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SUMMARY

Forest  diversity  and function  can  be  influenced  by  environmental  variations  driven by

natural  factors,  such  as  environmental  gradients,  as  well  as  environmental  variations

created  by  human  activities,  including  climate  change  and  urbanization,  and  their

interactions.  Understanding  the  ecological  mechanisms  behind  these  natural  factors  is

crucial,  as  they  illuminate  the  extent  to  which  tree  communities  and  species  adapt  to

environmental shifts.  Conversely,  human-induced factors are disrupting and altering the

natural balance, with the precise effects of these anthropogenic forces on forest diversity

and  function  remaining  largely  uncharted.  Given  the  importance  of  both  natural  and

anthropogenic environmental  variation on forest  diversity  and functioning,  my research

investigated how diversity patterns and the ecological mechanisms behind species variation

change along an elevational gradient (Andean forest) (Chapter I) and across contrasting

biogeographic  areas  (Andes  and  Amazon)  (Chapter  II).  Furthermore,  I  examined  the

impact  of  climate  change on Andean Forest  functional  composition  (Chapter  III)  and

investigated the influence of increased urban temperatures on tree physiology in Montreal

trees (Chapter IV).

Through my research, I analyzed the natural factors driving species variation and found that

ecological  mechanisms  exert  a  stronger  influence  at  higher  elevations  within  Andean

gradients.  As  elevation  increases,  environmental  filtering  becomes  more  important  in

shaping species composition. However, my comparative study of lowland (Amazon) and

highland (Andes) forests revealed that the pronounced impact of ecological mechanisms on

species variation is not solely attributable to environmental filtering. In the species-rich

lowland forests,  intense niche partitioning occurs to mitigate  competition.  Therefore,  in

these lowland ecosystems, the ecological mechanisms fostering species variation are more

tied to competition avoidance rather than niche specialization. This highlights the roles of

ecological  mechanisms in  different  environmental  contexts,  shaping biodiversity  across

various ecosystems.



Regarding  environmental  variation  created  by  anthropogenic  activities,  climate  change

significantly  impacts  the  functional  composition  of  Andean  forests,  primarily  due  to

increases in temperature and vapor pressure deficit, especially at higher elevations. These

environmental shifts prompt forest communities to adapt by favoring the recruitment and

abundance of species equipped with traits resilient to the new conditions. Consequently,

there is a notable trend towards species with more conservative traits at various elevations

within the Andean forest. This change in functional composition could directly influence

ecosystem  services,  such  as  carbon  sequestration.  In  the  last  chapter,  I  found  that

temperature is also a crucial factor affecting the functioning of urban trees. Elevated urban

temperatures  (urban heat  island effect  -UHI-)  diminish the  capacity  for  carbon capture

through photosynthesis in some tree species that are particularly susceptible to heat and

lack the ability to acclimate to increased temperatures. However, some species demonstrate

high  plasticity  by  adjusting  key  morphological  leaf  traits,  which  aids  in  increasing

transpiration and stomatal conductance. Nevertheless, the morphological and physiological

changes did not result in complete acclimation. Therefore, the impact of the urban heat

island effect is highly dependent on the species, underscoring the importance of assessing

tree species' vulnerability to heat in urban planning to preserve ecosystem services. 

This  work  has  major  implications  for  natural  and  urban  forest  management  and

conservation, as it provides crucial information to guide more effective management in the

long term and ensure ecosystem services.

Key words:  Climate change, Urban Heat Island, functional composition, species variation,

elevated temperature, tree functioning. 



RÉSUMÉ 

La  diversité  et  la  fonction  des  forêts  peuvent  être  influencées  par  des  variations

environnementales  induites  par  des  facteurs  naturels,  tels  que  les  gradients

environnementaux, ainsi que par des variations environnementales créées par les activités

humaines,  y  compris  le  changement  climatique  et  l'urbanisation,  et  leurs  interactions.

Comprendre les mécanismes écologiques derrière ces facteurs naturels est crucial, car ils

éclairent  dans  quelle  mesure  les  communautés  d'arbres  et  les  espèces  s'adaptent  aux

changements environnementaux. En revanche, les facteurs d'origine humaine perturbent et

modifient l'équilibre naturel, les effets précis de ces forces anthropiques sur la diversité et la

fonction  des  forêts  restant  largement  inexplorés.  Compte  tenu  de  l'importance  des

variations  environnementales  naturelles  et  anthropiques  sur  la  diversité  et  le

fonctionnement des forêts, mes recherches ont examiné comment les modèles de diversité

et  les  mécanismes  écologiques  derrière  la  variation  des  espèces  changent  le  long d'un

gradient  altitudinal  (forêt  andine)  (Chapitre  I)  et  à  travers  des  zones  biogéographiques

contrastées  (Andes  et  Amazonie)  (Chapitre  II).  De  plus,  j'ai  examiné  l'impact  du

changement climatique sur la composition fonctionnelle de la forêt andine (Chapitre III) et

étudié  l'influence  des  températures  urbaines  élevées  sur  la  physiologie  des  arbres  à

Montréal (Chapitre IV).

À travers mes recherches, j'ai analysé les facteurs naturels qui influent sur la variation des

espèces et j'ai constaté que les mécanismes écologiques exercent une influence plus forte à

des altitudes plus élevées dans les gradients andins.  À mesure que l'altitude augmente, le

filtrage environnemental devient plus important dans la formation de la composition des

espèces. Cependant, mon étude comparative des forêts de basse altitude (Amazonie) et de

haute altitude (Andes) a révélé que l'impact prononcé des mécanismes écologiques sur la

variation des espèces n'est pas uniquement attribuable au filtrage environnemental. Dans les

forêts riches en espèces de basse altitude, un partitionnement des niches intense se produit

pour atténuer la concurrence. Par conséquent, dans ces écosystèmes de basse altitude, les

mécanismes  écologiques  favorisant  la  variation  des  espèces  sont  davantage  liés  à



l'évitement de la compétition qu'à la spécialisation des niches. Cela met en évidence les

rôles des mécanismes écologiques dans différents contextes environnementaux, façonnant

la biodiversité à travers divers écosystèmes.

En ce qui concerne les variations environnementales créées par les activités anthropiques,

le changement climatique impacte significativement la composition fonctionnelle des forêts

andines,  principalement  en  raison  de  l'augmentation  des  températures  et  du  déficit  de

pression  de  vapeur,  surtout  à  des  altitudes  plus  élevées.  Ces  changements

environnementaux  incitent  les  communautés  forestières  à  s'adapter  en  favorisant  le

recrutement et l'abondance d'espèces dotées de traits résilients aux nouvelles conditions.

Par conséquent,  on observe une tendance notable vers des espèces  avec des traits  plus

conservateurs  à  différentes  altitudes  dans  la  forêt  andine.  Ce  changement  dans  la

composition fonctionnelle pourrait influencer directement les services écosystémiques, tels

que la séquestration du carbone. Dans le dernier chapitre, j'ai constaté que la température

est  également  un  facteur  crucial  affectant  le  fonctionnement  des  arbres  urbains.  Les

températures urbaines élevées (effet d'îlot de chaleur urbain -ICU-) réduisent la capacité de

capture du carbone par la photosynthèse dans certaines espèces d'arbres particulièrement

sensibles à la chaleur et incapables de s'acclimater aux températures élevées. Cependant,

certaines espèces montrent une grande plasticité en ajustant des traits morphologiques clés

des  feuilles,  ce  qui  aide  à  augmenter  la  transpiration  et  la  conductance  stomatique.

Néanmoins,  les  changements  morphologiques  et  physiologiques  n'ont  pas  abouti  à  une

acclimatation complète. Par conséquent, l'impact de l'effet d'îlot de chaleur urbain dépend

fortement de l'espèce, soulignant l'importance d'évaluer la vulnérabilité des espèces d'arbres

à la chaleur dans la planification urbaine pour préserver les services écosystémiques.

Ce  travail  a  des  implications  majeures  pour  la  gestion  et  la  conservation  des  forêts

naturelles et urbaines, car il fournit des informations cruciales pour orienter une gestion

plus efficace à long terme et garantir les services écosystémiques.

Mots-clés:  Changement  climatique,  Îlot  de  Chaleur  Urbain,  composition  fonctionnelle,

variation des espèces, température élevée, fonctionnement des arbres.
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INTRODUCTION

Understanding  the  drivers  of  forest  diversity  and  functioning  has  long  been  a  central

pursuit  in ecology  (Zhang et  al.,  2014).  Environmental variation,  whether produced by

natural factors such as  environmental gradients and  biogeographic differences  or by

anthropogenic factors such as  climate change and urbanization, are the main drivers of

diversity and functional changes in forests (Faulkner & Gov, 2004; Fine, 2015; Martínez-

Villa et al., 2024; Melliger et al., 2018; Mitchell & Devisscher, 2022; Morin et al., 2018;

Rahbek, 1995). On the one hand, natural changes associated with environmental gradients

and  biogeographic  differences  have  been  recognized  as  fundamental  drivers  of  plant

diversity,  abundance,  distribution,  and functioning (Fine,  2015, Rahbek,  1995).  On the

other  hand,  anthropogenic  changes  are  creating  unprecedented  pressures  on  forests,

potentially precipitating profound transformations in terrestrial  ecosystems as we know

them  (Nolan et  al.,  2018). Currently,  the study of how environmental variation affects

forest  diversity  and functioning is  garnering  even more  attention  since  i)  this  topic  is

crucial for understanding how plants respond to natural environmental variation and how

ecological assemblages change as a function of the environment, and ii) there is a growing

evidence  of  forest  directional  shifts  associated  with  human-induced  environmental

variation  (e.g.,  climate  change and urbanization)  (Lewis  et  al.,  2009).  This  topic  is

critical for anticipating how forest will react to environmental changes in the future.

Natural filters that shape forest diversity and composition.

Diversity across environmental gradients and Biogeographic differences

Since  1805,  after  the  “Essay  on  the  Geography  of  Plants”  written  by  Alexander  Von

Humboldt and Aimé Bompland, scientists and nature lovers have been fascinated by how

plants respond to environmental gradients. Elevational gradients have been recognized as

one of the main gradients in biogeography since they have the particularity to have large

environmental variation in short distances, making them the perfect natural laboratory to

study plant responses to environmental changes (Sanders & Rahbek, 2012). Thus, changes



in different factors such as soils, topography, and VPD, but mainly temperature, determine

forest diversity, structure, dynamics, and functioning (Barkhordarian et al., 2019; Pabón-

Caicedo et al., 2020). The correlation between these primary environmental variables and

elevation has helped use elevation as a surrogate to test hypotheses in community ecology

directly (Gómez-Diaz et al., 2023). In the tropics, due to the steep mountains such as the

Andes, the biogeographic differences created by elevation and the exuberant diversity have

made the study of responses of tree communities to environmental changes a cornerstone in

tropical ecology.

Elevational gradients of diversity are dependent on a combination of historical, geographic,

biotic, abiotic, and stochastic forces shaping species distribution and community structure,

forces known as ecological mechanisms (Laiolo et al., 2018). Understanding the relative

importance of ecological mechanisms, such as deterministic and stochastic processes, in

shaping community assembly at different elevations is crucial for effective conservation

(Tello  et  al.,  2015).  β-diversity,  a  metric  commonly  used  to  assess  species  variation,

provides  mechanistic  insights  into  the  ecological  forces  driving  species  turnover  along

environmental gradients (Legendre 2014). Traditionally, β-diversity analysis has focused

on environmental gradients, such as elevation and biogeographical differences (Lomolino,

2001; Rahbek, 1995; Sanders & Rahbek, 2012; Dick & Heuertz, 2008; Droissart  et al.,

2018). These studies have elucidated the drivers of species variability, trait divergence, and

the strength of local community assembly mechanisms (Martínez-Villa et al., 2020; Mori et

al., 2013). Research conducted along elevational gradients consistently indicates a decline

in species richness and β-diversity with increasing elevation (Martínez-Villa et al., 2020;

Mori  et  al.,  2013).  Furthermore,  environmental  filtering  mechanisms  become  more

pronounced in these challenging conditions, shaping community composition (Tello et al.,

2015).

Species diversity and their variation (β-diversity) are closely related to the scale because

detecting patterns and identifying ecological mechanisms critically depend on it (Levin et

al. 1992). The concept of scale has long been acknowledged as pivotal in ecology, given

that  ecological  processes  operate  across  diverse  spatial  scales,  each  likely  producing



distinct patterns (Levin, 1992). Studying a system at an inappropriate scale can lead to a

misinterpretation of its actual dynamics, as patterns observed may merely be artifacts of the

chosen scale (Wiens, 1989). The study of scale is gaining attention due to the erosion of

diversity  at  different  scales.  It  has  been considered  a  problem in  the  modern  era,  and

conservation research, including scale, is paramount to define adequate conservation plants.

Similarly, the size of sampled individuals and the species pool can impact results related to

diversity and composition, depending on whether they include a broader or narrower range

of species (Lessard et al., 2012). It is also probable that different ecological mechanisms

influence small and large trees, resulting in distinct diversity patterns. Therefore, the effects

of  spatial  scale  and  tree  size  should  be  carefully  considered  to  enhance  precision  in

ecological studies.

Anthropogenic filters influencing forest diversity, composition, and tree 
function.

Climate change, forest functional composition and structure

Climate has always shaped the world's forests (Bhatti et al., 2006), but human activities

have significantly impacted Earth's climate since the late 1800s, altering mean climatic

patterns (Salinger 2005). Global warming, the increase in global mean temperature, is one

of the main characteristics of climate change. Forecasting scenarios, including those from

the  Intergovernmental  Panel  on  Climate  Change  (IPCC,  2022),  predict  an  average

temperature increase of 1.5 to 5.8 °C by the mid-21st century. Although global warming is

one of the most important and broadly studied models, climate change also involves global

changes  in  precipitation,  vapor  pressure  deficit  (VPD),  and  cloud  cover,  among  other

important variables for forest  composition and functioning  (Barkhordarian et  al.,  2019;

Pabón-Caicedo et al., 2020). Consequently, shifts in the climatic variables to which plants

have adapted may  trigger profound transformations in plant ecosystems as we currently

understand  them  (Turner  et  al.,  2020).  Studies  have  reported  changes  in  species

distribution ranges (Chen et al., 2011; Duque et al., 2015; Feeley et al., 2011, 2012; Santini

et al., 2021), species diversity (Esquivel-Muelbert et al., 2019), carbon storage (Duque et



al., 2021; Sullivan et al., 2020), and forest dynamics  (Peña et al., 2018) due to climate

change. However, many questions remain regarding how forests will respond to long-term

climate  change,  particularly  in  less  studied  aspects  such  as  functional  structure  and

composition and in less studied forests such as hyper-diverse tropical forests.

Although climate change has widespread global impacts, species responses are not uniform

(Fadrique  et  al.,  2018).  The  way  plants  react  to  climate  change  depends  on  their

vulnerability and sensitivity, influenced by their physiological limits and ranges, functional

traits,  evolutionary  adaptations  to  climate,  and  the  extent  of  regional  climate  change

(Ahrens et al., 2020; Andrew et al., 2022; Crous, 2019). In tropical elevational gradients,

for example, studies have reported an upward migration of dominant genera at a specific

rate, primarily in heat-tolerant genera (Feeley et al., 2011). Consequently, shifts in species

abundance and distribution are reorganizing terrestrial ecosystems, thereby altering their

functional composition (Duque et al., 2015). In this context, important questions arise, such

as whether climate change is driving broad changes in the functional composition of local

communities along large elevational gradients. If so, what are the key factors determining

the direction and magnitude of these changes?

This question is challenging, partly due to the complexity of collecting trait data and long-

term  demographic  information  in  species-rich  forests.  With  the  recognized  impact  of

climate change on forest species composition, the next step is to discern shifts in functional

composition  and  their  consequences  for  forest  functionality  (Aguirre-Gutiérrez  et  al.,

2022). While studies have observed changes in species composition changes and upward

migrations along elevational gradients (Feeley et  al.,  2011),  suggesting a potential  shift

towards species with acquisitive strategies at higher elevations, empirical data to support

this  hypothesis  is  lacking.  Conversely,  research  in  dry  and  lowland  Amazon  forests

indicates that climate change—marked by rising temperatures and droughts—is prompting

a  shift  towards  more  conservative,  drought-tolerant  species  (Enquist  &  Enquist,  2011;

Esquivel-Muelbert et al., 2019). However, the lack of information on the impact of climate

change on functional  composition at  different  elevations  is  a  critical  gap  that  must  be



addressed to conserve mountain forests and safeguard their ecosystem services for future

generations.

Urbanization, Urban Heat Islands (UHI), and the effect on tree functioning. 

In parallel with climate change, urbanization is expanding at a rapid pace, creating unique

environments and posing challenges for urban forests (Lüttge & Buckeridge, 2023). One of

the main characteristics of urban areas is the temperature variation, commonly increasing

from natural and rural areas to the most urbanized city core  (Mclean et al., 2005). This

pattern, known as urban heat island (UHI), is one of the most important selective pressures

for  urban  trees   (Mclean  et  al.,  2005;  Wang  et  al.,  2016).  Since  the  environmental

conditions created and modified by humans are significantly different from the conditions

required by trees in nature, it may alter tree functioning (Lüttge & Buckeridge, 2023). For

example, due to the combination of climate change and urbanization, temperatures reached

within UHI can exacerbate thermal stress and can even exceed the natural physiological

limits of tree species  (Esperon-Rodriguez et al., 2021; Hara et al., 2021).  If this occurs,

important  services  and  functions  that  trees  provide  to  the  human  population  can  be

diminished by the stress responses of urban forests to extreme environmental conditions.

Due  to  harsh  urban  environments,  studies  have  reported  decreases  in  carbon  storage

(Meineke et  al.,  2016) and in  photosynthetic  rates  (Hara et  al.,  2021),  and changes in

thermal tolerances  (Hara et al., 2021; Wang et al., 2016) and functional traits  (Esperon-

Rodriguez et al., 2020; Zhu et al., 2020). Cities are becoming the main places where people

live worldwide. Therefore, to understand and mitigate the effects of UHI and urbanization,

we must first understand the effects of environmental variation created by cities on tree

functioning and thereby increase our potential to manage urban forests.

The intense heat associated with UHI can significantly impair tree functions. Trees react to

heat  stress  through  mechanisms  such  as  crown defoliation,  early  wilting,  shedding  of

branches,  and  ultimately  lowered  resistance  to  pests  (Haase  & Hellwig,  2022).  These

symptoms typically manifest only after substantial internal damage from the heat. Initially,

heat  affects  critical  physiological  processes,  such  as  photosynthesis,  transpiration,  and



stomatal conductance, leading to reduced chlorophyll variability and inhibited photosystem

II (PSII) functionality (Allakhverdiev et al., 2008; Percival, 2023). Additionally, metabolic

processes such as electron transport and the activation of rubisco are reduced, and heat can

deactivate  enzymes  crucial  for  photosynthesis  and  respiration,  among  other  effects

(Scafaro et al.,  2023). These heat-induced responses can culminate in stunted or halted

growth,  diminished  carbon  sequestration,  and  a  reduced  cooling  effect,  which  in  turn

lessens the ecological benefits that plants provide in urban settings (Meineke et al., 2016).

Comprehending the physiological thresholds of urban tree species is crucial for integrating

future climate variability into urban planning. Recent research indicates that a significant

portion  of  urban  tree  species  are  already  enduring  conditions  that  exceed  their

physiological tolerances. For example, Esperon-Rodriguez et al (2022) found that about

15% of  these  species  are  subjected  to  maximum  temperatures  beyond  what  they  are

evolutionarily accustomed to. The IPCC forecasts that cities near the equator will  face

substantial reductions in rainfall, whereas cities in temperate zones will encounter the most

pronounced temperature rises. By coupling these climate projections with data on species'

vulnerabilities, we can gain critical insights essential for enhancing ecosystem services.

The  sustainability  of  urban  trees  and  the  array  of  benefits  they  furnish  hinge  on  the

selection and cultivation of species with the highest resilience to climate change.

Understanding  the  influences  of  natural  environmental  variation  (such  as  temperature,

topography,  soils)  and  the  human-induced  environmental  variation  (including  climate

change, urbanization, and the urban heat island effect) on tree community structure and

function is critical for devising effective conservation strategies and managing both natural

and urban forests. By adopting this integrative approach, we can more accurately forecast

the repercussions of environmental shifts, devise robust forest conservation initiatives, and

bolster  biodiversity  and  ecosystem  services  across  various  landscapes  amidst  the

challenges of global environmental changes.

Thesis overview



The  central  objective  of  my dissertation  is  to  examine the  influence  of  environmental

variations, both those occurring naturally and those resulting from anthropogenic activities,

on the diversity of tree species, their functional traits composition, and tree functioning. In

pursuit  of  this.  In  pursuit  of this,  i)  I  have explored the impacts of climate change on

functional  composition of  Andean Forest  over  time along an  elevational  gradient.  ii)  I

analyzed how species composition variation changes along an Andean altitudinal gradient

and across scales, iii) I investigated the effect of biogeographic differences and scale on

species composition variation. Additionally, I examined which ecological mechanisms play

a  predominant  role  in  each  region  and  how  sampling  methods  affect  these  diversity

outcomes.  Finally  iv)  I  investigated  the  effect  of  Urban  Heat  Islands  (UHI)  on  the

functioning of urban trees, specifically the effect of heat on photosynthetic performance of

tree species. From these objectives, the following chapters have been delineated.

Chapter I. The importance of grain and cut-off size in shaping tree diversity along an

elevational gradient in the northwest of Colombia.  The goal of this chapter was to assess

the main drivers of tree -diversity at local scales in a hyper-diverse forest, as well as how

the sampling effect alters -diversity estimations. For running the analysis, I used data from

15  1-ha  permanent  plots  spread  out  along  a  3000  m  elevational  gradient.  I  used

standardized  β-deviation  to  assess  the  extent  to  which  either  sampling  effects  or  the

community assembly mechanisms determine the changes in species composition at local

scales.

Chapter  II.  Sampling  dependence  of  local  β-diversity  in  two Neotropical  forests

located  at  contrasting  elevations. Using  two  25-hectare  permanent  plots  in

biogeographically contrasting regions (Amazon and Andes), we compared how tree species

variation differs between these areas and identified the ecological mechanisms at work in

each. Similar to Chapter 4, we also investigated how sampling effects influence diversity

outcomes in these two regions that are critical to ecological research. 

Chapter  III. Temporal  shifts  in  the  functional  composition  of  Andean  forests  at

different elevations are driven by climate change. In this chapter, I evaluated the impact of

climate change on the functional composition of the Andean Forest, focusing on variations

along an elevational gradient over time. I have integrated data pertaining to climate change,



functional characteristics, and forest dynamics collected across a decade. The objective was

to  determine  how  fluctuations  in  minimum,  maximum,  and  average  temperatures,

precipitation, and vapor pressure deficit (VPD) influence the suite of traits within Andean

communities. To carry out this project, I measured for two years leaf traits on 1,200 tree

species on nine 1-ha permanent plots.

Chapter IV. Thermal tolerance and photosynthetic responses of urban trees to Urban

Heat  Island  in  a  temperate  city.  Utilizing  temperature  data  from  urban  areas  and

physiological  performance  metrics  of  key  urban  tree  species  from  Montreal's  forest

inventory,  I  investigated  how  Urban  Heat  Island  (UHI)  temperatures  impact  tree

photosynthesis  and  thermal  tolerance.  These  findings  also  have  implications  for  the

ecosystem services that urban plants provide to city dwellers. The results of this research

were also shared with the municipality of Montreal to inform and enhance urban planning

strategies.

Synthesis
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Appendix 1.1. Glossary.

● Biodiversity:  the  number,  abundance,  composition,  spatial  distribution,  and
interactions  of  genotypes,  populations,  species,  functional  types  and  traits,  and
landscape units in a given system (Díaz et al., 2006). 

● Functional  traits:  the  characteristics  or  attributes  of  an  organism  that  are
considered relevant to its response to the environment or its effect on ecosystem
processes, for example, leaf size, longevity, seed size and dispersal mode (Díaz &
Cabido, 2001; Hooper et al., 2005). 

● Functional  composition:  the  combination of  different  functional  traits  within  a
community  or  ecosystem.  Functional  composition can be  described by both the
diversity of traits as well as the community weighted trait means (CWM). Thus, it
influences  the  function  of  ecosystems such  as  productivity  and  responses  to
environmental changes and considers how each species contributes to ecosystem
processes and properties. (Garnier et al., 2004; Vile, Shipley & Garnier, 2006)  

● Climate change: “a change of climate which is attributed directly or indirectly to
human activity that alters the composition of the global atmosphere and which is in
addition to natural climate variability observed over comparable time periods.”
UNFCC, Article 1 – Paragraph 2, 1994.

● Ecosystem  services:  the  benefits  that  ecosystems  provide  to  humanity  either
directly or indirectly (Díaz  et al., 2006). The Millennium Ecosystem Assessment
classifies the ecosystem services in supporting (e.g., primary production, nutrient
cycling), regulating (e.g., climate regulation, pest control), provisioning (e.g., food,
wood, fresh water), and providing cultural services (e.g., recreation and aesthetic
values) (MEA, 2005). 

● Urban  Heat  Island  (UHI):  a  global  phenomenon  where  urban areas  are
significantly warmer than  surrounding rural areas. This phenomenon occurs  when



cities have less vegetation and dense construction resulting in the retention of heat
in urban infrastructure (Stewart 2011).

● Beta-diversity:  the  measurement  of  variation  in  species  composition  between
different habitats, environments, or sites (Whittaker 1960).

CHAPTER I

THE IMPORTANCE OF GRAIN AND CUT-OFF SIZE IN SHAPING
TREE BETA DIVERSITY ALONG AN ELEVATIONAL GRADIENT

IN THE NORTHWEST OF COLOMBIA.

ABSTRACT 

Species  turnover  (β-diversity)  along elevational  gradients  is  one  of  the most  important

concepts in plant ecology. However, there is a lack of consensus about the main driving

mechanisms of tree  β-diversity at local scales in very diverse ecosystems (e.g.,  Andean

mountains), as well as how the sampling effect can alter β-diversity estimations. Recently,

it  has  been  hypothesized  that  patterns  of  change  in  β-diversity  at  local  scales  along

elevational gradients are driven by sampling effects stemming from differences in the size

of the species pool rather than by underlying community assembly mechanisms. Thus, we

aim to evaluate the relative extent to which sampling effects, such as species pool size,

grain size, and tree size cut-off, determine species sorting, and thus, the variability of  β-

diversity at local scales along elevational gradients in the northwest of Colombia. Using 15

1-ha permanent plots spread out along a 3000 m elevational gradient, we used standardized

β-deviation  to  assess  the  extent  to  which  either  sampling  effects  or  the  community

assembly  mechanisms  determine  the  changes  in  species  composition  at  local  scales.



Standardized β-deviation was measured as the difference between the observed and null β-

diversity  divided  by  the  standard  deviation  of  the  null  β-diversity.  We  found  that  the

magnitude of change in local β-deviation along the elevational gradient was significant and

dependent on the employed spatial grain size and tree size cut-off. However,  β-deviation

increased  with  elevation  in  all  sampling  designs,  which  suggests  that  underlying

community assembly mechanisms play a key role in shaping local  β-diversity along the

elevational gradient. Our findings suggest that grain size enlargement and the inclusion of

trees with small  diameters will  improve our ability to quantify the extent to which the

community assembly mechanisms shape patterns of β-diversity along elevational gradients.

Overall,  we  emphasize  the  scale-dependent  nature  of  the  assessment  of  β-diversity.

Likewise, we call for the need of a new generation of enlarged forest inventory plots along

gradients  of  elevation  in  tropical  forests  that  include  small  individuals  to  improve our

understanding about the likely response of diversity and function to global change.

Keywords: Andean forests, null models, species pool, species sorting, sampling effect. 



INTRODUCTION

Spatial turnover in community composition (-diversity) along elevational gradients has

been one of the most striking and studied patterns in ecology (Lomolino, 2001b; Rahbek,

2005;  R. H. Whittaker,  1960).  In  tropical  mountain systems,  -diversity is  expected to

decrease with elevation  (Tello et al., 2015b) due to the influence of different community

assembly mechanisms that could vary along the elevational gradient (Laiolo et al., 2018).

Overall, different assembly mechanisms, such as dispersal limitation (Condit et al., 2002),

species sorting  (Qian & Ricklefs,  2007),  habitat  specialization  (Jankowski  et  al.,  2009;

Janzen,  1967),  and priority  effects  (Chase,  2010;  Fukami,  2015),  have been thought to

explain the spatial turnover in the composition of plant communities. However, sampling

effects  associated  with  the  size  of  the  species  pools  and  the  regional  abundance

distributions have recently been proposed as the main cause of the observed decreased in β-

diversity  along elevational  gradients  (Kraft  et  al.,  2011).  In  other  words,  the  observed

variation  in  β-diversity  along  steep  elevational  gradients  may  be  primarily  driven  by

differences  in  the  size  of  the  species  pools  and  the  number  of  individuals  per  specie

generated by biogeographical  or  regional  processes  (Ricklefs,  1987) rather  than by the

underlying  mechanisms  of  community  assembly  described  above.  Disentangling  the

relative  importance  that  species  pool  size,  regional  abundance  distribution (Kraft  et  al.

2011) or community assembly mechanisms have on determining  β-diversity at  different



scales along elevation gradients in the tropics is paramount for developing robust forest

conservation plans capable of maintaining diversity (Lomolino 2001; Rahbek 2005).

The spatial scale at which vegetation studies are developed is a key factor that can strongly

influence  β-diversity  gradients  (Stier  et  al.,  2016).  The  concept  of  scale  involves  two

factors: i) extent, the geographical area where comparisons are made; and ii) grain size, the

unit of measurement at which data are collected or aggregated for analysis (R. J. Whittaker

et al., 2001). In a fixed extent, a variation in grain size implies a variation in a sampled

relative species abundances and, subsequently, its spatial patterns of aggregation (Crawley

&  Harral,  2002).  Directly  related  to  β-diversity,  when  the  spatial  grain  size  of  local

communities  increases,  species  present  in  the  regional  species  pool  will  be  better

represented, generally lending to a decline in  β-diversity (Barton et al. 2013). Along an

elevational gradient, the use of 0.1-ha plots with grain sizes of 0.01-ha has been widely

used to assess and detect fine-grained environmental variation effects on determining  β-

diversity  at  a  local  scale  (Kraft  et  al.,  2011;  Mori  et  al.,  2013b;  Tello  et  al.,  2015b).

However, in species-rich communities, smaller grain sizes may lead to the undersampling

of  individuals,  an  issue  that  can  artificially  enhance  β-diversity  (Condit  et  al.,  2005).

Comparative studies of β-diversity at contrasting grain sizes along elevational gradients are

needed  to  help  disentangle  the  extent  to  which  either  sampling  effects  or  community

assembly mechanisms shape β-diversity patterns.

