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RÉSUMÉ 

La planification durable de la production des biens n’est plus une tendance, mais plutôt un vrai 

besoin pour notre monde aujourd’hui et la recherche opérationnelle peut (et doit) contribuer à cette 

tâche importante. Pour se dire durable, un système de planification doit poursuivre autant des 

objectifs d’efficience économique, qu’énergétique et de responsabilité sociale. À travers 

l’utilisation de la méthode de la somme pondérée, ce mémoire compare les performances de huit 

nouvelles formulations pour les ateliers de production flexibles qui optimisent ces trois objectifs 

simultanément. Les modèles proposés incluent des temps de préparation dépendant de la séquence, 

différentes vitesses pour les machines, l’allocation et le séquencement des ressources humaines et 

l’optimisation des choix de fonctionnement de la machine (quand l’allumer, quand l’éteindre ou la 

mettre inactive). Quatre de ces huit formulations utilisent des contraintes de conservation des flux 

pour le séquencement des opérations aux espaces de travail et des opérations aux travailleurs. Les 

quatre autres utilisent un nouveau système de contraintes pour la première fois développé dans ce 

mémoire, sous le nom de « contraintes de séquence ». De plus, pour la première fois, la relation 

entre différentes vitesses pour les machines et les travailleurs avec différentes compétences sera 

étudiée. Le tout est analysé en considérant des instances inspirées des systèmes de production qui 

traitent trois types d’espace de travail basés sur la ressource goulot (i.e. un atelier automatique, 

semi-automatique et manuel).  Pour comparer les performances de ces nouvelles formulations, le 

meilleur objectif obtenu, le temps de résolution, le gap et la condition d’arrêt sont compilés pour 

la résolution de chacune des 30 instances générées aléatoirement et inspirées de systèmes de 

production réels. La dimension sociale est représentée par un nouvel objectif, inspiré par Karl Marx, 

appelé la minimisation de l’intensité du travail maximal. Cet objectif a pour but de minimiser 

l’intensité du travail du travailleur qui a le plus de temps de travail crédité dans l’horaire. Il est 

proposé que cet objectif prend en considération la vitesse à laquelle le travail est effectué, en 

créditant plus de temps à un employé qui travaille à un rythme plus soutenu qu’un autre même s’ils 

ont travaillé pour une durée équivalente. L’analyse comparative des performances des modèles sur 

les trois objectifs montre que les nouvelles contraintes de séquence ont mieux performées que les 

contraintes de conservation des flux pour le séquencement des opérations aux ressources et que 

l’utilisation de variables de temps à deux indices semble mieux performer que trois indices. De 

plus, les formulations comportant le moins de variables ont, en moyenne, eu un léger avantage au 
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niveau des indicateurs retenus, c’est-à-dire, les formulations ayant le niveau d’intégration le moins 

élevé. Par contre, ces résultats ne devraient pas décourager les chercheurs d’intégrer davantage de 

caractéristiques du problème car la différence en termes de temps de résolution pourrait bel et bien 

être négligeable comparativement aux avantages d’intégrer davantage de caractéristiques du 

problème lorsque c’est pertinent. Ensuite, une analyse des relations entre les différents objectifs a 

montré que les trois objectifs étaient en conflit. Une amélioration d’un des objectifs se fera au 

détriment d’au moins un des autres objectifs du problème. Finalement, la dernière section du 

mémoire fournit des outils aux gestionnaires pour intégrer de tels outils d’aide à la décision dans 

la pratique de leurs opérations quotidiennes. 

 

Mots clés : Atelier de production flexible, optimisation multi objective, Pareto front, méthode de 

la somme pondérée, contraintes de conservation des flux, Programmation linéaire en nombres 

entiers, intensité du travail, énergie totale dépensée, efficacité énergétique, développement durable. 
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ABSTRACT 

Sustainable development in production systems is no longer only a trend. It has become a real need 

in today’s world. Operational research can (and must) contribute to this new task. To be considered 

sustainable, a production system must simultaneously consider economic objectives as well as 

environmental and social objectives. Using the weighted-sum method, this thesis compares the 

performances of eight new formulations for sustainable flexible job-shops considering all three 

sustainable types of objectives. These formulations include sequence-dependent set-up times, 

different machine speeds, workers scheduling as well as when to start, stop or leave machines idle. 

Four of these following formulations use flow conservation constraints for sequencing operations 

to workstations and operations to workers. The four other formulations use new sequence linking 

constraints specifically developed during this thesis. Furthermore, for the first time, the relationship 

between different machine speeds and workers with different skills will be studied. This analysis 

is performed considering instances inspired by production systems including three different types 

of workstations based on the bottleneck resources (automatic, semi-automatic and manual 

workstations). To compare the performances of those eight formulations, the best objective, 

resolution time, gap and termination condition will be compiled for all 30 randomly generated 

instances inspired by real production systems solved. The social dimension of the problem is based 

on a new objective inspired by Karl Marx called Maximum intensity minimization. This objective 

seeks to minimize the work intensity of the worker who worked the most considering both, the 

time spent working and the pace at which that work occurred. Therefore, two workers working for 

the same amount of time at different pace would not be credited with the same work intensity even 

if the duration of the work is the same. Comparative analysis of the eight different formulations 

shows that sequence linking constraints are more efficient than flow conservation constraints to 

sequence operations to resources. Furthermore, formulations with fewer variables (formulations 

for which the level of integration is lower) showed better results during the experiment and using 

2-index time variables also showed better results during the experiment compared with 3-index 

time variables. However, those results should not discourage researchers from integrating more 

features of the problem in future research because the difference in performances might be 

negligible compared to the advantages of integrating certain features in different business cases. 

An analysis of the relationship between the three objectives was also performed. It showed that 



 

 xi 

there is conflict between all objectives for most of the instances solved. This means that an 

improvement of one of the dimensions of sustainable development will be done at the expense of, 

at least, one other dimension. Finally, this thesis gives managers tools to integrate decision-making 

tools like the one presented in this thesis into their day-to-day operations.  

 

Keywords : Flexible job-shop problem, multi-objective optimization, pareto front, pareto 

optimality, weighted-sum method, flow conservation constraints, mixed-integer linear 

programming, labor intensity, energy consumption, energy efficiency, makespan, sustainable 

development. 
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INTRODUCTION 

Our world needs better and greener production systems. The Global Footprint Network (GFN) is a 

leader in the study of ecological footprint. To determine whether there is an ecological deficit or 

reserve, the GFN compares two indicators: the ecological footprint and the biocapacity. The 

world’s ecological footprint can be defined as the number of resources that humanity requires over 

a certain period. In this case, such a period could be defined as a year. The world’s biocapacity 

would then represent what nature can produce over that same period. If the biocapacity is greater 

than the ecological footprint, it means that nature produces more resources than what humanity 

consumes. That would result in an ecological reserve. Currently, the world is in a state of ecological 

deficit instead. It means that the world’s ecological footprint is greater than its biocapacity. In this 

case, the ecological deficit represents when all the resources that are consumed by humanity in a 

year exceed what nature can produce in that same year. In fact, through the data gathered by the 

GFN, it is revealed that, from the start of the 21st century, the world’s ecological deficit has risen 

by more than 77%. This is only possible by drawing in from the inventory of resources nature has 

accumulated over a long period of time. However, this inventory is not eternal and will, eventually, 

run out (Footprint Data Foundation, York University Ecological Footprint Initiative, and Global 

Footprint Network, 2023). In fact, the Brundtland report, which acts as a reference in the field, 

even declares that: ''many forms of development erode the environmental resources upon which 

they must be based, and environmental degradation can undermine economic development. 

Poverty is a major cause and effect of global environmental problems'' (World Commission on 

Environment and Development, 1987). For instance, when a resource is depleted faster than it can 

recover, short-term development is prioritized against long-term interests. The depleted resource 

will show even fewer returns in the future than it would have shown before its depletion. If the 

GFN’s work attempts to assess the negative impact of humanity’s economic activity on the 

environment, and if the words of the Brundtland report hold true, it is only a matter of time before 

the ripple effect hits and the weakened environment starts having more severe negative impacts on 

the global economic development.  

In the last couple of years, different important organizations have come to a similar conclusion. In 

2015, the United Nations agreed upon 17 goals for sustainable development. This initiative was a 
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plea by numerous countries to secure the well-being of humanity. The application of such goals 

impacts the production systems and industries. Closely related to the day-to-day operations of 

industries, Goal Nine is concerned with industry innovation and infrastructure. More specifically, 

one of its targets specifically promotes sustainable industrialization. Also, targets of Goal Seven 

state a need to work towards affordable and clean energy, prioritizing energy efficiency and energy 

intensity. On a broader scale, it seeks to guarantee a healthy environment, dignity, equality, the 

possibility of realization and the end of poverty for everyone. Related to each dimension of 

sustainable development, this initiative would urge managers to rethink the impact of their business 

on the environment and people (United Nations Department for Economic and Social Affairs, 

2023). Sustainable development is a concept that is highly debated. Nonetheless, the Brundtland 

report defines it as the ability to fulfill present needs without compromising the ability of future 

generations to fulfill their own needs. The report also defines sustainable development around three 

dimensions: environmental, economic, and social. Moreover, discussing all 3 dimensions, the 

report declared: ''These are not separate crises: an environmental crisis, a developmental crisis, an 

energy crisis. They are all one.'' (World Commission on Environment and Development, 1987). 

Such a vision would urge the scientific community to try to escape the compartmentalization of 

those issues and to think of them simultaneously in their research. 

Any production of consumption goods or services relates to each of these three dimensions. It is 

also the case for any industry. Industries use financial resources, employ people, and consume 

energy and materials to fulfill their customers’ needs. In doing so, their managers make many 

decisions that have important social, environmental, and economic impacts. Those impacts could 

be negative such as using chemicals that would pollute the environment, bringing diseases upon 

their workers and exporting the profits to communities that already are wealthy (World 

Commission on Environment and Development, 1987).  However, industrials also have 

opportunities to have positive impacts on their communities such as being efficient with the 

resources they use, offering good working conditions and benefiting local economies. Hence, 

managers need to have the right tools to make the best decisions and consider their impact in the 

long, mid, and short term. Although operational decisions have short-term impacts on organizations, 

compared to strategic and tactical decisions, those still need to be considered thoroughly. In fact, 

because of their redundancy, operational decisions might, over a long period of time, have more of 
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an impact on the environment, society and economy than some strategic or tactical decisions 

(Spooner et al., 2014).  

Job scheduling daily in production systems is an example of a redundant operational decision that 

has great environmental, social, and economic impacts. The impact of a bad job schedule over a 

day is not necessarily dramatic on its own, but the application of the wrong decision-making tools 

will have a sizable impact every day and in the long term. Traditional job scheduling in 

manufacturing often implies making, at least, two decisions: in what order to process jobs and with 

which resources (sequencing and resource allocation). In this basic scenario, a set of jobs needs to 

be completed, meaning that all required operations related to that job must be completed. To do so, 

one or many resources (also called “machines”) might be required for each operation. Moreover, 

there is a specific order in which operations need to be completed for each job, and this is imposed 

using precedence constraints, and there are other operational restrictions to consider. 

Although the sequence and resource allocation decisions are the most common decisions, 

depending on the specific aspects of each shop, managers today should consider more complex 

questions that favor sustainability. For instance, from an energetic standpoint, should one turn off 

the machines between operations? Should one include the transportation time of a job between 

workstations? Hence, with different possible combinations of resource allocation and use, as well 

as sequence in a job scheduling problem, the number of possible combinations increases rapidly. 

Considering all objectives, parameters, decisions, constraints and solution possibilities, job 

scheduling is a complex problem that is not easily solved (Maccarthy & Liu, 1993). It is in this 

context that Operational Research (OR) becomes a powerful tool for decision-makers.   

1.1 Operational Research in the Job Scheduling Problem 

OR is defined as the study of quantitative methods for decision-making. It seeks to develop and 

study tools that provide either optimal or good enough feasible solutions depending on the 

requirements of the business case and the time allowed to solve the problem (Carter & Rabadi, 

2018). This thesis focuses on the use of Mathematical Programming to model and solve a Job 

Scheduling Problem, seeking to help managers make better decisions in two possible ways. On one 

side, if the optimal solution of the model is found, it guarantees managers the best outcome possible 
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for the studied problem. If this is not the case, one can provide, on the other side, a good feasible 

solution. This will help managers find good-quality solutions in a short time and it can reduce the 

variability between the resulting decisions of more skilled managers and less experienced ones.   

As presented before, in complex business cases such as production planning today, it is necessary 

to consider multiple objectives in the same problem. Indeed, a solution (a schedule) that minimizes 

makespan might have a poor performance in energy consumption. Hence, the two objectives need 

to be included explicitly in the mathematical model. However, in a multi-objective problem, it is 

not always clear what can be the optimal solution. There are solutions that might perform better 

than others regarding one objective, but that edge might come at a cost in objectives two or three. 

This challenge gets even more relevant the more there is conflict between two or more of the 

objectives. The OR community has already made some progress in that field and has concluded 

that, although it may be impossible to identify a solution that trumps all others, it is possible to 

disqualify solutions that are dominated. It can hence be defined that the pareto front is the set of 

non-dominated solutions for an instance of a problem. A solution is non-dominated if no other 

feasible solution has a better performance in one or many of the problem’s objectives while staying 

at least as efficient in all other objectives (Bui & Alam, 2008).  For managers, having access to the 

set of non-dominated solutions has many advantages. It can allow them to only consider the 

solutions that either are the best for one objective or a great compromise between the objectives. It 

also lets the managers choose which objective to prioritize without suggesting to the model that a 

given objective is more desirable than others. 

Traditionally, OR tools that focused on job scheduling were mainly interested in minimizing 

makespan which is the completion time of the last job processed. Nowadays, sensitivity towards 

new challenges has risen. It is not sufficient anymore to only consider the economic aspect of 

operations. It is required to also pay attention to environmental and social impacts. Operations in 

shops consume energy and materials. Manufacturers also generate waste. In short, shops have 

ecological footprints. Many shops also employ workers. The conditions in which the labor occurs 

in a shop have many consequences for the workers. From exhaustion to frustration, workers might 

be unsatisfied with their job. It might even have an impact on turnover which would be a challenge 

from a human resource standpoint. On the other hand, technology has greatly improved over the 

last decade. It is now easier than ever to solve bigger problems in an adequate amount of time. 
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With better technologies and the requirement to take into consideration more challenges, it is now, 

more than ever, relevant to develop sustainable decision-making tools for job scheduling.   

Therefore, the objective of this thesis is to provide managers with a new sustainable decision-

making tool that includes each of the three dimensions of sustainable development while 

considering most of the relevant features of job scheduling. The intent is to develop a mathematical 

model that includes most of the relevant features found in the literature and provides a high-quality 

formulation for the problem.  

1.2 Objectives of the thesis and structure of the document  

The thesis proposes a flexible job shop problem to help managers decide in a single model the 

resource allocation, the processing order with starting and completion time of each operation of 

each job, the workers scheduling, and the resources used (time spent idle or off between operations 

at each workstation) to optimize all three dimensions of sustainable development: economic, 

environmental, and social impact. More precisely, it seeks to incorporate explicitly in the 

formulation three sustainable objectives: 1) to minimize makespan (i.e. economic efficiency), 2) to 

minimize energy consumption and reduce the environmental impact of operations, and 3) to 

minimize the maximal work intensity among workers. For the last objective, we propose a novel 

definition of work intensity and seek to better split the labor burden among workers. The model is 

formulated and solved using a weighted-sum method.  A total of eight equivalent variants of the 

formulation are proposed for this problem. 

Beyond the contribution of the formulation, this thesis presents extensive numerical 

experimentation to compare each formulation variant and its performance, as well as two key 

aspects for managers. The computational study of the thesis first compares the variants over 30 

randomly generated instances inspired by three small-scale real production systems. It first 

compares their resolution time, the best objective value, and the optimization gap, to analyze the 

“strongest” formulation of our problem. Moreover, to help managers compare different solutions 

to this multi-objective problem, and to study how well pareto fronts can be generated through the 

weighted-sum method, this paper presents approximations of the pareto front of the 30 randomly 

generated instances. Finally, the thesis provides decision-makers with tools to choose from a set of 
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non-dominated solutions as well as a presentation of Gantt’s charts as a communication tool for 

dispatching a team. 

The rest of the thesis is structured in the following sections: Chapter 2 will focus on the literature 

review and explain this paper’s contribution to the current state of knowledge. Chapter 3 will focus 

on the problem description. Chapter 4 will focus on the generation of random instances, the 

performance analysis of the resolution of the 30 randomly generated instances for the eight 

different formulations and the analysis of the approximated pareto fronts and the relationship 

between objectives. Finally, Chapter 5 will present managers with tools to choose between multiple 

pareto optimal solutions among a pareto set and will show how to illustrate the solutions through 

a Gantt chart for an easy-to-understand presentation of the results.   
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CHAPTER 2 

LITTERATURE REVIEW 

The study of job scheduling in the literature can be traced back as far as the 1950s. As an example, 

Johnson S. M. (1953) studied an algorithm that produced optimal solutions for job scheduling with 

two machines. Garey et al. (1976) proved that Flow-Shop Scheduling problems (FSSPs) with three 

or more machines were NP-complete problems. Although job scheduling has been studied 

throughout the last century, it is only since the turning of the 21st century that the “green” variant 

of job scheduling really started flourishing. He et al. (2005) were the first to consider both an 

energy-related objective and makespan in the same job-shop scheduling problem. 

Research on job scheduling is divided into two categories. The first category is represented by 

papers on Flow-Shop Scheduling Problems (FSSPs). FSSPs represent job scheduling problems in 

which every job follows the same sequence of resources, having only one resource available per 

operation. Usually, FSSPs are used to plan the production of highly standardized products that all 

require similar work. An example of that would be an assembly line. In the literature, there are also 

papers that focus on considering energy in FSSPs. For instance, Li X. et al. (2018) proposed a 

model for minimizing the makespan and the total energy consumption in a welding shop in which 

all jobs follow the same process route. FSSPs also have a flexible variant. On the other side, the 

Flexible Flow-Shop Scheduling Problems (FFSSPs) feature problems in which all jobs follow the 

same sequence of resources but there are sets of multiple machines available for each operation. 

Such a requirement could be represented by a constraint that would specify that, for each job, all j-

th operations must be processed by a machine in the j-th set. Such a constraint would meet the 

requirement that, for a specific operation, all jobs are restricted to the same set of machines. For 

instance, Liu et al. (2018) studied a flexible flow-shop formulation for recycling businesses. In 

their formulation, sets of machines were represented by stages of parallel machines for the two 

stages required in recycling: pre-processing and actual recycling. For the purposes of this paper, 

however, FSSPs and their variants were not selected. The formulation studied in this paper has the 

intent of being versatile. It means being able to solve the most complex problems as well as the 

simpler ones. Therefore, a formulation that can work on the schedule of highly standardized 
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products as well as completely custom products is preferred. That is why the formulation selected 

is a variant of the next category. 

The second category is composed of papers on Job-Shop Scheduling Problems (JSSPs). JSSPs 

represent problems in which each job follows an original sequence of resources. That means each 

operation of each job might require a different resource and the j-th operation of two different jobs 

might require different resources. Usually, Formulations of JSSPs are used to model the production 

of custom products that have little standardization. A workshop for custom-made guitars would be 

a faithful example of JSSP.  A JSSP formulation could also be applied to the scheduling of highly 

standardized jobs without any modification of the formulation by considering the same required 

process for each specific job. To produce a fully standardized product, it would mean the set of 

jobs I is made up of identical operations. However, this paper is focused on an extension of JSSP 

that is named the Flexible Job-Shop Scheduling Problem (FJSSP). FJSSP formulations are 

characterized by the fact that each operation of each job can be processed by a set of qualified 

resources for the operation instead of a specific one. An example of FJSSP could be a shop of 

custom goods with general-purpose machinery. This section presents the results of an extensive 

revision of the contributions of the JSSP and FJSSP that are close to the contribution of this thesis. 

Section 2.1 presents the process of selecting the papers for the review and Section 2.2. the result 

and analysis of this work.  

2.1 Paper selection criteria 

To generate the list of relevant papers, the snowball method was applied to the seminal paper of 

João et al. (2022) and papers found afterward. For a paper to be considered relevant, it must 1) 

study either a job-shop scheduling problem or a flexible job-shop scheduling problem, 2) model it 

through a mathematical formulation, and 3) the formulation must include at least two objectives 

and one of them must be related to energy. Therefore, studies that included energy through 

constraints are excluded from this review. For instance, in their study, Lei et al. (2019) limited the 

total energy consumption to a maximum threshold with a constraint. Although interesting, such an 

approach has new challenges. How to set the maximum threshold must be thoroughly thought out. 

If not cautious enough, this approach is prescriptive and has the disadvantage of enforcing a view 

of what should be the maximum energy consumption through a restrictive constraint. 
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The list of relevant papers was generated using Google Scholar as the preferred research tool. The 

following keywords were applied: energy, green, job-shop scheduling problem, and flexible job-

shop scheduling problem. From the search results, papers were filtered by title, abstract and 

keywords. In case of doubt, the model section was screened. Only the papers available in the library 

of the University of Quebec were retained. A list of 142 papers that fit the requirements were 

selected. The literature review made by João et al. (2022) is current and relevant in the case of this 

thesis. Its use allowed for a faster review of what is available in that field of study. 

2.2 Distribution of selected papers according to their relevant attributes  

Once the papers were selected, a detailed revision was done over the full text. Papers were analyzed 

and categorized according to three main aspects: the problem variant, the objective classification 

and the features included in the problem studied. The problem variant indicates if the paper studies 

a flexible job-shop or a job-shop problem. Then, the objectives modeled by each paper were 

analyzed. In the case of this study, a formulation will be considered sustainable only by including 

all 3 dimensions of sustainable development. Objectives will be classified as economic, 

environmental, or social according to the classification in Akbar and Irohara (2018). Although it is 

a given that all 142 studies include the environmental dimension because of their energy-related 

objective, it does not mean all studies include both economic and social dimensions as well. 

Objectives related to the economic dimensions are as follows: Total weighted tardiness, Makespan, 

Total completion time, Reliability, Machine workload, Total tardiness, Production cost, Labour 

cost, Quality, Mean Machine workload, Total tardiness and earliness, Maximum machine workload, 

Total tardiness cost, Mean total tardiness, mean flow time, Number of late jobs, Total set-up time, 

Mean set-up time, Machine utilization, Fault prevention, Work in progress and Total travel distance. 

Objectives related to the environmental dimension are as follows: Energy consumption, Energy 

cost, Number of restarts, Total carbon emission, Recycling rate, Raw material consumption, Peak 

power consumption, Idle time and Utilization rate. 

Objectives related to the social dimension are as follows: Noise, Safety, Vibrations, customer 

satisfaction, ergonomic risk, and maximal labor intensity. 
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Finally, for each article, the specific features included were compiled. A feature can be defined as 

an additional attribute included in a formulation that is not part of the basic formulation of the 

problem by default. Features present in the literature are as follows: Machine speeds, turning 

machines on/off between operations, batch scheduling, sequence-dependent set-up times, 

transportation times, maintenance scheduling, workers scheduling, layout optimization, inventory, 

distributed manufacturing scheduling and job process planning. 

Table 2.1 lists all job-shop papers selected for this review and shows the categorization of each 

one. Table 2.2 does the same thing for flexible job-shop papers. In addition to the features presented 

before, Table 2.2 details, for all FJSSP formulations, which are the closest to our variant of the 

problem, the modelization approach to manage sequencing variables. Seven categories are defined:  

The first group of papers named “No Precedence Variables” (NOPV) did not have precedence 

variables at all. Many papers in this category could do so because their resolution method used 

encoding and decoding of the solutions of the problem into DNA that can include sequences in its 

structure. Therefore, the order of operation by a specific resource is no longer a constraint to be 

verified but a feature of the DNA. The second group of papers named “Disjunctive Constraints” 

(DISJ) used disjunctive constraints similar to the basic formulation from Manne (1960). Using this 

method, for all operations at machine 𝑘 variable 𝑧𝑖𝑗ℎ𝑔𝑘 will take a value of one if operation 𝑗 of job 

𝑖 is before operation 𝑔 of job ℎ or a value of zero if it is the opposite. This means that, for all 

operations at machine 𝑘 𝑧𝑖𝑗ℎ𝑔𝑘 = 1 −  𝑧ℎ𝑔𝑖𝑗𝑘 and 𝑧𝑖𝑗𝑖𝑗𝑘 must not exist or the constraints must not 

verify for that variable because an operation cannot be before and after itself. These constraints 

verify that all operations are either before or after one another if allocated to the same resource 

thereby being disjunctive constraints. The third group of papers named “Time-Indexed Variables” 

(TIME) used time-indexed variables. In those, the schedule is seen as discrete because, for each 

unit of time, an operation is processed at a specific resource or is not. In those papers, 𝑤𝑖𝑗𝑘𝑢 equals 

to 1 if operation 𝑗  of job 𝑖  is processed at machine 𝑘  during period 𝑢  and 0 otherwise. This 

approach may multiply the number of variables very quickly if it is used to solve problems with 

many periods. The fourth group of papers named “Priority-Indexed Variables” (PRIOR) used 

formulations in which the processing order for each resource is determined through a priority index. 

The lower the priority, the sooner the operation is getting processed. The resulting variable is 𝑥𝑖𝑗𝑘𝑙 : 
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which is equal to 1 if operation 𝑗 of job 𝑖 is done at machine 𝑘 in priority 𝑙 and 0 otherwise. This 

approach multiplies the number of allocation variables by the number of priorities by adding a 

priority index. The fifth group of papers named “Encoding Constrain Precedence Variables” 

(ENCODE) present precedence variables but do not force these variables to take a value using a 

constraint. Instead, it is managed in the encoding and decoding of the solution DNA in the 

resolution method. Once the precedence variable has a value, it is used in various constraints to 

verify the merit of a solution with a heuristic. For instance, many genetic algorithms used 

precedence variables in constraints but did not have any listed constraints that could explain why 

the precedence variable is not always equal to zero. The way precedence variables are used in these 

papers is to verify other constraints once the value of the precedence variables has been established 

after decoding the solution. The more a solution infringes constraints, the less efficient it is and the 

less likely it is to reproduce. To present an original contribution to the formulation of the studied 

problem, the sixth and seventh groups are only composed of this paper and use novel formulations 

never studied before in the literature for sequencing operations in FJSSP. The sixth group is named 

“Flow Conservation Constraints” (FCC) and uses flow conservation constraints to make sure that 

there is a next operation for each real previous operation. The seventh group is named “Sequence 

Linking Constraints” (SLC) and uses new sequence linking constraints never studied before. Using 

the allocation variables, this method forces the sum of all precedence variables to be exactly equal 

to the sum of allocated operations at a specific resource minus one. This is because the precedence 

variables work in pairs of immediately consecutive operations. This explains the name of sequence 

linking constraints representing the number of links in a sequence. Moreover, all operations must 

have a next operation except the last one. It sums up exactly how many links of operation pairs 

there should be in a sequence of operations at a specific resource based on the allocation variable. 

This type will be explained in more detail in Chapter 3. 
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Table 2.1 : Reviewed literature on Job-Shop Scheduling Problems 

Article Variant 
Dimension 

Features 
Economic Env. Social 

Abedi M., Chiong R., Noman N., Zhang R. (2020) JSSP TWT E - MS, MAINS 

Afsar, S., Palacios, J. J., Puente, J., Vela, C. R., & González-Rodríguez, I. (2022) JSSP CMAX E - - 

Amelian, SS; Sajadi, SM; Nayabakhsh, M; Esmaelian, M (2022) JSSP TTE, REL EC - MS, MAINS 

Cai, L; Li, WF; Luo, Y; He, LJ (2022) JSSP - E, UR CS - 

Dai M., Zhang Z., Giret A., Salido M.A. (2019) JSSP CMAX E - TTIMES 

Dalila B.M.M. Fontes, Seyed Mahdi Homayouni & João Chaves Fernandes (2023) JSSP CMAX E - MS, TTIMES 

Escamilla J., Salido M.A. (2018) JSSP CMAX E - MS 

Escamilla J., Salido M.A., Giret A., Barber F. (2016) JSSP CMAX E - MS 

Giglio D., Paolucci M., Roshani A. (2017) JSSP PC EC - MS, BS, SDST, I 

Gondran M., Kemmoe S., Lamy D., Tchernev N. (2020) JSSP CMAX PPC - - 

Gong G., Chiong R., Deng Q., Han W., Zhang L., Huang D. (2021) JSSP CMAX E, NS - I/O, MAINS 

Gonzalez M.-A., Oddi A., Rasconi R. (2019) JSSP TWT E - I/O 

González-Rodríguez I., Puente J., Palacios J.J., Vela C.R. (2020) JSSP TWT E - - 

Gupta S., Jain A. (2021) JSSP CMAX, MFT, MTT, NLJ, TST, MST E - SDST, MAINS 

Hassani Z.I.M., El Barkany A., El Abbassi I., Jabri A., Darcherif A.M. (2019) JSSP PC EC - - 

He L., Chiong R., Li W., Dhakal S., Cao Y., Zhang Y. (2021) JSSP CMAX, TT E - MS, SDST 

He Y., Liu F., Cao H.-J., Li C.-B. (2005) JSSP CMAX E - Unknown 

Ichoua S., Pechmann A. (2014) JSSP CMAX, TWTE PPC - - 

Jiang E.-D., Wang L., Peng Z.-P. (2020) JSSP CMAX E - MS 

Jiang T., Zhang C., Sun Q.-M. (2019) JSSP PC EC - MS 

Jiang T., Zhang C., Zhu H., Deng G. (2018) JSSP TT EC - - 

Kawaguchi S., Fukuyama Y. (2020) JSSP CMAX E - - 

Kurniawan B., Song W., Weng W., Fujimura S. (2021) JSSP TWT EC - - 

Li W., He L., Cao Y. (2022) JSSP CMAX, TT, LC E, IT - MS, SDST, WS 

Liao W., Wang T. (2018) JSSP PC, TCT TCE - - 

Liao W., Wang T. (2019) JSSP PC EC CS TTIMES 

Lin W., Wang L., Zhou R., Zhang Y., Zhang C. (2018) JSSP CMAX E - - 
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Liu Y., Dong H., Lohse N., Petrovic S. (2016) JSSP TWT E - I/O 

Liu Y., Dong H., Lohse N., Petrovic S., Gindy N. (2014) JSSP TWT E - I/O 

Lu C., Zhang B., Gao L., Yi J., Mou J. (2021) JSSP CMAX E - MS 

Lu Y., Jiang T. (2019) JSSP PC EC - MS 

Luo J., El Baz D., Xue R., Hu J. (2020) JSSP TT, SD EC - MS 

Majdoub Hassani Z.I.M., El Barkany A., Jabri A., Abbassi I.E.L., Darcherif A.M. (2021) JSSP PC EC - - 

May G., Stahl B., Taisch M., Prabhu V. (2015) JSSP CMAX E - I/O 

Ning T., Wang Z., Zhang P., Gou T. (2020) JSSP CMAX, PC, TWTE TCE - - 

Piroozfard H., Wong K.W., Tiwari M.K. (2018) JSSP TT TCE - - 

Raileanu S., Anton F., Iatan A., Borangiu T., Anton S., Morariu O. (2017) JSSP CMAX E - MS 

Ren J., Ye C., Li Y. (2020) JSSP CMAX, TT E - TTIMES 

Salido M.A., Escamilla J., Barber F., Giret A. (2017) JSSP CMAX E - MS 

Salido M.A., Escamilla J., Barber F., Giret A., Tang D., Dai M. (2016) JSSP CMAX E - MS 

Salido M.A., Escamilla J., Giret A., Barber F. (2016) JSSP CMAX E - MS 

Wei H., Li S., Quan H., Liu D., Rao S., Li C., Hu J. (2021) JSSP CMAX, TWTE E - I/O 

Xu J., Wang L. (2017) JSSP CMAX E - TTIMES 

Yin L., Li X., Gao L., Lu C., Zhang Z. (2017) JSSP CMAX E N MS 

Zhang L., Li X., Gao L., Zhang G. (2016) JSSP CMAX, TWT E - - 

Zhang R., Chiong R. (2016) JSSP TWT E - MS 

Zhou B., Lei Y. (2021) JSSP CMAX E - TTIMES 

Zhu H., Jiang T., Wang Y., Deng G. (2021) JSSP CMAX E - MS 

Zhu S., Zhang H., Jiang Z., Hon B. (2020) JSSP CMAX TCE - - 

E : Energy Consumption, EC : Energy Cost, NS : Number of Starts, TCE : Total Carbon Emissions, RR : Recycling Rate, RMC : Raw Material Consumption, PPC : Peak Power Consumption, IT : Idle 
Time, UR : Utilization Rate, TWT : Total Weighted Tardiness, CMAX : Makespan, TCT : Total Completion Time, REL : Reliability, MWL : Machine Workload, TT : Total Tardiness, PC : Production 
Cost, LC : Labour Cost, Q : Quality, MMWL : Mean Machine Workload, TTE : Total Tardiness and Earliness, SD : Scheduling Disruptions, MT : Maximal Tardiness, TWTE : Total Weighted 
Tardiness and Earliness, MWLMAX : Maximum Machine Workload, TTC : Total Tardiness Cost, MTT : Mean Total Tardiness, MFT : Mean Flow Time, NLJ : Number of Late Jobs, TST : Total Set-
up Time, MST : Mean Set-up Time, MU : Machine Utilization, FP : Fault Prevention, WP : Work in Progress, TTD : Total Travel Distance, N : Noise, S : Safety, V : Vibrations, CS : Customer 
Satisfaction, ER : Ergonomic Risk, INTMAX : Maximum Labor Intensity, MS : Machine Speed, I/O : Turning Machines ON/OFF, BS : Batch Scheduling, SDST : Sequence-Dependent Set-up Times, 
TTIMES : Transportation Times, MAINS : Maintenance Scheduling, WS : Workers Scheduling, LO : Layout Optimization, I : INVENTORY, DMS : Distributed Manufacturing Scheduling, JPP : Job 
Process Planning 
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Table 2.2 : Reviewed literature on Flexible Job-Shop Scheduling Problems 

Article Variant 
Dimension 

Features Type 
Economic Env. Social 

An Y., Chen X., Zhang J., Li Y. (2020) FJSSP CMAX, TT, PC E - TTIMES NOPV 

Ayyoubzadeh B., Ebrahimnejad S., Bashiri M., Baradaran V., Hosseini S.M.H. (2021) FJSSP TTC EC - - DISJ 

Barak S., Moghdani R., Maghsoudlou H. (2021) FJSSP PC E, EC - TTIMES TIME 

Caldeira R.H., Gnanavelbabu A., Vaidyanathan T. (2020) FJSSP CMAX, SD E - I/O PRIOR 

Chen, X. L., Li, J. Q., Han, Y. Y., & Sang, H. Y. (2020) FJSSP CMAX E - TTIMES DISJ 

Chou Y.-C., Cao H., Cheng H.H. (2013) FJSSP CMAX E - - NOPV 

Coca G., Castrillón O.D., Ruiz S., Mateo-Sanz J.M., Jiménez L. (2019) FJSSP TCT TCE N, V - DISJ 

Dai M., Tang D., Giret A., Salido M.A. (2019) FJSSP CMAX E - TTIMES PRIOR 

Dai M., Tang D., Xu Y., Li W. (2015) FJSSP CMAX E - JPP DISJ 

Du Y., Li J.-Q., Luo C., Meng L.-L. (2021) FJSSP CMAX E - TTIMES, MS PRIOR 

Duan J., Wang J. (2021) FJSSP CMAX E - MS, I/O DISJ 

Ebrahimi A., Jeon H.W., Lee S., Wang C. (2020) FJSSP TTC EC - TTIMES PRIOR 

El Amine Meziane M., Taghezout N. (2018) FJSSP CMAX E - - NOPV 

Gong G., Deng Q., Gong X., Liu W., Ren Q. (2018) FJSSP CMAX, LC E, RR N, S WS DISJ 

Gong X., De Pessemier T., Martens L., Joseph W. (2019) FJSSP CMAX, LC, MWL EC - I/O, SDST, WS NOPV 

Gu X. (2021) FJSSP CMAX, MWL TCE - - NOPV 

Guo J. (2019) FJSSP TCT E N, V TTIMES NOPV 

Guo J., Lei D., Li M. (2021) FJSSP CMAX, TT E - MS TIME 

Han Y., Chen X., Xu M., An Y., Gu F., Ball A.D. (2021) FJSSP CMAX, PC E - TTIMES DISJ 

