
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

PERSPECTIVE GÉOMÉTRIQUE

POUR UNE MEILLEURE COMPRÉHENSION DE L’AUTOSUPERVISION

MÉMOIRE

PRÉSENTÉ

COMME EXIGENCE PARTIELLE

DE LA MAÎTRISE EN INFORMATIQUE

PAR

YOUSSEF AMDOUNI

JANVIER 2024

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

TOWARD A BETTER UNDERSTANDING

OF SELF SUPERVISION FROM GEOMETRIC PERSPECTIVE

DISSERTATION

PRESENTED

AS PARTIAL REQUIREMENT

TO THE MASTERS IN COMPUTER SCIENCE

BY

YOUSSEF AMDOUNI

JANUARY 2024

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 – Rév.12-2023). Cette autorisation stipule que «conformément à
l’article 11 du Règlement no 8 des études de cycles supérieurs, [l’auteur] concède à
l’Université du Québec à Montréal une licence non exclusive d’utilisation et de
publication de la totalité ou d’une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l’auteur] autorise
l’Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une
renonciation de [la] part [de l’auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l’auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

ACKNOWLEDGEMENTS

I am grateful for the thesis experience, which provided me with an opportunity

for learning and professional growth. I express my heartfelt thanks to those who

supported me throughout this project.

I am grateful to Nairouz Mrabah for her guidance, availability, and valuable ad-

vice, which were instrumental in the successful completion of my work.

I want to express my sincere appreciation to my colleagues and family for their

assistance and encouragement during the development of my project. Their sup-

port has been invaluable and has enabled me to overcome the challenges that I

faced during my research.

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

RÉSUMÉ . viii

ABSTRACT . ix

CHAPTER I INTRODUCTION . 1

1.1 Background Information & Research Context 1

1.2 Motivations . 11

1.3 Contributions . 13

1.4 Thesis Plan . 14

CHAPTER II LITERATURE REVIEW 15

2.1 Node level . 16

2.2 Proximity level . 19

2.3 Cluster level . 22

2.4 Graph level . 25

2.5 Conclusion . 26

CHAPTER III PROPOSED APPROACH 27

3.1 Notations . 27

3.2 Contrastive learning framework . 28

3.2.1 Graph views generation . 28

3.2.2 Graph representation learning 32

3.2.3 Contrastive loss . 33

3.3 Independent training . 38

3.4 Filtering mechanism . 39

3.4.1 Proximity level filtering strategy 40

iv

3.4.2 Cluster level filtering strategy 41

3.5 Conclusion . 43

CHAPTER IV EVALUATION OF THE PROPOSED APPROACH . . . 45

4.1 Dataset details . 45

4.2 Hardware and software configurations and hyperparameters settings . 47

4.3 Pre-training results . 47

4.4 Feature Twist . 51

4.5 Protection mechanism against Feature Twist 55

4.5.1 Node level to proximity level improvement 57

4.5.2 Node level to cluster level improvement 59

4.6 Conclusion . 60

CHAPTER V CONCLUSION . 62

LIST OF TABLES

Table Page

4.1 Statistics of datasets used in experiments. 47

4.2 Hardware and software used for all the conducted experiments. . . 48

4.3 Evaluation results of our pre-training step for the four levels of
abstraction: C-Acc stands for classification accuracy, and K-Acc
stands for clustering accuracy. 48

LIST OF FIGURES

Figure Page

1.1 Viewing the structure of a graph: Cora network. 3

1.2 A diagram demonstrating the node embedding problem. We aim to
learn an encoder (ENC) that maps the nodes to a low-dimensional
embedding space. These embeddings are optimized so that dis-
tances in the embedding space approximate to node positions in
the original graph. 6

1.3 An overview of graph convolutional networks. 11

2.1 A high-level overview of node level self supervision. 17

2.2 All the steps used by the DeepWalk Perozzi et al. (2014) algorithm
to generate the node embedding of a given graph where N(t) rep-
resents the tth node in the random walk sequence. 21

2.3 Self-supervised Contrastive Attributed Graph Clustering. 24

2.4 A high-level overview of graph level self supervision. 26

3.1 Our proposed framework for graph representation learning using
contrastive loss. 31

4.1 2D t-SNE projection of the latent space representation of Cora,
CiteSeer, PubMed and DBLP Datasets. The legend corresponds
to 4 rows: Cora, CiteSeer, PubMed and DBLP with each row con-
taining four columns, from left to right: node-level, proximity-level,
cluster-level and graph-level. The embeddings are colored accord-
ing to the different classes of each dataset. 49

4.2 Evaluation of the self-supervised transition from the node level to
other levels of abstraction for the Cora dataset. 52

4.3 Evaluation of the self-supervised transition from the proximity level
to other levels of abstraction for the Cora dataset. 53

vii

4.4 Evaluation of the self-supervised transition from the cluster level
to other levels of abstraction for the Cora dataset. 54

4.5 Evaluation of the self-supervised transition from the graph level to
other levels of abstraction for the Cora dataset. 56

4.6 Node to proximity evaluation on Cora using our proposed filtering
strategy. 58

4.7 Node to proximity classification improvement on Cora using our
proposed filtering strategy. The y-axis represents the classification
accuracy, and the x-axis denotes the number of iterations. 58

4.8 Node to cluster evaluation on the Cora using our proposed filtering
strategy. 60

4.9 2D t-SNE projection of the latent space representation of Cora.
The first row present from left to right the proximity level model,
the node to proximity model before applying filter and the node to
proximity after applying filter. The second row present from left
to right the cluster level model, the node to cluster model before
applying filter and the node to cluster after applying filter. 61

RÉSUMÉ

Récemment, l’apprentissage de représentation des graphes est devenu fondamen-
tal dans l’analyse des données structurées en graphe. Les travaux précédents ont
adopté l’auto-supervision, un paradigme d’apprentissage automatique dans lequel
un modèle apprend à partir des données elles-mêmes, sans dépendre d’étiquettes
externes, pour extraire des informations sémantiques de haut niveau et des mo-
tifs. L’apprentissage auto-supervisé exploite diverses tâches préliminaires, telles
que la prédiction des nœuds ou des arêtes manquantes, pour créer des représen-
tations significatives. Ensuite, les chercheurs affinent leurs modèles en utilisant
des tâches en aval telles que la classification des nœuds, le regroupement et la
prédiction de liens. Cependant, la transition entre les niveaux d’abstraction de
l’auto-supervision, qui représentent différentes granularités d’informations dans
les données, n’a jamais été étudiée d’un point de vue géométrique. Dans ce mé-
moire, nous présentons un nouveau cadre d’apprentissage contrastif auto-supervisé
conçu pour apprendre des représentations à plusieurs niveaux d’abstraction : au
niveaux des nœuds, de la proximité, des clusters et des graphes. En utilisant une
stratégie de pré-entraînement suivie d’une étape de raffinement, nous étudions
l’évolution de la dimension intrinsèque et de la dimension intrinsèque linéaire lors
de la transition entre ces niveaux d’abstraction. Nos résultats expérimentaux dé-
montrent l’existence d’un défi significatif de « Feature Twist » caractérisé par
une transformation géométrique abrupte et une détérioration des performances
du modèle dans les tâches en aval lors de la transition entre les différents niveaux
d’auto-supervision. Pour résoudre ce problème, nous proposons un mécanisme de
filtrage qui réduit le « Feature Twist » et facilite les transitions entre les niveaux
d’abstraction. Cette amélioration peut atténuer l’effet du problème du « Feature
Twist » et améliorer les performances du modèle dans les tâches en aval.