Along elevational gradients, another largely unexplored issue pertains to the likely effect

that  different  diameter  at  breast  height  (DBH)  cut-off  sizes  can  have  in  β-diversity

assessments  (Mori  et  al.  2013).  Overall,  reducing  the  minimum size,  or  DBH,  of  the

sampled individuals increases the community size, potentially increasing floristic diversity

measurements as well (Stier et al., 2016). In tropical mountains, the most popular DBH cut-

off size utilized to assess changes in β-diversity along  elevational gradients are individuals

with DBHs varying from   2.5 cm  (Kraft et al., 2011; Myers et al., 2013; Tello et al.,

2015b) to   10 cm DBH (Girardin  et  al.  2014).  However,  none of  these  studies  have

evaluated the likely comparative effect that tree cut-off size variation can have on shaping

β-diversity. The sampling effect of keeping the grain size constant and decreasing the DBH



cut-off will cause a change in species relative abundance; and whereby this difference in

abundance may lead to changes in the extent to which underlying ecological mechanisms

can explain the overall pattern of diversity (Chase & Knight, 2013; Powell et al., 2011). In

other words, sampling not only has a potential effect on the diversity patterns, but also on

our ability to identify the underlying community assembly mechanisms that drive these

observed patterns. For example, in tropical lowlands, several studies have proposed that

enhancing community size by including smaller individuals (e.g. shrubs and juveniles) may

lead to  a  higher  influence of deterministic  processes,  such as soil  fertility,  on defining

species  sorting  (Comita  et  al.,  2007;  Duque  et  al.,  2002).  Understanding the  effect  of

different tree cut-off  sizes in determining the magnitude of  β-deviation at  a local scale

along elevational gradients will help to distinguish sampling constructs from true ecological

signals. This is essential in helping researchers to identify the underlying drivers of species

distribution and forest function in the tropical Andean mountains.

In  order  to  identify  the  likely  influence  of  local  community  assembly  mechanisms on

shaping  β-diversity  along  elevational  gradients,  we  first  need  to  determine  whether  β-

diversity deviates from null (stochastic) processes (Kraft et al. 2011). Null models help to

disentangle  ecological  assembly  mechanisms  by  quantifying  random  processes  in  the

ecological community and making comparisons among regions with different species pool

sizes  possible  (Chase & Myers,  2011).  A positive  standardized  difference  between the

observed  β-diversity and the expected  β-diversity obtained from a null model divided by

the standard deviation of the  null model (defined here as β-deviation), indicates a higher β-

diversity than expected by chance due to the influence of local processes that cause an

aggregated non-random spatial pattern of species distribution (Mori et al. 2013, Tello et al.

2015). However, a positive and systematic increase of  β-deviation along the elevational

gradient, after removing sampling effects and differences in the size of species pools among

sites, is not enough and fails to identify the underlying community assembly mechanism

(e.g  species  sorting  or  dispersal  limitation)  responsible  for  an  aggregated  non-random

pattern  along  the  whole  elevational  gradient  (i.e.  Tello  et  al.  2015).  Mirroring  the

magnitude  of  the  operating  species  assembly  mechanisms  found  along  the  latitudinal

gradient  (Myers  et  al.,  2013),  we  might  expect  the  relative  importance  of  biological



processes, such as dispersal limitation, to decrease with elevation; an opposing effect to

species sorting, which can be positively correlated with elevation. 

In  this  study,  we  employed  a  nested  sampling  design  using  a  series  of  15  1-ha  plots

scattered in wet forests  located in northwestern Colombia, where the Andean mountain

ranges end, to examine the role that species pool size, grain size and tree cut-off size played

in determining  β-diversity along elevational gradients. For this study, we had three main

hypotheses: i) under the assumption that local variation in species composition primarily

depends on the size of the species pool,  we do not expect any significant relationships

between β-deviation and elevation to occur after controlling for the species pool (Kraft et

al.  2011).  In  contrast,  if  ecological  mechanisms (e.g.  species sorting) determine a  non-

random spatial  species distribution, the variation on  β-deviation may show a systematic

change with elevation as a result of the harsh conditions imposed by highlands (after Tello

et  al.  2015).  ii)  The increase  of  grain size  within a  fixed extent  increases  the  floristic

similarity among samples (hereafter grain size hypothesis), and thus, decreases β-diversity.

We expect the magnitude of the relationship between elevation and β-deviation (the slope

of the line) to decrease with the increase of grain size at a local scale along the elevational

gradient.  iii)  The  reduction  of  the  selected  tree  cut-off  size  will  increase  the  local

community size and will reduce the compositional differences between samples. We also

would expect a reduction in the β-deviation of each plot along the elevational gradient.

METHODS

Study área

The study area was located in the northwest region of Colombia between 5º50’ and 8º61’

North and 74º61’and 77º33’ West. This region encompasses a highly variable elevational

gradient in terms of its topography, climate, and soils. The study was conducted using data

collected from 15 permanent 1-ha (100 m × 100 m) forest  inventory plots which were

established between 2006 and 2010. The permanent plots were established across a large

geographic  area  that  covers  approximately  64,000  km2,  mostly  within  the  province  of

Antioquia (Fig.  1) and span an elevational  gradient  of 50 to 2,950 m asl.  The average

distance between plots was 160.5 km (ranging = 26.1- 419.5 km). The Andean region in



Colombia contains only approximately 34% of its original natural cover primarily due to

historical deforestation (Cabrera et al., 2019; Duque et al., 2014). Thus, at least in some of

the surveyed locations, we expected to find some previous human disturbances, specifically

inthe  El  Bagre,  Carepa  and Necoclí  plots  (Fig.  1),  which  were located in  small  forest

fragments (≈ 50 ha). These plotsmay have experienced human disturbance and elevated tree

mortality along forest edges (Duque et al., 2015c). 

Plot censuses

In each 1-ha plot, all shrubs, trees, palms, and tree ferns with a diameter at breast height

(DBH) ≥ 10 cm (hereafter “large trees”) were mapped, tagged, and measured. Additionally,

all of the plants with a DBH ≥ 1 cm (hereafter  “all trees”) were also mapped, tagged and

measured in a 40 m × 40 m subplot (1600 m2) located near the center of each plot (Fig. S1).

Voucher specimens were collected for each potentially unique species in each plot. We

collected vouchers in all cases where  there was any doubt as to whether an individual plant

was the same species as another individual that was already collected within the same plot.

Taxonomic identifications were made by comparing the specimens with herbarium material

and with the help of specialists for some plant groups. Vouchers are kept at the University

of Antioquia’s Herbarium (HUA). The plants that could not be identified to the species

level were classified into morphospecies based on differences in the morphology of their

vegetative characters. Approximately 3.5% of individuals were excluded from the analysis

due  to  low-quality  vouchers  resulting from a  lack  of  clear  botanical  characters,  earlier

stages of development, or incorrect enumeration. In total, we identified 26,222 individuals,

112 families, 428 genera and 1,707 morphospecies. 

Sampling effects 

DBH cut-off and species pool size effect

We divided the  dataset  into  three DBH cut-off  sizes:  i)  large  trees:  represented  by  all

individuals with a DBH ≥ 10 cm tallied in the entire 100 m × 100 m plots (1-ha); ii) small

trees: represented by all individuals with a 1  DBH < 10 cm, which were measured only in

the 40 m × 40 m subplot inserted within the 1-ha plot (Fig. S1); iii) all trees: represented by



all individuals with a DBH ≥ 1 cm tallied in the 40 m × 40 m subplot (0.16-ha) described

above. In order to assess the effect of species pool size for each one of the tree DBH cut-off

sizes employed to generate our three sampling communities (large, small and all trees), we

used the species  richness  corresponding to  each data  set.  For  large  trees,  we used the

species richness from each 1-ha plot but only including trees with a DBH ≥ 10 cm. For the

small and all trees categories, we used their respective species richness from each 0.16-ha

plot (40 m × 40 m) (see Table 1). 

Grain size effect

The grain size hypothesis was assessed by employing three different grain sizes. For large

trees, we used 10 m × 10 m (0.01-ha), 20 m × 20 m (0.04-ha) and 50 m × 50 m (0.25-ha).

The grain size used to analyze the influence of the spatial scale for small and all trees were

5 m × 5 m (0.0025-ha), 10 m × 10 m (0.01-ha) and 20 m × 20 m (0.04-ha). The differences

in the spatial grain size among large versus small and all trees are due to individuals with a

DBH ≥ 1 cm were only measured in the 40 m × 40 m subplot. 

Environmental features

The elevation of each plot was calculated using a GPS. Each elevation point corresponds to

the 0,0 point located in the lower-left  corner of each plot along the gradient (Fig. S1).

Samples of the soil A horizon (mineral soil after removing the organic layer) from five

points in each 20 m × 20 m quadrat were collected (N = 25 composite samples per 1-ha

plot). At each point, a 500 g soil sample was taken from a depth of 10-30 cm; the five

samples from each quadrat were then combined, and a 500 g composite sample was taken

and air-dried after removing macroscopic organic matter. pH, Ca, Mg and K concentrations

were analyzed at the Biogeochemical Analysis Laboratory at the National University of

Colombia in Medellín. Exchangeable Ca, Mg, and K were extracted with 1 M ammonium

acetate and analyzed using atomic-absorption. Soil pH was measured in water as one-part

soil to two parts water. Other soil cations, such as N and P, were not measured due to

logistical constraints of sampling at this spatial resolution and scale. 



We used geostatistical  methods to  obtain spatial  predictions of  soil  variables  at  spatial

scales smaller than 20 m × 20 m (5 m × 5 m and 10 m × 10 m).  We first  computed

empirical variograms to test the likely spatial structure of each soil variable (pH, Ca, Mg,

and K) within the 1-ha plot. The variograms for the four variables did not show any spatial

significant trend. Therefore, we used a bilinear interpolation method based on resampled

soil data to obtain values of soil variables at different grain sizes in each plot. This method

employs the distance-weighted average of the nearest pixel values to estimate the values of

no measured points (Hijmans et al. 2016). We calculated soil variables at the 50 m × 50 m

grain size using the mean of the soil variables at the 20 m × 20 m scale. Spatial analyses

were conducted using the geoR (Ribeiro and Diggle 2001) and raster (Hijmans et al. 2016)

packages. 

Estimations of β-diversity

We calculated the observed  β-diversity (BDobs) based on abundance data  (Legendre and

Gallagher 2001b; De Cáceres et al. 2012). Taking into account all living trees by species in

each one of the plots, for every grain size, we built a matrix (X= [x ij]) with dimension n × p

(quadrat × species), where X is the community matrix of each plot and x ij  contains the

number of individuals of species j in the quadrat (grain) i (De Cáceres et al. 2012). For each

matrix  X=  [xij],  β-diversity  was  estimated  in  two  steps.  First,  we  transformed  the

abundances  of  each  species  by  grain  size  using  the  Hellinger  transformation.  This

transformation consists in standardize the abundance of each species by rows. It means, to

standardize the abundance of each species by the total abundance of the site (in this case,

species by grain), in each plot. Then, the square root of these values is taken (Legendre and

Gallagher  2001).  Thus,  data  set  express  species  abundance  as  square-root  transformed

proportionate  abundance  in  each  grain  by  site  (Jones  et  al.,  2008).  The  Hellinger

transformation is given by: 

Y ij=√ x ij

∑
k=1

p

xik



Where Yij  is the transformed matrix. xij is the value of species j in site  i,  k is the species

index and p is the number of species in a given grain with row and column indices i and j

(Tan  et  al.,  2017).  The  Hellinger  transformation  standardizes  species  abundance  and

reduces the weight of the most abundant species in the analysis. The use of the Hellinger

transformation  makes  community  compositional  data  containing  many  zeros  (“double

zero”) suitable for analysis by linear methods  (Legendre and Gallagher 2001a; Legendre

2007). Secondly, we estimated BDobs as the variance of Y (De Cáceres et al. 2012), which is

calculated as follows: 

BDobs=Var (Y )= SS(Y )
(n−1 )

Where SS(Y) is the sum of squares and n is the number of quadrats. BDobs  is 0 when all

quadrants have exactly the same composition and 1 when they do not share any species. 

Null model

We used a null model to quantify the extent to which the variation in the size of species

pool (different species number due to the DBH cut-off size) and scale (different grain size)

account for variation in β-diversity (Kraft et al. 2011). The species pool for large, small and

all trees was defined as the observed number of species in either the 1-ha or the 0.16-ha

plots (after Kraft et al. 2011). The null model randomizes the location of trees among grains

within the plot, creating communities that vary in relation to the location of individuals, but

fixing the community size (number of individuals), and thus, the observed relative species

abundance of each species pool (Tello et  al.  2015).  This null  model  removes the local

ecological  mechanism  that  creates  non-random  patterns,  such  as  aggregation  and

intraspecific co-occurrence (De Cáceres et al., 2012). The Hellinger transformation is then

applied to the randomized matrix and expected β-diversity (BDexp) is calculated using the

formula presented above. This process is repeated 1000 times per plot, for each grain size,

and for each predefined DBH cut-off size. The BDexp is calculated as the mean of 1000

iterations of the null model. 



β-deviation (BDdev) was defined as the standardized effect size (SES) calculated using the

difference between BDobs and BDexp  divided by the standard deviation of  the frequency

distribution of the null model (SDexp). 

BDdev=BDobs−
mean(BD¿¿exp)

SDexp
¿

Positive  values  in  the slope  of  the  variation  between BDdev along elevational  gradients

indicate a significant effect of community assembly mechanisms on determining the rate of

change in species composition at local scales (Chase & Myers, 2011; Tello et al., 2015b).

Contrarily, values of the slope of the variation in  BDdev along elevational gradients non-

significantly different from zero (0) are primarily due to sampling effects that come up

along with the variation in the size of the species pool (Kraft et al. 2011). 

Data analysis 

We used linear mixed regression models (LMM; Zuur et al. 2009) to identify the main

determinants of change in BDobs, BDexp, and BDdev along the elevational gradient. Variables

included in the LMM as fixed effects were: grain size, size of the species pool, elevation (m

asl) and soil heterogeneity. Soils heterogeneity was assessed for each grain size using the

interpolated  values  from  20  m  ×  20  m  subplots  described  above.  To  represent  soils

heterogeneity at a local scale, we used the variance of the subplot scores on the first axis of

a  principal  component  analysis  (PCA).  PCA  was  applied  to  pH,  Ca,  Mg,  and  K

concentrations. PCA analyses were performed for each grain size and DBH cut-off size

(Additional file 1; Methods). Soils heterogeneity was modeled as a continuous variable.

Finally,  plot  identity  (or  plot  name)  was  included  as  a  random  effect  to  control  for

particular conditions of each site  (Zuur et al., 2009). The interaction term between grain

size and elevation was included to directly assess the combined effect of these variables on

shaping the β-diversity (BDobs, BDexp, and BDdev). 

In LMMs, the marginal explained variation (R2  marginal) is associated with fixed effects,

while the conditional explained variation (R2  conditional) associated with random effects.

Because individuals with DBH ≥ 1 cm and with 1  DBH < 10 cm were not sampled at the

50 m × 50 m scale, we were unable to include the three tree size categories in the same



model. Therefore, separate models were used for large trees, small and all trees. The best

model for each DBH cut-off size was chosen using the backward stepwise model selection

based on the Akaike information criterion (AIC) (Crawley, 2007). In order to assess the

likely  spatial  autocorrelation in  our  models,  we extracted  the  residuals  for  each model

(BDobs, BDexp, and BDdev, for large, small and all trees), separating them by grain size, and

assigning  the  respective  spatial  coordinate  to  each  one.  Then,  we  estimated  a  semi-

variogram based on 100 draws to define an envelope for the significance of the observed

spatial  structure  of  the  residuals.  This  analysis  was  performed  with  the  geoR package

(Ribeiro and Diggle 2001).

All analyses were performed in R 3.3.0 (Core Team 2016).

RESULTS

Elevation and species pool

As we expected, BDobs and BDexp decreased with elevation independent of the grain size and

DBH cut-off size (Fig 2). In contrast, BDdev  increase with elevation, also in all grain sizes,

regardless of the DBH cut-off size (Fig 2). After controlling for the regional species pool

effect, BDdev  still showed an increase with elevation. Overall, the standardized local BDdev

increased  from  lowlands  to  highlands,  which  suggests  a  differential  effect  from  the

underlying species assembly mechanism in accordance to elevation. 

Grain size

Both BDobs and BDexp decrease with grain size independent of the tree DBH cut-off size (Fig

2).  The slopes among grain size,  or the relationship BDdev-elevation,  were significantly

different for large trees, but small and all trees did not show any significant difference

among grains (Fig S2). 

Determinants of local scale changes in tree β-diversity along the elevational gradient

According to the LMMs, the BDobs was significantly associated with grain size, the size of

the species pool and elevation for the three size-classes employed (large trees, small trees,

all trees). The interaction between grain size and elevation was only significant for large



trees. The BDexp  was significantly associated with grain size and elevation for the three

DBH cut-off size employed, while the size of species pool was significant for large and all

the  trees  but  only  marginally  significant  for  small  trees.  The  BDdev was  significantly

associated with grain size for all the three DBH cut-off size. The interaction between grain

size and elevation was significant for large and small trees, but not for all the trees. Finally,

the marginal explained variation (R2  marginal) by the models was almost always the same

than that explained by the conditional variation (R2 conditional) for observed and expected

β-diversity and for BDdev  in large trees. However, the marginal and conditional explained

variation for BDdev for small and all trees had differences, which indicates greater relative

importance of random effect for the last two tree sizes (Table 2). Model residuals showed

no evidence of spatial autocorrelation (Additional file 1; Fig S3, Fig S4, and Fig S5)

DISCUSSION 

Sampling effects

In this study, we assessed three hypotheses regarding the influence of sampling effects (size

of species pool, grain size, and tree cut-off size) on the variation of local β-diversity along

elevational gradients in the northern region of the Andean mountains of Colombia. Overall,

we found that  observed and expected  β-diversity decreased with elevation,  but that the

standardized  β-deviation followed an increasing trend with elevation after controlling for

the effect of species pool size. The systematic increase in the  β-deviation with elevation

was  independent  of  the  grain  size  employed,  indicating  that   alternative  underlying

community assembly mechanisms had a significant role in shaping tree  β-diversity along

this elevational gradient. Our finding contradicts the claim of sampling effects due to the

species pool size as the key determinant of changes in β-diversity (sensu Kraft et al. 2011).

Therefore,  our  results  emphasize  the  importance  that  different  community  assembly

mechanisms have on shaping the observed decrease in local  β-diversity along elevational

gradients  in  tropical  forests  (Mori  et  al.  2013;  Tello  et  al.  2015),  rejecting  our  first

hypothesis. 



Following some studies on tree  β-diversity along latitudinal gradients  (De Cáceres et al.,

2012; Sreekar et al., 2018), our second hypothesis predicted and confirmed a decrease in

both the observed and expected tree  β-diversity with the increase in grain size along an

elevational gradient. Regarding the β-deviation, our findings were dependent on the DBH

cut-off  tree  size  as  predicted  by  the  third  hypothesis,  similar  to  other  studies  along

elevational  gradients  (Mori  et  al.  2013).  Mori  et  al.  (2013) claimed that  the  overall  β-

diversity decreases in response tothe DBH cut-off size, contrary to β-deviation. Therefore,

for large trees (DBH ≥ 10 cm), we accept the hypothesis that changes in grain size have a

significant effect on the assessment of the standardized β-deviation, and conclude that the

larger the grain size, the lower the observed β-diversity, but the higher the β-deviation. In

other words, especially for large trees, and along elevational gradients, the probability of

detecting the influence of community assembly mechanisms increase positively at larger

grain sizes (Fig. 2). A likely explanation for this pattern could be that large trees are those

that survived self-thinning and their spatial distribution, at smaller spatial scales (e.g. 0.04-

ha), are more random than at larger scales, which indicates that the degree of aggregation

does not vary much at such small grain sizes.

When assessing the β-deviation for the small and all individuals size classes (DBH ≥ 1 cm),

the interaction between grain size and elevation included in the LMMs was significant for

small trees but not for all trees. This contrasting result, stemming from similarly nested

datasets (see Table 1), hampers our capacity to make conclusions as to the effect of grain

size   on  the  local  β-deviation  for  the  small  and  all  individuals along  the  elevational

gradient.  In  fact,  when  using  an  independent  Analysis  of  Covariance  (ANCOVA)  to

evaluate the grain size – elevation interaction term, only large trees were significant (Table

S1; Fig. S2). The low sampling size (4) used to assess tree β-diversity at the largest grain

size (4) may be a reason for the high variance observed when we included individuals with

DBH ≥ 1 cm. In the Andean mountains, the lack of sampling schemes of plots ≥ 1-ha that

include individuals with DBHs ≥ 1 cm, such as those available for tropical lowlands (i.e

(De Cáceres et al. 2012; Anderson-Teixeira et al. 2015; Sreekar et al. 2018), prevents us

from concluding about the expected trend of the β-deviation at larger grain sizes along the

elevational gradient in tropical forests. 



Tree community assembly mechanisms along the elevational gradient

The increase of  β-deviation in relation to elevation indicates that in colder regions,  the

extent to which species assembly mechanisms operate is higher compared to warmer areas.

One important conclusion to note is that low temperatures may impose constraints to plant

establishment  and  functioning,  and play  a  key  role  in  determining species  distribution

(Girardin  et  al.,  2014;  Kitayama  &  Aiba,  2002).  For  example,  changes  in  species

composition  could  be  associated  with  changes  in  species  richness  along  elevational

gradients in very diverse understory families, such as Rubiaceae (r= -0.58, p= 0.02). 

Soil variation has been shown to be a key community assembly mechanism which shapes

species sorting at local scales in some tropical forests (John et al., 2007; Russo et al., 2005).

However, in this study, we did not find soil variation to be significantly associated with the

local β-deviation along the elevational gradient. This result did not support the idea of an

increase in plant habitat-association of juveniles and shrubs (Comita et al., 2007; Duque et

al., 2002; Fortunel et al., 2016). Nonetheless, our soil variation  index  focuses primarily

focuses base content, hindering our ability to understand the likely influence of other very

important soil cations, such as P and N, which, in tropical lowland forests  (Condit et al.,

2013), have been identified as key elements for tree species distribution. Furthermore, soil

sampling was only carried out  at  the 20 m   20 m scale,  which might  have  obscured

processes operating at smaller spatial scales. Additional studies testing the likely influence

of topographic and edaphic variables, not considered here, will shed new insights on the

still unanswered question about the extent to which environmental filtering locally shapes

species  sorting,  and  thus,  the  gradient  of  β-diversity  at  local  scales  along  elevational

gradients in tropical forests. 

The lack of  significance of soil  variation on shaping species sorting implies that other

community assembly mechanisms, rather than environmental filtering, are likely drivering

the observed change in β-diversity at a local scale with elevation. Mirroring the latitudinal

gradient (Myers et al. 2013), a systematic decrease in the importance of dispersal limitation

(sensu (Hubbell  2001))  with  elevation  seems  the  first  likely  alternative  assembly



mechanism to explain the increase in β-deviation observed in this study. Another possible

explanation for the positive deviations of β-diversity is the hypothetic positive increase of

density-dependence  with  the  size  of  the  species  pool  (Lamanna  et  al.,  2017),  which

suggests that the stronger the conspecific and heterospecific the negative dependence is, the

higher  the diversity,  but  the weaker  the influence  of  environmental  filtering and niche

partitioning.  A decrease of species competition but an increase of species facilitation in

highlands, due to the adverse conditions imposed by low temperatures on the ecosystem

functioning and survival capacity of plants  (Coyle et al., 2014), could also promote the

observed increase of β-deviation with elevation observed in our study. 

One likely factor not assessed here that could have influenced the pattern of variation in

local β-diversity is the expected biotic homogenization caused by forest disturbance (Karp

et al., 2012; Solar et al., 2015).  The high fragmentation and historical degradation of the

tropical Andes (Armenteras et al., 2013), could have caused some of our sites to display a

lower local β-diversity than under undisturbed conditions. In mountainous ecosystems, we

expect the steep terrain at the highest mountain peaks to limit site access and act as a shield

against human disturbances (Spracklen & Righelato, 2014), thus generating a higher biotic

homogenization in lowlands than in highlands. Indeed, the plots located in the smallest

forest fragments (Carepa, Necoclí and El Bagre; see methods), were all located in lowlands.

However, the systematic decline in the observed  β-diversity (BDobs) does not support the

hypothesis of biotic homogenization as a major cause of the observed pattern. For example,

we did not  find statistical  differences (unpaired  t-test)  when comparing the  β-deviation

between the three sites located in the smallest forest fragments, which we assumed were

exposed to higher disturbances, and the rest of the plots located in lowlands (< 1000 m asl).

This result was a generalized outcome for any grain size for both large trees (50 m × 50 m:

p=0.79; 20 m × 20 m, p=0.82; 10 m ×10 m, p= 0.42) and small trees (20 m × 20 m: p=0.92;

10 m ×10 m: p=0.78, 5 m × 5 m: p=0.64).

Methodological remarks

First, for large trees, the LMMs selected species pool size (species richness) as a significant

variable to explain the variation of the  β-deviation with elevation (Table 2). This finding



indicates that the applied null-model did not, in some cases, entirely and effectively remove

the influence of the size of the species pool. Understanding the effect that changes in the

shape of the species abundance distribution models have on determining the  β-diversity

along elevational gradients is still under debate  (Qian et al. 2013).  However, it could be

seen as an alternative way to analyze the effect from changes in community size. Second,

the absence of plots 1-ha that include small individuals in the Andean mountains prevents

the use of sampling sizes along the elevational gradient which are large enough to properly

assess  the  grain  size  and  cut-off  size  hypotheses  together  in  this  complex  ecosystem.

Although our study is the first attempt in the Andean mountains to test the species pool

hypothesis using plots ≥ 0.1 ha, our results were based on very few replicates of the largest

grain sizes and need to be seen as preliminary evidence of an expected pattern rather than a

conclusive view. To truly understand the pattern of  β-diversity variation in mountainous

tropical forests, it appears we need to transition towards a new generation of larger forest

sampling schemes (e.g (Garzon-Lopez et al. 2014; Duque et al. 2017; Sreekar et al. 2018)

that goes beyond the valuable heritage left by A.L. Gentry. Such a big challenge should be

a priority in the tropical Andes, where the availability of information is much more scarce

than in their Amazon lowland counterparts (Feeley, 2015).

CONCLUSION 

We determined that the effect of the grain size, species pool size and tree cut-off size, are

paramount  to  identify  the  underlying  processes  that  shape  species  assembly  of  tree

communities. Our findings suggest that grain size enlargement and the inclusion of small

size  classes  can  help  improve  our  ability  to  identify  the  extent  to  which  the  species

assembly  mechanisms  shape  the  patterns  of  local  β-diversity  change  along  elevational

gradients in tropical ecosystems. However, in future field campaigns that aim to assess tree

local  β-diversity along the elevational gradient in tropical forest inventories, we need to

evaluate the limitation of the relatively small plot size employed so far. Overall, our study

emphasizes  the  scale-dependent  nature  of   β-diversity  assessments.  It  showcases  the

advantage  to  decreasing  the  tree  cut-off  size  and  increasing  the  plot  size  in  forest

inventories (Barton et al., 2013; De Cáceres et al., 2012; Sreekar et al., 2018) to improve



our understanding about the likely response of tree diversity to global change in tropical

mountain ecosystems.

Table 1.1. Description and location of the 15 1-ha permanent plots in the northwest of
Colombia.  Latitude  (North)  and  Longitude  (West)  are  presented  in  geographical
coordinates (degrees). N: total number of individuals. S: species richness. The columns of
0.16-ha contain the information about N (number of individuals) and S (species number) by
different DBH cut-off size in the 40 m × 40 m subplot inside the plot. The column of 1-ha
has information about N and S for the large trees in the whole plot. 



Plot Elevation LAT LONG 0.16 ha (DBH≥ 1 cm)    0.16 ha (1 ≤ DBH < 10 cm)   1 ha (DBH ≥ 10 cm)
        N S N S N S
Carepa 58 7.779 -76.764 855 100 802 89 369 109
Caucasia 64 8.133 -74.942 445 79 364 68 503 72
El Bagre 67 7.656 -74.815 973 174 900 157 497 141
Necoclí 70 8.507 -76.657 981 141 891 127 561 100
Puerto triunfo 180 6.006 -74.610 1050 135 975 123 384 78
Sapzurro 228 8.651 -77.354 747 119 656 108 606 102
Segovia 717 7.111 -74.731 1267 251 1177 234 624 170
Porce 1006 6.776 -75.076 737 107 614 93 834 75
Maceo 1016 6.458 -74.786 1020 113 909 103 820 133
Anorí 1784 6.987 -75.143 1386 215 1261 206 918 158
Ventanas 2080 7.079 -75.475 1733 149 1590 142 938 122
Angelópolis 2118 6.153 -75.695 2173 189 2033 177 868 137
Jardín 2525 5.492 -75.898 1397 82 1238 75 942 76
Caicedo 2635 6.378 -76.031 1437 112 1202 107 1244 112
Belmira 2885 6.612 -75.654 1053 60 959 59 541 37

Table 1.2.  Results from the best-fit linear mixed models for large (>10 cm DBH), small (1
 BDH < 10 cm)  and all  trees  (DBH > 1  cm).  BDobs:  observed β-diversity.  BDexp:
expected β-diversity. BDdev: β-deviation (BDobs – BDexp)/SDexp. Conditional R2 takes
into account both fixed and random effects to measure the goodness of adjustment and
prediction power, while marginal R2 only has the fixed effects part.  ˑ  p=0.05, *p<0.05,
**p<0.01, ***p< 0.001.

  Dependent
variable Variable Paramete

r
Standard

Error p-value Marginal R2 Conditional R2



               

LARGE
TREES

  10x10 0.80 0.016 ***    
  20x20 0.65 0.016 ***    

BDobs 50x50 0.39 0.016 ***    
  elevation  -0.07 0.017 ** 0.89 0.94
  richness 0.06 0.013 **    
  20x20*elevation 0.01 0.018 NS    
  50x50*elevation 0.05 0.018 **    
             
  10x10 0.78 0.015 ***    
  20x20 0.58 0.015 ***    

BDexp 50x50 0.30 0.015 *** 0.93 0.95
  elevation  -0.08 0.011  ***    
  richness 0.05 0.012  ***    
             
  10x10 3.85  0.7 ***    

20x20 6.73  0.7 ***    
BDdev 50x50 6.80  0.7 ***    

  elevation 1.07  0.7 NS 0.94 0.95
  richness 0.04  0.6 *    
  20x20*elevation 0.62  0.5 NS    
  50x50*elevation 1.76  0.5 **    

SMALL
TREES

BD obs

           
5x5 0.77 0.011  ***    

10x10 0.57  0.013 *** 0.94 0.95
20x20 0.37  0.013 ***    

  elevation  -0.03  0.011 *    
  richness 0.02 0.007 *    
             

BD exp

5x5 0.70 0.014  ***    
10x10 0.47  0.014 ***    
20x20 0.25  0.014 *** 0.92 0.96

elevation  -0.05  0.013 *    
  richness 0.02  0.012 ˑ    
             

BDdev

5x5 9.80 1.0  ***    
10x10 10.5  0.6 ***  
20x20 9.71  0.6 ***    

elevation 22.53  1.0 * 0.25 0.85
10x10*elevation 0.03  0.6 NS    
20x20*elevation 1.6  0.6 *    

ALL BDobs            



TREES

5x5 0.76  0.009  ***    
10x10 0.56 0.009 ***    
20x20 0.35  0.009 *** 0.93 0.97

elevación  -0.04  0.007 ***    
richness 0.03  0.007 *    

BDexp

           
5x5 0.69  0.012 ***    

10x10 0.46  0.012 ***    
20x20 0.25  0.012 *** 0.95 0.97

elevación  -0.06  0.010 ***    
richness 0.03  0.010 **    

BDdev

           
5x5 10.1 1.2 ***    

10x10 10.6  1.2 *** 0.30 0.80
20x20 10.0  1.2 ***    

elevation 2.65  1.7 *    
           



Figure 1.1) Location of 15 1-ha plots in Antioquia on a regional map (inset) to show its
location within Colombia. The elevation range of the plots are presented in grayscale. white
color for plots located between 0-1000 m asl. Gray for plots located between 1000-2000 m
asl, and black for those located between 2000-3000 m asl.    