He Y., Li Y., Wu T., Sutherland J.W. (2015) FJSSP CMAX E - - DISJ 

Hemmati Far M., Haleh H., Saghaei A. (2018) FJSSP PC, Q EC - TTIMES NOPV 

Hemmati Far M., Haleh H., Saghaei A. (2019) FJSSP PC, TT EC - TTIMES, WS NOPV 

Hongyu L., Xiuli W. (2021) FJSSP CMAX E ER WS NOPV 

Huo D.X., Xiao X.J., Pan Y.J. (2020) FJSSP CMAX TCE - TTIMES NOPV 
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Jiang Z., Zuo L., Mingcheng E. (2014) FJSSP CMAX, PC, Q E - - NOPV 

Karim Ahangar, NK; Khalili, M; Tayebi, H (2021) FJSSP CMAX, MT E - MS DISJ 

Lei D., Guo X. (2015) FJSSP CMAX TCE - WS NOPV 

Lei D., Zheng Y., Guo X. (2017) FJSSP MWL E - MS NOPV 

Li J.-Q., Deng J.-W., Li C.-Y., Han Y.-Y., Tian J., Zhang B., Wang C.-G. (2020) FJSSP CMAX E - - PRIOR 

Li J., Du Y., Gao K., Duan P., Gong D., Pan Q., Suganthan P.N. (2021) FJSSP CMAX E - TTIMES ENCODE 

Li M., Lei D. (2021) FJSSP CMAX, TT E - MS, SDST, TTIMES TIME 

Li M., Lei D., Xiong H. (2019) FJSSP MT, CMAX, MWL E - - TIME 

Li Y., Gu W., Yuan M., Tang Y. (2022) FJSSP CMAX E - TTIMES TIME 

Li Y., He Y., Wang Y., Tao F., Sutherland J.W. (2020) FJSSP CMAX E - I/O TIME 

Li Y., Huang W., Wu R., Guo K. (2020) FJSSP CMAX, MMWL TCE - MS, I/O ENCODE 

Li, HC; Duan, JG; Zhang, QL (2021) FJSSP CMAX E - TTIMES, LO ENCODE 

Liang X., Chen J., Gu X., Huang M. (2021) FJSSP CMAX, MWL TCE - - ENCODE 

Liu Q., Gui Z., Xiong S., Zhan M. (2021) FJSSP PC, CMAX, TTE TCE - SDST, TTIMES, DMS NOPV 

Liu Q., Tian Y., Wang C., Chekem F.O., Sutherland J.W. (2018) FJSSP CMAX, MU TCE - TTIMES PRIOR 

Liu Q., Zhan M., Chekem F.O., Shao X., Ying B., Sutherland J.W. (2017) FJSSP CMAX TCE - TTIMES NOPV 

Liu Z., Guo S., Wang L. (2019) FJSSP CMAX E - TTIMES ENCODE 

Liu, J. et al. (2021) FJSSP CMAX E - MS NOPV 

Lu Y., Lu J., Jiang T. (2019) FJSSP CMAX EC - - DISJ 

Luan F., Cai Z., Wu S., Liu S.Q., He Y. (2019) FJSSP PC E - - ENCODE 

Luo Q., Deng Q., Gong G., Zhang L., Han W., Li K. (2020) FJSSP CMAX, MWLMAX E - TTIMES, MS ENCODE 

Luo S., Zhang L., Fan Y. (2019) FJSSP CMAX E - MS DISJ 

Lv Y., Li C., Tang Y., Kou Y. (2021) FJSSP CMAX E - - ENCODE 

Mokhtari H., Hasani A. (2017) FJSSP TCT, REL EC - MAINS PRIOR 

Myoung-Ju Parka, Andy Ham (2022) FJSSP CMAX EC - - TIME 

Naimi, R; Nouiri, M; Cardin, O (2021) FJSSP CMAX E - - NOPV 

Ning T., Huang Y. (2021) FJSSP CMAX, PC TCE - - NOPV 

Ning T., Wang Z., Duan X., Liu X. (2021) FJSSP CMAX TCE - MS NOPV 
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Nouiri M., Bekrar A., Trentesaux D. (2020) FJSSP CMAX E - - NOPV 

Pach C., Berger T., Sallez Y., Bonte T., Adam E., Trentesaux D. (2014) FJSSP CMAX E - I/O TIME 

Pan, ZX; Lei, DM; Wang, L (2022) FJSSP CMAX, TT E - - PRIOR 

Peng Z., Zhang H., Tang H., Feng Y., Yin W. (2021) FJSSP CMAX E N TTIMES, WS DISJ 

Phanden R.K., Sindhwani R., Sharma L. (2021) FJSSP CMAX, PC E - - ENCODE 

Piroozfard H., Wong K.Y., Wong W.P. (2018) FJSSP TT TCE - - PRIOR 

Plitsos S., Repoussis P.P., Mourtos I., Tarantilis C.D. (2017) FJSSP CMAX, MWL E, IT - - NOPV 

Qu, MH; Zuo, Y; Xiang, F; Tao, F (2022) FJSSP CMAX, PC E - - PRIOR 

Ren W., Wen J., Yan Y., Hu Y., Guan Y., Li J. (2021) FJSSP CMAX E - - ENCODE 

Seng D.W., Li J.W., Fang X.J., Zhang X.F., Chen J. (2018) FJSSP CMAX TCE - MS DISJ 

Shi D.L., Zhang B.B., Li Y. (2020) FJSSP CMAX E CS - ENCODE 

Sui Z., Li X., Yang J., Liu J. (2021) FJSSP CMAX, FP E - - NOPV 

Sun, XP; Wang, Y; Kang, HW; Shen, Y; Chen, QY; Wang, D (2021) FJSSP CMAX, MWL TCE - - NOPV 

Vallejos-Cifuentes P., Ramirez-Gomez C., Escudero-Atehortua A., Rodriguez Velasquez E. (2019) FJSSP CMAX E - MS NOPV 

Wang H. (2019) FJSSP CMAX, PC, Q E - - DISJ 

Wang H., Jiang Z., Wang Y., Zhang H., Wang Y. (2018) FJSSP PC E - - NOPV 

Wang H., Sheng B., Lu Q., Yin X., Zhao F., Lu X., Luo R., Fu G. (2021) FJSSP CMAX E - TTIMES ENCODE 

Wang J., Liu Y., Ren S., Wang C., Wang W. (2021) FJSSP CMAX, MWLMAX E - DMS NOPV 

Wang J., Yang J., Zhang Y., Ren S., Liu Y. (2020) FJSSP CMAX, MWL E - JPP NOPV 

Wang J., Zhang Y., Liu Y., Wu N. (2019) FJSSP CMAX, MWL E - - NOPV 

Wei Z., Liao W., Zhang L. (2022) FJSSP CMAX E - MS NOPV 

Wen X.-Y., Wang K.H., Li H., Sun H.-Q., Wang H.Q., Jin, L.-L. (2021) FJSSP CMAX, TT TCE - JPP PRIOR 

Wu X., Li J., Shen X., Zhao N. (2020) FJSSP CMAX, SD E - - DISJ 

Wu X., Shen X., Li C. (2019) FJSSP CMAX E - - DISJ 

Wu X., Sun Y. (2018) FJSSP CMAX E, NS - MS, I/O DISJ 

Wu, ML; Yang, DS; Zhou, BW; Yang, ZL; Liu, TY; Li, LG; Wang, ZF; Hu, KY (2021) FJSSP CMAX E - - PRIOR 

Xu B., Mei Y., Wang Y., Ji Z., Zhang M. (2021) FJSSP MTT E - - PRIOR 

Xu W., Hu Y., Luo W., Wang L., Wu R. (2021) FJSSP CMAX, PC, Q TCE - TTIMES, MS NOPV 
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Xu W., Shao L., Yao B., Zhou Z., Pham D.T. (2016) FJSSP CMAX, PC, Q E, RMC - - NOPV 

Yang X., Zeng Z., Wang R., Sun X. (2016) FJSSP CMAX E - - PRIOR 

Yin L., Li X., Gao L., Lu C., Zhang Z. (2017) FJSSP CMAX E N MS DISJ 

Yong Wang, Wange Peng, Chao Lu *and Huan Xia (2022) FJSSP CMAX E - - NOPV 

Zhang C., Gu P., Jiang P. (2015) FJSSP CMAX, MWL, WP TCE - TTIMES PRIOR 

Zhang H., Dai Z., Zhang W., Zhang S., Wang Y., Liu R. (2017) FJSSP CMAX EC - MS TIME 

Zhang H., Ge H., Pan R., Wu Y. (2018) FJSSP CMAX,TTD E - TTIMES, LO NOPV 

Zhang H., Xu G., Pan R., Ge H. (2021) FJSSP CMAX E - TTIMES PRECEDE 

Zhang S., Zhong J., Yang H., Li Z., Liu G. (2019) FJSSP TWT EC - - DISJ 

Zhang Y., Wang J., Liu Y. (2017) FJSSP CMAX, MWL E - SDST NOPV 

Zhang Z., Wu L., Peng T., Jia S. (2019) FJSSP CMAX E - I/O DISJ 

Zhou G., Chen Z., Zhang C., Chang F. (2022) FJSSP CMAX, SD TCE - - NOPV 

Zhu H., Deng Q., Zhang L., Hu X., Lin W. (2020) FJSSP CMAX, LC TCE - WS DISJ 

This paper (2023) FJSSP CMAX E INTMAX MS, I/O, SDST, WS FCC/SLC 

E : Energy Consumption, EC : Energy Cost, NS : Number of Starts, TCE : Total Carbon Emissions, RR : Recycling Rate, RMC : Raw Material Consumption, PPC : Peak Power Consumption, IT : Idle 
Time, UR : Utilization Rate, TWT : Total Weighted Tardiness, CMAX : Makespan, TCT : Total Completion Time, REL : Reliability, MWL : Machine Workload, TT : Total Tardiness, PC : Production 
Cost, LC : Labour Cost, Q : Quality, MMWL : Mean Machine Workload, TTE : Total Tardiness and Earliness, SD : Scheduling Disruptions, MT : Maximal Tardiness, TWTE : Total Weighted 
Tardiness and Earliness, MWLMAX : Maximum Machine Workload, TTC : Total Tardiness Cost, MTT : Mean Total Tardiness, MFT : Mean Flow Time, NLJ : Number of Late Jobs, TST : Total Set-
up Time, MST : Mean Set-up Time, MU : Machine Utilization, FP : Fault Prevention, WP : Work in Progress, TTD : Total Travel Distance, N : Noise, S : Safety, V : Vibrations, CS : Customer 
Satisfaction, ER : Ergonomic Risk, INTMAX : Maximum Labor Intensity, MS : Machine Speed, I/O : Turning Machines ON/OFF, BS : Batch Scheduling, SDST : Sequence-Dependent Set-up Times, 
TTIMES : Transportation Times, MAINS : Maintenance Scheduling, WS : Workers Scheduling, LO : Layout Optimization, I : INVENTORY, DMS : Distributed Manufacturing Scheduling, JPP : Job 
Process Planning, NOPV : No Precedence Variables, DISJ : Disjunction Variables, TIME : Time-Indexed Variables, PRIOR : Priority Indexed Variables, ENCODE : Encoding Constrain Precedence 
Variables Value, FCC : Flow Conservation Constraints, SLC : Sequence Linking Constraints 

 

 

 



18 

From the 142 selected papers, 49 study a JSSP formulation and 93 study an FJSSP formulation. 

Historically, makespan has always been one of the most studied objectives in job scheduling. It 

still holds true for this literature review. 109 papers out of 142 include makespan as an objective. 

79 of the 93 FJSSP studies and 30 of the 49 JSSP studies include makespan which is a majority in 

both cases.  

Regarding the objectives included in this research, only a minority of the 142 studies could be 

considered sustainable (less than 10% of the reviewed papers). Indeed, only 11 studies feature an 

objective related to the social dimension. Only ten of those studies could be considered sustainable 

according to the definition given earlier because Cai et al. (2022) does not include an economic 

objective. Only four of those ten papers feature an objective representing employees’ interests. 

None of them include an objective related to labor intensity. In the present review, there are 14 

studies that consider workload balance. However, all of those consider the workload balance of 

machines instead of the workload balance of employees. This is why the objective of workload 

balance of machines had to be placed in the economic dimension rather than the social one. In the 

literature, however, there are formulations that consider workload balance between employees. 

Although it would not comply with the previously mentioned requirements because it does not 

include an objective related to energy or even to the environmental dimension, the formulation in 

Luo et al. (2023) includes an objective that seeks to minimize the maximum workload for workers. 

As previously discussed, their objective varies positively with time but not with effort, so it does 

not include the pace of work in the calculation of workload.  

Among the features analyzed, some of the features are present in the literature as little as one time. 

For instance, only one paper features inventory and batch scheduling in their problem. Some other 

features were included less than ten times with seven papers including sequence-dependent set-up 

times, five including maintenance, six including workers scheduling, two including layout 

optimization, six including distributed manufacturing scheduling and three including job process 

planning. Among the most studied features, one finds machine speeds being present in 35 papers 

and transportation times being identified in 31 papers.  However, one can see that, not all 

combinations have been studied simultaneously.   



 

 19 

One could argue that some combinations are of low interest. However, it will be argued that 

workers scheduling, and different machine speeds have an important interaction together that has 

never been studied to its fullest extent. In fact, only one paper features both different machine 

speeds and workers scheduling in the same formulation. This is the case of Li et al. (2022) in which 

authors considered, in the same formulation, sequence-dependent set-up times, different machine 

speeds and worker scheduling. However, the authors did not consider the possibility of turning 

machines on or off during operations. Moreover, they do not consider any objectives that could be 

attributed to the social dimension. Therefore, their study would not meet the requirements to be 

considered sustainable. Finally, considering only CNC machines did not allow them to analyze that 

between workers with different skills and machines with different speeds, there are many possible 

interactions in a shop. 

Transportation times seem to have interested a sizeable chunk of the scientific community working 

in job scheduling. It is featured in 32 out of the 142 articles in the literature compiled for this thesis. 

However, it is only relevant in shops in which workstations are far enough apart that it makes a 

sizeable difference. Moreover, in many workshops, layouts are optimized to minimize travel 

distance between workstations that are often linked together. In addition, travel distance can be 

incorporated, to some extent, in set-up times. Therefore, one could consider that the transportation 

time in a smaller workshop is negligible compared to other times such as set-up times that can 

hardly be optimized through layout. Including transportation times in the formulation also adds 

another layer of complexity to an already difficult problem. It would add decision variables, 

parameters, and constraints to an already hard-to-solve problem and increase the resolution time. 

On top of the three dimensions of sustainability already studied, it would make for a formulation 

that is much more complex which is out of the scope of this thesis and less interesting than a 

formulation that can more easily be solved for instances of plausible size in a decent amount of 

time.  

For each paper presenting a FJSSP formulation, a type was assigned to differentiate the different 

strategies used for sequencing operations. A total of seven strategies were identified to manage 

precedence variables if those were present in the studied formulation. None of the papers featuring 

a FJSSP formulation in the relevant literature used sequence linking constraints or flow 
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conservation constraints to manage precedence variables. The use of both these strategies is a 

novelty in the current literature. 

Considering all previous arguments, this thesis has the following contributions:  

• It proposes eight different formulation variants of a problem with a combination of 

objectives and features never studied before in the literature which are minimization of 

makespan, total energy consumption and labor intensity with sequence-dependent set-up 

times, processing speeds, turning equipment off and workers scheduling.  

• For the first time in an energy-efficient flexible job-shop formulation with more than one 

objective, it studies an objective related to the labor intensity of employees that cannot be 

reduced to machine workload.  

• It compares a 2-index formulation with a 3-index formulation for starting and completion 

times of the same problem to determine which one is more efficient.  

• It compares formulation variants with flow conservation constraints to a formulation that 

uses a new constraint never studied before in the literature. This constraint is based on the 

total amount of allocated jobs to a resource to specify the exact amount of operation 

sequences in a schedule. Both options will be compared to identify the most efficient 

between the two types of constraints.  

• Through the approximation of the pareto front, it studies the relation between makespan, 

energy consumption and labor intensity for the first time in a sustainable flexible job-shop 

formulation that includes sequence-dependent set-up times, different machine speeds, 

workers scheduling and machines that can be turned off or left idle between operations.  
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CHAPTER 3 

PROBLEM OVERVIEW 

This section is dedicated to the presentation of the problem studied and its mathematical 

formulations. The reader can expect a description of the problem, its principal objectives, and 

constraints. All necessary assumptions will also be listed. Eight different formulations of the 

problem are then presented. 

3.1 Problem description 

In a manufacturing context, several resources are used to warrant the production of one or many 

products inside a production facility. This thesis proposes a general sustainable flexible job-shop 

scheduling problem that incorporates several aspects applicable to various production 

environments and can, therefore, be adapted to different workshop types.  

We define (and name) this problem as the Sustainable Flexible Job-Shop Problem with Sequence-

Dependent Set-up Times and Workstation Speeds and States with workers scheduling (SFJSSP*). 

The problem considers a finite and known set of jobs that need to be completed. Each job is 

completed by the execution of one or more operations. The problem is categorized as a job shop 

because the sequence of resources (workstations or workers) used to process the operations of a 

given job is not necessarily the same as the sequence of resources used for the operations of the 

previous or following job. In this job shop, each operation of each job can be handled by one or 

several resources. Each resource has one or more possible work speeds for each operation. Those 

will determine the processing time and processing power of a given operation of a given job at a 

given resource. It is considered that for each operation of each job, one and only one resource of 

each type is required (one workstation and one worker), and that neither the workstation nor the 

worker can handle more than one operation at a time. Each operation of each job has a processing 

time which may vary according to the workstation where it is processed, the worker performing it 

and the speed at which it is carried out. This concept allows us to model three different 

organizational modes: an automatic station, a semi-automatic station and a manual one.  
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First, in the case of an automatic workstation, most of the labor is done by a machine with little 

human supervision and the machine speed determines the processing time. An example of that 

would be a computer numerical control machine (CNC) that executes the work entirely after 

configuration. Second, in the case of a semi-automatic workstation, part of the labor is executed by 

the machine and part of the labor by a worker. It means that setting the speed of the machine and 

the skills of the worker define the processing time. In other words, different workers with different 

skills will complete the same task with the same machine (adjusted for the same speed) in two 

different amounts of time. An example of a semi-automatic workstation could be a sewing machine 

in which knots might be sewn at variable speeds by the machine, but it is the worker who ultimately 

feeds the sewing machine. An assembly line could also be considered semi-automatic for the 

following reasons. Although the pace of work is determined by the machine, the worker must be 

able to perform his tasks at that pace. Therefore, there are workers who can perform such tasks at 

such pace and other workers who cannot. The consideration of different skills would then exist in 

the sense that not all workers are able to perform at a workstation at all available speeds. Third, 

manual workstations should be used to represent workstations in which the speed and processing 

time are set by the skill and speed of the worker assigned to it. Hence, the only factor that 

determines the processing speed is the worker. In such a workstation, there might be some tools 

but most of the work would be done manually. An example would be a workstation used to 

manually put guitar strings on a guitar. Different workers would then show different performances 

being able to execute the task in a different amount of time. What is interesting is the fact that, 

inside one shop, many of these types of interactions between workers and different machine speeds 

may co-exist. A workstation could be manual, and another workstation in the same job shop might 

be fully automatic. A formulation that seeks to be closer to reality must be versatile enough to 

represent automatic workstations as well as manual and semi-automatic ones. 

All workstations have three states: processing, idle and off. The processing state is the only state 

in which a workstation can execute an operation, but it is the state that consumes the most energy. 

For each workstation, in this state, the energy consumed depends on the operation performed and 

the speed at which the operation is processed. The off state does not consume any energy at all; 

however, a starting time is required once the workstation passes from the off to the processing state, 

which consumes a certain fixed amount of energy per machine. The idle state does not allow any 
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operations to be performed, but it consumes less energy than the processing state while allowing 

an immediate return to the processing state without any energy consumption. For each workstation, 

the energy consumed in idle mode is constant, and will vary only according to the time the 

workstation is held in this state.  

In this job shop, the energy consumed is calculated through the following equation: 𝐸𝑛𝑒𝑟𝑔𝑦 =

𝑝𝑜𝑤𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒. Processing operations consumes power. The required power to process, to start-up 

or to maintain a workstation in an idle state is known in advance for all operations, all workstations 

and all speeds. For the same operation, different workstations and different speeds will consume a 

different amount of power whereas workers might not influence power consumption, but they 

influence how long an operation takes on a workstation, so they still influence the total energy 

consumed through time. 

This problem also considers that workers are flexible, i.e., they can change workstations during the 

shift. Finally, we consider a fixed and known set-up time, which can be defined as the time required 

to prepare the workstation to perform a given operation. It includes material preparation, 

workstation setting, adjustment of machines, etc. We consider a sequence-depending set-up time, 

meaning that the set-up time required between two operations at a given workstation, will depend 

on the worker that will perform the task, the workstation they are in, as well as the previous 

operation performed.  

The Sustainable Flexible Job-Shop Problem with Sequence-Dependent Set-up Times, and 

Workstations Speeds and States with Workers Scheduling (SFJSSP*) seeks to help managers with 

multiple decisions in the operational planning of a shop. First, it decides the resource allocation, 

deciding which workstation, which worker and which speed are assigned to execute each operation 

of each job. Second, it helps with workstation sequencing, deciding explicitly the specific order of 

operations processed at each workstation. Third, the schedule of each worker is determined. This 

sequencing sets, for each worker, the selected workstation and the order of each operation assigned 

to them. Finally, it decides the change of states of the workstations and the timing decisions for 

each state and for the execution of each operation.  
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To be sustainable, the formulation of the SFJSSP* must consider at least one objective for each of 

the three dimensions of sustainable development. For the economic dimension, it considers the 

minimization of the makespan which represents the completion time of the last operation of the 

last job processed. The environmental dimension is represented by the objective of energy 

consumption minimization of the job shop, knowing that energy is accounted for when tools are 

left idle, are turned on, are set up or when operations are processed. Finally, for the social dimension, 

the problem considers the minimization of the maximum labor intensity which represents the labor 

of the worker who worked the hardest. Labor intensity is calculated by considering both the pace 

of work (a value between 0 and 1 considering the relative speed of the work compared to the 

maximum speed possible) and the duration of work. The product of the two dictates the labor 

intensity credited to a worker for processing an operation (𝑝𝑎𝑐𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 =

𝑙𝑎𝑏𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦). 

In addition to the aspects explained above, the following assumptions are made: 

(1) The processing speed cannot be changed once an operation has started. 

(2) Transportation times between workstations are negligible. 

(3) The worker who does the set-up and starts the equipment (if necessary) before processing 

an operation is the one who is assigned to process that operation. 

(4) An operation cannot be stopped once started. 

(5) Exactly one workstation and one worker are required to process an operation. 

(6) Workstations and workers cannot process multiple operations at the same time. 

(7) All relevant equipment at workstations starts in an off state from the previous shift and 

needs to be turned on before executing any work. 

 

3.2 Problem formulation 

The SFJSSP* seeks to process a set of jobs 𝐼. Each job 𝑖 ∈ 𝐼 has a set of operations 𝐽𝑖 required to 

be completed. Moreover, we define a set of workstations 𝐾, and a set of available workers 𝐿. As 

stated before, this problem considers that all operations need to be performed by a given 
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workstation and worker, and a workstation has a set of speeds available at workstation 𝑘 ∈ 𝐾 

referred to as 𝑉𝑘.  

Before presenting the different formulations, some general sets and parameters are presented. This 

will lead to the presentation of the baseline formulation. This first and baseline formulation is based 

on Manne (1960), one of the classical formulations for JSSP, which is adapted and modified to add 

the details and particularities of the SFJSSP*. Afterward, the section details the other formulations 

and exposes their differences.  

All eight different formulations rely on a precedence variable. It’s either 𝑤𝑖𝑗ℎ𝑔𝑘𝑙 for sequencing 

operations at workstations or 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙  or 𝑢𝑞𝑟𝑖𝑗𝑙  for sequencing operations with workers. 

Precedence variables have been extensively studied in the literature. However, no previous studies 

used flow conservation constraints or sequence linking constraints to manage precedence variables. 

Therefore, to effectively serve its purpose, a precedence variable needs a set of constraints that 

forces it to represent the right schedule. This set of constraints must force the precedence variables 

to take a value and it must maintain the link between the precedence variables and the allocation 

variables. For instance, sequencing operations means the following operation cannot start before 

the previous one ends. All formulations with a name starting with F will use flow conservation 

constraints to manage precedence variables and formulations with a name starting with S will use 

sequence linking constraints instead. From 1 to 4, the level of integration decreases with each new 

formulation, but the number of variables also decreases. F1 and S1 are the two formulations closest 

to the basic formulation from Manne (1960). Then, starting times and completion times will be 

reduced to 2-index variables instead of 3-index variables in S2 and F2 to match the formulations 

in the more recent literature. F3 and S3 will not allow off or idle states between operations that do 

not follow each other. Finally, F4 and S4 are the two formulations that have the fewest variables, 

but it does not compute from which workstation and to which workstation a worker is moving. 

This is necessary to compute travel times for workers between operations. Going from 1 to 4, 

formulations have fewer variables at the cost of being able to integrate fewer considerations for 

different real production cases.  
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To identify the different formulations, the index in Table 3.1 will be used: 

Table 3.1 : Index of names for all formulations 

F With Flow conservation constraints 
S With Sequence linking constraints 
1 3-index formulation for time variables 
2 2-index formulation for time variables 
3 2-index formulation with interruption times before operations 
4 2-index formulation with simplified worker sequence 

  

Letters and numbers combine for naming a formulation variant. For example, formulation F1 refers 

to the 3-index formulation with flow conservation constraints.  

This thesis proposes eight different formulations for the problem proposed. Given enough time, all 

eight formulations will give the same optimal solution to the problem. The different formulations 

include two 3-index formulations and six 2-index formulations for time variables. All formulations 

have their counterpart with sequence linking constraints and flow conservation constraints (4 of 

each). The first two formulations with 3-index for time variables (S1 and F1) are used to compare 

with the first two 2-index formulations (S2 and F2) to assess the difference in resolution 

performance between using 2-index and 3-index variables for accounting time. F3 and S3 explore 

the difference in resolution performance from reducing interruption time variables. F4 and S4 

explore the difference in resolution performance from reducing sequencing variables. Formulations 

using both flow conservation constraints and sequence linking constraints (F and S) for each 

formulation variant (1,2,3,4) allow for a broader comparison between all different alternatives. To 

the best of our knowledge, using flow conservation constraints for sequencing has not been 

attempted before in job shop-like problems. Sequence linking constraints are also a novelty that 

has been invented for this experiment and will be tested for the first time. Results can also be 

analyzed from another point of view. It can be seen as the cost of integration in terms of resolution 

performance. For instance, comparing the results of S4 and F4 to the results of S3 and F3 allows 

for analyzing what are the costs in terms of resolution performances to integrate travel times for 

workers between operations at different workstations. 
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Common sets, parameters, and variables 

Here is the list of sets and parameters that are present in all formulation variants of the problem. 

Note that to the real set of jobs that need to be executed in the shop, the formulation adds a subset 

of dummy jobs (with a processing time of zero) to allow the right accountability of time at the 

beginning and end of the schedule at every resource. The general sets of parameters are as follows: 

Sets: 

𝐼: Set of jobs to be scheduled (including dummy jobs) 

𝐼𝑟𝑒𝑎𝑙: Subset of real jobs from customers (excluding dummy jobs) 

𝐼𝑠𝑡𝑎𝑟𝑡: Set of dummy jobs to be completed at the start of the schedule 

𝐼𝑒𝑛𝑑: Set of dummy jobs to be completed at the end of the schedule 

𝐽𝑖: Set of operations to be completed for the job 𝑖 

𝐾: Set of available workstations 

𝐿: Set of available workers 

𝑉𝑘: Set of available speeds for the workstation 𝑘 
 

Parameters: 

𝑝𝑖𝑗𝑘𝑙𝑣: Processing time of the operation 𝑗 ∈ 𝐽𝑖 of the job 𝑖 ∈ 𝐼 at the workstation 𝑘 ∈ 𝐾 at speed 
𝑣 ∈ 𝑉𝑘 by a worker 𝑙 ∈ 𝐿 

𝑎𝑖𝑗ℎ𝑔𝑘𝑙: set-up time executed by a worker 𝑙 ∈ 𝐿 and required to pass from the operation 𝑗 ∈ 𝐽𝑖 of 
a job 𝑖 ∈ 𝐼 to the operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐼 at the workstation 𝑘 ∈ 𝐾 

𝑑𝑘 : the time required to start the relevant equipment at a workstation 𝑘 ∈ 𝐾 , making the 
workstation pass from off state to processing state 

𝜋𝑖𝑗𝑘𝑣: power consumption during the processing time of the operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at a 
workstation 𝑘 ∈ 𝐾 at speed 𝑣 ∈ 𝑉𝑘 

𝛼𝑖𝑗ℎ𝑔𝑘: power consumption during the set-up time of a workstation 𝑘 ∈ 𝐾 to be ready to process 
the operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐼 after the operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 
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𝛿𝑘: power consumption during the starting time of the relevant equipment at a workstation 𝑘 ∈

𝐾 (when passing from off to processing state) 

𝛽𝑘: power consumption during idle time at a workstation 𝑘 ∈ 𝐾 

𝜑𝑘𝑣: pace of work at a workstation 𝑘 ∈ 𝐾 at speed 𝑣 ∈ 𝑉𝑘 

𝑀: a big number 
 

Sequence and allocation variables 

𝑥𝑖𝑗𝑘𝑙𝑣: Jobs allocation variables. Binary decision of executing (or not) the operation 𝑗 ∈ 𝐽𝑖 of a job 

𝑖 ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 by a worker 𝑙 ∈ 𝐿 at a speed 𝑣 ∈ 𝑉𝑘 

𝑦𝑖𝑗ℎ𝑔𝑘𝑙: On/Off variables. Binary decision variable of having to turn on (or not) a workstation 𝑘 ∈

𝐾 by a worker 𝑙 ∈ 𝐿 after the operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 and before the operation 𝑔 ∈ 𝐽ℎ of a 

job ℎ ∈ 𝐼 

𝑤𝑖𝑗ℎ𝑔𝑘𝑙 : Sequencing variables at the workstation. Binary decision of executing (or not) the 

operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 by a worker 𝑙 ∈ 𝐿 after the operation 𝑗 ∈ 𝐽𝑖 

of a job 𝑖 ∈ 𝐼 at the same workstation 𝑘 ∈ 𝐾. This variable set shows the workstation sequence, 

noting that worker 𝑙 ∈ 𝐿 is not necessarily the one doing operation 𝑗 ∈ 𝐽𝑖 of job 𝑖 ∈ 𝐼. The same 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 cannot precede itself to the extent that 𝑤𝑖𝑗𝑖𝑗𝑘𝑙 does not exist. 

𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙 : Worker sequencing variables. Binary decision of having a worker 𝑙 ∈ 𝐿  process the 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 after processing the operation 𝑟 ∈ 𝐽𝑞 of a job 

𝑞 ∈ 𝐼 at a workstation 𝑚 ∈ 𝐾. This allows to model the sequence of operations that are executed 

by workers around the shop. Notice that the same operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 cannot precede 

itself to the extent that 𝑢𝑖𝑗𝑚𝑖𝑗𝑘𝑙 does not exist. 
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Time calculation and workload variables 

𝑏𝑖𝑗ℎ𝑔𝑘: Idle Time Variable. Continuous variable to count the idle time spent after the operation 𝑗 ∈

𝐽𝑖 of a job 𝑖 ∈ 𝐼 and before the operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐻 at a workstation 𝑘 ∈ 𝐾 

𝑛𝑖𝑗ℎ𝑔𝑘: Off Time Variable. Continuous variable to count the off time spent after the operation 𝑗 ∈

𝐽𝑖 of a job 𝑖 ∈ 𝐼 and before the operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐻 at a workstation 𝑘 ∈ 𝐾 

𝑐𝑚𝑎𝑥: Total completion time. Continuous variable representing the total completion time of the 

last job 𝑖 ∈ 𝐼 completed. 𝑐𝑚𝑎𝑥 = max
𝑖∈𝐼

𝑐𝑖 

𝑐𝑖: Job completion time. Continuous variable representing the completion time of the last operation 

𝑗 ∈ 𝐽𝑖 to be completed for a job 𝑖 ∈ 𝐼 

𝑠𝑖𝑗𝑘 : Operation start time variable. Continuous variable representing the starting time of the 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at workstation 𝑘 ∈ 𝐾 

𝑐𝑖𝑗𝑘 : Operation completion time. Continuous variable representing the completion time of the 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at workstation 𝑘 ∈ 𝐾 

𝑡𝑙: Worker workload. Continuous variable representing the total amount of work completed by a 

worker 𝑙 ∈ 𝐿 during the planning horizon. 

