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We presentMost, a process language with message-observing session types. Message-observing session types

extend binary session types with type-level computation to specify communication protocols that vary based

on messages observed on other channels. Hence, Most allows us to express global invariants about processes,

rather than just local invariants, in a bottom-up, compositional way. We giveMost a semantic foundation

using traces with binding, a semantic approach for compositionally reasoning about traces in the presence of

name generation. We use this semantics to prove type soundness and compositionality forMost processes. We

see this as a signi�cant step towards capturing message-dependencies and providing more precise guarantees

about processes.
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1 INTRODUCTION

Session types [Honda 1993; Honda, Vasconcelos, et al. 1998; Takeuchi et al. 1994] allow us to specify
and statically verify that processes communicate according to prescribed protocols. Hence, they
rule out a wide class of communication-related bugs before executing a given protocol.

A binary session type speci�es the communication protocol as seen from the point of view of one
of the two participants. From a Curry-Howard perspective, it corresponds to the standard sequent
calculus proof system for dual intuitionistic linear logic (see [Caires and Pfenning 2010; Caires,
Pfenning, and Toninho 2016]), thereby building a logical foundation for specifying and reasoning
about concurrent communications. Over the past decade, there have been di�erent approaches to
extend it and capture ever richer protocols: value-dependent session types [Toninho, Caires, et al.
2011; Toninho and Yoshida 2018] allow protocols to vary based on previously transmitted values;
label-dependent session types [Thiemann and Vasconcelos 2019] describe di�erent communication
behaviour depending on labels being observed on a given channel; manifest sharing [Balzer and
Pfenning 2017] allows (binary) session types to capture shared communication channels.

In this paper, we describeMost, a language for protocols usingmessage-observing session types. A
message-observing session type speci�es how communication evolves taking into account messages
that can be observed on other channels in a process’s environment. This is in contrast to both value
and label-dependent session types, where a channel’s type can only depend on messages that the
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142:2 Ryan Kavanagh and Brigi�e Pientka

channel previously carried, but not on messages on other channels in the process’s environment.
Hence,Most allows us to express global invariants about processes rather than just local invariants.

To specify session types that vary based on messages on other channels, we extend binary session
types with type-level processes. This allows us to capture a wider range of correctness guarantees
than is currently possible. To illustrate, we take a closer look at the identity process id that provides
an implementation for the session type � := ⊕{ le� : 1, right : 1 }. This session type speci�es that
communication is a message containing either label le� or right, followed by a message signalling
the end of communication. We can implement id between channels 0 and 1 of type � as follows:

case 0 { le�⇒ 1.le�; wait 0; close 1 | right⇒ 1.right; wait 0; close 1 }.

Operationally, this process waits to receive a label on 0, selects the corresponding branch, and
sends the label over 1. It then waits for the channel 0 to close before closing 1. However, the session
type for channel 0 and channel 1 does not capture this precisely. In particular, the type of 1 does
not rule out the following erroneous implementation that swaps labels:

case 0 { le�⇒ 1.right; wait 0; close 1 | right⇒ 1.le�; wait 0; close 1 }

The crux of the issue is that the messages we wish to allow on 1 depend on the messages that we
observe on 0. In Most, we specify such a protocol for 1 using type-level processes as follows:

1 : CASE 0 { le�⇒ ⊕{ le� : 1 } | right⇒ ⊕{ right : 1 } }.

Intuitively, it speci�es that the type of 1 is the unary choice ⊕{ le� : 1 } if a label le� is observed
on 0, and symmetrically if right is observed on 0. A message-observing session type is necessarily
open: it names the channel whose messages it observes. This is analogous to processes, which
contain the channel names on which they communicate. The particular channel 0 observed by the
type of 1 is determined by the process speci�cation in which it appears. For example, the following
concrete syntax speci�es id by specifying the types of its channels, and it speci�es that 1’s type
observes a channel 0 : � used by id:

id :: { } [0 : �] (1 : CASE 0 { le�⇒ ⊕{ le� : 1 } | right⇒ ⊕{ right : 1 } }) = case 0 { · · · }.

We will revisit this concrete syntax in section 2.
Most provides a “bottom-up” approach to specifying processes and their composition. We still

specify the communication protocol from the point of view of one of the two participants, but take
into account the messages observed on other channels in the environment. An alternative approach
for specifyingmulti-channel communication patterns ismultiparty session types. Multiparty session
types [Honda, Yoshida, et al. 2016] specify interactions between a static number of participants
using a global type and project these speci�cations onto individual participants for typechecking.
Despite recent work [Deniélou and Yoshida 2011; Stolze et al. 2023], multiparty session types are
an inherently closed world or “top-down” approach, where the entire system must be designed
before it can be implemented. In contrast, we can compose protocols in Most from the bottom-up,
while still being able to capture some of the richer interactions of multiparty session types.

Concretely, we make the following contributions:

(1) We introduce a message-observing binary session type system, called Most. A message-
observing session type speci�es how communication evolves taking into account communi-
cations that can be observed on other channels in our environment. This is achieved using
type-level processes in session types. These type-level processes further restrict the eligible
processes and their actions. We motivate this extension through a sequence of examples.

(2) We give processes and their speci�cations a semantics using traces with binding, a
semantic foundation inspired by nominal sequences [Gabbay and Ghica 2012]. A frequent
challenge when we de�ne a trace semantics or ordered semantics for concurrency is that
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Message-Observing Sessions 142:3

we must account for fresh channel name generation and propagate names involved in
higher-order communications. Further, compositionality often requires in�nite trace sets or
in�nite collections of semantic objects, which complicates implementation and obscures the
computational content. Instead, we use name binding to quantify over all fresh channel in a
manner reminiscent of higher-order abstract syntax, resulting in a more compact presentation.
This abstraction allows us to retain compositionality.

(3) We give a semantically sound typechecking algorithm. Process denotations characterize
all possible communication behaviours, while speci�cations specify the processes traces they
allow subject to constraints on ambient communications. Soundness ensures that well-typed
processes only exhibit behaviours (traces) permitted by their speci�cations.

We see this work as a signi�cant step towards providing more precise guarantees about processes.
Omitted typing rules and proofs are available in the preprint [Kavanagh and Pientka 2024].

2 MOTIVATION

We introduce the main ideas of Most through a sequence of examples. This will allow us to
showcase both the power of message-observing session types and the design decisions.

2.1 A �ick Guide to Session Types and Specifying Processes

Session types �, �, . . . specify the communication protocols on named channels 0, 1, . . .. Processes
in our system are organized according to a client-server architecture. This architecture is re�ected
in our concrete syntax for process speci�cations:

proc :: {01 : �1, . . . , 0= : �=} [11 : �1, . . . , 1= : �=] (20 : �0)

It states that the process proc is a server for (or provides) a distinguished service �0 over a channel
20. Dually, it is a client of (or uses) zero or more services �1, . . . , �= on channels named 11, . . . , 1= ,
respectively. Finally, its types may refer to zero or more ambient communication channels 08 : �8 .
Ambient channels are instantiated either by composing procwith processes that use or provide them,
or by de�ning proc as a composition of processes that communicate on these channels. Ambient
channels will permit compositional process speci�cations. To keep our subsequent examples simple,
most will feature empty internal and ambient contexts. Each type can refer other channel names in
the speci�cation, allowing for mutual dependency between types.
For our �rst examples, we consider sending a sequence of = bits on a channel 0. This is accom-

plished by sending a sequence of = labels drawn from set Bit = { 0, 1 }. Such a sequence is speci�ed
by the session type BitB = de�ned by induction on = using the following pair of equations:1

BitB 0 = 1 BitB =+1 = ⊕{ ; : BitB = };∈Bit.

The empty sequence of bits is captured by the unit type 1: it signals the end of communication on
the channel. To de�ne a bit sequence of length = + 1, we specify the possible labels (elements) that
can be transmitted followed by the sequence of length =. To accomplish this, we use the internal
choice type ⊕{ ; : BitB = };∈Bit.

2 Concretely, we can use the de�nition to generate the type for bit
sequences of length 2 as follows:

BitB 2 = ⊕{ 0 : ⊕{ 0 : 1, 1 : 1 }, 1 : ⊕{ 0 : 1, 1 : 1 } }

It speci�es a sequence of two bits, i.e., a sequence of two labels, 0 and 1 followed by termination.

1Most omits language-level recursion and relies on meta-level induction to de�ne inductive types. This simpli�es Most’s

presentation and avoids obscuring its key contributions. We nevertheless sketch how to extendMost with recursive session

types and processes in section 8.4.
2An internal choice ⊕{ ; : �; }; ∈! speci�es that a label ; ∈ !will be transmitted, and then communicationwill satisfy type�; .
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142:4 Ryan Kavanagh and Brigi�e Pientka

We can then specify a family of identity processes, id= , that use a channel 0 : BitB = and provide
an output channel 1 of the same type by the following pair of equations:

id0 :: { } [0 : BitB 0 ] (1 : BitB 0 ) = wait 0; close 1

id=+1 :: { } [0 : BitB =+1] (1 : BitB =+1) = case 0 { ; ⇒ 1.; ; id= };∈Bit

In the base case, id0, wewait to receive a closemessage on0 that signals the end of communication,
and we immediately send it on 1 before terminating. In the recursive step, id=+1, we perform a case
analysis on the label received over 0. If we receive a label ; , then we take the corresponding branch
and send the label ; over 1. At this point, 0 and 1 both have type BitB = , so we continue as id= .

2.2 Specifying Identity Processes for Real Using Message-Observing Session Types

The session type speci�cation of the identity process id= in the previous section fails to ensure
that we copy the sequence of bits unchanged from 0 to 1. In Most, we can give a more precise
type to the output channel by taking into account the message that we already have received on a
given channel using message-observing sessions. In particular, we can re�ne the type of 1 to the
following more precise family of types IdBitSeq= 0 that observe messages on channel 0. We give
the de�nition of the identity process next to it, to highlight the close correspondence between the
process and the message-observing session type:

Process Message-Observing Session Type

id0 = wait 0; close 1 IdBitSeq0 0 = CASE 0 { close⇒ 1 }
id=+1 = case 0 { ; ⇒ 1.; ; id= };∈Bit IdBitSeq=+1 0 = CASE 0 { ; ⇒ ⊕{ ; : IdBitSeq= 0 } };∈Bit

In the base case, the type CASE 0 { close⇒ 1 } speci�es that we can only signal termination on
1 after we have observed termination on 0. In the recursive step, IdBitSeq=+1 0 performs a case
analysis on the label sent on 0. If a label ; is sent or received on 0, then the type reduces to the
unary internal choice ⊕{ ; : IdBitSeq= 0 } that only allows the label ; to be sent, and continues as
IdBitSeq= 0. We can then re�ne the speci�cation of id to use this more precise protocol:

id0 :: {} [0 : BitB 0 ] (1 : IdBitSeq0 0) = wait 0; close 1

id=+1 :: {} [0 : BitB =+1] (1 : IdBitSeq=+1 0) = case 0 { ; ⇒ 1.; ; id= };∈Bit

Note that the process and the type of the used channel 0 remain the same as in the previous
section: the only change is to the type of the channel 1, which now observes messages on 0. At the
high-level, the type IdBitSeq= 0 ensures that id= can only output on 1 what it receives on 0.
We call the type IdBitSeq= 0 message observing because it observes communications on 0 to

determine the range of permitted communications. It can be thought of as a type-level process, as
it mimics choices and behaviour speci�ed in the process id= on the type-level. This type reduces
as messages are observed on the channel 0. These observations and reductions exist only in the
typechecking algorithm (types are not present at runtime), which tracks messages sent or received
by the speci�ed process and reduces types accordingly. For example, to type check id=+1 against its
speci�cation, we check each of its branches “1.; ; id=” (to which it steps after receiving a label ;)
against the speci�cation “{ } [0 : BitB =] (1 : ⊕{ ; : IdBitSeq= 0 })”, which is obtained by reducing
all types by the label ; received on 0.

This example illustrates two key points inMost: (1) message-observing session types can express
dependencies on messages on other channels, and (2) message-observing types behave as type-level
processes and incorporate a notion of concurrent computation on the type-level.
On a practical level, this allows us to express more precise safety guarantees that cannot be

expressed by prior work. On a more theoretical level, we see message-observing session types as
an essential step towards a type theory of session types.
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2.3 Expressing Mutual Observation in Message-Observing Session Types

Session-typed languages often feature a higher-order session type � ⊗ �, which speci�es a server
that sends a channel of type � (call it 0) and then communicates according to �.
It is useful in applications for � to observe messages on 0. To do so, we introduce the syntax
(0 : �) ⊗ �, which binds a name 0 for the transmitted channel of type � in �. This bound name
is eventually instantiated by the actual name of the transmitted channel. This syntax then lets us
specify, e.g., sending a pair of identical bit streams: (0 : BitB =) ⊗

(
IdBitSeq= 0

)
. A server of this type

sends a channel 0 carrying = bits and then communicating according to the protocol IdBitSeq= 0,
which speci�es transmitting a bit stream equal to the one carried by 0.