Figure  1.2)   Observed  (BDobs),  expected  (BDexp),  and  standardized  (BDdev)  patterns  of
variatio of β-diversity along the elevational gradient. β-deviation (BDdev) is taken as (BDobs

– BDexp) /SDexp. Upper panel (A, B, C): large trees (DBH ≥ 10 cm). Middle panel (D, E, F):
small trees (1≤ BDH<10 cm) and Lower panel (G, H, I): all trees (DBH ≥ 1 cm). Large
trees are taken into account in an area of 1-ha. Small and all the trees are taken into account
in 0.16-ha plot. 



APPENDIX S1.1: Supplementary methods

Schematic representation of the analytical procedure employed to generate the soil data sets. A) 
Data input consist of the available environmental variables at the 20 m × 20 m quadrat scale. B) 
Bilinear interpolation procedure based on samples at 20 m × 20 m scale. Each variable is 
interpolated at 10 m × 10 m and 5 m × 5 m; for 50 m × 50 m quadrat scale we use the mean of the 
soil variables at 20 m × 20 m. C) With each interpolated data set was run a PCA analysis, in all 
cases the first PC explained >70% of the multivariate variation, then was extracted the standard 
deviation of each PCA done with each data set by grain size. The value of standard deviation was 
used as a measure of environmental heterogeneity in the mixed linear models.

                                                                       

                                                    

                                                           
                                                                                                                             



 
SUPLLEMENTARY FIGURES

Figure S1.1. Graphical representation of each one of the plots. Continuous lines represent
the design of the plot in reality. In the terrain, each plot has 100 m × 100 m, divided by
subplots of 20 m × 20 m. Inside the plot, there is a subplot of 40 m × 40 m, subdivided into
smaller subplots of 10 m × 10 m. Discontinuous lines in gray represent an imaginary grille
composed of 10 m × 10 m subplots, in the whole plot. Dotted lines represent an imaginary
division of 5 m × 5 m within the 40 m × 40 m subplot. In the 1-ha plot, all trees, shrubs and
tree ferns with DBH ≥ 10 cm are measured and mapped. In the 40 m × 40 m subplot, all the
individuals with DBH ≥ 1 cm are measured.



Figure S1.2) Post hoc analysis for ANCOVA. Multiple comparisons with interaction terms
across groups for each one of the linear mixed model previously fitted. Comparisons among
the relationship (slopes) grain-size and elevation were done with “Tukey” test. A pairwise
analysis was run for conducting comparisons among all possible pairs of combinations. X-
axes show the comparison between the slopes in each grain size. The overlap between lines
means that there are no significant differences among slopes. 



Figure  S1.3) Mixed  linear  model  validation  for  large  trees  using  variograms  with  model  residuals  using  Pearson  method  and
geographical coordinates of the plots. DBobs by grain size (A: 10 m × 10 m, B: 20 m × 20 m and C: 50 m × 50 m). DBexp by grain
(D: 10 m × 10 m, E: 20 m × 20 m and F: 50 m × 50 m) and DBdev by grain size (G: 10 m × 10 m, H: 20 m × 20 m and I: 50 m ×50 m).
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Figure  S1.4) Mixed  linear  model  validation  for  small  trees  using  variograms  with  model  residuals  using  Pearson  method  and
geographical coordinates of the plots.  DBobs by grain size of (A: 5 m × 5 m, B: 10 m × 10 m and C: 20 m × 20 m). DBexp by grain
size of (D: 5 m × 5 m, E: 10 m × 10 m and F: 20 m ×20 m) and DBdev by grain size of (G: 5 m × 5 m, H: 10 m ×10 m and I: 20 m ×20
m).
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Figure  S1.5) Mixed  linear  model  validation  for  all  trees  using  variograms  with  model  residuals  using  Pearson  method  and
geographical coordinates of the plots.  DBobs by grain size of (A: 5 m × 5 m, B: 10 m × 10 m and C: 20 m × 20 m). DBexp by grain
size of (D: 5 m × 5 m, E: 10 m × 10 m and F: 20 m ×20 m) and DBdev by grain size of (G: 5 m × 5 m, H: 10 m ×10 m and I: 20 m ×20
m).
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Table S1.1. Analysis of covariance (ANCOVA). Comparison of slopes between grain-size
and elevation for the β-deviation and for all of the DBH cut-off sizes. Post hoc analysis was
done using a Tukey Honestly Significant test.

Comparisons between slopes p-value
Large trees 10–20 0.0001

10–50 0.0001
20–50 0.1

Small trees
5–10 0.54
5–20 0.1
10–20 0.46

All trees 5–10 0.66
5–20 0.99
10–20 0.67
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CHAPTER II

ECOLOGICAL MECHANIMS AND SAMPLING DEPENDENCE OF LOCAL -
DIVERSITY IN TWO NEOTROPICAL FORESTS AT CONTRASTING

BIOGEOGRAPHIC REGIONS.

ABSTRACT
β-diversity has been a focal point in community ecology. However, little is known about

the ecological mechanisms and factors governing locally in different biogeographic regions

in  tropical  forests,  and  how the  sampling  effort  may  affect  our  estimations.  Different

hypotheses suggest that  β-diversity is driven by main processes such as niche selection,

environmental filtering, and dispersal limitation. Other hypotheses suggest that β-diversity

is driven just  by variation in species pool,  rather than different ecological mechanisms.

These  hypotheses  have  been  studied  through  latitudinal  comparisons  but  comparing

different  biogeographic  regions  at  similar  latitudes  is  scarce.  Using two 25-ha  plots  in

contrasting biogeographic regions in Colombia (Amazonas and Andes),  we compare  β-

diversity and β-deviation (standardized differences from null values) to measure the effect

of local community assembly mechanism after removing the effect of species pool.  To

calculate the sampling effect, we compare the same metrics using different grain-sizes and

tree cut-off sizes in both regions. We found that β-diversity was higher in the region with

the highest diversity at lowlands. After controlling the species pool effect, β-deviation was

also higher in lowlands than highlands. Moreover, β-deviation change when grain-size and

cut-off tree category changed. We suggest that by increasing the sampling effort both, the

representation of the species pool and environmental heterogeneity is better captured. And

that deterministic processes may have equal or higher influences in highly diverse regions

than low-diverse regions, which can be masked by the regional sampling effect and the

differences in species pool.  
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Kewords:  Beta-diversity,  species  variation,  Andean  forest,  Amazon  forest,  ecological

mechanism, Beta-deviation.

INTRODUCTION
The  variation  in  species  composition  within  tree  communities  (local  β-diversity)  is

considered a paramount measure to  advance our  understanding  of the mechanisms that

maintain species coexistence in plant communities (Anderson et al., 2011; Bergamin et al.,

2017; Socolar et al., 2015). In the tropics, it has been widely proposed that tree local  β-

diversity decreases from lowlands to highlands (Kraft et al., 2011; Mori et al., 2013; Tello

et al., 2015). Nevertheless, the mechanism that drives this pattern is still under debate. On

the  one  hand,  previous  studies  have  shown  that  the  strength  of  community  assembly

mechanisms, such as habitat filtering or dispersal limitation, change alongside elevation.

The extent to which the underlying mechanisms of community assembly determine local

species turnover seem to be greater in (cold) highlands than in (warm) lowlands (Martínez-

Villa et al., 2020; Tello et al., 2015).  Thus, compositional turnover of local community

assemblage  at  different  elevations  can  be  attributed  to  environmental  heterogeneity  

(Stein et al., 2014),       topography, and edaphic variation (Baldeck et al., 2013). On the

other hand, other authors argue that the tree local  β-diversity shifts  along an elevational

gradient      is an artifact of the change in the species pool, rather than changes in the

ecological  mechanisms (Kraft  et  al.,  2011).  Thus,  after  controlling  for  the  size  of  the

species pool, the difference in local β-diversity alongside elevation should disappear. This

debate suggests that it still is unclear if the pattern of variation in tree local β-diversity in

the  elevational  gradient  in  tropical  forests  is  due  to  differences  in  the  underlying

mechanisms or simply due to sampling effects associated with the size of the species pool

(Chase & Myers 2011).

An additional factor to the underlying mechanisms or the species pool on local β-diversity 

estimates, and that plays a key role is the sampling dependence, such as grain-size. The

implicit scale-dependence of local β-diversity is highly related to the representativeness of

species included in the grain compared to the total number of species at the regional scale

(Tan et al., 2017). According to the theoretical framework proposed by Barton et al. (2013),
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we expect an increase of local β-diversity with grain-size reduction (negative relationship)

because the probability of finding shared species between grains diminishes. Recently, the

interest in studying the effect of grain-size on shaping tree local β-diversity has increased 

because it can lead to different conclusions on factors such as the degree of either species

aggregation (Bar-Massada et al., 2018) or the relative species abundance (Chase & Knight,

2013). However, the relatively small area used in many studies limits the possibility of

estimating tree local β-diversity at multiple grain-sizes on the same site. Therefore, studies

that shed light on an appropriate grain-size to analyze local  β-diversity in different forest

types are scarce.  The vast majority of the studies  that focus on  local species variation at

different elevations in the tropics  use plots of 0.1-ha (e.g., Kraft et al., 2011; Mori et al.,

2013; Tello et al., 2015), and just one study has used 1-ha plots and multiple grain-sizes

(Martínez-Villa et al., 2020). Other studies have used large plots (>20-ha) but focused on

the latitudinal gradient (De Caceres et al., 2013,  Baldeck et al., 2013; Tan et al., 2018)

rather  than  on  the  elevational  one.  Comparative  studies  using  large  plots  located  at

contrasting elevations are needed to inform about the consistency of the former reported

patterns found using smaller plots (0.1-ha to 1-ha plots) along the elevational gradient, and

thus, begin to consider which grain-size are most appropriate for studying local β-diversity

in different forest types. 

Sampling dependence on local β-diversity estimations is not related solely to grain-size, but

also to the tree cut-off size (i.e., tree size). The most common diameter at breast height

(DBH) employed in β-diversity studies are either 2.5 cm (e.g., Kraft et al., 2011, Tello et

al.,  2015)  or  10  cm  (Mori  et  al.,  2013),  but  there  exist  few  studies  comparing  the

ontogenetic effects or the inclusion of different tree cut-off size (Chao et al., 2006; Stier et

al., 2016; Martinez-Villa et al., 2020). In most forest inventories used to analyze variation

in species composition, regardless of the cut-off  size, the data are assumed as a complete

representation of the community, an assumption that can lead to empirical errors due to the

possible numerical  undersampling (Chao et al., 2005;  2006). For example, just including

large trees (DBH>10 cm), many  understories and/or rare species are excluded  from the

analyses leading to       underestimating observed  local β-diversity, since there are fewer

unshared  species  considering  mature  trees (Chao  et  al.,  2006).  Thus,  local  β-diversity
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differences  should  emerge  simply  due  to  the  (sub-)  sampling  effect  rather  than  by

ecological  effects  (Stier  et  al.,  2016).  Additionally, with including different tree cut-off

sizes, we include different aspects of community variation, which may result in different

ecological  conclusions.  In  the  tropics,  some  authors  have  demonstrated  that  small

individuals are strongly associated with habitat  type (Duque et  al.  2002;  Comita et  al.,

2007) and soil nutrients (Holste et al., 2011), while large trees with topography (Zuleta et

al., 2018, Muscarella et al., 2019). The tree cut-off size and the undersampling effect on β-

diversity have been recently analyzed using simulations (Beck et al., 2013; Schroeder &

Jenkins, 2018; Zou &  Axmacher, 2021), and only a few empirical studies (Beck et al.,

2013; Tello et al., 2015).  This lack of conclusions based on empirical data highlights the

importance of large and complete inventoried plots as the ideal scenario to test the sampling

effect on local β-diversity estimations (Sreekar et al., 2018). 

Both the variation in grain-size and the inclusion of different tree-cut off sizes may affect

local β-diversity estimates in ways largely unknown and that has been little studied by field

sampling.  In  this  study,  we used two 25-ha plots  located at  contrasting elevations  and

biogeographic  regions  in  the  Neotropics  (Amazon  and  Andean  regions),  which  have

differences in total  species richness and size of  the species pool,  to assess the relative

importance of ecological process and sampling effects (grain-size and cut-off tree size) on

determining local  β-diversity in tropical forests. We use null models with different grain-

sizes and including different tree cut-off sizes to quantify the relative importance of both

deterministic  and stochastic  processes  at  sampling sizes  on shaping the variation  of  β-

diversity at a local scale (Chase & Myers, 2011, Catano et al., 2017). Specifically, we want

to answer the following questions: i) Are the extent of ecological mechanisms different

between contrasting elevations in determining the community assembly? We hypothesize

that  β-diversity  correlates  with  environmental  heterogeneity  (soils  and  topographic

variables) more strongly in cold highlands than in warm lowlands, as a consequence of

strong deterministic processes; therefore, we expected more deviation from a null model in

highlands. ii) How do different  grain-sizes  or  tree cut-off  sizes  affect  local  β-diversity

estimates in different types of forest at contrasting elevations? Due to the higher  spices

diversity  in  lowlands,  smaller  sampling  size  (by  smaller  grain-size  or  including  less
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individuals) will have greater effect in lowlands than in highlands, overestimating local β-

diversity. With this study, we hope to provide information about the appropriate sampling

size in different types of forest for monitoring local β-diversity in the tropics. 

Methods 
Study area
The study area comprises two long-term tropical forest plots of 25-ha, each one (500 m ×

500 m), established in highly diverse forests in Colombia. These two plots belong to the

ForestGEO network (Davies et al. 2020), a monitoring network including more than 60

forest plots established worldwide and monitored under the same protocol (Condit, 1998).

The first  plot is the Amacayacu Forest Dynamics Plot (hereafter AFDP), located in the

Amacayacu National Park in the Colombian Amazon Forest (3°48´02´´S-70°16´04.29´´W).

The life zone corresponds to a Tropical wet forest (Holdridge, 1978) on terra firme. The

elevation is 93 m asl, but the plot is not subjected to flooding by the Amazon River. The

mean annual temperature (MAT) is 25.8ºC, mean relative humidity is ca. 86%, and the

mean annual precipitation (MAP) is 3,216 mm (climate statistics for the weather station at

the airport at Leticia, 55.39 km away from the plot; Prieto 1994). Soils are dominated by

Ultisols, characterized by high acidity, low base saturation, and poor nutrients (Chamorro

1989). 

The second study site is La Planada Forest Dynamic Plot (hereafter LPFDP), located in the

department of Nariño, in La Planada Natural Reserve in southwestern Colombia (1°17´ N-

78°15´ W), on the western slope of the Andean Forest  (Vallejo et al., 2004). This Pacific

flank of the Andes is characterized by a dense fog with periods of low cloud cover (Grubb

and  Whitmore  1966).  The  elevation  is  1797,  and  the  life  zone  is  defined  as  pluvial

premontane  forest  (Holdridge,  1978).  The  MAT is  19°C,  and  the  MAP  is  4,087  mm

(Anderson-Teixeira et al., 2015). Soils are dominated by Andisols (Anderson-Teixeira et

al., 2015), developed from volcanic ash, characterized by slow decomposition of organic

matter and high fertility (Vallejo et al.,  2004). Sites were deliberately chosen to span a

contrasting biogeographic region to  assess  the  different  mechanisms that  raise  local  β-

diversity on Colombian highlands and lowlands regions. 
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Plot census
Within each 25-ha plot, all shrubs, trees, palms, and tree ferns with a diameter at breast

height  (DBH) ≥ 1 cm were mapped,  tagged,  and measured according to Condit,  1998.

Voucher collections were made for each potentially unique species in each plot. For AFDP,

voucher  specimens  were  deposited  and  identified  in  Herbario  Amazónico  Colombiano

(COAH) of the Instituto Amazónico de Investigaciones Científicas (SINCHI). For LPFDP,

voucher specimens were deposited in the Instituto de Investigaciones Biológicas Alexander

Von Humboldt (AvH). We used the Baseline information (Table 1, S1) of each 25-ha plot. 

Sampling effect 
Grain size effect 

To assess the grain-size effect on local β-diversity, we first divided each 25-ha plot into 25

1-ha plots (our sample unit). Then, each 1-ha plot was divided into three different grain-

sizes:10 m × 10 m (0.01-ha), 20 m × 20 m (0.04-ha), and 50 m × 50 m (0.25-ha). The

number of grains decreases when increasing the grain size (100, 25, 4, respectively; Figure.

S1). 

Cut-off size category and species pool effect

We also divided the dataset for each plot into three cut-off categories. All individuals with

DBH ≥ 1 cm (hereafter all trees), 1<DBH<10 cm (hereafter small trees), and DBH ≥ 10 cm

(large trees). These cut-off size categories are present in all grain-sizes, allowing analyze

the  the  effect  of  the  species  pool  (number  of  species  included)  on  local  β-diversity

estimates.

Environmental data
Soil samples

Soil samples were taken in the first 10 cm horizon (mineral soil after removing the organic

layer),  at  the intersection of  a  40 or  50 m grid  across  the plots,  with additional  point

samples taken near the alternate grid to estimate fine-scale variation soils (Baldeck et al.,

2013). Soil variables concentration was extracted with Mehlich-III solution and analyzed
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on  an  atomic  emission-inductivel  couple  plasma  (AE-ICP,  Perkin  ElmerInc.,

Massachusetts, USA) (Baldeck et al., 2013). The common variables between the two plots

were selected to build the soil dataset: P, pH, Al, Ca, Fe, K, Mg, and Mn. To obtain the soil

samples at each 20 m × 20 m, 10 m × 10 m, and 50 m × 50 m for each 1-ha plot (within

each 25-ha plot), we used a bilinear interpolation method based on soils resampled data.

This method employs the distance-weighted average of the nearest pixel values to estimate

samples  that  were  not  measured  directly  at  fine-scale  (Hijmans et  al.,  2016).  Spatial

analyses were run employing geoR (Ribeiro & Diggle 2001) and raster (Hijmans et  al.

2016) packages in R software. 

Topographic data

Topographic variables correspond to elevation, slope, and convexity calculated throughout

each 1-ha plot at the 10 × 10 m, 20 × 20 m, and 50 × 50 m grain-size using the CTFS

fgo.analyze  R  package  (http://ctfs.si.edu/)  (Lepore  et  al.,  2020).  The  database  contains

elevation data for each 5 × 5 m used to estimate the mean elevation of each 10 m quadrant.

The slope is the average slope of the four planes formed by connecting three corners of a

quadrant at a time. And finally, convexity is estimated as the center point's elevation minus

the mean elevation of the four corners (Fig S2). 

Ecological assembly mechanism (β-diversity and β-deviation)
β-diversity

For each 1-ha plot (within each 25-ha plot), we built a matrix X ij with n × p (grain by

species), where xij is the number of individuals of each species j in the grain i (De Cáceres

et  al.,  2012).  This  matrix  was  built  for  each  grain-size/cut-off  category  combination

separately. After that, each matrix Xij was transformed using the Hellinger method. The

ecological  matrices  are  characterized  by  a  large  number  of  zeros,  which  bias  the

distributions,  this  transformation  reduce  the  weight  of  zeros  and dominant  species  and

increases the weight of rare species (Pierre Legendre & Gallagher, 2001).

Y ij=√ x ij

∑
k=1

p

xik
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Where Yij is the transformed Xij matrix. xij is the value of species j in the grain i, k is the

species index, and p is the number of species in a given grain with row and column indixes

i and  j  (Legendre  and  Legendre,  2012,  De  Caceres  et  al.,  2012).  Once  we  have  the

Hellinger transformed matrix (Y), the observed β-diversity is estimated as the variance of Y

(De Cáceres et al., 2012; Legendre et al., 2005), which is calculated as follows: 

Observed β−diversity=Var (Y )= SS(Y )
(n−1 )    

Where SS(Y) is the sum of squares, and n is the number of quadrats employed. Observed β-

diversity is 0 when all quadrats have the same composition and 1 when they do not share 

any species (De Cáceres et al., 2012).

β-deviation

To disentangle the sampling effects associated with the size of species pool and grain-size,

we used a null model following Kraft et al. (2011) (but see Mori et al., 2013; Tello et al.,

2015). This method is proposed as a statistical control of the variation in the species pool

from one region to another and quantifies how the variation of scale accounts for variation

in β-diversity (Kraft et al., 2011; Bennett & Gilbert, 2015). The species pool for the three

cut-off size categories (all  trees, large and small trees) was defined as the total  species

richness in each one of the 1-ha plot within each 25-ha plot in both regions (after Kraft et

al.  2011)  (Table  S1).  To  estimate  expected  β-diversity,  we  generate  a  null  model  for

randomizing individuals' location among grains within each 1-ha plot, fixing the number of

individuals and relative abundance (Tello et al., 2015). Our null model removes the local

processes  that  determine  the  species  distribution  or  species  clumping  in  the  local

assemblages (De Caceres et al., 2012, Tello et al., 2015). In each randomized matrix, we

applied the Hellinger transformation and expected β-diversity was estimated as the variance

of the transformed matrix (De Caceres et al., 2012). This process is repeated 1000 times in

each one of the 1- for each grain size / cut-off category combination. The total expected β-
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diversity is the mean of the distribution of  β-diversity values under the null model (De

Caceres et al., 2012). 

Finally,  β-deviation  is  defined as  the  difference  between observed  β-diversity  and null

mean β-diversity value, divided by the standard deviation of the null β-diversity distribution

(i.e., standardized effect size). This value indicates the deviation of the observed from a null

distribution (De Cáceres et al., 2012; Qian et al., 2013). Therefore, positive and negative β-

deviation values indicate higher or lower β-diversity than expected by chance, respectively,

while a value of zero means a  β-diversity expected under the null model (Myers et al.,

2013). However, according to Kraft et al. (2011), a constant β-deviation in the elevational

gradient may be due to the observed β-diversity resulting from differences in the size of the

species pool. Comparisons between observed β-diversity and β-deviation help assess how

β-diversity  deviates  from  a  stochastic  community  and  whether  the  stochasticity  or

deterministic  processes  determine  to  a  greater  extent  the  local  species  assemblage.

Similarly, comparisons between elevations help to clarify which process predominates at

different elevations. 

     Data analysis 
To quantify the effect of grain size (categorical factor, represented by the length of the side

of the reference quadrant (m2)), species pool, soils heterogeneity, elevation and topography

(fixed quantitative factors), on local β-diversity, we used a linear mixed regression model

(LMM;  Zuur  et  al.,  2009).  Soil  heterogeneity  was  calculated  as  the  variation  of  the

interpolated values at each grain size for P, pH, Al, Ca, Fe, K, Mg, and Mn.  A principal

component analysis (PCA) was run with the soil elements and then we use the standard

deviation of each 1-ha plot score on the first axis in the PCA as heterogeneity soil values.

We performed a PCA for each grain size and each cut-off  size category.  All  response

variables were standardized before being included in the model. Finally, the random effect

in the model was defined as a nested random effect with each 1-ha in each 25-ha plot to

control particular characteristics in each plot and accounting the hierarchical data (Zuur et

al., 2009). The models' random effect was selected, comparing models with the same fixed

effect structure and varying random effects. The model with the lowest Akaike Information
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Criterion (AIC) presented the  best  random effect.  Model  selection was done following

(Zuur et al. 2009), starting with a saturated model (including interactions). The best-fixed

effects were chosen with the backward stepwise model selection based on the AIC. Models

validation for spatial autocorrelation was tested using the semi-variograms of the model

residuals for each 25-ha plot, based on 100 draws to define the envelope for the observed

significance spatial structure of the residuals. Semi-variograms were done with the geoR

package (Ribeiro and Diggle 2001).  All  the analyses were performed in R 4.0.0 (Core

Team 2020). 

Results 
We sampled 1,299 species in AFDP represented by 90 families and 359 genera. In LPFDP, 

were sampled 222 species represented by 59 families and 135 genera. The average species 

richness by 1-ha plot in AFDP was 604 ± 49 and 152 ± 8.2 at LPFDP (Table 1). 

Overall,  we  found  that  observed  and  expected  β-diversity  was  higher  at  AFDP  plot

(Amazon) compared to  LPFDP (Andes),  as we expected (Figure 1A-1F).  On the other

hand,  the  standardized  β-deviation  did  not  follow our  expectations  of  higher  values  at

higher elevations      (LPFDP - Andean plot) for all grain-sized and cut-off categories. In

fact,  β-deviation  was similar  for  AFDP and  LPFDP for  large  trees  and was lower  for

LPFDP (high elevation) for small and all the trees (Figure 1G-1I). This pattern means that

after controlling for differences in species pool for large trees, the β-deviation is similar for

both  regions  (Amazon  and  Andes).  It  is  important  to  note  that,  even  β-deviation  was

consistent for both regions, values were always positive (except large trees at 10 m × 10

m), indicating higher species variation than expected by chance. In general, β-deviation was

different  for  each  species  pool  (large,  small,  and all  the  trees),  suggesting  that  the  β-

diversity patterns in our results depend of the sampling design.  

Regarding the spatial scale, the observed β-diversity increases when decreasing the grain

sizes for all the cut-off size categories, as we expected (Figure 1A-1F). On the other hand,

β-deviation  increases  when  the  grain-size  increases  for  large  trees,  but  the  pattern  is

reversed for small and all the trees, where the  β-deviation decreases when the grain size
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increases.  Observed  β-diversity  and  expected  β-diversity  show  significant  differences

among grain-size for all cut-off sizes. β-deviation in AFDP showed significant differences

among all grain-sizes for large trees (p-value <0.05), while small and all the trees showed

differences between the 10 m × 10 m and 20 m × 20 m. LPFDP had differences between 10

m × 10 m and 20 m × 20 m for large trees, but these grain sizes had no differences for small

and all the trees (Figure 1G-1I).

Linear mix effect models indicate a strong effect of grain size on observed, expected β-

diversity, and β-deviation.  Elevation has a significant impact on determining the shift in all

the  β-diversity  metrics  and  the  species  pool's  size  (species  richness).  Concerning

environmental  variables,  the  slope  was  significant  for  observed  β-diversity,  and  soil

heterogeneity was related to β-deviation. The interaction between grain size and elevation

was one of the determinant variables for the shift in β-diversity and β-deviation in all the

cut-off sizes, suggesting that we could obtain different β-diversity estimations at different

elevations depending on the grain-size used (spatial scale). Finally, the marginal explained

variation values (R2 marginal) presented in the models were higher than 0.8 and always

close to conditional variation (R2 conditional), which implies very low relative importance

of the random effect (Table 2).

DISCUSSION 

β-deviation, grain-size, and cut-off category
There is a debate about if β-diversity variation between regions with different elevations is

an effect of the differences in species pool or is the result of varying community assembly

mechanisms (Kraft  et  al.,  2011;  Qian et  al.,  2012).  Here we analyzed the effect of the

species pool on β-diversity variation and different sampling efforts (grain-size and cut-off

size). Our first hypothesis predicts that after controlling the size of the species pool, the β-

diversity differences between regions disappear, presenting the same β-deviation (Kraft et

al., 2011). Our results partially support this hypothesis presented by Kraft et al. (2011).

This pattern was only applied for one combination grain-size (10 m × 10 m) and cut-off

size (large trees). These results strongly suggest that an essential part of the debate can be
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attributed to the variation in the spatial scale (grain-size) across studies or the characteristic

of sampling intensity to failure to account for a complete representation of the community,

as we did here.

Observed β-diversity was higher in the lowlands than in the highlands (Figure 1A-1F), as

we expected.  This observed pattern may correspond to the high differences in the total

species  pool  (species  richness).  This  is  because,  in  highly  diverse  ecosystems,  a  small

fraction of the regional species pool can potentially belong to any given local community,

increasing β-diversity, a feature of non-saturated communities, as it  is,  in this case, the

AFDP ( Figure S3 A) (Shurin & Srivastava, 2005, Harrison & Howard, 2008). On the other

hand, saturated communities such as LPFDP (Fig S3 B) rise faster the asymptote in the

relationship  regional-local  richness  and found shared species  among local  communities

increase,  thus  decreasing  β-diversity  (Harrison  and  Howard  2008).  To  disentangle  the

deterministic  and  stochastic  processes  that  shape  β-diversity,  we  used  the  standardized

effect  size of  β-diversity  (β-deviation).  Our  study's  main  result  is  that  β-deviation  was

similar for different biogeographic regions for large trees and was lower in highlands for

small and all trees, which contrasts with other tropical studies (Martínez-Villa et al 2020,

Tello et al 2015).

The β-deviation pattern for large trees supports the hypothesis presented by Kraft et al.

2011. β-deviation was constant and close to zero between the regions for the combination

of 10 m × 10 m and large trees, which means a β-diversity expected by chance. However,

for the same cut-off size, the grain-size augmentation increased β-deviation (Figure 1G).

Therefore, deterministic processes are more likely to be found with increasing grain-size,

highlighting the role of the spatial scale of the sampling unit (Chase 2014; Chase & Myers,

2011; Garzon-Lopez et al., 2014). Other authors have attributed the importance of grain-

size to detecting different processes that structure species variation (Legendre et al., 2009;

Chase,  2014;  Garzon-Lopez,  2014).  At  very  smaller  grain-sizes,  the  unobserved

environmental (e.g., topography or soil variation) and even neutral variables (e.g., death

and recruitment) will result in a purely spatial process (Legendre et al., 2009). And when

the spatial grain-size increases, the relative importance of environmental factors increases
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because of the higher probability of finding habitat associations and heterogeneity. Thus,

we perceive a more structured system (Chase, 2014; Garzon-Lopez et al., 2014).

It is worth noting that β-deviation in AFDP shows significant differences among the three

grain-sizes (P-value < 0.005)  (Figure 1G),  suggesting that  by increasing grain-size,  the

probability of finding more deterministic processes increases too. But when we increased

the grain-sized for LPFDP, β-deviation did not show differences (Figure 1G). This means

that the detection of deterministic processes depends on grain-size and the environmental

and topographic conditions of the area (Figure S2). For example, Baldeck et al.  (2013)

found in the same plot (LPFDP) that 13% of the explained variation of β-diversity was

dependent on the environment, while in lowland and more diverse plots such as BCI, this

percentage was 25%.

