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RÉSUMÉ

Dans cette thèse nous étudions un opérateur différentiel elliptique linéaire de la forme P = ∆ + V − λsur une variété quasi-asymptotiquement conique (QAC) (M, g), où g est une métrique polyhomogène, et
V est un b−champ de vecteur non borné par rapport à la métrique g.
Au chapitre 4 nous étudions un opérateur elliptique plus général (à coefficients non bornés) de la forme
A = ∆ + V + r − λ, où r est une fonction bornée supérieurement, et nous prouvons une estimation deSchauder globale pour l’opérateurA sur une variété Riemannienne non compacte.
Puis au chapitre 3, nous développons des espaces de Hölder à poids qui prennent en compte le comporte-ment asymptotique de l’opérateurP sur les variétésQAC, et démontrons un théorème d’isomorphisme surles espaces à poids définis en utilisant le résultat prouvé au chapitre 4.
Le chapitre 2 contient quelques résultats sur les tenseurs polyhomogènes. Faute de référence, nous avonsdécidé d’ajouter des preuves à certains résultats qui sont nécessaires pour le chapitre 3. Par exemple, nousmontrons que l’opérateur de Hodge-Laplace d’une métrique QAC polyhomogène est de la forme
∆ = x2max PVQb

, oùPVQb
est un polynôme du second ordre de champs de vecteursQb avec des coefficientspolyhomogènes et sans terme d’ordre 0.

Mots clés: Opérateurs différentiels elliptiques, Espaces de Hölder à poids, Variétés Riemanniennes noncompactes, Estimées de Schauder, Variétés quasi-asymptotiquement coniques, Metriques polyhomogènes.
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ABSTRACT

In this thesis we study a linear elliptic differential operator of the form P = ∆ + V − λ on a quasi-asymptotically conical (QAC) manifold (M, g) where g is a polyhomogeneous metric and V is a b−vectorfield that is unbounded with respect to the metric g.
In chapter 4 we study a more general elliptic operator (with unbounded coefficients) of the form A =
∆+V +r−λ, where r is a function bounded above, and prove a global Schauder estimate for the operator
A on a non compact Riemannian manifold.
Then in chapter 3, we develop weighted Hölder spaces that take into account the asymptotic behavior ofthe operator P on QAC manifolds, and prove an isomorphism theorem on the defined weighted spacesusing the result proved in chapter 4.
Chapter 2 contains some results on polyhomogeneous tensors. For a lack of reference, we decided to addproofs to some results that are needed in chapter 3. For example, we show that the Hodge-Laplace operatorof a polyhomogeneousQAC−metric is of the form∆ = x2max PVQb

, wherePVQb
is a polynomial of secondorder ofQb−vector fields with polyhomogeneous coefficients and without a term of order 0.

Keywords: Elliptic differential operators, Weighted Hölder spaces, Non-compact Riemannian manifolds,Schauder estimates, Quasi-asymptotically conical manifolds, Polyhomogeneous metrics.
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INTRODUCTION

Let (M, g) be a complete Riemannian manifold, and P a linear elliptic operator of second order defined by
P = ∆+ V − λ, where V is a smooth vector field onM . WhenM is compact, the mapping properties of
P are relatively well understood (see for instance theorem 1.4.4). This ceases to be true on non compact
manifolds, where we need weighted Hölder spaces adapted to the asymptotic behavior of ∆ and V at
infinity. One of the issues with the operator P is that the vector V is potentially unbounded. For instance,
in (Chaljub-Simon and Choquet-Bruhat, 1979) they consider a similar operator on AE manifolds but they
require that the coefficients of order 1 and 0 be decreasing at infinity.

The theory of elliptic operators on weighted Hölder spaces was introduced by (Nirenberg andWalker, 1973)
and studied extensively by (Lockhart andMcOwen, 1985) and (McOwen, 1979). It was also used by (Chaljub-
Simon and Choquet-Bruhat, 1979) to study regularity of linear elliptic operator of second order on asymp-

totically euclidean (AE) manifolds, the work of whomwas adapted by Joyce to study asymptotically locally

euclidean (ALE) manifolds, and quasi-asymptotically locally euclidean (QALE) manifolds.
More recently, (Degeratu andMazzeo, 2017) proved Fredholm results of generalized Laplace-type operators
for weighted Sobolev and Hölder spaces on quasi-asymptotically conical (QAC) manifolds. We also men-
tion the work of Conlon, Degeratu and Rochon (Conlon and al., 2019), where such a result is used to solve
a complex Monge-Ampère equation on weighted Hölder spaces in order to build Ricci-flat QAC−metrics.

Before we state our results, we would like to explain the motivation behind the choice of the differential
operator P , which is related to the existence of Kähler Ricci solitons on non compact manifolds.
0.1 Ricci solitons
0.1.1 Riemannian Ricci soliton
On a Riemannian manifold (X, g0), the Ricci flow is a heat-like equation of the form:

∂

∂t
g(t) = −2Ric(g(t)),

g(0) = g0,

(1)

where Ric(g(t)) denotes the Ricci curvature of the metric g(t). A Ricci soliton is a self-similar solution of
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this equation. More precisely, (M, g(t)) is called a Ricci solition if
g(t) = σ(t)ϕ∗t g(0),

where ϕt :M →M is a time dependent family of diffeomorphisms ofM , and σ(t) a time dependent scale
factor, satisfying ϕ0 = Id and σ(0) = 1. If we plug g(t) in equation (1) (and evaluate at t = 0), we obtain:

− 2ϕ∗t Ric(g0) = σ′(t)ϕ∗t g0 − σ(t)ϕ∗tLXg0,

Ric(g0)−
1

2
LXg0 +

σ′(0)

2
g0 = 0,

whereX = − d
dt |t=0

ϕt. Letting λ = σ′(0)
2 , the soliton is called shrinking, steady or expanding if λ < 0, λ = 0

or λ > 0 respectively.
We also could define a Ricci soliton as a triple (M, g,X) where (M, g) is a Riemannian manifold andX is
a smooth vector field satisfying

Ric(g)− 1

2
LXg + λg = 0, (2)

for λ ∈ {−1, 0, 1}. When X = ∇gf , we say that (M, g,X) is a gradient Ricci soliton, and the above
equation translates to

Ric(g)−Hess(f) + λg = 0. (3)

0.1.2 Kähler Ricci soliton
Suppose now that (M,J, g) is a Kähler manifold. If (M, g) is a Ricci soliton and the vector field X is real
holomorphic, then the soliton equation can be rewritten as:

ρω − 1

2
LXω + λω = 0, (4)

ω(., .) = g(J., .) being the Kähler form, and ρω(., .) = Ric(J., .) the Ricci form. We say that (M, g,X) is a
Kähler Ricci soliton.

0.2 Motivation
0.2.1 Asymptotically conical Kähler-Ricci soliton
Let π :M → C be an equivariant (with respect to the real holomorphic torus action generated by the Reeb
vector field) crepant resolution of a Kähler cone (C, JC , gC), and letX denote the holomorphic lift of the
radial vector field on the cone. If we impose certain topological conditions onM (see propositions 3.1 and
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3.2 of (Conlon and Deruelle, 2016)) we could define an asymptotically conical Kähler metric g onM and a
function F ∈ C∞(M) such that

LJXωg = 0,

LJXF = 0,

(ωg being the Kähler form of g) and such that F satisfies the following equation
ρωg −

1

2
LXωg + ωg = i∂∂F. (5)

Furthermore, the function F can be chosen such that it decays at infinity together with its derivatives.
The metric g which is sometimes referred to as a background metric can also be chosen such that g =

π∗(gC + Ric(gC)) outside of a compact set. Suppose now that ωϕ = ωg + i∂∂ϕ is a Kähler metric that
solve the soliton equation (4). Then combining equations (5) and (4) we obtain that

i∂∂

(︃
log

ωn
ϕ

ωn
g

+
1

2
Xϕ− λϕ

)︃
= i∂∂F.

Hence, if ϕ satisfies the following complex Monge-Ampère equation
log

ωn
ϕ

ωn
g

+
1

2
Xϕ− λϕ = F, (6)

then ωϕ is automatically a solution of equation (4).
Then we ask the following question: does there exist a smooth function ϕ that solves the complex Monge-
Ampère equation (6)?
It turns out that if we choose our weighted spaces carefully, we should be able to solve it.
To show the existence of a solution we usually use the continuity method. The openness follows from the
fact that the linearization of the previous operator is exactly the operator P which is an isomorphism. The
closedness is the more difficult part, since we deal with an operator with unbounded coefficients on a non-
compact manifold.
As examples of Asymptotically conical Kähler-Ricci solitons, Conlon and Deruelle show that given any neg-
ative line bundle L over a projective manifold D, the total space of L⊗p admits an asymptotically conical
expanding gradient Kähler-Ricci soliton for any p such that c1 (︁KD

⨂︁
(L∗)⊗p)︁ > 0. This is actually the

particular case of a more general construction described in Corollary B of (Conlon and Deruelle, 2016).
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0.2.2 QAC Kähler-Ricci soliton
LetL be holomorphic line bundle over a compact complex orbifoldD. The total space ofL has singularities
going off to infinity. In this case, the crepant resolution of L will introduce some topology at infinity, which
make it harder to buildQAC solitons using the same technique as in the AC case. For instance, if we take
the canonical bundleKX over a complex orbifoldX with isolated singularities, then, the canonical bundle
over the crepant resolution ofX is a crepand resolution ofKX .
Conlon, Degeratu and Rochon solve this problem by using a natural compactification of L into an orbifold

with fibred corners ˜︁L. Then, given a background metric of the right type (in their case a Calabi-Yau conic
orbifold metric) they proceed by gluing suitable local models near each singularity.
We think that it is possible to proceed in the samemanner in order to buildQAC Kähler-Ricci soliton. In fact
we could use the same technique as in the AC case to solve the soliton equation away from the singular
set, and use the technique in (Conlon and al., 2019) to glue suitable models near each singularity.
In this setting, the radial vector field with respect to the (background) coniquemetric on L\D is a b−vector
field on ˜︁L.
This work focuses on solving one of the needed steps in order to build examples of QAC Kähler-Ricci soliton.

0.3 Main results
In chapter 4weprove a version of Lunardi’s theorem (Lunardi, 1998)which is a global Schauder estimate that
is essential in the proof of our main result. We modify and expand the proof in (Deruelle, 2015) to obtain a
more general version of the theorem. See chapter 3 (section 3.2) for the definition of the functional spaces
mentioned below.

Theorem 0.3.1 (Lunardi) Let (Mn, g) be a complete Riemannian manifold with positive injectivity radius,

and V be a smooth vector field onM . Let A be an elliptic differential operator acting on tensors overM

such that:

A = ∆+∇V⏞ ⏟⏟ ⏞
∆V

+r(x) , r ∈ C3(M).

Suppose that supx∈Mr(x) = r0 <∞ and that there exists a positive constant C such that
∑︁3

i=1 ||∇ir|| <

C. Assume also that there exists a positive constantK such:

||Rm(g)||C3(M,E) + ||Rm(g) ∗ V ||C3(M,E) + ||∇V ||C2(M,E) ≤ K,
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whereRm(g) ∗ V = Rm(g)(V, ., ., .). Assume also that there exists a function ϕ ∈ C2(M) and a constant

λ0 ≥ r0 such that:

lim
x→∞

ϕ(x) = +∞, supx∈M (A(ϕ)(x)− λ0ϕ (x)) <∞.

Then:

1. For any λ > r0, there exists a positive constant C such that for any H ∈ C0 (M,E), there exists a

unique tensor h ∈ D2
A (M,E), satisfying:

A(h)− λh = H, ||h||D2
A(M,E) ≤ C||H||C0(M,E).

Moreover D2
A (M,E) is continuously embedded in Cθ (M,E) for any θ ∈ (0, 2), i.e. there exists a

positive constant C(θ) such that for any h ∈ D2
A (M,E),

||h||Cθ(M,E) ≤ C(θ)||h||
θ
2

D2
A(M,E)

||h||1−
θ
2

C0(M,E)
.

2. For any λ > r0, there exists a positive constant C such that for any H ∈ C0,θ (M,E), θ ∈ (0, 1) ,

there exists a unique tensor h ∈ C2,θ (M,E) satisfying:

A(h)− λh = H, ||h||C2,θ(M,E) ≤ C||H||C0,θ(M,E).

Then in chapter 3 we prove the main results. Given a QAC−manifold (X, g) such that g is a polyhomoge-
neous metric, and a b−vector field V onX (we will denote byM = X̊), we obtain the following Schauder
estimates for the linear elliptic operator Pα (described in equation (3.7) and remark 3.3.4):

Theorem 0.3.2 Let Ck;j,θ(M,E) be the functional space defined by:

Ck;j,θ(M,E) =
{︂
h ∈ C

k+j+⌊θ⌋,θ−⌊θ⌋
loc (M,E) | x−i

max∇ih ∈ Cj+⌊θ⌋,θ−⌊θ⌋(M,E), ∀i = 0, . . . , k
}︂
.

such that θ ∈ (0, 2), and endowed with the norm:

||h||Ck;j,θ(M,E) =

k∑︂
i=0

||x−i
max∇ih||Cj+⌊θ⌋,θ−⌊θ⌋(M,E)

Suppose also that:

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞

5



Then, for any constant λ ∈ R such that:

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk−1
max)

)︃
we have that:

• There exists a positive constant C such that for any H ∈ Ck,θ
Qb (M,E) there exists a unique h ∈

Dk+2,θ
Pα

(M,E) satisfying:

Pα(h)− λh = H, ||h||
Dk+2,θ

Pα
(M,E)

≤ C||H||
Ck,θ

Qb (M,E)
; θ ∈ [0, 1)

i.e. the operator

Pα − λ : Dk+2,θ
Pα

(M,E) → Ck,θ
Qb (M,E)

is an isomorphism of Banach spaces. Moreover, Dk+2
Pα

(M,E) embeds continuously in Ck;0,θ(M,E)

for any θ ∈ (0, 2), i.e there exists a positive constant C such that for any h ∈ Dk+2
Pα

(M,E),

||h||Ck;0,θ(M,E) ≤ C||h||
θ
2

Dk+2
Pα

(M,E)
||h||1−

θ
2

Ck
Qb(M,E)

• There exists a positive constant C such that, for θ ∈ (0, 1)

||h||Ck;2,θ(M,E) ≤ C||H||
Ck,θ

Qb (M,E)

As a consequence of the previous theorem, we prove the following result:

Theorem 0.3.3 (Isomorphism theorem) Le (X, g) be a QAC−manifold such that g is polyhomogeneous.

We will denote byM = X̊ . Let V be a b−vector field onX such that:

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞

Then, the operator∆V − λ : D2+k,θ
∆V ,α (M,E) → Ck,θ

Qb,α(M,E) is an isomorphism of Banach spaces, for any

θ ∈ (0, 1) and any constant λ ∈ R such that:

λ > max

(︃
sup
M

V ln(xαxkmax), sup
M

V ln(xαxk−1
max)

)︃

Note that the b−vector V is unbounded with respect to theQAC−metric g, which was taken into consid-
eration when defining the weighted Hölder spaces used in this result.
It is also worth mentioning that this result generalizes a previous result of Deruelle (Deruelle, 2015) on
asymptotically conical manifolds that was used to build expanding Kähler Ricci solitons in (Conlon and Deru-
elle, 2016) and in the analogous problem of constructing QAC-expanders, proves openness.
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0.4 Future projects
We hope that this result will allow us to build quasi-asymptotically conical Kähler Ricci expanding solitons.
That will be the logical sequel to this result.
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CHAPTER 1

ANALYSIS ON RIEMANNIAN MANIFOLDS

We will try to summarize in this chapter the material needed in the following chapters, the main source
being (Jost, 2008) and the three first chapters of (Joyce, 2000).

Let (M, g) be a non compact, complete Riemannianmanifold of dimension nwith positive injectivity radius.
We will denote by dV the volume element induced by the metric g. When using coordinate notation, we
implicitly refer to some local frame (e1, . . . , en) on TM , and its dual frame (e∗1, . . . , e∗n) on T ∗M .