𝑖𝑛𝑡𝑚𝑎𝑥: Intensity variable. Continuous variable representing the maximum workload. It states the 

total amount of work completed by the worker who worked the most. 𝑖𝑛𝑡𝑚𝑎𝑥 = max
𝑙∈𝐿

𝑡𝑙 
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3.2.1 3-index with flow conservation constraints (F1) 

Using the sets, parameters and variables described in Section 0, the 3-index formulation is defined 

by the minimization of the three-part objective function (Z1, Z2 and Z3) subject to constraints (1) 

to (29) 

Z1 𝑀𝑖𝑛 𝑐𝑚𝑎𝑥  (Z1) 

Z2 𝑀𝑖𝑛 𝑖𝑛𝑡𝑚𝑎𝑥   (Z2) 

Z3 𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝜋𝑖𝑗𝑘𝑣𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+  ∑ ∑ ∑ ∑ ∑ 𝛽𝑘𝑏𝑖𝑗ℎ𝑔𝑘

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+  ∑ ∑ ∑ ∑ ∑ ∑ 𝛿𝑘𝑑𝑘𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝛼𝑖𝑗ℎ𝑔𝑘𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 

 

 
 

(Z3) 

 

Subject to ∶ 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿𝑘 ∈ 𝐾

= 1 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (1) 

𝑠𝑖𝑗𝑘 +  𝑐𝑖𝑗𝑘 ≤ 𝑀 ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣 

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (2) 

∑ 𝑠𝑖𝑗𝑘

𝑘 ∈ 𝐾

≥ ∑ 𝑐𝑖𝑗−1𝑘

𝑘 ∈ 𝐾

 ∀ 𝑖 ∈ 𝐼, 𝑗 = 2, … , |𝐽𝑖| (3) 

𝑐𝑖𝑗𝑘 ≥  𝑠𝑖𝑗𝑘 +  ∑ ∑ 𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿

− 𝑀 (1

−  ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣 

𝑣 ∈ 𝑉𝑘

) 

𝑙 ∈ 𝐿

 
∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (4) 

𝑐𝑖𝑗𝑘 ≤  𝑠𝑖𝑗𝑘 +  ∑ ∑ 𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿

−  𝑀(1

−  ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣 

𝑣 ∈ 𝑉𝑘

) 

𝑙 ∈ 𝐿

 
∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (5) 
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𝑐𝑖𝑗𝑘 ≤ 0 ∀ 𝑖 ∈  𝐼𝑠𝑡𝑎𝑟𝑡, 𝑗 ∈   𝐽𝑖 , 𝑘 ∈ 𝐾 (6) 

𝑠ℎ𝑔𝑘 ≥  𝑐𝑖𝑗𝑘 + 𝑏𝑖𝑗ℎ𝑔𝑘 + 𝑛𝑖𝑗ℎ𝑔𝑘 + 𝑑𝑘 ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

+ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

− 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, ℎ ∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘 ∈ 𝐾 

(7) 

𝑠ℎ𝑔𝑘 ≤  𝑐𝑖𝑗𝑘 + 𝑏𝑖𝑗ℎ𝑔𝑘 + 𝑛𝑖𝑗ℎ𝑔𝑘 + 𝑑𝑘 ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

+ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

− 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, ℎ ∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (8) 

𝑠ℎ𝑔𝑘 ≥ 𝑐𝑖𝑗𝑘 − 𝑀 (1 − ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑙 ∈ 𝐿𝑣 ∈ 𝑉𝑘

)

− 𝑀 (1 − ∑ ∑ 𝑥ℎ𝑔𝑘𝑙𝑣

𝑙 ∈ 𝐿𝑣 ∈ 𝑉𝑘

) 

∀ ℎ ∈ 𝐼𝑒𝑛𝑑, 𝑔 ∈ 𝐽ℎ, 𝑖 ∈ 𝐼, 𝑗
∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (9) 

∑ 𝑠ℎ𝑔𝑘

𝑘 ∈ 𝐾

≥ ∑ 𝑐𝑖𝑗𝑘

𝑘 ∈ 𝐾

− 𝑀 (1 − ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

)

− 𝑀 (1 − ∑ ∑ 𝑥ℎ𝑔𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

) 

∀ ℎ ∈ 𝐼𝑒𝑛𝑑, 𝑔 ∈ 𝐽ℎ, 𝑖 ∈ 𝐼, 𝑗
∈ 𝐽𝑖 , 𝑙 ∈ 𝐿 (10) 

∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

≤ ∑ 𝑥ℎ𝑔𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘

 ∀ ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾, 𝑙
∈ 𝐿 (11) 

∑ ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑔 ∈ 𝐽ℎℎ ∈ 𝐼

≤ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (12) 

∑ ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

= ∑ ∑ ∑ 𝑤ℎ𝑔𝑖𝑗𝑘𝑙

𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 ∀ ℎ ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (13) 

∑ ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑔 ∈ 𝐽ℎℎ ∈ 𝐼

≥ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿

 ∀ 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (14) 
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𝑠ℎ𝑔𝑘 ≥  𝑐𝑞𝑟𝑚 + 𝑑𝑘 ∑ ∑ ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑗 ∈  𝐽𝑖𝑖 ∈  𝐼

+ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

− 𝑀 (1 − ∑ 𝑢𝑞𝑟𝑚ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

) 

∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , 𝑚 ∈ 𝐾, ℎ

∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘 ∈ 𝐾 

(15) 

∑ ∑ ∑ 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙

𝑚 ∈ 𝐾𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

≤ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 (16) 

∑ ∑ ∑ 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙

𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

≤ ∑ 𝑥𝑞𝑟𝑚𝑙𝑣

𝑣 ∈ 𝑉𝑚

 ∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑖 , 𝑚 ∈ 𝐾, 𝑙
∈ 𝐿 (17) 

∑ ∑ ∑ ∑ 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙

𝑘 ∈ 𝐾𝑚 ∈ 𝐾𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

= ∑ ∑ ∑ ∑ 𝑢𝑖𝑗𝑘𝑞𝑟𝑚𝑙

𝑘 ∈ 𝐾𝑚 ∈ 𝐾𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

 
∀ 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑗 ∈ 𝐽𝑖 , 𝑙 ∈   𝐿 (18) 

∑ ∑ ∑ 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙

𝑘 ∈ 𝐾𝑗 ∈ 𝐽ℎ𝑖 ∈ 𝐼

≥ ∑ 𝑥𝑞𝑟𝑚𝑙𝑣

𝑣 ∈ 𝑉𝑚

 ∀ 𝑞 ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑟 ∈ 𝐽𝑞 , 𝑚

∈ 𝐾, 𝑙 ∈ 𝐿 (19) 

𝑏𝑖𝑗ℎ𝑔𝑘 +  𝑛𝑖𝑗ℎ𝑔𝑘 ≤ 𝑀 (∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

) ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (20) 

𝑦𝑖𝑗ℎ𝑔𝑘𝑙 ≤  𝑤𝑖𝑗ℎ𝑔𝑘𝑙 
∀ 𝑖 ∈   𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(21) 

𝑛𝑖𝑗ℎ𝑔𝑘 ≤ 𝑀 (∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

) ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔
∈  𝐽ℎ, 𝑘 ∈ 𝐾 (22) 

𝑦𝑖𝑗ℎ𝑔𝑘𝑙 = 𝑤𝑖𝑗ℎ𝑔𝑘𝑙 

∀ 𝑖 ∈  𝐼𝑠𝑡𝑎𝑟𝑡, 𝑗 ∈ 𝐽𝑖, ℎ 
∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(23) 

𝑐𝑚𝑎𝑥 ≥  𝑐𝑖  ∀ 𝑖 ∈ 𝐼  (24) 

𝑖𝑛𝑡𝑚𝑎𝑥 ≥  𝑡𝑙 ∀ 𝑙 ∈ 𝐿 (25) 

𝑐𝑖 ≥  ∑ 𝑐𝑖𝑗𝑘

𝑘 ∈ 𝐾

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (26) 
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Constraints (1) to (6) define resource capacity and core time variables relationship for the entire 

schedule. Constraint (1) ensures a unique allocation between operations, jobs workstations and 

workers. It forces that exactly one workstation 𝑘 ∈ 𝐾, one processing speed 𝑣 ∈ 𝑉𝑘 and one worker 

𝑙 ∈ 𝐿 is selected to process each operation 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼. Constraint (2) ensures that the 

starting time and the completion time of an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 

is equal to zero unless that operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 is scheduled at that workstation 𝑘 ∈ 𝐾. 

Constraint (3) ensures that, for all operations 𝑗 ∈ 𝐽𝑖, except the first operation, of each job 𝑖 ∈ 𝐼, 

because it does not have a previous operation, an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 can only start after 

its previous operation 𝑗 − 1 ∈ 𝐽𝑖 of the same job 𝑖 ∈ 𝐼 is completed. 

Constraints (4) and (5) allow the exact calculation of operations starting and completion times. 

Constraint (4) ensures that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼 at every workstation 𝑘 ∈ 𝐾, 

if an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 is to be processed at a workstation 𝑘 ∈ 𝐾, its completion time 

𝑡𝑙  ≥  ∑ ∑ ∑ ∑ 𝜑𝑘𝑣𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+  ∑ ∑ ∑ ∑ ∑ 𝑑𝑘𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 

∀ 𝑙 ∈ 𝐿 (27) 

𝑐𝑖 ≥ 0 ∀ 𝑖 ∈ 𝐼 (28) 

𝑡𝑙 ≥ 0 ∀ 𝑙 ∈ 𝐿 (29) 

𝑠𝑖𝑗𝑘, 𝑐𝑖𝑗𝑘 ≥ 0 ∀ 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (30) 

𝑛𝑖𝑗ℎ𝑔𝑘, 𝑏𝑖𝑗ℎ𝑔𝑘 ≥ 0 ∀ 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (31) 

𝑥𝑖𝑗𝑘𝑙𝑣 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘 ∈ 𝐾, 𝑙
∈ 𝐿, 𝑣 ∈ 𝑉𝑘 (32) 

𝑤𝑖𝑗ℎ𝑔𝑘𝑙,  𝑦𝑖𝑗ℎ𝑔𝑘𝑙 ∈ {0,1} 
∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(33) 

𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙 ∈ {0,1} 
∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , 𝑚 ∈ 𝐾, 𝑖

∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(34) 
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must be at least as big as its starting time plus its processing time at that workstation 𝑘 ∈ 𝐾. 

Constraint (5) ensures equality to its starting time plus its processing time at that workstation 𝑘 ∈

𝐾. When the operation is scheduled at a workstation 𝑘 ∈ 𝐾, its completion time must be exactly 

equal to its starting time plus its processing time.  

Through these two constraints, it is desired to ensure that a workstation is always in a state until 

the end of its intended work. By always forcing an equality between two operations, even if those 

are not processed at the same workstation, the model would be unsolvable because the value of the 

starting and completion time of operations not done at a specific workstation must be zero 

according to constraint (2). Otherwise, if equality is not enforced, nothing ensures that a state is 

given to the workstation right after the end of the processing time. The workstation could be in no 

state at all for a certain period which does not exist and is not logical in the model. 

Constraint (6) ensures that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼𝑠𝑡𝑎𝑟𝑡 at every workstation 𝑘 ∈

𝐾, the completion time is less or equal to 0. 

Constraints (7) to (14) define the sequencing of jobs for workstations including interruption times 

and starting times. Constraints (7) ensures that, if two jobs follow one another at a workstation, the 

difference between the starting time of the preceding operation and the completion time of the next 

operation at the same workstation is not less than the sum of the time spent idle or off between 

operations, the set-up time and the starting time if it is necessary. 

Constraint (8) ensures that, if two jobs follow one another at a workstation, the difference between 

the starting time of the next operation and the completion time of the preceding operation is not 

bigger than the sum of the time spent idle or off between operations, the set-up time and the starting 

time if it is necessary. 

Together, constraints (7) and (8) define an equality but only when two operations are processed 

immediately successively by the same resources. Forcing this equality on two operations not 

processed successively or by the same resources would make the problem unsolvable. 
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Without constraint (8), nothing would force a workstation to be in one of the listed states. In fact, 

being in a state has a negative impact on the objective because it consumes energy or requires 

eventually consuming time and energy to restart. Constraint (8) forces the model to declare time in 

one of the defined states. Otherwise, the model would tend to not declare a state at all during that 

period to not suffer the negative impact of consuming energy in a processing or idle state or having 

to spend energy and time to restart equipment. 

Constraint (9) ensures that, for all operation 𝑔 ∈ 𝐽ℎ of a dummy at the end job ℎ ∈ 𝐼𝑒𝑛𝑑, if it is done 

at the same workstation 𝑘 ∈ 𝐾 as another operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼, then it only starts after the 

real operation finishes. 

Constraint (10) ensures that, for all operation 𝑔 ∈ 𝐽ℎof a dummy at the end job ℎ ∈ 𝐼𝑒𝑛𝑑 if it is done 

by the same worker 𝑙 ∈ 𝐿 as another operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼, then it only starts after the real 

operation finishes. 

Constraint (11) ensures, for all next operations 𝑔 ∈ 𝐺ℎ of every next job ℎ ∈ 𝐼, for all workstations 

𝑘 ∈ 𝐾 and for all workers 𝑙 ∈ 𝐿, that: 1) at most as many operations 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 can be 

selected as there are next operations 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 processed at a workstation 𝑘 ∈ 𝐾 

and done by a worker 𝑙 ∈ 𝐿; and 2) a next operation 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 processed at a 

workstation 𝑘 ∈ 𝐾 and done by a worker 𝑙 ∈ 𝐿 can only follow an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 if 

it is to be processed at that specific workstation 𝑘 ∈ 𝐾 and to be done by that specific worker 𝑙 ∈ 𝐿. 

Constraint (12) ensures, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼 at every workstation 𝑘 ∈ 𝐾, that: 

1) at most as many next operations 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 processed at by a worker 𝑙 ∈ 𝐿 can 

be selected as there are operations 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 processed at a workstation 𝑘 ∈ 𝐾; and 2) an 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 processed at a workstation 𝑘 ∈ 𝐾 can only be before a next operation 

𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 processed at by a worker 𝑙 ∈ 𝐿 if it is to be processed at that specific 

workstation 𝑘 ∈ 𝐾. 

Constraint (13) ensures that, for all next operations 𝑔 ∈ 𝐽ℎ  of a real job ℎ ∈ 𝐼𝑟𝑒𝑎𝑙  done at a 

workstation 𝑘 ∈ 𝐾 by a worker 𝑙 ∈ 𝐿, there exists the same operation 𝑔 ∈ 𝐺ℎ of a real job ℎ ∈ 𝐼𝑟𝑒𝑎𝑙 

done at that same workstation 𝑘 ∈ 𝐾 as a previous operation of another operation done by the same 
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or another worker 𝑙 ∈ 𝐿 at the same workstation 𝑘 ∈ 𝐾. In short, this flow conservation constraint 

ensures that all operations of a job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙  must be both the next operation of another one at 

workstation 𝑘 ∈ 𝐾 as well as the previous operation of another one at that same workstation 𝑘 ∈

𝐾. 

Constraint (14) ensures that, for all operations 𝑗 ∈ 𝐽𝑖  of a real job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙  processed at a 

workstation 𝑘 ∈ 𝐾 that same operation 𝑗 ∈ 𝐽𝑖 of a real job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙 done at that same workstation 

𝑘 ∈ 𝐾 exists as a previous operation of another one done at that same workstation 𝑘 ∈ 𝐾. In short, 

if the operation 𝑗 ∈ 𝐽𝑖 of a real job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙 is scheduled at a workstation 𝑘 ∈ 𝐾, then it must be a 

part of the sequence of operation for workstation 𝑘 ∈ 𝐾 and we ensure that by enforcing that it 

exists as a previous operation somewhere in the sequence. 

Constraints (15) to (19) define the sequence for workers including starting times. Constraint (15) 

ensures that, for all previous operations 𝑟 ∈ 𝐽𝑞 of every previous job 𝑞 ∈ 𝐼 at every workstation 

𝑚 ∈ 𝐾 and for all operations 𝑔 ∈ 𝐺ℎ of every job ℎ ∈ 𝐼 at every workstation 𝑘 ∈ 𝐾, if an operation 

𝑟 ∈ 𝐽𝑞 of a job 𝑞 ∈ 𝐼 at a workstation 𝑚 ∈ 𝐾 precedes an operation 𝑔 ∈ 𝐺ℎ of a job ℎ ∈ 𝐼 at the 

workstation 𝑘 ∈ 𝐾 no matter the worker, the difference between the starting time of the operation 

𝑔 ∈ 𝐺ℎ of a job ℎ ∈ 𝐼 at the workstation 𝑘 ∈ 𝐾 must be at least as big as the completion time of 

the operation 𝑟 ∈ 𝐽𝑞 of a  job 𝑞 ∈ 𝐼 at a workstation 𝑚 ∈ 𝐾 that precedes it plus the time to turn on 

relevant equipment at workstation 𝑘 ∈ 𝐾 if necessary before operation 𝑔 ∈ 𝐺ℎ of a job ℎ ∈ 𝐼 and 

the set-up time required before operation 𝑔 ∈ 𝐺ℎ of a job ℎ ∈ 𝐼 at workstation 𝑘 ∈ 𝐾. 

Constraint (16) ensures, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼, for all workstations 𝑘 ∈ 𝐾 and 

for all workers 𝑙 ∈ 𝐿, that: 1) at most as many previous operations 𝑟 ∈ 𝐽𝑞 of a previous job 𝑞 ∈ 𝐼 

processed at a previous workstation 𝑚 ∈ 𝐾 by a worker 𝑙 ∈ 𝐿 as there are operations 𝑗 ∈ 𝐽𝑖 of a job 

𝑖 ∈ 𝐼 processed at the workstation 𝑘 ∈ 𝐾 and by the same worker 𝑙 ∈ 𝐿; and 2) an operation 𝑗 ∈ 𝐽𝑖 

of a job 𝑖 ∈ 𝐼 processed at workstation 𝑘 ∈ 𝐾 and by a worker 𝑙 ∈ 𝐿 can only be after an operation 

𝑟 ∈ 𝐽𝑞  of a job 𝑞 ∈ 𝐼  processed at workstation 𝑚 ∈ 𝐾  by the same worker 𝑙 ∈ 𝐿  if it is to be 

processed at that specific workstation 𝑘 ∈ 𝐾 by that specific worker 𝑙 ∈ 𝐿. 
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Constraint (17) ensures, for all previous operations 𝑟 ∈ 𝐽𝑞  of every previous job 𝑞 ∈ 𝐼 , for all 

previous workstation 𝑚 ∈ 𝐾 and for all workers 𝑙 ∈ 𝐿, that: 1) at most as many operations 𝑗 ∈ 𝐽𝑖 

of a job 𝑖 ∈ 𝐼 processed at a workstation 𝑘 ∈ 𝐾 by a worker 𝑙 ∈ 𝐿 as there are previous operations 

𝑟 ∈ 𝐽𝑞 of a previous job 𝑞 ∈ 𝐼 processed at a previous workstation 𝑚 ∈ 𝐾 by the same worker 𝑙 ∈

𝐿, and 2) a previous operation 𝑟 ∈ 𝐽𝑞 of a job 𝑞 ∈ 𝐼 processed at workstation 𝑚 ∈ 𝐾 by worker 𝑙 ∈

𝐿 can only precede an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 processed at workstation 𝑘 ∈ 𝐾 and by the 

same worker 𝑙 ∈ 𝐿 if it is to be processed at that specific workstation 𝑘 ∈ 𝐾 by that specific worker 

𝑙 ∈ 𝐿. 

Constraint (18) ensures that, for all next operations 𝑗 ∈ 𝐽𝑖 of a real job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙 done by a worker 

𝑙 ∈ 𝐿, there exists the same operation 𝑗 ∈ 𝐽𝑖 of a real job 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙 done by the same worker 𝑙 ∈ 𝐿 

as a previous operation of another operation done by the same or another worker 𝑙 ∈ 𝐿. 

Constraint (19) ensures that, all operations 𝑟 ∈ 𝐽𝑞 of a real job 𝑞 ∈ 𝐼𝑟𝑒𝑎𝑙 processed at a workstation 

𝑚 ∈ 𝐾 and by a worker 𝑙 ∈ 𝐿 are the previous operations of another one scheduled for the same 

worker 𝑙 ∈ 𝐿. 

Constraints (20) to (23) define the relationship between interruption times. Constraint (20) ensures 

that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼, for all next operations 𝑔 ∈ 𝐺ℎ of every next job 

ℎ ∈ 𝐼 and for all workstations 𝑘 ∈ 𝐾, the idle time between the operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 and 

the operation 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 cannot take a value higher than 

zero unless the operation 𝑗 ∈ 𝐽𝑖  of that specific job 𝑖 ∈ 𝐼 precedes the operation 𝑔 ∈ 𝐺ℎ  of that 

specific next job ℎ ∈ 𝐼 at the workstation 𝑘 ∈ 𝐾. 

Constraint (21) ensures that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼, for all next operations 𝑔 ∈

𝐺ℎ of every next job ℎ ∈ 𝐼, for all workstations 𝑘 ∈ 𝐾 and for all workers 𝑙 ∈ 𝐿, needing to start 

relevant equipment between an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 and an operation 𝑔 ∈ 𝐺ℎ of a next 

job ℎ ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 can only be required if the operation 𝑗 ∈ 𝐽𝑖 of that specific job 𝑖 ∈

𝐼 precedes the operation 𝑔 ∈ 𝐺ℎ of that specific next job ℎ ∈ 𝐼 at the workstation 𝑘 ∈ 𝐾. 
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Constraint (22) ensures that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼, for all next operations 𝑔 ∈

𝐺ℎ of every next job ℎ ∈ 𝐼 and for all workstations 𝑘 ∈ 𝐾, the time spent off at a workstation 𝑘 ∈

𝐾 between an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 and an operation 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 can only 

take a value higher than zero if it is required to turn back on the workstation 𝑘 ∈ 𝐾 between an 

operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 and an operation 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼. 

Constraint (23) ensures that, for all operations 𝑗 ∈ 𝐽𝑖 of every job 𝑖 ∈ 𝐼𝑠𝑡𝑎𝑟𝑡, for all next operations 

𝑔 ∈ 𝐺ℎ of every next job ℎ ∈ 𝐼, for all workstations 𝑘 ∈ 𝐾 and for all workers 𝑙 ∈ 𝐿, if an operation 

𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 precedes an operation 𝑔 ∈ 𝐺ℎ of a next job ℎ ∈ 𝐼 done by a worker 𝑙 ∈ 𝐿 at the 

same workstation 𝑘 ∈ 𝐾 , it is mandatory to start the relevant equipment between those two 

operations at that same workstation and by the same worker that is to process the next operation 

𝑔 ∈ 𝐺ℎ of the next job ℎ ∈ 𝐼. 

Constraints (24) to (27) define the minimum thresholds for objectives. Constraint (24) ensures that 

the makespan 𝑐𝑚𝑎𝑥 is at least as big as the completion time of each job 𝑐𝑖 for all jobs 𝑖 ∈ 𝐼. 

Constraint (25) ensures that the highest intensity of work 𝑖𝑛𝑡𝑚𝑎𝑥 is at least as big as the intensity 

of work 𝑡𝑙 for all workers 𝑙 ∈ 𝐿. 

Constraint (26) ensures that the completion time 𝑐𝑖 of a job 𝑖 ∈ 𝐼 is at least as big as the completion 

time of each operation 𝑐𝑖𝑗𝑘 no matter which workstation 𝑘 ∈ 𝐾 is selected for all jobs 𝑖 ∈ 𝐼 and all 

operations 𝑗 ∈ 𝐽𝑖. 

Constraint (27) ensures that, for all workers 𝑙 ∈ 𝐿, the intensity of work 𝑡𝑙 is at least as big as the 

sum of the total time spent processing jobs by that specific worker adjusted with the pace of work 

at which the processing occurred, the total time spent starting equipment by that worker and the 

total time spent setting up workstations to process jobs. 

Constraints (28) to (34) define the value intervals for all variables. Constraint (28) to (31) ensure 

that starting times (𝑠𝑖𝑗𝑘), completion times (𝑐𝑖𝑗𝑘), job completion times (𝑐𝑖), worker total work 

intensity (𝑡𝑙), time spent idle (𝑛𝑖𝑗ℎ𝑔𝑘) and time spent off (𝑏𝑖𝑗ℎ𝑔𝑘) all take non-negative values.  
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Constraint (33) to (34) ensure that resource allocation variables (𝑥𝑖𝑗𝑘𝑙𝑣), workstation sequencing 

variables (𝑤𝑖𝑗ℎ𝑔𝑘𝑙), worker sequencing variables (𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙) and restarting variables (𝑦𝑖𝑗ℎ𝑔𝑘𝑙) are 

all binary. 

3.2.2 3-index formulation with sequence linking constraints (S1) 

To the best of our knowledge, S1 is the first proposition of sequence linking constraints in job-shop 

problems. Without the flow conservation constraints, dummy jobs at the end are no longer required, 

hence, constraints (9) and (10) which were used to make sure dummy jobs at the end were only 

started at the end of a schedule are not used. Furthermore, (14) and (19) are not used in this variant 

because those forced the precedence variables to take a value for all real operations which was 

necessary to initiate the flow conservation constraint but, in S1, the precedence variables are 

directly linked to the allocation variables which makes those previously used constraints 

unnecessary. Finally, constraints (13) and (18) are replaced with (35) and (36). This means that 

flow conservation constraints are replaced by sequence linking constraints :  

∑ ∑ ∑ ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

= ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

− 1 
∀ 𝑘 ∈ 𝐾 (35) 

∑ ∑ ∑ ∑ ∑ ∑ 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙

𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼𝑚 ∈ 𝐾𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

= ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

− 1 
∀ 𝑙 ∈ 𝐿 (36) 

 

The result is as follows :  

𝑀𝑖𝑛 Z1, Z2 and Z3 

Subject to : 

(1)-(6), (7)-(8), (11)-(12), (35), (15)-(17), (36), (19), (20)-(23), (24)-(27), (28)-(31), (32)-(34) 
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(35) and (36) are the new sequence linking constraints that work by calculating exactly how many 

links between operations there should be for each resource. Doing so will restrict the problem to 

having exactly as many links as there are operations that precede each other. With constraints (11), 

(12), (16) and (17), it then becomes impossible to select any operation that did not occur to compute 

the idle and off times at times that will have less of an impact on makespan. 

3.2.3 2-index formulation with flow conservation constraints (F2) 

In the 2-index formulations, a simplification is done to reduce the indexes of the time variables. 

From now on, all following formulation variants, including this one, will have starting times and 

completion times that do not take into consideration the workstation. This will divide the number 

of variables for starting times and completion times by 𝐾. Starting time will represent the time at 

which operation 𝑗 ∈ 𝐽𝑖  of job 𝑖 ∈ 𝐼 started being processed (𝑠𝑖𝑗). Completion time, on the other 

hand, will represent the time at which operation 𝑗 ∈ 𝐽𝑖 of job 𝑖 ∈ 𝐼 finished being processed (𝑐𝑖𝑗). 

This formulation is closer to what can be found in the recent literature. For instance, Li et al. (2022) 

also had a formulation with 2-index variables for starting and completion times whereas F1 was 

closer to the basic formulation in Manne (1960). Comparing the results of this formulation with F1 

could help determine which one is more efficient when solving sustainable flexible job-shop 

problems. 

This change has numerous implications on the constraints. First, compared to the first formulation 

variant shown (F1), constraints (2) and (5) are no longer applied because all operations have 

starting and completion times and, because all completion times are exactly after the sum of the 

starting time and processing time, the inequality of constraint (4) and (5) can be replaced with an 

equality. The result is constraint (38). Second, constraints (3), (4), (6)-(10), (15), (26) and (30) have 

to be replaced with constraints (37)-(46) to adjust the indexes to only 𝑖 and 𝑗 instead of 𝑖, 𝑗 and 𝑘. 

Those changes result in the following formulation : 

𝑠𝑖𝑗 ≥  𝑐𝑖𝑗−1 ∀ 𝑖 ∈   𝐼, 𝑗 = 2, … , |𝐽𝑖| (37) 

𝑐𝑖𝑗 =  𝑠𝑖𝑗 + ∑ ∑ ∑ 𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿𝑘 ∈ 𝐾

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (38) 

𝑐𝑖𝑗 ≤ 0 ∀ 𝑖 ∈ 𝐼𝑠𝑡𝑎𝑟𝑡, 𝑗 ∈   𝐽𝑖 (39) 
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𝑠ℎ𝑔 ≥  𝑐𝑖𝑗 + ∑ 𝑏𝑖𝑗ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ 𝑛𝑖𝑗ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ (𝑑𝑘 ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙)

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

+ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

− 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ (40) 

𝑠ℎ𝑔  ≤  𝑐𝑖𝑗 + ∑ 𝑏𝑖𝑗ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ 𝑛𝑖𝑗ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ 𝑑𝑘 ∑ ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

+ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

+ 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ (41) 

𝑠ℎ𝑔 ≥ 𝑐𝑖𝑗 − 𝑀 (1 − ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑙 ∈ 𝐿𝑣 ∈ 𝑉𝑘

)

− 𝑀 (1 − ∑ ∑ 𝑥ℎ𝑔𝑘𝑙𝑣

𝑙 ∈ 𝐿𝑣 ∈ 𝑉𝑘

) 

∀ ℎ ∈ 𝐼𝑒𝑛𝑑, 𝑔 ∈ 𝐽ℎ, 𝑖 ∈ 𝐼, 𝑗
∈ 𝐽𝑖 , 𝑘 ∈ 𝐾 (42) 

𝑠ℎ𝑔 ≥ 𝑐𝑖𝑗 − 𝑀 (1 − ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

)

− 𝑀 (1 − ∑ ∑ 𝑥ℎ𝑔𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

) 

∀ ℎ ∈ 𝐼𝑒𝑛𝑑, 𝑔 ∈ 𝐽ℎ, 𝑖 ∈ 𝐼, 𝑗
∈ 𝐽𝑖 , 𝑙 ∈ 𝐿 (43) 

𝑠ℎ𝑔 ≥  𝑐𝑞𝑟 + ∑ (𝑑𝑘 ∑ ∑ ∑ 𝑦𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑗 ∈  𝐽𝑖𝑖 ∈  𝐼

)

𝑘 ∈ 𝐾

+ ∑ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑗 ∈  𝐽𝑖𝑖 ∈  𝐼

− 𝑀 (1 − ∑ ∑ ∑ 𝑢𝑞𝑟𝑚ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑚 ∈ 𝐾

) 

∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ (44) 

𝑐𝑖 ≥  𝑐𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (45) 

𝑠𝑖𝑗, 𝑐𝑖𝑗 ≥ 0 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 (46) 
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Resulting in the following formulation : 

𝑀𝑖𝑛 Z1, Z2 and Z3 

Subject to : 

(1), (37)-(39), (40)-(43), (11)-(14), (44), (16)-(19), (20)-(23), (24)-(25), (45), (27), (28)-(29), (46), 

(31), (32)-(34) 

Those changes mean dividing the number of starting and completion times variables by 𝐾, thus 

also reducing the variables to which the modified constraints have to be applied to. Although it is 

still to be proven, this change alone could improve the efficiency of the formulation. More 

specifically, for constraint (38), it means having the completion time of each operation be exactly 

equal to its starting time plus the processing time. This is now always true because there does not 

exist a starting and a completion time for all workstations for each operation. In F1 and S1, both 

constraints (4) and (5) were needed because, when an operation was scheduled at a workstation, 

the completion time had to be exactly equal to the starting time plus the processing time but, when 

the operation was not scheduled at a workstation, both constraints needed not to apply because both 

completion times and starting times needed to take the value of zero in compliance with constraint 

(2). Forcing that equality would then make the model unsolvable. 

3.2.4 2-index formulation with sequence linking constraints (S2) 

The changes required to get from F2 to S2 are similar to the ones required to get from F1 to S1. To 

do so, from formulation F2, constraints (42), (43), (14) and (19) have to be removed and constraints 

(13) and (18) have to be replaced with (35) and (36). 

The resulting formulation becomes: 

𝑀𝑖𝑛 Z1, Z2 and Z3 

Subject to : 
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(1), (37)-(39), (40)-(41), (11)-(12), (35), (44), (16)-(17), (36), (20)-(23), (24)-(25), (45), (27), (28)-

(29), (46), (32)-(34) 

Those changes serve the same function as the changes required to get from F1 to S1. Replacing the 

flow conservation constraints used for sequencing by sequence linking constraints. 

3.2.5 2-index formulation with flow conservation constraints and interruption times before 
operations (F3) 

In this case, interruption times refer to both off times and idle times. Compared to the previously 

mentioned 2-index formulation variant with flow conservation constraints (F2), time spent off or 

idle at a workstation is no longer accounted for as being between operations but before operations 

instead. It means that the time spent idle or off between operation 𝑗 ∈ 𝑗𝑖 of job 𝑖 ∈ 𝐼 and operation 

𝑔 ∈ 𝐽ℎ of job ℎ ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 (𝑛𝑖𝑗ℎ𝑔𝑘,  𝑏𝑖𝑗ℎ𝑔𝑘) is now represented by the time spent 

idle or off before the next operation 𝑔 ∈ 𝐽ℎ of job ℎ ∈ 𝐼 at workstation 𝑘 ∈ 𝐾 (𝑛ℎ𝑔𝑘,  𝑏ℎ𝑔𝑘). The 

same reasoning applies to the decision of having to start a workstation 𝑘 ∈ 𝐾 between an operation 

𝑗 ∈ 𝑗𝑖 of a job 𝑖 ∈ 𝐼 and an operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐼 (𝑦𝑖𝑗ℎ𝑔𝑘𝑙). It now becomes the decision 

of starting a workstation 𝑘 ∈ 𝐾 before an operation 𝑔 ∈ 𝐽ℎ of a job ℎ ∈ 𝐼 (𝑦ℎ𝑔𝑘𝑙). In this particular 

context, S2 and all other previous formulations had variables that could account for a workstation 

being in different states at the same time. Such a quality could be useful if, for a particular shop, it 

is relevant to consider multiple tools or multiple parts of a complex machine simultaneously in 

different states for different periods of time for a single workstation. It also might be interesting to 

have an operation being forcefully interrupted for a while at a specific workstation nearby where 

another previous operation occurred that might have discharged toxic particles in its vicinity. Thus, 

to allow interruption times between two operations that are not processed at the same workstation 

or two operations that do not follow each other. By removing that ability, however, a degree of 

integration that could be relevant in certain business cases is lost but the number of variables of the 

problem is significantly decreased. Numerous changes to the constraints must be made to 

accommodate such updates. First of all, starting from F2, the third objective (Z3) has to be replaced 

by (Z4) and the constraints (40), (41), (44), (20), (21), (22), (23), (27), (46) and (33) have to be 

replaced by (47), (48), (49), (50), (51), (52), (53), (54), (55), (56) and (57). All of these serve the 
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same purpose but must be adjusted for the new set of indexes which is smaller than it was in the 

previous formulation. The result is the following: 

𝑀𝑖𝑛 ∑ ∑ ∑ ∑ ∑ 𝜋𝑖𝑗𝑘𝑣𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+ ∑ ∑ ∑ 𝛽𝑘𝑏ℎ𝑔𝑘

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼

+ ∑ ∑ ∑ ∑ 𝛿𝑘𝑑𝑘𝑦ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝛼𝑖𝑗ℎ𝑔𝑘𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 

(Z4) 

𝑠ℎ𝑔 ≥  𝑐𝑖𝑗 + ∑ 𝑏ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ 𝑛ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ (𝑑𝑘 ∑ 𝑦ℎ𝑔𝑘𝑙)

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

+ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

− 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ (47) 

𝑠ℎ𝑔  ≤  𝑐𝑖𝑗 + ∑ 𝑏ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ 𝑛ℎ𝑔𝑘

𝑘 ∈ 𝐾

+ ∑ (𝑑𝑘 ∑ 𝑦ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

)

𝑘 ∈ 𝐾

+ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

+ 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾

) 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ (48) 

𝑠ℎ𝑔 ≥  𝑐𝑞𝑟 + ∑ (𝑑𝑘 ∑ 𝑦ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

)

𝑘 ∈ 𝐾

+ ∑ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑗 ∈  𝐽𝑖𝑖 ∈  𝐼

− 𝑀 (1 − ∑ ∑ ∑ 𝑢𝑞𝑟𝑚ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑚 ∈ 𝐾

) 

∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , ℎ ∈ 𝐼, 𝑔 

∈ 𝐽ℎ 
(49) 

𝑏ℎ𝑔𝑘 +  𝑛ℎ𝑔𝑘 ≤ 𝑀 (∑ ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

) ∀ ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (50) 

𝑦ℎ𝑔𝑘𝑙 ≤  ∑ ∑ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 ∀ ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾, 𝑙
∈ 𝐿 (51) 
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F3 would minimize the following objectives subject to the following constraints: 

𝑀𝑖𝑛 Z1, Z2 and Z4 

Subject to : 

(1), (37)-(39), (47)-(48), (42)-(43), (11)-(14), (49), (16)-(19), (50)-(53), (24)-(25), (45), (54), (28)-

(29), (46), (55), (32), (56)-(57), (34) 

All constraints serve the same purpose as in previous formulations. However, comparing the 

performance of F3 and S3 with F2 and S2 will give some idea about the difference in efficiency 

for business cases in which workstations might be in different states, in which interruption times 

are required between operations done at different workstations or in which interruption times are 

𝑛ℎ𝑔𝑘 ≤ 𝑀 (∑ 𝑦ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

) ∀ ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾 (52) 

𝑦ℎ𝑔𝑘𝑙 ≥ 𝑤𝑖𝑗ℎ𝑔𝑘𝑙 

∀ 𝑖 ≤ 𝐾 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, ℎ 
∈ 𝐼, 𝑔
∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(53) 

𝑡𝑙  ≥  ∑ ∑ ∑ ∑ 𝜑𝑘𝑣𝑝𝑖𝑗𝑘𝑙𝑣𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

+ ∑ ∑ ∑ 𝑑𝑘𝑦ℎ𝑔𝑘𝑙

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑘 ∈ 𝐾𝑔 ∈ 𝐽ℎℎ ∈ 𝐼𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

 

∀ 𝑙 ∈ 𝐿 (54) 

𝑛ℎ𝑔𝑘, 𝑏ℎ𝑔𝑘 ≥ 0 
∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(55) 

𝑦ℎ𝑔𝑘𝑙 ∈ {0,1} ∀ ℎ ∈ 𝐼, 𝑔 ∈ 𝐽ℎ, 𝑘 ∈ 𝐾, 𝑙
∈ 𝐿 (56) 

𝑤𝑖𝑗ℎ𝑔𝑘𝑙 ∈ {0,1} 
∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ, 𝑘
∈ 𝐾, 𝑙 ∈ 𝐿 

(57) 
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required between operations that do not follow each other. Therefore, the modifications on 

constraints imply adapting the indexes of the modified variables to the constraints (40), (41), (44), 

(20), (21), (22), (23), (27), (46) and (33). 

3.2.6 2-index formulation without flow conservation constraints and interruption times before 
operations (S3) 

This formulation applies the same changes enumerated in the section on the 3-index formulation 

with sequence linking constraints (S1) to the previously mentioned formulation variant (F3). The 

resulting formulation would then be S3. Starting from F3, once again it is required to remove 

constraints (42), (43), (14) and (19) and to replace (13) and (18) with (35) and (36) to get S3. 

Formulation S3 is as follows : 

𝑀𝑖𝑛 Z1, Z2 and Z4 

Subject to : 

(1), (37)-(39), (47)-(48), (11)-(12), (35), (49), (16)-(17), (36), (50)-(53), (24)-(25), (45), (54), (28)-

(29), (46), (55), (32), (56)-(57), (34) 

Comparing the performances of F3 with S3 will give insights into the difference in resolution 

performances between the use of flow conservation constraints compared to the use of the new 

sequence linking constraints. 

