ar,m),0%(0r,E)) < e (4.14)
2

such that C is a positive constant independent of t. Moreover, using the maximum principle we get the

following estimate:

| T(t)uollcoar,m) < € [Juollcoar,p)- (4.15)

In order to prove the existence of a solution to the Cauchy problem (4.5), we are going to approximate the
problem using a sequence of elliptic operators with bounded coefficients. These operators have a unique

solution on M X (0, c0) (using the theory of parabolic equations with bounded coefficients).

Theorem 4.3.6 (Lunardi) For any ug € C°(M, E), there exists a unique (bounded) solution (w(t))sefo,00)
of the Cauchy problem (4.5).

Proof. Unicity is a direct consequence of the maximum principle (proposition 4.3.1). In order to prove the
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existence we will proceed as follows. Let F' € C°°(M) such that:
limg oo F(z) = 00, F(z) < c¢(1+dy(2)), Yo € M, ||[VF||+||V2F|| <c, (4.16)

where d,, is the distance function with respect to a fixed point p € M. The existence of such a function is
proved in theorem 3.6 in (Shi, 1997) and uses the fact that the curvature is bounded.

Let ) : Ry — R, be a function such that (t) = 1if0 < ¢t < land (t) = 0ift > 2. We define
bs(x) = (FE), V, = 4V and s = gr-.

Note that V is bounded on M and that condition 4.11 continues to be satisfied by V. Consequently, the

following Cauchy problem

Oyus(t, z) = As(us)(t, x)
us(0, ) = up(x)

has a unique (bounded) solution (us(t)) , Wwhere A; = Ay, + rs.

te(0,00)
Using equation (4.16) and the fact that v is a compactly supported function, there exists a positive constant
C' independent of s such that ||vs||c2(a, )y < C. Thus, inequality (4.11) is satisfied for the vector fields V
with a constant K (k) independent of s. The same thing applies to inequality (4.3) with the operator As.
Consequently, the estimates of theorem 4.3.3 applies to u, such that w is a positive constant independent
of s. In particulat, ||us||cx ar, ) is uniformly bounded.

Using Arzela-Ascoli, there exists a subsequence (uki)kieN and a tensor u € C*°(M, E) such that uy, con-

verges uniformly to u on any compact subset of (0, c0) x M. O

4.4 Interpolation spaces

Before we proceed with that last step of the proof, let us recall some results on interpolation spaces (see

(Lunardi, 2018) for more details).

Definition 4.4.1 Let X and Y be two Banach spaces such that Y is continuously embedded into X. An in-

termediate space between X and Y is a Banach space E such thatY C E C X with continuous inclusions.

Definition 4.4.2 The interpolation space (X,Y), . is an intermediate space between X and Y defined by:

(X, Y)g oo = {m € X |||zllp,c0 = supte([)’l)t_eK (t,z,X,Y) < oo} , (4.17)
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such that:
K(t,z, X,)Y) =inf{|la||x + t||b|ly |z =a+0, (a,b) € X xY}. (4.18)

We can see that ((X, Y)g ool - H9700> is a Banach space.

Theorem 4.4.3 (Interpolation theorem) Let Y| and Y5 be two Banach space continuously embedded into
respectively the Banach spaces X1 and Xs. If T' € L( X1, X2)NL(Y1,Y2),thenT € L ((Xl, Yl)e,oo , (Xo, Yg)g’oo)

for any 6 € (0, 1). Moreover

0

1-6
”T||‘C((X1’Y1)0,007(X27Y2)6,oo) < (HT||£(X1,X2)) (HTHﬁ(Yl,Yg)) . (4.19)

Definition 4.4.4 Let 0 € [0, 1] and E be an intermediate space between X and Y. Then, we say that :

(1) E belongs to the class Jy(X,Y) if there exists a constant ¢ > 0 such that:

o]z < ellz|l5°llzllS Yo € Y. (4.20)

(13) E belongs to the class Ky(X,Y') if there exists a constant ¢ > 0 such that:

K (t,z,X,Y) < ct’||z||g, Yz € E, Vt > 0. (4.21)

The last inequality implies that a Banach space E is of class Ky¢(X,Y") if and only if E is embedded contin-
uously into (X,Y), .. We also have that (X,Y), . € Jo (X,Y) N Ky (X,Y).