Communication on both channels occurs independently, so it is natural to ask whether � can
also observe messages on the channel of type � (call it 1). From the dependent-types perspective in
the sequential setting, such mutual dependency may seem unusual, but it captures the concurrent
behaviour where the processes providing� and � run concurrently. To allow for mutual observation,
we use the syntax (0 : �) ⊗ (1 : �) for higher-order sessions, where name 0 is bound in � and name
1 is bound in �. It allows the type � to observe messages on the transmitted channel 0 : �, while
also allowing the type � to observe messages on the channel 1 : �. In practice, 1 will always be
instantiated with the name of the channel of type (0 : �) ⊗ (1 : �); we treat it as bound in the type
only to ensure that the type makes sense independently of the channel that it types. As a result, we
can specify mutually observing higher-order protocols.

To illustrate mutual observation, we consider a load-balanced list service. This service provides
a pair of lists, and then forces the client to alternate between lists when receiving elements. It is
given by (0 : LBList= 1) ⊗ (1 : LBList= 0), where LBList= 2 is inductively de�ned by:

LBList0 2 = 1 LBList=+1 2 = ⊕{ G : CASE 2 {~ ⇒ LBList= 2 }~∈Bit }G∈Bit .

Intuitively, a channel 0 : LBList=+1 2 provides a list element G ∈ Bit, and then requires the client to
observe some element ~ on 2 before it can observe another list element from 0.

To see how the protocol (0 : LBList=+1 1) ⊗ (1 : LBList=+1 0) enforces alternation, consider one
of its clients. After receiving the channel provided by this service, the client has two channels:
channels 0 : LBList=+1 1 and 1 : LBList=+1 0. Assume, without loss of generality, that it �rst
receives a label on 0. The internal choice type speci�es that communication on 0 then satis�es
CASE 1 {~ ⇒ LBList= 1 }~∈Bit. In particular, the client cannot communicate on 0 until it reduces
the CASE analysis. To do so, the client must receive a label on 1. It can do so, for the type of 1 is an
internal choice ⊕{ G : LBList= 0 }G∈Bit (it was reduced by the label received on 0). After receiving a
label on 1, the type of 0 reduces to LBList= 1, while the type of 1 becomes LBList= 0.
For convenience, we write � ⊗ (1 : �) for (0 : �) ⊗ (1 : �) when 0 does not appear in �. The

abbreviations (0 : �) ⊗ � and � ⊗ � are analogous.

2.4 Depending on Higher-Order Sessions

Protocols can depend on higher-order sessions using an elimination form reminiscent of positive
product elimination in functional languages. We illustrate this by specifying an and logic gate,
given by the process AND:

AND :: { } [1 : BitB 1 ⊗ BitB 1] (2 : BitB 1) =

0 ← receive 1; case 0 { 1⇒ case 1 { 1⇒ 2.1; end | 0⇒ 2.0; end }

| 0⇒ case 1 { G ⇒ 2.0; end }G∈Bit }

where end :: { } [0 : 1, 1 : 1] (6 : 1) = (wait 0; wait 1; close 6). From its speci�cation, we see
that AND receives a pair of bits on 1 and sends a bit on 2 . Its implementation starts by receiving a
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142:6 Ryan Kavanagh and Brigi�e Pientka

channel of type BitB 1 over 1 and binding it to the name 0 (syntax: “0 ← receive 1; · · ·”). At this
point, the process is a client of 0 : BitB 1 and 1 : BitB 1 and provides 2 : BitB 1. The process then
observes the bits on 0 and 1, sends their and over 2 , and terminates.
Observe that the above speci�cation does not specify that AND correctly implements an and

gate. However, we can use message observation to specify this functionality at the type level. To
do so, we re�ne the above speci�cation to

AND :: { } [1 : BitB 1 ⊗ BitB 1] (2 : andOf 1) = · · ·

where the following type speci�es an and gate:

andOf 1 = CASE 1 { ⟨0⟩ ⇒ CASE 0 { 1⇒ CASE 1 { 1⇒ ⊕{ 1 : 1 } | 0⇒ ⊕{ 0 : 1 } }

| 0⇒ ⊕{ 0 : 1 } } }.

This type-level process uses the new construct CASE 1 { ⟨0⟩ ⇒ � }, which binds the name of
a channel transmitted over 1 to 0 in � . This construct reduces to [U/0]� when a channel U is
transmitted on 1. This reduction closely mimics the behaviour of the channel-receiving process
construct, 0 ← receive 1; % , which becomes [U/0]% after receiving U on 1. In the case of “andOf 1”,
it reduces to the internal choice ⊕{ 1 : 1 } if the transmitted channel and its carrier both carry a 1
bit, and otherwise it reduces to ⊕{ 0 : 1 }.

2.5 A Fair Auction

In our examples so far, there has been a close correspondence between processes and the message-
observing types in their speci�cations. In fact, this correspondence is partially by design as we take
into account the process communication in de�ning a message-observing type. The next example
shows that this correspondence between processes and message-observing types is not always
trivial, and that processes can be more complex than the types specifying their communications.

Assume two bidders participating in an auction, where each may bid 0 (described by the label 0)
or 1 (described by the label 1). We want to ensure that the bidder with the highest bid wins. With
traditional session types, we can specify the protocols for a bidder service as follows, where the
external choice &{· · · } means that the bidder receives the label:

bidder = ⊕{ 0 : result, 1 : result }

result = &{ lost : 1, tie : 1, win : 1 }

A bidder is a process that provides a channel 1 of type bidder; the name 1 can freely be renamed,
provided that it is kept distinct from other names in the process and its speci�cation:

Bidder :: { } [] (1 : bidder) = · · ·

An Auctioneer is a client of two bidders and signals the end of the auction on its provided channel 2 .
We can implement it as follows, where end :: { } [11 : 1, 12 : 1] (2 : 1) = (wait 11; wait 12; close 2):

Auctioneer :: {} [11 : bidder, 12 : bidder] (2 : 1) =

case 11 { 0 ⇒ case 12 { 0 ⇒ 11 .tie; 12 .tie; end

| 1⇒ 11 .lost; 12 .win; end }

| 1⇒ case 12 { 0 ⇒ 11 .win; 12 .lost; end

| 1⇒ 11 .tie; 12 .tie; end } }

Observe that the speci�cation does not rule out an unfair auctioneer that privileges bidder 11 and
always give them the win, i.e., an auctioneer where each branch is 11.win; 12.lost; end.
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To prohibit unfair auctioneers, we use amessage-observing protocol that speci�es the interactions
for one bidder in terms of the actions of its opponent > :

fairAuct > = ⊕{ 0 : CASE > { 0⇒ &{ tie : 1 } | 1⇒ &{ lost : 1 } },

1 : CASE > { 0⇒ &{ win : 1 } | 1⇒ &{ tie : 1 } } }

The following speci�cation then ensures that Auctioneer is fair:

Auctioneer :: {} [11 : fairAuct 12, 12 : fairAuct 11] (2 : 1) = · · ·.

Indeed, the fair auction protocol fairAuct 12 specifying communications on 11 ensures that if 11
sends a label 0, then the auctioneer can only send tie or lost to 11, and then only after a label 0
or 1 has been observed on 12, respectively. The case when 11 bids 1 is analogous.
This example illustrates that speci�cations do not simply lift process implementations to the

type level. In particular, processes can specify more complex interactions than their types. This
illustration is even more striking when we consider the following implementation of a bidder. It
bids 0, and then terminates after having received the result of the auction:

BidsZero :: {12 : fairAuct 11} [] (11 : fairAuct 12) =

11 .0; case 11 { result⇒ close 0 }result∈{ lost,tie,win } .

This example illustrates how we track the ambient channel 12 : fairAuct 11 in the speci�cation to
ensure that the type of 11 remains well-scoped. When typechecking BidsZero against its speci�ca-
tion, our typechecking algorithm generates constraints on messages that can appear on 12 that are
then checked when BidsZero is composed with a process implementing 12.
The ambient context helps ensure that we know the types of all channels observed by types in

process interfaces. As a result, we can ensure that types are well-formed relative to each other. It
also means that we can modularly specify processes: we specify the types of local channels, but
these can observe channels used by other processes in our execution environment.

2.6 Process Composition

To illustrate how Most typechecks compositions, we consider the composition of two bit-�ipping
processes. A bit-�ipping process is a client of a bit that provides its negation:

neg :: { } [8 : BitB 1] (> : BitB 1) = case 8 { 0⇒ >.1; end | 1⇒ >.0; end }

where end :: { } [8 : 1] (> : 1) = (wait 8; close >). We can give neg more precise speci�cations. For
example, we can specify that

neg :: { } [8 : BitB 1] (> : negBit 8) = · · ·

or neg :: {2 : BitB 1} [8 : negBit 2] (> : IdBitSeq1 2) = · · ·,

where negBit 0 = CASE 0 { 0⇒ ⊕{ 1 : 1 } | 1⇒ ⊕{ 0 : 1 } }.

The �rst speci�cation ensures that neg sends the negation of the bit it receives on 8 over > . The
second is more interesting: it speci�es that if neg receives on 8 the negation of a bit sent on some
ambient channel 2 , then it outputs that original bit on > .

Using these two speci�cations, we can ensure that �ipping a bit twice behaves as the identity. To
do so, we compose an implementation of neg with itself:

doubleNeg :: {2 : negBit 8} [8 : BitB 1] (> : IdBitSeq1 8) = (8 ↔ neg↔ 2) ∥2 (2 ↔ neg↔ >).

The syntax (8 ↔ neg↔ 2) instantiates the implementation of neg with the channel names 8 and 2 ,
while the syntax % ∥2 & composes a server % with its client & on 2 . The type of the composition
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142:8 Ryan Kavanagh and Brigi�e Pientka

channel 2 is determined by the ambient context { 2 : negBit 8 }. The type checking algorithm checks
each composed process against the types speci�ed by the outer speci�cation, i.e., that

neg :: { } [8 : BitB 1 ] (2 : negBit 8 ) = · · ·

neg :: {8 : BitB 1} [2 : negBit 8] (> : IdBitSeq1 8) = · · ·.

We treat the channel 8 as ambient in the second speci�cation (it is not accessible to its process).
Typechecking the �rst process poses no di�culties; checking second process is interesting because
it is a client of the channel 2 whose type immediately observes the ambient channel 8 . To check the
second process, we do a case analysis on the messages that could appear on 8 , reduce the types of 2
and > accordingly in each case, and check that neg is well typed in the reduced speci�cation. For
instance, in the case where 0 appears on 8 , we check that:

neg :: {8 : 1} [2 : ⊕{ 1 : 1 }] (> : ⊕{ 0 : 1 }) = · · ·.

As a side e�ect, we generate a constraint relating the label 0 on 8 to the behaviour of neg on 2 and
> . After checking both processes independently, our algorithm checks that they impose mutually
consistent constraints, and that they satisfy each other’s constraints where applicable. In this
example, the second process produces a constraint that neg receives 1 on 2 only if 0 appears on 8;
this constraint is clearly satis�ed by the �rst negation process. Assuming that all constraints are
satis�ed, we conclude that the composition is well-typed.

The types of composition channels can be locally speci�ed using the program syntax a (0 : �) . % ,
which binds a private channel 0 : � in % . This privacy also ensures that 0 cannot externally be
observed. For example, we can hide the fact that doubleNeg is implemented as a composition and
ensure that no other processes can observe its composition channel 2 by hiding 2 : negBit 8:

doubleNeg′ :: { } [8 : BitB 1] (> : IdBitSeq1 8) = a (2 : negBit 8) . doubleNeg.

More generally, the syntax a (01 : �1, . . . , 0= : �=) . % binds channels 01, . . . , 0= in % . To check

a
−−−→
0 : � . % against a speci�cation, we check % against the same speci�cation extended with the ambi-

ent channels
−−−→
0 : �. For example, checking doubleNeg′ entails checking the speci�cation doubleNeg.