1.1 Vector bundles
Definition 1.1.1 Let E a be a vector bundle over M . A connection ∇ on E is a linear map ∇ : Γ (E) →

Γ (E)
⨂︁

Γ (T ∗M) satisfying:

• ∇(fs) = f∇s+ s⊗ df , for all s ∈ Γ (E) and s ∈ C∞(M),

• ∇αv+ws = α∇vs+∇ws, for all v, w ∈ Γ(TM), s ∈ Γ (E) and α ∈ C∞(M).

Remark 1.1.2 To prevent any confusion we use Γ(E) to denote the space of smooth global sections ofE, i.e

elements of C∞ (X,E).

Proposition 1.1.3 Let E be a vector bundle over M endowed with a connection ∇. Then, there exists a

unique sectionR (∇) ∈ Γ(End(E))
⨂︁

Λ2T ∗M) called the curvature that satisfies the following equation:

R (∇) (X,Y )e = [∇X ,∇Y ] e−∇[X,Y ]e , for allX,Y ∈ Γ (TM) and e ∈ Γ (E) . (1.1)

Remark 1.1.4 Given two vector bundles E and F overM , endowed with connections ∇E and ∇F respec-

tively, we can define a connection∇ for each of the following vector bundles:

• E
⨁︁
F : ∇(e+ f) = ∇Ee+∇F f ;
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• E
⨂︁
F : ∇(e⊗ f) = ∇Ee⊗ f + e⊗∇F f ;

• E∗: (∇L) (e) = d(L(e))− L(∇Ee).

Definition 1.1.5 Let (E, ⟨., .⟩) be a vector bundle over g endowed with a bundle metric. A connection∇ on

E is compatible with the bundle metric (or justmetric) if

X ⟨S, T ⟩ = ⟨∇XS, T ⟩+ ⟨S,∇XT ⟩ , ∀S, T ∈ Γ(E) , ∀X ∈ Γ(TM).

Theorem 1.1.6 (Fundamental Theorem of Riemannian Geometry) There exists a unique torsion free (i.e.

∇XY − ∇YX = [X,Y ]), compatible connection on TM (equipped with the bundle metric g), defined

by the following Koszul formula:

2 ⟨∇XY,Z⟩ = X ⟨Y, Z⟩+ Y ⟨X,Z⟩ − Z ⟨X,Y ⟩+ ⟨[X,Y ] , Z⟩ − ⟨[X,Z] , Y ⟩ − ⟨[Y, Z] , X⟩ . (1.2)
This connection is called the Levi-Civita connection of the metric g.

1.1.1 Tensor bundles
Using the musical isomorphisms, a Riemannian metric g on a manifoldM induces an Euclidean metric g−1

on the vector bundle T ∗M . Locally, we will use notation gij and gij to refer to g(ei, ej) and g−1(e∗i , e
∗
j )

respectively. The Euclidean metrics g and g−1 induce a bundle metric ⟨., .⟩ on each tensor bundle of the
form E = TM⊗r ⨂︁

T ∗M⊗s in the following manner:
Let T, S ∈ Γ(E) be two sections of E, then

⟨T, S⟩ = gi1p1 . . . girprg
j1q1 . . . gjsqs T i1...ir

j1...js
Sp1...pr
q1...qs , (1.3)

where
T = T i1...ir

j1...js
ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e∗js ,

S = Sp1...pr
q1...qs ep1 ⊗ · · · ⊗ epr ⊗ e∗q1 ⊗ · · · ⊗ e∗qs .

This allows us to define the norm of a tensor T as |T | = ⟨T, T ⟩
1
2 , which is a continuous function onM . We

will use this notation when defining function spaces.
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The bundle of k−forms ΛkT ∗M is a sub-bundle of T ∗M⊗k locally spanned by sections of the form
e∗i1 ∧ · · · ∧ e∗ik =

1

k!

∑︂
σ∈Sk

sign(σ)e∗iσ(1)
⊗ · · · ⊗ e∗iσ(k)

.

Using this identification, we can compute product and norms of k−forms. We can also define the formal
adjoint d∗ of the exterior derivative d : Γ

(︁
ΛkT ∗M

)︁
→ Γ

(︁
Λk+1T ∗M

)︁, in order to define the de Rham

Laplacian∆ = dd∗ + d∗d.
The Levi-Civita connection∇of g canbe extended to a connection on a vector bundle of the formTM⊗r ⨂︁

T ∗M⊗s

(using remark 1.1.4). In particular, the induced connection is compatible with the bundle metric previously
introduced.

1.2 Functional spaces
Let (E, ⟨., .⟩ ,∇) be a vector bundle overM endowed with a bundle metric and a compatible connection.
The space of continuous sections ofE that have k continuous boundedderivativeswedenote byCk(M,E),
and admits a norm:

||s||Ck(M,E) =

k∑︂
i=0

sup
M

|∇is|, (1.4)
making it a Banach space.

1.2.1 Hölder spaces
We define the Hölder space of continuous sections of E that have k + α (α ∈ (0, 1)) continuous bounded
derivatives to be:

Ck,α(M,E) =
{︂
s ∈ Ck(M,E) | ||s||Ck,α(M,E) = ||s||Ck(M,E) +

[︂
∇ks

]︂
α
<∞

}︂
, (1.5)

where the Hölder semi-norm [︁∇ks
]︁
α
is defined by

[T ]α = sup
x∈M

sup
y∈M

0<d(x,y)<δ

|T (x)− P ∗
x,yT (y)|

d(x, y)α
,

Px,y being the parallel transport along the unique minimizing geodesic from x to y, and δ is the injectivity
radius of g. Notice that Ck,α(M,E) is a Banach space with the norm ||.||Ck,α(M,E). WhenE is a trivial line
bundle with the trivial connection, we denote those spaces by Ck(M) and Ck,α(M) respectively.
Now, we list some useful results regarding Hölder spaces.
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Proposition 1.2.1 For α ∈ (0, 1), u ∈ Ck,α(M), and T ∈ Ck,α(M,E), uT ∈ Ck,α(M,E). More precisely,

there exists a positive constant C > 0 such that

||uT ||Ck,α(M,E) ≤ C

⎛⎝ k∑︂
p=0

||u||Cp(M)||T ||Ck−p,α(M,E) + ||u||Cp,α(M)||T ||Ck−p(M,E)

⎞⎠
Proof. Notice that u(x)T (x)− u(y)P ∗

x,yT (y) = u(x)
(︁
T (x)− P ∗

x,yT (y)
)︁
+ P ∗

x,yT (y) (u(x)− u(y)). Con-

sequently, we obtain that:

[uT ]α ≤ ||u||C0(M) [T ]α + ||T ||C0(M,E) [u]α

which then implies that

||uT ||C0,α(M,E) ≤ ||u||C0(M)||T ||C0(M,E) + [uT ]α

≤ ||u||C0(M)||T ||C0(M,E) + ||u||C0(M) [T ]α + ||T ||C0(M,E) [u]α

≤ ||u||C0,α(M)||T ||C0(M,E) + ||u||C0(M)||T ||C0,α(M,E).

For k = 1 we use the Leibniz rule to obtain that ∇(uT )(x) − ∇(uT )(y) = ∇u(x) ⊗ (T (x)− T (y)) +

T (y) (∇u(x)−∇u(y)) +∇T (x) (u(x)− u(y)) + u(y) (∇T (x)−∇T (y)). This implies that:

[∇(uT )]α ≤ ||∇u||C0(M) [T ]α + ||T ||C0(M,E) [∇u]α + ||∇T ||C0(M,E) [u]α + ||u||C0(M) [∇T ]α (1.6)
Then we use the fact that ||uT ||C1(M,E) ≤ ||u||C0(M)||T ||C1(M,E) + ||∇u||C0(M)||T ||C0(M,E) combined

with equation (1.6) to prove the case k = 1. We proceed by induction to prove the result for k > 1. □

Remark 1.2.2 For any non-negative real value θ, wewill denote byCθ(M,E) theHölder spaceC⌊θ⌋,θ−⌊θ⌋(M,E).

Theorem 1.2.3 (The Mean Value Theorem) Let V andW be two normed vector spaces, Ω ⊂ V a convex

subset of V and f ∈ C1(Ω,W ). Let a, b ∈ Ω, and suppose that there exists a positive constantM such that

||f ′(ta+ (t− 1)b)|| ≤M , for all t ∈ [0, 1] .

Then we have:

||f(a)− f(b)|| ≤M ||a− b||.

As a consequence of the previous theorem, we have
11



Proposition 1.2.4 LetE be a vector bundle overM and T ∈ C1(M,E). Then there exist a positive constant

C depending only on the constant δ used in the definition of Hölder spaces, such that:

||T ||C0,θ(M,E) ≤ C||T ||C1(M,E), ∀θ ∈ (0, 1) (1.7)

1.2.2 Sobolev Spaces
Let p ≥ 1, we define the Lebesgue space Lp(M,E) as the set of locally integrable sections (elements of
L1
loc(M,E)) of E such that the norm

||s||Lp(M,E) =

(︃∫︂
M

|s|pdV
)︃ 1

p

,

is finite. Given a non-negative integer k, we define the Sobolev space
W k,p(M,E) =

{︁
s ∈ Lp(M,E) | ∇is ∈ Lp(M,E)

}︁
,

with the norm
||s||Wk,p(M,E) =

(︄
k∑︂

i=0

∫︂
M

|∇is|pdV

)︄ 1
p

.

Notice thatW k,p(M,E) is a Banach space with the norm ||.||Wk,p(M,E). Note also that the derivatives in
the previous definition are meant in the weak sense. The local Sobolev space W k,p

loc (M,E) consists of all
locally integrable sections s of E whose restriction to any pre-compact Q ⋐M lies onW k,p(Q,E).

W k,p
loc (M,E) =

{︂
s ∈ L1

loc(M,E) | ∀Q ⋐M : s|Q ∈W k,p(Q,E)
}︂
.

1.3 Linear differential operators
Let (︁E, ⟨., .⟩E ,∇E

)︁ and (︁F, ⟨., .⟩F ,∇F
)︁ be two vector bundles overM of ranks s and t respectively.

Before we proceed to the definition, let us recall that for any x ∈ M there exists a neighborhood U ⊂ M

of x, (ei)1≤i≤s ∈ Γ
(︁
E|U
)︁, and (fi)1≤i≤t ∈ Γ

(︁
F|U
)︁ such that (ei(y))1≤i≤s and (fi(y))1≤i≤t are basis of

Ey and Fy respectively for any y ∈ U . (ei)1≤i≤s and (fi)1≤i≤t are called local frames. These frames can
be used to locally trivialize E and F respectively.

Definition 1.3.1 A linear map P : Γ(E) → Γ(F ) is called a smooth linear differential operator of order l if

in local trivializing neighborhood it has the following form:

Pe =
l∑︂

i=1

Pie (1.8)
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where s ∈ Γ(E), and such that Pi is an t× smatrix whose components are of the form:∑︂
|β|=i

aβ(x)∇β

β being a multi-index with indices ranging from 1 . . . n, and aβ are locally defined smooth functions.

Let ξ =
(︁
ξ1, . . . , ξn

)︁
∈ Rn and σξ(P, x) the t × s matrix obtained from Pl by replacing ∇β by ξβ and

evaluated at x. σ(P, x) is called the principal symbol of P . P is a linear elliptic differential operator if

σξ(P, x) is an isomorphism for any ξ ̸= 0.

Remark 1.3.2 Note that if a linear differential operator P : Γ(E) → Γ(F ) is elliptic, then rank(E) =

rank(F ).

Definition 1.3.3 The formal adjoint of a linear differential operator P : Γ(E) → Γ(F ) is a smooth linear

operator P ∗ : Γ(F ) → Γ(E) satisfying:∫︂
M

⟨Pe, f⟩F dV =

∫︂
M

⟨e, P ∗f⟩F dV for all e ∈ C∞
c (M,E), and f ∈ C∞

c (M,F ). (1.9)
P is elliptic if and only if P ∗ is. The formal adjoint P ∗ depends on the choice of the bundles metrics on E

and F as well as the Riemannian metric g onM .

1.3.1 Linear elliptic differential operators
Theorem 1.3.4 (Schauder estimates) LetE andF be vector bundles overM ,Ω ⋐M be abounded domain,

K a compact subset of Ω, and L : Γ(E) → Γ(F ) a linear elliptic differential operator of order k with

coefficients in Ck,θ(Ω), where k ≥ 0 and θ ∈ (0, 1).

Then, there exists a positive constant C(K,Ω, g, θ, l, coefficients of L) such that for any u ∈ Ck+l,θ(U,E)

we have that:

||u||Ck+l,θ(K,E) ≤ C
(︂
||L(u)||Cl,θ(Ω,F ) + ||u||C0(Ω,E)

)︂
. (1.10)

Remark 1.3.5 Let f ∈ C2(M), and assume that f attains its maximum (minimum) at a point p ∈M . Then

∆f(p) ≤ 0 (∆f(p) ≥ 0) , and df(p) = 0

As a consequence, let A = ∆ + X where X is a smooth vector field, and f ∈ C2(M). If f attains its

maximum (minimum) at a point p ∈M , thenAf(p) ≤ 0 (Af(p) ≥ 0).
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1.4 Fredholm operators
Definition 1.4.1 LetV andW be twoBanach spaces andP ∈ L(V,W ),L(V,W ) being the set of continuous

linear maps from V toW . Then, P is a Fredholm operator if:

• dim(ker(P)) is finite.

• ran(P) is a closed sub-space ofW with finite codimension. Actually, finite codimension implies closed-

ness.

In this case, we define the index of P by the equation:

indexP = dim(ker(L))− dim(coker(L)) . (1.11)
In particular, an isomorphism between V andW is Fredholm of index zero.

Definition 1.4.2 Let V andW be two Banach spaces and P ∈ L(V,W ). Then, P is a compact operator if

the image under P of any bounded sequence in V contains a convergent sub-sequence inW .

Remark 1.4.3 The index of a Fredholm operator does not change under perturbation by a compact operator.

In other words, if P andK are a Fredholm operator and a compact operator respectively, then, P +K is

also Fredholm with the same index as P .

The following theorem is partly a consequence of theorem 1.3.4 , which in particular states that linear elliptic
operators over a bounded domain are Fredholm.

Theorem 1.4.4 (Theorem 1.5.4 (Joyce, 2000)) Let k > 0 and l ≥ k be integers, and θ ∈ (0, 1). Suppose

that E and F are vector bundles over a compact manifoldM , equipped with bundle metrics. Suppose also

that P : Γ(E) → Γ(F ) is a linear elliptic operator of order k with C l,θ coefficients. Then

• P ∗ is elliptic with C l−k,θ coefficients, and both kerP , kerP ∗ are finite sub-spaces of Ck+l,θ(M,E)

and C l,θ(M,F ) respectively.
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• If f ∈ C l,θ(M,F ) then there exists u ∈ Ck+l,θ(M,E) such that Pu = f if and only if f ⊥ kerP ∗ (f

is in the subspace F/kerP ∗), and if one requires that u ⊥ kerP then u is unique.

The notation ⊥ refers to the L2 inner product defined in equation (1.9). The previous theorem is a state-
ment of the Fredholm alternative.

15



CHAPTER 2

QUASI-ASYMPTOTICALLY CONICAL MANIFOLDS

Manifolds with fibred corners are a powerful tool to encode the asymptotic behavior of Riemannianmetrics
in term of the Lie algebra of vector fields. This chapter is a rather bare-bones introduction to the subject,
the main source of which are the work of Richard Melrose, (Albin and al., 2012), (Debord and al., 2015),
(Conlon and al., 2019) and (Kottke and Rochon, 2021).

2.1 Stratified spaces
Definition 2.1.1 A smoothly stratified space X of dimension n is a metrizable, locally compact, second

countable space which decomposes into a locally finite union of locally closed strata S = {Sα}, where

each Sα is a smooth manifold of dimension dim Sα ≤ n. The set of strata S obeys the following properties:

(i) Each strata S is endowed with a tubular neighborhood TS and a radial function in the tubular neigh-

borhood ρS : TS → [0, 1) such that ρ−1
S (0) = S, together with a continuous retraction πS : TS → S.

(ii) If Sα, Sβ ∈ S , then TSα ∩ Sβ ̸= ∅ ⇔ Sα ∩ Sβ ̸= ∅ ⇔ Sα ⊂ Sβ . In this case we write Sα ≤ Sβ . If

moreover Sα ̸= Sβ then we write Sα < Sβ . This induces a partial order on the set of strata S.