Theorem 4.4.5 (Reiteration theorem) Let0 < 6y < 6; < 1land @ € (0,1). If w = (1 — 0) Oy + 664, then:

(i) If E;is of class Kp,(X,Y) (i = 0,1), then

(EQ, El)@,oo C (X’Y)w,oo . (4.22)
11) If E;isof class Jy.(X,Y) (1 = 0,1), then
( ) 0; ) 5

(X,Y) 400 C (B0, E1)g o - (4.23)
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Consequently, if E; € Ky, (X,Y) N Jp,(X,Y), then

Proposition 4.4.6 (proposition 2.8 (Deruelle, 2015)) Let (M, g) be a complete Riemannian manifold with

positive injectivity radius and bounded curvature together with its covariant derivatives. Then

(i) Forf € (0,1)and k € N,

(Ck (M, E),C* (M, E)) = " (M, E). (4.25)

6,00

(7i) Let0 < 6y < fand0 < 6 < 1. Then, ifw = (1 — 6) 61 + 06, is not an integer,

(091 (M, E),C?% (M, E))H = ¥ (M, E), (4.26)

such that
C¥Y(M,E) := Clwlw=|w]

|w] being the integer part of w.

4.5 Regularity of the solution

Corollary 4.5.1 Using the previous notation (of C*), we have that

Cewt
T o, my.comp)y) < o 050 <a<3 (4.27)

t 2

Proof. If 6 and « are both integers then the previous inequality is a direct consequence of estimate 4.14. On

the other hand, if « is an integer and 6 is not an integer, then:

1Tl cco .y .cooam) < WO g0 (0r,2)),00(01.5))

If v is not an integer, let 0 < k1 < ko < 3 be two integers and s € (0,1) such that o = (1 — s) k1 +
sky. Using proposition 4.4.6,we have that C* (M, E) = (C* (M, E),C*2(M, E)) __and C\%) (M, E) =
(ClN (M, E),Cl%(M, E)), __. Now, using theorem 4.4.3, we deduce that

S

s Cewt
(HT\ ’z(cw (M,E),C*2 (M,E))) = ‘ta_m
2

1—s

Tl zcoa,B),c0(0,B)) < (HTHL(CLGJ (M,E),ckl(M,E)))

Since we could restrict ourselves to t € (0, 1) (using the semigroup law), this concludes the proof. O
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In section 4 of (Lunardi, 1998) , the author notices that even though the semigroup 7'(¢) is not strongly
continuous in C° (M, E), we could still define a realization of the operator A in C° (M, E). Let A>)g and

R be the following linear operator

(R(A)u) (z) = /00 e M (T (t)u) (z) dt, z€ M

0

R is well defined (using estimate 4.15). Moreover, || R (A) |[z(coa,m)) < /\_1)\0.
Since R () (u) (x) is the Laplace transform of the tensor ¢ — T (t) (u) (x), R is injective. Thus, there
exists a closed linear operator A : D (A) — C° (M, E) (infinitesimal generator of A), such that R ()\) is

the resolvent of A, and D (A) = I'mage (R ())). By proposition 4.1 of (Lunardi, 1998), we have that

Proposition 4.5.2 (Lunardi)
D (A) = D% (M, E)
Ah = Ah, Vh € D (A)

Moreover, for any 6 € (0, 2), there exists a positive constant C' such that

1-¢ ]
hllcoa,e) < CllAmig gyl 11l e V€ D (4). (4.28)

where ||h||p(ay = |[Pllcoar,my + [|A (R) llco(ar, p)-

Proof. [Proof of theorem 4.1.1] Equation (4.28) shows that D? (M, E) is continuously embedded into
C? (M, E) for all & € (0,2) which proves the first part of theorem 4.1.1.
To prove the second part of theorem 4.1.1 we proceed as follows. Let H € C? (M, E) (9 € (0,1)) and
A > Ap. Then

h(z) := /OOO e M(T (t) H) (x) dt, (4.29)
is well defined. Moreover, since h € D (A) (because (A — A) (h) = H), we have that h € C? (M, E)
(using equation (4.28)),
C

1—8

_ 4
llooar,m) < CllRlgody 11y < o

_ )\0 2

It remains to prove that h € C'%? (M, E). By proposition 4.4.6 we have that

C20 (M, E) = (C* (M, E),C?>* (M, B))_ _ fory=1-%anda e (9,1).

Let ) > w (w of corollary 4.5.1). Then, h satisfies (n — A) h = H + (1 — \) h = H. The latter satisfies:

Cln—A
") Hllooar -

[V

HBHC‘)(M,E) < (1 +
A— N
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Since n > Ao, we have that

For every € > 0, set

a(z) = / e (T (1) ﬁf) (z) dt ; b(z) = / e (T (1) ﬁf) (z) dt.
0 €
Then, h(z) = a(z) + b(z). Using estimate 4.27, there exists positive constants C and C5 such that
llallca ) < Cre"||H] oo ar )
18]l 2.0 (a1, ) < C2€7_1||1£IH00(M,E)

Consequently (using the definition of ||h||+,), we obtain that:

17100 < supeco,ye ™ (lallcaar,p) + €llbllczemnry) = (C1 + Co) ||H|lcogar, my)
Cln—A
< (C1+Cy) (1 + ()\|1|9> [[H]|co(ar,B)-

— 0 2

Since [|h||4,00 = [|h||c2.6 (01,5 this concludes the proof. [
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