The fact that we found lower β-deviation in LPFDP (1800 m asl) than in AFDP (100 m asl)

did  not  follow  our  hypothesis.  In  contradiction  to  other  studies,  we  found  a  higher

magnitude of deterministic processes in the lowland region (with the highest diversity). By

including lower tree sizes (DBH ≥ 1cm), a higher representative portion of the species pool

is better captured, and so, we also capture distribution patterns of juveniles and understory

species.  Chase  &  Myers  (2011)  and  Siqueira  et  al.  (2020)  explained  that  in  some

ecosystems, the deterministic process might have even more importance in highly diverse

regions than in low diverse regions when density-dependence processes are overriding for

niche  selection  or  by  the  presence  of  strong  environmental  gradients.  The  positive

relationship  between  high  diversity  and  high  β-deviation  indicates  that  in  AFDP,  the

species aggregation was stronger to cause non-random variation than in LPFDP. To test this

idea, we calculated the relative conspecific Omega (Ω) neighborhood density index (sensu

Condit et al., 2000) at five scales (10, 20, 30, 40, and 50 m), for those species with more

than 50 individuals per 25-ha, as a function of the abundance of each species on log-log

scale. Aggregation is indicated when Ω > 1, random dispersion when Ω = 1 and spacing at

some scale or hyperdispersion when Ω < 1. The Ω was always higher in AFDP than in

LPFDP (Figure 2A, Table S2). When we compared the Ω for small and all the trees, within

the region, the pattern was similar. Therefore, including lower size categories, small trees
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can gain higher  importance in shaping the species variation.  Although we do not have

mortality  metrics,  by  the  Janzen  (1979)-Connel  (1971)  theory,  we  can  assume  that

communities with higher aggregation present higher density-dependent processes, which

are more important in the highest-diverse region.

The influence of assembly processes

Although  β-deviation  was  greater  in  the  lowlands  (Amazonas)  than  in  the  highlands

(Andes),  the value was always positive,  indicating that  both regions exist  deterministic

processes  to  a  greater  or  lesser  extent  structuring  species  variation.  In  highly  diverse

forests,  such as  the  Amazon or  Andes,  it  has  been shown that  soil  nutrients  influence

species' spatial distribution (John et al., 2007; Baldeck et al., 2013). Our models' results

corroborate these findings since β-deviation presented a significant relationship with soil

variation (P-value 0.02, Table 2). The significant relationship can be interpreted as a direct

response to variation in soil properties, reflected in the own species' variation. Even though

soil  variation  appears  as  an  essential  component  for  niche  structuring,  different  soil

components can operate differentially in each forest type. In LPFDP, for example, have

been shown that K, P, Fe, and N have particular importance, while in lowland forests, such

as BCI, B, K, Ca, and Mg have a robust priority on community structure (John et al., 2007).

The slope was only significant for observed β-diversity (Table 2) but not for β-deviation.

The lack of significance for topography, considering that we have a mountain region in the

analysis,  can  be  related  to  the  relatively  flat  plateaus  in  both  plots  (AFDP=20 m and

LPFDP=40 m, Fig S2), showing more significance in soil variation than in the topography.

Previous  studies  have  shown  higher  importance  of  soil  resources  than  topography,

explaining species variation (Baldeck et al., 2013).

The similarity between the β-diversity and β-deviation patterns for the cut-off categories of

small trees and all the trees, implies that small tree cut-off categories may drive a large

extent of the species variation pattern. Comita et al. (2007) documented that in early life

stages,  a  strong habitat  association exists  that  gradually changes  in  mature stages.  The

habitat specialization at early life stages can strongly influence our estimations when we
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include  small  trees.  If  habitat  association  increases,  β-deviation  too,  and  stronger

deterministic processes can be found. On the other hand, just analyzing large trees, the β-

diversity pattern was completely different. Underlying mechanisms that shape β-diversity

change with varying life  stages,  and mechanisms detected just  for large trees could be

rarely seen  for  small  trees  and vice-versa.  For  example,  the  neighborhood competition

changes depending on the tree size and life stage (Zhang et al., 2017; Zhu et al., 2018).

Therefore, density dependence processes must be found strongly in small trees or including

small trees in the community.

We  show  the  extent  of  ecological  mechanism  change  between  regions  at  different

elevations, as reported by other studies (De Cáceres et al., 2012; Qian et al., 2013), making

elevation a key factor (Table 2). (Tello et al., 2015) In the tropics, it is widely recognized

that the extent of deterministic processes increases with elevation because harsh conditions

can impose stronger filters  (Mori et  al.,  2013; Tello et  al.,  2015;  Martinez-Villa et  al.,

2020).  Nevertheless,  higher  β-deviation in  lowlands and highly diverse  ecosystems has

been  reported  (Sabatini  et  al.,  2018;  Siqueira  et  al.,  2020).  The  high  diversity  and

productive regions can also impose harsh conditions in terms of species interactions, such

as higher competition, priority effects (Chase, 2010), or density dependence (Condit et al.,

2000;  Lamanna  et  al.,  2017).  Mechanisms that  are  often  overlooked just  by  analyzing

environmental  conditions  and  that  highlight  the  importance  of  analyzing  different

biogeographic areas separately (Qian et al., 2013). Another important point is that because

of  high  diversity,  niche-partitioning should  be  narrower  and,  thus,  narrower  ecological

ranges (Giles Egbert et al., 2004). Although we must be cautious when extrapolating this

hypothesis  directly  to  lowlands  vs.  highlands,  assuming  wider  ecological  ranges  for

highlands species, just  for chance,  higher species homogenization can be expected and,

therefore, less steep β-deviation change (Sabatini et al., 2018). Further analysis in large and

complete survey plots, including other factors such as light gradient or gap dynamic, should

be done to disentangle mechanisms in different regions. So far, we have shown that highly

diverse  lowlands  regions  also  present  high  determinism,  and  including  more  than

environmental factors is required to understand better what shapes the species variation.
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Conclusions
We have shown a strong sampling effect (in terms of grain-size and cut-off tree categories)

on β-diversity and β-deviation estimations. β-deviation always varies with the grain-size,

corroborating the critical importance of the sampling unit in diversity analysis. Regarding

the cut-off tree categories, small (1<DBH<10 cm) and all the trees (DBH>1cm) presented

high similarity  in  the  β-diversity  patterns.  This  indicates  that  a  high  proportion  of  the

species variation patterns is  driven by the smaller trees,  mainly because of an accurate

quantification of spatial aggregation, including a better representation of the species pool.

Finally, high β-deviation was found in lowland and highly diverse regions compared to the

highland regions.  These results  evidence,  first,  the community size's  role in  β-diversity

analysis  and  the  importance  of  accounting  for  its  effect.  Second,  in  highly  diverse

ecosystems, deterministic processes can be equal to or more important than in less diverse

ecosystems. In these regions, niche selection can be driven mainly by dispersal processes

and differences in aggregation patterns.  
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Table 2.1) Baseline descriptive values for each 25-ha plot. All trees: DBH ≥ 1 cm, small
trees:  1 cm ≤ DBH < 10 cm, All the trees: DBH ≥ 10 cm. Numbers in parentheses indicate
standard deviations (SD).

  25 ha Plot
  AFDP LPFDP
     
Total species richness 1,299 222
Species richness  (Small trees)  1191 218
Species richness (Large trees)  836 174
Total number of stems 117,041 113,447
Number of stems (Small trees) 102,69 98,792
Number of stems (Large trees) 14,351 14,655
Total number of genus 395 135
Total number of families 90 59
Average number of species per hectare 604(±49.8) 152(±8.2)
Average number of stems per hectare 4680(±495) 4536 (±804)
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Table 2.2. Results from the best-fit linear mixed model between observed and expected β-
diversity and β-deviation and the explanatory variables. β-deviation is defined as (observed
β-diversity  –  expected  β-diversity)/expected  SD  from  the  null  model.  Conditional  R2
involves random and fixed effects. Marginal R2 just involved the fixed effect in measuring
the goodness of the adjustment and prediction power.

 
Dependent

variable Variable Parameter p-Value Marginal Condicional
             
    Intercept 0.54 <0.0001    

  20x20  -0.81 <0.0001    
50x50  -1.70 <0.0001    

  Size (Large) 0.80 <0.0001    
Observed Size (Small) 0.05 0.03    
β-diversity Elevation  -0.46 <0.0001 0.97 0.98

  Slope 0.02 0.047    
  20x20: Large 0.04 0.003    
  20x20:Elev  -0.16 <0.0001    
  50x50:Elev  -0.10 <0.0001    

67



  Size (Large): Elev 0.14 <0.0001    
           
  Intercept 0.52 <0.0001    
  20x20 0.34 <0.0001    

β-deviation 50x50  -0.23 0.0001    
  Size (Large)  -1.79 <0.0001    
  Size (Small) 0.01 0.7    
  Elevación  -2.54 <0.0001 0.86 0.91
  sd soils 0.12 0.02    
  20x20: Large  -0.18 0.02    
  50x50: Large 0.48 0.0001    
  50x50: richness -2.454 0.0001    
  20x20:Elev -2.790 0.01    
  50x50:Elev -2.667 0.007    
  Size (Large): Elev 0.41 <0.0001    
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Figure 2.1) Observed ß-diversity for large (A), small (B) and all trees (C). Expected ß-
diversity diversity under the null model for large (D), small (E), and all trees (F).  And ß-
deviation [(BD0bs-BDexp)/SDexp] for large (G), small (H) and all trees (I). For both plots
the 25-ha plot was divided in 25 1-ha plots, which were divided in turn in grids of 10 x 10
m, 20 x 20 and 50 x 50 m.
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Figure 2.2) Aggregation index (Ω0-10) for species with more than 50 individuals per 25-
ha,  as a  function of  the abundance of  each species on log-log scale.  Each green point
represents one species in AFDP and each blue point represents one species in LFDP. 
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Table S2.1.  Species number by each 1-ha plot within the 25-ha plot. All trees: DBH ≥ 1
cm, Small trees:  1 cm ≤ DBH < 10 cm, All the trees: DBH ≥ 10 cm. R: Species richness
and N: total number of individuals. 

Plot   Amacayacu     La Planada  
Sub-
Plot 
(1ha) All trees Small trees Large trees   All trees Small trees Large trees
  R N R N R N   R N R N R N

0-0 643
481
3 592

416
3 251

65
0   159

569
6 146

429
4 79 571

0-100 673
497
3 630

442
0 225

55
3   169

607
9 151

441
2 91 675

0-200 644
548
9 595

490
5 213

58
4   179

542
1 158

401
5 90 593

0-300 621
470
0 589

415
8 199

54
2   157

557
6 145

419
3 89 665

0-400 572
378
4 519

323
3 198

55
1   177

490
2 158

366
3

10
3 586

100-0 615
476
7 569

418
5 233

58
2   157

547
1 146

398
7 74 513

100-
100 624

472
7 581

418
0 208

54
7   162

659
3 148

524
9 86 659

100-
200 625

485
8 563

421
9 254

63
9   170

505
4 154

371
6 88 591

100-
300 597

442
0 557

384
5 223

57
5   167

568
7 144

402
8 95 616

100-
400 618

468
4 568

404
9 247

63
5   160

539
9 151

418
7 82 538

200-0 624
481
4 580

423
0 222

58
4   154

543
7 142

407
2 77 544

200-
100 608

421
0 563

367
0 209

54
0   167

573
6 154

412
2 89 571

200-
200 664

518
9 619

458
9 247

60
0   170

537
1 150

477
9 99 634

200-
300 629

469
5 582

414
8 213

54
7   163

514
0 146

390
4 92 606

200-
400 663

563
0 599

503
4 254

59
6   153

469
3 134

314
0 84 563

300-0 589
467
5 545

408
7 219

58
8   148

550
4 132

419
9 78 532
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300-
100 422

424
7 385

369
0 164

55
7   168

541
4 147

373
1 84 600

300-
200 596

474
8 553

421
4 202

53
4   169

527
1 154

398
3 93 607

300-
300 568

422
3 534

374
4 174

47
9   172

521
5 153

407
0 81 478

300-
400 643

592
1 586

532
6 248

59
5   172

510
5 148

365
1 89 516

400-0 567
433
3 516

377
8 213

55
5   157

509
6 141

377
1 87 630

400-
100 596

423
4 544

365
4 222

58
0   150

477
4 136

362
9 77 560

400-
200 570

445
3 528

384
2 224

61
1   157

513
6 137

383
2 86 588

400-
300 564

444
0 522

386
0 227

58
0   156

474
8 136

358
8 92 605

400-
400 575

401
4 519

346
7 212

54
7   150

479
2 130

357
8 82 614

Table S2.2. Spatial aggregation index Omega (Ω) for 10, 20, 30, 40 and 50 m from the
focal tree. Median, mean and max index Ω value by distance. P-value and R2 correspond to
the linear regression between Ω and their forest-wide abundance.

 
Mega-
plot

Omeg
a

Media
n Mean Max

P-
value R2 spp

Abundanc
e

  AFDP 10 2.32 3.63 50.1 0.007 0.11 64 7.885
    20 1.73 2.67 40.7 0.02 0.1    
    30 1.56 2.20 31.4 0.05 0.05    
LARGE TREES   40 1.40 1.87 22.2 0.06 0.05    
DBH≥10 cm   50 1.3 1.6 15.3 0.1 0.05    
  LPFDP 10 1.48 2.63 52.5 0.23 0.02 63 13.530
    20 1.38 1.81 23.7 0.19 0.02    
    30 1.22 1.48 12.7 0.15 0.03    
    40 1.14 1.30 7.81 0.20 0.02    
    50 1.11 1.18 5.2 0.25 0.02    

  AFDP 10 4.38 8.00 174.5 <0.001 0.10
41
3 92.378
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    20 2.68 4.21 88.7 <0.001 0.06    
    30 2.00 2.99 48.4 <0.001 0.05    
SMALL TREES   40 1.76 2.42 27.9 <0.001 0.04    
1 ≥DBH <10   50 1.55 2.07 18.1 0.003 0.04    

  LPFDP 10 2.61 6.6 171 <0.001 0.25
12
9 97.501

    20 1.81 3.49 70.2 <0.001 0.22    
    30 1.50 2.40 33.9 <0.001 0.20    
    40 1.33 1.90 19.1 <0.001 0.18    
    50 1.19 1.63 12.4 <0.001 0.16    

  AFDP 10 3.9 7.3 173.1 <0.001 0.1
44
4 105.909

    20 2.48 3.9 88.7 <0.001 0.05    
    30 1.97 2.8 48.4 <0.001 0.04    
ALL TREES   40 1.70 2.3 27.9 0.004 0.03    
DBH≥1 cm   50 1.53 2.0 18.1 0.001 0.03    

  LPFDP 10 2.3 6.5 171.9 <0.001 0.29
13
2 112.052

    20 1.7 3.4 70.2 <0.001 0.26    
    30 1.3 2.3 33.9 <0.001 0.24    
    40 1.2 1.8 19.1 <0.001 0.22    
    50 1.1 1.6 12.4 <0.001 0.21    

Note: All species with abundances lower than 50 individuals within the 25-ha were remove 
from the analysis. 
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Figure S2.1) Representation of the design for each plot. The total area is 500 m × 500 m.
Each square represents a 1-ha plot. A) Grid design for 50 m × 50 m within each 1-ha plot
(four grains in total by 1-ha plot). B) Grid design for 20 m × 20 m within each 1-ha plot (25
grains in total by 1-ha plot). C) Grid design for 10 m × 10 m within each 1-ha plot (100
grains in total by 1-ha plot). 

71



Figure  S2.2)  Topographic  3D  map  for  each  one  25-ha  plots.  A)  Amacayacu  Forest
Dynamic plot (AFDP) at 100 m asl, representing lowlands region. B) La Planada Forest
Dynamic plot (LPFDP) at 1800 m asl, representing highlands region.  Colors from green to
red represent the elevation within each plot. The color gradient goes from the flat areas
(green) to the highest areas within the plot (red).  
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Figure  S2.3)  Species  accumulative  curve  for  AFDP  (green)  and  LPFDP  (blue)  and
different cut off sizes, A) Large trees, B) Small trees and C) All trees. In the curve each site
make reference to each 1-ha plot within each 25-ha mega plot.  
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APPENDIX S2.1: R Code

#### assemble.from.pool.randA function was taken from Tello et al., 2015. 
x=read.csv2("arb_ama10.csv") 
x<-droplevels(subset(x, sp!=""))

x$ab=1
plot=unique(x$Cuadrante.100) # 1-ha plot

names(x)
sub = c (24, 25, 26,27) # Columns containing grain-size as factor
ss = c(50, 20,10) # grain-size

library(foreach)
library(doParallel)
library(vegan)

beta_data <- data.frame ()

for(p in 1:length(plot))
{
  
  s <- subset(x,Cuadrante.100==plot[p])
  
  bet2 <- data.frame()
  
  for(j in 1:length(sub))
  {
    s2 <- table(droplevels(s[,sub[j]]),droplevels(s$sp))
    obs <- beta.div(decostand(s2,method="hellinger"))$SStotal_BDtotal[2]
    w1 <- assemble.from.pool.randA(s2,rand.N=999)[[2]]
    
    #
    cores <- detectCores()
    cl <- makeCluster(cores[1]-1)
    registerDoParallel(cl)
    
    random_data <- foreach(i=1:length(w1),.packages="vegan",.combine=rbind) %dopar% {
      
      temp1 <- beta.div (decostand(w1[[i]], method="hellinger"))$SStotal_BDtotal[2]
      temp1
    }        
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    stopCluster(cl) 
    
    #
    
    sdrandom <- sd(random_data)
    meanrandom <- mean(random_data)
    ses <- (obs - meanrandom)/sdrandom
    p.value <- (rank(c(obs,random_data))[1])/1000
    bet <- data.frame(plot=plot[p],sub=ss[j],obs,meanrandom,sdrandom,ses,p.value)
    bet2 <- rbind(bet2,bet)
    
  }
  
  beta_data <- rbind(beta_data,bet2)
  print(c(p,j))
  
}

print (beta_data)
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CHAPTER III

TEMPORAL SHIFTS IN THE FUNCTIONAL COMPOSITION OF
ANDEAN FORESTS AT DIFFERENT ELEVATIONS ARE DRIVEN

BY CLIMATE CHANGE

ABSTRACT
Aim: Andean forests are a global biodiversity hotspot. They harbor many species living

within narrow climate ranges and a high functional diversity of trees.  It is still unclear how

such hotspots respond to climatic  changes over  time. We investigated whether  Andean

forests are changing their functional composition over time along an elevational gradient by

assessing changes in species composition, abundance, and functional traits.

Location: An elevational gradient in Colombia’s northern Andes. 

Time period: Species composition changes were studied 2 to 4 times from 2006 to 2017,

and functional composition from 2016-2017

Major taxa studied: 1,104 tropical tree species with in situ traits characterization.

Methods: We used seven morphological leaf traits and wood density values to analyze the

functional trait dynamic over ten years along an elevational gradient. By analyzing changes

in species composition, abundance, and trait representation, we inferred the magnitude and

direction of changes in functional composition. Then, we assessed if the functional change

was related to climate change and demography.

Results:  With increased  minimum temperature  and vapor-pressure  deficit,  we  found  a

decrease over time in mean values for leaf area and specific leaf area and increases in leaf

thickness and leaf dry matter content. Long-term temperature increases are smaller with

increasing elevation, but the magnitude of trait changes is greater than in lowlands.

Main conclusions: The  functional  composition  is  changing towards  more  conservative

strategies over time across the elevation gradient, with the strongest changes observed at

the highest elevations. This pattern is explained by the change in species turnover within
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communities due to higher recruitment rates of species with high leaf dry matter content

values and low leaf area values. These shifts may be related to communities’ responses to

higher evapotranspiration demand and thermal stress, mainly at higher elevations.

Keywords:  Andean  forests, Climate  change,  Elevational  gradient,  Functional  turnover,

Forest plots, Trait-based ecology, Trait Driver Theory, Trait distributions.

INTRODUCTION    
  
Andean forests, one of the most important global hotspots of diversity (Orme et al., 2005),

are facing unprecedented climatic changes, but our understanding of how these changes

will  impact  the  functioning  of  their  tree  communities  remains  unclear  (Payne,  Spehn,

Snethlage, Fischer, 2017). One plausible way to improve our knowledge of how forests

respond to environmental changes is through the Trait Driver Theory (TDT) (Enquist et al.,

2015). The TDT provides a theoretical framework focused on the shape of organismal trait

distributions,  which  are  expected  to  underlie  the  response  of  plant  communities  to

environmental changes at the local scale (Enquist et al., 2017; Wieczynski et al., 2018). By

quantifying the central moments of trait distribution, such as mean, variance, kurtosis, and

skewness, we can infer 

the  local  predominant  phenotype  (optimum),  functional  dispersion,  evenness,  and  trait

abundance  (distribution  bias),  respectively  (Figure  1,  details  in  the  method  section)

(Enquist et al., 2015). Therefore, the shape of the distribution of phenotypes can give us

insights into the ecological dynamic of the community.       

In mountain systems, the variation in functional composition has been studied primarily by

evaluating  how  functional  traits  change  along  a  natural  gradient  of  temperature  with

elevation increase (Homeier, Seeler, Pierick & Leuschner, 2021; Ochoa-Beltrán, Martínez-

Villa,  Kennedy,  Salgado-Negret,  Duque,  2021).  These  studies  have  found  that  tree

communities along elevational  gradients tend to vary from acquisitive strategies (plants

with fast-growth rates and low constructions costs) in lowlands to conservative strategies

(plants with high construction costs) in highlands (Maharjan et al., 2021; Ochoa-Beltrán et
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al.,  2021).  However,  the  temporal  change  in  the  functional  composition  of  plant

communities  in  response  to  changes  in  climatic  conditions  remains  poorly  understood.

Thus, assessing trends in species composition, demographic rates, and trait characterization

over time will improve our understanding of the mechanisms that control climate change-

driven community trait shift.

In the past six decades, the temperature in the tropical Andes has increased between 0.03-

0.04ºC/year, exceeding global average warming rates (Pabón-Caicedo et al., 2020). Species

have responded to these increases by migrating up slopes but at a rate much slower than

warming (Feeley et al., 2011). Therefore, there may exist an expansion in the distribution

range  of  lowland  species  in  the  highlands.  Nevertheless,  as  the  climate  warms  and

precipitation  becomes more variable in the tropical Andes, vapor-pressure  deficit (VPD)

also increases (Barkhordarian, Saatchi, Behrangi, Loikith, Mechoso, 2019; Pabón-Caicedo

et al., 2020), which may exacerbate plant thermal and water stress due to water loss through

evapotranspiration (Grossiord et al., 2020). Studies have shown that plants with acquisitive

strategies  have  low-stress  tolerances  (Reich,  2014) and  high  sensitivity  to  increased

temperature and VPD. If so, those species within the community with high-stress tolerances

and conservative traits will tend to be maintained in the face of climate change (in this

study defined as the rate of change in temperature [mean, minimum and maximum], and

VPD in the elevational gradient over 30 years in the study area). In any case, we expect that

species  responses  to  climate  change will  also  change  trait  distributions  by  shifting  the

relative  abundances  of  phenotypic  frequencies  in  local  communities.  If  climate  change

leaves a fingerprint on the functional composition of trees, increases in  temperature and

VPD will show the most detectable changes in the communities (Wieczynski et al., 2018).

For example, a reduction in both leaf area (LA) and specific leaf area (SLA) will lead plant

communities towards more conservative strategies over time. 

     

Additionally,  shifts  in  the  trait  composition  of  the  community  might  depend  on  the

demographic  species’  response  (Violle  et  al.,  2007).  Previous  studies  have  reported

increased mortality rates of heat-sensitive species and increased recruitment rates of heat-

adapted species (Duque, Stevenson, Feeley, 2015; Fadrique et al., 2018). If climate-induced
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alterations in species composition and population dynamics are occurring, they may also

entail modifications in functional composition. Recent studies suggest that increases in tree

mortality  risk  in  the  tropics  are  driven  mainly  by  the  long-term increase  in  VPD and

temperature (Bauman et al., 2022). The negative effects of these changes are exacerbated in

species with acquisitive strategies such as low wood density and high SLA (Bauman et al.,

2021).  With  climate  change,  it  is  likely  that  remaining  and  recruited  species  in  the

communities  will  have  more  stress-tolerant  conservative  traits.  Overall,  we  expect  the

alteration  of  dominant  plant  traits  in  space  and  time  to  represent  changes  in  forest

functioning  (Ruiz-Benito  et  al.,  2017;  Violle,  Reich,  Pacala,  Enquist,  Kattge,  2014).

Nevertheless, the direction of this alteration is still unclear, and thus longitudinal studies

across large environmental gradients are imperative.     

In  this  study,  we  use  nine  1-ha  permanent  plots  to  evaluate  shifts  in  the  functional

composition of tree communities along an elevation gradient of more than 2500 m in the

Andean forest. We use the TDT framework to assess changes in the trait distributions and

their  dynamics  using  seven  plant  morphological  traits  of  1,104  tree  species.  First,  we

evaluated how trait distribution changes along the elevational gradient and how climatic

conditions affected these changes. Due to the considerable decrease in temperature with

increasing elevation, we expect a higher abundance of species with conservative traits at

higher elevations. This implies progressive changes in the value of local predominant traits

(mean) with temperature decreases, such as lower leaf area (LA) and specific leaf area

(SLA), but higher leaf dry matter content (LDMC), leaf thickness (LT), toughness (LTh),

density (LD), and wood density (WD). With elevation, we also expect an overall decrease

in  the  variance  and  an  increase  in  kurtosis  values  of  all  the  traits,  indicating  high

environmental  filtering  promoting  convergence  of  traits  around  the  predominant  local

phenotype  (Figure  1a,  b).  Second,  we  tested  whether  trait  compositions  in  the  nine

communities  along the  elevational  gradient  shifted in  the  last  decade  (Fig.  1c,  d).  We

expect shifts in trait distributions and central moments. For example, for those traits related

to  the  temperature  showing  decreases  in  mean  values  over  time  (e.g.,  LA or  SLA),  a

positive skew distribution is expected because of changes in trait  dominance within the

community (Figure 1c). If our hypothesis is correct, these traits will have a higher rate of
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change  in  functional  composition  at  higher  elevations  where  species  are  cold  adapted.

Third, we assessed the climatic and demographic drivers associated with temporal changes

in  trait  composition.  Here,  we  expect  that  if  increases  in  temperatures  and  VPD  are

modulating the changes in functional composition, higher mortality rates would be found in

fast-growth species  than  species  with more conservative  strategies.  On the  other  hand,

increased temperature and upward migration could lead communities to more acquisitive

strategies over time along elevation (Figure 1d). 

1. METHODS

2.1 Study Area 
The study area is located in the northwest region of Colombia between 5º50' and 8º61'

North  and  74º61'  and  77º33'  West  (Supporting  Information  Figure  S1).  We used  nine

permanent plots of 1-ha (100 m × 100 m) belonging to the Red de Bosques Andinos, which

have been monitored for the last decade (Duque et al., 2021; Malizia et al., 2020). The plots

were established in Andean tropical forests along an elevation gradient from 50 to 2850 m

with an average distance among plots of 146.9 km. All  plots were established in areas

showing minimal evidence of human disturbance where no fires had been recorded (except

Carepa  [~58  m],  established  in  a  small  forest  fragment  [~50  ha]).  The  plots  range  in

temperature from 27.7 ˚C to 13 ˚C from the lowest to the highest elevation. Along the

elevational  gradient,  the  plots  vary  significantly  in  solar  radiation,  VPD,  and potential

evapotranspiration (Supporting Information Table S1). 

2.2 Abundance data set and censuses 
In each of the nine plots, all shrubs and trees (hereafter trees) with a diameter at breast

height (DBH) ≥ 10 cm were mapped, tagged, and measured. Near the center of each plot,

all trees with a DBH ≥ 1cm were inventoried in a 40 m × 40 m subplot (0.16-ha). Voucher

specimens were collected for potentially unique species in each plot, and identification was

confirmed  by  consulting  taxonomy  specialists  and  comparing  the  specimens  with

herbarium material. The specimens that could not be identified at the species level were

classified as morphospecies (hereafter species). All plots were established between 2006
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and 2009 and were censused 2 to 4 times between 2016 and 2019 (Supporting Information

Table S2). 

2.3 Climate data collection
We retrieved mean climate data for each plot using climatic layers at high resolution (30

arcsec) available in WorldClim 2.1 (Fick & Hijmans, 2017) and CGIAR-CSI 2.0 (Zomer,

Trabucco  &  Verchot,  2008).  The  following  variables  were  obtained:  mean  annual

temperature (MAT), mean annual precipitation (MAP),  isothermality (ISO), temperature

seasonality (TS), precipitation seasonality (PS), saturated vapor pressure (SVP), potential

evapotranspiration (PET), wind speed, and solar radiation (Solar rad) (Table S1). Vapor

pressure deficit (VPD) was calculated as saturated vapor pressure minus vapor air pressure.
To evaluate whether there was climate change in the study area, we retrieved historical

climate data from the last 38 years, from 1980 to 2017, for MAT, maximal temperature

(Tmax),  minimal  temperature  (Tmin),  and  MAP  from  the  Worldwide  Energy  Resource

database  (POWER-NASA)  (https://power.larc.nasa.gov)  with  a  resolution  of  0.5º.

Historical VPD was calculated using the long-term record of vapor air pressure (VAP) of

the last 38 years retrieved from the Climate Research Unit (CRU-TS) version 4.04  (Harris,

Osborn, Jones & Lister, 2020). We then used these historical climate data to calculate the

annual rate of climatic variables in the last four decades (Supporting Information Figure S7,

S8). We acknowledge that the choice of 38 years is arbitrary, but our criteria for choosing

this time period was mainly related to the data availability. Although undisturbed forests

such as those sampled in this study may take longer to show responses to climate changes,

38 years have been enough to find directional shifts in composition in some tree species

located in the same study area (Fadrique et al., 2018). 

2.4 Trait sampling 
We focused on six leaf morphological traits that capture the essential leaf economics: leaf

area: LA (mm2), specific leaf area: SLA (mm/mg), leaf density: LD (g/cm 3), leaf dry

matter  content:  LDMC (mg/g),  leaf  toughness:  LTh  (Newton/mm),  leaf  thickness:  LT

(mm), and wood density: WD (g/cm3) (Supporting Information Appendix S1). Size-related

plant traits with power-law growth rates of the form Y= axb, such as LA and LT, were log10
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transformed to normalize trait distributions and reduce the influence of outliers (Kerkhoff

& Enquist, 2009).     

We  measured  plant  traits during  2016-2017  following  standard  protocols  (Pérez-

Harguindeguy  et  al.,  2016). In  each  plot,  we  collected  five  leaves  from  five  healthy

individuals per species (three individuals in Angelópolis, Anorí, and Segovia plots, due to

the high number of species) for the most abundant species contributing to 80% or more of

total species abundance. In addition, we sampled one to two individuals for those remaining

species that contribute to less than 80% of the total species abundance (remaining species).