(iii) The retraction πS : TS → S is a locally trivial fibration with fibre the coneC (LS) over some compact

stratified space LS .

(iv) If we let Xi be the union of strata of dimension less than or equal to i, then we obtain a filtration

∅ ⊂ X1 ⊂ · · · ⊂ Xn = X ,Xn−1 being the singular set andX\Xn−1 the regular set.

Remark 2.1.2 Althoughwe don’t specify any restriction on the codimension of the singular set, in some cases

(complex algebraic varieties) the singular set is at least of real codimension 2.

Definition 2.1.3 Let (X,S) be a smoothly stratified space. The depth ofX is the largest k such that S1 <

S2 < · · · < Sk+1 is a totally ordered chain in S.

The relative depth of a stratum S is the largest k such that S < S1 < · · · < Sk is a totally ordered chain in

S. The relative depth of a point x ∈ X is the relative depth of the unique stratum that contains it.
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Example 2.1.4 Orbifolds are a good example of stratified spaces. Indeed, let X be a complex orbifold. A

point x ∈ X is singular if in an orbifold chart, its local isotropy subgroup Hx is non trivial, and regular

otherwise. We will denote by S = {SΣα} the canonical stratification ofX such that each SΣα is the union

of singular points with isotropy subgroups in the isomorphism class Σα, SΣe being the regular stratum.

2.2 Manifold with corners
Let n be a positive integer and k an integer such that 0 ≤ k ≤ n. Let us define Rn

k = [0,∞)k × Rn−k. we
define the set

∂lRn
k = {x ∈ Rn

k | xi = 0 for exactly l of the first k indices } . (2.1)
An open subset of Rn

k is a set Ω = ˜︁Ω ∩Rn
k for some open set ˜︁Ω ⊂ Rn. We will denote by ∂lΩ = ˜︁Ω ∩ ∂lRn

k

the boundary of codimension l of Ω. Given two open sets Ω1 and Ω2 of Rn
k , a map ϕ : Ω1 → Ω2 is a

diffeomorphism if there exists two open sets ˜︂Ω1 and˜︂Ω2 such thatΩi =˜︂Ωi ∩Rn
k for i = 1, 2 and ϕ extends

to a diffeomorphism ϕ : ˜︂Ω1 → ˜︂Ω2 in the usual sense. Such a diffeomorphism restricts to a bijective map
between boundaries of the same codimension.

Definition 2.2.1 LetX be a paracompact Hausdorff topological space. A chart with corners (U, ϕ) onX is

a homeomorphism ϕ : U → V ⊂ Rn
kϕ

for some integer kϕ, such that U and V are open sets ofX and Rn
kϕ

respectively. Two charts with corners (U, ϕ) and (W,ψ) are compatible if U ∩W = ∅ or

ψ ◦ ϕ−1 : ϕ(U ∩W ) → ψ(U ∩W )

is a diffeomorphism in the sense described earlier. A maximal set of compatible charts that covers X is

called a C∞ structure with corners on X of dimension n. A t−manifold is a pair (X,F = C∞(X)) such

that C∞(X) is the set of smooth functions onX induced by some C∞ structure with corners.

We denote by ∂lX the set of boundaries ofX of codimension l, defined by:

∂lX = {p ∈ X | charts around pmaps p to ∂lRn
k} .

The boundary hypersurfaces ofX are the closure of connected components of ∂1X , the set of which will be

denoted byM1(X).

Definition 2.2.2 (Melrose) Amanifold with cornersX of dimension n and depth at most k, is a t−manifold

of dimension n such that the boundary hypersurfaces of X (corners of codimension 1) are embedded sub-

manifolds (with corners) and such that ∂lX = ∅ for any integer l > k.
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Some definitions of manifold with corners drops the second part of the previous definition. For instance,
Joyce’s definition (see definition 2.2 of (Joyce, 2016)) doesn’t impose any requirements on hypersurfaces.
For example, the teardrop T =

{︁
(x, y) ∈ R2 | x ≥ 0, y2 ≤ x2 − x4

}︁ fits the definition of Joyce of a mani-
fold with corners of dimension 2, but does not qualify as such according to definition 2.2.2 because ∂T self
intersects.

Remark 2.2.3 We will assume that each boundary hypersurface Hi of X has a defining function xi ∈

C∞(X) such that:

(1) Hi = x−1
i (0);

(2) xi is positive onX\Hi;

(3) dxi is nowhere vanishing onHi;

(4) Each point p ∈ Hi has a local coordinate system with xi as one of its elements.

Example 2.2.4 As an example of a manifold with corners, we can take the product X = X1 × X2 of two

connected manifolds with boundaries. In this case, X has two hypersurfaces H1 = ∂X1 × X2 and H2 =

∂X2 ×X1, the corner (of codimension 2) being ∂X1 × ∂X2.

2.3 QFB-metric
2.3.1 Iterated fibration structure
Thenotionof iteratedfibration structurewas introducedbyMelrose in the context of the resolution (blowup)
of smoothly stratified spaces. In fact, there is a one to one correspondence between smoothly stratified
spaces and manifolds with fibred corners; see for instance propositions 2.5 and 2.6 in (Albin and al., 2012).

Definition 2.3.1 (Melrose) Let X be a manifold with corners and (Hi)1≤i≤l the list of boundary hypersur-

faces ofX . An iterated fibration structure onX is a collection of fibrations π = (πi)1≤i≤l such that:

(i) Each πi : Hi → Si is a fiber bundle with fiber Fi where both Fi and Si are manifolds with corners.
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(ii) IfHij = Hi ∩Hj ̸= ∅ then dim Fi ̸= dim Fj .

(iii) We write Hi < Hj if Hij ̸= ∅ and dim Fi < dim Fj . In this case, πi : Hij → Si is a surjective

submersion.

(iv) The boundary hypersurfaces of Sj are exactly the Sij = πj (Hij) with Hi < Hj . Moreover, there

exists a surjective submersion πij : Sij → Si such that when restricted toHij we have πij ◦ πj = πi.

The iterated fibration structure induces a partial order on the set of boundary hypersurfaces. Thus, we
define the relative depth of a boundary hypersurfaceH as the largest k such thatH < H1 < H2 < · · · <

Hk−1 for some k − 1 hypersurfaces Hi. Notice that if Hi and Hj are respectively minimal and maximal
hypersurfaces , then both Fj and Si are closed manifolds.

Let H1, . . . ,Hl be an exhaustive list of boundary hypersurfaces, and let x1, . . . , xl be the corresponding
boundary defining functions. In what follows, we will denote by v =

l∏︁
k=1

xk a total boundary defining
function.

Definition 2.3.2 A tube system for a hypersurface H is a triplet (NH , rh, xh) with NH an open neighbor-

hood ofH inX , rh : NH → H a smooth retraction, and (rh, xh) : NH → H × [0,∞) a diffeomorphism

onto its image.

Definition 2.3.3 A manifold with fibred corners is a manifold with corners endowed with an iterated fi-

bration structure (X,π). We say that the boundary defining functions are compatible with the iterated

fibration structure, if for each boundary hypersurfaces Hi < Hj , the restriction of xi to Hj is constant

along the fibers of πj : Hj → Sj .

Wewill always assume that the boundary defining functions are compatiblewith the iterated fibration struc-
ture in sense of definition 2.3.3, and such that xi is identically equal to 1 outside of a tubular neighborhood
ofHi.

Definition 2.3.4 An iterated fibred tube system of a manifold with fibred corners X , is a family of tube
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systems (Ni, ri, xi) forHi ∈M1(X) such that for any hypersurfacesHi < Hj we have:

rj (Ni ∩Nj) ⊂ Ni , xi ◦ rj = xi , πi ◦ ri ◦ rj = πi ◦ ri onNi ∩Nj (2.2)
and the restriction of xi toHj is constant along the fibers of πj : Hj → Sj .

The existence of an iterated fibred tube system on a manifold with fibred corners is proved in lemma 1.4 of
(Debord and al., 2015).

2.3.2 Quasi fibred boundary metrics
We will review the notion of Quasi fibred boundary metrics introduced in (Conlon and al., 2019). Let (X,π)
be a manifold with fibred corners. We denote by:

Vb = {ξ ∈ C∞(X;TX) | ξ is tangent to the hypersurfaces ofX} , (2.3)
the Lie algebra of b-vector fields. This intrinsic definition is equivalent the following one

Vb = {ξ ∈ C∞(X;TX) | ξ (xi) ∈ xiC∞ (X)} , (2.4)
which is easier to use.

Definition 2.3.5 A quasi fibred boundary vector field (or QFB-vector field) is a b-vector field ξ such that:

(i) ξ|Hi is tangent to the fibers of πi;

(ii) ξ (v) ∈ v2C∞ (X), where v is a total boundary defining function.

These conditions are clearly still satisfied for the Lie bracket of two such vector fields. Thus, the set of

quasi fibred boundary vector fields is a Lie algebra, which will be denoted by VQFB(X).

Remark 2.3.6 The definition of QFB-vector fields depends on the choice of a total boundary defining func-

tion v ∈ C∞(X) (see lemma 1.1 of (Kottke and Rochon, 2021)).
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Using definition 2.3.1 we can give an explicit description of QFB-vector fields. Indeed, letH1 < H2 < · · · <

Hk be a totally ordered chain and (x1, y1, x2, y2, · · · , xk, yk, z) a local coordinate system around a point
p ∈ H1 ∩H2 ∩ · · · ∩Hk that straightens out the fibrations πi : Hi → Si such that:

• xi is a boundary defining function ofHi;
• yi =

(︂
y1i , · · · , y

ki
i

)︂ for i ∈ {1, · · · , k} and z = (z1, · · · , zq);
• Each fibration πi corresponds to the map

(x1, y1, · · · , xî, yi, · · · , xk, yk, z) ↦→ (x1, y1, · · · , xi−1, yi−1, yi) . (2.5)

Using equation (2.5)we see that (xi+1, yi+1, · · · , z) are coordinates on the fibers of πi. Thus, the space of
b-vector fields tangent to the fibers of the fibrations πi is locally spanned by:

∂

∂zj
,
∂

∂ylj
, xj

∂

∂xj
for j > i. (2.6)

Now, using the second part of definition 2.3.5 we deduce that QFB-vector fields are spanned by:
∂

∂zj
, vi

∂

∂yji
, v1x1

∂

∂x1
, vi+1

(︃
xi+1

∂

∂xi+1
− xi

∂

∂xi

)︃
, i = 1 . . . k − 1, , (2.7)

where vi = k∏︁
j=i

xj .

Remark 2.3.7 VQFB (X) is called a structural Lie algebra in the sense of definition 1.4 in

(Ammannand al., 2004). In particular, structural Lie algebras are finitely generated protective C∞(X)-

modules. Thus, using the Serre-Swan theorem, there exists a smooth vector bundle (the QFB−tangent

bundle) πTX → X such that VQFB (X) ≃ Γ (πTX). This vector bundle is actually a boundary tangential

Lie algebroid (see definition 1.14 of (Ammann and al., 2004)). The same thing goes for Vb (X) and V (X)

(definition 2.3.11 below).

We will denote by iπ : πTX → TX the natural bundle map that restricts to an isomorphism over X̊ , such
that:

VQFB (X) = iπ∗C∞ (X; πTX) . (2.8)
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The QFB-cotangent bundle πT ∗X is then defined as the vector bundle dual to the QFB-tangent bundle
πTX , and is locally spanned by:

dzj ,
dvi
v2i
,
dyji
vi
. (2.9)

Definition 2.3.8 A quasi fibred boundary metric (or QFB-metric) is a positive-definite tensor

gπ ∈ C∞(X̊; Sym2 (πT ∗X)) that restricts to a Riemannian metric on X̊ via the map iπ : πTX → TX .

We say that gπ is a smooth QFB−metric if it is smooth up to the boundary. We say that (X, gπ) is a

QFB−manifold.

Definition 2.3.9 If amanifold with fibred corners (X,π) is such thatHi = Si and πi = Id for eachmaximal

boundary hypersurface Hi, then a QFB-vector field is called quasi-asymptotically conical vector field (or

QAC-vector field) and in the same manner, a QFB-metric is called a quasi-asymptotically conical metric (or

QAC-metric). If gQAC is aQAC−metric onX , then (X, gQAC) is called a QAC-manifold.

2.3.3 Examples of QAC manifolds
2.3.3.1 Asymptotically Conical manifolds
As we said, manifolds with fibred corners can be used to encode asymptotic conditions on certain complete
manifolds. Let us for instance consider a non-compact Riemannian manifolds (M, g) of dimension n + 1,
and a compact subset K ⊂ M . Suppose that M\K is diffeomorphic to the non-compact ends of the
Riemannian cone (︁(1,∞)× Y, gc = dr2 + r2h

)︁ with (Y, h) a compact Riemannian manifold (called the
link of the cone). Suppose also that under such an identification we have that:

||∇k (g − gc) || = O(r−ϵ−k) for all k ∈ N0, and some ϵ > 0.

Then, (M, g) is called an Asymptotically Conical (or AC) manifold. In particular, (M, g) is called Asymptoti-

cally Euclidean (or AE) manifold if (Y, h) is Sn equipped with the round metric, and Asymptotically Locally

Euclidean (or ALE) if Y = Sn\Γ where the finite subgroup Γ ⊂ O(n) acts freely on Sn. So AC manifolds
can be seen as a generalization of AE and ALEmanifolds.
Let (C, g) be a manifold with boundary, and g aQAC−metric on it. Then in a neighborhood of the bound-
ary, the QAC-cotangent bundle πT ∗C is generated locally by

dρ

ρ2
,
dyj

ρ
,
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with ρ is a boundary defining function, and such that the metric g is of the form
g =

dρ2

ρ4
+
h

ρ2⏞ ⏟⏟ ⏞
g0

+η,

where η is some mixed terms tensor, and h is a Riemannian metric on ∂C. If we suppose that ||η||g0 =

O(ρϵ) (for some ϵ > 0), then it becomes clear that AC−metrics are a particular case of QAC−metrics
on manifold with boundary. In fact, in manifold with boundary, QAC-metrics corresponds the scattering

metrics of(Melrose, 1995).

2.3.3.2 Quasi- Asymptotically Conical manifolds
Let us start with the case of Quasi-Asymptotically Locally Euclidean (or QALE) manifolds. These were in-
troduced by Joyce (Joyce, 2001b) to study the existence of Kähler metrics on the resolution ofCn\Γwhere
Γ ⊂ U(n) is a finite subgroup that does not act freely on Cn\ {0}. In this case, fixed points are subspaces
of Cn with potentially different isotropy subgroups of Γ. The main source of examples of QALE−metrics
are crepant resolutions of Cn\Γ (see theorem 3.3 of (Joyce, 2001b)). Although, (Carron, 2011) showed that
the Nakajima metric (Nakajima, 1999) is a QALE−metric in the sens of Joyce.
Mazzeo gave a description of these singular sets in terms of iterated cone-edge spaces (Mazzeo, 2006), a
sub class of stratified spaces and together with Degeratu (Degeratu and Mazzeo, 2017) introduced Quasi-

Asymptotically Conical manifolds as resolution blow-ups of these manifolds (into a manifold with fibred
corners). An alternative description of thesemetricswas given in section 1of (Conlon and al., 2019). In some
sense,QAC−manifolds generalizeQALE−manifolds thewayAC−manifolds generalizeALE−manifolds.
In their work (Conlon and al., 2019), Conlon, Degeratu and Rochon builtCalabi−Y auQAC−metrics that
are neither QALE−metrics nor Cartesian products of AC−metrics. Concrete examples of such metrics
can be built using the following theorem

Theorem 2.3.10 (Corollary 4.10 of (Conlon and al., 2019)) Let (D, gD) be a Kähler-Einstein Fano orbifold

with isolated singularities of complex codimension at least two with each locally admitting a Kähler crepant

resolution, then D admits a Kähler crepant resolution ˆ︁D and the QAC−compactification ˆ︁XQAC of K ˆ︁D
admits a KählerQAC−metric asymptotic to gC (a quasi-regular Calabi-Yau cone metric onK\D) with rate

δ for any δ > 0.
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2.3.4 Qb manifolds
Definition 2.3.11 Let (X,π) be a QAC-manifold and xmax the product of boundary defining functions of the

maximal hypersurfaces ofX . A smooth quasi b-metric (Qb-metric) is a metric gQb of the form:

gQb = x2maxgQAC . (2.10)
for some smooth QAC-metric gQAC . The Lie algebra of Qb-vector fields is defined as

VQb = {ξ ∈ C∞ (X,TX) | sup
X̊

gQb (ξ, ξ) <∞}.

or equivalently as b-vector fields such that for each i

• ξ|Hi is tangent to the fibers of πi ifHi is not a maximal hypersurface;

• ξv ∈ v2

xmax
C∞(X).