Our treatment of composition departs from many simply session typed systems [Caires and
Pfenning 2010; Wadler 2014] that combine parallel composition with hiding, i.e., that de�ne the
composition of % and& along 0 as a (0 : �) . % ∥0& . We distinguish these operations to more �exibly
specify process compositions and to ensure that process composition is associative and partially
commutative. Indeed, suppose we wished to chain together three processes:

%1 :: {03 : �3 (02)} [01 : 1] (02 : �2 (03))

%2 :: { } [02 : �2 (03)] (03 : �3 (02))

%3 :: {02 : �2 (03)} [03 : �3 (02)] (04 : 1),

where we write �8 (0 9 ) to mean �8 observes 0 9 , to form a process % :: { } [01 : 1] (04 : 1). The
speci�cation of % is clearly well-de�ned. However, if we always combine parallel composition with
hiding, then neither of the following composition speci�cations is well-de�ned:

%12 :: { } [01 : 1] (03 : �2 (03)) = a (02 : �2 (03)) .
(
%1 ∥02 %2

)

%23 :: { } [02 : �2 (03)] (04 : 1) = a (03 : �3 (02)) .
(
%2 ∥03 %3

)

This is because the types �2 (03) and �3 (02) are ill-scoped after hiding the channels 02 and 03. In
contrast, if we hide 02 and 03 after the parallel composition, we can successfully de�ne % as:

% :: { } [01 : 1] (04 : 1) = a (02 : �2 (03), 03 : �3 (02)) .
(
%1 ∥02

(
%2 ∥03 %3

) )
.

Our examples show howMost modularly speci�es processes while guaranteeing rich invariants.
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3 A HIGHER-ORDER PROCESS LANGUAGE AND ITS TRACE SEMANTICS

Processes % are generated by the following grammar, where 0 and 1 range over channel names, !
over sets of choice labels, ; and : over labels, and � over types:

Process %,& F close 0 End communication on 0 and terminate

| wait 0; % Wait for communication to end on 0; continue as %

| 0.: ; % Send label : on 0; continue as %

| case 0 { ; ⇒ %; };∈! Continue as %; after receiving label ; ∈ ! on 0

| send 0 (1.%); & Send a channel provided by % on 0; continue as &

| 1 ← receive 0; % Receive channel 1 on 0; continue as %

| % ∥0 & Compose % and & along channel 0

| a (01 : �1, . . . , 0= : �=) . % Introduce private channels 08 of type �8 in %

The channel name 1 is bound in % in 1 ← receive 0; % and in send 0 (1.%); & . In send 0 (1.%); & ,
it represents the sent channel provided by % . Intuitively, this process forks % with 1 instan-
tiated by a fresh name, and sends this name over 0. The names 01, . . . , 0= are bound in % in
a (01 : �1, . . . , 0= : �=) . % , and the type annotations exist only to simplify type checking. For the
semantics to be reasonable, we require that 0 does not appear free in % in wait 0; % , that % and &
have disjoint sets of free names in send 0 (1.%); & , and that their free names intersect only in 0 in
% ∥0 & . As is usual for session-typed processes, we consider open processes: the free names in a
process name its used and provided channels.
A process denotes a set of traces that describe its possible executions. Traces are sequences of

elements (B ;<), where< is a message on a channel and B is a tag indicating if< was sent or received,
or if it appeared on an unhidden internal channel. To model sending and receiving channels (process
constructs send 0 (1.%); & and 1 ← receive 0; % ), we extend traces with a binding structure similar
to the coasbraction operator for nominal sequences [Gabbay and Ghica 2012]. To help ensure that
our semantics is compositional, we bind 1 in the tail of a trace after a channel transmission message.
This avoids free name clashes when interleaving traces in the denotation of process composition.
Advantageously, our approach keeps the denotations of processes �nite, a key property in ensuring
that typechecking terminates. Explicitly, traces C , messages<, and signs B are given by the grammar:

Observable Signs > F ! | ? | f Messages< F close on 0 Traces C F Y

Signs B F > | ¿ | label ; on 0 | (B; <) :: ®0 . C

| chan on 0

Observable signs specify actions performed by processes. They are ? (input), ! (output), and f

(internal synchronization). The constraint sign ¿ is not used in this section, but will be used in the
semantics of message-observing types. It speci�es a constraint on an ambient channel, i.e., that a
message must be observed in the ambient environment before the trace can continue. Messages
< describe possible messages on a given channel 0. The message “close on 0” means the end of
communication, “label ; on 0” describes sending a label ; , and “chan on 0” captures sending a
channel. We write cc(<) for the name of the channel carrying<; in the above cases, cc(<) = 0.
Finally, traces follow a list-like structure. The empty trace is Y. The trace (B; <) :: ®0 . C pre�xes a
message< with sign B onto trace C , with zero or more names ®0 bound in C . We identify traces up to
U-equivalence. The free channel names fc(C) in a trace C are de�ned by induction on the structure of
C : fc(Y) = ∅ and fc((B; <) :: ®0 . C) = { cc(<) } ∪ (fc(C) \ ®0).
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Processes denote sets of traces, where each trace denotes a possible interleaving of its actions.
The denotation ⟦%⟧ of a process % is given by induction on its syntax. We explain the semantic
clauses and the trace operators they use below:

⟦close 0⟧ = { (!; close on 0) :: Y } (1)

⟦wait 0; %⟧ = (?; close on 0) :: ⟦%⟧ (2)

⟦0.: ; %⟧ = (!; label : on 0) :: ⟦%⟧ (3)

⟦case 0 { ; ⇒ %; };∈!⟧ =
⋃

;∈!
(?; label ; on 0) :: ⟦%;⟧ (4)

⟦send 0 (1.%); &⟧ = (!; chan on 0) :: 1 . (⟦%⟧ ∥ ⟦&⟧) (5)

⟦1 ← receive 0; %⟧ = (?; chan on 0) :: 1 . ⟦%⟧ (6)

⟦% ∥0 &⟧ = ⟦%⟧ ∥ ⟦&⟧ (7)

⟦a (01 : �1, . . . , 0= : �=) . %⟧ = ⟦%⟧ \ { 01, . . . , 0= } (8)

where (B; <) :: ®0 .) = { (B; <) :: ®0 . C | C ∈ ) }

)1 ∥ )2 = { C | C1 ∈ )1, C2 ∈ )2, C ∈ (C1 ∥ C2) }

) \ { 01, . . . , 0= } = { C \ { 01, . . . , 0= } | C ∈ ) }

Equation (1) speci�es that the only action performed by the process (close 0) is sending a close
message on 0. Dually, eq. (2) speci�es that every execution of the process (wait 0; %) receives a
close message on 0 before continuing as % .

Equation (3) similarly captures sending a label : on 0. Equation (4) speci�es that after receiving
a label ; , the process % = (case 0 { ; ⇒ %; };∈!) continues executing as %; . The meaning of the
process % is then the union of all the traces for %; pre�xed by the received label ; .
Equation (5) speci�es sending a channel 1 provided by % over 0 and then continuing as & .

Processes % and & execute independently, so the traces that follows sending 1 are interleavings of
the executions of % and & , i.e., elements of ⟦%⟧ ∥ ⟦&⟧. The interleaving operator ∥ is de�ned in
section 5.4. We assume without loss of generality that the bound name 1 is chosen distinct from
any free name in & . Because % and & are assumed to have disjoint sets of free channel names, so
will their traces. Therefore, ∥ will e�ectively compute arbitrary interleavings of these two traces.
Equation (6) speci�es receiving a channel over 0 and binding it to the name 1 in % .
Equation (7) states that the parallel composition of processes is given by the synchronized

interleavings of their traces. The synchronized interleavings of a pair of traces are de�ned in such
a way that each receive action synchronizes with a send action when available. In particular, it
captures a synchronous communication semantics. The process syntax % ∥0& speci�es the channel
name 0 along which % and & are composed to specify the only name shared between % and & and
to guide typechecking. In contrast, the interleaving operator does not mention 0. Our operator is
su�ciently general to synchronize traces on multiple channels. This is required, e.g., to handle
synchronization for channel transmission, where we must synchronize processes traces on two
channels: the transmitted channel and the channel carrying it.
Finally, eq. (8) hides the bound channels 08 by deleting all messages appearing on 08 from the

traces in ⟦%⟧. It uses the deletion operation C \ { 01, . . . , 0= } which is given in section 5.1. This
deletion operator is de�ned in such a manner that it deletes not only actions on the 08 , but also
actions appearing on the channels they carried, and so on and so forth.

To avoid proliferating de�nitions for trace operators, we postpone their formal de�nitions until
we have discussed the slightly more general case of traces with constraints; readers wishing to skip
ahead are invited to see section 5. Meanwhile, we consider a few intuition-building examples:
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Example 3.1. We compute the denotation of the double negation process doubleNeg′ of section 2.6.
We start by computing the denotation of the bit �ipping process neg composing it:

⟦8 ↔ neg↔ 2⟧ = { (?; label 0 on 8) :: (!; label 1 on 2) :: (?; close on 8) :: (!; close on 2) :: Y,

(?; label 1 on 8) :: (!; label 0 on 2) :: (?; close on 8) :: (!; close on 2) :: Y },

⟦2 ↔ neg↔ >⟧ = { analogous }.

The denotation of doubleNeg uses the synchronized interleaving operator ∥ to interleave traces
from each denotation. Intuitively, it matches (!;<) and (?;<) elements and replaces them by
synchronization elements (f ;<); the remaining elements are freely interleaved. For example, it
interleaves the following traces, respectively from ⟦8 ↔ neg↔ 2⟧ and ⟦2 ↔ neg↔ >⟧,

(?; label 0 on 8) :: (!; label 1 on 2) :: (?; close on 8) :: (!; close on 2) :: Y,

(?; label 1 on 2) :: (!; label 0 on >) :: (?; close on 2) :: (!; close on >) :: Y,

to produce, among others, the following traces in ⟦(8 ↔ neg↔ 2) ∥2 (2 ↔ neg↔ >)⟧:

(?; label 0 on 8) :: (f ; label 1 on 2) :: (!; label 0 on >) :: (?; close on 8) :: (f ; close on 2) :: · · · ,

(?; label 0 on 8) :: (f ; label 1 on 2) :: (?; close on 8) :: (!; label 0 on >) :: (f ; close on 2) :: · · · .

Contrasting the two given traces illustrates the concurrent nature of message-passing processes. In
the �rst execution, the left neg process sends 0 before the right receives its close message on 8; this
order is reversed in the second trace. Finally, the denotation of doubleNeg′ hides all messages on 2 :

⟦a (2 : negBit 8) . doubleNeg⟧ = { (?; label 0 on 8) :: (!; label 0 on >) :: (?; close on 8) :: · · · ,

(?; label 0 on 8) :: (?; close on 8) :: (!; label 0 on >) :: · · · , . . . }.

Example 3.2. To illustrate how traces with binding help model channel transmission, consider
the parallel composition comp :: { } [] (2 : 1) = % ∥0 & , where

% :: { } [] (0 : 1 ⊗ 1) = send 0 (2.close 2); close 0

& :: { } [0 : 1 ⊗ 1] (2 : 1) = 1 ← receive 0; wait 0; wait 1; close 2

Process % denotes two traces, capturing the independent executions of processes close 0 and close 2 :

{ (!; chan on 0) :: 2 . (!; close on 2) :: (!; close on 0) :: Y,

(!; chan on 0) :: 2 . (!; close on 0) :: (!; close on 2) :: Y }

The process & exhibits no non-determinism and denotes a single trace:

⟦&⟧ = { (?; chan on 0) :: 1 . (?; close on 0) :: (?; close on 1) :: (!; close on 2) :: Y }

Their parallel composition denotes a synchronized interleaving of these two trace sets. It is here
that binding pays o�: we can U-vary the bound name 2 identifying the transmitted channel in
the traces of % to a fresh name 1 to avoid clashing with the free name 2 in the trace of & . The
interleaved trace set captures synchronization on both 0 and the transmitted channel:

⟦comp⟧ = { (f ; chan on 0) :: 1 . (f ; close on 0) :: (f ; close on 1) :: (!; close on 2) :: Y }

It contains a single trace, because only the �rst of % ’s executions successfully synchronizes with & .

There are no non-terminating executions, i.e., every process performs a �nite number of actions:

Proposition 3.3 (Termination). For all processes % and traces C ∈ ⟦%⟧, C is �nite.
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4 MESSAGE-OBSERVING SESSION TYPES AND PROCESS SPECIFICATIONS

Our type soundness result will show that if a process typechecks against a speci�cation, then
its range of behaviours (the traces it denotes) is among those allowed by its speci�cation. We
specify which behaviours a process speci�cation allows by giving speci�cations a trace semantics
in section 4.2. First, we de�ne message-observing session types and process speci�cations.
Recall that each process is a client of some services and the server of a distinguished service.