Thus, nearly all species were sampled within each plot (Table S2). Shared species among

plots were measured in each local community. We analyzed 1,104 species (of which 60%

[610] were identified at the species level) distributed over 361 genera and 103 families. We

sampled ~10,470 individual leaves belonging to ~2,297 individuals. To collect WD, we

took one sample of  ~3 cm in diameter  and ~10 cm long from one mature  branch per

individual. Due to some species being presented just in small size individuals (~18%), it

was  not  possible  to  measure  WD  directly.  Thus,  we  filled  in  the  missing  values

hierarchically.  First,  the missing WD values per individual were assigned based on the

average value of the same species  in  other  plots.  If  the value was not  available  at  the

species level, the value by either genus or family was used. 

2.5 Trait distributions and central distribution moments
Using the TDT framework, we focused on the four central moments of trait distribution.

The community-weighted mean (CWM) represents the distribution's average (predominant)

trait value. Community-weighted variance (CWV) reflects the dispersion of trait values and

can  be  interpreted  as  a  measure  of  functional  diversity.  Community-weighted  kurtosis

(CWK) reflects  the  peakedness  of  the  trait  distribution;  the higher  the peakedness,  the

higher  the  dominance  of  specific  traits.  High  positive  kurtosis  reflects  more  peaked

distributions  relative  to  a  normal  distribution  due  to  reduced  outliers  and  the  high

abundance  of  functionally  similar  species  (Huang,  Xu,  Zang,  2021).  Low or  negative

kurtosis reflects platykurtic distributions resulting from a wide range of trait values due to

contrasting ecological strategies within the community. Values equal to -1.2 represent a
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complete  evenness.  Finally,  negative  or  positive community-weighted  skewness  (CWS)

reflects a strong right- or left-skewed distribution, which means extreme trait values at the

ends  of  the  distribution  tails  (Enquist  et  al.,  2015;  Wieczynski  et  al.,  2018).  An

asymmetrical distribution results from changes in the frequency of trait values as a response

to rapid environmental changes or rare species advantages within communities; this could

be interpreted as a fingerprint of climate change (Enquist et al., 2015).      

Based on the abundance-weighted kernel density distributions estimated for each trait and

community, we quantified the four central moments weighted by species abundance. To

calculate density distributions that better represent the community and the variation in trait

values, we incorporated intra-specific variability for those species with the largest numbers

of sampled individuals. We ran statistical non-parametric bootstrapping to resample (with

replacement) individuals' trait values in proportion to the species abundance to generate a

set of new distributions  (Maitner et  al.,  2023) (Appendix S1).  The following equations

define the central abundance-weighted moments:     

CWM=
∑w i x i

∑ wi

CWV=∑ wi
(x¿¿i−CWM )2

∑ wi
¿

CWK=
∑w i ×

x i−CWM

√CWM

4

∑ wi
−3

CWS=
∑wi ×

xi−CWM

√CWM

3

∑ wi

Where wi is the abundance of species i in the local community and xi is the local mean trait

value for species i (Huang et al., 2021; Wieczynski et al., 2018).
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2.6  Patterns  of  change  in  functional  composition  over  time  along  the  elevational
gradient
To analyze community changes in trait composition, we initially plotted the abundance-

weighted density estimates for each trait for each plot and census. Next, we quantified the

abundance-weighted  moments  (CWM,  CWV,  CWK,  CWS)  corresponding  to  the  trait

distribution of the first and the last census. To do this, we used the traits measured and

matched trait values with species composition and abundance in the first and last census (8-

10 years on average) (Table S2). Finally, to quantify the shift and the direction in functional

composition over time, we calculated the Trait Velocity index (TV) (which represents the

annual  rate  of  change for  each trait  moment)  (Trugman et  al.,  2020) as the difference

between the last and the first community-weighted moment, divided by the length of the

census period (TV_CWM, TV_CWV, TV_CWK, TV_CWS).  Because these data do not

involve repeated measures of traits over time, we could not assess functional plasticity, so

we assumed that trait values were stable over time. Consequently, we focus on the effect of

demographic responses on the communities’  functional structure.  Pairing trait  data with

species  abundance  by  censuses  provides  insights  into  understanding  temporal  changes

based on shifts in community composition and abundance (Aguirre-Gutiérrez et al., 2019;

Swenson, Hulshof, Katabuchi, Enquist, 2020).

2.7 Potential drivers of temporal changes in forest functional composition 

Climatic changes:

We calculated the annual rate of change of MAP (ΔMAP in mm y-1), MAT (ΔMAT in °C y-

1), Tmax (ΔTmax in °C y-1), Tmin (ΔTmin in °C y-1), and VPD (ΔVPD in Kpa y-1) as the slope

of the linear least-square regression between the values of each climatic variable and time

(Figure S7). To estimate climate change, we first used two different regressions to estimate

the slopes as a measurement of the annual rate of change for the different variables.  The

first one used the 1980-2017 dataset (data availability at power.larc.nasa.gov). The second

one  used  the  1995-2017  dataset  following  Fadrique  et  al.,  2018,  who  used  a  similar

timeframe to calculate the climatic rate in the Andes. We did a t-test for comparing slopes

between the two periods, as slopes remain similar (P>0.05 for all variables and plots), we
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considered climate change from 1980 because, although arbitrary, we believe that in mature

forests the lag between climate change and community response can be decades (Alexander

et al., 2018; Block et al., 2022). It is important to remark that we refer to climate change as

the long-term changes mainly in temperature (mean, minimum and maximum) and VPD. 

Demographic tree rates:

We calculated annual mortality and recruitment rates by plot following Phillips et al. (1994)

as: 

Mortality rate (% )=ln [(No
Ns )] /Δtime

Recruitment rate (%)=ln [( Nf
Ns )] /Δtime

Where No is the initial number of individuals in the first census, Nf is the final number of

individuals in the last census, and Ns is the number of original individuals surviving until

the final inventory. Mortality and recruitment rates were calculated for canopy individuals

with DBH ≥ 10 cm in the plots and understory individuals with 1 cm ≤ DBH < 10 cm in the

0.16-ha subplots.

2.8 Data analyses 

Changes in trait distribution along the elevational gradient: 

To address our first aim of how trait distribution moments change along elevation and what

climatic variables are involved, we regressed the central weighted moments of each trait for

each plot and the climate conditions at each site for the last census. To reduce the number

of climatic variables to two main axes, we ran a principal component analysis (PCA) with

all the climate data using the princomp function in R. All variables were standardized to a

mean of  zero and standard deviation of  one before conducting the PCA. The first  and

second  PCA  axes  explained  47.7%  and  23%  of  the  climatic  variance,  respectively

(Supporting Information Figure S2). The PC1_climate axis was primarily determined by MAT,

solar radiation, VPD, and PET (Supporting Information Table S3). Notably, PC1_climate is

primarily negatively correlated with MAT (p<0.05, R= -0.87) (Figure S3b) and positively
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correlated  with  elevation  (Figure  S3a).  Precipitation  seasonality  (PS)  determined  the

PC2_climate axis (r = 0.69, p <0.05) (Table S3) and was used as a surrogate of seasonality

(Figure S3g). We then built simple linear models between the trait moment values and the

PC1_climate and PC2_climate separately to quantify the relationship between climatic variation

and community-weighted moments.

Changes in trait distribution over time:

To assess  our  second aim of  whether  functional  composition of  each local  community

changes  over  time,  we  first  performed  a  Kolmogorov-Smirnov  test  between  the

distributions  of  the  first  and  last  census  of  each  trait  for  each  plot  to  test  significant

differences. To evaluate differences in central moments between the first and last census,

we used a linear mixed model, with the census as a fixed factor and the plot as a random

factor to account for the repeated censuses per plot (van der Sande et al., 2016). Finally, we

performed a least-squares linear model between each TV trait and elevation to examine

whether there are directional changes in the functional composition along the elevation.

Assessing potential drivers of change in functional composition over time

To address the potential impact of climate change and species demography on functional

changes  over  time  (third  question),  we  tested  whether  shifts  in  the  community  trait

composition were related to temporal climatic variations and mortality/recruitment. We ran

ordinary least-squares regressions between the TV per moment and trait (response variable)

and changes in climate and demographic rates (ΔMAP,  ΔMAT,  ΔTmax,  ΔTmin,  ΔVPD,

Mortality,  and Recruitment  rate).  To control  significant false  p-values when comparing

multiple  hypothesis  tests,  we  adjusted  the  p-value  of  each  regression  using  the  false

discovery rate (type I error) (Benjamini & Hochberg, 1995) with the function FDR in the

fuzzySim R package (Barbosa, 2015). Due to the statistical restrictions of the small sample

size, our models test the effect on one independent variable at a time in order to keep the

statistical  power  of  the  data.  All  analyses  were  performed  using  R  version  4.0.0  (R

Development Core Team 2020).

RESULTS
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3.1 Variation in trait distribution along the elevational gradient
All the distributions showed a unimodal trend, reflecting one predominant phenotype or

mean trait value for the community, except for the distribution of WD, which reflects two

peaks in plots located at  low elevations,  suggesting two possible prevailing phenotypes

(Supporting Information Figure S4). 

As  expected,  the  central  moments  showed  that  functional  composition  varies  from

strategies  of  fast  resource  acquisition  to  high  construction  costs  along  the

climatic/elevational gradient (PC1_climate). Changes in CWM are primarily associated with a

significant decrease in traits related to photosynthetic capacity (reduction in leaf area and

specific leaf area) and an increase in leaf structural components for protection, such as

thickness (Figure 2a).  CWM of LDMC showed a humped-shaped relationship with the

PC1_climate (Figure  2a).  Contrary  to  our  expectations,  CWV  (which  reflects  functional

diversity) did not decrease significantly for all  traits along the PC1_climate.  The CWV of

wood density decreased with PC1_climate, and conversely, leaf thickness increased, indicating

a broader spectrum of trait values at higher elevations (Figure 2b).

The analysis of the trait distribution shape (CWK) showed that all traits, except LDMC,

were characterized by kurtosis values greater than zero, indicating a distribution with a

reduction of  more  variable  trait  values and more peaked than expected from a normal

distribution (Figure 2d). Only the CWK of the leaf toughness showed a significant increase

with PC1_climate. None of the moments were significantly related to PCA2_climate (Figure S5).

3.2 Changes in trait composition over time
The Kolmogorov-Smirnov  test  showed  significant  shifts  in  trait  distribution  per  plot

between the first and the last census, particularly in plots located at high elevations (Figure

3). The fourth moment (CWS), which analyzes the bias of the trait distribution and can be

interpreted as a fingerprint of climate change, showed that photosynthetic traits such as leaf

area and specific leaf area had a CWS greater than zero. This reflects a dynamic change in

trait distribution towards lower values of the predominant phenotype. These results support
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our hypothesis that if the mean community trait increases across a temperature gradient

(e.g.,  LA  and  SLA,  negatively  correlated  with  PC1_climate),  warming  would  lead  to

communities characterized by positive skewness (Figure 1 and Figure 2c). Leaf thickness,

positively correlated with PC1_climate, showed some communities with negative skewness.

Thus, it may be a trait with a slower response to heating than those related to the area.

According to the linear mixed model, which quantifies changes in time, leaf area showed

significant differences between the first  and the last  census for the mean and variance,

indicating  that  functional  composition  and  diversity  varied  over  time  (Table  1).  In

comparison, thickness had changes in skewness values; specific leaf area, and LDMC in the

kurtosis (Table 1).  Our analyses found a directional shift of functional composition along

elevation for one trait. The changes over time in mean values (TV_CWM) of LDMC and

the strong tendency of change for leaf area presented a positive and negative relationship

with elevation, respectively  (Figure 4), indicating an increment in the magnitude of the

change in  functional  composition when elevation  increases.  Remarkably,  nearly  all  the

plots  showed  decreases  over  time  in  mean  values  of  leaf  area  (negative  values)  and

increased LDMC regardless of elevation (Figure 4). Furthermore, the changes over time in

variance  (TV_CWV)  had  a  positive  relationship  with  elevation  for  WD  (Supporting

Information Figure S6). Thus, communities have a broader spectrum of trait values for this

trait over time. Finally, changes over time in skewness (TV_CWS) of WD and leaf area

significantly decreased along the elevational gradient (Figure S6c). This result indicates

that the bias of the trait distribution decreases over time, probably because communities are

achieving new values of predominant phenotypes.  

3.3 Potential drivers of change in functional composition over time
Over the last 38 years, the temperature and VPD have increased significantly in the nine

plots. The ΔTmin and ΔVPD have a negative relationship with elevation, which means that

lowlands are experiencing more significant warming and more water stress (Figures S7 and

S8). We found that negative changes over time for traits associated with photosynthesis

(leaf  area  and  specific  leaf  area)  and  positive  changes  for  traits  associated  with  leaf

structure  (leaf  thickness  and  LDMC)  had  a  relationship  with  increases  in  minimum
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temperature and VPD at  high elevations (Figure 5a,  b).  Climatic  changes in the mean,

maximal  temperature,  and precipitation were unrelated to mean trait  changes over time

(Supporting  Information  Figure  S9).  Overall,  temperature  changes  significantly  affect

changes  over  time  for  the  variance  of  leaf  area  and  specific  leaf  area  (Figure  S10),

indicating that this factor affects the functional diversity over time. Significant changes

over time in skewness were present mainly in WD and leaf thickness and were modulated

specifically by ΔTmin (Figure S12). Finally, the potential climatic drivers did little to explain

the changes over time for kurtosis values (TV_CWK) (Figure S11).

Regarding species demography, the recruitment rate of individuals increased with elevation

(Figure  S8g).  The  analyses  of  demographic  rates  related  to  changes  over  time  in  trait

composition of LDMC and leaf area indicated that the higher the recruitment, the higher the

LDMC and the lower the leaf area (Figure 5c). Similarly, recruitment also affected the

changes over time for mean trait values and variance of WD (Figure S10e) and the changes

in the skewness of leaf thickness (Figure S12e). Mortality was not significant with changes

over time in mean values (Figure 5d). 

4. DISCUSSION          

Previous studies have suggested a functional shift over time along elevation in the Andean

forests related to climate change (Duque et al., 2021; Fadrique et al., 2018). However, few

have evaluated  this  hypothesis  by integrating plant  traits  and species  demography (see

Báez, Fadrique, Feeley & Homeier. 2022). Here, we assessed how functional composition

changes along elevation and over time and investigated what environmental variables drive

these changes. Our results show that shifts in trait composition along elevation and  over

time are related mainly to changes in temperature and vapor-pressure deficit (VPD). Over

time,  functional  changes  show  a  decline  in  mean  community  values  of  leaf  area  and

specific leaf area and an increase in LDMC and thickness,  mainly at  higher elevations

(Figure  5).  Our  results  agree  with  previous  studies  identifying  changes  in  VPD  and

temperature as drivers of change in species composition (Feeley et al., 2011; Bauman et al.,

2021), community plant traits (Fadrique et al., 2018), and plant abundance (Duque et al.,

2021; Peña, Feeley, & Duque, 2018) in the tropical forest. Thus, our trait-based approach
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can help to understand the potential direction of future changes in Andean forest dynamics

with continuous climate change.

4.1 Variation in functional composition along the elevational gradient
Changes in the functional composition along the PC1_climate were defined by the variation in

community mean values from high to low values of leaf area and specific leaf area and

from low to high values of leaf thickness. The reduction of leaf area and specific leaf area

and the  increase  in  leaf  thickness  towards  higher  elevation  seems to  be  related  to  the

marked decrease in temperature and high levels of solar radiation since this morphology

allows plants to maximize water use efficiency and conserve heat in cold environments

with high radiation (Llerena-Zambrano et al.,  2021). These changes  reveal a shift  from

communities  characterized  by  acquisitive  strategies  in  the  lowlands  to  conservative

strategies in the highlands. These trends are  widely reported in tropical mountain forests

(Homeier et al., 2021; Maharjan et al., 2021; Ochoa-Beltrán et al., 2021) and are related to

a gradient of the leaf resource investment and return (Wright et al., 2004).

We hypothesized a decrease in the variance of all traits (narrow range of trait values) and

an  increase  in  kurtosis  along the  climatic/elevation  gradient  (represented  by  PC1_climate)

related to strong environmental filtering. Contrary to our expectations, the variance of leaf

thickness  increases  in  high  elevations  (low temperatures),  a  pattern  that  has  also  been

reported by other studies (Homier et al., 2021). Furthermore, we only find a strong positive

kurtosis (a more peaked distribution reflecting biotic exclusion) along the climatic/elevation

gradient for leaf area and toughness. One possible explanation for  this apparent lack of

variance reduction and environmental filtering along elevation is the complex mountain

topography, which at a small scale, creates different niches that enhance trait variability at

high elevations  (Homier  et  al.,  2021).  A complementary explanation is  given that  high

thickness and toughness confer advantages in low temperatures (Llerena-Zambrano et al.,

2021). The high variance suggests the presence of multiple adaptative strategies within the

community, such as diverse morphological responses to the specific environmental stress,

which result in the over-dispersion of phenotypes (Enquist et al., 2015).  These results show

that it is critical to evaluate not just community mean values  but other moments of trait

90



distribution,  such as  variance and kurtosis,  which give us  information about  ecological

mechanisms shaping trait distribution along environmental gradients.

4.2 Temporal patterns of change in functional composition
Historical  increases  in  VPD,  minimum temperature,  and  recruitment  rate  mainly  drive

shifts  in  trait  composition  over  time,  particularly  at  high  elevations  (Figures  3-5).

Temperature-related traits presented high positive skewness, such as leaf area and specific

leaf area. These patterns are consistent with expected community directional shifts with an

increase in VPD and temperature and have been reported in previous tropical  mountain

studies (Enquist et al., 2017; Wieczynski et al., 2018). The decline in mean values of leaf

area and increase in LDMC at higher elevations indicates a potential shift in community

functional composition towards more conservative and stress-tolerant strategies, partially

supporting our hypothesis. Although this study did not assess the shift in trait plasticity,

changes in species composition and dominance may indicate how increases in temperature

and VPD modulate and filter species with certain traits, thus shaping the future functional

composition.

(Konings, Williams & Gentine, 2017), as shown in our results. In the same way, increased

VPD is a risk factor that can increase mortality in species with more acquisitive strategies

(Bauman et al., 2022) such as large leaf areas and high values of SLA. Considering that

water vapor is a key factor for forest functioning (Yuan et al., 2019), mainly in mountain

forests,  increases  in  VPD  substantially  increase  the  water  demand  and  decrease  the

photosynthetic rate (Grossiord et al., 2020). Thus, the effects of higher VPD and decreased

cloud cover (Los et al., 2019) should filter species with traits more tolerant to higher solar

radiation and with better water-use efficiency. Overall, selecting species with smaller and

thicker  leaves  contributes  to  increased  leaf  lifespan,  nutrient  retention,  and  water-use

efficiency under higher temperatures  and  VPD (Ackerly et al.,  2002).  The decreases of

mean  values  over  time  in  leaf  areas  and  increases  in  LDMC  could  also  prevent  leaf

overheating (Meng et al., 2015) and water loss in cold-adapted species.
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Many studies assessing the effects of climate change on tree communities focused mostly

on temperature changes, and VPD tended to be neglected (Báez et al., 2022; Feeley et al.,

2011). Nevertheless, in humid regions and cloud forests, changes in VPD may significantly

impact the species' physiology and functioning, affecting their demographic responses and,

subsequently, community functional composition. This factor, in addition to temperature,

helps  us  to  understand  more  mechanistically  the  effects  of  climate  change  on  forest

functioning.  Although we recognize that our time framework to evaluate changes in the

functional composition is short and could be arbitrary due to the data availability (e.g., 10

years), we found recruitment rates and functional shifts over time in four traits related to

VPD  and minimum temperature changes. We believe it is a matter of time before other

traits  show  changes  in  functional  composition  mainly  due  to  the  lag  between  climate

change and the community response.

Changes in species composition are long-term accumulative responses (Alexander et al.,

2018), and previous studies have shown increases in the recruitment of heat-tolerant species

in the Andes (Duque et al., 2015). In our study, increases over time in LDMC and decreases

in leaf area were related to higher recruitment rates at high elevations, which could reflect

higher  recruitment  of  species  with  conservative  resource-use  strategies  and  a  higher

capacity to avoid overheating (Reich, 2014).  If only warming occurs, we would expect a

change toward more acquisitive traits. Nevertheless, increments in VPD and solar radiation

(Los et al., 2019) are factors that may filter species with conservative traits. Studies have

shown that the upslope migration of tree species in the Andes is significantly slower than

the  warming rate,  which  reduces  the  tracking  of  environmental  changes  (Feeley  et  al.,

2011). Furthermore, the habitat loss and subsequent fragmentation of the forest and hence

the loss of  animals for seed dispersal could further limit tree species  migration.  Species

with conservative traits exhibit higher tolerance to environmental changes, resulting in a

slower migration rate compared to acquisitive species. Due to their ability to withstand

climatic variations in their current habitats, conservative species have a greater likelihood

of successful juvenile recruitment; thus, establishing and recruiting juvenile trees with more

conservative traits may be strongly associated with local environmental and soil conditions

that promote germination (Block et al., 2022). 
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Although Andean forests are one of the ecosystems most vulnerable to climate change, they

remain an important carbon sink (Duque et al., 2021). The observed filtered traits over this

short temporal window are those with the greatest ability to persist under climate change

and more stressful environmental conditions (Reich, 2014).  Through species demography

(recruitment/mortality),  those species would be expected to  survive and recruit, leading

communities towards more conservative strategies, mainly at high elevations. 

5. CONCLUSIONS 

Our findings emphasize the relationship between shifts in functional composition over time

along  an  elevational  gradient  in  the  Andean  mountains  and  the  responses  of  tree

communities  related  to  increases  over  time  in  vapor-pressure  deficit  and  minimum

temperature. Observed changes in functional composition suggest a shift in the community

towards  promoting  species  with  conservative  strategies  such  as  decreases  in  mean

community values of leaf  area and specific leaf  area and increases in  LDMC and leaf

thickness. This was also supported by our results of higher recruitment rates of individuals

with more stress-tolerant traits. Although we found shifts in trait composition in four of the

seven traits, if minimum temperature and vapor-pressure deficit continue increasing at the

current rate, we could expect shifts in other plant traits as well with potential consequences

for forest functioning. Longitudinal monitoring of permanent plots and  in situ functional

traits is needed to fully understand the effect of climate change on species' demographic

and plastic responses to new conditions. Ongoing studies must include dispersal traits to

quantify species'  migration  capacity  along elevation  and include  an analysis  of  species

mortality risk as a function of their traits.   
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Table 3.1. P-values and coefficients (in parenthesis) from the linear mixed effect models
between each community-weighted moment and census. The plot was included as a random
effect to account for the census as repeated measures per plot.

CWM CWV CWS CWK
Trait Census Census Census Census
SLA 0.3 (-0.14) 0.1 (-0.36) 0.1 (0.31) <0.05 (3.33)
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LogLA <0.05 (-0.06) <0.005 (-0.08) 0.9 (-0.006) 0.3 (0.23)
LDMC 0.1 (0.11) 0.6 (0.01) 0.4 (-0.08) <0.05 (0.5)

LD 0.1 (0.07) 0.2 (0.19) 0.2 (0.46) 0.1 (3.57)
LTh 0.2 (0.14) 0.4 (-0.08) 0.07 (0.49) 0.2 (3.55)

LogLT 0.5 (0.08) 0.1 (-0.23) <0.05 (0.30) 0.2 (0.45)
WD 0.2 (0.01) 0.7 (0.06) 0.6 (0.02) 0.4 (-0.11)
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Figure 3.1) Representation of hypothesis on how functional composition would change
along elevation and over time. a) Along elevation trait distributions are expected to shift
from acquisitive to conservative strategies. This will indicate b) decreases in mean values
(CWM) of leaf area (LA) and specific leaf area (SLA), and increases in mean values of leaf
dry matter content (LDMC), leaf density (LD), leaf thickness (LT),  and leaf toughness
(LTh)  and  wood  density  (WD).  At  higher  elevations,  we  expect  lower  values  of  trait
variance  (CWV) and  a  more  peaked  distribution  with  positive  CWK related  to  strong
environmental  filtering  due  to  lower  temperatures  at  high  elevations.  c)  Community-
Weighted Skewness (CWS) indicates the bias of the community trait distribution due to
responses  to  rapid  environmental  changes  in  local  communities  and  the  dynamic  of
functional trait distribution over time. For instance, in a community affected by changes in
climate, trait distributions will shift to reflect the changing optimal trait value. However, the
mean will lag behind, resulting in a distribution bias. Those communities that are shifting in
trait mean values, should be characterized by positive or negative skewness. With warming,
for  those  traits  increasing  across  a  temperature  gradient  (LA,  SLA),  we would  predict
positive skewness as the community shifts to the new optimal trait value. In contrast, with
warming, trait distribution of those traits negatively correlated with temperature will  be
characterized by negative skewness as the community shifts to the new optimal trait value
(Enquist et al. 2015; 2017) (see Figure 4 Wieczynski et al. 2018). d) Hypothesized temporal
changes in seven community-weighted mean traits in response to i) increased VPD and
temperature  and  ii)  increased  temperature  and  upslope  species  migration.  e)  The  four
central moment distributions; moments are compared with a normal distribution
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Figure 3.2) Shifts in the abundance-weighted community of a) mean (CWM), b) variance
(CWV),  c)  skewness  (CWS),  and  d)  kurtosis  (CWK)  of  each  trait  along  the  climatic
gradient  (PC1_climate,  mainly  correlated  with  temperature  and elevation)  for  leaf  area
(LA), specific leaf area (SLA), and wood density (WD), leaf dry matter content (LDMC),
leaf density (LD), leaf thickness (LT), and leaf toughness (LTh). Size-related plant traits
with  power-law  growth  rates  of  the  form  Y=  axb,  such  as  LA  and  LT,  were  log10
transformed.  CWM and CWV were  standardized  with  mean zero  and variance  one  to
compare traits. Significant relationships with PC1_climate axes are shown with the trend
line.  The 95% confidence  intervals  (red  lines)  are  reported  for  each plot  and trait  per
moment. Confidence intervals were calculated based on 1,000 bootstrap replicates for each
plot. Values of zero represent a normal distribution. CWS ≠ 0 represents strong left or right
tails.  CWK  = -1.2 represents an even distribution. Note that PC1_climate is  negatively
correlated with temperature. So, for a CWM trait value that is positively correlated with
PC1_climate  (negatively  correlated  with  temperature  such as  SLA and  LA)  we  would
predict positive skewness. In contrast, when a CWM trait value is negatively correlated
with PC1_climate (positively correlated with temperature, such as LT), we would predict
negative skewness.  In general, we do see support for these predictions.      
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Figure  3.3) Abundance-weighed  Kernel  density  estimates  of  each  trait  across  the
elevational gradient in each census. Each elevation represents a tree community, and each
color  represents  a  census.  Traits  are  a)  leaf  density  (LD),  b)  leaf  dry  matter  content
(LDMC),  c)  leaf area (LogLA), d)  leaf  thickness (LogLT),  e)  leaf  toughness (LTh),  f)
specific leaf area (SLA) and g) wood density (WD). Size-related plant traits with power-
law growth rates of the form Y= axb, such as LA and LT, were log10 transformed. Results
represent P-values from the Kolmogorov-Smirnov test between the trait distribution of the
first census and the distribution of the last census (* <0.05, **<0.01, ***<0.001). Data
were standardized with mean zero and variance one to compare traits.
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Figure 3.4) Trait Velocity Index of community weighted-mean (TV_CWM) of each trait
(y-axis) along the elevational gradient (x-axis). TV_CWM represents the annual rate of
change for each trait moment, which indicates the direction and magnitude of the functional
change. TV_CWM equal to zero represents no change over time. Positive values mean an
increase in the trait community value over time. Negative TV values mean a decrease in
community trait value over time.  The further the TV value is from zero, the higher the
magnitude of the change. A significant relationship between TV_CWM with elevation is
presented with the linear regression trend line. Traits are a) leaf density (LD), b) leaf dry
matter content (LDMC), c) leaf area (LogLA), d) leaf thickness (LogLT), e) leaf toughness
(LTh), f) specific leaf area (SLA) and g) wood density (WD). Size-related plant traits with
power-law growth rates of the form Y= axb, such as LA and LT, were log10 transformed.
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Figure  3.5) Linear  regressions  between  trait  velocity  of  community  weighted-mean
(TV_CWM) of each trait and the a) annualized rate of change of minimum temperature
(ΔTmin), b) vapor-pressure deficit (ΔVPD), c) recruitment, and d) mortality of individuals
(%). TV_CWM equal to zero represents no change over time. Positive values mean an
increase in the trait community value over time. Conversely, negative TV_CWM values
mean decreases in community trait  value over  time.  A significant  relationship between
changes in functional composition and changes in climate or demography is denoted by a
linear  trend.  TV_CWM values  were  standardized  with  mean zero  and variance  one  to
compare traits. The traits are wood density (WD), leaf dry matter content (LDMC), specific
leaf  area  (SLA),  leaf  toughness  (LTh),  leaf  density  (LD),  leaf  area  (LogLA),  and leaf
thickness (LogLT). Size-related plant traits with power-law growth rates of the form Y=
axb, such as LA and LT, were log10  transformed. TV values were standardized with mean
zero and variance one to compare traits.
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APPENDIX S3.1: Supplementary methodology Traits Sampling 

Based on the inventory of the most recent census data, we measured five individuals from

the species that contribute a minimum of the 80% of the abundance data and at least one

individual from the remaining species to characterize as many species as possible. In the

plots located at Angelópolis, Anorí, and Segovia, we measured three individuals due to the

high number of morpho-species. Shared species between plots were measured in every plot

to represent intra-specific variability along the gradient better. Those species inaccessible

due  to  height  or  those  species  with  small  and  unique  individuals  without  a  sufficient

number of leaves were not measured. Five mature and healthy leaves from each tree were

collected, making sure to collect leaves with the greatest exposure to light. Due to the plot's

arrangement, we sampled leaves from understory species and canopy species, ensuring that

canopy species were tested in large trees. With the help of certified climbers, we reached

the leaves exposed to the sun in very tall canopy trees. We analyzed 1,104 tree morpho-

species distributed in 361 genera and 103 families. The total of trees sampled is 2,297, and

10,470 individual leaves.

We focused on seven leaf morphological traits related to life strategy, resource distribution

(Wright et al., 2004), and sensitivity to biotic conditions and environmental changes (Violle

et al., 2007). The traits were: Leaf Thickness (LT, mm), reflecting water stress tolerance

(Westoby, Falster, Moles, Vesk, & Wright, 2002). Leaf Area (LA, mm2), Specific Leaf

Area (SLA, mm/mg), Leaf Density (LD, g/cm 3), and Leaf Dry Matter Content (LDMC,

mg/g), essential for light acquisition, plant growth and nutrient acquisition and allocation

(Díaz et al., 2016; Wright et al., 2004). Leaf Toughness (LTh, N/mm) is associated with

structural plant defense (Lucas, Turner, Kominy, & Yamashita, 2000), and Wood Density

(WD, g/cm3)  is  related to  hydraulic  safety and mechanical  and physiological  strategies

(Díaz et al., 2016; Swenson & Enquist, 2007; Wright et al., 2004).