3.2.7 2-index formulation with flow conservation constraints, interruption times before 
operations and simplified worker sequence variables (F4) 

Compared to the last formulation variant with flow conservation constraints mentioned (F3), this 

one seeks to simplify the worker sequencing variables. Instead of considering that a worker 𝑙 ∈ 𝐿 

does an operation 𝑗 ∈ 𝐽𝑖 of a job 𝑖 ∈ 𝐼 at a workstation 𝑘 ∈ 𝐾 after processing an operation 𝑟 ∈ 𝐽𝑞 

of a job 𝑞 ∈ 𝐼 at a workstation 𝑚 ∈ 𝐾 (𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙), it considers that a worker 𝑙 ∈ 𝐿 does an operation 

𝑗 ∈ 𝐽𝑖  of a job 𝑖 ∈ 𝐼  after processing an operation 𝑟 ∈ 𝐽𝑞  of a job 𝑞 ∈ 𝐼  (𝑢𝑞𝑟𝑖𝑗𝑙 ). Again, at the 

expense of integration, the number of variables is decreased. The variable 𝑢𝑞𝑟𝑚𝑖𝑗𝑘𝑙 computed from 
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which workstation a worker came and to which one that worker is headed. Such information allows 

for computing travel times without losing linearity if needed. To lose such ability allows for having 

a formulation with fewer variables which may make the formulation more efficient during 

resolution. Numerous changes to the constraints must be made to accommodate such updates. 

Starting with the previously presented formulation variant with flow conservation constraints (F3), 

constraints (49), (16), (17), (18), (19) and (34) are replaced with (58), (59), (60), (61), (62) and 

(63) : 

𝑠ℎ𝑔 ≥  𝑐𝑞𝑟 + ∑ (𝑑𝑘 ∑ 𝑦ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿

)

𝑘 ∈ 𝐾

+ ∑ ∑ ∑ ∑ 𝑎𝑖𝑗ℎ𝑔𝑘𝑙𝑤𝑖𝑗ℎ𝑔𝑘𝑙

𝑙 ∈ 𝐿𝑘 ∈ 𝐾𝑗 ∈  𝐽𝑖𝑖 ∈  𝐼

− 𝑀 (1 − ∑ 𝑢𝑞𝑟ℎ𝑔𝑙

𝑙 ∈ 𝐿

) 

∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , ℎ ∈ 𝐼, 𝑔

∈ 𝐽ℎ (58) 

∑ ∑ 𝑢𝑞𝑟𝑖𝑗𝑙

𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

≤ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑙 ∈ 𝐿 (59) 

∑ ∑ 𝑢𝑞𝑟𝑖𝑗𝑙

𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

≤ ∑ ∑ 𝑥𝑞𝑟𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾

 ∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , 𝑙 ∈ 𝐿 (60) 

∑ ∑ 𝑢𝑞𝑟𝑖𝑗𝑙

𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

= ∑ ∑ 𝑢𝑖𝑗𝑞𝑟𝑙

𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

 ∀ 𝑖 ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑗 ∈ 𝐽𝑖 , 𝑙 ∈ 𝐿 (61) 

∑ ∑ 𝑢𝑞𝑟𝑖𝑗𝑙

𝑗 ∈ 𝐽ℎ𝑖 ∈ 𝐼

≥ ∑ ∑ 𝑥𝑞𝑟𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑚𝑘 ∈ 𝐾

 ∀ 𝑞 ∈ 𝐼𝑟𝑒𝑎𝑙, 𝑟 ∈ 𝐽𝑞 , 𝑙 ∈ 𝐿 (62) 

𝑢𝑞𝑟𝑖𝑗𝑙 ∈ {0,1} ∀ 𝑞 ∈ 𝐼, 𝑟 ∈ 𝐽𝑞 , 𝑖 ∈ 𝐼, 𝑗

∈ 𝐽𝑖 , 𝑙 ∈ 𝐿 (63) 

 

F4 is then as follows: 

𝑀𝑖𝑛 Z1, Z2 and Z4 

Subject to : 
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(1), (37)-(39), (47)-(48), (42)-(43), (11)-(14), (58)-(62), (50)-(53), (24)-(25), (45), (54), (28)-(29), 

(46), (55), (32), (56)-(57), (63) 

All constraints still serve the same purpose but are adapted to do so using a worker sequencing 

variable with fewer indexes. However, losing the ability to have variables ready to integrate travel 

times for resources without losing linearity allows for a formulation with fewer variables which 

may influence the solver’s capability. 

3.2.8 2-index formulation without flow conservation constraints, interruption times before 
operations and simplified worker sequence variables (S4) 

Compared to its variant with flow conservation constraints (F4), this variant can be formulated by 

applying all the same changes mentioned earlier to formulation F4 except for constraint (61). 

Instead, constraint (61) must be replaced by constraint (64). Both constraints serve the same 

purpose, but the indexes have to be adapted with the change of variable : 

∑ ∑ ∑ ∑ 𝑢𝑞𝑟𝑖𝑗𝑙

𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼𝑟 ∈ 𝐽𝑞𝑞 ∈ 𝐼

= ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑙𝑣

𝑣 ∈ 𝑉𝑘𝑘 ∈ 𝐾𝑗 ∈ 𝐽𝑖𝑖 ∈ 𝐼

− 1 ∀ 𝑙 ∈ 𝐿 (64) 

 

Therefore, starting with F4, S4 would be obtained by removing constraints (42), (43), (14) and (62) 

and replacing (13) and (61) with (35) and (64). 

Formulation S4 would then include the following objectives and constraints: 

𝑀𝑖𝑛 Z1, Z2 and Z4 

Subject to : 

(1), (37)-(39), (47)-(48), (11)-(12), (35), (58)-(60), (64), (50)-(53), (24)-(25), (45), (54), (28)-(29), 

(46), (55), (32), (56)-(57), (63) 
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The resulting formulation is S4. Constraint (61) had to be modified considering the fact that the 

same amount of information, meaning the allocation and sequencing of jobs to workers, had to be 

computed through fewer variables which meant adapting the summations to fewer indexes. 
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CHAPTER 4 

NUMERICAL EXPERIMENTS 

This chapter is dedicated to testing the performance and quality of the eight different formulations 

made in the previous chapter. This chapter will now describe the process used to generate random 

instances of the problem. Those instances will then be used to compare the efficiency of the 

different formulations of the problem, first, in a preliminary study and, afterward, in an exhaustive 

study in hopes of differentiating the performances of the best formulations from each other. Finally, 

using the formulation of the problem that performed best in the previous tests, the last part of the 

chapter is dedicated to showing how pareto optimal solutions may be approximated by solving 

formulations previously proposed. The analysis of the set of approximated pareto optimal solutions 

for all instances will reveal the relationship between the three objectives. 

4.1 Resolution method 

The SFJSSP* is a multi-objective optimization problem and many resolution methods could be 

used to solve it. For instance, the epsilon-constrained (𝜀 -constrained) method minimizes one 

objective while the others are included in constraints bound by 𝜀. Such method can find all pareto 

optimal solutions including solutions part of a non-convex solution space. Because the multi-

objective problem is turned into a single-objective one, it is also used with widely known effective 

single objective optimization methods such as the simplex algorithm. However, its effectiveness 

depends on associating the right values to 𝜀. In the case of a problem never studied before with 

new instances never solved, being able to associate effective values to 𝜀 to find pareto optimal 

solutions effectively is a complex task. On the other hand, for a first study on a relatively unknown 

problem, a simpler resolution method is more appropriate. Moreover, in the case of this thesis, 

because the contribution is mainly about the formulation aspect of the problem, it was not a priority 

to develop efficient heuristics and, instead, the weighted sum using Gurobi as the solver was 

applied. The weighted sum is one of the simplest multi-objective resolution methods. It works by 

concatenating all objectives within a single objective while assigning weights to each objective. 

This allows a problem to be solved with efficient single-objective resolution methods such as the 

simplex algorithm. In Marler and Arora (2010), it is explained that if all weights are positive and 

none are equal to zero, this resolution method finds pareto optimal solutions when solved to 
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optimality. However, the weighted sum also has its drawbacks. For instance, it cannot find pareto 

optimal solutions that are not part of the convex domain of the pareto front. In short, there are some 

pareto optimal solutions that might never be found using that method no matter which weights are 

applied. Even with such drawbacks, considering the studied problem is unknown, the simplicity of 

the weighted sum and the opportunity to use it with efficient single objective resolution methods, 

it was still preferred over other resolution methods.  

The main objective of the preliminary and extensive study was to gather data on the resolution 

performance of the eight different formulations. The goal was to identify the formulation with the 

best performances for solving the randomly generated instances and to approximate pareto optimal 

solutions by solving each instance multiple times with the best performing formulation once it is 

identified. Apart from exploring the relative performances of all eight formulations, the preliminary 

and extensive study served another purpose. It was used to get some data on the relative size of 

each objective compared to one another. This is important because, different objectives expressed 

in different units may show a big difference between one another that can be hard to offset with 

weights. To make sure that weights stay effective, objectives must be converted on an equivalent 

basis. To do so, the weights were given a value of one and the conversion factor was also given a 

value of one for the preliminary and extensive study to gather data that could be used to set weights 

and conversion factors for the next experiments. Therefore, the weighted-sum method with an 

equal weight of one and a conversion factor of one for each objective was used in the preliminary 

and extensive study. Using this method, our three objective functions Z1, Z2 and Z3 for F1, S1, F2 

and S2 become one single objective as follows : 

𝜏1𝜌1𝜔𝑍1 + 𝜏2𝜌2𝜔𝑍2 + 𝜏3𝜌3𝜔𝑍3  

For F3, S3, F4 and S4, objective functions Z1, Z2 and Z4 become one single objective as follows : 

𝜏1𝜌1𝜔𝑍1 + 𝜏2𝜌2𝜔𝑍2 + 𝜏3𝜌3𝜔𝑍4  

With only one experiment (𝜔) per instance, a value of one for each weight (𝜌1𝜔= 𝜌2𝜔=𝜌3𝜔=1) and 

a value of one for each conversion factor (𝜏1=𝜏2=.𝜏3=1). 
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After the two previous studies namely, the preliminary and extensive studies on resolution time, 

some data could now be used to estimate the relative magnitude of each objective compared to one 

another. Indeed, each objective is expressed in different units so, to ensure the weights perform 

their function accordingly, it was necessary to assign a conversion factor to each objective to equal 

the playing field between all objectives. If not, objectives expressed in units of greater magnitude 

would be overrepresented and weights would not serve their purpose of prioritizing certain 

objectives as effectively as possible. Using the data from the two previous studies, it was found 

that the objective expressed through the smallest number of units was the minimization of work 

intensity. Taking that into account, it was decided to bring down all other objectives to its level. In 

the two previous studies, energy was about 20 times bigger than work intensity and work intensity 

was about 30% smaller than makespan. 

Table 4.1 : Conversion factor for each objective 

Energy (𝜏1) Labor intensity (𝜏2) Makespan (𝜏3) 
0.05 1 0.7 

 

To bring all objectives on a similar basis, work intensity was assigned a conversion factor of one 

while makespan had a conversion factor of 0.7 and energy had a conversion factor of 0.05. 

Weights were established analytically based on what could be a desirable prioritization between 

the three objectives. Ultimately, only managers can decide what should be prioritized in real 

production systems, but the weights here were chosen to represent some of the choices they might 

make. First, no objective can have a weight of zero or parts of the model won’t work properly. 

Furthermore, to represent the relative importance between objectives, it was chosen that the sum 

of all weights should always be equal to 1 or 100%. For the model to function properly, it was also 

necessary that no weights were set to a negative value. Again, according to Marler and Aurora 

(2010), to obtain a pareto optimal solution through the weighted-sum method, all weights must be 

positive and none can be equal to zero. Table 4.2 presents all sets of weights used for each 

experiment. 
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Table 4.2 : Table of weights for each experiment and each objective 

Experiment (𝜔) Energy (𝜌1𝜔) Labor intensity (𝜌2𝜔) Makespan (𝜌3𝜔) 
Experiment 1 98% 1% 1% 
Experiment 2 1% 98% 1% 
Experiment 3 1% 1% 98% 
Experiment 4 33% 33% 33% 
Experiment 5 50% 25% 25% 
Experiment 6 25% 50% 25% 
Experiment 7 25% 25% 50% 
Experiment 8 2% 49% 49% 
Experiment 9 49% 2% 49% 
Experiment 10 49% 49% 2% 
Experiment 11 24% 74% 2% 
Experiment 12 74% 24% 2% 
Experiment 13 2% 74% 24% 
Experiment 14 2% 24% 74% 
Experiment 15 24% 2% 74% 
Experiment 16 74% 2% 24% 

 

Table 4.2 shows the weights for each objective associated with each of the 16 experiments from 1 

to 16 for all randomly generated instances. For the sake of reproducibility, any study interested in 

replicating the results should use the same weights during resolution. 

The first three weights were established to see the best objective according to each of the objectives 

while giving minimal consideration to the other objectives. This allows for trying to find the best 

solution regarding each objective individually. Then, splitting the weight equally in experiment 4 

allows for seeking the best solution when no objective can be prioritized over the other. The next 

set of weights (experiments 5 to 7) allows for prioritizing one objective while giving the same 

weight to the other two. Then, the next set (experiments 8 to 10) was used to find a solution that 

prioritizes two objectives with minimal regard to the other. The final set (experiment 11 to 16) was 

made to seek the optimal solution for a case in which one objective is the most important one, and 

in which there is some interest in one other objective while the last objective is of minimal interest. 

Thereby, for each experiment (𝜔), the following weighted-sum equation was minimized : 
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𝜏1𝜌1𝜔𝑍1 + 𝜏2𝜌2𝜔𝑍2 + 𝜏3𝜌3𝜔𝑍4  

4.2 Data description 

In the literature review, it was an important point to discuss how the formulation variants were 

unique compared to what was formulated before in other papers. This feature ensures that this paper 

has an original contribution to the literature. However, one of the drawbacks of having an original 

formulation is that there are no benchmark instances with all the specific features required in the 

problem studied. 

To compare the different formulations and to study the results without any access to data from real 

production systems, it was necessary to develop randomly generated instances. Because most 

FJSSPs are hard to solve and require heuristics to provide solutions for large problems, all profiles 

had to be designed on a smaller scale than what such businesses would look like in real life. 

However, there are indeed real FJSPs in which the total number of jobs processed during a day is 

low. For instance, the production of luxurious goods or custom goods might be done for lower 

quantities like the randomly generated instances made for this thesis. Furthermore, even with a 

lower number of jobs processed during a day, a good schedule of operations might still be important 

considering that operations may be longer and scheduling errors may be costly. 

To test the different formulations, three instance profiles based on flexible job shops inspired by 

real businesses were designed. To make those profiles, some assumptions about these three real 

production systems had to be made. The validity of the following analysis mainly comes from 

solving the same instances, with the same machine and the same resolution algorithm. In short, 

each of the eight different problem formulations was solved under the same circumstances to isolate 

all variables except for the change of formulation variants to compare their specific performances 

solving a set of the same 30 randomly generated instances. Moreover, an attempt was made to 

make the randomly generated instances realistic, even if access to exact real systems data was 

scarce. 

The first profile is inspired by a custom paint shop. The second one is inspired by a custom guitar 

shop. Finally, the last one is inspired by a sewing manufacturer for custom-made clothing or 

garments. Those three shops were chosen to represent all workstation cases: automatic, semi-
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automatic and manual. The first one is dominated by manual workstations, the second one is 

dominated by automatic workstations and the last one is dominated by semi-automatic 

workstations. Although workstation speeds are randomly generated, if a workstation is declared 

manual, it will automatically only have one available speed. This does not mean that the processing 

time does not vary with the workers because they have different skills, but it states that, at a manual 

workstation, a given worker will only have one available and constant speed, representing the best 

work rhythm they can do. However, the best performance of a worker is not the same as their 

colleagues. 

For each profile, all parameters are randomly generated between a minimum and a maximum value 

except some parameters that require specific rules, which will be explained. 

For all resource and skills, odds are applied for each element in the required set, to model a 

stochastic process. Said odds are fixed for all instances inside a given profile to properly represent 

different behaviours. For instance, in a manual profile, the odds of having a worker with no skill 

for a given station is higher than it would be in an automatic station.  

Namely, in a given instance profile, the odds of being manual for a workstation, the odds of being 

semi-automatic, the odds for a workstation to not be able to process an operation, the odds for a 

workstation speed to not be able to process an operation, the odds for a worker to not be able to 

process an operation, the odds for a worker to not be able to use a workstation or the odds for a 

worker to not be qualified to process operations at specific workstation speeds, are defined as 

follows. If an element is deemed unable to use a resource or process an operation, its value is set 

to a big number (999999) to make sure that we do not reduce any possibility through that parameter. 

For instance, if the odds of being unable to process an operation at a workstation is 7%, it means 

that for all operations and workstations, a value was rolled randomly with a 7% chance of being 

inside a certain threshold. If the value is indeed inside that threshold, the operation cannot be 

processed at that workstation and the processing time for that specific resource will be equal to a 

big number. If the value is not inside the threshold, then the processing time will be determined 

randomly within the specified minimum and maximum value of that specific profile. 
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For speeds, if a worker cannot perform at a certain workstation speed, they will not be able to 

perform at all other faster speeds available at that specific workstation. The reader must take into 

consideration that, without many resources, the odds of making an instance infeasible by increasing 

the odds of having a resource being unable to process one or many operations or not being able to 

use another resource is quite high. Therefore, such odds must be kept low and must only be 

increased when it makes sense in the context of the real shops that profiles are inspired by. 

For processing times, at an automatic workstation, only the maximum processing time (the 

processing time at the slowest speed) is randomly generated. For the remaining processing times, 

for each speed increment, the processing time is twice as fast. This principle means that an 

operation done at speed 2 will take 50% of the time it took at speed 1. An operation done at speed 

3 will take 50% of the time required at speed 2, and so on. 

For a semi-automatic workstation, the same rule as the automatic workstation is applied except that 

the value determined by the automatic workstation rule can vary randomly between an interval of 

± 25% of the automatic processing time. It accounts for the different levels of skill between 

workers at a workstation where the bottleneck is partly because of the equipment, and partly caused 

by the worker’s skills. 

Processing powers at automatic and semi-automatic workstations evolve according to processing 

speed following a linear function. It means that only two points, in this case, the minimum and the 

maximum power must be randomly generated. All remaining processing powers for all remaining 

speeds can be determined linearly between the minimum and maximum processing powers. The 

starting power is a multiplier of the maximum processing power for each workstation. This 

multiplier is randomly generated.  

For power calculations, what is important is that power is computed using the same unit in an 

instance and that some rules are followed. Furthermore, although data from real machine tools were 

not available and used to generate the values for parameters related to power, many considerations 

inspired by the literature were included. First, the study from Sealy et al. (2015) interested in the 

energy consumption of milling tools used for cutting hard materials shows that processing power 

at a faster speed must be higher than processing power at a slower speed for all workstations. 
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However, the material removal rate increased faster with higher speeds than power consumption 

which resulted in less energy spent per amount of work done when increasing the processing speed. 

This principle was followed for data generation meaning that, for all speeds, productivity increases 

were greater than processing power increases for all speed increments. This resulted in less energy 

consumed by the amount of work done for higher processing speeds. For most remaining 

parameters, the considerations were inspired by Wu et al. (2019). According to the authors, a 

machine tool consumes less energy in an idle state than in any processing state and a peak power 

consumption is recorded when starting the machine. The starting power consumption could have 

been modeled through a constant value only fluctuating by workstation in the case of this thesis 

but it was instead chosen to model it through the same equation presented before : 𝐸𝑛𝑒𝑟𝑔𝑦 =

𝑝𝑜𝑤𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒. A fixed value can also be the result of a product. The equation presented before 

was only used for consistency with the method of calculation for power consumption of other 

parameters. Although many means could have worked, it was important, to stay consistent with the 

literature. Doing so, the starting power consumption was greater than all processing powers of all 

speeds. Thus, Power expanded during any idle state must be less than power expanded at any 

processing speed for all workstations and power expanded during the starting time is always bigger 

than the maximum power expanded during the processing of an operation at all workstations. 

Finally, although there is energy spent turning off a machine in Wu et al. (2019), in this thesis, for 

all shops modeled, no energy was required to turn off tools at a workstation or while being in that 

state. This is closer to what can be found in Wei et al. (2021) in which no power is required to turn 

a machine off, and no power is expanded while being in that state. 

For each instance generated, a specific French name was assigned. All instance names follow the 

same pattern. These start with “atelier” which is the French word for shop. Then, it is followed by 

the denunciation of the profile using the French word associated with each profile. Guitar, sewing 

and painting become “guitare”, “couture” and “peinture”. Finally, a specific ID is added at the end 

of all instance names to identify each instance and differentiate it from other instances of the same 

category. 
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4.2.1 Custom Paint Shop (Manual Workshop) 

Depending on the level of automation and the level of standardization of the paint jobs, one can 

consider a paint shop as a simple job shop or a flexible job shop. Paint shops for uniform colors on 

standardized cars would lean more towards a regular job shop or a flow shop. On the other hand, a 

paint shop that would focus on custom paint jobs with lots of specific characteristics would lean 

more towards a flexible job shop. In this specific case, the type of paint shop described will be a 

paint shop in which the focus is on custom paints with operations such as painting, washing, drying 

or covering parts of the cars that need to be painted or not to be painted on depending on the state 

of the vehicle upon arrival. Depending on the design and the demand of the clients, some parts of 

the paint could be done at some point and some other parts might need the car to be dried to finish 

the design which would mean a drying operation or doing other work while the paint of that specific 

job dries. In any case, for this specific profile, not many operations were needed because this type 

of paint shop was seen from a higher level and some integration could be made to simplify the 

operations and, therefore, the schedule. 

Table 4.3 : Custom paint shop parameters intervals 

Parameters 
Minimum 

value 
Maximum 

value 
Number of jobs 4 5 
Number of operations per job 2 3 
Number of workstations 3 4 
Number of workers 2 3 
Number of speeds per workstation N/A 3 
Processing time for a manual workstation 360 600 
Maximum processing time 540 600 
Power expanded during processing time at the slowest speed 7 10 
Power expanded during processing time at the fastest speed 30 40 
Power expended during processing time at a manual workstation 7 40 
Power expanded in idle state 3 5 
Multiplier of the power expanded during the starting time 5 8 
Set-up time 30 240 
Starting time 45 120 
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In this specific case, it was thought that a custom paint shop might paint four to five cars a day with 

two to three operations per car. Three to four workstations are considered enough to paint the cars 

and with only two to three employees. In such a paint shop, workstations would represent areas in 

which to do the work. Most areas would be set up for a specific purpose but, for instance, if more 

cars needed to be painted than washed for that specific day, equipment might always be moved to 

paint cars in the area that is usually used for another purpose (i.e. to wash cars). In such a case, in 

the data, it would mean a workstation that needs a bigger set-up time or a bigger processing time 

to process the same job depending on the decision of the worker to get all relevant equipment 

before the job starts or to only get equipment as required if there are only a few. All of those 

different cases are taken into account randomly during the creation of the instance through the 

generation of a random number between a minimum and a maximum for all randomly generated 

parameters.  

Up to 3 speeds that represent the surface area painted or surface area washed are available for each 

workstation. Most work is done manually although some of it might be done semi-automatically. 

For instance, a paint gun might be configured to paint on a broader surface area, but it would not 

mean the worker is faster or slower proportionally with the augmentation or diminution of the 

surface area. Depending on the level of skill of the worker, the diminution or augmentation of the 

processing time.  

There is always a small chance that, for washing cars or for a simple paint job, a process could be 

automated with an employee that is present mostly to start and supervise the process. So, the 

possibility of having an automatic workstation still exists. Working with bigger objects such as 

cars meant having bigger set-up times to set up or move those between workstations for different 

operations. Whether it is for washing or painting, start-up times had to be faster than set-up times 

considering the type of equipment used. However, set-up times could never quite be equal to zero 

considering that a paint gun or a water hose might have to wait for pressure to be used properly. 

For resource skills, in the paint shop, most workstation areas should be able, considering some 

amount of set-up time, to fulfill most purposes. This means the odds for a workstation to be unable 

to process an operation are low. If an operation is done at a lower speed, most of the time, because 

the shop is dominated by manual or semi-automatic workstations, an operation could be done at a 
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higher speed as well. In a mainly manual shop, worker skills are key. That explains why the chance 

of a worker not being able to process an operation is quite high. The same goes for the odds of 

having a worker not being able to use a workstation area (although a little lower because most 

workstations can be repurposed). Then, if a worker can perform at a workstation, most of the time, 

because most workstations are semi-automatic or manual, they should be able to perform at all its 

speeds. 

4.2.2 Custom guitar shop (Automatic Workshop) 

A custom guitar shop is a prime example of flexible job shop where all types of workstations may 

coexist. There might be some manual labor for some woodwork or for putting strings on guitars. 

There might be some semi-automatic workstations. For instance, there could be drills that have 

numerous speeds but, in that specific case, ultimately, the skill of the worker using the tool would 

be the biggest factor for processing time considering that the worker is the bottleneck. There might 

also be some parts of the process that are automated as well. For instance, if a first raw cut is done 

on bigger pieces of wood for shaping the body of the guitar, that is an operation that might be 

automated with minor supervision from employees. Or, if different serialized or custom parts 

would still have standard characteristics such as holes placed at the same spot, assembly could still 

be completely or partially automated. Even if a workstation did not need any supervision from 

employees, the formulation would not need any changes to solve such an instance and could 

represent it with minor adjustments. For instance, a dummy employee that processes operations 

with a processing time equal to a big number at all workstations except the fully automated one 

would be enough to represent a fully automated workstation. 

Although all types of workstations might exist in a custom guitar shop, in the case of this paper, it 

was thought that such a shop may be dominated by automatic workstations. Depending on the level 

of customization, clients may order guitars with a unique set of characteristics chosen from 

predetermined sets of possibilities. It would mean that the process could be partly automated while 

still requiring to be modeled like a flexible job-shop considering all guitars would be unique. For 

instance, if clients have the choice between three types of woods for the fingerboard and 12 

fingerboard designs, there would already be multiple possibilities of fingerboards without even 

getting into the other parts of the guitar. Restraining the clients’ choice between a couple of options 
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for each piece would allow for a job that can be partly automated. However, it would still give the 

clients the possibility of coming up with something unique that represents them. In that case, 

custom guitars would be made with a different choice of standard parts. Producing the different 

standard parts would require automatic processes while there could be some manual processes for 

things like putting strings and semi-automatic processes for specific custom demands made by 

clients. 

Table 4.4 : Custom guitar shop parameters intervals 

Parameters 
Minimum 

value 
Maximum 

value 
Number of jobs 3 3 
Number of operations per job 4 6 
Number of workstations 3 4 
Number of workers 2 3 
Number of speeds per workstation N/A 3 
Processing time for a manual workstation 45 480 
Maximum processing time 360 480 
Power expanded during processing time at the slowest speed 7 10 
Power expanded during processing time at the fastest speed 35 45 
Power expended during processing time at a manual workstation 7 45 
Power expanded in idle state 3 5 
Multiplier of the power expanded during the starting time 5 8 
Set-up time 0 180 
Starting time 30 90 

 

It was thought that custom guitars, requiring more work and being more expensive than fully 

standardized guitars, would not sell as many copies as cheaper serialized guitars. Such different 

parts would require more specialized tools. Therefore, there would be fewer jobs per shift. In that 

case, a total of three custom guitars was selected. Those guitars, having multiple different parts 

needing assembly, would require more operations. It was thought that four to six operations per 

job would be enough to take that into consideration. The range from four to six operations per job 

would allow for some guitar parts available to customers to be already partly assembled when 

entering the shop. Having more workstations than workers made sense if many different standard 

parts needed different equipment to be crafted. Up to three available speeds per workstation 
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allowed for a smaller problem to solve while still taking into consideration the relationship between 

speeds and workers’ skills. Because these custom guitars are designed from a unique choice of 

standard parts made available to the clients. It is being dominated by automatic workstations. 

However, the custom guitar shop still has a chance of having manual and semi-automatic 

workstations. It was thought that operations done on guitars would take less time than it would 

painting or washing a car in a paint shop. The power chosen in that profile still follows the rules 

previously explained in the description of the last profile. The power expenditures in that profile 

are somewhat close to the previous ones but do not have to be expressed through the same unit. It 

would be acceptable to have 2 different shop profiles using two different units of power (as long 

as two solutions are compared through the same units to make for fair comparisons of data). In a 

custom guitar shop, there could be some operations that do not require set-up considering starting 

tools would be part of the starting time instead (if necessary). If tools were turned off at a 

workstation, at least, some amount of time would have to be expanded to start up equipment. In 

such a shop, workstations would not be able to process all operations. A mainly automatic shop 

might have more specialized equipment. However, if a workstation is able to process an operation, 

it was thought that it would be able to do so at most of its speeds. Requiring some training to 

operate or supervise workstations completing automated processes, the odds of seeing an employee 

not be able to do something on a guitar would be quite important because workers could specialize 

in only part of the production. For instance, setting up an automated CNC machine requires 

different programming for all specific operation types which a model like the one in this thesis can 

compute because set-up times vary with the worker. The odds of the employee not being able to 

use a workstation (considering most are automatic) are a bit lower but still considerable. In that 

case, the staff is specialized in operating or supervising certain types of machinery (itself being 

specialized in certain operations) instead of others. However, being able to work with a specific 

tool does not mean that the worker is trained to use all its functions. This, in turn, explains why a 

worker might be able to use a workstation but not be able to process a certain operation at that 

workstation because it is not qualified to calibrate the tools for that specific operation. Finally, 

considering most workstations are automatic, the odds of seeing an employee not being able to 

process operations at a certain workstation speed is quite low. 
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4.2.3 Custom sewing workshop 

The custom sewing workshop was selected because a sewing machine is a great example of semi-

automatic workstation. Using the same machine and set-up at the same processing speed, two 

employees with different skills would sew at a different pace. To study FJSPs with such 

workstations, the custom sewing shop profile was made to be dominated by semi-automatic 

workstations. 

Table 4.5 : Custom sewing workshop parameters intervals 

Parameters 
Minimum 

value 
Maximum 

value 
Number of jobs 5 6 
Number of operations per job 2 3 
Number of workstations 3 4 
Number of workers 2 3 
Number of speeds per workstation N/A 4 
Processing time for a manual workstation 60 360 
Maximum processing time 240 360 
Power expanded during processing time at the slowest speed 7 10 
Power expanded during processing time at the fastest speed 40 50 
Power expended during processing time at a manual workstation 7 50 
Power expanded in idle state 3 5 
Multiplier of the power expanded during the starting time 5 8 
Set-up time 0 180 
Starting time 1 30 

 

It was thought that a sewing shop would have more jobs but fewer operations per job if operations 

were seen from a higher-level point of view or if jobs were mainly about custom adjustments or 

custom modifications on pieces of clothing. The number of workstations had to be at least as big 

as the number of workers without complicating the resolution of the model too much. The number 

of speeds available at workstations was increased compared to the two other profiles. Most 

workstations are semi-automatic, and the rest are primarily manual. There is still a chance for 

workstations to be declared automatic because the odds of being manual are applied to all 

workstations and the odds of being semi-automatic are applied to the remaining workstations that 

are not manual afterward. The rest of the workstations that are neither semi-automatic nor manual 
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are automatic. The power consumption follows the same rules as the last two profiles. Specifically, 

the main differences are the maximal processing power for semi-automatic and automatic 

workstations which varies from 40 to 50 power units. For the manual workstations, it varies from 

7 to 50 power units. The set-up time can be minimal or require more work if a piece of clothing 

needs measures before starting the operation. The starting of equipment is small considering 

starting most sewing machines is a quick process. Because equipment is mainly multipurpose in 

such a workshop, workstations should be able to process most operations. However, some 

operations require more care. That explains why operations cannot be performed at all speeds. 

Worker skills are key for sewing. Sensitive operations should be done by workers with more 

experience. Because most tools in such a sewing workshop are sewing machines, workers should 

be able to use most equipment which means mostly just being able to work with a sewing machine. 

Workers who are not as experienced might not be able to perform some tasks at high speeds and 

might need to process operations at a slower pace. 

4.3 Preliminary study 

To approximate the pareto front, multiple pareto optimal solutions must be generated. However, 

with eight formulation variants, generating enough results to make a thorough analysis requires a 

sizeable amount of time. This is why this preliminary analysis will be performed using the same 

methodology but for a shorter amount of time. First, each instance is solved to identify which 

formulations perform the best in solving the 30 solvable randomly generated instances inside a 

predetermined time limit. As the problem at hand is an operational one, a short time limit is defined. 

Hence, to first identify the most efficient formulations and study those more thoroughly, all eight 

formulation variants were solved once on all 30 instances with a time limit of 20 minutes. The 

results of this preliminary study are reported in Appendix A. For each instance resolution, we 

gather information on the termination condition reported by Gurobi (i.e., the instance is proved 

unsolvable, the resolution reached the time limit, the optimal solution was found and no feasible 

solutions were found at the end of the time limit), the value of the lower bound, value of the best 

upper bound or the best objective found, resolution time and optimization gap as reported by the 

solver.  

The reader will find the table compiling all the results of the preliminary study in Appendix A. 
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Figure 4.1 : Formulation variants according to the number of instances without a feasible solution 

with a runtime of 20 minutes 

In Figure 4.1, each formulation variant with flow conservation constraints (identified by the blue 

line) and with sequence linking constraints (identified by the orange line) are distributed according 

to the number of instances for which no feasible solution was found after 20 minutes. For all 

formulations using sequence linking constraints, at least one feasible solution was found for each 

of the 30 random instances. For formulations with flow conservation constraints, the performance 

is in accord with the number of variables. The F1, which has the most decision variables out of all 

the formulations, has the worst results. In terms of percentages, it means that out of the 30 instances, 

the formulation F1 did not find a solution for about 46.67% of those (in absolute numbers, it equates 

to 14 instances without a feasible solution). On the other hand, F4, which has the best results out 

of all flow conservation constraint variants, has the least amount of decision variables. In terms of 

percentages, between F2, F3 and F4, the percentage of instances without a feasible solution after 

20 minutes starts at 26.67% for F2, goes down to 6.67% for F3 and ends up at 3.33% for F4. All 

variants with sequence linking constraints performed better than all variants with flow conservation 

constraints and formulations got marginally better results from F1 to F4. 
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Figure 4.2 : Formulation variants according to the number of optimal solutions found with a   

runtime of 20 minutes 

In Figure 4.2, each formulation variant with flow conservation constraints (identified by the blue 

line) with the sequence linking constraints (identified by the orange line) is distributed according 

to the number of optimal solutions found in 20 minutes solving the 30 randomly generated 

instances. Over those 30 instances, it appears that, for all formulations, the ones without the flow 

conservation constraints performed better than their counterparts that use it. F1 and S1 performed 

the worst out of all formulations in their categories. For the formulations with flow conservation 

constraints, the F4 performed the best overall. For formulations without flow conservation 

constraints, the number of optimal solutions found over the 30 randomly generated instances does 

not show enough difference to identify a better-performing formulation. The S2, S3 and S4 variants 

all found three optimal solutions for solving the 30 random instances. Therefore, finding the 

optimal solution for 10% of instances in the sample. The closest formulation to such performance 

was F4 with an optimal solution for 6.67% of the sampled instances. All other formulations found 

an optimal solution for 1 of the instances or 3.33% of the sample except F1 which did not find any 

optimal solution for any of the sampled instances. 
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Figure 4.3 : Formulation variants according to average objective value with a runtime of 20 

minutes 

In Figure 4.3, all formulation variants are classified by average objective value based on their 

results on the 30 randomly generated instances during 20 minutes of resolution time. Seeing the 

results, it is possible to conclude that, inside the time limit of the study, the formulations without 

flow conservation constraints performed better than their counterparts with flow conservation 

constraints for all formulation variants. For both categories (with flow conservation constraints and 

with sequence linking constraints), the worst average objective was obtained with F1 and S1 and 

the best one with F4 and S4. Differences in average objective could be considered slim between 

variants S2, S3 and S4. Further analysis of those three could help more clearly identify the best-

performing among them. Overall, for formulations with flow conservation, there’s a 20.73% 

improvement between F1 and F2, a 3,45% improvement between F2 and F3 and a 0.02% 

deterioration between F3 and F4. For formulations without flow conservation constraints, there’s 

a 4.96% improvement between S1 and S2, a 0.5% improvement between S2 and S3 and a 0.95% 

improvement between S3 and S4. 
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Figure 4.4 : Formulation variants according to average gap with a runtime of 20 minutes 

In Figure 4.4, all formulation variants are distributed according to the average gap. For all 

formulations inside the time limit of the study, the variants without flow conservation constraints 

performed better than their counterparts with flow conservation constraints. The best performance 

for that indicator was given by the S4 and the worst one was given by F1. There does not seem to 

be such a sizeable difference between the performances of S2, S3 and S4 in their variants with 

sequence linking constraints. Further analysis of those three could prove useful to further 

differentiate them. For formulations without flow conservation constraints, the difference was of 

5.48% between S1 and S2, 0.57% between S2 and S3 and 1.08% between S3 and S4. 