Remark 2.3.12 From the previous definition, it is easy to see that VQAC (X) = xmaxVQb (X).

Proposition 2.3.13 Given two QAC-vector fields Ṽ and W̃ we have that
[︂
Ṽ , W̃

]︂
∈ xmaxVQAC(X).

In addition,X(f) ∈ xmaxC
∞(X) for anyQAC−vector fieldX and function f ∈ C∞(X).

Proof. Using remark 2.3.12, any QAC-vector field Ṽ is of the form xmaxV for some some Qb-vector field V .

Then,
[︂
Ṽ , W̃

]︂
= [xmaxV, xmaxW ] for some Qb-vector fields V and W . A straightforward computation

shows that:

[xmaxV, xmaxW ] = x2max

(︃
[V,W ] +

V (xmax)

xmax
W − W (xmax)

xmax
V

)︃
.

By definition 2.3.11, both W (xmax)
xmax

and W (xmax)
xmax

are in C∞(X), which implies that [xmaxV, xmaxW ] ∈

xmaxVQAC(X). The second assertion follows from the fact that ξ(f) ∈ C∞(X) for anyQb−vector field ξ.

□

2.4 Polyhomogeneity
Note that when defining a QAC−metric we only require that the given tensor is defined on X̊ . In some
cases, such tensors can be extended smoothly up to the boundary, but most of the time requiring a metric
to be smooth up to the boundary is restrictive. In this section we introduce a class of tensors that, while not
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smooth up to the boundary, have a Taylor like asymptotic expansion near the boundary. These are called
polyhomogeneous tensors.

Definition 2.4.1 An index setK is a subset of C× N0 such that:

(z, k) ∈ K , | (z, k) | → ∞ =⇒ Re z → ∞, (2.11)
(z, k) ∈ K , p ∈ N =⇒ (z + p, k) ∈ K, (2.12)
(z, k) ∈ K =⇒ (z, p) ∈ K ∀ 0 ≤ p ≤ k. (2.13)

An index setK is a non-negative index set if it also satisfies the following conditions:

N0 × {0} ⊂ K, (2.14)
(z, k) ∈ K =⇒ Imz = 0 andRez ≥ 0, (2.15)
(0, k) ∈ K =⇒ k = 0. (2.16)

Given two index setsG andK, we define the index setG+K as follows:
G+K = {(z1 + z2, k1 + k2) | (z1, k1) ∈ G, (z2, k2) ∈ K} . (2.17)

Note that, ifK andG are non-negative index sets, thenK∪G ⊂ K+G. In particular, given a non-negative
index setH , we define the index set

H∞ =

∞∑︂
i=1

H =

∞⋃︂
i=1

i∑︂
j=1

H. (2.18)
It is easy to see that H∞ + H = H∞. Before we define polyhomogeneous functions on a manifold with
corners, let’s start with the simpler case of a manifold with boundary.

Definition 2.4.2 LetM be a compactmanifold with boundary, and ρ the boundary defining function of ∂M .

The set of polyhomogeneous functions onM with respect to an index set K, denoted by AK
phg(M), is the

the set of functions f ∈ C∞(M̊) such that:

f ∼
∑︂

(z,k)∈K

a(z,k)ρ
z (log ρ)k , a(z,k) ∈ C∞(∂M), (2.19)

where∼means that for anyN ∈ N we have that:

f −
∑︂

(z,k)∈K
Rez≤N

a(z,k)ρ
z (log ρ)k ∈ Ċ

N
(M), (2.20)
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where ĊN
(M) is the set of N differentiable functions onM that restrict to zero on ∂M together with all

their derivatives up to orderN . We define

Ċ
∞
(M) =

⋂︂
N∈N

Ċ
N
(M).

Remark 2.4.3 Note that ifK = N0×{0} thenAK
phg(M) = C∞(M). It is also easy to see thatA∅

phg(M) =

Ċ
∞
(M). Another important remark is that the multiplicative inverse of a positive polyhomogeneous func-

tion f that is bounded away from zero, is also polyhomogeneous. This is a direct consequence of theorems

B.1 andB.6 of (Sher, 2023).

Now we are ready to define polyhomogeneous functions on a manifold with corners X .

Definition 2.4.4 An index familyK on a manifold with cornerX , is an assignment of an index setK(H) to

each hypersurfaceH ∈M1(X). IfF is a boundary surface ofX , thenwewill denote byK|F the family index

that assignsK(H) to the boundary hypersurface F ∩H of F (such thatH ∈M1(X)). K is a non-negative

family index if K(H) is a non-negative index set for eachH ∈M1(X).

Given two family indices G andK, we define family indices G +K and G∞ as follows:

G∞(H) = (G(H))∞ ,

(G +K) (H) = G(H) +K(H) for eachH ∈M1(X).

We will denote byAK
phg(X) the space of polyhomogeneous functions onX with index family K.

Definition 2.4.5 AK
phg(X) is the set of functions f ∈ C∞(X̊) such that near each boundary hypersurface

H :

f ∼
∑︂

(z,k)∈K(H)

a(z,k)ρ
z
H (log ρH)k , a(z,k) ∈ A

K|H
phg (H), (2.21)

ρH being the defining function ofH .

Note that in the previous definition, the a(z,k) coefficients are well defined since the induction will ends
when reaching a corner of maximal codimension which consists of a closed manifold.
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Definition 2.4.6 Let (X,π) be aQAC-manifold, andE a vector bundle overX . The set of polyhomogeneous

sections of E with family index K is defined by:

AK
phg(X,E) = AK

phg(X)
⨂︂

C∞(X)

Γ (E) . (2.22)

Definition 2.4.7 WedefineapolyhomogeneousQFB-metric as an euclideanmetric g ∈ AK
phg(X, Sym

2 (πT ∗X))

such thatK is a non-negative family index. We define polyhomogeneous QAC-metric in the same manner.

As a direct consequence of this definition, wehave that ||ξ||g is uniformly boundedon X̊ for anyQFB−vector

field ξ.

Proposition 2.4.8 The inverse of apolyhomogeneousQFB-metric g is also apolyhomogeneousQFB-metric.

Thus, g induces a polyhomogeneous euclidean metric on the vector bundles E = πTX⊗r ⊗ πT ∗X⊗s .

Proof. Use remark 2.4.3 □

Example 2.4.9 Using equations (2.6) and (2.7) we can see that Vb ⊂ AG
phg(X,

πTX) such that G is an

index family satisfying G(H) ⊂ Z{≥−1} × {0} for everyH ∈M1(X).

2.5 Some results on polyhomogeneous QAC-metrics

Some of the work done in (Ammannand al., 2004) can actually be extended to polyhomogeneous QAC-

metric. For instance, let (X,VQAC , gQAC) be a QAC-manifold such that gQAC is polyhomogeneous with
respect to a non-negative family index G. We will denote by DiffVQAC

(X) the algebra of differential oper-
ators generated by vectors in VQAC and with coefficients in C∞(X).

Definition 2.5.1 Given two vector bundles E1 and E2 overX , we will denote by

DiffVQAC
(X,E1, E2) = DiffVQAC

(X)
⨂︂

C∞(X)

Γ (E∗
1 ⊗ E2) (2.23)

the algebra of differential operators taking sections of E1 to sections of E2 generated by vectors in VQAC

and with coefficients in C∞(X). To clarify this definition, let U be a local trivializing neighborhood of both

E1 and E2. Then, Γ(Ei|U
) ≃ C∞(U)

⨂︁
CNi for i = 1, 2. So locally, the elements of DiffVQAC

(X,E1, E2)
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are a linear combination of the composition of operators of the form X ⊗ A, such that X in VQAC(X),

and A a smooth family of linear mappings in L
(︁
CN1 ,CN2

)︁
. Note that this definition doesn’t depend on

the local trivialization since two local trivializations only differ by a smooth family of linear mappings ∈

L
(︁
CN1 ,CN2

)︁
.

In the same manner, we define

DiffVQAC ,G(X,E1, E2) = AG
phg(X)

⨂︂
C∞(X)

DiffVQAC
(X,E1, E2), (2.24)

the algebra of differential operators taking sections of E1 to sections of E2 generated by vectors in VQAC

and with polyhomogeneous coefficients in AG
phg(X). When E1 = E2 we will use the simpler notations

DiffVQAC
(X,E) andDiffVQAC ,G(X,E).

Proposition 2.5.2 Let ∇ be the Levi-Civita connection of gQAC . Then, ∇ can be extended to a differential

operator in xmaxDiffVQAC ,G(X,
πTX, πTX∗ ⊗ πTX). Consequently, the Riemannian curvature tensor R

is an element of x2maxAG
phg(X,Λ

2 (πT ∗X)
⨂︁
End(πTX)).

Proof. LetX,Y and Z be threeQAC-vector fields. Then, using the Koszul identity, we have that

2 ⟨∇XY,Z⟩ = X (⟨Y,Z⟩)+Y (⟨X,Z⟩)−Z (⟨X,Y ⟩)+ ⟨[X,Y ] , Z⟩−⟨[Y,Z] , X⟩−⟨[X,Z] , Y ⟩ . (2.25)
Then, using proposition 2.3.13wededuce that each term in the right side of equation (2.25) is inxmaxAG

phg(X).

Thus, ⟨∇XY, Z⟩ ∈ xmaxAG
phg(X), which implies that ∇XY ∈ xmaxAG

phg(X,
πTX). Since R(X,Y ) =

[∇X ,∇Y ]−∇[X,Y ], the remaining statements are direct consequences of the previous one. □

As a consequence of proposition 2.5.2 , we have the following corollary.

Corollary 2.5.3 Let k ∈ N. Then∇kR ∈ x2+k
maxAG∞

phg(X,
πT ∗X⊗k ⊗Λ2 (πT ∗X)

⨂︁
End(πTX)). More gen-

erally, ifT ∈ AK
phg

(︁
X, πTX⊗r ⊗ πT ∗X⊗s)︁, then∇kT ∈ xkmaxA

K+G∞
phg

(︂
X, πT ∗X⊗k ⊗ πTX⊗r ⊗ πT ∗X⊗s

)︂
.

Proposition 2.5.4 Let T ∈ AK
phg

(︁
X, πTX⊗r ⊗ πT ∗X⊗s)︁ be a polyhomogeneous tensor with respect to

some index familyK such thatK(H) ⊂ Z×N0 for anyH ∈M1(X). Then, ||T ||gQAC <∞ if and only ifK

can be chosen to be a non-negative index family.

Proof. Let us choose a local frame near the boundary of X that diagonalizes the metric gQAC . Then, we
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have that:

||T ||2gQAC
= gQAC,i1i1 . . . gQAC,irirg

j1j1
QAC . . . g

jsjs
QACT

i1...ir
j1...js

2
.

The coefficients gQAC,i1i1 . . . gQAC,irirg
j1j1
QAC . . . g

jsjs
QAC are positive and bounded on X̊ . Thus, ||T ||gQAC <

∞ implies that the coefficients T i1...ir
j1...js

are also uniformly bounded on X̊ . Consequently,K can be chosen to

be a non-negative index family. To prove the opposite directionwe only use that polyhomogeneous functions

with respect to a non-negative index family are bounded. □

As a consequence of proposition 2.5.4we have the following important corollary that is going to be essential
in the proof of the isomorphism theorem in the next chapter.

Corollary 2.5.5 Let V be a b−vector field such that:

||Rm(gQAC) ∗ V ||C0(X̊) + ||∇V ||C0(X̊) <∞ (2.26)
Then both (Rm(gQAC) ∗ V ) and ∇V are polyhomogeneous tensors with respect to non-negative family

indices. Consequently, we have that:

||x−(k+1)
max ∇k (Rm(gQAC) ∗ V ) ||C0(X̊) + ||x−k

max∇k+1V ||C0(X̊) <∞ (2.27)
for any positive integer k. In particular, equation (2.26) is satisfied for anyQAC−vector field V .

Proof. Let us note that bothRm(gQAC)∗V and∇V are polyhomogeneous tensors. Then using proposition

2.5.4 , the equation (2.26) implies that both (Rm(gQAC) ∗ V ) and∇V are polyhomogeneous tensors with

respect to a non-negative family indices. Equation (2.27) is a combination of propositions 2.5.3 and 2.5.4.

The last assertion follows from the fact thatQAC−vector fields are smooth up to the boundary. □

2.5.1 Adjoints of differential operators
Let (E, ⟨, ⟩E) be a hermitian vector bundle over X̊ , and C∞

C (X̊, E) the space of compactly supported
sections of E. We consider the hermitian inner product on C∞

C (X̊, E) defined by:
⟨α, β⟩ :=

∫︂
X̊
⟨α, β⟩E dV (2.28)

such that dV is the volume element induced by gQAC over X̊ .
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Lemma 2.5.6 Let D ∈ DiffVQAC ,G(X,E) be a differential operator and D# its formal adjoint. Then,

D# ∈ DiffVQAC ,K(X,E) for some non-negative index family K.

Proof. As we noted in definition 2.5.1, elements of DiffVQAC ,G(X,E) are locally linear combination of the

composition of operators of the formX ⊗A such thatX ∈ VQAC(X) andA a smooth family of endomor-

phisms of CN . We know that the adjoint of an endomorphism is again an endomorphism. It only remains

to prove that the adjoint of an operator of the formX ⊗ 1 is inDiffVQAC ,K(X,E).

Let α, β ∈ C∞
C (X̊, E), and U a trivializing neighborhood of E with respect to a unitary frame. Then

α|U = fi ⊗ zi, (2.29)
β|U = hj ⊗ wi , fi, hj ∈ C∞(U), and zi, wj ∈ CN . (2.30)

For the sake of simplicity we will suppose that α|U = f ⊗ z and β|U = h⊗ w. Then∫︂
U
⟨X ⊗ 1α, β⟩E dV =

∫︂
U

⟨︂
α,X# ⊗ 1β

⟩︂
CN

dV

=

∫︂
U
X(f)h ⟨z, w⟩CN dV =

∫︂
U
fX#(h) ⟨z, w⟩CN dV

where ⟨, ⟩CN is the standard hermitian product on CN . SoX# is such that∫︂
X̊
X(f)h dV =

∫︂
X̊
fX#(h) dV

for any f, h ∈ C∞
C (X̊). Since

∫︁
X̊ X(f)h dV =

∫︁
X̊ X(fh) dV −

∫︁
X̊ fX(h) dV and that

0 =
∫︁
X̊ div(fhX) dV =

∫︁
X̊ fh div(X) dV+

∫︁
X̊ X(fh) dV, we obtain :∫︂

X̊
X(f)h dV = −

∫︂
X̊
fh div(X) dV−

∫︂
X̊
fX(h) dV =

∫︂
X̊
f− (divX+X(h)) dV

This implies that X# = − divX−X . We recall that divX = trgQAC ∇X , which implies that divX ∈

xmaxAK
phg(X) (by proposition 2.5.2) for some non-negative index family K. □

Corollary 2.5.7 Let E1 and E2 be two Hermitian vector bundles over X and D ∈ DiffVQAC ,G(X,E1, E2).

Then the formal adjoint ofD is inDiffVQAC ,K(X,E2, E1) for some non-negative index family.

Proof. Let defineE = E1
⨁︁
E2 anduse the naturalmatrix (block) notation to describeDiffVQAC ,G(X,E1, E2)

as a subset of DiffVQAC ,G(X,E), then apply lemma 2.5.6. □

Proposition 2.5.8 The exterior derivative d is a differential operator inDiffVQAC
(X,ΛpπT ∗X,Λp+1πT ∗X).

In particular, d ∈ xmaxDiffVQb
(X,ΛpπT ∗X,Λp+1πT ∗X).