From the perspective of a server of type �, session types are generated by the grammar:

Session Types �, � F 1 End communication and terminate

| ⊕;∈!�; Internal choice

| &;∈!�; External choice

| (0 : �) ⊗ (1 : �) Channel transmission

| (0 : �) ⊸ (1 : �) Channel reception

| CASE 0 { close⇒ � } Termination observation

| CASE 0 { ; ⇒ �; };∈! Label observation

| CASE 0 { ⟨1⟩ ⇒ � } Higher-order observation

Session Type Context Π,Δ, IF 01 : �1, . . . , 0= : �=

We explain session types from the perspective of a server. A server of 1 sends a close message
signalling the end of communication on a channel. The internal choice type ⊕;∈!�; speci�es sending
a label ; ∈ !, and then communicating according to �; . Dually, the external choice type &;∈!�;

speci�es receiving a label ; ∈ !, and then communicating according to �; . Many session-typed
languages provide a session type � ⊗ �. A server for a channel 2 of type � ⊗ � sends a channel 0
of type � on 2 and then communicates on 2 according to �. Our syntax (0 : �) ⊗ (1 : �) extends
the usual syntax to support mutual observation between the types � and �. It binds the name 0 in
� to allow � to observe communications on the transmitted channel, and it binds 1 in � to allow
� to observe subsequent communications on the carrier channel. A server of a channel 2 of type
(0 : �) ⊗ (1 : �) sends a channel 0 of type [2/1]�, and then communicates on 2 according to �.
Symmetrically, a server of 2 : (0 : �) ⊸ (1 : �) speci�es receiving a channel 0 of type [2/1]� and
then communicating on 2 according to �. This type has an identical binding structure. We call these
types weak head normal because they do not involve computation at the outermost level.
Observing types restrict communication based on communication on ambient channels. The type

CASE 0 { close⇒ � } observes an ambient channel 0 and reduces to � when a close message is
sent on 0. The type CASE 0 { ; ⇒ �; };∈! reduces to the type �; when a label ; is sent on 0. Finally,
CASE 0 { ⟨1⟩ ⇒ � } reduces to � if a channel named 1 is transmitted over 0. Because a priori, we
do not know the name of the transmitted channel, CASE 0 { ⟨1⟩ ⇒ � } binds the name 1 in �.
The free channels in a type are inductively de�ned on the structure in the obvious manner.
Our motivating examples used a concrete syntax “name :: {Σ} [Δ] (2 : �) = %” to specify a

process name, implemented by % , that used channels Δ to provide a service 2 : � , where these
channels were free to observe ambient channels Σ. These ambient channels were either (unhidden)
internal channels, or channels in other processes whose meaning would be given by process
composition. By inspecting the syntax of % , we can partition Σ into a context I of internal channels
and a context Π containing the remaining ambient channels. We can then translate the concrete
speci�cation syntax {Π, I} [Δ] (2 : �) into the abstract syntax Π # (Δ p I ⊢ 2 : �). Our abstract
syntax distinguishes Π and I because they play di�erent roles in typechecking: channels in I can be
hidden by % , while those inΠ cannot appear in % .Most’s typing judgment % ⊩ Π # (Δ p I ⊢ 2 : �)//T
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checks % against its speci�cation, generating constraints T. Our concrete syntax names processes
only to simplify examples; process names do not appear in our formal system.

To specify channel transmission, we need to specify multiple independent processes that execute
concurrently. Indeed, send 0 (1.%); & spawns process % providing a fresh 1, sends 1 over 0, and
runs % concurrently with& providing 0. Checking send 0 (1.%); & against its speci�cation requires
decomposing its speci�cation into speci�cations for % and & , and checking % and & . Accordingly,
we extend our abstract syntax for speci�cations to simultaneously specify multiple independent
processes. We write Π # ((Δ1 p I1 ⊢ 21 : �1) | · · · | (Δ= p I= ⊢ 2= : �=)) to simultaneously specify
= processes, where channels Π and Δ8 , I8 , 28 : �8 are ambient in Δ 9 , I9 , 2 9 : � 9 for 8 ≠ 9 . We call
(Δ p I ⊢ 2 : �) a process interface: it speci�es the communication interface for a process. We range
over interface sequences ((Δ1 p I1 ⊢ 21 : �1) | · · · | (Δ= p I= ⊢ 2= : �=)) using the meta-variable G.

A speci�cation Π # G is well-de�ned only if for each 0 : � in Π or G, the free channels in � are
contained in the domain of Π # G, i.e., are assigned types by the speci�cation. This precludes, e.g.,
· # (0 : � p · ⊢ 2 : CASE 1 { close⇒ � }) because the channel 1 is not typed by the speci�cation.

4.1 Type Reductions

In our motivating examples, we informally reduced types in speci�cations after observing messages
on channel. To make this explicit, we �rst de�ne reduction on types, and then extend it to entire
speci�cations. Type reduction is given by a syntactic operation �/c that reduces a type � by
an observed communication c . Observed communication, close on 0, label ; on 0, and chan 1 on 0,
closely resembles messages from the trace semantics. The only di�erence is in the case of channel
transmissions, where a free channel name 1 identi�es the transmitted channel. This free name will
be used by the process typing judgment to update types with the name of the received channel. We
write fc(c) for the free channels in c , and cc(c) = 0 for the carrier channel. Type reduction is partial,
capture-avoiding, and inductively de�ned by the following clauses (all other cases are unde�ned):

1/c = 1

(⊙;∈!�; ) /c = ⊙;∈! (�;/c) for ⊙ ∈ { ⊕,& }

((0 : �) ⊙ (1 : �)) /c = (0 : �/c) ⊙ (1 : �/c) for ⊙ ∈ { ⊗,⊸ }

(CASE 2 { close⇒ � }) /c =

{
� if c = close on 2

CASE 2 { close⇒ �/c } if cc(c) ≠ 2

(CASE 2 { ; ⇒ �; };∈!) /c =

{
�; if c = label ; on 2 and ; ∈ !

CASE 2 { ; ⇒ �;/c };∈! if cc(c) ≠ 2

(CASE 2 { ⟨1⟩ ⇒ � }) /c =

{
� if c = chan 1 on 2

CASE 2 { ⟨1⟩ ⇒ �/c } if cc(c) ≠ 2

When a message is observed on a channel in a process speci�cation, we simultaneously reduce
all types in the speci�cation. This eliminates the need to track past observations and it simpli�es the
presentation. The syntax (01 : �1, . . . , 0= : �=)/c = 01 : (�1/c), . . . , 0= : (�=/c) simultaneously
reduces contexts; it is de�ned whenever all �8/c are de�ned. It lifts to speci�cations context-wise.

4.2 The Semantics of Specifications

A speci�cation Π # G speci�es a collection of permitted behaviours, i.e., a trace set ⟦Π # G⟧.
To make this discussion concrete, consider a speci�cation Π # (Δ p I ⊢ 2 : �). The traces in
⟦Π # (Δ p I ⊢ 2 : �)⟧ are process traces that involve sending or receiving messages on Δ, 2 : � ,
with synchronizations on I. However, these traces may also contain constraint elements (¿;<). An
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element (¿; close on 0) means that the execution described by the remaining tail of the trace is
permitted only if a close message appears on the ambient channel 0 ∈ dom(Π). Constraint elements
(¿; label ; on 0) and (¿; chan on 0) are analogous. We use constraint elements to semantically
specify that a process is well-typed, provided that some other processes perform some action.
A trace set ⟦Π # G⟧ is the least set satisfying the following collection of inequalities. It is

well-de�ned because type reduction reduces the number of type operators in a speci�cation, so the
right-hand speci�cation always contains fewer type operators than the left-hand speci�cation. The
right-hand side may be unde�ned; in this case, we treat it as an empty set.
We �rst specify label transmission. Where c = label : on 0,< = label : on 0, and : ∈ !:

⟦Π # G | (Δ p I ⊢ 0 : ⊕;∈!�; )⟧ ⊇ (!; <) :: ⟦Π/c # G/c | (Δ/c p I/c ⊢ 0 : �: )⟧ (9)

⟦Π # G | (Δ, 0 : ⊕;∈!�; p I ⊢ 2 : �)⟧ ⊇ (?; <) :: ⟦Π/c # G/c | (Δ/c, 0 : �: p I/c ⊢ 2 : �/c)⟧ (10)

⟦Π # G | (Δ p I, 0 : ⊕;∈!�; ⊢ 2 : �)⟧ ⊇ (f ; <) :: ⟦Π/c # G/c | (Δ/c p I/c, 0 : �: ⊢ 2 : �/c)⟧ (11)

The �rst clause speci�es that a provider of type ⊕;∈!�; can send any label ; in !. The provider
must obey its original speci�cation, reduced by the just-observed message label ; on 0. Receiving
a label is dually speci�ed. The last clause speci�es that a process formed of a composition along
0 : ⊕;∈!�; can perform a synchronization on that channel. We de�ne clauses with inequalities to
avoid imposing an order on communication on di�erent channels. For example, given a speci�cation
· # (0 : ⊕(0 : 1) p · ⊢ 1 : ⊕(0 : 1)), the above clauses ensure that 0 and 1 can be used in either order
because its denotation includes traces starting with either channel.
A provider of type 1 can terminate only if it has no other channels. This ensures that channels

do not accidentally get discarded and it is captured by the �rst clause below. Receiving and
synchronizing on channels of type 1 ends communication on that channel. The last clause captures
termination when there are no processes left. Where c = close on 0:

⟦Π # G | (· p · ⊢ 0 : 1)⟧ ⊇ (!; close on 0) :: ⟦Π/c # G/c⟧ (12)

⟦Π # G | (Δ, 0 : 1 p I ⊢ 2 : �)⟧ ⊇ (?; close on 0) :: ⟦Π/c # G/c | (Δ/c p I/c ⊢ 2 : �/c)⟧ (13)

⟦Π # G | (Δ p I, 0 : 1 ⊢ 2 : �)⟧ ⊇ (f ; close on 0) :: ⟦Π/c # G/c | (Δ/c p I/c ⊢ 2 : �/c)⟧ (14)

⟦Π # ·⟧ ⊇ { Y } (15)

Channel transmission changes the shape of speci�cations to capture spawning processes. Where
c = (chan 1 on 0) with 1 fresh:

⟦Π # G | (Δ1,Δ2 p I1, I2 ⊢ 0 : (1 : �) ⊗ (0 : �))⟧

⊇ (!; chan on 0) :: 1 . ⟦Π/c # G/c | (Δ1/c p I1/c ⊢ 1 : �) | (Δ2/c, 0 : � p I2/c ⊢ 2 : �/c)⟧ (16)

⟦Π # G | (Δ, 0 : (1 : �) ⊗ (0 : �) p I ⊢ 2 : �)⟧

⊇ (?; chan on 0) :: 1 . ⟦Π/c # G/c | (Δ/c,1 : �, 0 : � p I/c ⊢ 2 : �/c)⟧ (17)

The �rst clause speci�es the permitted behaviours of a provider send 0 (1.%); & . Operationally, this
process forks % and & , respectively providing 1 and 0, and sends 1 over 0. The used and internal
channels of send 0 (1.%); & are then divided between % and & . Accordingly, the �rst clause splits
its interface Δ1,Δ2 p I1, I2 ⊢ 0 : (1 : �) ⊗ (0 : �) in two. The channels assigned to % and & depend
on the particular implementation, so the clause allows for arbitrary partitions Δ1,Δ2 and I1, I2. This
clause also illustrates why the observed message chan 1 on 0 (used in type reductions) speci�es
a free name 1, in contrast to the message element chan on 0 used in traces. When we reduce the
remaining types in the speci�cation to account for the channel transmission, we must specify
the free name 1 that carries the communications of % . However, this name 1 is not externally
meaningful, and we bind it in the trace to avoid name clashes in process compositions. The second
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clause captures receiving a channel over 1; it updates the context to contain the received channel.
The elided clause for synchronization is analogous to the second clause.

Finally, we specify the constraints generated by ambient channels in Π:

⟦Π, 0 : 1 # G⟧ ⊇ (¿; close on 0) :: ⟦Π/c # G/c⟧, (18)

where c = close on 0;

⟦Π, 0 : ⊙;∈!�; # G⟧ ⊇ (¿; label ; on 0) :: ⟦Π/c, 0 : �; # G/c⟧, (19)

where c = label ; on 0, ; ∈ !, and ⊙ ∈ { ⊕,& };

⟦Π, 0 : (1 : �) ⊙ (0 : �) # G⟧ ⊇ (¿; chan on 0) :: 1 . ⟦Π/c, 0 : �,1 : � # G/c⟧, (20)

where c = chan 1 on 0, and ⊙ ∈ { ⊗,⊸ }.

The �rst clause speci�es that if we reduce a speci�cation by observing a close message on an
ambient channel 0, then the traces permitted by the reduced speci�cation are valid provided that
some process in the environment closes 0. The second clause is analogous. The third clause captures
the fact that sending a channel results in a pair of channels in a context: the transmitted channel
and its carrier. We assume without loss of generality that 1 is fresh in the third clause.