In conclusion, all indicators demonstrated that, over the sample of 30 random instances, the F4 and 

S4 formulations performed the best overall in their category. Although the relationship between 

resolution performance and decision variables can be complex, this experiment suggests that, in 

the case of the studied formulations, fewer decision variables lead to better resolution performances. 

For all indicators and all formulations, the variants without flow conservation constraints 

performed better than their counterparts with flow conservation constraints. This could be because 

the use of a flow conservation constraint requires dummy jobs at the end of the schedule. This 

results in more jobs to schedule and, thus, a problem harder to solve. F1 and S1 performed the 

worst in their category overall. Those formulation variants were the ones with the decision 
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variables for starting times and completion times that were the closest to Manne (1960). F2 and S2 

which are almost identical to F1 and S1 except for having 2-index variables for starting and 

completion time instead had better or equal results for all indicators compared to the F1 and S1. 

Thus, demonstrating that modifying the formulation from 3-index to 2-index proved to have better 

results for all instances of the sample and for all indicators inside the time limit of the study. This 

leads us to a couple of conclusions from the preliminary study within a 20-minute time limit: 

(1) For all indicators and all formulations, the formulation without flow conservation 

constraints performed better than the formulations with flow conservation constraints for 

solving the 30 randomly generated instances in the sample. 

(2) For all indicators and all formulations, S2 and F2 which have 2-index variables for starting 

and completion times performed better than F1 and S1 which have 3-index variables for 

starting and completion times for solving the 30 random instances in the sample. 

(3) Although the data shows that the S4 and F4 performed the best overall in their category for 

all indicators generated through the resolution of the sampled instances, further studies 

would help differentiate the performance of F2, F3 and F4 and S2, S3 and S4 further. 

(4) Although there seem to be costs to having decision variables that allow for accounting 

transportation times and off or idle time between operations that do not precede each other, 

the data suggests that the difference in performance could be negligible compared to the 

benefits of incorporating such refinements in certain business cases (meaning the difference 

in resolution performance between two, three and four in both categories might be 

negligible in certain business cases). 

4.4 Extensive study 

Since we were not able to conclude which is the best formulation among S2, S3, and S4 in section 

4.2 in the preliminary studies, we conducted a second experiment with another analysis with a 

longer time limit. This will help determine if there are observable differences in performance 

between formulations that had similar performances and how much progress can be made over a 

resolution time three times as big as the previous one. The same experiment was conducted as in 

the last section except that it was only conducted for the three closest formulations in terms of 
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performance (S2, S3, S4) for each indicator and that the resolution time was of one hour instead of 

20 minutes. The Appendix B compiles all the data generated during this experiment. 

 

Figure 4.5 : Formulation S2, S3 and S4 according to the average best objective with a runtime of 

one hour 

Figure 4.5 shows the distribution of S2, S3 and S4 according to their average best objective after 

one hour of resolution time. The S4 performs the best for the average best objective with an average 

objective of 71932.51. That is an improvement of 1,83% for 40 more minutes of resolution time. 

For S3, it is an improvement of 1.35% or 980.45. For S2, it was an improvement of 1.21% or 

885.15. S4 shows an improvement of 0.68% over S3 and 1.33% over S2. Although present, the 

difference between these three formulations is still marginal. However, the difference is a bit bigger 

than the previous marginal improvements obtained between formulations for the 20-minute 

experiment which were 0.5% and 0.95% between S2 and S3 and S3 and S4 respectively. 
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Figure 4.6 : Formulation S2, S3 and S4 according to average gap with a runtime of one hour 

Figure 4.6 shows the average gap for formulations S2, S3 and S4 after one hour of resolution time 

on sampled instances. On this indicator again, S4 performed the best out of the three with an 

average gap of 24.03%. A difference of 0.19% with S3 and 1.55% with S2. Increasing the 

resolution time did improve the gap overall. The difference between the gap after 1 hour compared 

to the previous one obtained after 20 minutes of resolution time is 2.89% for S2, 3.67% for S3 and 

2.79% for S4. For an augmentation of three times the resolution times, the improvement is marginal. 

The difference between the gap obtained through these three formulations remains slim. 
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Figure 4.7 : Formulation S2, S3 and S4 according to the number of optimal solutions found with 

a runtime of one hour 

Figure 4.7 shows the number of optimal solutions found after one hour of resolution over 30 

randomly generated instances. None of the three formulations showed any changes over the 40 

additional minutes except S3. S3 found 3 optimal solutions out of 30 sampled instances in the last 

experiment. However, in one hour, S3 was able to find a total of four optimal instances. Therefore, 

compared to the others for which an optimal solution was only found for 10% of the sampled 

instances, S3 found an optimal solution for 13% of the 30 randomly generated instances. The 

instance S3 was able to solve that the two other formulations failed to resolve was atelierpeinture4. 

However, both found the same optimal solution S3 discovered but were not able to prove its 

optimality in the imparted time. 

Although S4 performed the best according to most indicators, the number of optimal instances 

found after one hour of resolution serves as a reminder that resolution performance cannot be 

reduced to the number of variables and constraints of a problem formulation. Because of its better 

performance according to all indicators except the last one presented, S4 will be the formulation 

used for the analysis of pareto front approximation and interpretation of the next section. Unless 

solved to optimality, it cannot be certain that a formulation has a better performance solving an 

instance compared to another. However, it can be said that over the seven indicators shown on the 
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30 randomly generated instances for 20 minutes and one hour of resolution time, S4 performed the 

best in four out of seven of the indicators with it being tied for first place for two other indicators. 

Therefore, such data would suggest that it is the superior formulation for solving the 30 sampled 

instances with a time limit of 20 minutes or one hour. 

4.5 Pareto front approximation and interpretation 

Pareto fronts are used in multi-objective optimization to represent the set of non-dominated 

solutions for a problem. Analyzing that set gives insights into the relationship or trade-off between 

objectives. To learn more about the relationship between objectives for the problem presented in 

this thesis, the pareto front will be approximated for all randomly generated instances. For the 

following analysis, the weighted-sum method was used to generate the data solving each of the 30 

instances with formulation S4 a total of 16 times with different weights for a maximum of one hour 

(meaning the solver would stop searching after one hour, keep the best solution found and move 

on to the next instance to be solved). The weights used for each of the 16 resolutions can be found 

in Table 4.2. The same solver used in previous sections was also employed for that experiment. 

Because the instances were not necessarily solved to optimality in an hour, there still exists a 

distance between the true pareto front and the one that can only be approximated by using the 

gathered data. However, compared to certain heuristics with which it is not possible to know how 

far the solution is from pareto optimality, at least, this method gives an idea of that distance with 

the gap. Not solving the instances to optimality also meant that the best solution found after an 

hour could be dominated by another solution found using another weight. Therefore, the data was 

filtered to only keep the solutions that were not dominated among the 16 solutions found. This is 

the reason why there are less than 16 solutions in most cases. Filtering was done in four different 

ways. First, it was done considering all three objectives. Second, it was done considering only 

makespan and energy. Third, it was done only considering makespan and labor intensity. Finally, 

it was also done considering only Labor intensity and energy. The filtering was made with a degree 

of precision of 0.1% which means a solution being dominated by another on a certain objective for 

less than 0.1% would be considered non-dominated. For this section, non-dominated will not mean 

pareto optimal. A solution that is non-dominated will mean that it is not dominated by any of the 

other 15 found using different combinations of weights. Moreover, although an attempt will be 

made at approximating the pareto front for all instances, such a result can only be guaranteed by 
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solving instances to optimality. Because, in most cases, that is not achieved, the front obtained will 

only represent the best attempt at approximation made with a maximum of one hour per experiment. 

Afterwards, the pattern followed by most experiments will be presented. Sizeable differences with 

the dominant pattern for most experiments and the possible causes of the results will also be 

explored for exceptions to the dominant pattern. The data without filter for dominated solutions 

compiled during this experiment can be found in Appendix C. The data filtered for dominated 

solutions compiled during this experiment can be found in Appendix D. 

4.5.1 Relationship between makespan, labor intensity and energy 

 

Figure 4.8 : Approximation of the pareto front for atelierguitare10 using weighted-sum for a 

maximum of one hour 

Figure 4.8 is the result obtained trying to solve instance atelierguitare10 with the previously 

presented weights for a maximum of one hour for each experiment. This shape is obtained once 

the dominated solutions among the set of best solutions found are filtered. All figures representing 

the best approximation found after one hour are listed in Appendix E. Figure 4.8 represents the 

pattern of most figures in Appendix E. This pattern is obtained when there are negative 

relationships among all objectives. Minimizing makespan leads to an increase in energy 
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consumption and/or labor intensity and minimizing labor intensity or Energy has the same 

consequences on the two other objectives. Almost all instances follow this pattern except 

ateliercouture5 and atelierpeinture5. Although it seems that atelierpeinture7 presents an atypic 

shape, in fact, the summit of its pyramid-like shape is not towards the front of the figure like it 

seems. It is towards the back which indicates that minimizing makespan comes at a great cost for 

energy consumption and maximum labor intensity which relates to the pattern present in 

atelierguitare1 and present in most of the other instances. It seems that the other atypic shapes are 

obtained because there are not many solutions left after filtering through dominated solutions. 

Ateliercouture5 only has two non-dominated solutions among the set of best solutions found after 

one hour based on labor intensity and energy and atelierpeinture5 only has one between makespan 

and labor intensity and 2 between labor intensity and energy. There could be many reasons that 

could explain this. First, the weighted-sum method does not allow for finding all pareto optimal 

solutions of a non-convex feasible solution space. Therefore, other pareto optimal solutions might 

exist but were not found. Second, there might not be much conflict between the two objectives for 

that specific instance. Because ateliercouture5 was solved to optimality for all experiments except 

one, the answer would most likely be the first or the second reason (although conflict still exists as 

long as there is more than one pareto optimal solution between two objectives). So, for 

ateliercouture5, it is likely that either there is less conflict between objectives or that there are other 

solutions but not part of a convex feasible solution space. For almost all instances tested, inside the 

time limit fixed, there is conflict and a negative relationship between all pairs of the 3 objectives. 

4.5.2 Relationship between makespan and energy consumption 

In this section, all data used for generating the following figures are available in Appendix D. All 

figures for each of the 30 randomly generated instances solved are in Appendix F. 
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Figure 4.9 : Approximation of the pareto front between makespan and energy for atelierguitare10 

using weighted-sum for a maximum of one hour per experiment 

Figure 4.9 represents the negative relationship between makespan and energy obtained when trying 

to approximate the pareto front for ateliercouture10. This pattern is similar for all instances 

although instances atelierpeinture9 and atelierpeinture10 only had two dominating solutions. 

Figure 4.9 shows that minimizing makespan increases energy consumption and that minimizing 

energy consumption increases makespan as well. Specifically for ateliercouture4, from left to right, 

it seems that, at the left of the figure, sizeable progress can be made on energy consumption for 

little loss of efficiency in makespan. Closer to the middle, little gains for one of the objectives can 

be made at the price of little losses on the other objective. Closer to the right of the figure, little 

gains in energy consumption come at a great price in terms of makespan. Chapter 5 will go into 

further detail about how decision-makers can pick a solution from a non-dominated set. Examples 

presented in 3.4 will also apply to figures such as Figure 4.9. Notably, figure 4.9 seems to follow 

a non-convex pattern. The next section will explore an explanation of how such an outcome may 

be possible. 
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4.5.3 Relationship between makespan and labor intensity 

In this section, all data used for generating the following figures are available in Appendix D. All 

figures for each of the 30 randomly generated instances solved are in Appendix G. 

 

Figure 4.10 : Approximation of the pareto front between makespan and labor intensity for 

atelierguitare10 using weighted-sum for a maximum of one hour per experiment 

Figure 4.10 represents the set of filtered solutions for atelierguitare10 with a maximum resolution 

time of one hour per experiment. It depicts the most common relationship between the variables. 

Like the relationship between makespan and energy, the relationship between makespan and labor 

intensity is negative. However, atelierguitare6 more specifically follows a non-convex pattern. 

There are other examples in Appendix G of such behavior. Most notably, ateliercouture3 also 

depicts the same pattern. An explanation could be that non-convex solutions considering only two 

objectives were found because weights were considering three objectives. Therefore, solutions that 

might seem non-convex from a 2-objective point of view might have been found that way. A 

second explanation could be that the optimal solution was not found, and the solutions presented 

found for atelierguitare6 are not pareto optimal. Moreover, some sets only contain 1 non-dominated 

solution. That means that either there is no conflict between the objectives for that particular 
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instance or other non-dominated solutions were not found. This is the case for atelierpeinture5 and 

atelierpeinture9. However, other than that, the relationship between makespan and labor intensity 

remains somewhat similar to the previous one. In order to make some progress in regard to one of 

the objectives, there is some loss to be expected in regard to the other. Once again, chapter 5 will 

present how a decision maker might select a solution from a set of pareto optimal solutions in more 

detail. 

4.5.4 Relationship between labor intensity and energy consumption 

In this section, all data used for generating the following figures are available in Appendix D. All 

figures for each of the 30 randomly generated instances solved are in Appendix H. 

 

Figure 4.11 : Approximation of the pareto front between labor intensity and energy for 

atelierguitare10 using weighted-sum for a maximum of one hour per experiment 

Figure 4.11 shows the set of filtered solutions for atelierguitare10 and represent the most common 

pattern. The relationship between energy and makespan is also negative and similar to the one 

between energy and makespan. This means that improving energy consumption would require 

some kind of loss in terms of minimizing the maximum labor intensity. However, for this 
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relationship altogether, fewer non-dominated solutions were found compared to previous 

relationships. In fact, more than a third of all instances had three or fewer non-dominated solutions 

after filtering. That being noted, as long as there are two solutions or more, conflict exists between 

two objectives and only one instance had just one non-dominated solution. The next chapter will 

take a closer look at how decision-makers can make a choice of solution between a set of non-

dominated solutions using data gathered during this experiment. 
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CHAPTER 5 

USING THE MODEL AS A DECISION TOOL 

Filtering all the dominated solutions out of a set will still leave decision-makers with many different 

solutions to choose from. Making such a decision can often come with some difficulty. In this 

section, some a-priori tools will be shown to present how decision-makers might select a particular 

solution over other ones in a set. Thus, this section is dedicated to showing tools managers might 

use to select solutions from a set and to share and communicate the resulting schedules to their 

team while the previous section was dedicated to understanding the resolution performance of the 

different formulations and the relationship between the objectives. 

5.1 Comparing two solutions 

Although comparing many solutions together can be challenging in some cases, comparing only 

two solutions together is simpler. For instance, Table 5.1 presents the two first solutions of 

atelierguitare1 after filtering dominated solutions.  

Table 5.1 : The two first filtered solutions of atelierguitare1 according to objective value 

atelierguitare1.xlsx 
Makespan/Labor 
intensity/Energy 

5787,00 1420,00 65619,00 
2478,00 955,00 93309,00 

 

In Table 5.1, the two first solutions obtained after filtering for dominated solutions are distributed 

according to objective value. First of all, the difference for each objective can be noted. From 

solution 1 to solution 2, makespan has improved by 3309 units of time, maximum labor intensity 

has improved by 465 units and energy consumption has increased by 27 690 units. However, 

because each objective is expressed in different units, decision-makers have to be cautious of the 

over-representation of objectives consisting of big numbers of small units like energy consumption 

in this specific case. Second, in relative terms, units of energy are not the same as units of time, 

therefore, noting the difference in relative terms may prove more helpful than the exact number of 
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units. For makespan, it consists in a difference of 57.18%. For labor intensity, a difference of 

32.75%. Finally, for energy, it consists in a difference of 42.20%. Considering the variation in 

percentages weighs differently. Although the high number of energy units seemed to highly favor 

the first solution in the first case, with relative percentages, a decrease of 3309 units, which is a 

difference of 57.18% for makespan, and a decrease of 465 units, which may not seem like much 

but is, in fact, a difference of 32.75% for labor intensity, may now weigh more in the direction of 

the second solution compared to what seems like a high number of units with 27690 units of energy 

but consisting in a difference of 42.20%. However, only the decision maker knows the relative 

importance of each objective and certain business cases may consider different values for different 

objectives. 

5.2 Comparing many solutions using weights 

If decision-makers know the relative importance of each objective a-priori, that information can be 

factored in using weights. Using weights for prioritizing different objectives can be a useful a-

priori tool to choose the solution that reflects the most interests of the decision makers among a set 

of multiple non-dominated solutions. 

Table 5.2 : Filtered solutions of atelierguitare1 according to objective value 

Cmax Intmax Total energy Total objective 
Makespan/Labor intensity/Energy 

5787,00 1420,00 65619,00 72826,00 
2478,00 955,00 93309,00 96742,00 
2146,00 1086,00 85192,00 88424,00 
2855,00 1476,50 73395,00 77726,50 
1823,00 1024,50 97340,00 100187,50 
1315,00 1050,00 102145,00 104510,00 
1848,00 1387,50 91400,00 94635,50 
5651,00 1198,00 67809,00 74658,00 
5588,00 1038,75 73252,00 79878,75 
5585,00 1325,50 65895,00 72805,50 
1401,00 1012,00 103352,00 105765,00 
1283,00 1159,00 104578,00 107020,00 
1359,00 1353,25 99221,00 101933,25 
3238,00 1643,00 70281,00 75162,00 
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Table 5.2 presents the filtered solutions of atelierguitare1 according to objective value with the 4th 

column representing the total objective value. If all objectives were equal, the solution with the 

lowest total objective value would be selected. This would favor the 10th solution from the top with 

a total objective value of 72805.50 units. However, decision-makers might consider that some 

objectives are of more importance than others. This could have an effect on the selected solutions. 

For instance, if the makespan was three times as important as the two other objectives, such 

consideration could result in the following weights : 60% for makespan, 20% for labor intensity 

and 20% for energy. Using such weight would now favor the last solution that presents a 

compromise that might represent the interests of decision-makers more accurately. However, it 

could still be argued that energy consumption, with such a high number of units, is still 

overrepresented among the different objectives. To address such inconvenience, an equivalence 

factor can be applied to all objectives to make sure that those are all expressed in equivalent terms. 

Among the data presented in Table 6.2, on average, labor intensity is about equal to 1.5% of energy 

consumption and 53.78% of makespan. Those percentages could be used as equivalence factors. 

Using those would result in Table 5.3. 

Table 5.3 : Filtered solutions of atelierguitare1 according to objective value with equivalence 

factor 

Cmax Intmax Total energy Total objective 
Makespan/Labor intensity/Energy 

3112,31 1420,00 987,00 5519,31 
1332,70 955,00 1403,49 3691,19 
1154,14 1086,00 1281,40 3521,54 
1535,45 1476,50 1103,96 4115,91 

980,43 1024,50 1464,12 3469,05 
707,22 1050,00 1536,40 3293,62 
993,88 1387,50 1374,78 3756,15 

3039,17 1198,00 1019,94 5257,11 
3005,29 1038,75 1101,81 5145,85 
3003,68 1325,50 991,15 5320,32 

753,47 1012,00 1554,55 3320,02 
690,01 1159,00 1572,99 3422,00 
730,89 1353,25 1492,42 3576,55 

1741,43 1643,00 1057,12 4441,55 
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Without using any weights, considering all objectives as relatively equal, the selected solution 

would now be the 6th from the top with a total equivalent objective value of 3293.62 units. Once 

expressed on equivalent terms, using weights on objective values can now better fulfill its purpose 

not being as influenced by the difference in units and now focused on the relative importance of 

each objective. Although using the same weights as the previous example would still favor the 6th 

solution from the top, different sets of weights would show different outcomes. For instance, giving 

a weight of 20% for makespan, 20% for labor intensity and 60% for energy consumption would 

now favor the 3rd solution from the top. 

If decision-makers know the relative importance of each objective beforehand, finding the pareto 

set is still a worthwhile venture. In combination with a factor of equivalence to some extent negate 

the difference in units and with weights to represent the relative importance of each objective, the 

pareto set can be used by decision-makers to more accurately select the solution that best fit their 

interests. 

5.3 Implementing and communicating the selected solution 

Although a solution supplied by Gurobi in its unaltered form might seem like an infinite number 

of binary values for many decision variables, there are multiple ways to represent selected solutions 

in simpler terms. The one that will be presented in this thesis is the use of Gantt charts. A Gantt 

chart per resource seems appropriate. For all following Gantt charts, the index of colors will be 

according to Table 5.4. 

Table 5.4 : Index of colors for all Gantt charts 

  Starting time 
  Set-up time 

  
Processing 

time 
  Idle time 
  Off time 

 

Any amount of time specified in a Gantt chart will follow the index of colors presented in Table 

5.4. In Figure 5.1, a Gantt chart representing the work schedule of atelierguitare1 for experiment 1 
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is presented. It gives the manager the processing order of all operations for all resources and speeds. 

For each activity, a color specifying the type of activity is presented. For processing activities, a 

variable 𝑂𝑖𝑗𝑣 is also included. The index 𝑗 of job 𝑖 in 𝑂𝑖𝑗𝑣 indicates which operation of which job 

is supposed to take place at the specified workstation or which operation of which job is to be 

processed by the specified worker in the specified order and index 𝑣 indicates at which speed the 

operation is expected to be processed. This Gantt chart presents an easy way of presenting the daily 

schedule to a team, so everyone is on the same page when it comes to the order and allocation of 

operations. Using such a tool, any employee would know exactly where to be at which time and 

what to do. Therefore, it allows for an efficient and fast way to communicate specific work 

assignments. 
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Workstation #1  

Workstation #2 

 
Workstation #3  

Worker #1  

Worker #2  

 
Figure 5.1 : Gantt chart for atelierguitare1 experiment 1 

  

𝑂643 𝑂543 𝑂443 𝑂431 𝑂521 𝑂423 𝑂513 

𝑂561 𝑂633 𝑂553 𝑂533 𝑂453 𝑂623 𝑂611 𝑂413 

𝑂521 

𝑂561 𝑂643 𝑂533 𝑂443 

𝑂633 𝑂553 𝑂543 𝑂453 𝑂431 𝑂623 𝑂611 𝑂423 𝑂413 𝑂513 
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CONCLUSION 

The goal of this thesis was to provide decision-makers with a detailed tool to manage sustainable 

flexible job-shops with many features. Specifically, those features include sequence-dependent set-

up times, choosing between off or idle state, machine speeds and worker scheduling. To do so, 8 

different innovative formulations of the same problem were formulated. Those formulations were 

inspired by the literature and incorporated new sets of constraints specifically developed for this 

thesis. Manne (1960) used a 3-index formulation for starting and completion times while 2-index 

formulations could be found in the literature. Although flow conservation constraints are well 

known and well documented, other authors in the field did not use such constraints for sequencing 

in flexible job-shop problems. Moreover, a new innovative sequence linking system of constraints 

was invented and tested against well-known flow conservation constraints to study the difference 

in performance. All these elements inspired the 8 formulation variants presented. Last parts of 

Chapter 5 present how to use the formulation that was the most efficient during the first two 

experiments to show how to approximate pareto fronts and select solutions among a pareto set. The 

very last part gives decision-makers a tool to present selected solutions and communicate the work 

schedule to their team. To solve all instances in this thesis, the weighted sum method was employed. 

Gurobi was the solver employed to generate all the results. To compare the performance of the 8 

different formulations, 30 random instances inspired by real production systems were generated. 

Although including some assumptions, the performances of each formulation were generated by 

solving the exact same instances with the exact same machine with the exact same solver and the 

exact same resolution method. That is to say that a considerable effort was made to isolate all 

variables that could have influenced the results and left only the change of formulation as the only 

reasonable explanation left for any difference in performances. Doing so showed that for all 

experiments conducted, the formulation variants with sequence linking constraints performed 

better than formulation variants with flow conservation constraints. It also showed that the 

formulation closest to Manne (1960) showed the poorest results. The best out of all the formulations 

was S4. Formulation S3 with a worker sequencing variable ready to incorporate transportation 

times without losing linearity showed interesting results. Its performance stayed close to S4 while 

finding one more optimal solution in the one-hour experiment. To approximate pareto fronts, 

different weights with an equivalence factor for each objective were used with the weighted-sum 
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method. Doing so revealed the relationship between objectives. All objectives had a negative 

relationship with each other and showed signs of conflict. 

There were many interesting results acquired in the process and the main contribution of the thesis 

is in the proposition and analysis of the different formulations. However, many critiques could be 

addressed in future work. First, choosing the weighted-sum method came with weaknesses. The 

weighted-sum method does not allow for finding all solutions in a non-convex feasible solution 

space. Therefore, there might exist pareto optimal solutions that the employed resolution method 

does not allow to find. Then, even after 1 hour of resolution time, many instances were not solved 

to optimality. When that is the case, it is impossible to state that a formulation performs better than 

another solving an instance. It is only possible to conclude that according to the specified indicator, 

a formulation showed better results than another in the imparted time. There is no guarantee of 

what will happen with more or less time. Because it is the case with most data generated in this 

thesis, The results must be treated with, at least, that amount of caution. For the pareto front 

approximation part, not solving to optimality meant not guaranteeing the pareto optimality of the 

solution. Therefore, the true pareto front might be quite different from the ones shown in this thesis 

when non-optimal solutions were used to approximate. However, the selected method through 

Gurobi did have an advantage over other heuristics used in the literature. Unless the optimal 

solution is known for a problem, most heuristics used in the literature do not provide knowledge 

of how far the resulting solutions are from optimality. In this thesis, the data compiled at least gave 

some idea of that distance through the gap. For future study, starting from S3 which is the 

formulation closest to a formulation that includes transportation times would be interesting to study 

the difference in performance for instances of similar sizes when incorporating another feature: 

transportation times. Although it may be costly in terms of resolution performance, S3 keeping it 

close to S4 showed promises and transportation times are an important part of multiple business 

cases. Whatever loss in performance suffered from that addition may well be worth it in some cases.  
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APPENDIX A 

DISTRIBUTION OF FORMULATION VARIANTS ACCORDING TO TERMINATION CONDITION, BEST SOLUTION, 

LOWER BOUND, UPPER BOUND AND GAP 

Variant Data Termination condition 
Best 
solution 

Resolution 
Time 

Lower 
bound Gap 

S4 atelierguitare5 Time 73585,25 1201,10 55211,53 24,97% 
S3 atelierguitare1 Time 72039,50 1201,74 53007,48 26,42% 
S4 atelierguitare1 Time 72039,50 1201,79 52950,17 26,50% 
S4 atelierguitare11 Time 69143,00 1200,81 49448,56 28,48% 
S2 atelierguitare1 Time 73390,50 1202,95 52470,59 28,50% 
S2 atelierguitare11 Time 69310,00 1201,20 49485,21 28,60% 
F1 ateliercouture1FCC No feasible solution found 24147,00 1200,00     
F1 ateliercouture2FCC No feasible solution found 22818,00 1200,00     
F1 ateliercouture3FCC No feasible solution found 27662,00 1200,00     
F1 ateliercouture4FCC No feasible solution found 19468,00 1200,00     
F1 ateliercouture5FCC No feasible solution found 24767,00 1200,00     
F1 ateliercouture6FCC No feasible solution found 20218,00 1200,00     
F1 ateliercouture8FCC No feasible solution found 32527,00 1200,00     
F1 ateliercouture9FCC No feasible solution found 19822,00 1200,00     
S3 atelierguitare11 Time 69981,00 1201,57 49832,67 28,79% 
S1 atelierguitare1 Time 72769,00 1201,49 51369,60 29,41% 
F4 atelierguitare1FCC Time 73516,00 1201,33 51588,75 29,83% 
S3 atelierguitare4 Time 81081,00 1201,03 55958,57 30,98% 
S4 atelierguitare4 Time 82335,00 1201,08 56656,93 31,19% 
F3 atelierguitare1FCC Time 72570,50 1203,32 49846,74 31,31% 
F2 ateliercouture1FCC No feasible solution found 24346,00 1200,00     
F2 ateliercouture2FCC No feasible solution found 23127,00 1200,00     
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F2 ateliercouture4FCC No feasible solution found 19777,00 1200,00     
F4 atelierguitare4FCC Time 82154,25 1200,96 55181,43 32,83% 
S4 atelierguitare3 Time 72412,00 1201,31 46716,90 35,48% 
F3 ateliercouture2FCC No feasible solution found 23329,00 1200,00     
S4 atelierguitare2 Time 72768,25 1200,99 45804,83 37,05% 
F4 ateliercouture2FCC No feasible solution found 23016,00 1200,00     
S2 atelierguitare3 Time 74344,85 1201,26 46285,47 37,74% 
F4 atelierguitare3FCC Time 74230,50 1200,89 45646,78 38,51% 
S4 atelierguitare10 Time 89959,01 1200,95 54970,69 38,89% 
S3 atelierguitare5 Time 88382,00 1201,04 53975,99 38,93% 
F3 atelierguitare10FCC Time 87255,50 1203,01 52759,63 39,53% 
F3 ateliercouture1FCC Time 36281,24 1204,67 24736,99 31,82% 
F4 ateliercouture1FCC Time 35563,00 1201,25 25384,04 28,62% 
S1 ateliercouture1 Time 35543,00 1202,29 25519,19 28,20% 
S2 ateliercouture1 Time 36089,00 1201,64 25897,62 28,24% 
S3 ateliercouture1 Time 36030,00 1201,42 26018,49 27,79% 
S4 ateliercouture1 Time 35447,65 1201,52 26080,77 26,42% 
S1 ateliercouture2 Time 30413,30 1202,08 24218,19 20,37% 
S2 ateliercouture2 Time 28798,00 1201,25 24553,29 14,74% 
S3 ateliercouture2 Time 28765,49 1201,27 25357,36 11,85% 
S4 ateliercouture2 Time 28858,49 1200,94 25401,20 11,98% 
F3 ateliercouture3FCC Time 40760,00 1202,01 28067,25 31,14% 
F4 ateliercouture3FCC Time 40678,23 1201,06 29938,83 26,40% 
F2 ateliercouture3FCC Time 40784,00 1201,51 28435,12 30,28% 
S1 ateliercouture3 Time 37193,61 1201,40 29930,93 19,53% 
S2 ateliercouture3 Time 36887,23 1201,16 30705,63 16,76% 
S3 ateliercouture3 Time 39989,00 1201,24 31076,06 22,29% 
S4 ateliercouture3 Time 36897,52 1201,25 31389,10 14,93% 
F3 ateliercouture4FCC Time 31778,22 1202,70 20120,23 36,69% 
F4 ateliercouture4FCC Time 30394,00 1201,14 21425,32 29,51% 



 