Proof. Let ω ∈ Γ (ΛpπT ∗X), and {Xi}1≤i≤n a local frame ofQAC−vector fields. Then, we have :
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(dω)
(︁
Xi0 , . . . , Xip

)︁
=

p∑︂
j=0

(−1)j Xij

(︂
ω
(︂
Xi0 , . . . ,

ˆ︃Xij , . . . , Xip

)︂)︂
−

p∑︂
0≤s<t≤p

(−1)s+t ω
(︂
[Xis , Xit ] , Xi0 , . . . ,

ˆ︃Xis , . . . ,ˆ︃Xit , . . . , Xip

)︂
Since [Xi, Xj ] = csijXswhere csij ∈ xmaxC

∞(X), we deduce thatd ∈ DiffVQAC
(X,ΛpπT ∗X,Λp+1πT ∗X).

Actually we can see that d ∈ xmaxDiffVQb
(X,ΛpπT ∗X,Λp+1πT ∗X)□

Corollary 2.5.9 The Hodge-Laplace operator on
(︂
X̊, gQAC

)︂
defined by ∆gQAC = (d+ d∗)2 is a differen-

tial operator in DiffVQAC ,K(X,Λ
pπT ∗X) for some non-negative index family K. In particular, ∆gQAC ∈

x2maxDiffVQb,K(X,Λ
pπT ∗X).

Proof. The proof is a combination of corollary 2.5.7 and proposition 2.5.8. □
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CHAPTER 3

THE ISOMORPHISM THEOREM

3.1 Introduction
Let (X, gQAC)be aQAC-manifold such that gQAC is a polyhomogeneousmetric. Wewill denote by (Hi)1≤i≤k

the boundary hypersurfaces ofX , and (xi)1≤i≤k their respective defining functions. We define xmax as the
product of boundary defining functions of maximal hypersurfaces, and v =

∏︁k
i=1 xi.

The Riemannian manifold (M = X\∂X, gQAC) is a complete manifold of bounded geometry and positive
injectivity radius (proposition 1.3 in (Conlon and al., 2019)).
Let E =

(︁
T ∗M⊗r ⊗ TM⊗s)︁ be a tensor bundle overM , andA the elliptic operator defined by:

A = ∆+∇V⏞ ⏟⏟ ⏞
∆V

−λ (3.1)

acting on sections of E, such that:

• V is a b-vector field onX .
• λ is a positive constant.
• ∆ and∇ are the Laplacian and the Levi-Civita connection of gQAC respectively.

In this chapter, we will prove thatA : Dk+2,θ
∆V ,f (M,E) → Ck,θ

Qb,f (M,E) is an isomorphism of Banach spaces
for some positive function f to be defined later and such that Dk+2,θ

∆V ,f (M,E) and Ck,θ
Qb,f (M,E) are as

defined below.

3.2 Function spaces
In the following functional spaces, we will consider the normwith respect to gQAC and the euclidean struc-
ture on E. Covariant derivatives will be taken with respect to the Levi-Civita connection of gQAC and the
connection onE. Motivated by the work of (Siepmann, 2013) and (Deruelle, 2015), we define the following
weighted holder spaces:
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• Ck,θ
Qb (M,E) :=

{︃
h ∈ Ck,θ

loc (M,E) | ||h||
Ck,θ

Qb (M,E)
<∞

}︃
, where

||h||Ck
Qb(M,E) :=

k∑︂
i=0

sup
M

|x−i
max∇ih|,

||h||
Ck,θ

Qb (M,E)
:= ||h||Ck

Qb(M,E) +
[︂
x−k
max∇kh

]︂
θ
,

and
[T ]θ := sup

x∈M
sup

y∈B(x,δ)\{x}

|T (x)− P ∗
x,yT (y)|

d(x, y)θ
, (3.2)

Px,y being the parallel transport along the unique minimizing geodesic from x to y, and δ the injec-
tivity radius of gQAC .
Remark 3.2.1 The space Ck,θ

Qb (M,E) defined here is different from the one considered in (Conlon

and al., 2019), since in (3.2) it is the distance of the QAC-metric which is used instead of the distance

of the Qb-metric.

Given an elliptic differential operator P acting on sections of E, we also define the following spaces:
• D2+k

P (M,E) :=
{︂
h ∈

⋂︁
p≥1W

2+k,p
loc (M,E) | h ∈ Ck

Qb(M,E) ; P (h) ∈ Ck
Qb(M,E)

}︂, with the norm
||h||D2+k

P (M,E) := ||h||Ck
Qb(M,E) + ||P (h) ||Ck

Qb(M,E).

• D2+k,θ
P (M,E) :=

{︂
h ∈ Ck+2,θ

loc (M,E) | h ∈ Ck,θ
Qb (M,E) ; P (h) ∈ Ck,θ

Qb (M,E)
}︂, with the norm

||h||
D2+k,θ

P (M,E)
:= ||h||

Ck,θ
Qb (M,E)

+ ||P (h) ||
Ck,θ

Qb (M,E)
.

The following weighted spaces are defined using a positive function f to be defined later:

• Ck,θ
Qb,f (M,E) := f−1Ck,θ

Qb (M,E) with the norm ||h||
Ck,θ

Qb,f (M,E)
:=||fh||

Ck,θ
Qb (M,E)

.
• Dk+2,θ

P,f (M,E) := f−1Dk+2,θ
P (M,E) with the norm ||h||

Dk+2,θ
P,f (M,E)

:=||fh||
Dk+2,θ

P (M,E)
.

Remark 3.2.2 It is worth mentioning that weighted holder spaces were introduced to study the behavior

of the Laplacian on non compact manifolds. For instance, (Chaljub-Simon and Choquet-Bruhat, 1979) intro-

duced the following spaces:

Ck,θ
β,ρ (M,E) :=

{︃
h ∈ Ck,θ

loc (M,E) | ||h||
Ck,θ

β,ρ(M,E)
:= ||h||Ck

β,ρ(M,E) +
[︂
∇kh

]︂
θ,β−k−θ,ρ

<∞
}︃
,
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such that:

||h||Ck
β,ρ(M,E) =

k∑︂
i=0

||ρi−β∇jh||C0(M,E),

[T ]θ,γ,ρ := sup
x∈M

sup
y∈B(x,δ)\{x}

inf(ρ(x), ρ(y))−γ
|T (x)− P ∗

x,yT (y)|
d(x, y)θ

,

to study linear elliptic operators on asymptotically euclidean manifolds (ρ being some distance function).

These spaces were adapted by Joyce in (Joyce, 2001a) and (Joyce, 2001b) to study asymptotically locally eu-

clideanmanifolds and quasi-asymptotically euclideanmanifolds. Note thatCk,θ

0,x−1
max

(M,E) ⊂ Ck,θ
Qb (M,E).

Remark 3.2.3 It is also important to note that the space Ck,θ
Qb (M,E) as defined here is not equal to the

interpolation space
(︂
Ck
Qb (M,E) , Ck+1

Qb (M,E)
)︂
θ,∞

which can be identified as follows:

(︂
Ck
Qb (M,E) , Ck+1

Qb (M,E)
)︂
θ,∞

=

{︃
h ∈ Ck

Qb(M,E) |
[︂
x−k
max∇kh

]︂
Qb,θ

< +∞
}︃

such that:

[T ]Qb,θ = sup
x∈M

sup
y∈B(x, δ

xmax
)\{x}

min
{︂
x−θ
max(x), x

−θ
max(y)

}︂ |T (x)− P ∗
x,yT (y)|

d(x, y)θ

where δ is a positive constant depending on the lower bound of inf
x∈M

inj(x, gQAC)xmax(x).

Proposition 3.2.4 Let P be an elliptic differential operator and λ a constant such that

P − λ : Dk+2,θ
P (M,E) → Ck,θ

Qb (M,E) is an isomorphism. Then, the space D2+k,θ
P (M,E) is a Banach

space.

Proof. We are going to use the fact that Ck,θ
Qb (M,E) is a Banach space. Let (hk)k∈N be a Cauchy sequence

inD2+k,θ
P (M,E). Then, there exists h ∈ Ck,θ

Qb (M,E) such that hk converges to h in Ck,θ
Qb (M,E).

Since ((P − λ)(hk)) is also a Cauchy sequence in Ck,θ
Qb (M,E), there exists h̃ ∈ Ck,θ

Qb (M,E) such that

(P−λ)(hk) converges to (P−λ)(h̃) . Note also that (P−λ)(hk) converges to (P−λ)(h) in theCk,θ
loc (M,E)

topology which implies that (P − λ)(h̃) = (P − λ)(h). Consequently, h ∈ D2+k,θ
P (M,E). □

3.3 Lunardi’s theorem on QAC manifolds
In order to prove the isomorphism theorem, we are going to use the following theorem:
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Theorem 3.3.1 (Lunardi) Let (Mn, g) be a complete Riemannian manifold with positive injectivity radius,

and V be a smooth vector field onM . Let P be an elliptic differential operator acting on tensors overM

such that:

P = ∆+∇V⏞ ⏟⏟ ⏞
∆V

+r(x) , r ∈ C3(M). (3.3)

Suppose that supx∈Mr(x) = r0 <∞ and that there exists a positive constant C such that
∑︁3

i=1 ||∇ir|| <

C. Assume also that there exists a positive constantK such:

||Rm(g)||C3(M,E) + ||Rm(g) ∗ V ||C3(M,E) + ||∇V ||C2(M,E) ≤ K, (3.4)
whereRm(g) ∗ V = Rm(g)(V, ., ., .). Assume also that there exists a function ϕ ∈ C2(M) and a constant

λ0 ≥ r0 such that:

lim
x→∞

ϕ(x) = +∞, supx∈M (P(ϕ)(x)− λ0ϕ (x)) <∞. (3.5)
Then:

1. For any λ > r0, there exists a positive constant C such that for any H ∈ C0 (M,E), there exists a

unique tensor h ∈ D2
P (M,E), satisfying:

P(h)− λh = H, ||h||D2
P (M,E) ≤ C||H||C0(M,E).

Moreover D2
P (M,E)is continuously embedded in Cθ (M,E) for any θ ∈ (0, 2), i.e there exists a

positive constant C(θ) such that for any h ∈ D2
P (M,E),

||h||Cθ(M,E) ≤ C(θ)||h||
θ
2

D2
P (M,E)

||h||1−
θ
2

C0(M,E)
.

2. For any λ > r0, there exists a positive constant C such that for any H ∈ C0,θ (M,E), θ ∈ (0, 1) ,

there exists a unique tensor h ∈ C2,θ (M,E) satisfying:

P(h)− λh = H, ||h||C2,θ(M,E) ≤ C||H||C0,θ(M,E).

We will prove theorem 3.3.1 in the next chapter.

Remark 3.3.2 Note that in order to satisfy condition (3.4) for the b−vector field V , it is sufficient to have

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞. (3.6)
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This is a direct consequence of corollaries 2.5.3 and 2.5.5. Note also that condition (3.6) is satisfied if the

vector field V is aQAC−vector field.

Let’s start by showing that condition (3.5) is easily satisfied.

Proposition 3.3.3 There exists a smooth function ϕ :M → R+ such that:

lim
p→∞

ϕ(p) = +∞, sup
p∈M

(∆X) (ϕ) <∞,

for any b-vector fieldX .

Proof. Let us set ϕ(p) = − ln(v(p)). Using the definition of a b-vector field and the fact that the Laplacian of

gQAC can be expressed as a polynomial of degree at most 2 (without terms of order 0) in QAC-vector fields

(Ammann and al., 2004) we see that both∆ϕ and∇Xϕ are bounded onM . □

LetAf be the differential operator defined byAf (h) = fA(f−1h). Then, since:
f∆(f−1h) = f

(︁
f−1∆h+ h∆f−1 + 2 < ∇f−1,∇h >

)︁
= ∆h+ hf∆f−1 − 2 < ∇ ln(f),∇h >

= ∆h+ h
(︁
||∇ ln(f)||2 −∆ ln(f)

)︁
− 2 < ∇ ln(f),∇h >,

and
f∇V (f

−1h) = f
(︁
f−1∇V h+ h∇V f

−1
)︁
f = ∇V h− h∇V ln(f),

we have that:
Af (h) =

⎛⎜⎝∆+∇V−2∇ ln(f) − V ln(f)⏞ ⏟⏟ ⏞
Pf

−λ

⎞⎟⎠ (h) +
(︁
||∇ ln(f)||2 −∆ ln(f)

)︁⏞ ⏟⏟ ⏞
Kf

h. (3.7)

Remark 3.3.4 The operator A : Dk+2,θ
∆V ,f (M,E) → Ck,θ

Qb,f (M,E) is an isomorphism of Banach spaces if

and only ifAf : Dk+2,θ
∆V

(M,E) → Ck,θ
Qb (M,E) is. In what follows, we are going to set f = v−α for some

positive real value α.

We are also going to use the following notation:

• rα := αV ln(v);
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• Vα := V + 2α∇ ln(v);

• Pα := ∆Vα + rα;

• Kα := α2||∇ ln(v)||2 − α∆ ln(v);

• Ck,θ
Qb,α(M,E) := Ck,θ

Qb,f (M,E);

• Dk+2,θ
∆V ,α (M,E) := Dk+2,θ

∆V ,f (M,E).

Proposition 3.3.5 Given a function f as defined in the previous remark, we have that:

(i) rα is bounded onM .

(ii) ∇ ln(v) is a QAC-vector field. Thus, both ||Rm(g) ∗∇ ln(v)||Ck(M,E) and ||∇∇ ln(v)||Ck−1(M,E) are

bounded for any integer k ≥ 1.

(iii) lim
x→∞

||∇iKα|| = 0 for i ≥ 0.

Proof. (i) : This follows from the proof of proposition 3.3.3.

(ii) : d ln(f) = −αv dv
v2

which is clearly a QAC-covector (see equation (2.9)) that tends to 0 near the bound-

ary. The rest follows from the fact that bothRm(gQAC) and∇ ln(f) are tensors over the QAC-vector bundle

overX , thus bounded with respect to the QAC-metric together with its derivatives.

(iii) : Since the Laplacian is a polynomial on QAC−vector fields without a constant term, we have that

∆ ln(v) ∈ vC∞(X). Taking covariant derivatives will increase the decay towards maximal hypersurfaces.

□

Proposition 3.3.6 For any h ∈ Ck,θ
Qb (M,E) we have that Kαh ∈ Ck,θ

Qb (M,E), we also have that

∆V (h) ∈ Ck,θ
Qb (M,E) ⇐⇒ Pα(h) ∈ Ck,θ

Qb (M,E) (3.8)
As a consequence, we have thatDk+2,θ

Pα+Kα
(M,E) = Dk+2,θ

Pα
(M,E) = Dk+2,θ

∆V
(M,E).

Proof. Kαh ∈ Ck,θ
Qb (M,E) follows from (iii) of proposition 3.3.5 and proposition 1.2.1. Since we have that
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|||Pα(h) +Kαh||Ck,θ
Qb (M,E)

≤ |||Pα(h)||Ck,θ
Qb (M,E)

+ ||Kαh||Ck,θ
Qb (M,E)

,

and

| ||Pα(h)||Ck,θ
Qb (M,E)

− ||Kαh||Ck,θ
Qb (M,E)

| ≤ |||Pα(h) +Kαh||Ck,θ
Qb (M,E)

,

which implies that (Pα +Kα) (h) ∈ Ck,θ
Qb (M,E) ⇐⇒ Pα(h) ∈ Ck,θ

Qb (M,E). We proceed in the same

manner using (i) and (iii) of proposition 3.3.5 to prove (3.8). □

Remark 3.3.7 Going back to remark 3.3.4, in order to prove thatAf : Dk+2,θ
∆V

(M,E) → Ck,θ
Qb (M,E) is an

isomorphism, it’s suffice to prove that Pα−λ : Dk+2,θ
Pα

(M,E) → Ck,θ
Qb (M,E) is an isomorphism and that

Kα is a compact operator.