The omitted clauses for ⊸ and & are analogous. There are no clauses for observing types: they
allow communication only after reducing to a weak-head normal type. In particular, type reductions
are silent and they occur as a result of communication on channels with weak-head normal types.

Example 4.1. The concrete speci�cation neg :: { } [8 : BitB 1] (2 : negBit 8) of section 2.6
corresponds to the speci�cation · # (8 : BitB 1 p · ⊢ 2 : negBit 8). It only allows the executions

(?; label 0 on 8) :: (!; label 1 on 2) :: (?; close on 8) :: (!; close on 2) :: Y,

(?; label 0 on 8) :: (?; close on 8) :: (!; label 1 on 2) :: (!; close on 2) :: Y,

plus the two traces obtained by exchanging 0 and 1. The �rst two traces illustrate the concurrent
nature of communication on di�erent channels. Indeed, negBit 8 only allows communication on 2
after communication on 8 , but no other ordering is imposed between messages on 8 and 2 .

Example 4.2. The concrete speci�cation neg :: {8 : BitB 1} [2 : negBit 8] (> : IdBitSeq1 8) of
section 2.6 corresponds to the speci�cation 8 : BitB 1 # (2 : negBit 8 p · ⊢ > : IdBitSeq1 8). It allows:

(¿; label 0 on 8) :: (?; label 1 on 2) :: (!; label 0 on >) ::

(¿; close on 8) :: (?; close on 2) :: (!; close on >) :: Y,

(¿; label 0 on 8) :: (¿; close on 8) :: (?; label 1 on 2) :: (!; label 0 on >) ::

(?; close on 8) :: (!; close on >) :: Y, etc.

Interpreting each trace as an execution or sequence of actions permitted to neg, the �rst trace
speci�es that if a label 0 is sent on an ambient channel 8 , then neg can receive a bit 1 on 2 , send
0 on > , and so on and so forth. The second trace is analogous, but illustrates that we impose no
extraneous orderings on messages on di�erent channels.

Example 4.3. The speci�cation 0 : 1, 1 : 1 # (· p · ⊢ 2 : CASE 0 { close⇒ CASE 1 { close⇒ 1 } })
permits two traces:

(¿; close on 0) :: (¿; close on 1) :: (!; close on 2) :: Y,

(¿; close on 1) :: (¿; close on 0) :: (!; close on 2) :: Y.

These two traces illustrate that the type of 2 does not impose an order on ambient communications:
because we can reduce under CASE, communication on 0 and 1 can occur in any order. Indeed,
the �rst trace corresponds to reducing the speci�cation to 1 : 1 # (· p · ⊢ 2 : CASE 1 { close⇒ 1 })
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(after observing close on 0) and then to · # (· p · ⊢ 2 : 1) (after observing close on 1); the second
captures �rst reducing to 0 : 1 # (· p · ⊢ 2 : CASE 0 { close⇒ 1 }), then to · # (· p · ⊢ 2 : 1).

Example 4.4. The speci�cation · # (· p · ⊢ 0 : (1 : 1) ⊗ CASE 1 { close⇒ 1 }) speci�es sending a
channel of type 1, and with the carrier closing after the sent channel. Its trace set is:

(!; chan on 0) :: 1 . ⟦· # (· p · ⊢ 1 : 1) | (· p · ⊢ 0 : CASE 1 { close⇒ 1 })⟧

= (!; chan on 0) :: 1 . (!; close on 1) :: ⟦· # (· p · ⊢ 0 : 1)⟧

= { (!; chan on 0) :: 1 . (!; close on 1) :: (!; close on 0) :: Y }.

This example shows how multiple interfaces in a speci�cation are used to specify relationships
between messages from di�erent processes that are spawned in the course of channel transmission.

5 OPERATIONS ON TRACES

Our trace semantics for processes uses two operations on traces: deletion and synchronized inter-
leaving. Name deletion deletes all messages in a trace whose names appear in a given set, while
synchronized interleavings interleave two traces while ensuring that input and output actions
match up. We also specify how to delete constraints elements from traces. All three operations will
be used by our typechecking algorithm when generating traces with constraints.

5.1 Deleting Channel Names from Traces

The construct a (
−−−−→
08 : �8 ) . % binds the channels 08 to hide them from external view. Semantically,

hiding is captured by deleting all messages on channels 08 from the traces of % . To account for
channel transmission, we may need to delete messages on other channel names. In particular, if 08
carries some channel 1, then we must also delete all messages on 1 from the trace.

Given a set- of names and a trace C , the deletion of- in C is the trace C \- inductively de�ned by:

Y \ - = Y and ((B; <) :: 21, . . . , 2= . C) \ - =

{
C \ (- ∪ { 21, . . . , 2= }) if cc(<) ∈ -

(B; <) :: 21, . . . , 2= . (C \ - ) otherwise

We assume without loss of generality that the names 28 are chosen distinct from those already in - .

Example 5.1. If C = (?; chan on 0) :: 1 . (?; close on 0) :: (?; close on 1) :: (!; close on 2) :: Y, then
C \ { 0 } = (!; close on 2) :: Y.

5.2 Deleting Constraints from Traces

The operation C/¿ deletes all constraints from C . We will use it when checking that processes have
consistent constraint sets when typing process compositions. It is inductively de�ned by

Y/¿ = Y and (B; <) :: ®G . C/¿ =

{
C/¿ if B = ¿

(B; <) :: ®G . C/¿ otherwise

5.3 Trace Reduction

When interleaving two traces, we need to delete constraints in one trace satis�ed by messages in
the other trace. We do so using a partial operation C/c that deletes a constraint (¿;<) in C if it is
satis�ed by the observed communication c . It is inductively de�ned on the structure of the trace:

Y/c = Y ((¿; close on 0) :: C)/(close on 0) = C

((¿; label ; on 0) :: C)/(label ; on 0) = C ((¿; chan on 0) :: 2 . C)/(chan 1 on 0) = [1/2]C

((B; <) :: ®G . C)/c = (B; <) :: ®G . (C/c) if cc(<) ≠ cc(c),
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and it is unde�ned in all other cases. The fourth clause instantiates a bound name 2 for a transmitted
channel with the free name 1 actually observed in the course of channel transmission. The last
clause handles an observation on a channel di�erent from the head of the trace. It is de�ned only if
C/c is de�ned. We always U-vary ®G to be distinct from the names in c .

Example 5.2. The reduction ((¿; label : on 0) :: Y)/(label ; on 0) is unde�ned because the label
; observed on 0 does not match the label : expected by the constraint. Similarly, the reduction
((!; close on 0) :: Y)/(label ; on 0) is unde�ned because the trace we are reducing sends on 0, while
the observation “label ; on 0” is meant to be an observation on an ambient channel 0.

5.4 Synchronized Trace Interleavings

Synchronized interleavings interleave traces according to a synchronous communication semantics.
It marks matching input-output elements as synchronized, and ensures that constraints imposed by
one trace are not violated by the other trace. This commutative operator is de�ned by lexicographic
induction on the length of the traces. We group its clauses into four categories:

(1) the base cases: interleaving a trace with an empty trace;
(2) synchronizing cases: the heads of each trace perform actions on the same channel;
(3) commuting cases: the heads of each trace perform actions on di�erent channels;
(4) ill-de�ned cases: unsynchronizeable sends and receives, etc.

The base cases specify that the empty trace is the unit for interleaving:

Y ∥ C = { C }, C ∥ Y = { C }.

The �rst synchronizing case holds whenever two traces send and receive the same message:

((!; <) :: ®G . C1) ∥ ((?; <) :: ®G . C2) = (f ; <) :: ®G . (C1 ∥ C2) .

It speci�es that these two traces synchronize (captured by the f sign), and that the tail is given
by interleaving their tails. To ensure that the resulting trace is well-formed, we require that both
traces bind the same names. It is this implicit U-variation that matches sent and received channel
names 1 when interleaving traces of the form (!; chan on 0) :: 1 . C1 and (?; chan on 0) :: 1 . C2.
The other principal case manages constraints. It states that a constraint in one trace can be

dropped whenever it is satis�ed by a corresponding action in the other trace, or whenever both
traces have the same constraint. If a constraint is matched against a di�erent message on that
channel, then the constraint cannot be satis�ed and there are no interleavings.

((B; <) :: ®G . C1) ∥ ((¿; <) :: ®G . C2) = (B; <) :: ®G . (C1 ∥ C2)

The commuting cases handle heads that act on di�erent channels. Let (< ∝ ®G) be the observed
communication induced by a message < and channel names ®G : (close on 0 ∝ ∅) = close on 0;
(label ; on 0 ∝ ∅) = label ; on 0; (chan on 0 ∝ 1) = chan1 on 0; and (< ∝ ®G) is unde�ned otherwise.
Given a partial map 5 , let 5 (G) ≃ ~ de�ne ~ whenever 5 (G) is de�ned. Where )8 = (B8 ; <8 ) :: ®G8 . C8 ,

(B1; <1) :: ®G1 . C1 ∥ (B2; <2) :: ®G2 . C2

= { (B1; <1) :: ®G1 . C | )2/(<1 ∝ ®G1) ≃ )
′
2 ∧ C ∈ C1 ∥ )

′
2 } ∪

∪ { (B2; <2) :: ®G2 . C | )1/(<2 ∝ ®G2) ≃ )
′
1 ∧ C ∈ )

′
1 ∥ C2 }





if cc(<1) ≠ cc(<2).

This case is well-de�ned because the lengths of ) ′
1
and ) ′

2
are respectively at most the lengths of )1

and )2. Our trace reduction operator hides considerable complexity, so we unpack the de�nition.
First, observe that the commuting case ensures that if a synchronization between (B1;<1) and

an element of )2 is eventually possible, then it occurs. Indeed, if cc(<1) appears free in )2 with an
observable sign, then )2/(<1 ∝ ®G1) is unde�ned (see, e.g., example 5.2). As a result, the �rst set
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(pre�xing (B1;<1)) is empty, and we interleave )1 with the tail of )2 in the second set to eventually
synchronize (B1;<1) with the corresponding element of )2.

Example 5.3. The interleaving (!; close on 0) ::Y ∥ (?; close on 1) :: (?; close on 0) ::Y is determined
by the commuting case. The reduction in the �rst set of the clause is unde�ned, so the �rst set
is empty. The second, { (?; close on 1) :: C | C ∈ ((!; close on 0) :: Y) ∥ ((?; close on 0) :: Y) }, is
de�ned in terms of a principal case. This principal case captures the synchronization on 0, and the
interleavings are given by { (?; close on 1) :: (f ; close on 0) :: Y }.

Second, the commuting case detects deadlock. Indeed, if two traces attempt to synchronize on
di�erent channels in opposite orders, then the carrier of the head of one trace is free in the other
trace. This implies that the reduction in each set is unde�ned, resulting in no interleavings:

((?; close on 0) :: (!; close on 1) :: Y) ∥ ((?; close on 1) :: (!; close on 0) :: Y) = ∅.

Third, the commuting case uses reduction to handle constraint satisfaction. Indeed, if (B1;<1) sat-
is�es a constraint in )2, then the reduction )2/(<1 ∝ ®G1) deletes that constraint before interleaving
the result with the tail C1.

Example 5.4. Interleaving ((!; close on 0) :: Y) ∥ ((?; close on 1) :: (¿; close on 0) :: Y) produces
the interleavings { (!; close on 0) :: (?; close on 1) :: Y, (?; close on 1) :: (!; close on 0) :: Y }, where
the send on 0 in the �rst trace satis�es the constraint in the second trace.

Finally, the commuting case ensures that constraint satisfaction obeys synchronization bound-
aries. For example, consider interleaving the traces (¿; close on 0) :: (?; close on 1) :: Y and
(!; close on 1) :: (!; close on 0) :: Y. Intuitively, they synchronize on 1. However, the constraint
on 0 cannot be satis�ed by the send on 0, because the constraint is imposed before the synchro-
nization, while the send occurs after the synchronization on 1. This unsatis�ability implies that the
traces should have no synchronizing interleavings. This is captured by our interleaving operator:
the only applicable clause is the commuting case, and both sets de�ning it are empty.
All other cases are taken to be ill-de�ned, so we de�ne their set of interleavings to be empty.