Using the software ImageJ (http://rsbweb.nih.gov/ij/), we quantified the leaf area (LA) with

the petiole. To calculate  the  specific leaf area (SLA), we placed each leaf in a separate

paper bag in the oven for 72 hours (60°C) before measuring dry weight using an analytical
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balance with a precision of 0.0001 g. Leaf thickness (LT) was measured with a digital

micrometer  (Mitutoyo,  precision  0.0001 mm),  and leaf  toughness  (LTh) was measured

using a Pesola Medio-Line Pressure Set adopted to Spring Scales (300, 600, and 1200 g of

capacity, rod diameter 3.16 mm). LT and Lth were measured three times per leaf using

fresh leaves and avoiding leaf veins. LT, LTh, and fresh mass were measured immediately

when the branch was cut; SLA and leaf dry matter content (LDMC) were conducted at

Universidad Nacional de Colombia-Medellín. Additionally, wood density was measured for

mature  canopy  trees  using  samples  from branches.  The  bark  was  removed  from each

sample and rehydrated for 24 hours, and the volume was then estimated through water

displacement. Samples were then placed in the oven at 70°C until a constant weight was

achieved to measure dry weight. 

 APPENDIX S1.2: Supplementary methodology: Statistical intra-specific variability

Based on the abundance-weighted kernel density distributions estimated for each trait and

community, we quantified the four central moments weighted by species abundance. To

calculate density distributions that better represent the community and the variation in trait

values, we incorporate intra-specific variability through statistic resampling raw data with a

non-parametric bootstrapping (Maitner et al., 2021). This method uses random sampling

with replacement from the observed traits in proportion to the species abundance. Thus, the

variation of the observed data is used to generate a set of new distributions. In the case that

the species just  has one trait  value,  such as in the case of rare species,  no variation is

incorporated.  Distribution  and  moment  values  were  calculated  using  the  TraitsTrap  R

package (Maitner et al., 2021).
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SUPPLEMENTARY TABLES

Table S3.1 Climatic data for each plot 

PLOT MAT ISO
Tem

seasonality
Max.

T
Min.

T
MA

P
PP.

seasonality
dry

months VAP
Wind
speed

solar 
rad

VP
D PET SVP Elevation

Carepa 26,8 86 27,2 32 22,3 2585 47,157 1 2,93 1,71 18320,58 0,71 140,17 3,64 58
Puerto Triunfo 27,7 91 29,6 33,5 22,3 2535 41,001 0 2,87 0,89 17640,42 0,86 135,08 3,72 180
Segovia 24,8 83 58,2 30,7 19 3260 41,437 1 2,52 1,08 17852,58 0,55 129,42 3,08 717
Porce 22,6 86 41,3 28,2 16,7 2678 42,036 1 2,28 0,98 17722,67 0,56 127,25 2,84 1006
Maceo 23,7 89 39,4 29,1 18,4 2993 33,464 1 2,35 0,93 17739,00 0,61 129,50 2,96 1016
Anori 19,8 74 40,9 25,6 13 2830 43,044 0 1,81 1,07 17830,42 0,52 125,58 2,34 1784
Angelópolis 16,4 90 30,8 21,7 11,4 2500 38,270 0 1,58 0,98 17488,33 0,41 118,50 1,99 2118
Jardin 15 90 22,9 19,5 10,7 2179 35,890 0 1,45 0,96 17354,17 0,21 107,67 1,65 2525
Belmira 13,4 87 33,7 19 7,5 2471 48,347 0 1,20 1,17 17624,08 0,26 109,50 1,47 2885

Climatic variables were gathered using climate raster layers at high resolution (30 arsec) available in worldClim version 2.0. and
Global Aridity Index and Potential Evapo-Transpiration Climate Database V2. CGIAR Consortium for Spatial Information (CGIAR-
CSI).
Definitions: MAT (°C): mean annual temperature. ISO (%): Isothermality calculated as ((max tem-min tem)/tem annual range))*100
quantifies how large the day-to-night temperatures oscillate relative to the annual oscillations, the range is from 0-100, 100 means the
diurnal temperature range is equivalent to the annual temperature range, and values less than 100 means a smaller level of temperature
variability within an average month relative to the year. Tem seasonality (°C): temperature seasonality is the amount of temperature
variation over averaged years based on the monthly temperature average standard deviation. In other words, it  is the measure of
temperature change over the year by different years.  Max. Tem (°C): Maxi temperature of the warmest month. Maximum monthly
temperature occurrence over a time series of years.  Min. Tem (°C): Minimum monthly temperature occurrence over time.  MAP
(mm): mean annual precipitation. PP. seasonality (%): This is a measure of variation in monthly precipitation totals over a range of
years. The index is the standard deviation of the monthly total precipitation to the mean monthly total precipitation. It is an index of
precipitation variability, and larger values in percent represent greater precipitation variability.  VAP (KPa):  Water vapor pressure.
Wind speed (m/s). Solar rad (KJ m-1 day-1). VPD (KPa): Vapor pressure deficit. VPD was calculated as saturated vapor pressure
(Kpa)  (SVP) -  VAP.  Where  SVP=610.7*10^7.5T/  (237.3+T).   PET  (mm):  Potential  Evapotranspiration  data  was  taken  from
Trabucco & Zomer (2019), PET is calculated using FAO Penman-Monteith equation based on WorldClim version 2 data.
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Table S3.2. Basic description of the census data of the nine (9) 1-ha Antioquia plot Networks. Total sp: indicates the most recent
species richness by the plot. Sp traits: display the number of species with trait data. % Denotes the percentage of species with trait
characterization compared with the total species number of the plot. Year refers to the date when the census was performed. 

       
Census

1    
Census

2    
Census

3    
Census

4  

Plot
Total

sp 
Elevation

(m)
sp

traits % Year
sp

traits % Year 
sp

traits % Year 
sp

traits % Year 
Carepa 141 58 120 85 2009 125 89 2013 127 90 2014      
Puerto Triunfo 156 180 124 79 2009 138 88 2014 139 89 2017      
Segovia 323 717 261 81 2008 291 90 2013            
Porce 120 1006 106 88 2008 113 94 2013 113 94 2016      
Maceo 186 1016 146 78 2009 163 88 2013 168 90 2017      
Anori 331 1784 207 63 2006 248 75 2009 278 84 2014 297 90 2016
Angelopolis 256 2118 176 69 2006 207 81 2009 223 87 2014 226 88 2017
Jardin 106 2525 83 78 2009 95 90 2013 95 90 2017      
Belmira 83 2885 49 59 2006 60 72 2009 68 82 2014 68 82 2017
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TABLE S3.3. Loadings  of  the  two main  axis  from the  Principal  Component  Analysis
(PCA) run with the climatic data.

Variable PC1_climate PC2_climate

MAT  -0.4211  -0.1057
ISO 0.1926  0.0316
TS  -0.2286  -0.4392
MAP  -0.3276  -0.4174
PS  -0.1630 0.4804
Wind speed  -0.2343 0.5540
Solar rad  -0.4282 0.2761
VPD  -0.3971  -0.0764
PET  -0.4508  -0.0166

REFERENCES
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Climate  Database  v2.  CGIAR Consortium for  Spatial  Information  (CGIAR-CSI),
available  at:  https://cgiarcsi.community/2019/01/24/global-aridity-index-and-
potential-evapotranspiration-climate-database-v2/.
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SUPPLEMENTARY FIGURES

Figure S3.1. Map of the study region showing the location of the nine (9) permanent plots
(1-ha  each)  in  the  Antioquia  department  of  Colombia.  Triangles  denote  highland plots
(2,000-2900 m a.s.l),  circles denote mountain forests (1,000-2000 m a..s.l),  and squares
mean lowland forests (50-1,000 m a.s.l).
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Figure S3.2. Principal Component Analysis (PCA) for climatic data. All variables were
standardized and scaled for the analysis. The blue-red color palette represents the elevation
of the plot, with blue representing high elevation to red representing low elevation. The
climatic variables are mean annual temperature (MAT), isothermality (ISO), temperature
seasonality (TS), precipitation seasonality (PS), potential evapotranspiration (PET), wind
speed, vapor-pressure deficit  (VPD) and solar radiation (Solar.rad) (also see supporting
Information Table S1). 
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Figure S3.3. Correlation between PC1_climate and PC2_climate  with the most related climatic
variables of the axis. a) PC1_climate vs Elevation, b) PC1_climate vs Mean Annual Temperature
(MAT), c) PC1_climate vs Solar radiation, d) PC1_climate vs Potential Evapotranspiration (PET),
e) PC2_climate vs Elevation, f) PC2_climate vs Mean Annual Temperature (MAT), g) PC2_climate

vs Precipitation Seasonality (PS). 

Figure S3.4. Abundance-weighed Kernel estimates of each plant trait and each community
along  the  elevational  gradient  (each  elevation  represents  one  plot).  The  distributions
correspond to the most recent census. The traits plotted are: a) leaf density (LD [g/cm3]), b)
leaf dry matter content (LDMC [mg/g]), c) leaf area (LogLA [mm]),  d) leaf Thickness
(LogLT [mm]), e) Leaf toughness (LTh [N/mm]), f) specific leaf area (SLA [mm/mg]), g)
and wood density (WD [g/ cm3]). Vertical lines represent the mean of the distribution. 
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Figure S3.5. Shifts in the abundance-weighted community a) mean (CWM), b) variance
(CWV), c) skewness (CWS), and d) kurtosis (CWK) of each trait along the PCA2_climate

(mainly correlated with Precipitation Seasonality PS, Figure S3). The moments describing
the shape of the trait distributions and the 95% confidence intervals (red lines) are reported
around  each  moment  and  trait.  Confidence  intervals  were  calculated  based  on  1,000
bootstrap replicates for each plot. CWM, CWV, CWS, and CWK values of zero (dashed
line)  represent  a  normal  distribution.  CWM,  CWV,  CWK,  and  CWS  represent  the
predominant phenotype in the community, the functional dispersion, evenness,  and trait
abundance,  respectively.  CWS  ≠ 0 represents  strong left  or  right  tails.  Kurtosis  = -1.2
represents an even distribution. Traits are leaf area (LA), specific leaf area (SLA), wood
density  (WD),  high leaf  dry  matter  content  (LDMC),  Leaf  Thickness  (LT),  Toughness
(LTh), and Density (LD). Size-related plant traits reflecting multiplicative processes were
Log10 transformed (LogLT and LogLA). 
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Figure S3.6. Trait Velocity Index of a) community weighted-variance (TV_CWV), b) community
weighted-kurtosis (TV_CWK), and c) community weighted-skewness (TV_CWS) of each trait (y-
axis)  along the elevational  gradient  (x-axis).  TV_CWV, TV_CWK, and TV_CWK represent  the
annual  rate  of  change  of  variance,  kurtosis,  and  skewness,  respectively,  and  also  indicate  the
direction and magnitude of the functional change. TV values equal to zero represents no change over
time. Positive values mean an increase in the trait community value during the time. Negative TV
values mean decreases in community trait value over time. The higher the distance of the TV value
from zero, the higher the magnitude of the change. A significant relationship between TV values and
elevation is presented with the linear regression trend line. Traits are leaf area (LA), specific leaf area
(SLA), and wood density (WD) and increases in mean values of leaf dry matter content (LDMC),
leaf density (LD), leaf thickness (LT), and leaf toughness (LTh). 
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Figure  S3.7. Each  local  community's  climate  change  rate  in  the  last  38  years  along  the
elevational gradient. We calculate the local climate change as the slope of the linear least-square
regression for each climatic variable respective to the time period.  Each panel represents an
elevation (plot), the y-axis represents the climatic variable, and the x-axis is the time in years. a)
changes in MAT (ºC) over time by plot (panel), b) changes in minimum temperature (ºC) over
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time by plot, c) changes in maximum temperature (ºC) over time by plot, d) changes in mean
annual precipitation (mm) over time by plot, e) changes in vapor pressure deficit (Kpa) over time
by plot. Then, the figure shows the change in each climatic variable by plot over time. Significant
relationships are represented by the regression line trend. The head title per plot panel represents
the elevation in m.
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Figure S3.8. Figures from a-e are the average rate of changes during the last 38 years along
the elevational gradient in a) minimum temperature (°C Y-1), b) maximum temperature (°C
Y-1), c) mean temperature (°C Y-1), d) mean annual precipitation (mm Y-1), and e) vapor
pressure deficit (Kpa Y-1). Figures f-g) are the community dynamic based on abundance
data across the first and last census. f)  annual mortality rate (%)  and g) Annual recruitment
rate (%).
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Figure S3.9. Trait Velocity of community weighted mean (TV_CWM) for each trait along
changes in a) maximum temperature,  b) mean annual temperature,  and c) mean annual
precipitation. TV represents the rate of change for each trait in each plot. TV equal to zero
means no change during time. Positive values mean an increase in the trait community
value during the time. Conversely, negative TV values mean decreases in community trait
value over time. TV values were standardized with mean zero and variance one to compare
traits. Significant relationships with elevation are represented with the regression line.
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Figure S3.10.  Linear regressions between community-weighted variance (TV_CWV) of
each trait, the annualized rate of change of each climatic variable, a) minimum temperature,
b) vapor-pressure deficit, c) maximum temperature, d) mean annual temperature, g) mean
annual precipitation. Units of ΔTmin, ΔTmax, ΔMeanT are °C y-1, ΔMAP is mm y-1, ΔVPD (Kpa
y-1).  And  annualized  rate  of  demographic  changes  by  the  plot  e)  recruitment  rate,  f)
mortality rate in %. TV equal to zero represents no change over time. Positive values mean
an  increase  in  the  trait  community  value  over  time.  Conversely,  negative  TV  values
indicate decreases in community trait value over time. Significant relationships between
changes in functional composition and changes in climate or demography are denoted by
the linear trend. TV values were standardized with mean zero and variance one to compare
traits. Traits are leaf area (LA), specific leaf area (SLA), wood density (WD), high leaf dry
matter content (LDMC), Leaf Thickness (LT), Toughness (LTh), and Density (LD). Size-
related plant traits reflecting multiplicative processes were Log10 transformed (LogLT and
LogLA). 
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Figure  S3.11. Linear  regressions  between  trait  velocity  community-weighted  kurtosis
(TV_CWK)  of  each  trait,  the  annualized  rate  of  change  of  each  climatic  variable,  a)
minimum temperature, b) vapor-pressure deficit, c) maximum temperature, d) mean annual
temperature, g) mean annual precipitation. Units of ΔTmin, ΔTmax, ΔMeanT are °C y-1, ΔMAP
is mm y-1, ΔVPD (Kpa y-1). And annualized rate of demographic changes by the plot e)
recruitment rate, f) mortality rate in %. TV equal to zero represents no change over time.
Positive  values  mean an  increase  in  the  trait  community  value  over  time.  Conversely,
negative  TV values  indicate  decreases  in  community  trait  value  over  time.  Significant
relationships  between  changes  in  functional  composition  and  changes  in  climate  or
demography are denoted by the linear trend. TV values were standardized with mean zero
and variance one to compare traits. Traits are leaf area (LA), specific leaf area (SLA), wood
density  (WD),  high leaf  dry  matter  content  (LDMC),  Leaf  Thickness  (LT),  Toughness
(LTh), and Density (LD). Size-related plant traits reflecting multiplicative processes were
Log10 transformed (LogLT and LogLA).
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Figure  S3.12. Linear  regressions  between  trait  velocity  community-weighted  skewness
(TV_CWS)  of  each  trait,  the  annualized  rate  of  change  of  each  climatic  variable,  a)
minimum temperature, b) vapor-pressure deficit, c) maximum temperature, d) mean annual
temperature, g) mean annual precipitation. Units of ΔTmin, ΔTmax, ΔMeanT are °C y-1,
ΔMAP is mm y-1, ΔVPD (Kpa y-1). And annualized rate of demographic changes by the
plot e) recruitment rate, f) mortality rate in %. TV equal to zero represents no change over
time. Positive values mean an increase in the trait community value over time. Conversely,
negative  TV values  indicate  decreases  in  community  trait  value  over  time.  Significant
relationships  between  changes  in  functional  composition  and  changes  in  climate  or
demography are denoted by the linear trend. TV values were standardized with mean zero
and variance one to compare traits. Traits are leaf area (LA), specific leaf area (SLA), wood
density  (WD),  high leaf  dry  matter  content  (LDMC),  Leaf  Thickness  (LT),  Toughness
(LTh), and Density (LD). Size-related plant traits reflecting multiplicative processes were
Log10.
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CHAPTER IV

CHANGES IN MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS
OF URBAN TREES IN RESPONSE TO ELEVATED

TEMPERATURES WITHIN AN URBAN HEAT ISLANDS

ABSTRACT

Urban Heat Islands (UHI) are a common phenomenon in metropolitan areas worldwide in

which  the  air  temperature  is  significantly  higher  in  urban  areas  than  in  surrounding

suburban, rural  or natural areas.  Mitigation strategies to counteract  UHI effects  include

increasing tree cover and green spaces to reduce heat. The successful application of these

approaches necessitates a deep understanding of the thermal tolerances in urban trees and

their susceptibility to elevated urban temperatures. We evaluated how the photosynthetic

thermal optimum (Topt),  photosynthetic heat tolerance (T50),  and key leaf morphological

traits differ between conspecific trees growing in “hot [UHI]” vs. “cool” parts of Montreal,

Canada,  to  assess  the  ability  of  seven  common  tree  species  to  acclimation  to  higher

temperatures. We hypothesized that individuals with hotter growing temperatures would

exhibit higher Topt and T50, as well as leaf thermoregulatory morphological traits aligned

with conservative strategies (e.g., reduced leaf area and increased leaf mass) compared to

their counterparts in the cooler parts of the city. Contrary to our a priori hypotheses, leaf

area increased with growing temperatures and only four of the seven species had higher T50

and only three had higher Topt values in the hotter area. These results suggest that many tree

species  cannot  acclimate  to  elevated  temperatures  and that  the  important  services  they

provide, such as carbon capture, can be negatively affected by high temperatures caused by

climate change and/or the UHI effect. The ability vs inability of tree species to acclimate to

high  temperatures  should  be  considered  when  implementing  long  term  tree  planting

programs in urban areas.

Keywords: Thermal  acclimation,  functional  traits,  urban  forest,  climate  change,
physiological responses, photosynthesis, thermal tolerance.
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INTRODUCTION                     

Global warming and urbanization expose organisms to unique environmental conditions

(IPCC  2022).  Urban  areas  have  high  surface  and  air  temperatures,  with  temperatures

generally increasing from rural areas to more densely urbanized city cores. This Urban Heat

Island  (UHI)  effect  exacerbates  heat  stress,  risking  urban  infrastructure  and  human

populations (Tuholske et al. 2021). Mitigation strategies such as the creation of parks and

increasing tree cover, have been proposed to counteract the UHI effect (Karimi et al. 2022).

Nonetheless,  the  efficacy  of  these  strategies  may  be  attenuated  by  the  physiological

tolerances of trees and their ability to avoid heat stress (Teskey et al. 2015). To avoid heat

stress,  urban  trees  must  acclimate  to  higher  temperatures  through  changes  in  their

physiology (e.g., photosynthesis thermal optima or photosynthetic heat tolerance) (Hara et

al.  2021) and/or by adjusting leaf traits  to reduce leaf surface temperatures  (Zhu et  al.

2020).  Unfortunately,  limited  information  on  how  trees  respond  urban  temperatures

(Kullberg and Feeley 2022), limiting our ability to predict their vulnerability to UHIs in a

warming world (Esperon-Rodriguez et al. 2022).

Rather than air temperature,  leaf temperature is critical  for leaf physiological processes

(Cavaleri,  2020). Plants may exhibit plastic responses in leaves to acclimate to warmer

environments,  maintain  leaf  temperature  below  damage  thresholds  and  optimize  net

photosynthetic  CO2 uptake  (Anet)  (Way  and  Yamori  2014,  Crous  et  al.  2022).  Leaf

thermoregulation  is  mediated,  in  part,  by  the  morphological  leaf  traits  affecting  heat

dissipation (Leigh et al. 2017, Fauset et al. 2018). Traits such as leaf area (LA), effective

leaf width (LW), leaf thickness (LT), specific leaf area (SLA), and leaf dry matter content

(LDMC), determines leaf temperatures and therefore its thermal dynamics (Michaletz et al.

2015). In  other  words,  species  with  different  leaf  traits  growing  under the  same air

temperature may experience different  leaf temperatures. For instance,  large,  thin leaves

typically  reach  higher  temperatures  than  smaller,  thicker  leaves  due  to  their  thicker

boundary layer (which influences the heat transfer)  and their  low water content (which

increases the rate of leaf temperature change) (Leigh et al. 2017, Tserej and Feeley 2021).
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Nonetheless,  trees can adjust their  morphological traits to different air  temperatures,  as

evidenced studies of decreased leaf size with increasing temperatures (Zhu et  al.  2020,

Manishimwe et al. 2022). These adjustments enables passive thermoregulation, maintaining

homeothermy by influencing leaf  energy balance and heat  dissipation (Michaletz  et  al.

2015).

Effective  acclimation  to  higher  temperatures  should  lead  to  a  low  or  even  negative

difference between leaf and air temperature (T), where leaves remain cooler than the air

due  to  high  stomatal  conductance  to  water  vapor  (gs)  and  transpiration  (E)  at  high

temperatures  (Blonder et al. 2020). The energy balance theory, useful for modeling leaf

temperatures,  incorporates  environmental  factors  such  as  solar  radiation,  wind,  relative

humidity, and morphological and physiological leaf traits such as gs, E, and LW (Michaletz

et al. 2015), allowing the understanding of how plants adjust and compensate their traits to

regulate internal leaf temperature depending on the environment (Varhmmar et al. 2015).

For  instance,  studies  have shown that  reducing leaf  size and increasing E improve  T

(Varhmmar et al. 2015, Tarvainen et al. 2022). Investigating the  T between individuals

growing in different urban environments, especially within UHIs, offers valuable insights

into the ability of a species to avoid extreme leaf temperatures. 

Photosynthesis is especially sensitive to temperature variation, peaking at a species-specific

optimum before declining at higher temperatures (Varhmmar et al. 2015, Tarvainen et al.

2022).  The  optimal  temperature  for  photosynthesis  (Topt) align  with  the  local  daytime

temperatures, suggesting acclimation or local adaptation (Varhmmar et al. 2015). In urban

environments, we might expect trees whitin the hotter areas to have both higher Topt and

Anet  (constructive  photosynthetic  adjustments)  if  they  acclimate  effectively  to  elevated

growing temperatures caused by the UHI effect. Similarly, photosystem II (PSII) is highly

heat  sensitive  (Baker  2008).  Photosynthetic  heat  tolerances  (PHT),  defined  as  the

temperatures causing irrecoverable PSII damage, can be characterized by the leaf critical

temperature  (Tcrit)  and  the  leaf  thermal  tolerance  (T50  and  T95),  which  indicate  the

temperatures  at  which  PSII  have  initial,  50%  or  95%  of  damage,  respectively,  are

commonly used to predict vulnerability to heat damage  (Perez and Feeley 2020).  Thus,
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higher values of Tcrit, T50, and T95 in the UHI shows the PHT acclimation in response to

elevated temperatures. Although prior studies in urban settings have demonstrated Topt  and

PHT acclimation  to  high  temperatures,  much of  the  research  has  focused on  controlled

conditions in small trees (Hara et al. 2021) and less is understood about how trees respond

to increases in temperature typical of UHI effects. There is therefore a pressing need for

further investigation into the long-term acclimation of photosynthetic heat  tolerances in

mature trees under actual urban conditions.

Here,  we  evaluated  the  acclimation  capacity  of  seven  urban  tree  species  to  higher

contrasting  environments  within  a  temperate  city,  representing  the  hottest  (UHI)  and

coldest  temperature  extremes.  We  addressed  the  following  questions:  QI) is  there  a

response of urban trees to the elevated temperatures within the UHI in their morphological

or physiological traits? We  hypothesized a priori that  HI: If urban trees exhibit distinct

morphological and physiological acclimation in response to elevated temperatures within

UHIs,  traits  should exhibit  significative differences  between the UHI and cooler  urban

environments. 

QII) Are changes in leaf morphological traits allowing for passive thermoregulation within

UHIs.  HII) At higher temperatures, we expect smaller, narrower, and thicker leaves (lower

specific leaf area (SLA), leaf area (LA) and leaf width (LW)) with high dry matter content

(LDMC)  and  thickness  (LT).  These  changes  will  enhance  cooling  due  to  a  smaller

boundary layer allowing for increased vapor diffusion. On the other hand, larger LA and

LW can be expected when plants are increasing the surface area to increase E and gs. 

QIII) Is the T be lower for individuals grown under higher temperatures? HIII) If leaves

acclimate their leaf traits as predicted under HI and HII, we expect a smaller difference

between leaf and air temperature for trees growing in the UHI vs cooler parts of the city.

QIV) Do  trees  acclimate  to  higher  temperatures  within  UHIs  through  physiological

changes  in  their  photosynthetic  thermal  optimum  (Topt) and/or  photosynthetic  thermal
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tolerances (PHT)?  HIV)  Since individuals have developed all  their  life under within the

UHI, they will have higher Topt and/or PTH than individuals from cooler parts of the city. 

METHODS
We conducted the project in the city of Montreal, Canada from July to September 2021.

The city has a warm-summer and humid continental climate (Beck et al. 2018). During the

study period, precipitation ranged between 173,1 mm and 364,6 mm, with July being the

wettest month (https://climate.weather.gc.ca/). The annual precipitation in 2021 was 811,7

mm;  200  mm  less  than  the  multiyear  average

(https://montreal.weatherstats.ca/charts/precipitation-yearly.html).  Furthermore,

temperatures record of 37.8 ± 2.3 °C in the UHI and 34.4 ± 2.1 °C in the coldest part, thus,

maximum temperatures showed a warming of 3.4 °C in the UHI. Mean temperatures were

~23.3 ± 4.3°C and ~22.0 ± 4.6 °C for the UHI and the coldest part of the city, with a

warming of 1.3°C (Table S1). The highest temperatures were recorded in August.  

To identify study sites in the city with the greatest temperature disparities, we referred to

Montreal’s  surface  temperature  map  based  on  satellite  images  of  2020

(https://open.canada.ca/data/en/dataset/dbdfbdba-0725-470d-a23e-da69dbedc4e6).  We

selected two distinct environments for study: the downtown area as the hottest part (the

UHI) and the Botanical Garden of Montreal as the coldest part in the city (Figure 1). The

differences  between  the  two  urban  environments  are  1.3˚C  and  3.4˚C  in  mean  and

maximum air temperature, respectively. The geographical distance between our two urban

environments is ~6.5 km to maintain similar relative humidity and precipitation conditions

and focus on temperature contrast. The Urban Heat Island (UHI) effect in Montreal has

been extensively studied, primarily using ground surface temperature data (Boulfroy et al.

2012, Touchaei and Wang 2015, Wang and Akbari 2016, Roberge and Sushama 2018). As

a result, the hottest areas in the city are well-identified. To capture detailed micro-climatic

conditions within each urban environment, we installed five HOBO data loggers (Onset

UA-002-64) during field data collection, recording air temperature and solar radiation every

30 minutes.
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We deliberately chose public parks in the downtown area and the Botanical Garden due to

the  absence  of  management  actions  (watering or  fertilization),  enhancing the  similarity

between  these  two  sites.  To  further  enhance  the  comparability  of  habitat  conditions

between environments, we specifically focused on park trees and excluded street trees in

the downtown area. 

Thermoregulatory morphological leaf traits
We selected the seven most common tree species across our two urban environments: Acer

platanoides  (ACPL),  Acer saccharinum  (ACSA),  Celtis  occidentalis  (CEOC),  Gleditsia

triacanthos  (GLTR),  Quercus macrocarpa  (QUMA),  Quercus rubra  (QURU) and  Tilia

cordata (TICO). 

We measured six traits important for leaf thermoregulation following the protocol from

Pérez-Harguindeguy et al. (2016): leaf area,  effective leaf width, leaf thickness, specific

leaf area, leaf dry matter content, and leaf absorptance to shortwave radiation.

Leaf  area  (LA)  and  effective  leaf  width  (LW)  are  crucial  traits  in  determining  leaf

temperature. LA is a robust predictor of temperature range and variation within the leaf

(Leigh  et  al.  2017,  Tserej  and  Feeley  2021), while  LW  strongly  influences  the  leaf

boundary layer size and the photosynthetic surface (Leigh et al. 2017). A larger LW, for

instance, leads to increased boundary layer resistance, limiting the exchange of heat and

water vapor between the leaf and the environment. Additionally, wider, and larger leaves

have a higher capacity to intercept and absorb solar radiation, resulting in an elevated leaf

temperature.  Nevertheless,  wider  leaves  generally  exhibit  a  larger  surface  available  for

transpiration,  promoting  cooling  in  species  with  high  transpiration  rates  (Fauset  et  al.

2018). 

Leaf thickness (LT) is a critical trait for thermal tolerance since it determines the leaf's

thermal mass, which plays a vital role in the species' response time to heating (Leigh et al.,

2012).  Thick  leaves  with  high  thermal  mass  exhibit  slower  response  times  to  heating,

thereby avoiding lethal temperatures, and reducing the temperature range unfavorable for

photosynthesis (Leigh et al. 2012). 
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Specific leaf area (SLA) serves as an indicator of leaf economic strategy associated with

photosynthetic capacity. High SLA values indicate a larger surface area available for solar

radiation absorption, which can result in increased leaf temperature (Michaletz et al. 2016).

However, a higher SLA also allows for greater heat exchange with the atmosphere and

increased transpiration (Wright et al. 2001). 

Leaf dry matter content (LDMC) and SLA play fundamental mechanistic roles in thermal

buffering and net carbon gain of leaves (Michaletz et al. 2016). Leaves with higher LDMC

values (high dry mass) exhibit reduced heat transfer permeability but have a higher capacity

to store heat energy. Conversely,  leaves with low LDMC may heat up more rapidly in

response  to  radiation,  leading  to  greater  thermal  instability  (Michaletz  et  al.  2015).

Consequently, SLA and LDMC contribute to maintaining leaf temperature close to optimal

levels for maximizing carbon assimilation (Michaletz et al. 2016). 

Additionally,  we measured  leaf absorptance to shortwave radiation (a),  which indicates

how much radiant  thermal  energy the leaf  can  absorb.  The higher  the absorptance the

higher  the  thermal  energy  absorbed  and  thus,  the  temperature  (Lambers  et  al.  2019).

Finally, stomatal conductance (gs) determines the transpiration capacity of leaves which in

turn influences the cooling effect (Fauset et al. 2018).