Mots clés: Apprentissage de représentation des graphes, Auto-supervision, Clas-
sification, Regroupement, Apprentissage contrastif.

ABSTRACT

Recently, graph representation learning has become fundamental in analyzing
graph-structured data. Previous work adopted self-supervision, a machine learn-
ing paradigm wherein a model learns from the data without relying on external
labels to extract high-level semantic information and patterns. Self-supervised
learning leverages various pretext tasks, such as predicting missing nodes or edges,
to create meaningful representations. Then, researchers refine their models us-
ing downstream tasks such as node classification, clustering, and link prediction.
However, the transition between self-supervision abstraction levels, representing
different granularities of information in the data, has never been studied from a
geometric perspective. In this thesis, we present a novel self-supervised contrastive
learning framework designed to learn representations at multiple levels of abstrac-
tion: node-, proximity-, cluster-, and graph-levels. By employing a pretraining
fine-tuning strategy, we investigate the evolution of intrinsic and linear intrinsic
dimensions during the transition between these abstraction levels. Our experi-
mental results demonstrate the existence of a significant Feature Twist challenge
characterized by abrupt geometric transformation and deterioration of model per-
formance in downstream tasks when transitioning between different self-supervised
levels. To address this issue, we propose an effective filtering mechanism that re-
duces Feature Twist and facilitates smooth transitions between abstraction levels.
This enhancement can mitigate the Feature Twist problem’s effect and improve
the model’s performance in downstream tasks.

Key words: Graph representation learning, self-supervision, Node classification,
Clustering, Contrastive learning.

CHAPTER I

INTRODUCTION

1.1 Background Information & Research Context

A graph is a collection of entities or nodes interconnected by edges or links, repre-

senting different relationships or interactions between the graph’s entities. Graphs

can manifest in various forms, including social, biological, transportation, and

computer networks. Graphs are highly valuable for complex system modeling

because they can capture the unique characteristics of each component of the

graph and represent their interconnections and mutual influences. By studying

the structure and dynamics of graphs, we gain insight into how these systems be-

have and function. Graph analysis involves the use of various tools and techniques

derived from graph theory. Graphs can take various forms and are used to repre-

sent different types of relationships and interactions. In the following section, we

will illustrate the most prevalent types of graphs.

• Directed/Undirected Graphs: In a directed graph, the links have a di-

rection, indicating a distinction between incoming and outgoing edges. For

example, the "follow" graph on Twitter represents one-directional relation-

ships. However, in an undirected graph, the links between the nodes are

symmetric and reciprocal. In an undirected graph, the edges between the

nodes are symmetric and reciprocal, indicating that the relationship between

2

the nodes remains the same regardless of the direction. For example, we can

represent the relationships between people on Facebook or LinkedIn using

an undirected graph, where the links indicate a mutual connection.

• Static/Dynamic Graphs: Static and dynamic graphs differ based on

the variability of their characteristics or graph topology over time. In static

graphs, the node and attribute features remain the same. In dynamic graphs,

fluctuations in input attributes or graph structure over time classify the

graphs as dynamic. In such instances, the temporal dimension becomes sig-

nificant, requiring careful consideration when working with dynamic graphs.

• Attributed graph: Attributed graph is a graph type in which each node

or edge is associated with a set of attributes or features. These attributes

can represent various properties of nodes or edges, such as their numerical

values, categories, or textual descriptions. We can use attributed graph

features to encode rich information about entities and their relationships.

Note that these categories are orthogonal, so we can combine different graph

categories. For example, we can work with a dynamic directed attributed graph.

Additionally, we distinct various other graph types designed for specific tasks,

such as weighted graphs, hypergraphs, and signed graphs. Figure 1.1 illustrates

the attributed graph of the Cora data set. In this graph, each node corresponds to

a scientific publication, complete with a feature vector and connections to other

nodes, representing their coauthors’ relationships within the dataset.

Graphs are practical and versatile for making predictions across various domains.

By representing datasets as graphs with intricate relational structures, we can

effectively address a wide range of downstream tasks, which typically fall into

three categories. Node-level categories focus on individual nodes and include tasks

like node classification Wu et al. (2019a), which involves predicting node labels

3

Figure 1.1: Viewing the structure of a graph: Cora network.

by considering their features and connections to other nodes. Unlike traditional

supervised machine learning problems, node classification in graph data does not

rely on independent identically distributed (i.i.d.) assumptions. Instead, it is

based on concepts such as homophily, where nodes tend to share attributes with

their neighbors on the graph McPherson et al. (2001), and structural equivalence,

which assumes that nodes with similar local neighborhood structures will have

similar labels Donnat et al. (2018).

Relation prediction is the second type of downstream task that focuses on the

edges. Depending on the application domain, this task has different names, such

as link prediction, graph completion, and relational inference. It requires the

model to classify edge types or predict whether there is an edge between two

given nodes based on their current attributes and connections. It has many real-

world applications, such as recommending content to users on social platforms

Ying et al. (2018). Finally, graph-level tasks involve classification, regression,

4

or clustering problems across entire graphs. Each graph is an i.i.d. data point

associated with a label (e.g., a molecule structure). The goal is to use a set of

graphs to learn a mapping from graphs to labels.

Graph modeling has thus gained significant practical applications in various do-

mains. For example, in e-commerce Li et al. (2020), it has proven to be an

invaluable tool to accurately predict user preferences, provide personalized rec-

ommendations, and improve crucial metrics such as click-through rate (CTR)

and conversion rate (CVR). Spatial-temporal graph modeling has also been used

to improve traffic flow Wu et al. (2019b). In the field of medicine and chemistry,

graph databases and machine learning techniques have been used to predict clin-

ical trial outcomes Murali et al. (2022), identify drug polypharmacy side effects

Lukashina et al. (2022), and determine effective drug-disease treatments Jiang

& Huang (2022). Furthermore, graph applications extend to citation and social

networks Hu et al. (2020), as well as knowledge bases Ji et al. (2021), which play

crucial roles in various natural language preprocessing applications, including re-

lation extraction and entity linking.