3.4 The isomorphism theorem
Theorem 3.4.1 (Isomorphism theorem) Let Ck;j,θ(M,E) be the functional space defined by:

Ck;j,θ(M,E) =
{︂
h ∈ C

k+j+⌊θ⌋,θ−⌊θ⌋
loc (M,E) | x−i

max∇ih ∈ Cj+⌊θ⌋,θ−⌊θ⌋(M,E), ∀i = 0, . . . , k
}︂
.

such that θ ∈ (0, 2), and endowed with the norm:

||h||Ck;j,θ(M,E) =

k∑︂
i=0

||x−i
max∇ih||Cj+⌊θ⌋,θ−⌊θ⌋(M,E)

Suppose also that:

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞ (3.9)
Then, for any constant λ ∈ R such that:

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk−1
max)

)︃
(3.10)

we have that:

• There exists a positive constant C such that for any H ∈ Ck,θ
Qb (M,E) there exists a unique h ∈

Dk+2,θ
Pα

(M,E) satisfying:

Pα(h)− λh = H, ||h||
Dk+2,θ

Pα
(M,E)

≤ C||H||
Ck,θ

Qb (M,E)
; θ ∈ [0, 1) (3.11)

i.e. the operator

Pα − λ : Dk+2,θ
Pα

(M,E) → Ck,θ
Qb (M,E) (3.12)
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is an isomorphism of Banach spaces. Moreover, Dk+2
Pα

(M,E) embeds continuously in Ck;0,θ(M,E)

for any θ ∈ (0, 2), i.e there exists a positive constant C such that for any h ∈ Dk+2
Pα

(M,E),

||h||Ck;0,θ(M,E) ≤ C||h||
θ
2

Dk+2
Pα

(M,E)
||h||1−

θ
2

Ck
Qb(M,E)

• There exists a positive constant C such that, for θ ∈ (0, 1)

||h||Ck;2,θ(M,E) ≤ C||H||
Ck,θ

Qb (M,E)
(3.13)

In order to prove the previous theorem, we are going to proceed by induction on k. Let us consider the case
k = 0.

Theorem 3.4.2 (Isomorphism theorem (k=0)) Suppose that:

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞. (3.14)
Then, for any constant λ ∈ R such that:

λ > sup
M

(V ln(vα)) , (3.15)
we have that:

• There exists a positive constant C such that, for any H ∈ C0(M,E), there exists a unique tensor

h ∈ D2
Pα

(M,E) satisfying

Pα(h)− λh = H, ||h||D2
Pα

≤ C||H||C0(M,E).

Moreover, D2
Pα

(M,E) is continuously embedded in Cθ(M,E) := C⌊θ⌋,θ−⌊θ⌋(M,E) for any θ ∈

(0, 2), i.e there exists a positive constant C such that for any h ∈ D2
Pα

(M,E),

||h||Cθ(M,E) ≤ C||h||
θ
2

D2
Pα

(M,E)
||h||1−

θ
2

C0(M,E)
.

• There exists a positive constant C such that, for anyH ∈ C0,θ(M,E), with θ ∈ (0, 1), there exists a

unique tensor h ∈ C2,θ(M,E) satisfying

Pα(h)− λh = H, ||h||C2,θ(M,E) ≤ C||H||C0,θ(M,E).

Moreover, the operatorA : D2,θ
∆V ,α(M,E) → C0,θ

Qb,α(M,E) is an isomorphism of Banach spaces.
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Proof. Condition 3.14 together with remark 3.3.2 implies condition (3.4) of theorem 3.3.1. We also have that

condition 3.5 is satisfied by proposition 3.3.3. This proves the first point and the first part of the second point.

In order to prove thatA is an isomorphism of Banach spaces we are going to use the fact that the index of

a Fredholm operator remains unchanged under a perturbation by a compact operator. Thus, if Pα−λ is an

isomorphism andKα is compact, then Pα +Kα − λ is of index 0. Then, injectivity ofA implies surjectivity.

(1)A : D2,θ
∆V ,α(M,E) → C0,θ

α (M,E) is injective.

Let h ∈ D2,θ
∆V ,α(M,E) be such that A(h) = 0 and hk = h − ϕ

k with ϕ the smooth function of proposition

3.3.3. Then, sup
p∈M

hk = hk(pk) for some pk ∈M . Moreover limk→∞ sup
p∈M

hk = sup
p∈M

h.

SinceA(hk) = −A(ϕ)
k , we have thatA(hk) ≥ −

sup
p∈M

A(ϕ)

k . Evaluating the last inequality at point pk we get

(λ − sup
p∈M

V ln(vα))hk(pk) ≤
sup
p∈M

A(ϕ)

k . By taking the limit k → ∞ we find that sup
p∈M

h ≤ 0. By applying

the same method to−h we deduce that h = 0. Hence,A is injective.

(2)Kα : D2,θ
Pα

(M,E) → C0,θ(M,E) is a compact operator.

Let (hk)k∈N be a bounded sequence inD2,θ
Pα

(M,E) and (Uk)k∈N be a sequence of precompact open sets of

M such that Uk ⊂ Uk+1 andM = ∪kUk. By Schauder estimates 1.3.4, the sequence (hk)k is bounded in

C2,θ(Ui, E|Ui) for any i.

SinceC2,θ(Ui, E|Ui
) is compactly embedded intoC2(Ui, E|Ui

), there exists a sub-sequence (hik)k that con-

verges uniformly in C2(Ui, E|Ui
). Let (gk)k be a sub-sequence such that gk = hkk. Then, (gk)k converges in

the topology of C2
loc(M,E) to h ∈ D2,θ

Pα
(M,E) (since it converges uniformly on every compact ofM ).

Before we finish the proof, we need the following lemma:

Lemma 3.4.3 Let h ∈ C0,θ(M,E) and f ∈ C1(M). Then, for any compact set K ⊂ M there exists a

precompact setQ containingK and a positive constant C such that:

||fh||C0,θ(M,E) ≤ C
(︂
||f ||C1(Q)||h||C0,θ(Q,E|Q) + ||f ||C1(M\K)||h||C0,θ(M\K,E|M\K)

)︂
.

Proof. Let Q be a precompact set containingK such that ∀x ∈ K we have that B(x, δ) ⊂ Q (δ being the

injectivity radius). Then:

||fh||C0,θ(M,E) ≤
(︂
||fh||C0,θ(Q,E|Q) + ||fh||C0,θ(M\K,E|M\K)

)︂
≤
(︂
||f ||C0,θ(Q)||h||C0,θ(Q,E|Q) + ||f ||C0,θ(M\K)||h||C0,θ(M\K,E|M\K)

)︂
.
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Now using a local version of the mean value theorem, it is easy to see that there exists a positive constant

C (that depends only on the injectivity radius) such that:

||f ||C0,θ(Q) ≤ C||f ||C1(Q),

||f ||C0,θ(M\K) ≤ C||f ||C1(M\K).

Consequently, we have that

||fh||C0,θ(M,E) ≤ C
(︂
||f ||C1(Q)||h||C0,θ(Q,E|Q) + ||f ||C1(M\K)||h||C0,θ(M\K,E|M\K)

)︂
.

□

Since limp→∞ |∇iKα|(p) = 0 for i = 0, 1 (by proposition 3.3.5); it follows that for all ϵ > 0 there exists a

compact setK ⊂M such that ||Kα||C1(M\K) < ϵ.

Using the previous lemma, we have that

||Kα (gn − h) ||C0,θ(M,E) ≤ C(||Kα||C1(Q)|| (gn − h) ||C0,θ(Q,E|Q)+

||Kα||C1(M\K)|| (gn − h) ||C0,θ(M\K,E|M\K)) < Cϵ

for some precompact set Q containing K and n large enough. This proves that (Kαgn)n∈N converges to

Kαh in the C0,θ(M,E) topology, which proves that Kα is a compact operator. □

Proposition 3.4.4 Let f be a C2
loc(M) function such that:

T (f) = (∆V+2α∇ ln(v) + V ln(vαxkmax)− λ)(f) ≥ 0 and f = O(x−1
max), (3.16)

λ being a constant such that:

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk−1
max)

)︃
. (3.17)

Then, sup
M

f ≤ 0.

Proof. First of all, let us note that f is only potentially unbounded near the maximal hypersurfaces (since

f = O(x−1
max)). If f is bounded above then we will use the exhaustion function of proposition 3.3.3 to prove

the proposition. Otherwise, f is unbounded from above near maximal hypersurfaces, and we will use xθmax

with θ < −1 as a barrier function.

Before we proceed, let us note that inequality 3.16 implies that:

∆V+2α∇ ln(v)(f) ≥ (λ− V ln(vαxkmax))f. (3.18)
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In addition, given a function fs that attains its supremum at a point ps ∈M we have that:

∆V+2α∇ ln(v)(fs)(ps) ≤ 0. (3.19)
First case: f is bounded above onM :

Let us define fs = f − ϕ
s , ϕ being the function in proposition 3.3.3. Since f is bounded above, fs attains its

supremum at some point ps ∈M . Using inequality (3.18) we deduce that:

∆V+2α∇ ln(v)(fs) = ∆V+2α∇ ln(v)(f)−
1

s
∆V+2α∇ ln(v)(ϕ) ≥(λ− V ln(vαxkmax))f

− 1

s
∆V+2α∇ ln(v)(ϕ).

Combining this inequality with the fact that

(λ− V ln(vαxkmax))f − 1

s
∆V+2α∇ ln(x)(ϕ) = (λ− V ln(vαxkmax))fs −

1

s
T (ϕ).

we obtain that:

∆V+2α∇ ln(v)(fs) ≥ (λ− V ln(vαxkmax))fs −
1

s
T (ϕ).

Finally, evaluating this inequality at ps and using inequality (3.19) we obtain that:

(λ− V ln(vαxkmax))fs(ps) ≤
1

s
T (ϕ)(ps).

By letting s→ ∞ and using the fact that T (ϕ) is bounded above (proposition 3.3.3), we obtain that

sup
M

f ≤ 0.

Second case: f is unbounded above near the maximal hypersurfaces:

Let θ ∈ (−2,−1) be a constant such that (see lemma 3.4.5 below for a proof of existence)

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk+θ
max)

)︃
(3.20)

and let us set fs = f− xθ
max
s . Since f is unbounded above near maximal hypersurfaces, there exists s0 ∈ N0

such that for s ≥ s0 there exists a point ps ∈M such that sup
p∈M

fs(p) = fs(ps).

Using inequality (3.18), we have that:

∆V+2α∇ ln(v)(fs) = ∆V+2α∇ ln(v)(f)−
1

s
∆V+2α∇ ln(v)(x

θ
max)

≥
(︂
λ− V ln(vαxkmax)

)︂
f − 1

s
∆V+2α∇ ln(v)(x

θ
max)

≥
(︂
λ− V ln(vαxkmax)

)︂
fs −

1

s
P(xθmax).
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When evaluating the previous inequality at ps, we have that:(︂
λ− V ln(vαxkmax)

)︂
(fs)(ps) ≤

1

s
T (xθmax)(ps).

A simple computation shows that

∆V+2α∇ ln(v)(x
θ
max) = ∆xθmax + V (xθmax) + 2α∇ ln(v)(xθmax)

= ∆xθmax + xθmaxV ln(xθmax) + 2αθvxθ+1
max

⟨︃
dv

v2
,
dxmax

x2max

⟩︃
≤ C + xθmaxV ln(xθmax)

since both∆xθmax and vxθ+1
max

⟨︂
dv
v2
, dxmax

x2
max

⟩︂
are bounded by corollary 2.5.9.

Consequently, using inequality (3.20) we deduce that(︂
λ− V ln(vαxkmax)

)︂
(fs)(ps) ≤

1

s

(︂
xθmax

(︂
V ln(xθmax) + V ln(vαxkmax)− λ

)︂
+ C

)︂
≤ 1

s

(︂
xθmax

(︂
V ln(vαxk+θ

max)− λ
)︂
+ C

)︂
≤ C

s
.

This implies that when s→ ∞we have sup
p∈M

f(p) ≤ 0which contradicts the hypothesis of the second case.

□

Lemma 3.4.5 Let λ ∈ R be such that

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk−1
max)

)︃
. (3.21)

Then, there exists θ ∈ (−2,−1) such that

λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk+θ
max)

)︃
. (3.22)

Proof. Since V is a b-vector field, we have that V ln(xmax) ∈ C∞(X), thus is bounded onM .

Consequently, the difference V ln(xk−1
max) − V ln(xk+θ

max) = V ln(v
−(1+θ)
max ) can be made arbitrary close to

zero by choosing the constant θ ∈ (−2,−1) close enough to −1. This implies that sup
M

V ln(vαxk+θ
max) can

be made arbitrarily close to sup
M

V ln(vαxk−1
max) by a choice of a constant θ as described previously, which

then preserves inequality (3.22). □

Corollary 3.4.6 Let h be a tensor such that h ∈ ∩p≥1W
2,p
loc (M,E) and

T (h) = (∆V+2α∇ ln(v) + V ln(vαxkmax)− λ)(h) = 0 and h = O(x−1
max),
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such that λ > max

(︃
sup
M

V ln(vαxkmax), sup
M

V ln(vαxk−1
max)

)︃
.

Then, h ≡ 0.

Proof. Let us define f = ||h||2. Then we have :

T (f) = 2
⟨︁
∆V+2α∇ ln(v)h, h

⟩︁
−
(︂
λ− V ln(vαxkmax)

)︂
f + 2||∇h||2.

Since T (h) = 0 we have that∆V+2α∇ ln(v)h =
(︁
λ− V ln(vαxkmax)

)︁
h.

Consequently,

T (f) =
(︂
λ− V ln(vαxkmax)

)︂
f + 2||∇h||2

which implies that

T (f) ≥ 0.

By applying proposition 3.4.4 we get that sup
p∈M

f ≤ 0. Thus ,f ≡ 0. □

3.4.1 Proof of theorem 3.4.1

Proof. Uniqueness follows from theorem 3.4.2. In order to prove the existence of a solution, we are going

to proceed by induction on k. The case k = 0 is exactly theorem 3.4.2. Let k be a positive integer and

H ∈ Ck,θ
Qb (M,E). Using the induction hypothesis and the fact that H ∈ Ck−1,θ

Qb (M,E), there exists h ∈

D2+k−1
Pα

(M,E) such that Pα(h)− λh = H .

Let us define hi = x−i
max∇ih for i = 0, . . . , k. We want to prove that h ∈ D2+k

Pα
(M,E). This amounts to

proving that hk ∈ D2
Pα

(M,E). In order to do that, we are going to compute the evolution equation of hk.

Let us recall that Pα = ∆+∇
V − 2∇ ln(v−α)⏞ ⏟⏟ ⏞

Vα

−V ln(v−α)⏞ ⏟⏟ ⏞
rα

, so that

Pα(hk) = ∆Vα(hk) + rαhk

In order to compute Pα(hk) we are going to use lemma 4.3.2 below. Consequently, we have that:

∇Vα(hk) = Vα(x
−k
max)∇kh+ x−k

max∇Vα∇kh

= (−V ln(xkmax)+a)hk+x
−k
max∇k∇Vαh+x

−k
max

k−1∑︂
j=0

∇k−jVα∗∇j+1h+∇k−1−j (Rm(gQAC) ∗ Vα)∗∇jh

= (−V ln(xkmax)+a)hk+x
−k
max∇k∇Vαh+

k−1∑︂
j=0

x−k+j+1
max ∇k−jVα∗hj+1+x

−k+j
max ∇k−1−j (Rm(gQAC) ∗ Vα)∗hj

(3.23)
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with a ∈ xmaxC
∞(X). We also have that:

∆(hk) = ∆(x−k
max)∇kh+ bx−k

max∇k+1h+ x−k
max∇k∆h+ x−k

max

k∑︂
j=0

∇k−jRm(gQAC) ∗ ∇jh

= bxmaxhk+1 + (Rm(gQAC) + c) ∗ hk + x−k
max∇k∆h+

k−1∑︂
j=0

x−k+j
max ∇k−jRm(gQAC) ∗ hj (3.24)

with b, c ∈ xmaxC
∞(X).