 90 

S1 ateliercouture4 Time 30452,22 1202,22 21675,85 28,82% 
S2 ateliercouture4 Time 30452,22 1201,75 22106,60 27,41% 
S3 ateliercouture4 Time 30192,00 1201,51 22307,04 26,12% 
S4 ateliercouture4 Time 30452,22 1201,51 22374,22 26,53% 
F3 ateliercouture5FCC Found optimal 30875,00 598,20 30875,00 0,00% 
F4 ateliercouture5FCC Found optimal 30875,00 132,73 30875,00 0,00% 
F2 ateliercouture5FCC Found optimal 30875,00 804,11 30875,00 0,00% 
S1 ateliercouture5 Found optimal 30875,00 18,56 30875,00 0,00% 
S2 ateliercouture5 Found optimal 30875,00 9,60 30875,00 0,00% 
S3 ateliercouture5 Found optimal 30875,00 26,33 30875,00 0,00% 
S4 ateliercouture5 Found optimal 30872,01 10,05 30872,01 0,00% 
F3 ateliercouture6FCC Time 40179,69 1202,22 20829,04 48,16% 
F4 ateliercouture6FCC Time 35647,00 1201,02 22051,16 38,14% 
F2 ateliercouture6FCC Time 35357,00 1201,48 21162,81 40,15% 
S1 ateliercouture6 Time 35355,00 1201,50 22156,21 37,33% 
S2 ateliercouture6 Time 35351,00 1201,66 22876,29 35,29% 
S3 ateliercouture6 Time 35355,00 1201,46 22990,04 34,97% 
S4 ateliercouture6 Time 35429,00 1201,48 23001,04 35,08% 
F1 ateliercouture7FCC Time 41794,50 1201,39 26208,86 37,29% 
F3 ateliercouture7FCC Time 40935,50 1201,65 29998,51 26,72% 
F4 ateliercouture7FCC Time 40451,50 1200,86 31986,80 20,93% 
F2 ateliercouture7FCC Time 40761,50 1201,27 30410,23 25,39% 
S1 ateliercouture7 Time 40451,50 1201,32 31731,83 21,56% 
S2 ateliercouture7 Time 40451,50 1201,53 31878,21 21,19% 
S3 ateliercouture7 Time 40451,50 1202,12 32674,26 19,23% 
S4 ateliercouture7 Time 40451,50 1201,45 32458,31 19,76% 
F3 ateliercouture8FCC Time 43403,60 1201,59 33616,98 22,55% 
F4 ateliercouture8FCC Time 43510,60 1201,24 34711,87 20,22% 
F2 ateliercouture8FCC Time 43733,20 1201,24 33052,23 24,42% 
S1 ateliercouture8 Time 43901,20 1201,37 34452,89 21,52% 
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S2 ateliercouture8 Time 44053,20 1201,69 35090,03 20,35% 
S3 ateliercouture8 Time 44054,20 1201,17 35079,29 20,37% 
S4 ateliercouture8 Time 43926,20 1202,24 35057,48 20,19% 
F3 ateliercouture9FCC Time 36513,51 1201,25 21710,81 40,54% 
F4 ateliercouture9FCC Time 31479,99 1201,16 22745,68 27,75% 
F2 ateliercouture9FCC Time 36939,07 1201,53 20899,28 43,42% 
S1 ateliercouture9 Time 31004,22 1201,36 22611,86 27,07% 
S2 ateliercouture9 Time 29784,27 1201,35 22901,65 23,11% 
S3 ateliercouture9 Time 31418,99 1201,30 23475,28 25,28% 
S4 ateliercouture9 Time 29784,27 1201,48 23876,90 19,83% 
F1 ateliercouture10FCC Time 42646,11 1201,43 25087,31 41,17% 
F3 ateliercouture10FCC Time 36102,45 1201,36 25628,25 29,01% 
F4 ateliercouture10FCC Time 35406,45 1200,86 27066,17 23,56% 
F2 ateliercouture10FCC Time 41970,42 1201,16 24813,59 40,88% 
S1 ateliercouture10 Time 35991,08 1201,56 26541,06 26,26% 
S2 ateliercouture10 Time 35991,08 1201,02 27094,36 24,72% 
S3 ateliercouture10 Time 36166,45 1201,22 27843,10 23,01% 
S4 ateliercouture10 Time 35904,08 1200,82 27611,42 23,10% 
S2 atelierguitare5 Time 89259,76 1201,35 53943,70 39,57% 
S3 atelierguitare2 Time 75455,00 1201,15 45127,43 40,19% 
S1 atelierguitare3 Time 74755,80 1201,73 44678,93 40,23% 
F2 atelierguitare11FCC Time 74312,50 1201,77 44341,95 40,33% 
S1 atelierguitare2 Time 74452,75 1201,85 44186,46 40,65% 
S3 atelierguitare3 Time 78379,50 1201,03 46481,85 40,70% 
S4 atelierguitare6 Time 81685,50 1201,21 48212,25 40,98% 
S3 atelierguitare7 Time 92082,00 1200,95 53904,11 41,46% 
S1 atelierguitare10 Time 90753,00 1201,56 53060,87 41,53% 
F4 atelierguitare7FCC Time 91980,25 1200,85 53395,39 41,95% 
S2 atelierguitare6 Time 81613,00 1201,55 47348,47 41,98% 
S3 atelierguitare6 Time 82252,25 1201,07 47672,36 42,04% 
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F3 atelierguitare3FCC Time 74620,00 1202,22 43093,15 42,25% 
S3 atelierguitare9 Time 81393,50 1201,20 46967,65 42,30% 
S2 atelierguitare2 Time 78175,25 1201,34 44912,00 42,55% 
S4 atelierguitare7 Time 93636,00 1201,20 53217,91 43,17% 
S1 atelierguitare4 Time 98096,50 1201,42 55723,94 43,19% 
F3 atelierguitare11FCC Time 77515,50 1201,06 43854,99 43,42% 
S2 atelierguitare7 Time 92429,00 1201,18 52220,22 43,50% 
S2 atelierguitare9 Time 81892,82 1201,41 46203,07 43,58% 
F4 atelierguitare6FCC Time 82037,75 1200,94 46167,20 43,72% 
S2 atelierguitare10 Time 97911,75 1201,34 54501,49 44,34% 
F4 atelierguitare11FCC Time 82532,00 1200,98 45582,65 44,77% 
S3 atelierguitare10 Time 99076,00 1201,09 54570,67 44,92% 
F2 atelierguitare3FCC Time 79936,75 1202,95 43084,41 46,10% 
F1 atelierguitare1FCC Time 90993,25 1202,96 48558,88 46,63% 
F4 atelierguitare10FCC Time 100850,50 1201,02 53320,09 47,13% 
F3 atelierguitare7FCC Time 91427,25 1202,55 47377,83 48,18% 
F3 atelierguitare6FCC Time 85286,50 1202,85 44073,90 48,32% 
S1 atelierguitare11 Time 90345,50 1201,54 46454,36 48,58% 
S1 atelierguitare5 Time 103082,50 1201,84 52957,34 48,63% 
F1 atelierguitare5FCC Time 99250,00 1202,69 50943,03 48,67% 
S4 atelierguitare9 Time 94260,05 1201,38 47260,42 49,86% 
F2 atelierguitare7FCC Time 92126,00 1201,59 45553,80 50,55% 
F4 atelierguitare2FCC Time 89359,25 1201,16 43741,27 51,05% 
F3 atelierguitare4FCC Time 109194,96 1202,34 53332,90 51,16% 
F4 atelierguitare5FCC Time 107095,00 1201,08 51489,58 51,92% 
S1 atelierguitare9 Time 94752,85 1201,40 45331,06 52,16% 
F4 atelierguitare9FCC Time 94705,85 1200,74 44864,52 52,63% 
F3 atelierguitare2FCC Time 91933,50 1203,01 42906,57 53,33% 
S1 atelierguitare6 Time 97825,25 1201,39 45171,81 53,82% 
F3 atelierguitare9FCC Time 94812,17 1201,85 43339,36 54,29% 
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F2 atelierguitare9FCC Time 95598,55 1201,06 42884,78 55,14% 
S1 atelierguitare7 Time 109142,99 1201,55 48577,37 55,49% 
F2 atelierguitare6FCC Time 99739,75 1201,36 43998,87 55,89% 
F1 atelierguitare9FCC Time 101203,02 1201,24 41064,64 59,42% 
S1 atelierguitare4 Time 134356,50 1202,30 54377,26 59,53% 
F1 atelierguitare7FCC Time 114618,00 1202,49 41940,27 63,41% 
F1 atelierguitare2FCC No feasible solution found 41931,00 1200,00     
F1 atelierguitare3FCC No feasible solution found 42485,00 1200,00     
F1 atelierguitare4FCC No feasible solution found 52175,00 1200,00     
F1 atelierguitare6FCC No feasible solution found 43815,00 1200,00     
F1 atelierguitare10FCC No feasible solution found 51849,00 1200,00     
F2 atelierguitare1FCC No feasible solution found 48495,00 1200,00     
F2 atelierguitare2FCC No feasible solution found 42021,00 1200,00     
F2 atelierguitare4FCC No feasible solution found 52878,00 1200,00     
F2 atelierguitare5FCC No feasible solution found 50952,00 1200,00     
F2 atelierguitare10FCC No feasible solution found 52112,00 1200,00     
F3 atelierguitare5FCC No feasible solution found 50825,00 1200,00     
F1 atelierpeinture1FCC Time 86037,50 1201,82 53426,17 37,90% 
F3 atelierpeinture1FCC Time 85955,50 1202,67 57801,71 32,75% 
F4 atelierpeinture1FCC Time 85868,50 1200,94 59281,82 30,96% 
F2 atelierpeinture1FCC Time 85744,50 1201,17 57036,66 33,48% 
S1 atelierpeinture1 Time 85782,50 1201,39 58383,40 31,94% 
S2 atelierpeinture1 Time 85744,50 1200,98 58903,30 31,30% 
S3 atelierpeinture1 Time 85955,50 1201,09 61309,44 28,67% 
S4 atelierpeinture1 Time 85955,50 1201,84 62682,64 27,08% 
F1 atelierpeinture2FCC Time 99121,50 1201,27 77949,74 21,36% 
F3 atelierpeinture2FCC Time 99355,00 1202,74 80476,30 19,00% 
F4 atelierpeinture2FCC Time 98715,50 1200,82 92171,86 6,63% 
F2 atelierpeinture2FCC Time 98715,50 1201,00 82502,89 16,42% 
S1 atelierpeinture2 Time 98418,00 1201,06 82507,87 16,17% 
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S2 atelierpeinture2 Found optimal 98418,00 726,77 98418,00 0,00% 
S3 atelierpeinture2 Found optimal 98418,00 621,24 98418,00 0,00% 
S4 atelierpeinture2 Found optimal 98418,00 549,69 98418,00 0,00% 
F1 atelierpeinture4FCC Time 107572,00 1201,68 67708,75 37,06% 
F3 atelierpeinture4FCC Time 106936,00 1202,08 82972,80 22,41% 
F4 atelierpeinture4FCC Time 106329,00 1200,87 89308,95 16,01% 
F2 atelierpeinture4FCC Time 106936,00 1201,25 80062,06 25,13% 
S1 atelierpeinture4 Time 106599,00 1201,09 81119,31 23,90% 
S2 atelierpeinture4 Time 106599,00 1201,02 93159,88 12,61% 
S3 atelierpeinture4 Time 106599,00 1201,12 94549,68 11,30% 
S4 atelierpeinture4 Time 106599,00 1201,01 88932,68 16,57% 
F1 atelierpeinture5FCC Time 152358,00 1201,65 83188,25 45,40% 
F3 atelierpeinture5FCC Time 152231,66 1202,22 93758,21 38,41% 
F4 atelierpeinture5FCC Time 150539,00 1201,14 104216,85 30,77% 
F2 atelierpeinture5FCC Time 155454,00 1201,14 87789,91 43,53% 
S1 atelierpeinture5 Time 154157,00 1201,09 95726,60 37,90% 
S2 atelierpeinture5 Time 153012,00 1356,72 104631,99 31,62% 
S3 atelierpeinture5 Time 153405,00 1201,27 106879,30 30,33% 
S4 atelierpeinture5 Time 155746,00 1201,52 106404,15 31,68% 
F1 atelierpeinture6FCC Time 92957,75 1202,46 42308,81 54,49% 
F3 atelierpeinture6FCC Time 92546,00 1202,88 45925,89 50,38% 
F4 atelierpeinture6FCC Time 92546,00 1201,04 47135,21 49,07% 
F2 atelierpeinture6FCC Time 92684,00 1201,83 44240,08 52,27% 
S1 atelierpeinture6 Time 92984,00 1201,21 46168,64 50,35% 
S2 atelierpeinture6 Time 92662,00 1201,13 48638,78 47,51% 
S3 atelierpeinture6 Time 92684,00 1201,00 48272,85 47,92% 
S4 atelierpeinture6 Time 92672,00 1200,98 48016,18 48,19% 
F1 atelierpeinture7FCC Time 74070,25 1201,40 46610,05 37,07% 
F3 atelierpeinture7FCC Time 73995,50 1202,69 48389,11 34,61% 
F4 atelierpeinture7FCC Time 73995,50 1200,96 49067,07 33,69% 
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F2 atelierpeinture7FCC Time 74091,25 1201,28 47815,27 35,46% 
S1 atelierpeinture7 Time 73995,50 1201,03 48975,18 33,81% 
S2 atelierpeinture7 Time 73993,00 1202,46 49340,09 33,32% 
S3 atelierpeinture7 Time 73995,50 1201,49 49408,72 33,23% 
S4 atelierpeinture7 Time 74104,75 1200,84 49148,83 33,68% 
F1 atelierpeinture8FCC Time 107926,25 1201,43 55449,76 48,62% 
F3 atelierpeinture8FCC Time 107012,75 1201,88 69692,00 34,88% 
F4 atelierpeinture8FCC Time 106798,25 1200,89 63143,98 40,88% 
F2 atelierpeinture8FCC Time 107047,00 1201,49 62144,72 41,95% 
S1 atelierpeinture8 Time 106332,75 1201,07 65836,80 38,08% 
S2 atelierpeinture8 Time 106332,75 1201,55 76181,99 28,36% 
S3 atelierpeinture8 Time 106332,75 1201,39 70713,12 33,50% 
S4 atelierpeinture8 Time 106279,00 1201,37 75629,45 28,84% 
F1 atelierpeinture9FCC Time 96034,00 1201,14 75690,24 21,18% 
F3 atelierpeinture9FCC Time 96034,00 1202,68 85643,31 10,82% 
F4 atelierpeinture9FCC Found optimal 96034,00 940,39 96034,00 0,00% 
F2 atelierpeinture9FCC Time 96034,00 1201,06 91049,00 5,19% 
S1 atelierpeinture9 Time 96034,00 1200,87 86264,93 10,17% 
S2 atelierpeinture9 Found optimal 96034,00 496,72 96029,29 0,00% 
S3 atelierpeinture9 Found optimal 96034,00 183,11 96034,00 0,00% 
S4 atelierpeinture9 Found optimal 96034,00 204,63 96034,00 0,00% 
F1 atelierpeinture10FCC Time 116904,00 1201,80 56827,67 51,39% 
F3 atelierpeinture10FCC Time 103897,00 1203,15 69450,71 33,15% 
F4 atelierpeinture10FCC Time 103897,00 1200,82 72572,81 30,15% 
F2 atelierpeinture10FCC Time 104315,00 1201,34 65841,32 36,88% 
S1 atelierpeinture10 Time 103897,00 1201,29 68393,35 34,17% 
S2 atelierpeinture10 Time 103897,00 1201,15 75497,13 27,33% 
S3 atelierpeinture10 Time 103897,00 1200,96 76875,26 26,01% 
S4 atelierpeinture10 Time 104315,00 1201,24 75279,14 27,83% 
F1 atelierpeinture12FCC Time 111673,00 1202,12 61448,25 44,97% 
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F2 atelierpeinture12FCC Time 115221,00 1201,55 64961,81 43,62% 
S4 atelierpeinture12 Time 111339,00 1200,99 70879,46 36,34% 
F3 atelierpeinture12FCC Time 111604,00 1201,34 64299,18 42,39% 
S3 atelierpeinture12 Time 111339,00 1201,34 68646,99 38,34% 
S2 atelierpeinture12 Time 111339,00 1201,22 70540,42 36,64% 
S1 atelierpeinture12 Time 111339,00 1201,33 65502,54 41,17% 
F4 atelierpeinture12FCC Time 111016,00 1201,36 69357,64 37,52% 
F1 atelierguitare11FCC No feasible solution found 42658,00 1200,00     
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APPENDIX B 

DISTRIBUTION OF S2, S3 AND S4 ACCORDING TO TERMINATION CONDITION, BEST SOLUTION, LOWER 

BOUND, UPPER BOUND AND GAP 

Variant Data 
Termination 
condition 

Best 
solution 

Resolution 
Time Lower bound Gap 

S4 atelierguitare1 Time 72039,50 3602,59 54498,45 24,35% 
S4 atelierguitare2 Time 72768,25 3602,71 46366,08 36,28% 
S4 atelierguitare3 Time 66173,50 3602,91 47555,18 28,14% 
S4 atelierguitare4 Time 82335,00 3602,60 57436,71 30,24% 
S4 atelierguitare5 Time 73539,50 3601,36 55648,65 24,33% 
S4 atelierguitare6 Time 81685,50 3603,17 48996,08 40,02% 
S4 atelierguitare7 Time 93636,00 3601,17 56575,11 39,58% 
S4 atelierguitare9 Time 80798,88 3603,23 49010,08 39,34% 
S4 atelierguitare10 Time 89959,01 3601,98 55597,00 38,20% 
S4 atelierguitare11 Time 69143,00 3601,62 49870,31 27,87% 
S4 ateliercouture1 Time 35423,65 3603,81 26290,55 25,78% 
S4 ateliercouture2 Time 28765,49 3601,60 25607,93 10,98% 
S4 ateliercouture3 Time 36897,52 3603,63 31831,04 13,73% 
S4 ateliercouture4 Time 30192,00 3604,05 22699,16 24,82% 
S4 ateliercouture5 Found optimal 30872,01 8,86 30872,01 0,00% 
S4 ateliercouture6 Time 35385,00 3604,63 23446,74 33,74% 
S4 ateliercouture7 Time 40451,50 3602,87 33390,59 17,46% 
S4 ateliercouture8 Time 43926,20 3604,09 35418,73 19,37% 
S4 ateliercouture9 Time 29784,27 3603,90 24465,44 17,86% 
S4 ateliercouture10 Time 35904,08 3601,52 28328,12 21,10% 
S4 atelierpeinture1 Time 85955,50 3601,33 81039,96 5,72% 
S4 atelierpeinture2 Found optimal 98418,00 534,45 98418,00 0,00% 
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S4 atelierpeinture4 Time 106599,00 3601,30 93441,77 12,34% 
S4 atelierpeinture5 Time 153012,00 3603,63 112386,64 26,55% 
S4 atelierpeinture6 Time 92672,00 3601,55 48985,71 47,14% 
S4 atelierpeinture7 Time 74090,00 3601,54 49451,07 33,26% 
S4 atelierpeinture8 Time 106279,00 3603,27 79610,83 25,09% 
S4 atelierpeinture9 Found optimal 96034,00 203,00 96034,00 0,00% 
S4 atelierpeinture10 Time 103897,00 3601,53 79009,44 23,95% 
S4 atelierpeinture12 Time 111339,00 3601,61 73776,52 33,74% 
S3 atelierguitare1 Time 72039,50 8170,37 54309,11 24,61% 
S3 atelierguitare2 Time 75372,00 3602,78 45958,18 39,02% 
S3 atelierguitare3 Time 73692,50 3602,28 47662,22 35,32% 
S3 atelierguitare4 Time 81081,00 3601,31 56588,25 30,21% 
S3 atelierguitare5 Time 88378,00 3601,42 55178,28 37,57% 
S3 atelierguitare6 Time 80576,50 3602,51 48312,77 40,04% 
S3 atelierguitare7 Time 92082,00 3601,24 56182,15 38,99% 
S3 atelierguitare9 Time 81347,08 3602,44 48703,83 40,13% 
S3 atelierguitare10 Time 82909,75 3602,07 55179,20 33,45% 
S3 atelierguitare11 Time 68837,50 3602,91 50713,03 26,33% 
S3 ateliercouture1 Time 36030,00 3603,48 26250,17 27,14% 
S3 ateliercouture2 Time 28765,49 3603,94 25625,19 10,92% 
S3 ateliercouture3 Time 37047,23 3602,73 31575,13 14,77% 
S3 ateliercouture4 Time 30192,00 3604,40 22675,65 24,90% 
S3 ateliercouture5 Found optimal 30875,00 23,86 30875,00 0,00% 
S3 ateliercouture6 Time 35355,00 3604,24 23460,64 33,64% 
S3 ateliercouture7 Time 40451,50 3602,76 33972,46 16,02% 
S3 ateliercouture8 Time 43718,20 3603,39 35404,71 19,02% 
S3 ateliercouture9 Time 29558,27 3602,80 24260,48 17,92% 
S3 ateliercouture10 Time 36166,45 3602,45 28692,23 20,67% 
S3 atelierpeinture1 Time 85744,50 3601,47 74213,24 13,45% 
S3 atelierpeinture2 Found optimal 98418,00 506,10 98418,00 0,00% 
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S3 atelierpeinture4 Found optimal 106599,00 2644,35 106599,00 0,00% 
S3 atelierpeinture5 Time 153153,00 3602,26 112538,58 26,52% 
S3 atelierpeinture6 Time 92678,00 3601,61 55355,26 40,27% 
S3 atelierpeinture7 Time 73995,50 3604,68 49767,35 32,74% 
S3 atelierpeinture8 Time 106332,75 3601,54 74489,02 29,95% 
S3 atelierpeinture9 Found optimal 96034,00 186,26 96034,00 0,00% 
S3 atelierpeinture10 Time 103897,00 3601,14 83652,70 19,48% 
S3 atelierpeinture12 Time 111339,00 3601,46 73838,32 33,68% 
S2 atelierguitare1 Time 73390,50 3603,67 53852,54 26,62% 
S2 atelierguitare2 Time 77275,25 3602,56 45828,95 40,69% 
S2 atelierguitare3 Time 74340,85 3602,81 47235,45 36,46% 
S2 atelierguitare4 Time 82335,00 3601,51 56345,84 31,57% 
S2 atelierguitare5 Time 83343,75 3601,63 55144,46 33,83% 
S2 atelierguitare6 Time 81359,75 3602,96 48028,98 40,97% 
S2 atelierguitare7 Time 92429,00 3601,66 54518,17 41,02% 
S2 atelierguitare9 Time 80309,35 3602,92 47654,55 40,66% 
S2 atelierguitare10 Time 97905,75 3603,92 55129,65 43,69% 
S2 atelierguitare11 Time 68798,50 3602,95 50589,31 26,47% 
S2 ateliercouture1 Time 35405,24 3603,80 26169,64 26,09% 
S2 ateliercouture2 Time 28765,49 3603,35 24974,51 13,18% 
S2 ateliercouture3 Time 36561,53 3601,80 31212,06 14,63% 
S2 ateliercouture4 Time 30192,00 3605,76 22437,29 25,68% 
S2 ateliercouture5 Found optimal 30875,00 8,74 30875,00 0,00% 
S2 ateliercouture6 Time 35351,00 3604,89 23243,86 34,25% 
S2 ateliercouture7 Time 40448,00 3602,51 32874,10 18,73% 
S2 ateliercouture8 Time 44053,20 3604,21 35378,15 19,69% 
S2 ateliercouture9 Time 29558,27 3603,11 23514,02 20,45% 
S2 ateliercouture10 Time 35904,08 3601,50 27970,42 22,10% 
S2 atelierpeinture1 Time 85744,50 3601,54 60391,76 29,57% 
S2 atelierpeinture2 Found optimal 98418,00 666,62 98418,00 0,00% 
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S2 atelierpeinture4 Time 106599,00 3601,14 102421,38 3,92% 
S2 atelierpeinture5 Time 153012,00 3602,75 109902,29 28,17% 
S2 atelierpeinture6 Time 92662,00 3601,83 59519,34 35,77% 
S2 atelierpeinture7 Time 73993,00 3605,54 49771,38 32,74% 
S2 atelierpeinture8 Time 106332,75 3603,10 80772,86 24,04% 
S2 atelierpeinture9 Found optimal 96034,00 485,95 96029,29 0,00% 
S2 atelierpeinture10 Time 103897,00 3601,39 80986,39 22,05% 
S2 atelierpeinture12 Time 111339,00 3601,77 73154,25 34,30% 
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APPENDIX C 

DISTRIBUTION OF SOLUTIONS ACCORDING TO BEST OBJECTIVE VALUE, GAP 

AND TIME 

atelierguitare1.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 5787,00 1420,00 65619,00 72826,00 22,49% 3602,49 
Experiment 2 2478,00 955,00 93309,00 96742,00 0,00% 249,81 
Experiment 3 1297,00 1297,00 109686,00 112280,00 39,22% 3601,35 
Experiment 4 2146,00 1086,00 85192,00 88424,00 24,73% 3602,60 
Experiment 5 2855,00 1476,50 73395,00 77726,50 23,92% 3602,85 
Experiment 6 1823,00 1024,50 97340,00 100187,50 24,29% 3603,17 
Experiment 7 1323,00 1113,00 103804,81 106240,81 28,24% 3602,28 
Experiment 8 1315,00 1050,00 102145,00 104510,00 15,87% 3602,04 
Experiment 9 1848,00 1387,50 91400,00 94635,50 34,30% 3602,77 
Experiment 10 5651,00 1198,00 67809,00 74658,00 16,99% 3603,13 
Experiment 11 5588,00 1038,75 73252,00 79878,75 12,15% 3603,04 
Experiment 12 5585,00 1325,50 65895,00 72805,50 16,86% 3602,22 
Experiment 13 1401,00 1012,00 103352,00 105765,00 4,11% 3601,69 
Experiment 14 1283,00 1159,00 104578,00 107020,00 25,29% 3602,43 
Experiment 15 1359,00 1353,25 99221,00 101933,25 31,77% 3601,60 
Experiment 16 3238,00 1643,00 70281,00 75162,00 26,76% 3602,62 

atelierguitare2.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4979,00 677,50 56411,00 62067,50 24,61% 3601,64 
Experiment 2 1641,00 562,00 72256,00 74459,00 7,30% 3601,53 
Experiment 3 696,00 695,00 116139,00 117530,00 17,93% 3601,34 
Experiment 4 991,00 592,00 81054,01 82637,01 32,59% 3601,26 
Experiment 5 1309,00 683,00 75302,03 77294,03 33,83% 3601,16 
Experiment 6 1179,00 631,00 79027,00 80837,00 30,30% 3602,37 
Experiment 7 1088,00 599,00 78026,00 79713,00 32,86% 3601,62 
Experiment 8 749,00 670,00 116620,00 118039,00 22,23% 3601,63 
Experiment 9 1088,00 599,00 78026,00 79713,00 34,72% 3601,20 
Experiment 10 4657,00 639,75 56788,00 62084,75 21,68% 3602,05 
Experiment 11 4106,00 664,25 59995,00 64765,25 24,82% 3601,22 
Experiment 12 4584,00 635,25 56785,00 62004,25 23,88% 3601,09 
Experiment 13 979,00 612,00 82772,00 84363,00 18,66% 3601,71 
Experiment 14 668,00 668,00 116639,00 117975,00 22,31% 3601,00 
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Experiment 15 976,00 652,00 79886,00 81514,00 35,51% 3601,40 
Experiment 16 2015,00 799,25 63227,00 66041,25 28,99% 3601,07 

atelierguitare3.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 6208,00 1344,00 59099,00 66651,00 26,62% 3602,25 
Experiment 2 4731,00 1017,00 71306,00 77054,00 0,00% 2721,75 
Experiment 3 1288,00 1288,00 149823,00 152399,00 0,00% 1271,74 
Experiment 4 3289,00 1386,45 72609,00 77284,45 29,70% 3601,97 
Experiment 5 3139,00 1160,00 68731,00 73030,00 28,14% 3602,08 
Experiment 6 3135,00 1118,50 68149,00 72402,50 20,38% 3601,90 
Experiment 7 1929,00 1389,70 90739,04 94057,74 22,62% 3601,70 
Experiment 8 1316,00 1195,00 149530,00 152041,00 11,80% 3601,67 
Experiment 9 3275,00 1534,55 71679,00 76488,55 31,09% 3602,01 
Experiment 10 5847,00 1101,50 58975,00 65923,50 19,00% 3602,47 
Experiment 11 5949,00 1125,50 59266,00 66340,50 17,67% 3602,31 
Experiment 12 4911,00 1104,50 67678,00 73693,50 33,23% 3602,53 
Experiment 13 2122,00 1071,50 113787,00 116980,50 12,23% 3602,13 
Experiment 14 1544,00 1242,00 138949,00 141735,00 19,59% 3601,75 
Experiment 15 2091,00 1336,20 95698,00 99125,20 27,68% 3602,13 
Experiment 16 3112,00 1142,00 68265,00 72519,00 31,46% 3602,66 

atelierguitare4.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 7975,00 2380,00 70073,00 80428,00 25,69% 3601,29 
Experiment 2 4002,00 1323,00 118009,00 123334,00 0,00% 173,42 
Experiment 3 1792,00 1649,48 134821,02 138262,50 42,48% 3600,97 
Experiment 4 3134,00 1687,00 80998,00 85819,00 24,35% 3601,47 
Experiment 5 2928,00 1651,50 80740,00 85319,50 25,74% 3602,17 
Experiment 6 2928,00 1651,50 80740,00 85319,50 17,75% 3601,56 
Experiment 7 2593,00 1728,83 87432,00 91753,83 23,76% 3601,23 
Experiment 8 1816,00 1622,00 142356,00 145794,00 16,03% 3601,39 
Experiment 9 3028,00 1905,75 80448,00 85381,75 30,49% 3601,39 
Experiment 10 5205,00 1546,00 79036,00 85787,00 21,36% 3601,36 
Experiment 11 5439,00 1478,25 79313,00 86230,25 9,85% 3601,52 
Experiment 12 5155,00 1768,50 75829,00 82752,50 26,38% 3602,00 
Experiment 13 2321,00 1436,84 130112,00 133869,84 8,99% 3601,64 
Experiment 14 1819,00 1614,00 143079,00 146512,00 24,00% 3601,45 
Experiment 15 2623,00 2020,31 90817,00 95460,31 32,35% 3601,11 
Experiment 16 3507,00 1851,01 77655,00 83013,01 30,66% 3601,65 

atelierguitare5.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
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Experiment 1 7238,00 1284,50 65311,00 73833,50 20,82% 3601,43 
Experiment 2 2268,00 1016,75 117657,00 120941,75 7,26% 3601,76 
Experiment 3 1182,00 1178,00 130842,99 133202,99 36,16% 3600,99 
Experiment 4 1385,00 1201,25 110865,00 113451,25 36,78% 3601,61 
Experiment 5 2390,00 1423,25 89595,00 93408,25 35,70% 3601,16 
Experiment 6 2565,00 1126,75 80629,00 84320,75 26,57% 3601,40 
Experiment 7 1601,00 1214,00 98194,00 101009,00 34,32% 3601,21 
Experiment 8 1428,00 1173,00 129819,00 132420,00 28,01% 3601,23 
Experiment 9 1298,00 1276,00 112784,00 115358,00 42,39% 3601,70 
Experiment 10 6585,00 1084,25 65980,00 73649,25 15,76% 3601,74 
Experiment 11 6696,00 1153,75 66247,00 74096,75 16,78% 3601,35 
Experiment 12 6616,00 1106,00 66001,00 73723,00 19,12% 3602,14 
Experiment 13 1333,00 1101,50 132218,00 134652,50 17,04% 3601,24 
Experiment 14 1314,00 1179,00 127636,00 130129,00 32,46% 3601,02 
Experiment 15 1281,00 1245,00 113558,02 116084,02 41,71% 3601,18 
Experiment 16 3390,00 1266,50 74665,00 79321,50 30,00% 3601,59 

atelierguitare6.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 3882,00 762,50 76698,00 81342,50 41,05% 3602,78 
Experiment 2 1571,00 593,25 90848,00 93012,25 6,28% 3601,81 
Experiment 3 947,00 797,00 121146,00 122890,00 23,46% 3601,33 
Experiment 4 1270,00 693,25 87699,00 89662,25 33,09% 3602,15 
Experiment 5 1897,00 713,50 81127,00 83737,50 35,44% 3602,37 
Experiment 6 1293,00 639,00 89950,00 91882,00 30,48% 3602,09 
Experiment 7 1129,00 700,00 89734,00 91563,00 32,73% 3602,14 
Experiment 8 1177,00 687,50 94234,00 96098,50 25,93% 3602,30 
Experiment 9 1150,00 795,00 88433,00 90378,00 35,34% 3602,80 
Experiment 10 5691,00 626,00 67432,00 73749,00 28,27% 3603,02 
Experiment 11 4370,00 652,25 65838,00 70860,25 21,32% 3602,68 
Experiment 12 5795,00 688,00 65493,00 71976,00 28,80% 3602,48 
Experiment 13 1186,00 641,00 90918,00 92745,00 16,83% 3602,00 
Experiment 14 1078,00 718,00 93043,00 94839,00 29,29% 3602,01 
Experiment 15 1087,00 902,00 91317,00 93306,00 35,94% 3601,53 
Experiment 16 2672,00 794,50 69571,00 73037,50 32,23% 3602,42 

atelierguitare7.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 3650,00 1819,25 88983,00 94452,25 40,74% 3601,05 
Experiment 2 1998,00 1138,00 110994,00 114130,00 0,00% 264,49 
Experiment 3 1374,00 1374,00 140461,00 143209,00 35,10% 3601,01 
Experiment 4 2076,00 1279,00 91476,00 94831,00 22,11% 3601,38 
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Experiment 5 2076,00 1279,00 91476,00 94831,00 30,00% 3601,22 
Experiment 6 1680,00 1307,00 92160,00 95147,00 16,96% 3601,37 
Experiment 7 1802,00 1426,00 97028,00 100256,00 25,52% 3601,29 
Experiment 8 1380,00 1300,00 115944,02 118624,02 12,41% 3601,43 
Experiment 9 1696,00 1582,00 91226,00 94504,00 25,41% 3601,23 
Experiment 10 2523,00 1227,25 90589,00 94339,25 24,89% 3601,10 
Experiment 11 2523,00 1227,25 90589,00 94339,25 11,80% 3601,03 
Experiment 12 2639,00 1485,25 88659,00 92783,25 32,38% 3601,00 
Experiment 13 1696,00 1172,00 110342,00 113210,00 0,00% 3587,16 
Experiment 14 1432,00 1287,00 115924,00 118643,00 24,03% 3601,38 
Experiment 15 1617,00 1453,00 90727,00 93797,00 28,46% 3601,37 
Experiment 16 1786,00 1573,00 89028,00 92387,00 31,86% 3601,34 

atelierguitare9.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 3954,00 1651,44 74537,00 80142,44 40,68% 3603,65 
Experiment 2 4681,00 775,65 109360,00 114816,65 0,00% 867,13 
Experiment 3 1094,00 1078,00 107331,00 109503,00 37,48% 3601,28 
Experiment 4 1335,00 980,00 99835,00 102150,00 39,78% 3602,83 
Experiment 5 1732,00 1279,00 83976,00 86987,00 37,57% 3602,60 
Experiment 6 1225,00 994,00 100974,01 103193,01 33,72% 3602,76 
Experiment 7 1149,00 954,00 100165,00 102268,00 36,51% 3602,38 
Experiment 8 1207,00 967,00 106419,01 108593,01 18,94% 3602,16 
Experiment 9 1660,00 1465,00 83571,00 86696,00 39,75% 3602,34 
Experiment 10 4765,00 993,56 76878,00 82636,56 32,73% 3601,98 
Experiment 11 4619,00 917,14 91555,00 97091,14 32,41% 3602,41 
Experiment 12 4727,00 1056,05 76050,00 81833,05 39,12% 3602,59 
Experiment 13 1314,00 918,44 103684,00 105916,44 11,12% 3602,41 
Experiment 14 1108,00 1006,00 101908,00 104022,00 22,50% 3602,24 
Experiment 15 1207,00 1057,00 100845,00 103109,00 40,88% 3601,84 
Experiment 16 2301,00 1729,00 77566,00 81596,00 38,22% 3603,57 

atelierguitare10.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 5787,00 1420,00 65619,00 72826,00 22,49% 3602,49 
Experiment 2 2478,00 955,00 93309,00 96742,00 0,00% 249,81 
Experiment 3 1297,00 1297,00 109686,00 112280,00 39,22% 3601,35 
Experiment 4 2146,00 1086,00 85192,00 88424,00 24,73% 3602,60 
Experiment 5 2855,00 1476,50 73395,00 77726,50 23,92% 3602,85 
Experiment 6 2024,00 992,50 90253,00 93269,50 25,35% 3602,23 
Experiment 7 1754,00 856,50 93171,00 95781,50 24,14% 3601,74 
Experiment 8 1339,00 962,00 138651,00 140952,00 22,10% 3601,85 
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Experiment 9 2292,00 1020,50 85307,00 88619,50 30,24% 3601,98 
Experiment 10 4703,00 981,25 77438,00 83122,25 26,24% 3602,32 
Experiment 11 5400,00 846,75 78022,00 84268,75 18,01% 3602,00 
Experiment 12 4205,00 1101,50 76732,00 82038,50 29,95% 3602,70 
Experiment 13 1607,00 895,00 103799,00 106301,00 14,06% 3602,10 
Experiment 14 1356,00 1034,00 141216,00 143606,00 29,34% 3601,32 
Experiment 15 1792,00 1053,00 97782,00 100627,00 30,44% 3601,46 
Experiment 16 3250,00 1172,25 81412,00 85834,25 34,01% 3602,25 

atelierguitare11.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 6336,00 1258,50 61223,00 68817,50 23,55% 3602,60 
Experiment 2 3268,00 958,50 103823,00 108049,50 2,64% 3601,52 
Experiment 3 1290,00 1261,00 131111,00 133662,00 6,23% 3601,06 
Experiment 4 2653,00 1033,00 88531,00 92217,00 26,29% 3602,07 
Experiment 5 3371,00 1190,00 73331,00 77892,00 27,36% 3602,24 
Experiment 6 2724,00 1071,00 88616,00 92411,00 22,51% 3602,31 
Experiment 7 1744,00 1190,00 103014,00 105948,00 20,43% 3601,94 
Experiment 8 1477,00 1041,00 131201,00 133719,00 8,29% 3602,02 
Experiment 9 2503,00 1431,00 87526,00 91460,00 29,27% 3602,08 
Experiment 10 6347,00 1146,50 61738,00 69231,50 19,15% 3602,47 
Experiment 11 5637,00 1111,00 69200,00 75948,00 19,62% 3603,20 
Experiment 12 6419,00 1169,00 61226,00 68814,00 24,28% 3602,65 
Experiment 13 1381,00 1028,00 126349,00 128758,00 3,28% 3601,68 
Experiment 14 1322,00 1089,00 131910,00 134321,00 7,51% 3601,56 
Experiment 15 1836,00 1171,00 103307,00 106314,00 20,82% 3601,73 
Experiment 16 4452,00 1144,50 67962,00 73558,50 32,50% 3602,18 

ateliercouture1.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1285,00 762,01 34050,00 36097,01 27,08% 3602,59 
Experiment 2 1058,00 254,52 41391,00 42703,52 9,13% 3601,38 
Experiment 3 546,00 444,01 38526,00 39516,01 66,57% 3601,09 
Experiment 4 588,00 326,00 36857,00 37771,00 26,26% 3601,62 
Experiment 5 651,00 352,12 35028,00 36031,12 24,95% 3601,58 
Experiment 6 608,00 314,00 37657,00 38579,00 25,90% 3601,46 
Experiment 7 576,00 316,00 36693,00 37585,00 30,91% 3601,29 
Experiment 8 503,00 376,00 40971,00 41850,00 36,55% 3601,40 
Experiment 9 647,00 484,00 36617,00 37748,00 32,90% 3601,41 
Experiment 10 1036,00 338,00 34710,00 36084,00 23,34% 3601,39 
Experiment 11 1202,00 286,00 36500,00 37988,00 20,45% 3601,55 
Experiment 12 1168,00 331,38 34847,00 36346,38 25,55% 3601,42 
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Experiment 13 608,00 282,92 38064,00 38954,92 17,19% 3601,89 
Experiment 14 499,00 375,00 38134,00 39008,00 46,87% 3601,81 
Experiment 15 530,00 388,00 36397,00 37315,00 37,48% 3601,20 
Experiment 16 934,00 452,00 34330,00 35716,00 28,27% 3603,25 

ateliercouture2.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1388,00 669,30 26902,00 28959,30 12,11% 3604,09 
Experiment 2 1020,00 275,00 36361,00 37656,00 0,00% 2774,36 
Experiment 3 513,00 477,00 49319,00 50309,00 56,08% 3601,25 
Experiment 4 666,00 347,96 32954,00 33967,96 20,63% 3602,26 
Experiment 5 775,00 341,00 29542,00 30658,00 13,67% 3602,38 
Experiment 6 754,00 346,00 31199,00 32299,00 17,79% 3602,18 
Experiment 7 715,00 360,00 31001,00 32076,00 23,77% 3602,08 
Experiment 8 593,00 347,00 36553,00 37493,00 30,45% 3602,49 
Experiment 9 753,00 360,00 29776,00 30889,00 21,82% 3602,27 
Experiment 10 1247,00 391,49 27233,00 28871,49 11,10% 3602,22 
Experiment 11 1082,00 348,49 28483,00 29913,49 7,34% 3602,10 
Experiment 12 1169,00 391,49 27500,00 29060,49 8,00% 3602,63 
Experiment 13 676,00 298,50 34964,00 35938,50 16,45% 3602,37 
Experiment 14 569,00 376,00 39205,00 40150,00 40,58% 3602,15 
Experiment 15 588,00 420,00 35208,00 36216,00 33,30% 3601,85 
Experiment 16 871,00 535,55 27554,00 28960,55 13,58% 3602,76 