Recently, several research studies have focused on unlocking the potential of graph

data and addressing its unique challenges, aiming to extend the success of deep

learning architectures to graph data. While convolutional neural networks have

achieved remarkable results in processing Euclidean spaces like images and text,

applying the same concept to graph data is not straightforward due to the non-

Euclidean nature of graphs. To tackle this challenge, deep learning methods de-

signed to handle graph data, known as Graph Neural Networks (GNNs), have

garnered increasing attention across various network-related fields. The learning

of GNNs Scarselli et al. (2008) can be conducted in a supervised or unsupervised

manner, depending on our task. In GNNs, each node in a graph can be described

by its characteristics and those of its neighbors. GNNs excel at computing com-

5

plex, high-level functions by aggregating local information from neighborhoods.

Since the initial proposal, researchers have devised numerous approaches to tackle

the challenge of learning from graphical data. Variations of GNNs have emerged

to enhance their ability to map graphs to embedding representation, a process

called graph representation learning.

Graph representation learning Hamilton et al. (2017b) is the process of creating

compact and meaningful graph representations. The goal is to learn a mapping

function that transforms a graph from a discrete domain to a continuous one while

preserving its properties and structure. The resulting embeddings can be used

as input for various machine learning algorithms, enabling powerful predictive

capabilities. The traditional process of graph representation involves extracting

statistics (node degree, node centrality, clustering coefficient, etc.) or utilizing

specific kernel functions. However, these methods capture only a limited subset of

the graph’s information. On the contrary, graph representation learning offers a

more efficient and comprehensive approach to representation learning. It involves

developing algorithms that can learn the mapping function of a graph onto a

continuous space. The embedding space should reflect the original graph structure

and allow the embeddings to capture the essential properties and features. A

simple graph representation approach is shallow encoding Hamilton et al. (2017b),

where the encoder is just an aggregation function that integrates information

from the local neighborhood of a node. We represent the shallow embedding

mathematically as follows:

ENC(v) = Zv

Z ∈ Rd×|v|, v ∈ I|v|
(1.1)

In the above equation, ENC denotes the encoder. Each column of the matrix Z

6

Figure 1.2: A diagram demonstrating the node embedding problem. We aim to learn
an encoder (ENC) that maps the nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space approximate to node
positions in the original graph.

indicates the embedding of a node. The total number of rows in Z is equal to the

embedding dimension. v is the indicator vector with all values equal to zero except

one in the column indicating node v. Each node is assigned a unique dense vector

in shallow encoding. Figure 1.2 illustrates the application of an encoder function

to map a graph into a lower-dimensional embedding space. In the embedding

space, the distances between the points approximate the positions of nodes in the

original graph.

Advanced graph representation learning techniques are built on two types of con-

volutional operations commonly used in Graph Neural Networks (GNNs): spectral

and spatial approaches Zhang et al. (2019).

Spectral approaches are based on spectral graph theory, which examines the

properties of a graph in relation to matrices such as characteristic polynomials,

eigenvalues, and eigenvectors. In spectral convolution, the operation involves mul-

tiplying a signal (representing node characteristics) by a kernel. This operation

is defined in the Fourier domain by finding the appropriate decomposition of the

graph Laplacian. However, it can be computationally expensive, leading to the de-

velopment of various approximation methods for efficiency. Recent work in graph

7

convolutional networks aims to improve the computational efficiency of spectral

approaches while maintaining their critical foundation. Defferrard et al. (2016)

proposed an approximation method that utilizes smooth filters in the spectral

domain. They achieved this by employing Chebyshev polynomials with free pa-

rameters that can be learned within a neural network-like model. They achieved

promising results on regular domains, such as MNIST, comparable to those of a

simple 2D CNN model. In contrast, Kipf & Welling (2017) adopted a similar ap-

proach by building upon the framework of spectral graph convolutions. However,

they introduced simplifications that allow significantly faster training times and

higher predictive accuracy in numerous cases. As a result, this approach has at-

tained state-of-the-art classification results on various benchmark datasets. Over-

all, this research demonstrates the potential of GCNs to enable efficient learning

from graph-structured data. The equation below illustrates how the GCN works.

H l+1 = f(H l, A) = σ(D̃
−1
2 ÃD̃

−1
2 H lW l) (1.2)

Ã = A+ I is equivalent to adding self-loops to the original graph, where I is the

identity matrix and A is the adjacency matrix.

H l is the node embedding representation at layer l.

σ is a non-linear activation function (Relu).

D̃ is the diagonal node degree matrix of Ã.

W l is a trainable weight matrix.

GCN has the advantage of aggregating node representations from their direct

neighborhoods, making it a method that bridges the gap between spectral- and

spatial-based methods. However, for large-scale graphs, training can be memory-

intensive. Additionally, GCN’s transduction process can interfere with generaliza-

tion, making it challenging to learn representations for unseen nodes within the

8

same graph or nodes from entirely different graphs. To address computational

challenges, FastGCN Chen et al. (2018) introduces a novel method for approxi-

mating the full-batch gradient computation in GCNs using sampling strategies.

This approach enables efficient training on large graphs while maintaining high ac-

curacy. Extensive experiments on several large-scale benchmark datasets demon-

strate that FastGCN achieves state-of-the-art performance with significantly faster

training time than previous GCN-based methods. The importance of FastGCN

lies in its contribution to overcoming the scalability challenges of training GCNs,

making it feasible to apply these powerful models to real-world, large-scale graph

datasets.

Spacial approaches directly manipulate the graph structure by employing a

convolution-like operation on node features. Unlike spectral graph networks that

operate in the Fourier domain, spatial graph networks conduct operations in the

spatial domain by aggregating information from neighboring nodes in close prox-

imity. It offers a significant advantage through weight sharing, enabling the ap-

plication of the same set of weights to various sections of the graph. This weight

sharing enhances the model’s ability to generalize across different graphs. Fur-

thermore, since the convolution operation is conducted locally, it only requires

consideration of a subset of nodes at each step, thereby enhancing the computa-

tional efficiency of the algorithm.