To measure thermoregulatory morphological traits, we selected ten (10) mature and healthy

individuals from each species within the hottest and the coldest part of the city (7 species x

10 individuals by species x 2 environments =140 trees). For each tree, we selected those

branches wholly exposed to  the  sun and accessible  from the ground,  and we carefully

collected five fresh,  mature,  healthy,  and fully  expanded leaves  exposed to  direct  sun.

Leaves were stored in wet towels in Ziploc bags in a cooler to avoid dehydration  while

being transported to  the  laboratory of  plant  physiology of  the  Université  du  Quebec  à

Montreal to be processed within 24 hours.     

We measured LT (mm) using a digital micrometer (Mitutoyo, precision 0.0001 mm). To

calculate LA (mm2) and LW (mm), we used the ImageJ software (http://rsbweb.nih.gov/ij/)
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and the LeafArea R package (Katabuchi 2015). LW was calculated as the diameter of the

largest circle capable of fitting within a leaf margin (Leigh et al. 2017). To calculate SLA

(mm2 mg-1) and LDMC (mg g-1), we placed each leaf in a separate paper bag in the oven at

70°C for 72 hours before measuring dry weight using an analytical balance with a precision

of  0.0001  g.  Leaf  absorptance  to  shortwave  radiation (a)  was  calculated  as  a=1-leaf

reflectance-leaf transmittance. 

Leaf  reflectance  and  leaf  transmittance were  measured  with  a  CI-710 Miniature  Leaf

Spectrometer (Bioscience) over 400-1000 nm wavebands (Smith and Nobel 1977).

In-situ gas  exchange  and  photosynthesis  temperature  responses  in  urban
environments
Due  to  the  limited  duration  of  the  summer  and  the  time-consuming  nature  of  the

measurements, we selected a subset of five species from the seven species listed above to

measure  temperature  responses  of  the  light-saturated  photosynthetic  rate  (Anet):  ACSA,

CEOC, GLTR, QURU,  and TICO.  We randomly selected five individual trees from each

species in each environment (except for CEOC with three individuals). We selected low

branches in each tree with leaves reachable from the ground, and one to three sun-exposed

mature leaves from each tree to complete the temperature response curve following the

general protocol of Slot and Winter (2017) (see Perez and Feeley 2020).

All leaves were measured in-situ using a LICOR-6400 XT portable photosynthesis system

(Licor,  Lincoln,  NE, USA). First,  we measured leaf temperature with a digital  infrared

thermometer HT826 (CA, USA) to set the cuvette temperature at the same value, and then

the leaf was allowed to acclimate to the chamber environment. All the measurements were

done using the same parameters: the reference [CO2] was fixed at 400 ppm, the irradiance

at the leaf surface at 1200 µmol photons m-2s-1, the sample chamber’s relative humidity 

50-60%, and a  temperature treatment  ranging from 20 to 40  °C,  incremented by 2 °C

intervals. Next, we visually inspected stabilization on these parameters to measure carbon

assimilation rates (µ mol m-2s-1) and stomata conductance (gs) when the leaf was wholly

acclimated to each target temperature. To increase the range of leaf temperature with the

LICOR-6400  XT,  we  used  a  combination  of  ambient  daytime  temperatures  variation
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between 9:00 and 15:00 h, and manipulation of block temperature of the Peltier-controlled

leaf  cuvette  (Slot  et  al.  2019).  We always measured  photosynthesis  on  sunny days;  in

addition, while measuring photosynthesis, we also measured gs and transpiration (E) in situ.

The temperature response of the light-saturated photosynthetic rate was fitted according to

the model presented in June et al. (2004) and adapted by Slot and Winter (2017). 

P(T)= P Opt∗e
−(TLeaf−TOpt

Ω )
2

Where  P(T)  is  the  net  photosynthesis  per  unit  leaf  area,  P Opt is  the  optimal  carbon

assimilation. TLeaf  is the leaf temperature. Ω describes the width of the curve’s peak and is

the difference between T Opt  and the temperature at which P Opt drops by about 37% of its

value at TOpt.

Photosynthetic Heat Tolerance (PHT)
Mature  leaves  were  harvested  for  focal  trees  (same  10  individuals  chosen  for

thermoregulatory morphological leaf traits)  in the morning and were processed for heat

tolerance between 10:00 and 16:00 h local time. We used FV/FM values to estimate the PHT

following  established  protocols  (Perez  and  Feeley  2020,  Feeley  et  al.  2020).  The

temperature at which PSII performance begins to decrease is the critical temperature (Tcrit),

the temperature at which ≥ 50% irrecoverable damage is T50, and the temperatures that leads

to 95% irreversible and nearly complete heat damage to PSII is T95 (Perez et al. 2021).

To ensure the health of the samples, we measured the initial status of each individual leaf

using the handheld fluorometer OS30P+  Opti-Science,  (Hudson, NH, USA). Five leaves

from each individual tree were dark-adapted for 20 min. In the case of compound leaves, a

random  leaflet  was  chosen.  After  dark  adaptation,  we  measured  initial  fluorescence

emission  (F0)  and  maximum  total  fluorescence  (FM)  to  calculate  the  ratio  of  variable

fluorescence (FV) as FM- F0 to maximum leaf fluorescence as FV/FM. We ensured that FV/FM

was ~0.8 to continue the process. Subsequently, we cut leaf discs of ~2.0 cm in diameter

using a hole punch, avoiding the central veins. For each temperature treatment, we placed

three discs from each individual in Miracloth fabric to prevent anaerobiosis during the heat
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treatments (Perez and Feeley 2020); one layer of Miracloth covered the adaxial surface and

three layers covered the abaxial disc surface. Each  Miracloth  packet was placed inside a

waterproof Ziploc plastic bag (removing the air), and completely submerged for 15 min in

preheated circulating water baths fixed at 22.0, 40.0, 42.2, 44.5, 47.0, 49.3, 51.5, 53.2 and

56.5 °C. Overall, we analyzed three discs by temperature per individual  from both urban

environments for a total of 3,780 leaf discs. After the 15 min temperature treatment, we

placed the discs into Petri dishes with moist towel paper to avoid dehydration. We allowed

them to recover for precisely 24 hrs. under low light and ambient temperature of ~24˚C. At

the end of the recovery period, we dark-adapted the discs for 20 min to measure the final

FV/FM.        

To estimate PHT for each species in UHI and the coldest part of the city, we modeled the

relationship of FV/FM  vs. treatment temperatures for each tree using a logistic non-linear

least  squares  model  with  the  “nls”  function  in  the  stats R  package  (Core  2021).  We

calculated  T50  by  predicting  the  temperature  that  caused  damage  in  the  50%  of  PSII

efficiency compared to the control temperature as:  

T50 = 1
1+exp(−¿(2+3∗Temperature ))¿   

Where 1 is the control treatment (FV/FM  0.8) and 2 and 3 are the intercept and slope from

the logistic model (Perez and Feeley 2020). We generated bootstrapped means and 95%

confidence level intervals of T50 by reiterating (with replacement) 100 times the nls model

for each tree. Using the same model, we calculated Tcrit and T95 as the temperature value

where the FV/FM  begins  to decline with 15% and 95% of PSII efficiency,  respectively,

compared with the control temperature. 

Leaf temperature modeling
We employed the leaf-scale energy balance model (Campbell and Normal 1998) to predict

the temperature of a horizontal sun-exposed leaf and quantify how leaf-to-air temperature

differences  vary in  response to  urban environments.  The model  assumes that  the leaf's

thermal radiation is balanced mainly by latent heat loss, sensible heat loss, and emitted
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thermal  radiation.  Consequently,  the  leaf  temperature  can  be  effectively  modeled  by

considering a combination of environmental factors and thermoregulatory traits. 

To parameterize the leaf energy balance model, we used LW, gs, and leaf absorptance (a).

As environmental factors, we used the air temperature, relative humidity (%), and wind

speed (ms-1) recorded using a digital anemometer Hyelec MS6252A (UK) when measuring

the photosynthesis temperature response curves. Additionally, we used the solar irradiance

which was collected with the HOBO data loggers located in the sampled trees in each urban

environment. The model to calculate leaf temperature is described as:

Tl=Ta+ γ∗¿
s+γ∗¿¿¿

¿

Where Tl is the leaf temperature calculated with the model (°C), Ta is air temperature (°C),

s is  the slope of  the saturation pressure curve, Rni  is  the  isothermal  net

radiation incident upon a leaf (W m-2) (i.e., the net radiation that the surface would receive

if it had the same temperature as the air). gHR is the sum of boundary layer conductance (

gHa¿ and radiative conductance (gr ¿ (mol m-2 s-1),  Cp is the heat capacity of dry air at

constant  pressure  (29.3,  Jmol-1C-1),  VPD  is  vapor  pressure  deficit  (KPa)  and  ρis  the

atmospheric pressure (101.3xe(altitude /8200) ,KPa), γ∗¿ is the modified psychrometric constant

determined  from  the  ratio  of  combined  boundary  layer  and  radiative  conductance  to

stomatal  conductance  (Campbell  and Norman,  1998,  Perez and Feeley 2020).  For  the

calculation of the model, γ∗¿, Cp, ρ were constants. γ∗¿ can be calculated by multiplying

the psychrometric constant (γ=¿6.66 x 10-4 C-1) by the ratio of the radiative conductance (

gHR) to the boundary layer conductance of water vapor (gwv). gHR= gHa+ gr, where gHa

is the boundary layer conductance for heat described as gHa= 1.4 x 0.135 2√u/d , u being the

wind speed and d the effective leaf width in meters; and gr is the radioactive conductance

defined as  gr =  4 σTa
Cp  ,  σ  being  the  Stefan-Boltzmann constant in W (5.67 x 10-8). The
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boundary layer conductance of water vapor (gwv) is defined as  
0.5∗( gs

2 )∗gva

( gs
2 )+gva

, where the

boundary layer conductance for vapor is gva = 1.4 x 0.147  2√u/d (Campbell & Norman,

1998, Perez and Feeley 2020). 

Data analysis
We ran a correlogram to detect autocorrelation in the time series of air temperature in each

urban environment (Figure S1). We then fitted ARIMA models separately to the two-time

series  (air  temperature  in  the  hottest  and coldest  city  areas).  Subsequently,  we used  a

Wilcoxon-test for non-normal distribution to compare the residuals between the two models

to detect significative differences. We ran the analysis for the mean air temperature (Tair_Mean

(˚C)), daytime air temperature (Tair_dayMean  (˚C)), daytime maximum temperature (Tair_dayMax

(˚C)), and night temperatures (Tair_nightMean (˚C)).

To assess our first question (QI:  is there a response from of urban trees to the elevated

temperatures within the UHI in their morphological or physiological traits?), we compared

all the measured traits between urban environments. We conducted a nested analysis of

variance (nested ANOVA) using mixed effect models through the lmer function from the

"lme4 " package in R (Bates et  al.2015).  In the model,  the urban environment  (hottest

[UHI] and coldest) was treated as a fixed effect, while species were considered a random

effect. Size-related plant traits with power-law growth rate of the form Y = axb (LA, SLA,

LT,  LW),  were  log10  transform  to  normalize  trait  distribution.  We  used  the  “Anova”

function from the “car” R package (Fox 2019) to compute the F-statistic and the degrees of

freedom  using  the  Kenward-Roger  method.  The  p-value  was  calculated  using  the

“lmerTest”  R package (Kuznetsova  et  al.  2017).  For  mean comparisons,  we employed

Tukey's test using multcompt package in R (Hothorn et al.2008). ANOVA assumptions

were tested to run the model. 
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Next, we investigated whether the thermal adaptation responses to temperature variations

between  the  urban  environments  are  species-specific  (QII).  Because  we  employed  a

hierarchical  sampling  design,  measuring five  leaves  from five individuals  across  seven

species in two urban environments,  we used a  nested ANOVA, with the interaction of

species and urban environment as fixed effect and individuals’ identity as random effect to

account  for  intra-individual  variation.  The  p-values  and  the  degrees  of  freedom  were

calculated using “lmerTest” and “car” packages respectively. This analysis enables us to

assess the effect  of the urban temperature variation on thermoregulatory morphological

traits  by species  and determine whether  trees  have  developed passive thermoregulatory

mechanisms through plastic changes in leaf traits. 

To evaluate how much the tree species regulate leaf temperature and how leaf temperature

varies from air temperature depending on the urban environment (QIII), we graphically

compared the theoretical leaf temperature calculated with the energy balance model versus

the  observed  leaf  temperature.  After,  we  ran  a  mixed  analysis  of  covariance  (mixed

ANCOVA)  using  air  temperature  as  covariable  and  individuals’  identity  as  random

component  to  quantify the difference between the modeled leaf  temperature within the

hottest and coldest area using air temperature as a covariable. A higher decoupling of leaf

temperature from air temperature could suggest difficulty in plant thermoregulation and

acclimation.

To  address  QIV  (Do  trees  acclimate  to  higher  temperatures  within  UHIs  through

physiological changes in their photosynthetic thermal optimum (Topt) and/or photosynthetic

thermal tolerances (PHT)?) we used a two-way ANOVA to assess if tree species are showing

physiological acclimation signals to higher temperatures within the UHI. In this case, first,

we  evaluated  the  effect  of  the  urban environment  and tree  species  on  the  variation  in

thermal tolerance (T50, Tcrit, and T95). Employing this analysis, we are able to assess the

separated effect of each factor, and whether the effect of the urban environment on traits

varies  depending  on  the  tree  species.  For  post-hoc  comparisons  between  urban

environments, we employed the emmeans test. To account for multiple comparisons, we

applied the Bonferroni correction using the emmeans R package (Lenth et al. 2019). The
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emmeans  test  is  particularly  suitable  for  analyzing  imbalanced  data  by  adjusting  the

standard  errors  (SE)  that  arise  due  to  variations  in  the  number  of  observations.  The

normality and homoscedasticity assumptions were tested before conducting the analyses. 

To analyze if there are signs of physiological acclimation in the photosynthetic thermal

optimum (Topt). We used Welch’s t-test to evaluate the effect of urban environments on

variation  in  Topt.  This  analysis  calculates  the  degree  of  overlap  of  the  SE for  Topt and

optimal  carbon  assimilation  (Popt)  (Tarvainen  et  al.  2022).  This  test  is  appropriate  for

situations where the variances of the two groups are different, and the sample size between

groups is unequal (case of CEOC). The fitted parameters of the model were significantly

different when the test was higher than the cero, as described in the following equation. 

|x 1−x2|−2.99×√(SE¿¿12+SE2
2)¿>0

Where x1 and x2 are the two parameters fitted with the model (e.g., Popt, Topt) in each urban

environment. The constant 2.99 is the t-score corresponding to P=0.05 after adjustment to

account for the multiple comparisons. SE1 and SE2 are the standard errors of the values' fit

(Tarvainen et al. 2022). 

Furthermore,  we  analyzed  the  differences  in  both,  stomatal  conductance  (gs)  and

transpiration (E) using a two-way ANOVA and Tukey’s test as pos-hoc method. 

All the analyses were performed using the  R version 4.0.0 (R Development Core Team

2021).

RESULTS

Micro-urban climate
According to the Wilcoxon-test on the residuals of the ARIMA models, all air temperature

variables (Tair_Mean, Tair_dayMean, Tair_dayMax, Tair_nightMean) exhibited significantly larger values in

the hotter part of the city, indicating the effect of temperature variation and the presence of

the UHI (Figure S2, Table S1). Particularly, the maximum air temperature, crucial for tree
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functioning,  exhibited  the  greatest  disparity  between  environments  (Figure  2).  With  a

warming of 3.4 °C in the UHI. 

Effects of heat on thermoregulatory traits
The nested ANOVA analysis revealed that temperature significantly influences the LA,

SLA and LW of the selected species (Table 1). Showing that thermoregulatory leaf traits

related with area were particularly sensitive to temperature variation between the UHI and

coldest parts of the city. On the other hand, when we analyzed the effect of the temperature

and  the  species  on  changes  in  thermoregulatory  morphological  traits  using  the  nested

ANOVA,  our  results  indicated  that  the  responses  to  elevated  temperatures  are  highly

species-specific (Figure 3). From all the traits, SLA had the highest intra-specific variation

between the UHI and coldest areas, where five of the seven species showed significant

increases within the UHI (Figure 3b).   Regarding other traits,  LT presented significant

differences between the two environments in four of the seven species, with higher values

within the UHI (Figure 3e). The LA showed increases within the UHI in three of the seven

species  (Figure  3a)  but  was  the  trait  with  the  largest  variation  within  the  hottest  part

compared to the same species within the coldest part of the city (Table S2). These results

indicate that elevated temperatures highly affect morphological traits related to leaf area

and mass. Finally, LDMC and LW were less affected by the temperature differences in the

urban environment (Figure 3c, d). 

Modeled leaf temperature
We compared  modeled  leaf  temperatures  to  air  temperatures  in  both  the  UHI  and  the

coldest parts of the city to evaluate individuals' thermoregulation capabilities. Our analysis

revealed that leaf temperatures for individuals in both the UHI and coldest part of the city

consistently exceeded air temperatures (Figure 4). Notably, individuals located in the UHI

exhibited even higher leaf temperatures than individuals in the coldest part of the city. The

slopes of the relationship between leaf temperature differed significantly between the two

urban  environments  (mixed  ANCOVA  P-value  <  0.005).  Despite  higher  rates  of

transpiration  and stomatal  conductance  observed within  the  UHI  for  nearly  all  species

(Figure  5),  leaf  temperatures  remained  elevated  compared  to  air  temperatures.  This
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indicates  that  heightened  temperatures  necessitate  tree  species  to  enhance  evaporative

cooling (E) and stomatal conductance (gs), yet leaf acclimation to these conditions appears

limited.

Photosynthetic Heat Tolerance (PHT)
Overall,  we  anticipated  that  all  species  would  demonstrate  increased  PHT as  a  typical

response  to  elevated temperatures  and heat  acclimation.  However,  our  nested  ANOVA

revealed no significant PHT parameters (T50, Tcrit, and T95) as a general effect of temperature

over all species together (Table 1). Upon examining the logistic models of Fv/Fm in relation

to temperature for each species between urban environments, we observed physiological

acclimation  in  the  T50  only  in  ACPL  and  ACSA  to  urban  elevated  temperatures.

Conversely, QUMA and TICO displayed significantly lower heat tolerance in the hottest

part of the city, while CEOC and GLTR exhibited nearly identical T50 in both environments

(Figure  6,  S3a,  Table  S3).  Thus,  only  four  of  the  seven  species  displayed  significant

differences  between  urban  environments,  with  only  two  showing  T50 acclimation.

Furthermore, the T50 values for the seven urban tree species were around ~50°C, suggesting

a likely upper limit by in PHT temperature. The significant results at the species level, along

with  the  lack of  significance  in  the  nested ANOVA conducted  with  the mixed model,

suggest that certain species exhibit specific adaptations, whereas there may not be a general

response across all species to elevated urban temperatures. This underscores the importance

of  species-level  analyses  in  comprehending  the  impact  of  urban  environments  on  tree

thermal tolerance.

Temperature responses of in-situ gas exchange and photosynthetic thermal optimum
(Topt)
Although Topt was not statistically significant in our nested ANOVA (P-value = 0.06), the

marginal value suggests a trend of change among individuals located in different urban

environments  (Table  1,  Table  S3).  The  Welch’s  t-test,  which  analyzed  intra-specific

differences between urban environments, revealed significant differences among three of

the  five  species  selected  to  measure  in-situ photosynthetic  responses  to  temperature

between the UHI and coldest parts of the city (Figure 7, S4a). Specifically, ACSA, CEOC,
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and TICOR exhibited higher Topt values in the UHI compared to the coldest part of the city,

indicating photosynthetic thermal acclimation to elevated temperatures. On the other hand,

Popt was significantly higher in the UHI for ACSA and CEOC, but significantly lower for

QURU and TICOR (Figure 7, S4b). The results, wherein species with higher Topt values

showed lower Popt in  the UHI,  suggest that an increase in  Topt  by acclimation does not

necessarily lead to an increase in carbon assimilation.  

Furthermore,  significant  differences  were  observed between urban environments  for  all

species in both transpiration (E) and stomatal conductance (gs),  except for E for TICO

(Figure 5). ACSA, CEOC, and GLTR exhibited higher E and gs in the UHI, likely as a

mechanism  to  facilitate  cooling  and  sustain  optimal  carbon  assimilation.  Conversely,

QURU and TICO displayed a slight decrease in both E and gs within the UHI, likely,

indicating the plants' active response to mitigate dehydration (Figure 5a, b).

DISCUSSION 

Urbanization  significantly  modifies  the  thermal  environment  for  plants,  impacting their

physiological adaptation (Zipper et al. 2017). Greenhouse studies have documented plastic

changes  in  leaf  traits as  a  response to  increased  urban temperatures (Hara et  al.  2021,

Okubo et al. 2023). Yet, field studies involving mature trees are scarce. This study assessed

plants’ thermoregulatory strategies and acclimation capacity in mature trees within the UHI

and how affect their physiology. Overall, our results using the city of Montreal as scenario,

suggest  that  urban  tree  species  have  different  ways  of  thermoregulating.  One  type  of

response  we  observed  in  our  tree  species  to  temperature  increases  was  passive

thermoregulation by adjustments in leaf morphology, mainly those related with area such as

leaf  area  (LA),  specific  leaf  area  (SLA),  but  also  those  involving  mass,  such  as  leaf

thickness  (LT).  Another  type  of  response  was  through  an  active  thermoregulation  by

acclimating  photosynthetic  thermal  optimum  (Topt).  Although  we  did  not  measure

metabolism directly, it is important to note that changes in photosynthesis inevitably imply

adjustments  in  metabolic  processes  (Yamori  et  al.  2014).  Finally,  photosynthetic  heat

142



tolerance (measured as Tcrit,  T50, T95), did not show general trend of changes between UHI

and the coldest part of the city. Although, this trait tends to be more conserved and retain its

evolutionary climatic affinities (Bennett et al. 2021), it also has high adaptability and can

show  plastic  changes  under  elevated  temperatures  (Zhu  et  al.  2018).  We  argue  that,

perhaps,  this trait  is  not yet experiencing sufficient thermal  stress to acclimatize across

species.  In  fact,  although  two  species  showed  increased  T50,  other  species  showed  a

decreased T50 in the UHI. Our results also indicate the species-specific nature of thermal

acclimation,  underscoring  the  necessity  for  individualized  species  assessment  in  urban

planning. 

Previous studies show that slight increases in temperature, such as 0.78 to maximum 2.8 °C

provoke significant modifications in physiological prosses such as photosynthesis, as well

as morphological traits (Zhu et al. 2020, Wei et al. 2023). In our study using actual urban

microclimates, the maximum air temperature exhibited a difference of 3.4°C between the

urban heat island (UHI) and the coldest parts of the city, which proved to be a critical factor

influencing  plant  functioning.  This  slight  temperature  difference  was  enough  to  reveal

significant  physiological  and  morphological  responses  in  urban  trees,  similar  to  those

observed in previous studies, but evaluated in the specific context of urban environments.

Changes in morphological leaf traits
Plants  may respond to changes in  temperature by adjusting their  growth strategies  and

altering association among traits (Reich 2014). Because plant strategies are closely linked

to resource acquisition and use, their variation is an important indicator of possible plant

acclimation (Li et al. 2018, Wang et al. 2022). Within the UHI, we found significant shifts

for traits related to the area (LA, SLA, LW) and leaf thickness as a possible response to

warmer urban temperatures, supporting our first hypothesis. However, the pattern of change

in morphological  leaf  traits  was contrary to  our  expectations  in  the second hypothesis.

Instead of exhibiting shifts towards conservative strategies (lower values  of area-related

traits), plants shifted towards acquisitive strategies within UHI (greater LA, SLA LW, and

an increase in thickness).
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In our case, larger values of LA, SLA and LW within the UHI may act as a mechanism to

enhance the cooling effect through increased transpiration, thereby helping to mitigate leaf

overheating  (Fauset et al.  2018, Kim et al.2024, Ji-yougn et al. 2024).  The increases in

traits  related  with  leaf  area  are  supported  by  increases  in  stomatal  conductance  and

transpiration  values  for  species  with  larger  leaf  areas  within  the  UHI  (e.g.,  Acer

saccharinum,  Celtis  occidentalis,  Gleditsia  triacanthos)  (Figure  5).  These  coordinated

increases  in  leaf  traits  likely  result  from an  environment  with  rising  temperatures  but

without water stress (Ibsen et al. 2023). Therefore, larger leaves can stay cooler and lose

more heat through transpiration when there is sufficient water and adequate levels of solar

radiation creating a unique plasticity pattern (Leigh et al. 2017, Ibsen et al. 2023). While

municipal crews manage and water newly planted trees, this is not the case for mature trees,

like  those  in  our  study.  To  account  for  potential  differences  in  water  availability,  we

specifically selected park trees, which are less likely to access supplemental water from

nearby infrastructure. Thus, the rainfall in the city, particularly during the wettest months

(May-September, totaling ~866 mm of precipitation), likely provides sufficient water to

prevent drought stress in these trees (https://climate.weather.gc.ca/). 

Leaf  thickness,  instead of  increasing,  decreased significantly for  the same species with

higher SLA within the UHI (Figure 3). SLA, a measure of the light-capturing area relative

to biomass investment, tends to increase under elevated temperatures, allowing plants to

enhance photosynthesis  and cooling through transpiration (Xu et al.2023).  Furthermore,

thinner leaves with higher SLA values are typically less costly to produce and can dissipate

heat more effectively, especially when there is no water limitation (Ibsen et al. 2023). In

urban areas with higher temperatures but sufficient water supply (such as through regular

precipitation), plants might regulate heat by growing thinner leaves with increased SLA and

optimize for light-capture, particularly in areas with taller buildings that create varying light

dynamics. These plastic shifts in leaf traits are consistent with findings on urban trees,

where  trees  increasing  simultaneously  carbon  gain  and  the  water  transport  capacity,

indicating that urban trees can alter the water-use strategy meeting atmospheric demands

(Ibsen  2023,  Yin  et  al  2024,  Rahman  et  al  2020).  While  this  study  focuses  on  leaf

morphological  traits,  it  is  important  to recognize that other physiological and structural
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traits, such as stomatal density, cuticular conductance, turgor loss point, and wood density,

may also exhibit  plasticity  in  response to  temperature variation in urban environments.

Further research into plastic responses of trees should investigate these traits along with a

set of other environmental factors, such as humidity, wind speed, solar radiation, and water

access, to fully understand the mechanisms plants use to offset high temperatures in urban

environments.

Thermal tolerance (PHT) and Photosynthetic thermal optimum (Topt)
The relationship between leaf temperature and photosynthesis is pivotal for understanding

plant  physiological  acclimation  within  UHI and how elevated  temperatures  affect  CO2

uptake in cities  (Meineke et al. 2016, Percival, 2023). Each of the urban tree species we

analyzed  had  a  unique  photosynthetic  acclimation  response,  highlighting  the  species-

specific nature of physiological acclimations. A. saccharinum and C. occidentalis showed a

significant  acclimation  on  Topt,  also  reflecting  a  higher  photosynthetic  rate  at  higher

temperatures.  This  aligns  with  previous  findings  showing  that  urban  flora  can  exhibit

enhanced photosynthetic capacity at elevated temperatures due to acclimation (Hara et al.

2021). This particular response implies that these species might have an inherently high Topt,

making them less sensitive to UHI effects. The photosynthetic acclimation of these species,

coupled with higher stomatal conductance and transpiration, reflect higher metabolism in

response to warming, such a response ensures better photosynthetic performance within

UHI  (Drake et al. 2018, Dusenge et al. 2019). However, it may also indicate that these

species would not be  able to maintain photosynthetic rate if high temperatures join with

water deficit (Hara et al. 2021).

T. cordata exhibited a significantly higher optimal temperature for photosynthesis (Topt)

within  the  UHI,  but  its  net  photosynthesis  (Anet)  decreased  substantially.  This  suggests

either limited acclimation capacity  (Kullberg and Feeley 2022) or that acclimation alone

cannot  fully  offset  the  effects  of  rising  temperatures,  as  it  may not  provide  additional

physiological  benefits  (Way  and  Yamori  2014).  As  a  result,  Topt acclimation  does  not

always improve Anet at elevated temperatures (Dusenge et al. 2019), and some species may

even experience reduced growth in warmer environments (Meineke et al. 2016). A similar
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pattern was observed for Q. rubra; despite showing no acclimation in Topt, Anet was also

significantly lower at  elevated temperatures within the UHI. Both species demonstrated

significantly reduced transpiration and stomatal  conductance in  the UHI,  which can be

attributed  to  their  water-use  strategy,  being  both  categorized  as  isohydric  species

(Leuschner et al. 2019, Di lorio et al. 2024). Species with this water-use strategy exercise

strict  control  over  their  internal  water  status  by  closing  stomata  in  response  to  high

temperatures or limited water availability, which may result in photosynthesis being limited

by  CO2 supply.  In  these  cases,  rising  temperatures  can  result  in  increased  rates  of

photorespiratory CO2  release exceeding the carboxylation rates, causing decreases of Anet

beyond an optimal temperature to which net photosynthesis is acclimated (Teskey et al.

2015).

Contrary  to  our  hypothesis,  we  did  not  find  that  photosynthetic  heat  tolerance  (PHT),

particularly T50, acclimates to higher temperatures within the UHI as a general response for

all the species, similar to previous studies developed in urban areas (Kullberg and Feeley

2022). Only A. platanoides and A. sacharinnum showed acclimation in their T50 within the

UHI. On the other hand, the declining of T50 for Q. macrocarpa and T. cordata within the

UHI, suggests that these species may be more susceptible to heat stress. It has been proved

that PHT  acclimates to seasonal temperature variation and to sustained changes in growth

temperature,  remarking that  PHT  is  highly  temperature  dependent  (Zhu et  al.  2018).  To

assess acclimation, it is crucial to evaluate the upper thermal limits of both leaf and air

temperatures. In our study, we observed that the PHT thresholds for nearly all species are

close to ~50°C, while summer air temperatures within the UHI rarely surpass 40°C. Given

this discrepancy, the prevailing air temperatures do not appear to reach the necessary levels

to induce thermal stress to drive acclimation of PHT. As such, the relatively moderate urban

warming observed in our case is insufficient to trigger or elucidate plant acclimation in this

trait. Further studies in environments with more extreme urban heat or under experimental

warming conditions may be necessary to understand the potential for thermal acclimation in

these species fully. 

Leaf energy balance within UHI
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Leaf temperature modeling revealed that the disparity between leaf and air  temperature

(ΔT)  was more  pronounced for  individuals  located within  the urban heat  island (UHI)

compared to those in the coldest part. This observation suggests that trees within the UHI

may not be developing the capacity to acclimate to higher temperatures by adjusting their

leaf energy balance.  Our analysis of variation in morphological and physiological traits

demonstrated changes in leaf morphology, such as increased leaf area and width within the

UHI, as well as alterations in leaf physiology, including elevated transpiration cooling rates

(E) and stomatal conductance (gs). These mechanisms play a crucial role in maintaining

cellular  homeostasis  and  metabolic  function  under  heightened  thermal  conditions

(Michaletz et al. 2015, Michaletz et al. 2016). However, the active augmentation of E and

gs does not fully offset the elevated temperatures to achieve complete acclimation to local

conditions.