ateliercouture3.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 3012,00 949,73 33100,00 37061,73 13,79% 3601,47 
Experiment 2 3240,00 429,37 50498,00 54167,37 0,00% 832,76 
Experiment 3 937,00 815,00 73366,00 75118,00 51,27% 3601,38 
Experiment 4 1348,00 688,00 41262,00 43298,00 22,59% 3601,29 
Experiment 5 2063,00 686,25 35120,00 37869,25 19,11% 3602,56 
Experiment 6 1471,00 637,37 44246,00 46354,37 24,77% 3601,33 
Experiment 7 1382,00 652,00 44272,00 46306,00 29,81% 3601,30 
Experiment 8 1110,00 678,00 63144,00 64932,00 32,51% 3601,22 
Experiment 9 1535,00 796,80 39107,00 41438,80 27,95% 3601,38 
Experiment 10 4303,00 483,25 33813,00 38599,25 4,31% 3601,71 
Experiment 11 4318,00 460,61 34043,00 38821,61 2,91% 3601,49 
Experiment 12 2566,00 601,41 36092,00 39259,41 15,16% 3601,61 
Experiment 13 1629,00 622,00 51688,00 53939,00 31,64% 3601,34 
Experiment 14 972,00 739,00 75863,00 77574,00 40,05% 3601,14 
Experiment 15 1223,00 788,00 47965,00 49976,00 36,83% 3601,20 
Experiment 16 1680,00 816,00 37493,00 39989,00 22,99% 3601,61 
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ateliercouture4.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1042,00 384,00 28766,00 30192,00 26,03% 3601,46 
Experiment 2 1248,00 192,78 35943,00 37383,78 0,00% 567,01 
Experiment 3 421,00 405,01 46212,00 47038,01 45,18% 3601,08 
Experiment 4 520,00 337,00 32506,00 33363,00 25,74% 3601,59 
Experiment 5 659,00 296,00 31125,00 32080,00 26,74% 3602,99 
Experiment 6 532,00 289,00 33897,00 34718,00 22,96% 3602,61 
Experiment 7 538,00 294,00 33753,00 34585,00 27,35% 3602,61 
Experiment 8 512,00 289,00 35099,00 35900,00 30,70% 3601,46 
Experiment 9 607,00 607,00 29975,00 31189,00 28,45% 3601,54 
Experiment 10 1696,00 246,88 28587,00 30529,88 20,27% 3601,21 
Experiment 11 1628,00 221,84 29331,00 31180,84 12,37% 3602,58 
Experiment 12 1919,00 358,22 28651,00 30928,22 24,00% 3601,55 
Experiment 13 622,00 244,30 38159,00 39025,30 21,81% 3601,82 
Experiment 14 431,00 345,80 37856,00 38632,80 36,09% 3601,26 
Experiment 15 473,00 430,00 33345,00 34248,00 34,16% 3601,23 
Experiment 16 646,00 604,00 29748,00 30998,00 27,32% 3601,44 

ateliercouture5.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1320,00 582,00 28989,00 30891,00 0,00% 10,12 
Experiment 2 1091,00 433,44 39526,00 41050,44 0,00% 14,59 
Experiment 3 662,00 661,00 36374,00 37697,00 0,00% 699,85 
Experiment 4 767,00 582,00 30976,00 32325,00 0,00% 57,06 
Experiment 5 803,00 652,00 29699,00 31154,00 0,00% 26,71 
Experiment 6 807,00 514,00 32400,01 33721,01 0,00% 23,40 
Experiment 7 737,00 558,01 32011,00 33306,01 0,00% 274,93 
Experiment 8 712,00 558,01 35849,96 37119,98 0,00% 1603,24 
Experiment 9 803,00 652,00 29699,00 31154,00 0,00% 91,70 
Experiment 10 1152,00 538,00 29813,00 31503,00 0,00% 9,60 
Experiment 11 1152,00 538,00 29813,00 31503,00 0,00% 14,15 
Experiment 12 1320,00 582,00 28989,00 30891,00 0,00% 5,88 
Experiment 13 1078,00 433,44 39858,00 41369,44 0,00% 192,77 
Experiment 14 671,00 602,00 35753,99 37026,99 4,26% 3601,05 
Experiment 15 739,00 626,00 30863,00 32228,00 0,00% 1487,45 
Experiment 16 803,00 652,00 29699,00 31154,00 0,00% 26,62 

ateliercouture6.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1408,00 729,00 33311,00 35448,00 34,55% 3603,98 
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Experiment 2 1866,00 228,36 42944,00 45038,36 0,00% 184,97 
Experiment 3 491,00 450,00 58248,99 59189,99 40,38% 3601,16 
Experiment 4 961,00 442,00 34568,00 35971,00 27,66% 3602,62 
Experiment 5 961,00 442,00 34568,00 35971,00 28,59% 3603,19 
Experiment 6 948,00 305,45 39778,00 41031,45 25,03% 3603,08 
Experiment 7 759,00 384,00 40526,00 41669,00 29,57% 3602,77 
Experiment 8 530,00 354,12 56496,00 57380,12 17,06% 3601,96 
Experiment 9 1066,00 554,00 33735,00 35355,00 34,17% 3603,16 
Experiment 10 1972,00 317,00 35025,00 37314,00 29,12% 3604,05 
Experiment 11 1881,00 251,00 38055,00 40187,00 20,33% 3603,17 
Experiment 12 1976,00 380,61 34191,00 36547,61 31,13% 3603,64 
Experiment 13 669,00 323,99 47894,00 48886,99 13,59% 3602,80 
Experiment 14 506,00 405,00 53531,00 54442,00 23,90% 3601,92 
Experiment 15 669,00 489,00 46125,00 47283,00 38,09% 3602,99 
Experiment 16 1066,00 554,00 33735,00 35355,00 32,53% 3603,69 

ateliercouture7.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 1810,00 583,50 38058,00 40451,50 17,49% 3601,36 
Experiment 2 1003,00 515,00 47653,00 49171,00 0,00% 170,07 
Experiment 3 704,00 669,00 66750,00 68123,00 34,67% 3600,79 
Experiment 4 1003,00 515,00 47653,00 49171,00 13,71% 3602,60 
Experiment 5 1614,00 600,50 39013,00 41227,50 15,68% 3601,64 
Experiment 6 1120,00 540,00 44467,00 46127,00 11,23% 3601,94 
Experiment 7 989,00 668,00 44104,00 45761,00 19,36% 3601,86 
Experiment 8 908,00 535,00 52966,00 54409,00 15,80% 3601,80 
Experiment 9 1032,00 668,00 43172,00 44872,00 17,14% 3601,84 
Experiment 10 1810,00 583,50 38058,00 40451,50 9,13% 3601,98 
Experiment 11 1704,00 539,50 39866,00 42109,50 4,85% 3601,30 
Experiment 12 1810,00 583,50 38058,00 40451,50 13,49% 3602,35 
Experiment 13 1003,00 515,00 47653,00 49171,00 0,00% 1377,06 
Experiment 14 783,00 618,00 56753,00 58154,00 26,84% 3601,24 
Experiment 15 820,00 812,00 53780,00 55412,00 24,07% 3601,73 
Experiment 16 1404,00 740,00 39683,00 41827,00 17,81% 3602,65 

ateliercouture8.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4549,00 1565,20 38514,00 44628,20 17,13% 3604,13 
Experiment 2 2766,00 991,20 52632,00 56389,20 0,00% 112,88 
Experiment 3 1495,00 1392,00 100019,00 102906,00 64,14% 3601,17 
Experiment 4 2322,00 1156,46 43209,00 46687,46 24,08% 3602,85 
Experiment 5 2885,00 1239,67 40804,00 44928,67 25,53% 3603,34 
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Experiment 6 2498,00 1195,07 44074,00 47767,07 22,03% 3603,44 
Experiment 7 2337,00 1247,41 42692,00 46276,41 33,00% 3602,62 
Experiment 8 1547,00 1172,90 84693,00 87412,90 30,90% 3603,36 
Experiment 9 2423,00 1413,32 40814,00 44650,32 32,08% 3602,97 
Experiment 10 3572,00 1158,52 40146,00 44876,52 10,50% 3603,12 
Experiment 11 2968,00 1089,45 44504,00 48561,45 7,46% 3602,24 
Experiment 12 2350,00 1195,92 40177,00 43722,92 13,82% 3603,87 
Experiment 13 1886,00 1098,45 81490,00 84474,45 19,56% 3603,75 
Experiment 14 1464,00 1128,00 88303,00 90895,00 43,83% 3602,37 
Experiment 15 2170,00 1333,60 52744,00 56247,60 47,69% 3601,78 
Experiment 16 2478,00 1367,64 40120,00 43965,64 23,26% 3603,70 

ateliercouture9.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 2537,00 785,15 27192,00 30514,15 19,86% 3602,25 
Experiment 2 1635,00 278,65 48528,00 50441,65 0,00% 192,17 
Experiment 3 623,00 570,96 51970,00 53163,96 40,18% 3600,92 
Experiment 4 901,00 393,00 37154,00 38448,00 21,65% 3602,65 
Experiment 5 1072,00 394,27 35672,00 37138,27 26,37% 3602,93 
Experiment 6 1040,00 407,00 36714,00 38161,00 20,52% 3602,94 
Experiment 7 750,00 532,27 37375,00 38657,27 22,24% 3603,21 
Experiment 8 683,00 383,64 51576,00 52642,64 16,21% 3602,72 
Experiment 9 1194,00 602,63 28614,00 30410,63 26,29% 3603,03 
Experiment 10 1383,00 373,77 35377,00 37133,77 24,82% 3603,85 
Experiment 11 1462,00 341,30 36162,00 37965,30 14,73% 3602,41 
Experiment 12 1649,00 550,99 27945,00 30144,99 18,28% 3603,79 
Experiment 13 891,00 308,00 48400,00 49599,00 0,00% 2929,69 
Experiment 14 639,00 453,77 43054,00 44146,77 26,45% 3602,04 
Experiment 15 699,00 484,00 40334,00 41517,00 28,05% 3602,48 
Experiment 16 1189,00 602,63 28614,00 30405,63 20,92% 3603,32 

ateliercouture10.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 3224,00 1587,45 31357,00 36168,45 17,40% 3601,97 
Experiment 2 2351,00 856,92 51424,00 54631,92 0,00% 113,58 
Experiment 3 1097,00 1097,00 77812,00 80006,00 54,04% 3601,48 
Experiment 4 1921,00 976,53 34388,00 37285,53 17,72% 3602,90 
Experiment 5 1866,00 1015,24 34472,00 37353,24 18,46% 3603,27 
Experiment 6 1859,00 927,29 35067,00 37853,29 11,66% 3602,89 
Experiment 7 1635,00 1102,74 41083,00 43820,74 28,06% 3603,30 
Experiment 8 1177,00 970,00 69141,00 71288,00 20,38% 3603,62 
Experiment 9 1992,00 1111,57 32843,00 35946,57 30,99% 3603,91 
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Experiment 10 2564,00 1006,20 32580,00 36150,20 9,48% 3602,48 
Experiment 11 1921,00 911,21 35333,00 38165,21 0,00% 3401,79 
Experiment 12 2934,00 1032,24 32245,00 36211,24 14,42% 3602,14 
Experiment 13 1137,00 930,84 72785,00 74852,84 6,72% 3602,66 
Experiment 14 1065,00 1051,00 75114,00 77230,00 33,70% 3602,89 
Experiment 15 1448,00 1137,92 45858,00 48443,92 39,62% 3603,40 
Experiment 16 1953,00 1103,08 32895,00 35951,08 22,08% 3602,94 

atelierpeinture1.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 7365,00 2584,00 76094,00 86043,00 0,00% 3511,06 
Experiment 2 6518,00 1970,50 85422,00 93910,50 0,00% 270,04 
Experiment 3 2552,00 2477,50 169931,00 174960,50 41,61% 3601,00 
Experiment 4 6549,00 1981,00 84525,00 93055,00 29,26% 3601,57 
Experiment 5 7115,00 1981,50 77767,00 86863,50 26,42% 3601,54 
Experiment 6 6549,00 1981,00 84525,00 93055,00 19,17% 3603,13 
Experiment 7 3809,00 2363,50 120488,00 126660,50 31,59% 3601,53 
Experiment 8 2430,00 2430,00 159268,00 164128,00 17,41% 3602,43 
Experiment 9 4568,00 3013,50 98983,00 106564,50 34,04% 3601,44 
Experiment 10 7138,00 1992,00 76869,00 85999,00 1,10% 3600,72 
Experiment 11 7138,00 1992,00 76869,00 85999,00 0,01% 1951,78 
Experiment 12 7138,00 1992,00 76869,00 85999,00 0,00% 1803,88 
Experiment 13 3834,00 1994,00 136317,00 142145,00 12,38% 3601,95 
Experiment 14 2547,00 2418,00 149852,00 154817,00 29,31% 3601,30 
Experiment 15 2598,00 2455,00 142673,00 147726,00 28,82% 3601,21 
Experiment 16 7052,00 2007,00 76986,00 86045,00 32,96% 3601,52 

atelierpeinture2.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 6489,00 2493,50 89556,00 98538,50 0,00% 1006,32 
Experiment 2 5037,00 2107,50 97902,00 105046,50 0,00% 43,30 
Experiment 3 2341,00 2341,00 169750,00 174432,00 29,67% 3600,84 
Experiment 4 3540,00 2449,50 101805,00 107794,50 7,10% 3601,34 
Experiment 5 4691,00 2401,50 91697,00 98789,50 0,00% 1164,09 
Experiment 6 4218,00 2265,50 98332,00 104815,50 3,06% 3600,92 
Experiment 7 2960,00 2517,50 111658,00 117135,50 11,00% 3601,61 
Experiment 8 2500,00 2209,00 161146,00 165855,00 4,14% 3601,13 
Experiment 9 3490,93 3190,50 97571,99 104253,41 0,00% 2355,99 
Experiment 10 5313,00 2115,00 92065,00 99493,00 0,00% 283,31 
Experiment 11 5313,00 2115,00 92065,00 99493,00 0,00% 55,68 
Experiment 12 5281,00 2184,00 90953,00 98418,00 0,00% 1036,21 
Experiment 13 2698,00 2158,00 161364,00 166220,00 0,01% 1738,46 
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Experiment 14 2411,00 2411,00 170709,00 175531,00 19,04% 3601,30 
Experiment 15 2752,00 2517,50 117527,00 122796,50 13,91% 3601,74 
Experiment 16 4011,00 2900,00 94120,00 101031,00 0,00% 1397,86 

atelierpeinture4.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4507,00 3514,00 98824,00 106845,00 3,47% 3600,71 
Experiment 2 3542,00 2495,00 119142,00 125179,00 0,00% 67,16 
Experiment 3 2637,00 2633,00 161906,72 167176,72 39,91% 3600,91 
Experiment 4 2825,00 2825,00 106186,00 111836,00 0,00% 2608,85 
Experiment 5 2825,00 2825,00 106186,00 111836,00 0,00% 3503,24 
Experiment 6 2825,00 2825,00 106186,00 111836,00 3,69% 3601,20 
Experiment 7 2825,00 2825,00 106186,00 111836,00 5,13% 3601,28 
Experiment 8 2607,00 2607,00 169134,00 174348,00 11,34% 3601,36 
Experiment 9 2825,00 2825,00 106186,00 111836,00 0,00% 3516,29 
Experiment 10 4266,00 2722,00 100724,00 107712,00 1,31% 3600,72 
Experiment 11 4266,00 2722,00 100724,00 107712,00 4,27% 3601,13 
Experiment 12 4396,00 2788,00 99942,00 107126,00 0,00% 3308,18 
Experiment 13 2675,00 2598,00 158050,00 163323,00 3,39% 3601,49 
Experiment 14 2607,00 2607,00 169134,00 174348,00 19,63% 3601,24 
Experiment 15 2797,00 2797,00 122284,00 127878,00 25,63% 11986,96 
Experiment 16 3479,00 3195,00 101607,97 108281,98 8,80% 3601,49 

atelierpeinture5.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 6128,00 3874,00 143512,00 153514,00 25,42% 3603,49 
Experiment 2 4945,00 3323,00 194331,00 202599,00 0,00% 218,42 
Experiment 3 3528,00 3528,00 195994,00 203050,00 47,48% 3601,65 
Experiment 4 3811,00 3654,00 148880,00 156345,00 14,98% 3602,68 
Experiment 5 3795,00 3785,00 146983,00 154563,00 17,35% 3602,77 
Experiment 6 3798,00 3664,00 147446,00 154908,00 12,51% 3603,34 
Experiment 7 3680,00 3680,00 151312,00 158672,00 16,82% 3603,36 
Experiment 8 3417,00 3417,00 186053,00 192887,00 14,42% 3603,38 
Experiment 9 3927,00 3759,00 146380,00 154066,00 22,20% 3602,90 
Experiment 10 5482,00 3652,00 146094,00 155228,00 19,95% 3603,20 
Experiment 11 4425,00 3564,00 145602,00 153591,00 10,94% 3602,79 
Experiment 12 6128,00 3874,00 143512,00 153514,00 22,17% 3602,94 
Experiment 13 3417,00 3417,00 186053,00 192887,00 5,27% 3602,70 
Experiment 14 3541,00 3541,00 188424,00 195506,00 31,14% 3603,01 
Experiment 15 3773,00 3773,00 148731,00 156277,00 26,76% 3603,57 
Experiment 16 4059,00 4015,00 145331,00 153405,00 21,54% 3603,23 

atelierpeinture6.xlsx 
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Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 2779,00 1247,00 88924,00 92950,00 44,30% 3602,86 
Experiment 2 1823,00 674,00 96478,00 98975,00 0,00% 67,94 
Experiment 3 989,00 955,00 127191,00 129135,00 0,00% 975,63 
Experiment 4 1199,00 827,50 94126,00 96152,50 26,88% 3602,36 
Experiment 5 1737,00 796,00 91576,00 94109,00 33,31% 3602,62 
Experiment 6 1350,00 765,50 95092,00 97207,50 23,75% 3602,56 
Experiment 7 1168,00 833,50 94132,00 96133,50 18,32% 3602,14 
Experiment 8 1139,00 833,50 94993,00 96965,50 10,12% 3601,42 
Experiment 9 1116,00 933,00 95062,00 97111,00 33,05% 3602,12 
Experiment 10 2717,00 717,00 91003,00 94437,00 38,44% 3603,24 
Experiment 11 2679,00 674,00 92468,00 95821,00 24,45% 3602,46 
Experiment 12 2883,00 780,75 89541,00 93204,75 43,13% 3602,90 
Experiment 13 1370,00 746,50 94911,00 97027,50 0,00% 1895,72 
Experiment 14 1150,00 805,00 97622,00 99577,00 17,05% 3601,88 
Experiment 15 1116,00 933,00 95062,00 97111,00 24,64% 3601,47 
Experiment 16 1387,00 1142,00 92301,00 94830,00 40,28% 3602,20 

atelierpeinture7.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4041,00 860,25 69725,00 74626,25 32,72% 3601,28 
Experiment 2 2326,00 675,00 73242,00 76243,00 0,00% 1438,16 
Experiment 3 1390,00 1390,00 142730,00 145510,00 51,71% 3601,72 
Experiment 4 1920,00 712,00 72506,00 75138,00 33,91% 3601,79 
Experiment 5 1920,00 712,00 72506,00 75138,00 32,16% 3605,18 
Experiment 6 1924,00 713,00 72912,00 75549,00 30,58% 3602,06 
Experiment 7 1920,00 712,00 72506,00 75138,00 37,11% 3604,16 
Experiment 8 1920,00 712,00 72506,00 75138,00 40,24% 3601,62 
Experiment 9 1924,00 713,00 72912,00 75549,00 37,50% 3604,49 
Experiment 10 3519,00 683,75 70688,00 74890,75 28,00% 3601,52 
Experiment 11 3160,00 674,75 71405,00 75239,75 21,75% 3601,60 
Experiment 12 3344,00 721,00 70257,00 74322,00 31,07% 3600,96 
Experiment 13 1920,00 712,00 72506,00 75138,00 23,56% 3602,00 
Experiment 14 1619,00 996,00 92608,00 95223,00 50,45% 3601,38 
Experiment 15 1989,00 794,00 72757,00 75540,00 47,66% 3601,44 
Experiment 16 1915,00 722,00 72502,00 75139,00 34,80% 3601,61 

atelierpeinture8.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4437,00 1276,75 100618,99 106332,74 27,37% 3603,45 
Experiment 2 2271,00 1026,00 144296,00 147593,00 0,00% 167,81 
Experiment 3 1568,00 1338,00 133660,01 136566,01 31,30% 3600,97 
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Experiment 4 1787,00 1104,00 107710,00 110601,00 15,18% 3602,14 
Experiment 5 1787,00 1104,00 107710,00 110601,00 21,05% 3601,96 
Experiment 6 1887,00 1102,00 108153,01 111142,01 16,30% 3601,56 
Experiment 7 1787,00 1104,00 107710,00 110601,00 11,09% 3601,71 
Experiment 8 1787,00 1104,00 107710,00 110601,00 9,76% 3601,77 
Experiment 9 1752,00 1408,00 107419,00 110579,00 18,53% 3601,78 
Experiment 10 4382,00 1116,00 102115,00 107613,00 21,14% 3601,55 
Experiment 11 3890,00 1074,00 103104,00 108068,00 9,83% 3601,70 
Experiment 12 4094,00 1146,75 101324,00 106564,75 25,28% 3601,38 
Experiment 13 1860,00 1075,00 109356,00 112291,00 0,00% 2532,87 
Experiment 14 1578,00 1434,00 129728,00 132740,00 23,34% 3601,94 
Experiment 15 1751,00 1408,25 107422,00 110581,25 13,54% 3601,61 
Experiment 16 1752,00 1408,00 107422,00 110582,00 25,38% 3602,78 

atelierpeinture9.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4681,00 3176,00 88430,00 96287,00 0,00% 141,31 
Experiment 2 4678,00 2424,00 92507,00 99609,00 0,00% 7,28 
Experiment 3 2642,00 2642,00 109987,00 115271,00 0,00% 749,22 
Experiment 4 2702,00 2587,00 96902,00 102191,00 0,00% 175,77 
Experiment 5 2702,00 2587,00 96902,00 102191,00 0,00% 247,60 
Experiment 6 2702,00 2587,00 96902,00 102191,00 0,00% 173,45 
Experiment 7 2702,00 2587,00 96902,00 102191,00 0,00% 136,78 
Experiment 8 2709,00 2481,00 103416,02 108606,02 0,00% 129,14 
Experiment 9 2702,00 2587,00 96902,00 102191,00 0,01% 420,79 
Experiment 10 4708,00 2476,00 90208,00 97392,00 0,00% 86,00 
Experiment 11 4678,00 2424,00 92507,00 99609,00 0,00% 48,43 
Experiment 12 4788,00 2524,00 89767,00 97079,00 0,00% 192,91 
Experiment 13 2707,00 2481,00 103424,00 108612,00 0,00% 93,52 
Experiment 14 2707,00 2481,00 103410,00 108598,00 0,00% 693,79 
Experiment 15 2702,00 2587,00 96902,00 102191,00 0,00% 626,64 
Experiment 16 2702,00 2587,00 96902,00 102191,00 0,00% 418,11 

atelierpeinture10.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4125,00 2106,00 97666,00 103897,00 25,22% 3601,65 
Experiment 2 4186,00 1414,00 107328,00 112928,00 0,00% 327,31 
Experiment 3 1582,00 1582,00 177714,00 180878,00 0,00% 666,20 
Experiment 4 2208,00 1600,00 114176,00 117984,00 20,17% 3601,82 
Experiment 5 2263,00 1664,00 112555,00 116482,00 25,41% 3601,62 
Experiment 6 2208,00 1600,00 114176,00 117984,00 17,75% 3601,64 
Experiment 7 2208,00 1600,00 114176,00 117984,00 15,09% 3601,57 
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Experiment 8 1582,00 1582,00 177714,00 180878,00 7,84% 3601,29 
Experiment 9 2263,00 1664,00 112555,00 116482,00 19,91% 3602,20 
Experiment 10 4234,00 1506,00 99533,00 105273,00 19,19% 3601,47 
Experiment 11 4341,00 1466,00 101664,00 107471,00 11,21% 3601,37 
Experiment 12 4144,00 1597,00 98185,00 103926,00 23,59% 3601,51 
Experiment 13 1647,00 1552,00 148718,00 151917,00 4,26% 3601,37 
Experiment 14 1629,00 1583,00 145378,00 148590,00 4,78% 3600,98 
Experiment 15 2196,00 1776,00 114293,00 118265,00 15,36% 3601,44 
Experiment 16 4125,00 2106,00 97666,00 103897,00 25,57% 3601,64 

atelierpeinture12.xlsx 
Experiment Cmax Intmax Total energy Total OBJ MIPgap Time 
Experiment 1 4026,00 2288,00 105025,00 111339,00 32,53% 3603,28 
Experiment 2 3622,00 1712,00 146606,00 151940,00 0,00% 1921,68 
Experiment 3 1919,00 1919,00 200250,00 204088,00 21,39% 3600,93 
Experiment 4 3743,00 2107,00 106251,00 112101,00 26,62% 3601,54 
Experiment 5 3743,00 2107,00 106251,00 112101,00 26,83% 3601,56 
Experiment 6 3799,00 2038,00 107343,00 113180,00 23,88% 3601,53 
Experiment 7 2904,00 2101,00 118168,00 123173,00 24,45% 3601,67 
Experiment 8 1957,00 1957,00 164467,00 168381,00 14,91% 3601,39 
Experiment 9 3342,00 2390,00 110659,00 116391,00 30,46% 3601,50 
Experiment 10 3799,00 2038,00 107343,00 113180,00 26,39% 3601,63 
Experiment 11 5386,00 1816,00 115153,00 122355,00 18,68% 3601,66 
Experiment 12 4026,00 2185,00 105212,00 111423,00 34,40% 3601,58 
Experiment 13 2089,00 1859,00 161156,00 165104,00 10,07% 3601,67 
Experiment 14 1957,00 1957,00 166067,00 169981,00 16,94% 3601,15 
Experiment 15 2136,00 2136,00 143543,00 147815,00 27,32% 3601,38 
Experiment 16 4026,00 2288,00 105024,99 111338,99 33,12% 3601,85 
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APPENDIX D 

DISTRIBUTION OF NON-DOMINATED SOLUTIONS ACCORDING TO BEST 

OBJECTIVE, GAP AND TIME 

atelierguitare1.xlsx atelierguitare2.xlsx atelierguitare3.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
5787,00 1420,00 65619,00 4979,00 677,50 56411,00 4731,00 1017,00 71306,00 
2478,00 955,00 93309,00 1641,00 562,00 72256,00 1288,00 1288,00 149823,00 
2146,00 1086,00 85192,00 696,00 695,00 116139,00 3135,00 1118,50 68149,00 
2855,00 1476,50 73395,00 991,00 592,00 81054,01 1929,00 1389,70 90739,04 
1823,00 1024,50 97340,00 1309,00 683,00 75302,03 1316,00 1195,00 149530,00 
1315,00 1050,00 102145,00 749,00 670,00 116620,00 5847,00 1101,50 58975,00 
1848,00 1387,50 91400,00 4106,00 664,25 59995,00 4911,00 1104,50 67678,00 
5651,00 1198,00 67809,00 4584,00 635,25 56785,00 2122,00 1071,50 113787,00 
5588,00 1038,75 73252,00 979,00 612,00 82772,00 1544,00 1242,00 138949,00 
5585,00 1325,50 65895,00 668,00 668,00 116639,00 2091,00 1336,20 95698,00 
1401,00 1012,00 103352,00 976,00 652,00 79886,00 3112,00 1142,00 68265,00 
1283,00 1159,00 104578,00 2015,00 799,25 63227,00 Makespan, Energy 
1359,00 1353,25 99221,00 Makespan, Energy 1288,00 1288,00 149823,00 
3238,00 1643,00 70281,00 4979,00 677,50 56411,00 3135,00 1118,50 68149,00 

Makespan, Energy 1641,00 562,00 72256,00 1929,00 1389,70 90739,04 
5787,00 1420,00 65619,00 696,00 695,00 116139,00 1316,00 1195,00 149530,00 
2146,00 1086,00 85192,00 1309,00 683,00 75302,03 5847,00 1101,50 58975,00 
2855,00 1476,50 73395,00 4106,00 664,25 59995,00 4911,00 1104,50 67678,00 
1823,00 1024,50 97340,00 4584,00 635,25 56785,00 1544,00 1242,00 138949,00 
1315,00 1050,00 102145,00 668,00 668,00 116639,00 3112,00 1142,00 68265,00 
1848,00 1387,50 91400,00 976,00 652,00 79886,00 Makespan, Labor intensity 
5585,00 1325,50 65895,00 2015,00 799,25 63227,00 4731,00 1017,00 71306,00 
1283,00 1159,00 104578,00 Makespan, Labor intensity 1288,00 1288,00 149823,00 
1359,00 1353,25 99221,00 1641,00 562,00 72256,00 1316,00 1195,00 149530,00 
3238,00 1643,00 70281,00 991,00 592,00 81054,01 2122,00 1071,50 113787,00 

Makespan, Labor intensity 979,00 612,00 82772,00 Labor intensity, Energy 
2478,00 955,00 93309,00 668,00 668,00 116639,00 4731,00 1017,00 71306,00 
1315,00 1050,00 102145,00 976,00 652,00 79886,00 5847,00 1101,50 58975,00 
1401,00 1012,00 103352,00 Labor intensity, Energy       

1283,00 1159,00 104578,00 4979,00 677,50 56411,00       

Labor intensity, Energy 1641,00 562,00 72256,00       

5787,00 1420,00 65619,00 4584,00 635,25 56785,00       

2478,00 955,00 93309,00             
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5651,00 1198,00 67809,00             

5588,00 1038,75 73252,00             

5585,00 1325,50 65895,00             

atelierguitare4.xlsx atelierguitare5.xlsx atelierguitare6.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
7975,00 2380,00 70073,00 7238,00 1284,50 65311,00 3882,00 762,50 76698,00 
4002,00 1323,00 118009,00 2268,00 1016,75 117657,00 1571,00 593,25 90848,00 
1792,00 1649,48 134821,02 1182,00 1178,00 130842,99 947,00 797,00 121146,00 
2593,00 1728,83 87432,00 1385,00 1201,25 110865,00 1270,00 693,25 87699,00 
1816,00 1622,00 142356,00 2390,00 1423,25 89595,00 1897,00 713,50 81127,00 
3028,00 1905,75 80448,00 2565,00 1126,75 80629,00 1293,00 639,00 89950,00 
5205,00 1546,00 79036,00 1601,00 1214,00 98194,00 1129,00 700,00 89734,00 
5439,00 1478,25 79313,00 1428,00 1173,00 129819,00 1177,00 687,50 94234,00 
5155,00 1768,50 75829,00 1298,00 1276,00 112784,00 1150,00 795,00 88433,00 
2321,00 1436,84 130112,00 6585,00 1084,25 65980,00 5691,00 626,00 67432,00 
1819,00 1614,00 143079,00 1333,00 1101,50 132218,00 4370,00 652,25 65838,00 
3507,00 1851,01 77655,00 1314,00 1179,00 127636,00 5795,00 688,00 65493,00 

Makespan, Energy 1281,00 1245,00 113558,02 1186,00 641,00 90918,00 
7975,00 2380,00 70073,00 3390,00 1266,50 74665,00 1078,00 718,00 93043,00 
1792,00 1649,48 134821,02 Makespan, Energy 1087,00 902,00 91317,00 
2593,00 1728,83 87432,00 7238,00 1284,50 65311,00 2672,00 794,50 69571,00 
3028,00 1905,75 80448,00 1182,00 1178,00 130842,99 Makespan, Energy 
5155,00 1768,50 75829,00 1385,00 1201,25 110865,00 947,00 797,00 121146,00 
2321,00 1436,84 130112,00 2390,00 1423,25 89595,00 1270,00 693,25 87699,00 
3507,00 1851,01 77655,00 2565,00 1126,75 80629,00 1897,00 713,50 81127,00 

Makespan, Labor intensity 1601,00 1214,00 98194,00 1129,00 700,00 89734,00 
4002,00 1323,00 118009,00 1298,00 1276,00 112784,00 1150,00 795,00 88433,00 
1792,00 1649,48 134821,02 6585,00 1084,25 65980,00 4370,00 652,25 65838,00 
1816,00 1622,00 142356,00 1281,00 1245,00 113558,02 5795,00 688,00 65493,00 
2321,00 1436,84 130112,00 3390,00 1266,50 74665,00 1078,00 718,00 93043,00 
1819,00 1614,00 143079,00 Makespan, Labor intensity 1087,00 902,00 91317,00 

Labor intensity, Energy 2268,00 1016,75 117657,00 2672,00 794,50 69571,00 
7975,00 2380,00 70073,00 1182,00 1178,00 130842,99 Makespan, Labor intensity 
4002,00 1323,00 118009,00 1333,00 1101,50 132218,00 1571,00 593,25 90848,00 
5205,00 1546,00 79036,00 Labor intensity, Energy 947,00 797,00 121146,00 
5439,00 1478,25 79313,00 7238,00 1284,50 65311,00 1293,00 639,00 89950,00 
5155,00 1768,50 75829,00 2268,00 1016,75 117657,00 1129,00 700,00 89734,00 

      6585,00 1084,25 65980,00 1177,00 687,50 94234,00 
            1186,00 641,00 90918,00 
            1078,00 718,00 93043,00 
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            Labor intensity, Energy 
            1571,00 593,25 90848,00 
            5691,00 626,00 67432,00 
            4370,00 652,25 65838,00 
            5795,00 688,00 65493,00 

atelierguitare7.xlsx atelierguitare9.xlsx atelierguitare10.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
1998,00 1138,00 110994,00 3954,00 1651,44 74537,00 5787,00 1420,00 65619,00 
1374,00 1374,00 140461,00 4681,00 775,65 109360,00 1297,00 1297,00 109686,00 
1680,00 1307,00 92160,00 1094,00 1078,00 107331,00 2146,00 1086,00 85192,00 
1380,00 1300,00 115944,02 1335,00 980,00 99835,00 2855,00 1476,50 73395,00 
2639,00 1485,25 88659,00 1732,00 1279,00 83976,00 2024,00 992,50 90253,00 
1696,00 1172,00 110342,00 1149,00 954,00 100165,00 1754,00 856,50 93171,00 
1432,00 1287,00 115924,00 1660,00 1465,00 83571,00 1339,00 962,00 138651,00 
1617,00 1453,00 90727,00 4765,00 993,56 76878,00 2292,00 1020,50 85307,00 
1786,00 1573,00 89028,00 4619,00 917,14 91555,00 4703,00 981,25 77438,00 

Makespan, Energy 4727,00 1056,05 76050,00 5400,00 846,75 78022,00 
1374,00 1374,00 140461,00 1314,00 918,44 103684,00 4205,00 1101,50 76732,00 
1380,00 1300,00 115944,02 1108,00 1006,00 101908,00 1607,00 895,00 103799,00 
2639,00 1485,25 88659,00 2301,00 1729,00 77566,00 3250,00 1172,25 81412,00 
1432,00 1287,00 115924,00 Makespan, Energy Makespan, Energy 
1617,00 1453,00 90727,00 3954,00 1651,44 74537,00 5787,00 1420,00 65619,00 
1786,00 1573,00 89028,00 1094,00 1078,00 107331,00 1297,00 1297,00 109686,00 

Makespan, Labor intensity 1335,00 980,00 99835,00 2146,00 1086,00 85192,00 
1998,00 1138,00 110994,00 1149,00 954,00 100165,00 2855,00 1476,50 73395,00 
1374,00 1374,00 140461,00 1660,00 1465,00 83571,00 2024,00 992,50 90253,00 
1380,00 1300,00 115944,02 1108,00 1006,00 101908,00 1754,00 856,50 93171,00 
1696,00 1172,00 110342,00 2301,00 1729,00 77566,00 1607,00 895,00 103799,00 
1432,00 1287,00 115924,00 Makespan, Labor intensity Makespan, Labor intensity 

Labor intensity, Energy 4681,00 775,65 109360,00 1297,00 1297,00 109686,00 
1998,00 1138,00 110994,00 1094,00 1078,00 107331,00 1754,00 856,50 93171,00 
2639,00 1485,25 88659,00 1149,00 954,00 100165,00 1339,00 962,00 138651,00 
1696,00 1172,00 110342,00 4619,00 917,14 91555,00 5400,00 846,75 78022,00 