GraphSAGE Hamilton et al. (2017a) is a popular node representation method for

large graphs. It adopts symmetric aggregator functions to generate dense node

representations by aggregating information from their local neighborhoods. This

approach guarantees that the model can be trained and applied to sets of neigh-

borhood node vectors without any specific ordering requirement. GraphSAGE

explores three different aggregator functions: mean aggregator, Long Short-Term

Memory (LSTM) aggregator, and pooling aggregator. The mean aggregator is

9

simple and computationally efficient, but may not capture higher-order proxim-

ity information among neighbors. The LSTM aggregator can capture temporal

dependencies. However, LSTMs are not symmetric and process their inputs se-

quentially. To make the LSTM aggregator symmetric, GraphSAGE applies it to

a random permutation of the node’s neighbors. This process makes the LSTM

aggregator invariant to the order of the input nodes, ensuring that the neural net-

work model can be trained and applied to arbitrarily ordered sets of neighborhood

node vectors. The pooling aggregator applies a neural network independently to

each neighbor vector and performs element-wise max pooling to obtain a fixed-

length output vector. This aggregator can capture the most salient information

from the neighborhood while preserving the permutation symmetry. Mathemat-

ically, we represent the GraphSAGE model and the three aggregation functions:

mean aggregator, LSTM aggregator, and pooling aggregator as follows:

hk
v = σ(WkAGG({hk−1

u ∀u ∈ N(v)}), Bkh
k−1
v)

AGG =
∑

u∈N(v)
hk−1
u

|N(v)|

AGG = LSTM({hk−1
u ∀u ∈ π(N(v))})

AGG = γ({Qhk−1
u ∀u ∈ (N(v))})

(1.3)

hk
v : is the embedding presentation of the last layer.

|N(v)|: is the number of neighbors.

σ: activation function to add non-linearity.

γ: element-wise mean/max.

Wk, Bk and Q: are trained parameters.

Graph Attention Networks (GAT) Veličković et al. (2018) is a spatial convolution

technique for graphs that incorporates the attention mechanism to assign varying

10

weights to neighboring nodes. The underlying concept of GAT is that specific

nodes carry more crucial information than others, and the model should prioritize

those nodes to improve performance. The attention mechanism calculates nor-

malized weight coefficients for each node’s neighbors. It learns the weight using a

trainable function considering node features and edge connections. These coeffi-

cients indicate the significance of each neighbor node’s contribution to the central

node’s representation. Mathematically, we represent the GAT model as follows:

h
(k+1)
v = σ

(∑
u∈Nv

α
(k)
vuW (k)h

(k)
u

)
(1.4)

where h
(k)
v is the feature representation of node v at the k-th layer, Nv is the set of

neighboring nodes of node v, W (k) is a weight matrix, α(k)
vu is the attention weight

coefficient computed for the edge connecting nodes v and u at the k-th layer, and

σ is a non-linear activation function.

The attention weight coefficients α(k)
vu are computed using an attention mechanism

that depends on the node features:

α
(k)
vu =

exp
(
LeakyReLU

(
a(k)⊤

[
W(k)h

(k)
v ∥W(k)h

(k)
u

]))
∑

l∈Nv
exp

(
LeakyReLU

(
a(k)⊤

[
W(k)h

(l)
v ∥W(k)h

(k)
l

])) (1.5)

Here, a⃗ is a weight vector to be learned, and LeakyReLU is a leaky rectified linear

unit activation function. This attention mechanism allows the model to assign

different weights to different neighbors of a node based on their importance in

contributing to the representation of the central node. Figure 1.3 summarizes

the graph-convolutional neural network (GCN) approaches and highlights their

primary real-world applications.

Recent state-of-the-art graph representation learning approaches are based on

11

Figure 1.3: An overview of graph convolutional networks.

self-supervised learning You et al. (2020). Unlike supervised learning, which lever-

ages well-defined manual labels to train machine learning models, or unsupervised

learning, which focuses on finding patterns or clusters using unlabeled data, self-

supervised learning generates supervision signals from the data. In self-supervised

learning, models are trained with pretext tasks to achieve better performance and

generalization on downstream tasks. The pretext task can learn latent represen-

tations or model weights to use them for a defined downstream task. Downstream

tasks are the final modeling goal and can be anything like classification or detec-

tion with insufficient annotated data samples.

1.2 Motivations

In recent literature on graph modeling, the primary focus has been evaluating the

performance of learned embeddings in downstream tasks following self-supervised

pretext learning. However, a frequently overlooked issue is Feature Twists (FT).

Feature twist denotes sudden geometric transformations observed in latent space

representations during the transition from a pretext task to a downstream one.

12

Previous works have frequently encountered this problem, emphasizing the need

to address it. When latent representations capture irrelevant information, they

can significantly impair the model’s performance in downstream tasks reliant on

these embeddings. Therefore, addressing this problem is crucial to ensure the

quality and effectiveness of the learned representations.

The approach proposed in Mrabah et al. (2022a) introduces the FT-VGAE model

to address the Feature Twist problem. The FT-VGAE employs a Variational

Auto-Encoder (VAE) and follows a three-step training process. In the first step,

the model minimizes the reconstruction loss to learn low-dimensional curved em-

bedded manifolds. Traditional Euclidean algorithms are not applicable due to the

non-linearity of these manifolds. The second step focuses on smoothing the local

curved structures while preserving the global ones. The second step achieves this

by merging local neighborhoods, promoting uniformity, and helping alleviate the

Feature Twist problem. Finally, it uses two objective functions to alternate be-

tween clustering-oriented loss and a combination of over-clustering and adjacency

reconstruction loss. Over-clustering methods produce more clusters or subgroups

than are present in the data. It helps flatten the latent manifolds slowly to avoid

twisting the curved structures and ensuring that the learned representations are

suitable for downstream tasks. In summary, the FT-VGAE model presents a

promising solution to address the Feature Twist problem and enhance the perfor-

mance of graph-based clustering algorithms.

Building upon prior research, our study generalizes the Feature Twist problem by

examining the transitions between various levels of abstraction in self-supervision

from a geometric perspective. By adopting an independent training protocol in-

volving pre-training followed by fine-tuning, we aim to identify beneficial tran-

sitions that can mitigate the impact of Feature Twist. This research endeavor

offers valuable insights into the interplay among different levels of abstraction and

13

their influence on downstream tasks. It provides a comprehensive understanding

of how these transitions impact the performance of graph-based algorithms in var-

ious tasks such as node clustering and node classification. The results of our work

will serve as a roadmap for future investigations, guiding research efforts toward

reducing the effects of Feature Twist. Ultimately, this will enhance the overall

performance of graph-based algorithms in various downstream tasks.

1.3 Contributions

In this thesis, we present a novel framework that combines graph neural net-

works (GCN) and contrastive learning to explore self-supervised learning (SSL)

on graphs at various levels of abstraction. Our framework introduces a mathemat-

ical formulation for learning SSL models at the node level, proximity level, cluster

level, and graph level. Unlike previous research that primarily focuses on generat-

ing embeddings for a pretext task and later applying them to a downstream task,

our approach enables us to learn and evaluate embeddings across multiple levels

of abstraction. This strategy allows us to address the challenge of the Feature

Twist problem and achieve better generalization.