These include, e.g., cases of the form ((!; close on 0) :: C) ∥ ((!; label ; on 0) :: C ′) (sending on the
same channel) and mismatched sends and receives: ((!; close on 0) :: C) ∥ ((?; label ; on 0) :: C ′).
A trace is safely constrained if any carrier channel associated with a constraint sign is not also

associated with input, output, or synchronization. By proposition 5.5, constraints can only limit
the interleavings of observable actions. In other words, checking constraints when interleaving
traces does not introduce new observable behaviours. The opposite inclusion will play a key role
when typechecking process composition:

Proposition 5.5. Given safely constrained traces C1 and C2, (C1 ∥ C2)/¿ ⊆ (C1/¿) ∥ (C2/¿).

5.5 Type-Theoretic Properties

Section 4.2 gave a trace semantics for process speci�cations. We relate the behaviour of trace
operators to this trace assignment. Recall that a process speci�cation Π # G is well-formed only
if every channel appearing free in a type in Π,G is typed by some other type assignment in the
speci�cation.

Proposition 5.6 semantically characterizes hiding internal channels in a speci�cation. The well-
formedness hypothesis is required to ensure that no types become ill-scoped. For example, it
precludes deleting 0 : 1 from Π # (Δ p I, 0 : 1 ⊢ 2 : CASE 0 { close⇒ � }).

Proposition 5.6. If C ∈ ⟦Π # G | (Δ p I, Γ ⊢ 0 : �)⟧ and Π # G | (Δ p I ⊢ 0 : �) is well-formed,

then (C \ dom(Γ)) ∈ ⟦Π # G | (Δ p I ⊢ 0 : �)⟧.
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The following proposition characterizes independent parallel executions. To concretize it, con-
sider speci�cations Π,Δ2, I2, 02 : �2 # (Δ1 p I1 ⊢ 01 : �1) and Π,Δ1, I1, 01 : �1 # (Δ2 p I2 ⊢ 02 : �2).
They specify two processes whose types can observe each other’s channels. We can compose these
two speci�cations in a single speci�cation: Π # (Δ1 p I1 ⊢ 01 : �1) | (Δ2 p I2 ⊢ 02 : �2). The propo-
sition states that interleaving the traces of each individual speci�cation results in traces allowed
by the composed speci�cation. This proposition is useful when characterizing traces involving

channel transmissions. More generally, where G denotes the typed channels in G:

Proposition 5.7. If C1 ∈ ⟦Π,G2 # G1⟧ and C2 ∈ ⟦Π,G1 # G2⟧, then C1 ∥ C2 ⊆ ⟦Π # G1 | G2⟧.

An alternate form of speci�cation composition results in synchronization. Indeed, consider
processes speci�cations Π,Δ2, I2, 2 : � # (Δ1 p I1 ⊢ 0 : �) and Π,Δ1, I1 # (Δ2, 0 : � p I2 ⊢ 2 : �). The
parallel composition operation composes them along the channel 0 so that they synchronize on
this channel. Subject to side conditions, their composition satis�es Π # (Δ1,Δ2 p I1, 0 : �, I2 ⊢ 2 : �)
where 0 becomes an inner synchronization channel. This synchronizing parallel composition is
also characterized by synchronized interleaving:

Proposition 5.8. If C1 ∈ ⟦Π,Δ2, I2, 2 : � # (Δ1 p I1 ⊢ 0 : �)⟧ and
C2 ∈ ⟦Π,Δ1, I1 # (Δ2, 0 : � p I2 ⊢ 2 : �)⟧, then C1 ∥ C2 ⊆ ⟦Π # (Δ1,Δ2 p I1, 0 : �, I2 ⊢ 2 : �)⟧.

6 TYPECHECKING PROCESSES

We give a typechecking algorithm to statically check that a process satis�es its speci�cation, i.e.,
that each execution of the process is permitted by its speci�cation. It is driven by a collection of
inference rules and operates in two alternating phases.
The �rst phase decomposes process compositions into individual processes. It then determines

the next channel 0 that a given process will use to communicate, and kicks o� the second phase.
The second phase focusses on the type of 0. It �rst tries to reduce the focussed type to weak head
normal form, and then proceeds to typecheck the given process with respect to that weak head
normal type. Because our system is compositional, types may depend on ambient channels whose
meaning will eventually be given by composition, and type reduction may cause constraints to
be imposed on ambient communications. To capture these, our algorithm generates a collection
constraints that must be satis�ed by the environment in order for the process to be well-typed.

6.1 Phase One: Uniform Process Typing

The �rst phase, which we call uniform typing, is driven by a judgment % ⊩ Π # (Δ p I ⊢ 0 : �) // T
inductively de�ned by the rules of �g. 1. We use colours to indicate the modes of each parameter in
the judgment, where red indicates inputs to the judgment and blue indicates outputs. Here, we
attempt to check process % against the well-formed speci�cation Π # (Δ p I ⊢ 0 : �). The judgment
outputs a set T of traces that consist of the communications of % interleaved with constraints on
channels in Π. By our soundness result (theorem 7.1), restricting each trace in T to its observable
actions (i.e., those with sign ?, !, or f) will result in the set ⟦%⟧ of traces of % . We implicitly assume
that process speci�cations are well-formed, i.e., that all names are in scope.

The rule (New) introduces internal channels that can be used to type process % . The constraint
set for its conclusion is obtained by deleting the new channels from the constraint set for % . This is
analogous to the trace semantics of hiding in section 3. Because we assume that all speci�cations
are well-formed, we know that no types in Π # (Δ p I ⊢ 2 : �) attempt to observe 01, . . . , 0= .
The rule (Par) ensures that two processes can be composed only if they impose compatible

constraints. This is ensured by premise T1 ∴ T2 that holds if and only if:

∀C1 ∈ T1 . ∀C2 ∈ T2 . (C1/¿ ∥ C2/¿) = (C1 ∥ C2) /¿. (21)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 142. Publication date: April 2024.



142:20 Ryan Kavanagh and Brigi�e Pientka

% ⊩ Π # (Δ p I ⊢ 0 : �) // T Process % satis�es speci�cation Π # (Δ p I ⊢ 0 : �) subject to constraints T

% ⊩ Π # (Δ p I, 01 : �1, . . . , 0= : �= ⊢ 2 : �) // T

a (01 : �1, . . . , 0= : �=) . % ⊩ Π # (Δ p I ⊢ 2 : �) // T \ { 01, . . . , 0= }
(New)

% ⊩ Π,Δ2, I2, 2 : � # (Δ1 p I1 ⊢ 0 : �) // T1 & ⊩ Π,Δ1, I1 # (Δ2, 0 : � p I2 ⊢ 2 : �) // T2 T1 ∴ T2

% ∥0 & ⊩ Π # (Δ1,Δ2 p I1, 0 : �, I2 ⊢ 2 : �) // T1 ∥ T2

(Par)

% ⇒ Π # (Δ p I ⊢ [0 : �]) // T princ(%) = 0

% ⊩ Π # (Δ p I ⊢ 0 : �) // T
(⊩R)

% ⇒ Π # (Δ, [0 : �] p I ⊢ 2 : �) // T princ(%) = 0

% ⊩ Π # (Δ, 0 : � p I ⊢ 2 : �) // T
(⊩L)

Fig. 1. Uniform Process Typing Judgment

Intuitively, it speci�es that if traces C1 and C2 corresponding to % and & can be composed as process
executions, then each synchronized interleaving of C1 and C2 qua process traces can be obtained by
synchronizing C1 and C2 as constraint traces. In other words, we can interleave the constraints in C1
and C2 such that all of the constraints are consistent with the process actions in C1 and C2, and recover
all valid process interleavings. The key point of this de�nition is that we can recover all valid
process interleavings despite the presence of constraints, i.e., that (C1/¿ ∥ C2/¿) ⊆ (C1 ∥ C2) /¿; we
already know by proposition 5.5 that adding constraints cannot produce new process interleavings,
i.e., that (C1/¿ ∥ C2/¿) ⊇ (C1 ∥ C2) /¿.

Example 6.1. We illustrate how constraint satisfaction rules out incompatible compositions by
attempting to compose the following two processes (respectively, % and &) in parallel:

case 0 { ; ⇒ 1.0; wait 0; close 1 };∈Bit ⊩ · # (0 : BitB 1 p · ⊢ 1 : BitB 1) // T1

case 0 { ; ⇒ 1.; ; wait 0; close 1 };∈Bit ⊩ 0 : BitB 1 # (1 : BitB 1 p · ⊢ 2 : IdBitSeq1 0) // T2.

Their composition should not satisfy % ∥0 & ⊩ · # (0 : BitB 1 p 1 : BitB 1 ⊢ 2 : IdBitSeq1 0) // T
because an input of 1 on 0 does not result in the output 1 on 2 speci�ed by IdBitSeq1 0. The
following two traces violate (21) (they have no interleavings) and keep (Par) from being applied:

(?; label 1 on 0) :: (!; label 0 on 1) :: (?; close on 0) :: (!; close on 1) :: Y ∈ T1

(?; label 0 on 1) :: (¿; label 0 on 0) :: (?; label 0 on 2) :: · · · ∈ T2

The rules (⊩R) and (⊩L) uniformly identify the next channel 0 on which a process will communi-
cate, and kick o� the second phase that reduces the type of 0. This channel 0 is called the principal
channel of the process, and is given by princ(%) = 0 for

% := close 0 | wait 0; & | 0.: ; & | case 0 { ; ⇒ &; };∈! | send 0 (1.&1); &2 | 1 ← receive 0; &.

We remark that there is exactly one rule in the �rst phase for each process forming construct.

6.2 Phase Two: Focussed Type Reduction

The second phase is driven by a pair of type-reduction judgments % ⇒ Π # (Δ p I ⊢ [0 : �]) // T
and % ⇒ Π # (Δ, [0 : �] p I ⊢ 2 : �) // T that reduce a focussed type [0 : �] to weak head normal
form, and checks that if the principal channel of % is 0, then % communicates on 0 according to �.
The right-focussed judgment is inductively de�ned by the rules of �g. 2 (weak head normal cases)
and �g. 3 (reduction cases); the analogous left-focussed judgment exchanges sending and receiving.
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% ⇒ Π # (Δ p I ⊢ [0 : �]) // T Focussed reduction of 0 : � on the right

close 0 ⇒ Π # (· p · ⊢ [0 : 1]) // { (!; close on 0) :: Y }
(⇒1R)

% ⊩ Π/c # (Δ/c p I/c ⊢ 0 : �: ) // T c = label : on 0

0.: ; % ⇒ Π # (Δ p I ⊢ [0 : ⊕;∈!∪{ : }�; ]) // (!; label : on 0) :: T
(⇒⊕R)

%; ⊩ Π/c # (Δ/c p I/c ⊢ 0 : �; ) // T; c = label ; on 0 (∀; ∈ !)

case 0 { ; ⇒ %; };∈!∪!′ ⇒ Π # (Δ p I ⊢ [0 : &;∈!�; ]) //
⋃

;∈! (?; label : on 0) :: T;
(⇒&R)

% ⊩ (Π,Δ2, I2)/c, 0 : � # (Δ1/c p I1/c ⊢ 1 : �) // T1

& ⊩ (Π,Δ1, I1)/c,1 : � # (Δ2/c p I2/c ⊢ 0 : �) // T2 c = chan 1 on 0 T1 ∴ T2

send 0 (1.%); & ⇒ Π # (Δ1,Δ2 p I1, I2 ⊢ [0 : (1 : �) ⊗ (0 : �)]) // (!; chan on 0) :: 1 . (T1 ∥ T2)
(⇒⊗R)

% ⊩ Π/c # (Δ/c,1 : � p I/c ⊢ 0 : �) // T c = chan 1 on 0

1 ← receive 0; % ⇒ Π # (Δ p I ⊢ [0 : (1 : �) ⊸ (0 : �)]) // (?; chan on 0) :: 1 .T
(⇒⊸R)

Fig. 2. Right-Focussed Process Typing — Focussed Type in Weak Head Normal Form

% ⇒ Π/c # (Δ/c p I/c ⊢ [0 : �]) // T c = close on 2

% ⇒ Π, 2 : 1 # (Δ p I ⊢ [0 : CASE 2 { close⇒ � }]) // (¿; close on 2) :: T
(⇒1[R])

% ⇒ Π/c; , 2 : �; # (Δ/c; p I/c; ⊢ [0 : �; ]) // T; c; = label ; on 2 (∀; ∈ !) ! ⊆ !′ ⊆ !′′ ⊙ ∈ { ⊕,& }

% ⇒ Π, 2 : ⊙;∈!′�; # (Δ p I ⊢ [0 : CASE 2 { ; ⇒ �; };∈!′′ ]) //
⋃

;∈! (¿; label ; on 2) :: T;
(⇒⊕&[R])

% ⇒ Π/c,1 : �, 2 : � # (Δ/c p I/c ⊢ [0 : �]) // T c = chan 1 on 2 ⊙ ∈ { ⊗,⊸ }

% ⇒ Π, 2 : (1 : �) ⊙ (2 : �) # (Δ p I ⊢ [0 : CASE 2 { ⟨1⟩ ⇒ � }]) // (¿; chan on 2) :: 1 .T
(⇒⊗⊸[R])

Fig. 3. Right-Focussed Process Typing — Reducing the Type in Focus

For example, the rule (⇒1R) of �g. 2 speci�es that the process close 0 communicates according
to the weak head normal type 0 : 1, provided it has empty client and internal contexts. The client
context must be empty to ensure that we do not accidentally discard any clients. The internal
context must be empty to ensure that we use all internal channels in the speci�cation. We must
do so, for the current process may have been spawned by a larger process (typed by channels in
Π) that observes channels in I, and we must not allow these channels to be discarded. Because no
constraints are imposed on the environment, the output constraint set is exactly ⟦close 0⟧.