Leaf energy balance is governed by sensible and latent heat exchange, with the latter being

regulated by plant available water,  stomatal conductance,  and leaf-to-air  vapor pressure

deficit (Still et al. 2019). Consequently, in an urban setting such as ours, plants within the

UHI will require greater water availability to withstand heat stress and potentially develop

acclimation mechanisms. It is conceivable that if heat stress coincides with drought, stress

levels in tree species will be exacerbated (Esperon-Rodriguez et al. 2021), and acclimation

may  not  be  feasible  as  drought  reduces  stomatal  conductance  and  latent  heat,  thereby

increasing leaf temperature. Urban water supply is often provided during establishment,

when  individuals  are  most  susceptible  to  water  constraints  (Roman  et  al.  2014).  Our

findings underscore the importance of ensuring adequate water supply for mature trees as

well,  enhancing  their  acclimation  capacity  and  cooling  effect  in  warmer  locales.  This

ensures that trees can continue to provide the ecosystem services upon which we rely now

and in the foreseeable future.

Conclusion
As cities continue to warm due to climate change, particularly within urban heat islands

(UHIs), understanding how urban trees acclimate to these novel conditions is crucial for

urban planning (Teskey et al. 2015, Percival 2023). Our study on urban tree acclimation to
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elevated  temperatures  revealed  highly  species-specific  responses,  highlighting  the

complexity of plant adaptation in urban environments. We found that both leaf area and

specific  leaf  area  (SLA)  increased,  while  transpiration  rates  rose,  and  leaf  thickness

decreased.  Interestingly,  only  a  subset  of  species  showed  acclimation  in  optimal

photosynthetic temperature (Topt), associated with an increase in Anet; meanwhile, some

species,  although  acclimating  the  Topt,  show  decreases  in  Anet.  This  highlights  that

photosynthetic acclimation to higher temperatures does not necessarily imply an increase in

Anet. Species with more conservative water use strategies, such as isohydric species, tend

to  decrease  carbon  sequestration  significantly  due  to  stomatal  control  under  urban

environments  with  elevated  temperatures.  Overall,  urban  tree  species  exhibited  no

acclimation in photosynthetic heat tolerance (T50), likely due to the substantial  thermal

margin  between  their  PHT  values  and  the  ambient  air  temperatures,  which  remained

approximately 10°C lower.  This significant buffer suggests that  the air  temperatures in

urban environments do not impose sufficient thermal stress to trigger acclimation in this

trait. 

These findings together suggest that urban trees may prioritize strategies for leaf cooling,

such as expanding leaf area and enhancing transpiration, rather than conserving water or

thickening leaves in hotter, more humid climates. While our focus was on temperature,

other  factors  like  CO2 levels,  irrigation,  and soil  conditions  could  also  influence  these

plastic responses. Future research should explore additional traits related to leaf acclimation

—such as stomatal density, cuticular conductance, and water-use efficiency—to develop a

more  comprehensive  understanding of  urban plant  responses  to  UHI.  Our  study offers

valuable insights, but we are aware that it was conducted over just one year. Long-term

studies  are  encouraged  to  assess  how  plastic  responses  evolve  across  different

environmental conditions, which would help forecast more accurate tree responses to urban

stressors and UHI.
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Table 4.1. Analysis of variance table for the nested ANOVA of plant functional traits and
urban environments (Urban Heat  Island [UHI] and the coldest part  of  the city).  In  the
ANOVA,  urban  environment  (hot-cold)  was  included  as  fixed  effects  and  species  are
included as a random effect. The degrees of freedom (DF) were calculated using Kenward-
Roger method.  DF_random considers the structure of the random effects in the model. DF_fixed

is 1 for all the models because the fixed effects are two treatments (hot-cold).

Type of trait Trait Units  F-statistic P-value DF_random

Morphologic LA  mm2 44.7 <0.001 643.06
Morphologic LW  mm 21.5 <0.001 643.02
Morphologic SLA mm2 mg-1  5.011 0.02 643.17
Morphologic LDMC  g g-1 3.20 0.07 643.41
Morphologic LT mm  4.14 0.04 643.09

Photosynthetic Topt C̊ 3.55 0.06. 34.7
Photosynthetic Popt  μmol CO2 m−2s−1 0.03 0.8 34.5

Thermal Tcrit C̊ 1.0 0.31 127.84
Thermal T50  C̊ 0.47 0.40 127.15
Thermal T95  C̊ 2.90 0.08 127.12
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Figure 4.1)  Location  of  the two urban environments  within the  city  of  Montreal.  The
hottest part of the city (UHI) is located in the downtown (brown circle) and the coolest part
is located in the Botanical Garden (blue circle). The color scale from blue to red represents
the  surface  temperature,  where  blue  is  the  coldest  temperature  and  red  is  the  hottest
temperature.  Tree  species  are  represented  by  symbols  and  starts  representing  the
meteorological station from the municipality in each environment
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Figure 4.2) Maximum air temperature (ºC) data within the hot vs cold sites in Montreal,
Canada, from July to September 2021. Wilcoxon-test  is  made with the residuals of the
ARIMA models.  
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Figure 4.3) Variation in leaf morphological thermoregulatory traits between environments
(Hot vs Cold) per specie in A) leaf area (LA), B) specific leaf area (SLA), C) effective leaf
width (LW), D) leaf dry matter content (LDMC), and E) leaf thickness (LT). Each box
shows one species per environment, the line within each plot represents the median, the
upper and lower limit of the boxes represent the 75th  and 25th percentile, and the whiskers
the 90th and 10th percentiles. Red boxes denote the hottest part of the city (the Urban Heat
Island [UHI]), and blue boxes the coldest part of the city. Asterisks between boxes indicate
significative  differences  resulting  from  the  post  hoc Tukey  analysis  between  urban
environments.  The  species  are  Acer  platanoides  (ACPL),  Acer  saccharinum  (ACSA),
Celtis  occidentalis  (CEOC),  Gleditsia  triacanthos  (GLTR),  Quercus  macrocarpa
(QUMA), Quercus rubra (QURU) and Tilia cordata (TICO).
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Figure 4.4)  Energy balance estimations for leaf temperature (LT Energy balance) vs. air
temperature. Colors denote the urban environment. Red figures denotate trees in the hottest
part of the city and blue figures are trees in the coldest part of Montreal, Canada. The black
dash is the y = x line. The mixed ANCOVA test to assess differences between the two
slopes was P< 0.005.
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Figure 4.5) Between sites variation in A) Transpiration (E), and B) stomatal conductance
(gs). Data are shown as mean ± SE of the values. Asterisks indicates significant differences
between urban sites within each specie (P<0.05). Statistical comparisons were made using
Tukey’s honestly test. Abbreviation of species indicates Acer saccharinum (ACSA), Celtis
occidentalis (CEOC),  Gleditsia  triacanthos (GLTR),  Quercus rubra  (QURU) and  Tilia
cordata (TICO).
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Figure  4.6) Non-linear  least  square  models  (nls)  between  FV/FM  and  temperature  to
determine photosynthetic heat tolerance (PHT) for each specie by the environment. Grey
dots represent individual leaf discs. The Vertical continuous line represents T50 and dashes
lines Tcrit.  The blue fit denotes the coldest part of the city (cold), and the red fit denotes the
urban heat island (UHI). 95% confidence intervals were calculated using 1000 bootstrapped
temperature-  Fv/Fm  nls  models.  The species  are  A)  Acer platanoides  (ACPL),  B)  Acer
saccharinum (ACSA),  C) Quercus macrocarpa (QUMA),  D) Quercus rubra (QURU),  E)
Tilia cordata  (TICO), F)  Celtis occidentalis  (CEOC),  G) Gleditsia triacanthos  (GLTR).
Asterisk denotes significative differences between urban environments in T50 from the two-
way ANOVA.
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Figure 4.7) Light-saturated photosynthesis as a function of leaf temperature in the hottest
part  (Urban Heat  Island [UHI])  (red)  and the  coldest  part  of  the  city  (blue).  A)  Acer
saccharinum  (ACSA), B)  Quercus rubra (QURU),  C)  Tilia cordata  (TICO), D)  Celtis
occidentalis  (CEOC),  and  E)  Gleditsia  triacanthos  (GLTR).  Discontinue  vertical  lines
indicate the optimal temperature (Topt), and discontinue horizontal lines indicate optimal
photosynthesis (Popt). Asterisks and brackets mean significant differences in Topt  and Popt,
respectively using the Welch’s t-test.
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SUPPLEMENTARY TABLES 

TABLES 

Table  S4.1. Air  temperature  (Tair_Mean,  °C),  daytime  air  temperature  (Tair_dayMean,  °C),
maximum air  temperature (Tair_dayMax,  °C),  and air  temperature  at  night  (Tair_nightMean,  °C).
Each environment has five HOBBO sensors recording temperature from July to the end of
September  2021.   The  day  temperature  was  calculated  from  9  to  17  h.  The  night
temperature was calculated from 17 to 23 h. Values in brackets are standard deviations. In
parentheses are the p-values from the Wilcoxon test. Hottest and Coldest denotate the UHI
and the coldest part of the city. 

Urban
Environmen

t
Tair_Mean 

(P-value<0.001)
Tair_dayMean

(P-value<0.001)
Tair_dayMax

(P-value=0.02)
Tair_nightMean

(P-value<0.001)
Hottest 23.3 [±4.3] 25.9[±4.4] 37.8 [±2.3] 23.0 [±3.8]
Coldest 22.0[±4.6] 24[±4] 34.4 [±2.1]           22.1 [±3]
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Table S4.2.  Thermoregulatory traits by species in two urban environments, The hottest
(UHI) and the coldest part of the city (UCI). Means ± SD are represented. Species are: Acer
platanoides  (ACPL),  Acer saccharinum  (ACSA),  Celtis  occidentalis  (CEOC),  Gleditsia
triacanthos  (GLTR),  Quercus macrocarpa  (QUMA),  Quercus rubra  (QURU) and  Tilia
cordata (TICO). 

Species ENV L. Abs LA (mm2) SLA LW (mm) LDMC (mg g-1) LT(mm)
ACPL UCI 0.295 +0.02 8833 + 1439 17.5+4.9 135+ 7.17 236+62.9 0.13+0.01

UHI 0.396  0.01 7682+ 1593 14.2+3 128 + 17 369+57.4 0.15+0.01
ACSA UCI 0.322 +0.02 3570 + 1053 14.5+2 79.5 + 15.8 375+42.3 0.14+0.01

UHI 0.322 0.01 5669 + 1893 11.1+1.9 106 + 18.2 423+45.1 0.15+0.01
QUMA UCI 0.318+0.02 6695.6+1139 8.08+1.1 94.3+10.6 504.5+22.2 0.20+0.01

UHI 0.308+0.01 7946+3072 12.3+2.4 97.0+15.8 416.7+66 0.19+0.03
QURU UCI 0.281+0.01 8273.8+2924 11.0+3.1 96.1+16.9 434.5+43.6 0.17+0.02

UHI 0.271+0.05 11960+4506 12.6+2.5 111.54+22.6 431.1+39.4 0.17+0.02
TICO UCI 0.314+0.01 2084.8+853 14.6+3.9 51.7+8.26 381.3+56.9 0.18+0.02

UHI 0.274+0.05 2332.2+789 16.6+5.6 51.8+7.6 358.2+57.5 0.17+0.02
CEOC UCI 0.302+0.01 2742.4 +567 12.8+2 48.3+6.3 420.3+27 0.17 +0.02

UHI 0.297+0.01 3629.3+1081 14.5+2.1 54.9+10.4 387.3+31 0.16 +0.01
GLTR UCI 0.327+0.02 5336.6+901 9.7+1.5 11.7+1.2 418.7+33.8 0.18+0.01

UHI 0.303+0.05 7477.9+1959 10.9+2 14.0+6.6 419.9+37.1 0.17+0.03
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Table S4.3.  Parameters (±SE) estimated for thermal tolerance and net photosynthesis in
response to temperature for seven urban species in hottest  and coldest part  of the city.
Species  are:  Acer  platanoides  (ACPL),  Acer  saccharinum  (ACSA),  Celtis  occidentalis
(CEOC),  Gleditsia triacanthos  (GLTR),  Quercus macrocarpa  (QUMA),  Quercus rubra
(QURU) and Tilia cordata (TICO).

Species Fv/Fm Photosynthesis
  UHI UCI UHI UCI  
  Tcrit T50 T95 Tcrit T50 T95 Topt Popt Topt Popt  
ACPL 43.3±0.8 50.4±0.1 56.3±0.7 39.5±0.7 49.4±0.4 57.7±1.1  -  -  -  -  
ACSA 41.1±0.7 50.7±0.2 58.9±0.3 41.7±0.6 49.5±0.3 56.1±0.4 31.36±0.1 12.59±0.1 28.52±0.4 10.87±0.1  
QUMA 41.6±0.7 48.8±0.1 54.8±0.5 42.9±0.6 51.1±0.4 58.0±0.9  -  -  -  -  
QURU 43.3±0.6 50.2±0.2 55.7±0.7 41.3±1.2 51.0±0.3 59.2±0.6 26.55±0.1 10.97±0.1 26.90±0.2 13.93±0.2  
TICO 42.6±0.6 48.5±0.2 53.5±0.4 43.4±0.5 49.7±0.1 54.9±0.5 30.54±0.2 8.27±0.1 25.25±0.6 11.97±0.2  
CEOC 41.2±0.7 48.5±0.5 54.6±0.6 41.0±0.7 48.4±0.7 54.6±0.5 30.27±0.3 13.97±0.1 28.47±0.1 11.85±0.1  
GLTR 43.3±0.5 49.7±0.1 54.8±0.3 42.5±0.3 49.3±0.3 55.1±0.5 31.66±0.4 17.75±0.1 30.41±0.3 17.25±0.3  
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FIGURES

Figure S4.1) Correlogram made with the air temperature time series within the A) hottest
part (Urban Heat Island [UHI]) and B) the coldest part of the city. The x-axis represents the
lag, and the y-axis represents the autocorrelation. The height of the peaks indicates the
strength of the autocorrelation. Blue lines denotates the confidence intervals.
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Figure S4.2) Time series variation in air temperature (ºC) (including day and night) from
the HOBBO stations within the hottest (red) and coldest (blue) part of the city during the
field  camping  (from  July  to  September  2021).  P<0.05  denotes  the  result  from  the
Wilcoxon-test between urban environments.
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Figure  S4.3) Two-way  analysis  of  variance  for  the  photosynthetic  thermal  tolerance
parameters A) T50, B) Tcrit, and C) T95 of seven species in two urban environments. Each
panel shows one specie in the two environments and each box shows the median value, the
upper and lower limit of the boxes represent the 75th  and 25th percentile, and the whiskers
the 90 th and 10 th percentiles. Red color denotes the hottest part of the city (Urban Heat
Island  [UHI])  and  blue,  coldest  part.  Asterisks  between  boxes  indicate  significative
differences resulting from the Tukey post-hoc analysis between urban environments.  The
species  are  Acer  platanoides  (ACPL),  Acer  saccharinum  (ACSA),  Celtis  occidentalis
(CEOC),  Gleditsia triacanthos  (GLTR),  Quercus macrocarpa  (QUMA),  Quercus rubra
(QURU) and Tilia cordata (TICO).
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Figure S4.4) Between sites variation in A) Topt and B) Popt. Data are shown as mean ± SE of
the fitted temperature and assimilation values. The upper-case letter indicates significant
differences urban between sites within each species (P<0.05). Welch’s t-test was used for
statistical comparison among groups. Abbreviation of species indicates Acer saccharinum
(ACSA),  Celtis  occidentalis (CEOC),  Gleditsia  triacanthos (GLTR),  Quercus  rubra
(QURU) and Tilia cordata (TICO).
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SYNTHESIS

Exploring the drivers of forest diversity and functioning continues to be a critical topic in

ecology, with profound implications for both theoretical understanding and conservation

strategies  (Lindenmayer  & Franklin 2002).  On one  hand,  unraveling the  environmental

factors  and  ecological  mechanisms  that  shape  species  diversity  is  essential  for  a

comprehensive understanding of forest ecosystems and the development of effective forest

conservation programs (Zhu & Song 2021). On the other hand, widespread global changes

such  as  climate  change  and  urbanization  are  altering  the  very  nature  of  our  forests

(Linnakoski et al., 2019; McDonald et al., 2014). Examining the effects of these global

changes on forest diversity and functioning will provide us with valuable insights into the

future trajectory of our forests and guide the development of strategies to strengthen forest

resilience.  Within  this  context,  the  objectives  of  my  thesis  were:  i)  to  deepen  our

understanding of how patterns of diversity change across biogeographic regions and the

ecological  mechanisms that  foster  species  diversity  in  highly  diverse  forests  and ii)  to

evaluate the impact of climate change and urbanization on forest diversity and functioning.

The research  presented herein is  dedicated  to  a  comprehensive  understanding of  forest

community diversity and functioning, as well as to documenting the transformations that

forests are undergoing due to human activities. I will succinctly summarize the key findings

from each chapter. 

Chapter I examines the extent to which changes in the composition of local species are

influenced by sampling effects and/or the ecological processes of community assembly.

The research has revealed that in highly diverse forests, such as the Andes, expanding the

spatial scale and including small trees can reveal more accurately the scope of ecological

mechanisms shaping species variation (β-diversity). We can conclude that plots of at least

one hectare and including individuals with a DBH  ≥ 1 cm can better capture the actual

ecological processes at play at different stages of tree development (all the community,

small trees, large trees, and understory). Although habitat filtering emerged as the most

significant ecological mechanism, its impact varies: small trees are more influenced by soil
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conditions, whereas large trees are more affected by topography. I also showed that in high-

elevation areas, the extent of ecological mechanisms (such as habitant filtering) is larger

than in low-elevation plots. To improve our understanding of the drivers of β-diversity, I

call  for  the  need  for  enlarged  forest  inventory  plots  along  elevational  gradients  in  the

tropics.

Chapter  II investigates  the  drivers  of  beta  diversity  (β-diversity)  in  two  distinct

biogeographic regions,  primarily delineated by differences in elevation.  We explore the

ecological mechanisms and scale that influence species variation. To assess the relative

impact of these ecological mechanisms, we compared observed β-diversity with that under

a null model. Our analysis revealed that ecological mechanisms had a greater influence in

lowland  areas  (Amazon)  compared  to  highland  regions  (Andes).  This  implies  that  the

observed species variation in the Amazon differed more from a null community than in the

Andean forest. Despite both the Andean and Amazon forests being highly diverse, species

aggregation was more pronounced in the lowlands than in the highlands, suggesting that

niche  partitioning  may  play  a  significant  role  in  species  variation.  This  finding  is

particularly relevant  in non-saturated communities,  such as those found in the Amazon

Forest.

Chapter III stands out to be the first study to evaluate the impact of climate change on the

functional composition of highly diverse Andean forests over time along an elevational

gradient of 3.000 m asl, identifying the primary climatic drivers of these shifts. My analysis

revealed that increases in minimum temperature and vapor pressure deficit (VPD) are the

principal climatic factors influencing functional transitions in Andean forests. These shifts

in  key  climatic  variables  are  causing  tree  communities  to  adopt  more  conservative

strategies  over  time  along  an  elevational  gradient,  reflected  in  alterations  to  species

abundance  and  composition  via  mortality  and  recruitment.  These  insights  challenge

prevailing  hypotheses  regarding  functional  changes  along  elevational  gradients,  which

predict  that  as  species  potentially  migrate  upslope,  more  acquisitive  strategies  would

prevail  in  higher-elevation  forests  (Anderson & Wadgymar  2020;  Feeley  et  al.,  2011).

Contrary to this  hypothesis,  our  findings indicate  that  within tree communities,  species
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exhibiting more conservative traits are being selected by the new environmental conditions,

primarily  because  such  species  are  better  equipped  to  endure  the  warmer  and  drier

environments in forests traditionally characterized by cool, cloudy and moist climates.

In  Chapter  IV,  I  investigated  the  effects  of  elevated  temperatures  within  Urban  Heat

Islands (UHI) on the physiology of trees, focusing on photosynthesis and thermal tolerance.

I examined the capacity of urban tree species to acclimate and thermoregulate in response

to  increased  urban  temperatures  and  assessed  the  implications  for  ecosystem services,

including carbon storage. Positioned at the forefront of urban ecological research, this study

addresses the substantial gap in our understanding of urban forests, which have been less

studied  than  their  natural  counterparts  in  terms  of  temperature  elevation  effects.  My

findings indicate that urban trees' reactions to elevated temperatures are markedly species-

specific,  revealing  that  the  impacts  of  urban  warming  on  physiological  processes  and

ecosystem services are complex and differ among species.

Some species exhibited an increase in photosynthetic thermal optimum (Topt) within UHIs,

suggesting  thermal  acclimation.  Yet,  changes  in  Topt  were  found  to  either  increase  or

decrease  carbon uptake depending on the species,  indicating that  acclimation to  higher

temperatures could either enhance or detract from urban ecosystem services. Conversely,

other species displayed no thermal acclimation, highlighting their vulnerability to thermal

stress.  This  practical  research  informs  urban  forest  planning  by  considering  the

physiological needs and susceptibilities of each species. By strategically selecting the right

species for the appropriate urban locations, we can optimize the provision of ecosystem

services.

Contribution and future research

Implications of the study of beta diversity in the conservation of tropical forests

Numerous biodiversity studies prioritize species richness and alpha diversity, forming the

foundation of many forest conservation initiatives (Lelli et al., 2019). However, designing
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an  effective  protected  network  necessitates  a  deeper  exploration  of  the  processes  and

mechanisms sustaining species variation. Beta diversity (β-diversity) plays a crucial role in

this context, as it highlights the variation in community composition across different sites

(Socolar et al., 2016). A notable distinction in our research is the emphasis on spatial scale

—1 ha in Chapter I and 25 ha in Chapter II, in contrast to the typical 0.25 ha (He et al.,

2020) and 0.1 (Tello et al.,  2015) scales prevalent in tropical studies.  By incorporating

larger spatial scales, our study enhances the comprehension of local biodiversity patterns

across wider  geographic gradients,  facilitating the identification of  ecological processes

impacting species  diversity.  Another  pivotal  aspect  of  our  research methodology is  the

rigorous sampling effort, with tree measurements starting from a diameter at breast height

(DBH) of  1  cm.  This  approach enables  the  detection  of  patterns  and processes  across

various tree growth stages, enriching our understanding of biodiversity dynamics.

In Chapter I, we concluded that the influence of ecological assembly mechanisms, which

shape species variation, intensifies in highland areas along the elevational gradient in the

Andean  Forest.  This  suggests  that  in  higher  elevation  plots,  species  configuration  is

determined by processes such as environmental filtering. These findings align with other

studies conducted along tropical elevational gradients (Tello et al., 2015; Mori et al., 2013).

However, we observed a contrasting pattern in Chapter II. Contrary to our expectations of a

greater influence of ecological assembly mechanisms in highlands, we discovered that the

impact  of  ecological  mechanisms  on  species  variation  was  more  pronounced  in  the

Amazonian lowlands than in the Andean highlands. The environmental heterogeneity in the

Amazon forest possibly plays a significant role in creating species clumping through niche

differentiation, as indicates the results of the clumping index Omega. The results in Chapter

II diverge from other studies that analyzed contrasting biogeographic regions using 0.1 ha

plots  and  trees  with  a  diameter  of  DBH  ≥ 2.5  cm (Muñoz-Mazón  et  al.,  2021).  This

discrepancy suggests that β-diversity does not react solely to the size of the species pool but

rather  to  the  interplay  between  species  pool  size  and  environmental  heterogeneity.

Therefore, examining different areas, each with a unique combination of species pool and

environmental heterogeneity, will yield distinct β-diversity outcomes. It is imperative to
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continue  exploring  what  drives  species  variation  across  various  regions  to  unravel  the

specific mechanisms operating in every site.

β-diversity is crucial for the implementation of forest conservation programs (Socolar et al.,

2016). Thus, future research on this topic should investigate how climate change affects β-

diversity. For instance, what are the long-term effects of climate change on species turnover

along elevational  gradients,  considering the up-slope migration of species? How has β-

diversity  changed  over  time?  These  questions  necessitate  the  analysis  of  temporal  β-

diversity (Legendre 2019) and can provide insightful details about the dynamics of species

diversity over time. Moreover, future research on β-diversity should strive to enhance our

understanding of how to optimize the delineation of conservation areas. The debate over

whether several small reserves are preferable to a single large one should be informed by

comprehensive  data  about  environmental  heterogeneity  and  species  composition,  as

elucidated by β-diversity studies.

Climate changes and the future of the hyper diverse tropical Andean forests

Global climate change continues to occur at an alarming rate (Pathak et al., 2022). Several

studies show that climate change directly impacts forests worldwide (Pecl et  al.,  2017;

Chen et al., 2011; Feeley et al., 2011). However, the trajectory of functional changes that

the different types of forests may experience due to climate change is still largely unknown.

In Chapter III, I wanted to investigate this knowledge gap, particularly in the Andes, one of

the most vulnerable forests facing climate change (Orme et al., 2005). To date, no studies

have evaluated the changes in functional composition in the Andes with empirical data. My

research is one of the first studies identifying the functional changes, the trajectory of these

changes, and the drivers of change. For that, I used a unique dataset that involved several

years of fieldwork for collecting data on nine functional traits measured in situ for 1,200

tree  species  in  nine  1-ha  plots.  This  thesis  finds  evidence  of  climate-induced shifts  in

functional composition over time in response to specific environmental factors associated

with  the  evolution  and  adaptation  of  the  forest.  Here,  we  highlight  the  importance  to
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include  different  variables  in  addition  to  temperatures,  such  as  vapor  pressure  deficit

(VPD). Thus, it is paramount to analyze the specific factors that can impact a certain type

of  forest  to  elucidate  the patterns  of  changes.  Analysis  in  Chapter  III  was done at  the

community  level,  showing  that  recruits  are  characterized  by  having  more  conservative

strategies, which is align with other studies (Duque et al., 2015). This indicates that the

community traits  of  the Andean forests  could change in  a  few decades due  to  climate

change.

To better understand Andean Forest responses to climate change, several information gaps

need  to  be  filled.  For  instance,  expand  the  information  on  estimated  ranges  and

georeferenced locations  of  native  and non-native  species,  improve climatic  information

using in situ weather station along the elevational gradient, strengthen long-term vegetation

monitoring  using  permanent  plots  (e.g.,  RBA  [https:/  /redbosques.condesan.org/]  and

GLORIA [https://redgloria.condesan.org/] network) and record key information about land

use changes, which is the main driver of change in the Andes (Tovar et al., 2022; Mathez-

Stiefel et al 2017). Improve this information will help us to better understand the impact of

climate change in Andean forest, improve governance and enhance ecosystem services. 

Future research focused on the conservation of Andean forests should aim to fill many

information gaps, mainly due to this type of forest is poorly explored in comparison to

other types of forests, such as the Amazon for example (Pitman et al., 2011). Some of the

priorities  to  address  in  the  tropical  Andes  are:  i)  Analyzing  demographic  processes  to

improve our  understanding of  and obtain accurate  information about  which geographic

regions, communities, and species are most vulnerable to climate change (Feeley et al.,

2020). ii) Investigating intraspecific adaptations to determine population-level responses to

climatic variable variations in different sites with shared species (Razgour et al., 2019). iii)

Conducting studies on dispersal traits to identify which species are capable of migrating to

higher elevations (Feeley et al., 2011). Enhancing research in these aforementioned areas,

along with integrating data on maximum, minimum and mean temperature and drought

thresholds,  will  provide  insights  into  which  species  and  regions  are  likely  to  be  most

affected by climate change. Consequently, this will enable the implementation of effective
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conservation programs specifically targeting functionally unique species in forests with the

highest number of endemic species (Orme et al., 2005).

Urban forest resilience

In  recent  years,  there  has  been  a  growing  interest  in  urban  ecology  since  cities

accommodate  about  55% of  the  global  population  (more  than  4.2  billion  people)  (UN

2018). At the local scale (city), it is paramount to understand how urban trees operate and

how climate change and environmental variation generated by urban infrastructure (e.g.,

Urban Heat  Islands  [UHI])  impact  tree functioning and,  thus,  ecosystem services.  This

knowledge is the base for effectively planning the urban forest for future warmer cities.

Following this necessity, Chapter IV focused on an applied research question:  how do

elevated temperatures associated with Urban Heat Islands (UHIs) affect the functioning of

urban  trees?  Important  knowledge  for  the  city  of  Montreal  for  implementing  urban

planning.

This  work  provides  detailed  information  on  the  physiological  performance  and

photosynthetic thermal limits of each species, identifying those likely to be more resilient to

climate  change and thus,  more  suitable  for  future  urban planning.  I  also  highlight  the

importance of irrigation in mature trees, since, although the summer in Montreal is humid,

it was not enough for a complete thermoregulation. Thus, if temperature increases coincide

with drought conditions, the vulnerability of urban trees will be exacerbated, and urban

trees  may not  acclimate  and diminish  their  physiological  performance (Percival  2023).

These findings show the current performance of tree species in Montreal's urban forest

under  existing  urban  conditions.  With  the  understanding  that  climatic  conditions  will

continue to evolve annually, it is crucial to compare current climate variables with future

projections  for  temperature  and  drought  and  to  model  photosynthesis  under  these

forthcoming scenarios.

Future  research  in  urban  ecology  and  urban  ecophysiology  should  prioritize  the

investigation of critical functional traits, such as thermal thresholds and drought resistance
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(Chang et al., 2024). While researchers are starting to tackle this area, the diverse nature of

urban  planning  across  cities,  variations  in  climate,  soil  types,  and other  factors,  poses

challenges for generalizing findings. It is essential for studies to examine the behavior of

identical species across different urban environments to enhance the universality of the data

and its global relevance, particularly in temperate cities that share common species. Beyond

examining  specific  functional  traits,  which  give  us  a  direct  indication  of  ecosystem

services, it is important to explore the still poorly understood link between biodiversity and

ecosystem services (Percival 2023). This research topic could optimize the selection of tree

species in urban planning. For instance, evidence suggests that species diversity positively

impacts ecosystem services and boosts forest resilience to climate change (Paquette et al.,

2021). Increasing research on functional diversity and functional groups could serve as a

foundation for making well-informed urban planning decisions.

Moreover,  it  is  crucial  to  broaden the  study of  tropical  urban ecology,  which  remains

largely  under-researched compared to  temperate  regions  (Dobbs  et  al.,  2021).  Tropical

cities,  with  their  extensive  species  diversity—such as  Medellín  (my home city),  which

boasts  ~1,600  tree  species—offer  a  unique  study  context

(https://www.medellin.gov.co/sau/). The distinct challenges of tropical urban ecology, such

as species diversity,  climate, and human population density in tropical cities, give us a

unique niche for research (Dobbs et al., 2021). The complexity and structure of tropical

cities pose the urgent need to expand applied research in tropical urban ecology, aiming to

bridge knowledge gaps and apply findings to real-world challenges.
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