To investigate the transition between different levels of SSL, we employ an inde-

pendent training strategy that takes advantage of the intrinsic dimension (ID) and

the linear intrinsic dimension. These geometric measures help us to control the

manifolds during the transition process. Moreover, we propose a filtering mecha-

nism that smooths the transitions between different levels of abstraction, with the

aim of minimizing the feature twist problem. This mechanism leads to improved

performance of the model on downstream tasks. The main contributions of our

study can be summarized as follows.

14

• Develop a mathematical formulation for training self-supervised graph rep-

resentations at multiple levels of abstraction, including node-, proximity-,

cluster-, and graph-levels. The unified proposed formulation can achieve

comparable results to the performance of state-of-the-art methods for each

level of abstraction.

• Generalize the Feature Twist problem by controlling the geometric trans-

formation of latent representations during the transition between different

levels of abstraction.

• Propose a filtering mechanism that alleviates the Feature Twist problems

and improves downstream task performance.

1.4 Thesis Plan

The rest of this report is organized as follows:

• Chapter 2 presents a thorough review of recent advancements in fields

closely related to our work. This review encompasses the latest develop-

ments, methodologies, and findings in these relevant areas, providing valu-

able insights and contextualizing our research.

• Chapter 3 provides a comprehensive and detailed description of our ap-

proach. We outline the specific methods we employ to address the challenge

of Feature Twist and minimize its impact.

• Chapter 4 presents our experimental results. We provide a detailed analysis

and discussion of the outcomes, highlighting the performance and effective-

ness of our approach.

CHAPTER II

LITERATURE REVIEW

Recently, deep learning on graphs has garnered considerable interest. However,

much of the research has been centered around semi-supervised learning, resulting

in shortcomings such as heavy reliance on labeled data, limited generalization, and

weak robustness. To overcome these challenges, self-supervised learning (SSL) has

emerged as a promising and trending approach for graph data. SSL leverages well-

designed pretext tasks to extract informative knowledge and high-level features

from data without performing manual labeling. In contrast to SSL applications

in other domains like computer vision and natural language processing, SSL on

graphs presents unique backgrounds, design ideas, and taxonomies. To shed light

on this evolving area, we provide a comprehensive review of existing approaches

that employ SSL techniques for graph data and focus specifically on those relevant

to our research problem. We propose a classification of previous works into four

categories based on their research focus and methodology. Specifically, our focus

lies on self-supervised graph representation learning methods, which we catego-

rize into four levels of abstraction: node-level, proximity-level, cluster-level, and

graph-level. Moreover, we provide a comparative summary of existing methods,

highlighting their strengths and weaknesses.

16

2.1 Node level

In the node-level representation learning category, the primary focus is on captur-

ing the essential features of individual nodes within the graph. One notable work

in this category is GRACE Zhu et al. (2020), a novel framework for unsupervised

graph representation learning that leverages self-supervision through a contrastive

objective function at the node level.

Unlike traditional graph representation learning methods that rely on a recon-

struction loss function, GRACE takes a different approach by maximizing the

Mutual Information (MI) between two generated graph representations. First,

GRACE generates two correlated graph views by randomly corrupting the graph

topology and node attributes. Graph corruption is accomplished by feature mask-

ing and edge removal, which provides diverse contexts for nodes in each graph

view. Then, it learns the model to maximize the agreement between node embed-

dings in the two generated graph views using a contrastive loss function. Using

the MI-based contrastive objective, GRACE can learn a more accurate and robust

representation of the graph structure and node attributes.

This approach enables GRACE to capture complex and subtle relationships be-

tween nodes in the graph, leading to improved performance in downstream tasks.

It enhances the ability of the node-level learning representations to encode crucial

information and uncover hidden patterns within the graph, making it highly effec-

tive in various applications. GRACE demonstrates the effectiveness of leveraging a

contrastive objective function and Mutual Information for unsupervised graph rep-

resentation learning. Its ability to capture intricate relationships between nodes

enables it to achieve superior performance in downstream tasks, making it a valu-

able addition to the arsenal of techniques for graph data analysis. Figure 2.1

provides a straightforward description of contrastive learning to create a graph

17

Figure 2.1: A high-level overview of node level self supervision.

representation at the node level.

GCA Zhu et al. (2021) is a notable graph representation learning method that

employs a contrastive learning approach to maximize Mutual Information (MI)

between node embeddings from two correlated graph views. A key aspect of

GCA’s approach is its focus on data augmentation design, as corrupting graphs

must preserve intrinsic patterns while avoiding the removal of crucial nodes or

edges that may degrade the quality of the learned embeddings. To address this

challenge, GCA introduces a data augmentation strategy based on node centrality.

Using node centrality as a measure, GCA identifies important edges and nodes

within the graph. GCA’s data augmentation involves two steps: first, it augments

the initial graph by removing unimportant edges, and second, it adds noise to

the features of less critical nodes. This strategy ensures that the overall graph

18

structure remains intact, while enhancing the diversity of the generated views.

The data augmentation technique employed by GCA leads to a more robust and

accurate graph representation than previous methods. By preserving the essential

graph structure and node features while incorporating sufficient diversity in the

augmented views, GCA effectively captures the underlying patterns and relation-

ships within the graph data. Empirical results Zhu et al. (2021) demonstrate the

effectiveness of GCA’s data augmentation strategy, as it outperforms state-of-the-

art graph representation learning methods.

Unlike previous methods that often rely on large numbers of negative examples

and complex graph augmentations, which can be computationally expensive, es-

pecially for large graphs, BGRL Thakoor et al. (2022) takes a different approach

to learning graph representation. BGRL adopts a more efficient and scalable de-

sign by learning through predicting alternative augmentations of the input, using

only simple graph augmentations.

Inspired by recent advances in self-supervised learning in vision, BGRL learns

node representations by encoding two augmented versions of a graph with two

distinct graph encoders: an online encoder and a target encoder. The online

encoder is trained to predict the representation of the target encoder, while the

target encoder is updated as an exponential moving average of the online network.

A critical advantage of BGRL is that it does not require contrasting with negative

examples, making it highly scalable even for large graphs. By eliminating the need

for extensive negative sampling and complex augmentation techniques, BGRL

significantly reduces computational overhead, making the model more feasible to

apply on large-scale graph datasets.

19

2.2 Proximity level

In contrast to node-level contrastive learning methods, proximity-level techniques

do not rely on data augmentation. Instead, they capture similarities based on

the relationships between neighboring nodes, avoiding the use of perturbed rep-

resentations of the same node. One commonly used proximity-level technique

is Random Walk Perozzi et al. (2014), which offers an efficient and expressive

approach to define node similarity.