Now, using equations (3.23) and (3.24) we deduce that

(Pα + V ln(xkmax))(hk)− λhk =bxmaxhk+1 +Hk + (a+ c+Rm(gQAC)) ∗ hk

+

k−1∑︂
j=0

x−k+j+1
max ∇k−jVα ∗ hj+1 + x−k+j

max ∇k−1−j (Rm(gQAC) ∗ Vα) ∗ hj

+

k−1∑︂
j=0

x−k+j
max ∇k−jRm(gQAC) ∗ hj

such thatHk = x−k
max∇kH . Thus

||(Pα + V ln(xkmax))(hk)− λhk||C0,θ(M,E) ≤||bxmaxhk+1||C0,θ(M,E) + ||Hk||C0,θ(M,E)

+ || (a+ c+Rm(gQAC)) ∗ hk||C0,θ(M,E)

+

k−1∑︂
j=0

||x−k+j+1
max ∇k−jVα ∗ hj+1||C0,θ(M,E)+

||x−k+j
max ∇k−1−j (Rm(gQAC) ∗ Vα) ∗ hj ||C0,θ(M,E)

+

k−1∑︂
j=0

||x−k+j
max ∇k−jRm(gQAC) ∗ hj ||C0,θ(M,E).

(3.25)

From the induction hypothesis, there exists a positive constant C such that:

||h||D2+k−1
Pα

(M,E) ≤ C||H||Ck−1
Qb (M,E) (3.26)

||h||Ck−1;0,θ(M,E) ≤ C||h||
θ
2

D2+k−1
Pα

(M,E)
||h||1−

θ
2

Ck−1
Qb (M,E)

for any θ ∈ (0, 2). (3.27)
From inequality 3.13 and the induction hypothesis we have that

||x−(k−1)
max ∇k−1h||C2,θ(M,E) ≤ C||H||Ck−1

Qb (M,E), (3.28)
which then implies that

||x−(k−1)
max ∇kh||C0,θ(M,E) ≤ C||H||

Ck,θ
Qb (M,E)

,

||x−(k−1)
max ∇k+1h||C0,θ(M,E) ≤ C||H||

Ck,θ
Qb (M,E)

.
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Using the previous inequalities we get that :

||bxmaxhk+1||C0,θ(M,E) ≤ C̃|| b

xmax
||C1(M,E)||x−(k−1)

max ∇k+1||C0,θ(M,E),

≤ B||H||
Ck,θ

Qb (M,E)
,

and

|| (a+ c+Rm(gQAC)) ∗ hk||C0,θ(M,E) ≤ C̃||
a+ c+Rm(gQAC)

xmax
||C1(M,E)||x−(k−1)

max ∇k||C0,θ(M,E),

≤ B||H||
Ck,θ

Qb (M,E)
.

for somepositive constantB. Weproceed in the samemanner for the other terms in (3.25) using the fact that

||x−k+j+1
max ∇k−jVα||C1(M,E), ||x

−k+j
max ∇k−1−j (Rm(gQAC) ∗ Vα) ||C1(M,E) and ||x

−k+j
max ∇k−jRm(gQAC)||C1(M,E)

are bounded (corollary 2.5.5).

Thus, there exists a positive constant B such that:

||(Pα + V ln(xkmax))(hk)− λhk||C0,θ(M,E) ≤ B||H||
Ck,θ

Qb (M,E)
.

Therefore, by theorem 3.3.1, there exists a solution h̃k ∈ D2,θ
Pα

(M,E) satisfying

(Pα + V ln(xkmax))(h̃k)− λh̃k =bxmaxhk+1 +Hk + (a+ c+Rm(gQAC)) ∗ hk

+

k−1∑︂
j=0

x−k+j+1
max ∇k−jVα ∗ hj+1 + x−k+j

max ∇k−1−j (Rm(gQAC) ∗ Vα) ∗ hj

+

k−1∑︂
j=0

x−k+j
max ∇k−jRm(gQAC) ∗ hj ,

and such that

||h̃k||C2,θ(M,E) ≤ C||H||
Ck,θ

Qb (M,E)
with θ ∈ (0, 1).

It remains to prove that h̃k ≡ hk. First of all, as H ∈ Ck,θ
loc (M,E) we have that h ∈ Ck+2,θ

loc (M,E) (by

elliptic regularity). As a consequence, the difference T = h̃k − hk satisfies:

T ∈ ∩p≥1W
2,p
loc (M,E) ;

(︂
(Pα + V ln(xkmax))− λ

)︂
(T ) = 0.

Near the maximal hypersurfaces, we only have that x−(k−1)
max ∇kh is bounded, so we deduce that xmaxT is

bounded (T = O(x−1
max)). By corollary 3.4.6 we have that T ≡ 0.

Consequently, hk ∈ D2,θ
Pα

(M,E) and

||hk||C2,θ(M,E) ≤ C||H||
Ck,θ

Qb (M,E)
with θ ∈ (0, 1).
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We also have that

||hk||Cθ(M,E) ≤ C||h||
θ
2

D2
Pα

(M,E)
||h||1−

θ
2

C0(M,E)
with θ ∈ (0, 2).

□

As a consequence of theorem 3.4.1 together with remark 3.3.4, we have the following result:

Corollary 3.4.7 Suppose that:

||Rm(g) ∗ V ||C0(M,E) + ||∇V ||C0(M,E) <∞ (3.29)
Then, the operator A : D2+k,θ

∆V ,α (M,E) → Ck,θ
Qb,α(M,E) is an isomorphism of Banach spaces, for any θ ∈

(0, 1) and any constant λ ∈ R such that:

λ > max

(︃
sup
M

V ln(xαxkmax), sup
M

V ln(xαxk−1
max)

)︃

Corollary 3.4.8 The spacesD2+k,θ
∆V

(M,E) andD2+k,θ
∆V ,α (M,E) are Banach spaces.

Proof. We use proposition 3.2.4 and the previous corollary. □
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CHAPTER 4

LUNARDI’S THEOREM

4.1 Introduction
In this chapter we study a class of linear elliptic operators of the form ∆+∇V + r with unbounded coef-
ficients. Such operators where studied by Alessandra Lunardi in (Lunardi, 1998) on Rn then a version was
proven by (Deruelle, 2015) in the context of Riemannian manifold and such that r ≡ 0.

Theorem 4.1.1 (Lunardi) Let (Mn, g) be a complete Riemannian manifold with positive injectivity radius,

and V be a smooth vector field onM . Let A be an elliptic differential operator acting on tensors overM

such that:

A = ∆+∇V⏞ ⏟⏟ ⏞
∆V

+r(x) , r ∈ C3(M). (4.1)

Suppose that supx∈Mr(x) = r0 <∞ and that there exists a positive constant C such that
∑︁3

i=1 ||∇ir|| <

C. Assume also that there exists a positive constantK such:

||Rm(g)||C3(M,E) + ||Rm(g) ∗ V ||C3(M,E) + ||∇V ||C2(M,E) ≤ K, (4.2)
whereRm(g) ∗ V = Rm(g)(V, ., ., .). Assume also that there exists a function ϕ ∈ C2(M) and a constant

λ0 ≥ r0 such that:

lim
x→∞

ϕ(x) = +∞, supx∈M (A(ϕ)(x)− λ0ϕ (x)) <∞. (4.3)
Then:

1. For any λ > r0, there exists a positive constant C such that for any H ∈ C0 (M,E), there exists a

unique tensor h ∈ D2
A (M,E), satisfying:

A(h)− λh = H, ||h||D2
A(M,E) ≤ C||H||C0(M,E).

Moreover D2
A (M,E) is continuously embedded in Cθ (M,E) for any θ ∈ (0, 2), i.e. there exists a

positive constant C(θ) such that for any h ∈ D2
A (M,E),

||h||Cθ(M,E) ≤ C(θ)||h||
θ
2

D2
A(M,E)

||h||1−
θ
2

C0(M,E)
.
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2. For any λ > r0, there exists a positive constant C such that for any H ∈ C0,θ (M,E), θ ∈ (0, 1) ,

there exists a unique tensor h ∈ C2,θ (M,E) satisfying:

A(h)− λh = H, ||h||C2,θ(M,E) ≤ C||H||C0,θ(M,E).

4.2 Uniqueness of the solution
Proposition 4.2.1 (Injectivity) Let h ∈ ∩p≥1W

2,p
loc (M,E) be a bounded tensor and λ > r0 a constant such

thatA(h)− λh = 0. Then h ≡ 0.

Proof. Let us define hϵ =
√︁

||h||2 + ϵ2 (for some positive constant ϵ). Then:

A(hϵ)− λhϵ =
1

hϵ

(︃
⟨∆V h, h⟩ − (λ− r)h2ϵ + ||∇h||2 − ||∇||h||2||2

4h2ϵ

)︃
.

Since∆V h = (λ− r)h and ||∇||h||2||2 = 4| ⟨∇h, h⟩ |2 ≤ 4||∇h||2 ||h||2, we have that:

A(hϵ)−λhϵ =
1

hϵ

(︃
− (λ− r) ϵ2 + ||∇h||2 − | ⟨∇h, h⟩ |2

h2ϵ

)︃
≥ ϵ2

hϵ

(︃
− (λ− r) +

||∇h||2

h2ϵ

)︃
≥ − (λ− r) ϵ.

Let us define hϵ,k = hϵ − ϕ
k for an integer k ≥ 1. Then, lim

k→∞
supMhϵ,k = supMhϵ, and we also have:

A(hϵ,k)− λhϵ,k ≥ −(λ− r)ϵ− supM (A(ϕ)− λϕ)

k
.

Since ϕ is an exhaustion function (that can be chosen to be positive), hϵ,k attains its maximum in a point

xk ∈M . When evaluating previous inequality at xk, we get that:

supMhϵ,k ≤ ϵ+
supM (A(ϕ)− λϕ)

k (λ− r0)
.

By letting k → ∞ and ϵ→ 0 we get supMhϵ ≤ 0, and consequently h ≡ 0. □

4.3 Existence of the solution
In order to study the existence and the regularity of the solution of the equation

A(h)− λh = H, (4.4)
we need to study the semigroup T (t) associated to the following Cauchy problem:⎧⎪⎨⎪⎩

ut(t, x) = A(u)(t, x),

u(0, x) = u0(x).

(4.5)
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Using the interpolation procedure in (Lunardi, 1996) we will be able to characterize the domain of the
generator of T (t) and provide an optimal description of the regularity of the solution of (4.4).
As a first step, we are going to find an estimate of ||T (t)||L(Cα(M,E),Cθ(M,E)) such that 0 ≤ α ≤ θ ≤ 3 . In
order to do that, we will be using the following version of the maximum principle:

Proposition 4.3.1 Let (z(t, ))t∈[0,T ] be a classic bounded solution of the Cauchy problem⎧⎪⎨⎪⎩
zt(t, x)−A(z)(t, x) = g(t, x),

z(0, x) = z0(x),

(4.6)

and λ0 ≥ r0. Then

1. If sup
M

z > 0, and if g(t, x) ≤ 0 for all t ∈ [0, T ] and x ∈M , then

sup
M

z ≤ eλ0t sup
M

z0. (4.7)

2. If inf
M

z < 0, and if g(t, x) ≥ 0 for all t ∈ [0, T ] and x ∈M , then

inf
M
z ≥ eλ0t inf

M
z0. (4.8)

3. In particular, if g ≡ 0, then

||z||∞ ≤ eλ0t ||z0||∞. (4.9)

Proof. In order to prove inequality 4.7, we define v(t, x) = e−λt z(t, x) for λ > λ0. Then,⎧⎪⎨⎪⎩
vt(t, x)−A(v)(t, x) + λv = e−λtg(t, x)

v(0, x) = z0(x)

Wealso define vk(t, x) = v(t, x)− ϕ(x)
k . For k large enough, vk admits a positivemaximum (since supMz >

0) at (tk, xk). If tk ≡ 0 for all k, then

sup[0,T ]×M vk ≤ supMz0 − infM
ϕ

k
.

Consequently

sup[0,T ]×M e−λt z ≤ supMz0,
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hence inequality 4.7. Now, suppose that tk > 0. Since∂tv(tk, xk) ≥ 0 (because∂tv(tk, xk) = ∂tvk(tk, xk) ≥

0), we have that:

A(v)(tk, xk)− λv(tk, xk) ≥ 0.

Adding− (A(ϕ)−λϕ)(tk,xk)
k to both sides of the previous inequality, we find that:

(λ− r0) vk(tk, xk) ≤
(A(ϕ)− λϕ) (tk, xk)

k
,

which is impossible for k large enough.

Inequality 4.8 can be proved by replacing zwith−z in inequality 4.7 and using the fact that−supM (−z0) ≥

infM z0. The last inequality is a combination of the previous ones. □

Before we proceed with the next theorem, we will need the following technical lemma.

Lemma 4.3.2 Let (M, g) be a Riemannian manifold and∇ and∆ the Levi-Civita connection and the Lapla-

cian respectively associated to g. Then, we have that:

[︂
∇k,∆

]︂
=

k∑︂
j=0

∇k−jRm(g) ∗ ∇j ,

[︂
∇k,∇V

]︂
=

k−1∑︂
j=0

∇k−jV ∗ ∇j+1 +∇k−1−j(Rm(g) ∗ V ) ∗ ∇j ,

(4.10)

where Rm(g) is the Riemannian curvature tensor, and Rm(g) ∗ V = Rm(g)(V, ., ., .).

Proof. We will proceed by induction on k to prove equality (4.10). Let us prove the result for k = 1 using

normal coordinates. By definition of the curvature tensor , we have that

∇i∇V h = ∇V ∇ih+ (Rm(g) ∗ V ) ∗ h+∇∇V h = ∇V ∇ih+ (Rm(g) ∗ V ) ∗ h+∇V ∗ ∇h,

where (Rm(g) ∗ V ) ∗ h corresponds to the action of the curvature tensor on tensors overM . This proves

the second relation for k = 1. Regarding the first the equality, a simple computation shows that:

∇∇2
i,jh = ∇2

i,j∇h+∇i (Rm(g) ∗ h) +Rm(g) ∗ ∇jh,

which proves the first relation of (4.10) for k = 1.
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Now suppose that the result is true for k ≥ 1. Then we have that:

∇k+1∇V h = ∇

⎛⎝∇V ∇kh+

k−1∑︂
j=0

∇k−jV ∗ ∇j+1h+∇k−1−j(Rm(g) ∗ V ) ∗ ∇jh

⎞⎠
= ∇∇V ∇kh+

k−1∑︂
j=0

∇(k+1)−jV ∗ ∇j+1h+∇(k+1)−(j+1)V ∗ ∇(j+1)+1h

+∇(k+1)−(j+1)(Rm(g) ∗ V ) ∗ ∇jh+∇(k+1)−(j+2)(Rm(g) ∗ V ) ∗ ∇(j+1)h

= ∇V ∇k+1h+ (Rm(g) ∗ V ) ∗ ∇kh+∇V ∗ ∇k+1h

+

k∑︂
j=0

∇(k+1)−jV ∗ ∇j+1h+∇(k+1)−(j+1)(Rm(g) ∗ V ) ∗ ∇jh

=

k∑︂
j=0

∇(k+1)−jV ∗ ∇j+1h+∇(k+1)−(j+1)(Rm(g) ∗ V ) ∗ ∇jh

This proves the second part of equality (4.10). We proceed in the same manner to prove the first one. □

Theorem 4.3.3 Let (u(t, .))t∈[0,T ) be a bounded solution of the Cauchy problem (4.5) with initial condition

u0 ∈ C∞(M,E). Assume that there exists an integer 1 ≤ k ≤ 3 and a positive constantK(k) such that:

||Rm(g)||Ck(M,E) + ||Rm(g) ∗ V ||Ck(M,E) + ||∇V ||Ck−1(M,E) ≤ K(k), (4.11)
where Rm(g) ∗ V = Rm(g)(V, ., ., .).

Then, for any T > 0, there exists a constant ω = ω(n, k, λ0) such that :

||u(t)||2C0(M,E) +

k∑︂
i=1

(αt)i

i
||∇iu(t)||2C0(M,E) ≤ eωt||u0||2C0(M,E) ∀t ∈ [0, T ] , (4.12)

α being a positive constant that will be defined later in order to obtain the right estimates.

Proof. We are going to derive the evolution of the heat equation of the following function:

s(t, x) = ||u||2(t, x) +
i=k∑︂
i=1

(αt)i

i
||∇iu||2(t, x),

and then apply the maximum principle for some values of α. We compute that

st = 2 ⟨ut, u⟩+ α
k∑︂

i=1

(αt)i−1 ||∇iu||2 + 2

k∑︂
i=1

(αt)i−1

i

⟨︁
∇iut,∇iu

⟩︁
.