      1314,00 918,44 103684,00 1607,00 895,00 103799,00 
      1108,00 1006,00 101908,00 Labor intensity, Energy 
      Labor intensity, Energy 5787,00 1420,00 65619,00 
      3954,00 1651,44 74537,00 4703,00 981,25 77438,00 
      4681,00 775,65 109360,00 5400,00 846,75 78022,00 
      4765,00 993,56 76878,00 4205,00 1101,50 76732,00 
      4619,00 917,14 91555,00       
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      4727,00 1056,05 76050,00       

atelierguitare11.xlsx ateliercouture1.xlsx ateliercouture2.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
6336,00 1258,50 61223,00 1285,00 762,01 34050,00 1388,00 669,30 26902,00 
3268,00 958,50 103823,00 1058,00 254,52 41391,00 1020,00 275,00 36361,00 
1290,00 1261,00 131111,00 651,00 352,12 35028,00 513,00 477,00 49319,00 
2653,00 1033,00 88531,00 608,00 314,00 37657,00 666,00 347,96 32954,00 
3371,00 1190,00 73331,00 576,00 316,00 36693,00 775,00 341,00 29542,00 
1744,00 1190,00 103014,00 1036,00 338,00 34710,00 754,00 346,00 31199,00 
2503,00 1431,00 87526,00 1202,00 286,00 36500,00 715,00 360,00 31001,00 
6347,00 1146,50 61738,00 1168,00 331,38 34847,00 593,00 347,00 36553,00 
5637,00 1111,00 69200,00 608,00 282,92 38064,00 753,00 360,00 29776,00 
6419,00 1169,00 61226,00 499,00 375,00 38134,00 1247,00 391,49 27233,00 
1381,00 1028,00 126349,00 530,00 388,00 36397,00 1082,00 348,49 28483,00 
1322,00 1089,00 131910,00 934,00 452,00 34330,00 1169,00 391,49 27500,00 
1836,00 1171,00 103307,00 Makespan, Energy 676,00 298,50 34964,00 
4452,00 1144,50 67962,00 1285,00 762,01 34050,00 569,00 376,00 39205,00 

Makespan, Energy 651,00 352,12 35028,00 588,00 420,00 35208,00 
6336,00 1258,50 61223,00 499,00 375,00 38134,00 871,00 535,55 27554,00 
1290,00 1261,00 131111,00 530,00 388,00 36397,00 Makespan, Energy 
3371,00 1190,00 73331,00 934,00 452,00 34330,00 1388,00 669,30 26902,00 
1744,00 1190,00 103014,00 Makespan, Labor intensity 513,00 477,00 49319,00 
2503,00 1431,00 87526,00 1058,00 254,52 41391,00 666,00 347,96 32954,00 
1381,00 1028,00 126349,00 576,00 316,00 36693,00 775,00 341,00 29542,00 
4452,00 1144,50 67962,00 608,00 282,92 38064,00 715,00 360,00 31001,00 

Makespan, Labor intensity 499,00 375,00 38134,00 753,00 360,00 29776,00 
3268,00 958,50 103823,00 Labor intensity, Energy 1247,00 391,49 27233,00 
1290,00 1261,00 131111,00 1285,00 762,01 34050,00 1169,00 391,49 27500,00 
1381,00 1028,00 126349,00 1058,00 254,52 41391,00 569,00 376,00 39205,00 
1322,00 1089,00 131910,00 1036,00 338,00 34710,00 588,00 420,00 35208,00 

Labor intensity, Energy 1202,00 286,00 36500,00 871,00 535,55 27554,00 
3268,00 958,50 103823,00 1168,00 331,38 34847,00 Makespan, Labor intensity 
2653,00 1033,00 88531,00 608,00 282,92 38064,00 1020,00 275,00 36361,00 
6347,00 1146,50 61738,00 934,00 452,00 34330,00 513,00 477,00 49319,00 
5637,00 1111,00 69200,00       593,00 347,00 36553,00 
6419,00 1169,00 61226,00       676,00 298,50 34964,00 
4452,00 1144,50 67962,00       569,00 376,00 39205,00 

            Labor intensity, Energy 
            1388,00 669,30 26902,00 
            1020,00 275,00 36361,00 
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            775,00 341,00 29542,00 
            1247,00 391,49 27233,00 
            1082,00 348,49 28483,00 
            676,00 298,50 34964,00 

ateliercouture3.xlsx ateliercouture4.xlsx ateliercouture5.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
3012,00 949,73 33100,00 1042,00 384,00 28766,00 1091,00 433,44 39526,00 
3240,00 429,37 50498,00 1248,00 192,78 35943,00 662,00 661,00 36374,00 
937,00 815,00 73366,00 421,00 405,01 46212,00 767,00 582,00 30976,00 

1348,00 688,00 41262,00 520,00 337,00 32506,00 807,00 514,00 32400,01 
2063,00 686,25 35120,00 659,00 296,00 31125,00 737,00 558,01 32011,00 
1471,00 637,37 44246,00 532,00 289,00 33897,00 712,00 558,01 35849,96 
1382,00 652,00 44272,00 538,00 294,00 33753,00 1078,00 433,44 39858,00 
1110,00 678,00 63144,00 512,00 289,00 35099,00 671,00 602,00 35753,99 
1535,00 796,80 39107,00 607,00 607,00 29975,00 739,00 626,00 30863,00 
4303,00 483,25 33813,00 1696,00 246,88 28587,00 Makespan, Energy 
4318,00 460,61 34043,00 1628,00 221,84 29331,00 662,00 661,00 36374,00 
2566,00 601,41 36092,00 622,00 244,30 38159,00 737,00 558,01 32011,00 
1629,00 622,00 51688,00 431,00 345,80 37856,00 671,00 602,00 35753,99 
972,00 739,00 75863,00 473,00 430,00 33345,00 739,00 626,00 30863,00 

1223,00 788,00 47965,00 646,00 604,00 29748,00 Makespan, Labor intensity 
1680,00 816,00 37493,00 Makespan, Energy 662,00 661,00 36374,00 

Makespan, Energy 1042,00 384,00 28766,00 807,00 514,00 32400,01 
3012,00 949,73 33100,00 421,00 405,01 46212,00 712,00 558,01 35849,96 
937,00 815,00 73366,00 520,00 337,00 32506,00 1078,00 433,44 39858,00 

1348,00 688,00 41262,00 607,00 607,00 29975,00 671,00 602,00 35753,99 
2063,00 686,25 35120,00 1696,00 246,88 28587,00 Labor intensity, Energy 
1110,00 678,00 63144,00 431,00 345,80 37856,00 1091,00 433,44 39526,00 
1535,00 796,80 39107,00 473,00 430,00 33345,00 807,00 514,00 32400,01 
1223,00 788,00 47965,00 646,00 604,00 29748,00       

1680,00 816,00 37493,00 Makespan, Labor intensity       

Makespan, Labor intensity 1248,00 192,78 35943,00       

3240,00 429,37 50498,00 421,00 405,01 46212,00       

937,00 815,00 73366,00 512,00 289,00 35099,00       

1471,00 637,37 44246,00 622,00 244,30 38159,00       

1382,00 652,00 44272,00 431,00 345,80 37856,00       

1110,00 678,00 63144,00 Labor intensity, Energy       

2566,00 601,41 36092,00 1248,00 192,78 35943,00       

1629,00 622,00 51688,00 1696,00 246,88 28587,00       

972,00 739,00 75863,00 1628,00 221,84 29331,00       
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Labor intensity, Energy             

3012,00 949,73 33100,00             

3240,00 429,37 50498,00             

4303,00 483,25 33813,00             

4318,00 460,61 34043,00             

ateliercouture6.xlsx ateliercouture7.xlsx ateliercouture8.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
1408,00 729,00 33311,00 704,00 669,00 66750,00 4549,00 1565,20 38514,00 
1866,00 228,36 42944,00 1614,00 600,50 39013,00 2766,00 991,20 52632,00 
491,00 450,00 58248,99 1120,00 540,00 44467,00 2322,00 1156,46 43209,00 
948,00 305,45 39778,00 989,00 668,00 44104,00 2337,00 1247,41 42692,00 
759,00 384,00 40526,00 908,00 535,00 52966,00 1547,00 1172,90 84693,00 
530,00 354,12 56496,00 1032,00 668,00 43172,00 3572,00 1158,52 40146,00 

1972,00 317,00 35025,00 1704,00 539,50 39866,00 2968,00 1089,45 44504,00 
1881,00 251,00 38055,00 783,00 618,00 56753,00 2350,00 1195,92 40177,00 
1976,00 380,61 34191,00 820,00 812,00 53780,00 1886,00 1098,45 81490,00 
669,00 323,99 47894,00 1404,00 740,00 39683,00 1464,00 1128,00 88303,00 
506,00 405,00 53531,00 Makespan, Energy 2170,00 1333,60 52744,00 
669,00 489,00 46125,00 704,00 669,00 66750,00 2478,00 1367,64 40120,00 

Makespan, Energy 1614,00 600,50 39013,00 Makespan, Energy 
1408,00 729,00 33311,00 989,00 668,00 44104,00 4549,00 1565,20 38514,00 
491,00 450,00 58248,99 908,00 535,00 52966,00 2322,00 1156,46 43209,00 
948,00 305,45 39778,00 1032,00 668,00 43172,00 2337,00 1247,41 42692,00 
759,00 384,00 40526,00 783,00 618,00 56753,00 1547,00 1172,90 84693,00 
506,00 405,00 53531,00 820,00 812,00 53780,00 2350,00 1195,92 40177,00 
669,00 489,00 46125,00 1404,00 740,00 39683,00 1886,00 1098,45 81490,00 

Makespan, Labor intensity Makespan, Labor intensity 1464,00 1128,00 88303,00 
1866,00 228,36 42944,00 704,00 669,00 66750,00 2170,00 1333,60 52744,00 
491,00 450,00 58248,99 908,00 535,00 52966,00 2478,00 1367,64 40120,00 
948,00 305,45 39778,00 783,00 618,00 56753,00 Makespan, Labor intensity 
530,00 354,12 56496,00 Labor intensity, Energy 2766,00 991,20 52632,00 
669,00 323,99 47894,00 1704,00 539,50 39866,00 1886,00 1098,45 81490,00 
506,00 405,00 53531,00       1464,00 1128,00 88303,00 

Labor intensity, Energy       Labor intensity, Energy 
1408,00 729,00 33311,00       4549,00 1565,20 38514,00 
1866,00 228,36 42944,00       2766,00 991,20 52632,00 
1972,00 317,00 35025,00       2322,00 1156,46 43209,00 
1881,00 251,00 38055,00       3572,00 1158,52 40146,00 
1976,00 380,61 34191,00       2968,00 1089,45 44504,00 

            2478,00 1367,64 40120,00 
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ateliercouture9.xlsx ateliercouture10.xlsx atelierpeinture1.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
2537,00 785,15 27192,00 3224,00 1587,45 31357,00 7365,00 2584,00 76094,00 
1635,00 278,65 48528,00 2351,00 856,92 51424,00 6518,00 1970,50 85422,00 
623,00 570,96 51970,00 1921,00 976,53 34388,00 7115,00 1981,50 77767,00 
901,00 393,00 37154,00 1866,00 1015,24 34472,00 3809,00 2363,50 120488,00 

1072,00 394,27 35672,00 1859,00 927,29 35067,00 2430,00 2430,00 159268,00 
1040,00 407,00 36714,00 1635,00 1102,74 41083,00 4568,00 3013,50 98983,00 
750,00 532,27 37375,00 1177,00 970,00 69141,00 3834,00 1994,00 136317,00 
683,00 383,64 51576,00 1992,00 1111,57 32843,00 2547,00 2418,00 149852,00 

1383,00 373,77 35377,00 2564,00 1006,20 32580,00 2598,00 2455,00 142673,00 
1462,00 341,30 36162,00 1921,00 911,21 35333,00 7052,00 2007,00 76986,00 
1649,00 550,99 27945,00 2934,00 1032,24 32245,00 Makespan, Energy 
891,00 308,00 48400,00 1137,00 930,84 72785,00 7365,00 2584,00 76094,00 
639,00 453,77 43054,00 1065,00 1051,00 75114,00 6518,00 1970,50 85422,00 
699,00 484,00 40334,00 1448,00 1137,92 45858,00 3809,00 2363,50 120488,00 

1189,00 602,63 28614,00 1953,00 1103,08 32895,00 2430,00 2430,00 159268,00 
Makespan, Energy Makespan, Energy 4568,00 3013,50 98983,00 

2537,00 785,15 27192,00 3224,00 1587,45 31357,00 2547,00 2418,00 149852,00 
623,00 570,96 51970,00 1921,00 976,53 34388,00 2598,00 2455,00 142673,00 
901,00 393,00 37154,00 1866,00 1015,24 34472,00 7052,00 2007,00 76986,00 

1072,00 394,27 35672,00 1859,00 927,29 35067,00 Makespan, Labor intensity 
1040,00 407,00 36714,00 1635,00 1102,74 41083,00 6518,00 1970,50 85422,00 
750,00 532,27 37375,00 1177,00 970,00 69141,00 3809,00 2363,50 120488,00 

1649,00 550,99 27945,00 1992,00 1111,57 32843,00 2430,00 2430,00 159268,00 
639,00 453,77 43054,00 2564,00 1006,20 32580,00 3834,00 1994,00 136317,00 
699,00 484,00 40334,00 2934,00 1032,24 32245,00 2547,00 2418,00 149852,00 

1189,00 602,63 28614,00 1137,00 930,84 72785,00 Labor intensity, Energy 
Makespan, Labor intensity 1065,00 1051,00 75114,00 7365,00 2584,00 76094,00 

1635,00 278,65 48528,00 1448,00 1137,92 45858,00 6518,00 1970,50 85422,00 
623,00 570,96 51970,00 1953,00 1103,08 32895,00 7115,00 1981,50 77767,00 
683,00 383,64 51576,00 Makespan, Labor intensity       

891,00 308,00 48400,00 2351,00 856,92 51424,00       

639,00 453,77 43054,00 1859,00 927,29 35067,00       

Labor intensity, Energy 1921,00 911,21 35333,00       

2537,00 785,15 27192,00 1137,00 930,84 72785,00       

1635,00 278,65 48528,00 1065,00 1051,00 75114,00       

1383,00 373,77 35377,00 Labor intensity, Energy       

1462,00 341,30 36162,00 3224,00 1587,45 31357,00       

1649,00 550,99 27945,00 2351,00 856,92 51424,00       
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891,00 308,00 48400,00 1921,00 976,53 34388,00       

      1859,00 927,29 35067,00       

      2564,00 1006,20 32580,00       

      1921,00 911,21 35333,00       

      2934,00 1032,24 32245,00       

atelierpeinture2.xlsx atelierpeinture4.xlsx atelierpeinture5.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
6489,00 2493,50 89556,00 4507,00 3514,00 98824,00 4945,00 3323,00 194331,00 
5037,00 2107,50 97902,00 3542,00 2495,00 119142,00 3811,00 3654,00 148880,00 
2341,00 2341,00 169750,00 2637,00 2633,00 161906,72 3795,00 3785,00 146983,00 
3540,00 2449,50 101805,00 4396,00 2788,00 99942,00 3798,00 3664,00 147446,00 
4691,00 2401,50 91697,00 2675,00 2598,00 158050,00 3680,00 3680,00 151312,00 
4218,00 2265,50 98332,00 2797,00 2797,00 122284,00 3927,00 3759,00 146380,00 
2960,00 2517,50 111658,00 3479,00 3195,00 101607,97 4425,00 3564,00 145602,00 
2500,00 2209,00 161146,00 Makespan, Energy 3773,00 3773,00 148731,00 
3490,93 3190,50 97571,99 4507,00 3514,00 98824,00 4059,00 4015,00 145331,00 
5281,00 2184,00 90953,00 2637,00 2633,00 161906,72 Makespan, Energy 
2698,00 2158,00 161364,00 4396,00 2788,00 99942,00 3795,00 3785,00 146983,00 
2752,00 2517,50 117527,00 2675,00 2598,00 158050,00 3680,00 3680,00 151312,00 
4011,00 2900,00 94120,00 2797,00 2797,00 122284,00 3927,00 3759,00 146380,00 

Makespan, Energy 3479,00 3195,00 101607,97 3773,00 3773,00 148731,00 
6489,00 2493,50 89556,00 Makespan, Labor intensity 4059,00 4015,00 145331,00 
2341,00 2341,00 169750,00 3542,00 2495,00 119142,00 Makespan, Labor intensity 
4691,00 2401,50 91697,00 2675,00 2598,00 158050,00 4945,00 3323,00 194331,00 
2960,00 2517,50 111658,00 Labor intensity, Energy Labor intensity, Energy 
2500,00 2209,00 161146,00 4507,00 3514,00 98824,00 4945,00 3323,00 194331,00 
3490,93 3190,50 97571,99 3542,00 2495,00 119142,00 4425,00 3564,00 145602,00 
5281,00 2184,00 90953,00 4396,00 2788,00 99942,00       

2752,00 2517,50 117527,00             

4011,00 2900,00 94120,00             

Makespan, Labor intensity             

5037,00 2107,50 97902,00             

2341,00 2341,00 169750,00             

2500,00 2209,00 161146,00             

2698,00 2158,00 161364,00             

Labor intensity, Energy             

6489,00 2493,50 89556,00             

5037,00 2107,50 97902,00             

5281,00 2184,00 90953,00             

atelierpeinture6.xlsx atelierpeinture7.xlsx atelierpeinture8.xlsx 
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Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 
Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
2779,00 1247,00 88924,00 4041,00 860,25 69725,00 4437,00 1276,75 100618,99 
1823,00 674,00 96478,00 2326,00 675,00 73242,00 2271,00 1026,00 144296,00 
989,00 955,00 127191,00 1390,00 1390,00 142730,00 1568,00 1338,00 133660,01 

1199,00 827,50 94126,00 3519,00 683,75 70688,00 1887,00 1102,00 108153,01 
1737,00 796,00 91576,00 3160,00 674,75 71405,00 4382,00 1116,00 102115,00 
1350,00 765,50 95092,00 3344,00 721,00 70257,00 3890,00 1074,00 103104,00 
1168,00 833,50 94132,00 1619,00 996,00 92608,00 4094,00 1146,75 101324,00 
1139,00 833,50 94993,00 1915,00 722,00 72502,00 1860,00 1075,00 109356,00 
2717,00 717,00 91003,00 Makespan, Energy 1578,00 1434,00 129728,00 
2679,00 674,00 92468,00 4041,00 860,25 69725,00 1751,00 1408,25 107422,00 
2883,00 780,75 89541,00 1390,00 1390,00 142730,00 Makespan, Energy 
1370,00 746,50 94911,00 3160,00 674,75 71405,00 4437,00 1276,75 100618,99 
1150,00 805,00 97622,00 3344,00 721,00 70257,00 1568,00 1338,00 133660,01 
1387,00 1142,00 92301,00 1619,00 996,00 92608,00 3890,00 1074,00 103104,00 

Makespan, Energy 1915,00 722,00 72502,00 4094,00 1146,75 101324,00 
2779,00 1247,00 88924,00 Makespan, Labor intensity 1578,00 1434,00 129728,00 
989,00 955,00 127191,00 2326,00 675,00 73242,00 1751,00 1408,25 107422,00 

1737,00 796,00 91576,00 1390,00 1390,00 142730,00 Makespan, Labor intensity 
1168,00 833,50 94132,00 3160,00 674,75 71405,00 2271,00 1026,00 144296,00 
1139,00 833,50 94993,00 1619,00 996,00 92608,00 1568,00 1338,00 133660,01 
2717,00 717,00 91003,00 1915,00 722,00 72502,00 1860,00 1075,00 109356,00 
1387,00 1142,00 92301,00 Labor intensity, Energy Labor intensity, Energy 

Makespan, Labor intensity 4041,00 860,25 69725,00 4437,00 1276,75 100618,99 
1823,00 674,00 96478,00 3519,00 683,75 70688,00 2271,00 1026,00 144296,00 
989,00 955,00 127191,00 3160,00 674,75 71405,00 4382,00 1116,00 102115,00 

1350,00 765,50 95092,00 3344,00 721,00 70257,00 3890,00 1074,00 103104,00 
1139,00 833,50 94993,00       4094,00 1146,75 101324,00 
1370,00 746,50 94911,00             

1150,00 805,00 97622,00             

Labor intensity, Energy             

2779,00 1247,00 88924,00             

2717,00 717,00 91003,00             

2679,00 674,00 92468,00             

2883,00 780,75 89541,00             

atelierpeinture9.xlsx atelierpeinture10.xlsx atelierpeinture12.xlsx 
Cmax Intmax Total energy Cmax Intmax Total energy Cmax Intmax Total energy 

Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy Makespan, Labor intensity, Energy 
4681,00 3176,00 88430,00 4186,00 1414,00 107328,00 3622,00 1712,00 146606,00 
2642,00 2642,00 109987,00 4234,00 1506,00 99533,00 1919,00 1919,00 200250,00 



 

 124 

4708,00 2476,00 90208,00 4341,00 1466,00 101664,00 2904,00 2101,00 118168,00 
4788,00 2524,00 89767,00 4144,00 1597,00 98185,00 1957,00 1957,00 164467,00 
2707,00 2481,00 103410,00 1647,00 1552,00 148718,00 3342,00 2390,00 110659,00 

Makespan, Energy 1629,00 1583,00 145378,00 5386,00 1816,00 115153,00 
4681,00 3176,00 88430,00 2196,00 1776,00 114293,00 4026,00 2185,00 105212,00 
2642,00 2642,00 109987,00 Makespan, Energy 2089,00 1859,00 161156,00 

Makespan, Labor intensity 1629,00 1583,00 145378,00 2136,00 2136,00 143543,00 
2642,00 2642,00 109987,00 2196,00 1776,00 114293,00 Makespan, Energy 

Labor intensity, Energy Makespan, Labor intensity 1919,00 1919,00 200250,00 
4681,00 3176,00 88430,00 4186,00 1414,00 107328,00 2904,00 2101,00 118168,00 
4708,00 2476,00 90208,00 1647,00 1552,00 148718,00 1957,00 1957,00 164467,00 
4788,00 2524,00 89767,00 Labor intensity, Energy 3342,00 2390,00 110659,00 

      4186,00 1414,00 107328,00 2089,00 1859,00 161156,00 
      4234,00 1506,00 99533,00 2136,00 2136,00 143543,00 
      4341,00 1466,00 101664,00 Makespan, Labor intensity 
      4144,00 1597,00 98185,00 3622,00 1712,00 146606,00 
            1919,00 1919,00 200250,00 
            2089,00 1859,00 161156,00 
            Labor intensity, Energy 
            3622,00 1712,00 146606,00 
            5386,00 1816,00 115153,00 
            4026,00 2185,00 105212,00 
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APPENDIX E 

FIGURES REPRESENTING THE RELATIONSHIP BETWEEN MAKESPAN, ENERGY AND LABOR INTENSITY FOR 

EACH INSTANCE 
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APPENDIX F 

FIGURES REPRESENTING THE RELATIONSHIP BETWEEN MAKESPAN AND ENERGY FOR EACH INSTANCE 
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APPENDIX G 

FIGURES REPRESENTING THE RELATIONSHIP BETWEEN MAKESPAN AND LABOR INTENSITY PER INSTANCE 
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APPENDIX H 

FIGURES REPRESENTING THE RELATIONSHIP BETWEEN LABOR INTENSITY AND ENERGY PER INSTANCE 
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opeŕations : viser l'excellence opeŕationnelle. Presses de l'Université du Québec. Retrieved 2023, 

from https://www.jstor.org/stable/j.ctt1f117ww. 

 

Sui, Z., Li, X., Yang, J., & Liu, J. (2021). Data-driven fault-aware multi-objective optimization for 

flexible job-shop scheduling problem. Artificial Intelligence in China, 653, 261‑269. 

https://doi.org/10.1007/978-981-15-8599-9_31 

https://doi.org/10.1017/S0890060415000335
https://doi.org/10.1007/s00170-015-7987-0
https://doi.org/10.1016/j.jclepro.2015.10.094
https://doi.org/10.2507/IJSIMM17(4)CO18
https://doi.org/10.2507/IJSIMM19-1-CO1
https://www.jstor.org/stable/j.ctt1f117ww
https://doi.org/10.1007/978-981-15-8599-9_31


 

 160 

Sun, X., Wang, Y., Kang, H., Shen, Y., Chen, Q., & Wang, D. (2021). Modified multi-crossover 

operator NSGA-III for solving low carbon flexible job shop scheduling problem. Processes, 9(1), 

62–62. https://doi.org/10.3390/pr9010062 

United Nations Department for Economic and Social Affairs. (2023). Sustainable development 

goals report 2023: Special Edition. United Nations. 

Vallejos-Cifuentes, P., Ramirez-Gomez, C., Escudero-Atehortua, A., & Rodriguez Velasquez, E. 

(2019). Energy-aware production scheduling in flow shop and job shop environments using a 

multi-objective genetic algorithm. Engineering Management Journal, 31(2), 82–97. 

https://doi.org/10.1080/10429247.2018.1544798 

Wang, H. (2019). Manufacturing workshop multi-objective dynamic scheduling problem and 

model establishment. Academic Journal of Manufacturing Engineering, 17(2), 92–97. 

Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method 

for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal 

of Cleaner Production, 188, 575–588. https://doi.org/10.1016/j.jclepro.2018.03.254 

Wang, H., Sheng, B., Lu, Q., Yin, X., Zhao, F., Lu, X., Luo, R., & Fu, G. (2021). A novel multi-

objective optimization algorithm for the integrated scheduling of flexible job shops considering 

preventive maintenance activities and transportation processes. Soft Computing : A Fusion of 

Foundations, Methodologies and Applications, 25(4), 2863–2889. https://doi.org/10.1007/s00500-

020-05347-z 

Wang, J., Liu, Y., Ren, S., Wang, C., & Wang, W. (2021). Evolutionary game based real-time 

scheduling for energy-efficient distributed and flexible job shop. Journal of Cleaner Production, 

293. https://doi.org/10.1016/j.jclepro.2021.126093 

https://doi.org/10.3390/pr9010062
https://doi.org/10.1080/10429247.2018.1544798
https://doi.org/10.1016/j.jclepro.2018.03.254
https://doi.org/10.1007/s00500-020-05347-z
https://doi.org/10.1007/s00500-020-05347-z
https://doi.org/10.1016/j.jclepro.2021.126093


 

 161 

Wang, J., Yang, J., Zhang, Y., Ren, S., & Liu, Y. (2020). Infinitely repeated game based real-time 

scheduling for low-carbon flexible job shop considering multi-time periods. Journal of Cleaner 

Production, 247. https://doi.org/10.1016/j.jclepro.2019.119093 

Wang, J., Zhang, Y., Liu, Y., & Wu, N. (2019). Multiagent and bargaining-game-based real-time 

scheduling for internet of things-enabled flexible job shop. Ieee Internet of Things Journal, 6(2), 

2518–2531. https://doi.org/10.1109/JIOT.2018.2871346 

Wang, Y., Peng, W., Lu, C., & Xia, H. (2022). A multi-objective cellular memetic optimization 

algorithm for green scheduling in flexible job shops. Symmetry, 14(4), 832. 

https://doi.org/10.3390/sym14040832 

Wei, H., Li, S., Quan, H., Liu, D., Rao, S., Li, C., & Hu, J. (2021). Unified multi-objective genetic 

algorithm for energy efficient job shop scheduling. Ieee Access, 9. 

https://doi.org/10.1109/ACCESS.2021.3070981 

Wei, Z., Liao, W., & Zhang, L. (2022). Hybrid energy-efficient scheduling measures for flexible 

job-shop problem with variable machining speeds. Expert Systems with Applications, 197. 

https://doi.org/10.1016/j.eswa.2022.116785 

Wenwen Lin, Lei Wang, Rengkai Zhou, Yuejun Zhang, & Chaoyong Zhang. (2018). Full-active 

scheduling in job shop problems using an improved genetic algorithm. Journal of Applied Science 

and Engineering, 21(4). https://doi.org/10.6180/jase.201812_21(4).0002 

Wen, X., Wang, K., Li, H., Sun, H., Wang, H., & Jin, L. (2021). A two-stage solution method based 

on NSGA-II for green multi-objective integrated process planning and scheduling in a battery 

packaging machinery workshop. Swarm and Evolutionary Computation, 61. 

https://doi.org/10.1016/j.swevo.2020.100820 

World Commission on Environment and Development (Éd.). (1987). Our common future. Oxford 

University Press. 

https://doi.org/10.1016/j.jclepro.2019.119093
https://doi.org/10.1109/JIOT.2018.2871346
https://doi.org/10.3390/sym14040832
https://doi.org/10.1109/ACCESS.2021.3070981
https://doi.org/10.1016/j.eswa.2022.116785
https://doi.org/10.6180/jase.201812_21(4).0002
https://doi.org/10.1016/j.swevo.2020.100820


 

 162 

Wu, M., Yang, D., Zhou, B., Yang, Z., Liu, T., Li, L., Wang, Z., & Hu, K. (2021). Adaptive 

population NSGA-III with dual control strategy for flexible job shop scheduling problem with the 

consideration of energy consumption and weight. Machines, 9(12), 344–344. 

https://doi.org/10.3390/machines9120344 

Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving 

measures. Journal of Cleaner Production, 172, 3249–3264. 

https://doi.org/10.1016/j.jclepro.2017.10.342 

Wu, X., Li, J., Shen, X., & Zhao, N. (2020). NSGA-III for solving dynamic flexible job shop 

scheduling problem considering deterioration effect. IET Collaborative Intelligent Manufacturing, 

2(1), 22–33. https://doi.org/10.1049/iet-cim.2019.0056 

Wu, X., Shen, X., & Li, C. (2019). The flexible job-shop scheduling problem considering 

deterioration effect and energy consumption simultaneously. Computers & Industrial Engineering, 

135, 1004–1024. https://doi.org/10.1016/j.cie.2019.06.048 

Xu, B., Mei, Y., Wang, Y., Ji, Z., & Zhang, M. (2021). Genetic programming with delayed routing 

for multiobjective dynamic flexible job shop scheduling. Evolutionary Computation, 29(1), 

75‑105. https://doi.org/10.1162/evco_a_00273 

Xu, J., & Wang, L. (2017). A feedback control method for addressing the production scheduling 

problem by considering energy consumption and makespan. Sustainability, 9(7), 1185–1185. 

https://doi.org/10.3390/su9071185 

Xu, W., Hu, Y., Luo, W., Wang, L., & Wu, R. (2021). A multi-objective scheduling method for 

distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering 

operation outsourcing and carbon emission. Computers & Industrial Engineering, 157. 

https://doi.org/10.1016/j.cie.2021.107318 

https://doi.org/10.3390/machines9120344
https://doi.org/10.1016/j.jclepro.2017.10.342
https://doi.org/10.1049/iet-cim.2019.0056
https://doi.org/10.1016/j.cie.2019.06.048
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.3390/su9071185
https://doi.org/10.1016/j.cie.2021.107318


 

 163 

Xu, W., Shao, L., Yao, B., Zhou, Z., & Pham, D. T. (2016). Perception data-driven optimization 

of manufacturing equipment service scheduling in sustainable manufacturing. Journal of 

Manufacturing Systems, 41, 86–101. https://doi.org/10.1016/j.jmsy.2016.08.001 

Yang, X., Zeng, Z., Wang, R., & Sun, X. (2016). Bi-objective flexible job-shop scheduling problem 

considering energy consumption under stochastic processing times. Plos One, 11(12), 0167427. 

https://doi.org/10.1371/journal.pone.0167427 

Yin, L., Li, X., Gao, L., Lu, C., & Zhang, Z. (2017). A novel mathematical model and multi-

objective method for the low-carbon flexible job shop scheduling problem. Sustainable 

Computing: Informatics and Systems, 13, 15–30. https://doi.org/10.1016/j.suscom.2016.11.002 

Yin, L., Li, X., Gao, L., Lu, C., & Zhang, Z. (2017). Energy-efficient job shop scheduling problem 

with variable spindle speed using a novel multi-objective algorithm. Advances in Mechanical 

Engineering, 9(4). https://doi.org/10.1177/1687814017695959 

Zhang, C., Gu, P., & Jiang, P. (2015). Low-carbon scheduling and estimating for a flexible job 

shop based on carbon footprint and carbon efficiency of multi-job processing. Proceedings of the 

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 328–

342. https://doi.org/10.1177/0954405414527959 

Zhang, H., Dai, Z., Zhang, W., Zhang, S., Wang, Y., & Liu, R. (2017). A new energy-aware flexible 

job shop scheduling method using modified biogeography-based optimization. Mathematical 

Problems in Engineering, 2017. https://doi.org/10.1155/2017/7249876 

Zhang, H., Ge, H., Pan, R., & Wu, Y. (2018). Multi-objective bi-level programming for the energy-

aware integration of flexible job shop scheduling and multi-row layout. Algorithms, 11(12), 210–

210. https://doi.org/10.3390/a11120210 

https://doi.org/10.1016/j.jmsy.2016.08.001
https://doi.org/10.1371/journal.pone.0167427
https://doi.org/10.1016/j.suscom.2016.11.002
https://doi.org/10.1177/1687814017695959
https://doi.org/10.1177/0954405414527959
https://doi.org/10.1155/2017/7249876
https://doi.org/10.3390/a11120210


 

 164 

Zhang, H., Xu, G., Pan, R., & Ge, H. (2021). A novel heuristic method for the energy-efficient 

flexible job-shop scheduling problem with sequence-dependent set-up and transportation time. 

Engineering Optimization, 54(10), 1646–1667. https://doi.org/10.1080/0305215X.2021.1949007 

Zhang, L., Li, X., Gao, L., & Zhang, G. (2016). Dynamic rescheduling in fms that is simultaneously 

considering energy consumption and schedule efficiency. The International Journal of Advanced 

Manufacturing Technology, 87(5-8), 1387–1399. https://doi.org/10.1007/s00170-013-4867-3 

Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-

objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness 

and total energy consumption. Journal of Cleaner Production, 112, 3361–3375. 

https://doi.org/10.1016/j.jclepro.2015.09.097 

Zhang, S., Zhong, J., Yang, H., Li, Z., & Liu, G. (2019). A study on PGEP to evolve heuristic rules 

for FJSSP considering the total cost of energy consumption and weighted tardiness. Computational 

and Applied Mathematics, 38(4), 1–31. https://doi.org/10.1007/s40314-019-0934-1 

Zhang, Y., Wang, J., & Liu, Y. (2017). Game theory based real-time multi-objective flexible job 

shop scheduling considering environmental impact. Journal of Cleaner Production, 167, 665–679. 

https://doi.org/10.1016/j.jclepro.2017.08.068 

Zhang, Z., Wu, L., Peng, Tao., & Jia, S. (2018). An improved scheduling approach for minimizing 

total energy consumption and makespan in a flexible job shop environment. Sustainability, 11(1), 

179–179. https://doi.org/10.3390/su11010179 

Zhou, B., & Lei, Y. (2021). Bi-objective grey wolf optimization algorithm combined levy flight 

mechanism for the FMC green scheduling problem. Applied Soft Computing Journal, 111. 

https://doi.org/10.1016/j.asoc.2021.107717 

https://doi.org/10.1080/0305215X.2021.1949007
https://doi.org/10.1007/s00170-013-4867-3
https://doi.org/10.1016/j.jclepro.2015.09.097
https://doi.org/10.1007/s40314-019-0934-1
https://doi.org/10.1016/j.jclepro.2017.08.068
https://doi.org/10.3390/su11010179
https://doi.org/10.1016/j.asoc.2021.107717


 

 165 

Zhou, G., Chen, Z., Zhang, C., & Chang, F. (2022). An adaptive ensemble deep forest based 

dynamic scheduling strategy for low carbon flexible job shop under recessive disturbance. Journal 

of Cleaner Production, 337. https://doi.org/10.1016/j.jclepro.2022.130541 

Zhu, H., Deng, Q., Zhang, L., Hu, X., & Lin, W. (2020). Low carbon flexible job shop scheduling 

problem considering worker learning using a memetic algorithm. Optimization and Engineering : 

International Multidisciplinary Journal to Promote Optimization Theory & Applications in 

Engineering Sciences, 21(4), 1691–1716. https://doi.org/10.1007/s11081-020-09494-y 

Zhu, H., Jiang, T., Wang, Y., & Deng, G. (2021). Multi-objective discrete water wave optimization 

algorithm for solving the energy-saving job shop scheduling problem with variable processing 

speeds. Journal of Intelligent & Fuzzy Systems, 40(6), 10617–10631. https://doi.org/10.3233/JIFS-

201522 

Zhu, S., Zhang, H., Jiang, Z., & Hon, B. (2020). A carbon efficiency upgrading method for 

mechanical machining based on scheduling optimization strategy. Frontiers of Mechanical 

Engineering, 15(2), 338–350. https://doi.org/10.1007/s11465-019-0572-8 

 

https://doi.org/10.1016/j.jclepro.2022.130541
https://doi.org/10.1007/s11081-020-09494-y
https://doi.org/10.3233/JIFS-201522
https://doi.org/10.3233/JIFS-201522
https://doi.org/10.1007/s11465-019-0572-8