Random Walk leverages a stochastic process to determine node similarity, con-

sidering local and higher-order neighborhood information by exploring pairs of

nodes that co-occur during the random walk. The algorithm starts from a given

node in the graph and proceeds by randomly selecting a neighbor, moving to that

neighbor and then choosing another neighbor from that point, generating a se-

quence of nodes. Node embeddings are created by estimating the probability of

visiting a node from another neighbor using the random walk strategy. The op-

timization mechanism aims to maximize random walk co-occurrence probability,

ensuring that the latent representations preserve the similarity observed in the

original graph. In other words, neighboring nodes in the graph should also be

close to each other in the latent space representation. The loss function used in

this approach is calculated as follows:

L =
∑

u∈V
∑

v∈NR(u)− logP (v|Zu)

logP (v|Zu) =
zTu zv∑

n∈V zTu zn

(2.1)

20

To optimize random latent representations, we need to find Zu embedding that

minimizes L. But to do this naively without any changes is too costly. A new

formulation corresponds to the use of logistic regression to distinguish the target

node v from nodes ni sampled from the distribution P such that:

zTu zv∑
n∈V zTu zn

≈ log(σ(zTu zv))−
k∑

i=1

log(zTu zni
), ni ≈ Pv (2.2)

Pv denotes random distribution across all nodes.

Instead of normalizing with respect to all nodes, we normalize to k random ni. By

leveraging proximity-level techniques like Random Walk, we can effectively cap-

ture meaningful similarities between nodes within the graph without performing

data augmentation.

DeepWalk Perozzi et al. (2014) is a graph node embedding technique that lever-

ages a random walk strategy combined with the Skip-Gram model and Hierarchi-

cal Softmax to generate meaningful vector representations for nodes in a graph.

The Skip-Gram model Mikolov et al. (2013), firstly designed for natural language

processing, is employed as an essential component of DeepWalk. The Skip-Gram

model is an unsupervised deep learning technique to generate vector representa-

tions for words in a language. It operates by training a simple neural network

with a hidden layer to maximize the co-occurrence probability of words in the

same window.

Applying the DeepWalk algorithm to graphs starts by generating random walks

within the graph. These random walks are not constrained to have the same

length, but there is a fixed upper bound that cannot be surpassed. Each random

walk represents a sequence of traversed nodes starting from a particular node in

21

Figure 2.2: All the steps used by the DeepWalk Perozzi et al. (2014) algorithm to
generate the node embedding of a given graph where N(t) represents the tth node in the
random walk sequence.

the graph. Then, it train a Skip-Gram model using the entire set of previously

generated random walk steps. During training, the Skip-Gram model learns to

predict the context nodes based on a given target node in each random walk

sequence. This process effectively captures the local structure of the graph and the

relationships between nodes. The hidden layers of the trained Skip-Gram model

contain valuable information that represents the learned embeddings for each node

in the graph. These embeddings, derived from the Skip-Gram model, serve as

the final representation of each node, effectively encoding its characteristics and

relationships with other nodes in the graph. Figure 2.2 shows the main steps of

embedding generation using the deepwalk model.

DeepWalk adopts fixed-length unbiased random walks from each node, which re-

sults in a narrow-node similarity representation. The Node2Vec algorithm Grover

22

& Leskovec (2016) is an extension of DeepWalk that introduces a more flexible

notion of node neighborhoods, leading to richer node representations. Node2Vec

achieves this by generating biased random walks on the graph, combining the

Breadth-First Sampling (BFS) and Depth-First Sampling (DFS) algorithms to

exchange local and global graph information. The algorithm guides the genera-

tion of biased random walks using two parameters, p and q. The parameter p

governs the probability that a random walk returns to the previous node, while

q controls the probability that the random walk explores an unknown part of the

graph. Similar to DeepWalk Perozzi et al. (2014), Node2Vec uses the skip-gram

approach to generate node embeddings.

GMI (Graphical Mutual Information) Peng et al. (2020) is another approach to

learning graph representation that introduces a more straightforward way to con-

sider mutual information (MI) within graphical structures, eliminating the need

for readout and corruption functions. Instead, GMI directly derives MI by com-

paring the input (i.e., the sub-graph consisting of the input neighborhood) with

the output (i.e., the hidden representation of each node) of the encoder. Interest-

ingly, theoretical derivations show that the directly formulated MI can be broken

down into a weighted sum of local MIs between each neighborhood feature and

the hidden vector. This decomposition makes the MI computation tractable and

enables the input features decomposition. Additionally, this form of MI can satisfy

the symmetric property by adjusting the weight values.

2.3 Cluster level

Node- and proximity-based graph construction methods often struggle to leverage

imprecise clustering labels effectively and may require post-processing operations

to obtain accurate clustering results. The Structural Deep Clustering Network

23

(SDCN) Bo et al. (2020) is a powerful approach that addresses clustering-oriented

tasks with proximity-level information by exploiting high-order structure and ad-

jacency reconstruction. It achieves this by integrating structural information into

deep clustering, employing a delivery operator to transfer representations learned

by an autoencoder to the corresponding Graph Convolutional Network (GCN)

layer. Additionally, SDCN adopts a dual self-supervised mechanism, effectively

unifying these two distinct deep neural architectures and guiding the model up-

date. Experimental results demonstrate the superiority of SDCN’s strategy, yield-

ing significant improvements in clustering-oriented tasks. Incorporation of struc-

tural information and smooth interplay between the autoencoder and the GCN

contribute to performance enhancement and robustness of the model.

Self-supervised Contrastive Attributed Graph Clustering (SCAGC) Xia et al.

(2021) proposes an innovative approach that incorporates node and cluster in-

formation for attributed graph clustering. SCAGC adopts graph augmentation

techniques to create two graph views: attribute masking, where random noise is

added to node attributes, and edge perturbation, where edges are randomly added

or dropped in the topological graph. These two representations interact and evolve

jointly within an end-to-end framework. The model is optimized using a joint

loss function, which carefully balances contrastive cluster-level loss, contrastive

node-level loss, and a regulatory term. The self-supervised contrastive loss aims

to maximize the similarity among nodes within the same cluster and simultane-

ously minimize the similarity between nodes from different clusters. By leveraging

inaccurate clustering labels, SCAGC effectively maximizes Mutual Information

between the two graph representations. Figure 2.3 illustrates the cluster-level

contractive approach in generating node embeddings.

Deep Attentional Embedding Graph Clustering (DAEGC) Wang et al. (2019)

presents an innovative framework that synergistically optimizes graph cluster-

24

Figure 2.3: Self-supervised Contrastive Attributed Graph Clustering.

ing and embedding learning. By combining these two tasks, DAEGC achieves

mutual benefit and improved performance. The core of DAEGC is a graph atten-

tional autoencoder, which learns a powerful latent representation by minimizing

the reconstruction loss function. The graph attentional autoencoder consists of

an encoder that effectively captures the graph structure and the node content.