The rule (⇒⊕R) speci�es that a process 0.: ; % is a server for a channel 0 : ⊕;∈!∪{ : }�; provided
% is well-typed when 0 : �: and the remainder of the speci�cation has been reduced by label : on 0.
This reduction ensures that all types that depend on 0 observe the transmitted label : . The resulting
constraint set is given by pre�xing constraint set T for % by the output action (!, label : on 0).

Channel transmission send 0 (1.%); & spawns a process % that provides a fresh channel1, sends1
over 0, and continues as& . Processes % and& cannot share any channels. This is ensured by (⇒⊗R):
it treats all channels used or provided by % as ambient in & ’s typing judgment and vice-versa. The
rule also ensures that their speci�cations impose compatible constraints, analogously to (Par).
Sometimes, the focussed channel is not yet weak head normal. In these cases, we must reduce

it to a weak head normal type (see �g. 3). The rule (⇒1[R]) reduces a focussed channel of type
CASE 2 { close⇒ � }. This reduction is justi�ed so long as a close message is observed on ambient
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channel 2 . This constraint is captured by pre�xing the constraint (¿, close on 2) on the constraint
set T generated by the premise. The rule (⇒⊕&[R]) can generate constraints for a subset of labels
in a choice to support composition with processes that only send a subset of the permitted labels.
The remaining reduction rules are analogous. We remark that the rules of �g. 3 only reduce types
that observe ambient channels. A focussed type that observes a used or provided channel cannot be
reduced because we cannot reduce types based on future communications. Indeed, the observation
required to reduce the type can only be provided by the process being checked, but the process will
communicate on the focussed principal channel before it will communicate on the channel being
observed. Types that observe local channels are instead immediately reduced by the rules of �g. 2.

Example 6.2. Set � = CASE 0 { close ⇒ 1 } and %G,~ = (wait G ; close ~). We illustrate the
mechanics of our typechecking algorithm by attempting to typecheck a (1 : 1) . (%0,1 ∥1 %1,2 ) against
the speci�cation · # (0 : 1 p · ⊢ 2 : �). Typechecking succeeds if we can build a derivation of
a (1 : 1) . (%0,1 ∥1 %1,2 ) ⊩ · # (0 : 1 p · ⊢ 2 : �) // T for some T. First, we build a candidate derivation
by considering only the inputs to the judgment (the red parts of the tree). The only possible bottom
rule in our case is (New), and we use proof search to complete the derivation. The focussed nature
of our system ensures that search amounts to inversion: in each case, at most one rule can be used
to extend the derivation. Eventually each branch either gets stuck or reaches a leaf (an axiom). The
following candidate derivation shows that we can successfully build the red portion of the tree:

close 1 ⇒ 2 : 1 # (· p · ⊢ [1 : 1]) // L1
(⇒1R)

close 1 ⇒ 2 : 1 # (· p · ⊢ 1 : 1) // L1
(⊩R)

%0,1 ⇒ 2 : � # ( [0 : 1] p · ⊢ 1 : 1) // L2
(⇒1L)

%0,1 ⊩ 2 : � # (0 : 1 p · ⊢ 1 : 1) // L2
(⊩L)

close 2 ⊩ · # (· p · ⊢ [2 : 1]) // R1
(⇒1R)

close 2 ⊩ 0 : 1 # (· p · ⊢ [2 : �]) // R2
(⇒1[R])

close 2 ⊩ 0 : 1 # (· p · ⊢ 2 : �) // R2
(⊩R)

%1,2 ⇒ 0 : 1 # ( [1 : 1] p · ⊢ 2 : �) // R3
(⇒1L)

%1,2 ⊩ 0 : 1 # (1 : 1 p · ⊢ 2 : �) // R3
(⊩L)

%0,1 ∥1 %1,2 ⊩ · # (0 : 1 p 1 : 1 ⊢ 2 : �) // L2 ∥ R3
(Par)

a (1 : 1) . (%0,1 ∥1 %1,2 ) ⊩ · # (0 : 1 p · ⊢ 2 : �) // (L2 ∥ R3) \ {1 }
(New)

Assuming every branch reaches a leaf, the axioms specify the leaf’s judgment’s output (the trace
set in blue). We thread these trace sets back down through the derivation tree, using the operations
speci�ed in each rule to build that rules output trace set. In this case:

L1 = { (!; close on 1) :: Y } L2 = (?; close on 0) :: L1

R1 = { (!; close on 2) :: Y } R2 = (¿; close on 0) :: R1 R3 = (?; close on 1) :: R2

L2 ∥ R3 = { (?; close on 0) :: (f ; close on 1) :: (!; close on 2) :: Y }

(L2 ∥ R3) \ {1 } = { (?; close on 0) :: (!; close on 2) :: Y }

Typechecking succeeds if the resulting derivation is valid (including the side condition (21) for (Par)).

Our rules determine a terminating typechecking algorithm when all choice types are indexed by
�nite label sets. Indeed, all constraint sets and their traces are �nite, so trace operations terminate,
and the alternating phases reduce the complexity of processes and their speci�cations. Most of the
typechecking complexity lies in computing operations on traces. We conjecture that they could
e�ciently be implemented by representing traces as tries or radix trees.

7 SAFETY PROPERTIES

Our typechecking algorithm is sound: if we can typecheck a process against a process speci�cation,
then all executions of that process are permitted by its speci�cation. Put di�erently, our typechecking
algorithm ensures that well-typed processes communicate safely:

Theorem 7.1 (Soundness). The typechecking algorithm is sound: if any of

(1) % ⊩ Π # (Δ p I ⊢ 0 : �) // T,
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(2) % ⇒ Π # (Δ p I ⊢ [0 : �]) // T, or

(3) % ⇒ Π # (Δ, [0 : �] p I ⊢ 2 : �) // T,

then T/¿ = ⟦%⟧ (the set T extents the executions of % with constraints) and T ⊆ ⟦Π # Δ p I ⊢ 0 : �⟧
(the constraint set T satis�es the speci�cation Π # Δ p I ⊢ 0 : �).

Corollary 7.2. If % ⊩ · # (Δ p I ⊢ 0 : �) // T, then T = ⟦%⟧ and ⟦%⟧ ⊆ ⟦· # (Δ p I ⊢ 0 : �)⟧.

A key feature of Most is its modular approach to process speci�cation. Processes whose speci�-
cations impose no constraints on their environment can always be composed:

Proposition 7.3 (Compositionality). If % ⊩ · # (Δ1 p I1 ⊢ 0 : �) // T1 and

& ⊩ · # (Δ2, 0 : � p I2 ⊢ 2 : �) // T2, then % ∥0 & ⊩ · # (Δ1,Δ2 p I1, 0 : �, I2 ⊢ 2 : �) // T1 ∥ T2.

8 EXTENDING MOST

Most provides a foundation for the development of session-typed languages with rich speci�cations.
In this section, we conjecturally sketch extensions along several axes that allow Most to capture
richer computational phenomena: selection, asynchrony, value dependency, and recursion.

8.1 Selection

Go [The Go Project 2024] includes a select statement that, given a collection of communication
actions to perform, randomly performs one from the set of actions that are possible. For example,
if processes % and & attempt to communicate with a process ', then process ' could use a select
statement to communicate with the �rst of the two processes that is ready. We show how to
extendMost with a linear variant of a select statement building on ideas from di�erential linear
logic [Ehrhard 2018] and its applications to concurrency [Rocha and Caires 2021, 2023]. Di�erential
linear logic o�ers a means of adding proofs of the same sequent. In the intuitionistic case, if we
ascribe the sequents of intuitionistic linear logic with proof terms (processes), we get the rule

Γ ⊢ % :: 0 : � Γ ⊢ & :: 0 : �

Γ ⊢ % +& :: 0 : �

The possible behaviours of % +& are all those of % or & , so the sum denotes ⟦% +&⟧ = ⟦%⟧ ∪ ⟦&⟧.
This clause satis�es the identities described by Rocha and Caires, namely, that process composition
distributes over sums and that all processes are idempotent with regard to the sum, i.e., that %+% ≡ %
for all % . Our discussion suggests the following typing rule for sums of Most processes:

%1 ⊩ Π # (Δ p I ⊢ 0 : �) // T1 %2 ⊩ Π # (Δ p I ⊢ 0 : �) // T2
%1 + %2 ⊩ Π # (Δ p I ⊢ 0 : �) // T1 ∪ T2

(Sum)

Returning to our motivating example, suppose that we want to receive channels 0 and 2 over1 and
3 , respectively, but that we do not want to impose a particular order on which of 1 or 3 is used �rst.
The following sum of processes receives on whichever of 1 or 3 is ready �rst, non-deterministically
breaking any ties, and communicates over the other before continuing as '′:

(0 ← receive 1; 2 ← receive 3 ; '′) + (2 ← receive 3 ; 0 ← receive 1; '′) .

8.2 Asynchrony

AdaptingMost to use an asynchronous communication semantics is straightforward, but it comes at
the cost of technical complexity. The intended semantics treats channels as unbounded FIFO bu�ers,
where processes can always send (add a message to a bu�er), and they can receive a message if one is
bu�ered.We implement FIFO bu�ers using continuation channels, where each channel carries exactly
one message, and each message consists of the datum plus the name of the (continuation) channel
that will carry the next message. To preclude interference between channels, continuation channel
names are globally fresh. To illustrate, consider the trace that describes sending on 0 the label ; ,
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receiving label : , and closing 0. In the synchronous setting, we simply send the three messages on 0,
giving a trace (!; label ; on 0) :: (?; label : on 0) :: (!; close on 0) ::Y. In the asynchronous setting, the
label ; is paired with a fresh name 01 when sent on 0; label : is paired with a fresh name 02 and sent
on 01; and the close message is sent on 02. To enforce global freshness, ensure that trace sets remain
�nite, and preserve compositionality, we model continuation channels in traces by bound channel
names. The corresponding trace is (!; label ; on 0) :: 01 . (?; label : on 01) :: 02 . (!; close on 02) :: Y,
where 01 and 02 are bound. Modifying the semantic clauses to capture asynchronous communication
is then a matter of adapting the trace operations of section 5 to handle continuation channels, and
of threading bindings for continuation channels throughout the semantic clauses. For example,
eq. (3) becomes ⟦0.: ; %⟧ = (!; label : on 0) ::0 . ⟦%⟧, where 0 is bound in the traces in ⟦%⟧. To type
processes in the asynchronous setting, we must extend the syntax of observed communications c
to include the name of the continuation channel, and extend type reductions �/c to substitute the
continuation channel for the carrier of c in �. Because type reduction is localized to the operation
�/c and all reductions occur in lockstep in the typing rules, we never need to worry about a
continuation channel name going out of scope, and no other changes are required.

8.3 Value-Dependent Session Types

Most can be extended to support value-dependent session types [Toninho, Caires, et al. 2011],
where session types can depend on values drawn from an underlying dependent functional language.
Value-dependent type formers ∀G : g . � and ∃G : g . � respectively specify servers that receive or
send values E of type g and then communicate according to [E/G]�. We �rst extend our syntax:

Processes % F · · · | send" on 0; % Evaluate term" and send its value on 0

| let G = rcv 0 in % Bind received value to G in %

Session types � F · · · | ∀G : g . � Dependent value receiving

| ∃G : g . � Dependent value sending

| CASE 0 { val G ⇒ � } Value observation

Value observation CASE 0 { val G ⇒ � } observes a transmitted value E on a channel 0 and
reduces to the type [E/G]�. Its reduction is de�ned analogously to the other immediate reductions:

(CASE 2 { val G ⇒ � })/c =

{
["/G]� if c = val" on 2

CASE 2 { val G ⇒ �/c } if cc(c) ≠ 2

Write val[g] for the sets of closed values of type g . We give meaning to value transmission by
allowing terms to be embedded in traces:3

⟦send" on 0; %⟧ = (!; val" on 0) :: ⟦%⟧, ⟦let G = rcv 0 in %⟧ =
⋃

E∈val[g ]
(?; val E on 0) :: ⟦%⟧.