Since u is a solution of (4.5), we obtain:

st = 2
(︁
⟨∆V u, u⟩+ r||u||2

)︁
+ α

k∑︂
i=1

(αt)i−1 ||∇iu||2 + 2

k∑︂
i=1

(αt)i

i

⟨︁
∇i∆V u+∇iru,∇iu

⟩︁
.
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On the other hand, we have that:

A(s) = 2

(︄
||∇u||2 + ⟨∆V u, u⟩+

k∑︂
i=1

(αt)i

i

(︁
||∇i+1u||2 +

⟨︁
∆V ∇iu,∇iu

⟩︁)︁)︄
+ rs.

Thus,

st −A(s) = 2

k∑︂
i=1

(αt)i

i

⟨︁[︁
∇i,∆V

]︁
u,∇iu

⟩︁
+ (α− 2) ||∇u||2 − 2 (αt)k

k
||∇k+1u||2+

k−1∑︂
i=1

(αt)i
(︃
α− 2

i

)︃
||∇i+1u||2 − r

(︁
s− 2||u||2

)︁
+ 2

k∑︂
i=1

(αt)i

i

⟨︁
∇iru,∇iu

⟩︁
.

If we choose α ≤ 2
k−1 if k ≥ 2, and α ≤ 2 if k = 1, we obtain the following inequality:

st −A(s) ≤ 2

k∑︂
i=1

(αt)i

i

⟨︁[︁
∇i,∆V

]︁
u,∇iu

⟩︁
− r

(︄
s− ||u||2 − 2

k∑︂
i=1

(αt)i

i
||∇iu||2

)︄
+

2

k∑︂
i=1

(αt)i

i

i∑︂
j=1

i!

(i− j)!j!

⟨︁
∇jr∇i−ju,∇iu

⟩︁
.

Now, using the fact that:

−r

(︄
s− ||u||2 − 2

k∑︂
i=1

(αt)i

i
||∇iu||2

)︄
= rs ≤ r0s,

and that there exists a positive constant C1 (depending on T and using the fact that α ≤ 2) such that:

2

k∑︂
i=1

(αt)i

i

i∑︂
j=1

i!

(i− j)!j!

⟨︁
∇jr∇i−ju,∇iu

⟩︁
≤ C1

k∑︂
i=1

i∑︂
j=1

||∇i−ju|| ||∇iu|| ≤ kC1s,

we obtain that:

st −A(s) ≤ 2

k∑︂
i=1

(αt)i

i

⟨︁[︁
∇i,∆V

]︁
u,∇iu

⟩︁
+ (r0 + kC1)s.

On the other hand, by lemma 4.3.2 we have:

[︁
∇i,∆

]︁
h =

i∑︂
j=0

∇jh ∗ ∇i−jRm(g),

and [︁
∇i,∇V

]︁
h =

i−1∑︂
j=0

∇i−jV ∗ ∇j+1h+∇i−1−j(Rm(g) ∗ V ) ∗ ∇jh.

Using condition 4.11 we deduce that there exists a positive constant C2 such that:

||
[︁
∇i,∆V

]︁
h|| ≤ C2

i∑︂
j=0

||∇jh|| for i ≤ k.
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Consequently, there exists a positive constant C̃ such that:

k∑︂
i=1

(αt)i

i

⟨︁[︁
∇i,∆V

]︁
u,∇iu

⟩︁
≤ C2

k∑︂
i=1

(αt)i

i

i∑︂
j=0

||∇jh|| ||∇ih|| ≤ C̃s

Finally, using the fact that s(0, t) = ||u0||2 and by applying proposition 4.3.1 to the operator Ã = A +(︂
2C̃ + r0kC1

)︂
I (ut − Ã(u) ≤ 0), we deduce that:

s(t, x) ≤ eωt||u0||2C0(M,E) (4.13)
such that ω = r0 + 2C̃ + r0kC1. □

Remark 4.3.4 The initial condition of the Cauchy problem (4.5) doesn’t need to be smooth. In fact, using

estimates (4.12) and the fact that C∞(M,E) is dense in C0(M,E) (in the strong topology), we can see

that u0 can be chosen in C0(M,E).

Remark 4.3.5 The Cauchy problem 4.5 defines a semigroup of linear operators T (t) that acts onC0(M,E),

such that

(T (t)u0) (x) = u(t, x) t ≥ 0, x ∈M, u0 ∈ C0(M,E).

The estimates of theorem 4.3.3 implies that for all integers 0 ≤ s ≤ k ≤ 3 and t ∈ (0, 1], we have that:

||T (t)||L(Cs(M,E),Ck(M,E)) ≤
Ceωt

t
k−s
2

, (4.14)
such that C is a positive constant independent of t. Moreover, using the maximum principle we get the

following estimate:

||T (t)u0||C0(M,E) ≤ eλ0t ||u0||C0(M,E). (4.15)

In order to prove the existence of a solution to the Cauchy problem (4.5), we are going to approximate the
problem using a sequence of elliptic operators with bounded coefficients. These operators have a unique
solution onM × (0,∞) (using the theory of parabolic equations with bounded coefficients).

Theorem 4.3.6 (Lunardi) For any u0 ∈ C0(M,E), there exists a unique (bounded) solution (u(t))t∈[0,∞)

of the Cauchy problem (4.5).

Proof. Unicity is a direct consequence of the maximum principle (proposition 4.3.1). In order to prove the
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existence we will proceed as follows. Let F ∈ C∞(M) such that:

limx→∞F (x) = ∞, F (x) ≤ c(1 + dp(x)), ∀x ∈M, ||∇F ||+ ||∇2F || ≤ c, (4.16)
where dp is the distance function with respect to a fixed point p ∈ M . The existence of such a function is

proved in theorem 3.6 in (Shi, 1997) and uses the fact that the curvature is bounded.

Let ψ : R+ → R+ be a function such that ψ(t) = 1 if 0 ≤ t ≤ 1 and ψ(t) = 0 if t ≥ 2. We define

ψs(x) = ψ(F (x)
s ), Vs = ψsV and rs = ψsr.

Note that Vs is bounded onM and that condition 4.11 continues to be satisfied by Vs. Consequently, the

following Cauchy problem ⎧⎪⎨⎪⎩
∂tus(t, x) = As(us)(t, x)

us(0, x) = u0(x)

has a unique (bounded) solution (us(t))t∈(0,∞), whereAs = ∆Vs + rs.

Using equation (4.16) and the fact thatψ is a compactly supported function, there exists a positive constant

C independent of s such that ||ψs||C2(M,E) ≤ C. Thus, inequality (4.11) is satisfied for the vector fields Vs

with a constantK(k) independent of s. The same thing applies to inequality (4.3) with the operatorAs.

Consequently, the estimates of theorem 4.3.3 applies to us, such that ω is a positive constant independent

of s. In particular, ||us||Ck(M,E) is uniformly bounded.

Using Arzela-Ascoli, there exists a subsequence (uki)ki∈N and a tensor u ∈ C∞(M,E) such that uki con-

verges uniformly to u on any compact subset of (0,∞)×M . □

4.4 Interpolation spaces
Before we proceed with that last step of the proof, let us recall some results on interpolation spaces (see

(Lunardi, 2018) for more details).

Definition 4.4.1 LetX and Y be two Banach spaces such that Y is continuously embedded into X . An in-

termediate space betweenX and Y is a Banach spaceE such that Y ⊂ E ⊂ X with continuous inclusions.

Definition 4.4.2 The interpolation space (X,Y )θ,∞ is an intermediate space betweenX and Y defined by:

(X,Y )θ,∞ =
{︂
x ∈ X | ||x||θ,∞ = supt∈(0,1)t

−θK (t, x,X, Y ) <∞
}︂
, (4.17)
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such that:

K(t, x,X, Y ) = inf {||a||X + t||b||Y | x = a+ b, (a, b) ∈ X × Y } . (4.18)
We can see that

(︂
(X,Y )θ,∞ , || . ||θ,∞

)︂
is a Banach space.

Theorem 4.4.3 (Interpolation theorem) Let Y1 and Y2 be two Banach space continuously embedded into

respectively theBanach spacesX1 andX2. IfT ∈ L(X1, X2)∩L(Y1, Y2), thenT ∈ L
(︂
(X1, Y1)θ,∞ , (X2, Y2)θ,∞

)︂
for any θ ∈ (0, 1). Moreover

||T ||L((X1,Y1)θ,∞,(X2,Y2)θ,∞) ≤
(︁
||T ||L(X1,X2)

)︁1−θ (︁||T ||L(Y1,Y2)

)︁θ
. (4.19)

Definition 4.4.4 Let θ ∈ [0, 1] and E be an intermediate space betweenX and Y . Then, we say that :

(i) E belongs to the class Jθ(X,Y ) if there exists a constant c > 0 such that:

||x||E ≤ c||x||1−θ
X ||x||θY , ∀x ∈ Y. (4.20)

(ii) E belongs to the classKθ(X,Y ) if there exists a constant c > 0 such that:

K (t, x,X, Y ) ≤ ctθ||x||E , ∀x ∈ E, ∀t > 0. (4.21)

The last inequality implies that a Banach space E is of classKθ(X,Y ) if and only if E is embedded contin-

uously into (X,Y )θ,∞. We also have that (X,Y )θ,∞ ∈ Jθ (X,Y ) ∩Kθ (X,Y ).

Theorem 4.4.5 (Reiteration theorem) Let 0 ≤ θ0 < θ1 ≤ 1 and θ ∈ (0, 1). If ω = (1− θ) θ0 + θθ1, then:

(i) If Ei is of classKθi(X,Y ) (i = 0, 1), then

(E0, E1)θ,∞ ⊂ (X,Y )ω,∞ . (4.22)

(ii) If Ei is of class Jθi(X,Y ) (i = 0, 1), then

(X,Y )ω,∞ ⊂ (E0, E1)θ,∞ . (4.23)
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Consequently, if Ei ∈ Kθi(X,Y ) ∩ Jθi(X,Y ), then

(E0, E1)(θ,∞) = (X,Y )(ω,∞) . (4.24)

Proposition 4.4.6 (proposition 2.8 (Deruelle, 2015)) Let (M, g) be a complete Riemannian manifold with

positive injectivity radius and bounded curvature together with its covariant derivatives. Then

(i) For θ ∈ (0, 1) and k ∈ N,(︂
Ck (M,E) , Ck+1 (M,E)

)︂
θ,∞

= Ck,θ (M,E) . (4.25)
(ii) Let 0 ≤ θ1 ≤ θ2 and 0 ≤ θ ≤ 1. Then, if ω = (1− θ) θ1 + θθ2 is not an integer,(︂

Cθ1 (M,E) , Cθ2 (M,E)
)︂
θ,∞

= Cω (M,E) , (4.26)
such that

Cω (M,E) := C⌊ω⌋,ω−⌊ω⌋

⌊ω⌋ being the integer part of ω.

4.5 Regularity of the solution
Corollary 4.5.1 Using the previous notation (of Cω), we have that

||T (t)||L(Cθ((M,E)),Cα(M,E)) ≤
Ceωt

t
α−θ
2

, 0 ≤ θ ≤ α ≤ 3 (4.27)
Proof. If θ and α are both integers then the previous inequality is a direct consequence of estimate 4.14. On

the other hand, if α is an integer and θ is not an integer, then:

||T (t)||L(Cθ((M,E)),Cα(M,E)) ≤ ||T (t)||L(C⌊θ⌋((M,E)),Cα(M,E))

If α is not an integer, let 0 ≤ k1 ≤ k2 ≤ 3 be two integers and s ∈ (0, 1) such that α = (1− s) k1 +

sk2. Using proposition 4.4.6,we have thatCα (M,E) =
(︁
Ck1(M,E), Ck2(M,E)

)︁
s,∞ andC⌊θ⌋ (M,E) =(︁

C⌊θ⌋(M,E), C⌊θ⌋(M,E)
)︁
s,∞. Now, using theorem 4.4.3, we deduce that

||T ||L(Cθ(M,E),Cα(M,E)) ≤
(︂
||T ||L(C⌊θ⌋(M,E),Ck1 (M,E))

)︂1−s (︂
||T ||L(C⌊θ⌋(M,E),Ck2 (M,E))

)︂s
=

Ceωt

t
α−⌊θ⌋

2

Since we could restrict ourselves to t ∈ (0, 1) (using the semigroup law), this concludes the proof. □
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In section 4 of (Lunardi, 1998) , the author notices that even though the semigroup T (t) is not strongly
continuous in C0 (M,E), we could still define a realization of the operator A in C0 (M,E). Let λ>λ0 and
R be the following linear operator

(R (λ)u) (x) =

∫︂ ∞

0
e−λt (T (t)u) (x) dt, x ∈M

R is well defined (using estimate 4.15). Moreover, ||R (λ) ||L(C0(M,E)) ≤ 1
λ−λ0

.
Since R (λ) (u) (x) is the Laplace transform of the tensor t ↦→ T (t) (u) (x), R is injective. Thus, there
exists a closed linear operator A : D (A) → C0 (M,E) (infinitesimal generator of A), such that R (λ) is
the resolvent ofA, andD (A) = Image (R (λ)). By proposition 4.1 of (Lunardi, 1998), we have that

Proposition 4.5.2 (Lunardi)

D (A) = D2
A (M,E)

Ah = Ah, ∀h ∈ D (A)

Moreover, for any θ ∈ (0, 2), there exists a positive constant C such that

||h||Cθ(M,E) ≤ C||h||1−
θ
2

C0(M,E)
||h||

θ
2

D(A), ∀h ∈ D (A) , (4.28)
where ||h||D(A) = ||h||C0(M,E) + ||A (h) ||C0(M,E).

Proof. [Proof of theorem 4.1.1] Equation (4.28) shows that D2
A (M,E) is continuously embedded into

Cθ (M,E) for all θ ∈ (0, 2) which proves the first part of theorem 4.1.1.

To prove the second part of theorem 4.1.1 we proceed as follows. Let H ∈ Cθ (M,E) (θ ∈ (0, 1)) and

λ > λ0. Then

h (x) :=

∫︂ ∞

0
e−λt (T (t)H) (x) dt, (4.29)

is well defined. Moreover, since h ∈ D (A) (because (λ−A) (h) = H), we have that h ∈ Cθ (M,E)

(using equation (4.28)),

||h||Cθ(M,E) ≤ C||h||1−
θ
2

C0(M,E)
||h||

θ
2

D(A) ≤
C

(λ− λ0)
1− θ

2

||H||Cθ(M,E).

It remains to prove that h ∈ C2,θ (M,E). By proposition 4.4.6 we have that

C2,θ (M,E) =
(︁
Cα (M,E) , C2,α (M,E)

)︁
γ,∞ for γ = 1− (α−θ)

2 and α ∈ (θ, 1).

Let η > ω (ω of corollary 4.5.1). Then, h satisfies (η −A)h = H + (η − λ)h = H̃ . The latter satisfies:

||H̃||Cθ(M,E) ≤

(︄
1 +

C|η − λ|
(λ− λ0)

1− θ
2

)︄
||H||Cθ(M,E).
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Since η > λ0, we have that

h (x) =

∫︂ ∞

0
e−ηt

(︂
T (t) H̃

)︂
(x) dt.

For every ϵ > 0, set

a(x) =

∫︂ ϵ

0
e−ηt

(︂
T (t) H̃

)︂
(x) dt ; b(x) =

∫︂ ∞

ϵ
e−ηt

(︂
T (t) H̃

)︂
(x) dt.

Then, h(x) = a(x) + b(x). Using estimate 4.27, there exists positive constants C1 and C2 such that

||a||Cα(M,E) ≤ C1ϵ
γ ||H̃||Cθ(M,E)

||b||C2,α(M,E) ≤ C2ϵ
γ−1||H̃||Cθ(M,E)

Consequently (using the definition of ||h||γ,∞), we obtain that:

||h||γ,∞ ≤ supϵ∈(0,1)ϵ
−γ
(︁
||a||Cα(M,E) + ϵ||b||C2,α(M,E)

)︁
= (C1 + C2) ||H̃||Cθ(M,E))

≤ (C1 + C2)

(︄
1 +

C|η − λ|
(λ− λ0)

1− θ
2

)︄
||H||Cθ(M,E).

Since ||h||γ,∞ = ||h||C2,θ(M,E) this concludes the proof. □
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