This is achieved by incorporating a graph attention network, enabling the model

to identify crucial relationships and features within the graph. The attention

mechanism helps the encoder focus on the most informative parts of the graph

during the learning process. On the other hand, the decoder in DAEGC recon-

structs the topological graph information, ensuring the integrity of the learned

graph representation. In addition to the autoencoder, DAEGC includes a self-

training clustering module, a crucial component that further enhances clustering

performance. This module leverages confident clustering assignments to guide the

optimization procedure, leading to more accurate and robust clustering results.

25

2.4 Graph level

In the field of graph representation learning, there exists a category of approaches

focused on learning graph-level representations. Among these techniques, Deep

Graph Infomax (DGI) Velickovic et al. (2019) stands out as one of the most promi-

nent. DGI is an unsupervised graph learning framework that aims to maximize

mutual information between global graph representations and local node embed-

dings. To achieve this, it uses the scalable estimation of mutual information

through Mutual Information Neural Estimation (MINE) Belghazi et al. (2018).

DGI builds on the foundation laid by Deep InfoMax (DIM) Hjelm et al. (2019),

which focuses on maximizing mutual information between high-level global rep-

resentations and local-level representations of the input to learn embeddings of

high-dimensional data. DGI employs a graph neural network to generate node

embeddings, and an injective readout function is applied to create graph-level

embeddings. The graph-level representations are learned via contrastive learning,

achieved by discriminating between nodes in the original graph and nodes in a

corrupted graph view. To generate corrupted graph views, DGI employs feature

shuffling as part of its graph augmentation scheme. However, it is worth noting

that the injective property used in the readout function might be overly restrictive

in many cases. Figure 2.4 presents the process of generating the embedding using

a constrained loss at the graph level.

Graph InfoClust (GIC) Mavromatis & Karypis (2020) is an extension of the Deep

Graph Infomax (DGI) Velickovic et al. (2019) model that incorporates the as-

sumption that nodes tend to belong to clusters. This assumption implies that

nodes within the same cluster should demonstrate a high similarity to each other,

whereas nodes in different clusters should exhibit a low similarity. To effectively

capture graph-level and cluster-level information, GIC utilizes a differentiable K-

26

Figure 2.4: A high-level overview of graph level self supervision.

means method, enabling end-to-end model training. Differentiable K-means is

a technique that combines the K-means algorithm with backpropagation, allow-

ing clustering to be learned in a differentiable manner. The algorithm enables the

model to be trained using gradient descent, which is more efficient than traditional

K-means algorithms. With differentiable K-means, GIC can learn graph-level and

cluster-level representations within a single framework, maximizing mutual infor-

mation for both levels. As a result, GIC provides a more effective and efficient

clustering method for graph data.

2.5 Conclusion

This chapter provided a comprehensive overview of self-supervised graph repre-

sentation learning. Additionally, it included a review of the literature of recent

studies that investigated different levels of abstraction in graphs. In the upcoming

chapters, we will offer a detailed description of our approach to studying graph

self-supervision from a geometric perspective, along with our experimental results.

CHAPTER III

PROPOSED APPROACH

This chapter describes the proposed approach. We start by providing a detailed

overview of our proposed method, which encompasses contrastive objectives and

graph augmentation techniques. Subsequently, we delve into the independent

training strategy and the metrics we employ to evaluate Feature Twist. In order

to enhance the transition between self-supervised abstraction levels and enhance

performance in downstream tasks, we introduce our filtering strategy. Its pri-

mary objective is to achieve smoother transitions between two abstraction levels,

thereby improving the overall performance of our models.

3.1 Notations

Let G = (V , E ,X) a non-directed attributed graph, where:

V = {v1, ..., vN} is a set of node with |V| = N , and N is the number of nodes.

E = V × V is the edge set, denoting connections between nodes.

X ∈ RN×J is the feature matrix, where, xi ∈ RJ represents the feature vector

associated with the ith node, and J is the dimension of the feature vector.

28

Let A = (aij) be the adjacency matrix, which describes the topological structure

of the graph, such that aij = 1 if there is an edge between nodes vi and vj

(i.e.(vi, vj) ∈ E) and aij = 0 otherwise.

These preliminary notations lay the foundation for our subsequent discussions on

the proposed method. Understanding the graph representation and the feature

matrix is crucial to grasp the techniques and strategies we employ to leverage

this graph structure effectively. In the following sections, we will delve into the

details of our framework, including contrastive objectives and graph augmentation

techniques, as well as the independent training strategy and the metrics used to

measure Feature Twist. Additionally, we will introduce a novel filtering strategy

designed to enhance the transition between self-supervised abstraction levels and

improve performance in downstream tasks.

3.2 Contrastive learning framework

3.2.1 Graph views generation

Data augmentation is a valuable technique that enables the generation of addi-

tional training data without the need for extensive data collection or labeling

efforts. In fields such as Computer Vision and Natural Language Processing, data

augmentation typically involves cropping, flipping, and masking to create modified

versions of existing data or synthetic data based on existing samples. However,

when dealing with non-Euclidean and irregular data structures such as graphs,

data augmentation becomes more challenging. Unlike regular and Euclidean data

represented by grids or sequences, graph data relies on node connectivity to en-

code its structure. Consequently, the structured augmentation operations used

in traditional settings cannot be easily applied to graph data. This presents a

significant challenge in the graph machine learning domain, as designing effective

29

graph view generation to enhance the self-supervision learning process remains an

open problem.

In graph data augmentation context, we can categorize the techniques into two

main categories, namely structure augmentations and feature augmentations. Struc-

ture augmentations focus on modifying the graph’s connectivity by adding or re-

moving edges or by adding or removing nodes from the initial graph view. On

the other hand, feature augmentations focus on modifying or creating raw node

features. Common approaches include masking or shuffling the original node fea-

tures.

In this work, we propose a hybrid scheme for generating graph views by consid-

ering corruptions at both the topology and node attribute levels. Specifically, we

randomly remove edges, mask features, and shuffle nodes (feature vectors). This

approach aims to provide diverse contexts for nodes in different views, thereby

boosting the optimization process of the contrastive objective. In the following,

we detail the adopted graph augmentation strategy:

• Dropping-Edges: Edge-dropping methods involve randomly removing a

certain fraction of links from the graph. To achieve this, we start by sampling

a random masking matrix, where each entry in the matrix is drawn from a

Bernoulli distribution with a probability of removing each edge. By applying

the Hadamard product (element-wise multiplication) between the original

adjacency matrix and the masking matrix, we obtain the resulting adjacency

matrix of the corrupted graph.