We then extend interleaving to use the underlying de�nitional equality on terms so that whenever
" and E are de�nitionally equal, ((!; val" on 0) ::C1) ∥ ((?; val E on 0) ::C2) = (f ; val E on 0) :: (C1 ∥C2)
To type processes that use values, we assume a typing judgment Γ ⊢f " : g for the functional

language and extend the process typing judgment to include Γ. The right process typing rules
follow a similar pattern as for label transmission, and the other rules follow analogously:

% ⊩ Γ, G : g ; Π/c # (Δ/c p I/c ⊢ 0 : �) // T c = val G on 0

let G = rcv 0 in % ⇒ Γ; Π # (Δ p I ⊢ [0 : ∀G : g . �]) //
⋃

E∈val[g ] (?; val E on 0) :: [E/G]T
(⇒∀R)

% ⊩ Γ; Π/c # (Δ/c p I/c ⊢ 0 : ["/G]�) // T Γ ⊢f " : g c = val" on 0

send" on 0; % ⇒ Γ; Π # (Δ p I ⊢ [0 : ∃G : g . �]) // (!; val" on 0) :: T
(⇒∃R)

3Extending our semantics to capture evaluation in the underlying dependent type theory is beyond the scope of this sketch.
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% ⊩ Γ, G : g ; Π/c # (Δ/c p I/c ⊢ 0 : �) // T c = val G on 0 ♯ ∈ { ∀, ∃ }

% ⇒ Γ; Π, 2 : (♯G : g .�) # (Δ p I ⊢ [0 : CASE 2 { val G ⇒ � }]) //
⋃

E∈val[g ] (¿; val E on 0) :: [E/G]T
(⇒∀∃[R])

8.4 Recursion

Most can be extended to support mutually recursive types and processes using coinductively
de�ned typing judgments. We implement mutually recursive processes using process declarations
5 ( ®G) = %5 gathered in an implicit global context Σ% . These declarations specify that the process
named 5 is given by its implementation %5 involving channels ®G . The syntax call 5 ( ®0) calls process
5 with channel names ®0, and it corresponds to running [®0/®G]%5 . Equirecursive types are given by
type declarations - [®G] = �- gathered in an implicit global context Σ�. Channel name variables ®G
specify the channels that �- can observe, and - [®0] is de�nitionally equal to [®0/®G]�- . A complete
program P is a called process name paired with explicit declarations for each called name.

Processes % F · · · | call 5 ( ®0) Call named process 5 with channels ®0

Session types � F · · · | - [®G] Equirecursive type names

Type declarations Σ� F · | Σ�, - [®G] = �- - [®G] is de�nitionally equal to �-

Process declarations Σ% F · | Σ% , 5 ( ®G) = %5 Process named 5 is implemented by %5

Programs PF call 5 ( ®0) where Σ% Complete or top-level program

We assume that recursive declarations are contractive [Pierce 2002, p. 300]. This standard assumption
simpli�es our theory and allows us to interpret equirecursive types as regular trees. To ensure type
reduction �/c remains well de�ned, we interpret its de�nition coinductively instead of inductively.

Example 8.1. For each �xed type �, the type list� = ⊕{ nil : 1, cons : � ⊗ list� } speci�es lists of
channels of type �. The type stream� = &{ head : �, tail : stream� } speci�es a stream of channels
of type �. Given a process declaration u(G) = (case G { head⇒ close G | tail⇒ call u(G) }), the
process “call u(0)” is a closed process providing 0 : stream1.

Example 8.2. The types Bits and IdBitSeq 0 and the process id from sections 2.1 and 2.2 are en-
coded by the following declarations, where we use the label $ and type 1 to specify �nite sequences:

Bits = ⊕{ $ : 1, 0 : Bits, 1 : Bits }

IdBitSeq[G] = CASE G { $⇒ ⊕{ $ : CASE G { close⇒ 1 } }

| 0⇒ ⊕{ 0 : IdBitSeq[G] } | 1⇒ ⊕{ 1 : IdBitSeq[G] } }

id(G,~) = case G { $⇒ wait G ; close ~ | 0⇒ ~.0; call id(G,~) | 1⇒ ~.1; call id(G,~) }.

We extend our semantics to support calling named processes. Let P be the set of declared calling
interfaces 5 ( ®G). A process environment is a map d : P → TSets giving the meaning of declared
processes, where TSets is the lattice of sets of traces ordered by inclusion. We generalize ⟦%⟧ from
an element of TSets to a continuous map ⟦%⟧ : (P → TSets) → TSets. Calling 5 ( ®G) with channels
®0 means retrieving its meaning from the environment and instantiating it with the names ®0:

⟦call 5 ( ®0)⟧d = { [®0/®G]C | C ∈ d (5 ( ®G)) }.

We adapt the existing clauses by threading through the environments, e.g.: ⟦% ∥0&⟧d = ⟦%⟧d ∥⟦&⟧d .
To capture parallel composition in the presence of potentially in�nite traces, we must extend ∥ to
be a fair merge operator. This ensures that each element from each input traces appears at a �nite
depth in the interleavings. We omit the details due to space constraints.

Complete programs are processes executed in an environment where every called process name
has a corresponding declaration. Their semantics are given by

⟦call 5 ( ®0) where Σ%⟧ = ⟦call 5 ( ®0)⟧⟦Σ%⟧, where

⟦51 ( ®G1) = %1, . . . , 5= ( ®G=) = %=⟧ = FIX(_d ∈ (P → TSets) . [d | 51 ( ®G1) ↦→ ⟦%1⟧d | · · · | 5= ( ®G=) ↦→ ⟦%=⟧d]),
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FIX is the continuous �xed-point operator on P → TSets, and [6 | ~1 ↦→ E1 | · · · | ~= ↦→ E=] (G) is
E8 if G = ~8 and 6(G) otherwise. Intuitively, ⟦Σ%⟧ maps each 58 ( ®G8 ) to the meaning of ⟦%8⟧ in the
�xed point giving meaning to the mutually recursive declarations.

Example 8.3. If Σ% = (5 (G) = G .1; call 6(G)), (6(G) = G .0; call 5 (G)), then

⟦Σ%⟧ = FIX (_d. [d | 5 ↦→ (!; label 1 on G) :: d (6) | 6 ↦→ (!; label 0 on G) :: d (5 )])

⟦call 5 (0) where Σ%⟧ = { (!; label 1 on 0) :: (!; label 0 on 0) :: (!; label 1 on 0) :: · · · }.

Process speci�cations still denote sets ⟦Π # G⟧ of traces satisfying the speci�cation. However,
to capture recursive behaviour, we adapt its de�nition to use a coinductively de�ned elementhood
relation. Elementhood is given by a coinductive reading of the rules de�ning C ∈ ⟦Π # G⟧ generated
by the obvious analogs of section 4.2, e.g.:

C ∈ ⟦Π/c # G/c⟧ c = close on 0

(!; close on 0) :: C ∈ ⟦Π # G | (· p · ⊢ 0 : 1)⟧

C ∈ ⟦Π/c # G/c | (Δ/c p I/c ⊢ 0 : �: )⟧ c = label : on 0

(!; label : on 0) :: C ∈ ⟦Π # G | (Δ p I ⊢ 0 : ⊕;∈!�; )⟧

In order to type mutually recursive processes, we give our typing rules a coinductive reading
and treat each component as an input to the judgment. Then, we extend our rules with:

[®0/®G]%5 ⊩ Π # (Δ p I ⊢ 2 : �) // T (5 ( ®G) = %5 ) ∈ Σ%

call 5 ( ®0) ⊩ Π # (Δ p I ⊢ 2 : �) // T
(Call)

This system can be given a �nitary presentation by moving from arbitrary coinductive derivations
to circular derivations (�nite derivations with loops) [Derakhshan and Pfenning 2022; Fortier and
Santocanale 2013]. We refer the reader to [Somayyajula and Pfenning 2022] for a discussion of how
to do so to achieve typechecking in �nite time, and also a discussion of how to encode inductive
and coinductive types using value dependency and (general) equirecursive types.

9 RELATED WORK

Most builds on linear-logical foundations of session types pioneered by Caires and Pfenning [2010].
Indeed, the simply typed fragment of our system is based on a proofs-as-processes interpretation of
multiplicative-additive intuitionistic linear logic (MAILL), where propositions correspond to binary
session types that specify communications on communication channels. A key di�erence with our
work is that such interpretations typically combine parallel composition and hiding into a single
operation. This is because process composition corresponds to the cut rule of linear logic. In contrast,
we have separate parallel composition and hiding operators, and we track internal channels. This
separation ensures that composition does not hide channels observed by speci�cations, thereby
ensuring that speci�cations remain well-de�ned after process composition.We can recover cut-style
process composition with a derived rule. Our uniform process typing system can then be seen as a
conservative extension of typical interpretations of identity-free MAILL. Another key di�erence is
our use of focussing. Processes can be speci�ed with observing types, but we can only check speci�c
communication actions (e.g., sending a label) against weak head normal types (e.g., an internal
choice). This means that to typecheck a process, we must reduce the type of its principal channel
to weak head normal form, potentially generating constraints on ambient communications along
the way. Our focussing approach ensures that we only reduce the types of principal channels. This
avoids the premature or spurious generation of constraints on ambient channels that could a�ect
constraint compatibility in process composition, and it ensures that typechecking is deterministic.

There are various dependent type systems for binary session types. Toninho, Caires, et al. [2011]
and Toninho and Yoshida [2018] interpret logical quanti�ers as value-dependent session types in
languages with functional programming features. As discussed in section 8.3, value-dependent
session types depend on transmitted functional values. Variations include label-dependent session
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types [Thiemann and Vasconcelos 2019], which reify labels as a �rst-class type, and arithmetic
re�nements [Das and Pfenning 2020], which o�er type-level arithmetic using transmitted natural
numbers. Like other binary session types, value-dependent session types take a channel-local
approach: a type only considers communication on a single channel. In contrast, types inMost

specify protocols on individual channels while potentially depending on ambient communications.
Multiparty session types [Honda, Yoshida, et al. 2016] are an alternative approach to specifying

systems of communicating processes. Instead of specifying communications on individual channels,
multiparty session types specify interactions between multiple parties using a global type, and
then for each party project a local type specifying its interactions with the other parties. Though
multiparty session types can specify complex interactions, they are not compositional and typically
require that entire systems be speci�ed at once. To achieve compositionality, Stolze et al. [2023]
introduced partial multiparty sessions types, which specify multiparty sessions where some parties
may be missing. Determining when partial sessions can be composed and the resulting composition
is technically complex. In contrast,Most is designed to ensure compositional process speci�cations,
and the composition of process speci�cations is determined by a handful of inference rules.

The dynamics of processes in proofs-as-processes interpretations of intuitionistic linear logic is
often given by multiset rewriting semantics [Cervesato and Scedrov 2009]. We instead describe
the behaviour of processes using a trace semantics. We do so to simplify relating the meaning
of processes (a set of traces) with the meaning of process speci�cations (a set of allowed traces).
It also provides a means of ensuring that processes and speci�cations are mutually compatible
when typechecking their composition. We conjecture that our trace semantics captures the same
observable communication behaviours [Atkey 2017; Kavanagh 2022] as multiset-based semantics.
It is challenging to de�ne trace semantics or ordered semantics for process calculi with name
generation or U-conversion. Some approaches, e.g., typed event structures for c-calculi [Varacca
and Yoshida 2010], specify in advance all names that will be created; others use complex semantic
composition operators involving renamings [Crafa et al. 2007]. In contrast, we use binding to
range over all possible fresh names in a manner reminiscent of higher-order abstract syntax. This
avoids unintended name clashes when interleaving traces during process composition. Our compact
presentation also minimizes the number of traces considered by our typechecking algorithm. Traces
with binding are similar to nominal sequences [Gabbay and Ghica 2012], which use a coabstraction
operator to bind atoms appearing later in a sequence. In contrast, our traces bind not atoms, but
names found in later messages. As a result, our traces more closely resemble abstract binding trees.

10 CONCLUSION

In this work we describe Most, a message-observing binary session type system. It uses type-level
processes to specify protocols that vary based on ambient communications. This allows us to
express more precise safety guarantees that cannot be expressed by prior work.
Our main goal in designingMost is to ensure compositionality. We achieve this using a novel

trace-based semantics that uses traces with bindings to compactly handle higher-order communi-
cations. Our main technical results are type safety and compositionality for well-typed processes.

In the future, we plan to extend Most with shared channels. This would allow Most to capture
shared data structures like shared queues, and shared services like databases.
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