• Node Feature Masking: Node feature masking methods randomly mask a

fraction of dimensions in the node feature vectors with zeros. To implement

this, we begin by sampling a random masking vector, where each entry

is drawn from a Bernoulli distribution with a probability of masking each

30

dimension independently. The resulting node feature is then constructed as

the concatenation of the original node feature vectors, with each element-

wise multiplied by the corresponding element in the masking vector.

• Node Shuffling: Node shuffling methods involve randomly shuffling the

node feature vectors of the original graph. This operation provides a way to

alter the order of node features, thereby creating various views of the graph

data.

To address the limitations of uniform graph augmentation schemes, such as uni-

formly dropping edges, randomly masking features, and shuffling nodes, which

may inadvertently destroy intrinsic structures and attributes of graphs, we inte-

grate an adaptive data augmentation scheme proposed by Zhu et al. (2021) into

our framework.

Adaptive graph data augmentation strategies encompass various graph priors re-

lated to topological and semantic aspects. These augmentations are guided by

specific graph characteristics, such as node centrality measures, which identify

crucial edges and feature dimensions. This approach results in a higher proba-

bility of corruption for unimportant links and features. By doing so, the aug-

mentation process focuses on perturbing less critical elements of the graph while

preserving its essential structures and attributes. For the topology level, we can

employ edge centrality measures to assess the influence of edges based on the

centrality of the two connected nodes. Also, for node centrality at the topology

level, we can use three effective and straightforward measures of centrality: degree

centrality in Eq. 3.1, eigenvector centrality in Eq. 3.2, and PageRank centrality

Eq. 3.3. For node features, we can utilize previously determined node centrality

measures to identify essential and unimportant nodes. Consequently, we assign a

higher masking probability to less important nodes during adaptive data augmen-

31

Figure 3.1: Our proposed framework for graph representation learning using contrastive
loss.

tation. Figure 3.1 presents a high-level overview of our framework for training

graph representations at various abstraction levels.

Cdegree(vi) =

∑
j Aij

N − 1
(3.1)

xi =
1

λ

N∑
j=1

Aijxj (3.2)

xi is the eigenvector centrality score of the ith node in the network and λ is the

largest eigenvalue of the adjacency matrix A.

Pr(v) =
1− d

N
+ d

∑
u∈V

Pr(u)

L(u)
(3.3)

Pr(v) represents the PageRank centrality of node v, d is the damping factor

32

(typically set to a value like 0.85) and L(u) is the degree of node u.

3.2.2 Graph representation learning

In the field of unsupervised graph representation learning, the contrastive paradigm

has been a prominent approach. Previous research in this field has mainly focused

on local contrastive patterns that encourage nearby nodes to have similar embed-

dings. In particular, nodes that appear in the same random walk are consid-

ered positive samples. Pioneering works like DeepWalk Perozzi et al. (2014) and

Node2vec Grover & Leskovec (2016) use contrastive estimation to model probabil-

ities of node co-occurrence pairs through random walks and biased random walks,

respectively, and learn node embeddings using skip-gram models. Although these

techniques show potential, they overly prioritize structural information captured

in graph proximities, such as adjacency matrix transformations. This limitation

results in scalability issues, particularly with large datasets, and poses challenges

in appropriately tuning hyperparameters, potentially compromising their effec-

tiveness.

Recent advances in graph neural networks (GNNs) have introduced more pow-

erful graph convolutional encoders, surpassing traditional approaches in terms of

performance. An influential model, proposed by Kipf & Welling (2017), intro-

duced a robust spectral graph convolution framework. Another notable model is

GraphSAGE Hamilton et al. (2017a), which combines objectives similar to those

of DeepWalk to enhance its performance. Additionally, the concept of graph

attention model has emerged as an effective mechanism for capturing relational

dependencies within graphs. In this work, our primary goal is to understand the

transition between different abstraction levels. Therefore, we have adopted the

graph convolutional encoder from Kipf & Welling (2017) as our base model for

33

learning graph representations. However, it is worth noting that our framework is

flexible and can accommodate other GNNs, such as GraphSAGE and the graph

attention model.

3.2.3 Contrastive loss

In contrastive learning, the primary objective is to learn meaningful representa-

tions by contrasting similar and dissimilar pairs of samples within a latent space.

The aim is to maximize the similarity between positive pairs (samples from the

same class or context) while minimizing the similarity between negative pairs

(samples from different classes or contexts). This is typically achieved by em-

ploying a graph neural network to map the samples into a latent space and then

comparing their representations using a similarity metric, such as contrastive loss.

In self-supervised learning, contrastive learning has found extensive use in various

domains, including computer vision and natural language processing. For in-

stance, in self-supervised visual representation learning, contrastive methods are

employed to acquire discriminative representations through contrasting positive

and negative samples. Negative samples can be created using image augmenta-

tion techniques such as cropping, rotation, color distortion, and more to introduce

diversity into the training data. Contrastive learning represents a revitalization

of the traditional Information Maximization strategy and has shown significant

success in the graph neural networks field. By leveraging contrastive loss, the

model can effectively capture underlying semantic information in a pretext task,

which is crucial for learning informative representations in self-supervised learning

settings.

Our proposed framework adopts the standard graph-contrastive learning paradigm,

wherein the primary objective is to enhance the agreement of representations

34

across diverse views. Initially, we generate three distinct graph views through

stochastic graph augmentation applied to the original graph. This process en-

hances the diversity of the data representations. Subsequently, we utilize a con-

trastive objective to enforce the encoded embeddings of each node in the various

views to align with one another while remaining distinguishable from embeddings

of other nodes. This approach not only improves the discriminative power of our

model, but also enables generalization across different abstraction levels, such as

node, proximity, cluster, and graph level. This formulation plays a crucial role

in enhancing the effectiveness of our contrastive loss function across multiple ab-

straction levels, leading to more robust and comprehensive representations. In Eq.

3.4 we provide a detailed mathematical exposition of our framework which serves

as a robust mechanism for investigating self-supervision across varying levels of

abstraction.

L(ui, g(vi)) =
eθ(ui,g(vi))/τ∑

sj∈Su\g(ui)
eθ(ui,sj)/τ+

∑
sj∈Sv\g(vi)

eθ(ui,sj)/τ+
∑

sj∈S−\g(v−) e
θ(ui,sj)/τ

(3.4)

Let M be the embedding space dimension we define:

U = GCN(f+(X,A)) ∈ RN,M as the node embedding matrix of the first generated

positive view where ui is the embedding vector of ith node.

V = GCN(f+(X,A)) ∈ RN,M as the node embedding of the second generated

positive view where vi is the embedding vector of ith node.

V − = GCN(f−(X,A)) ∈ RN,M as the node embedding of the generated negative

view where v−i is the embedding vector of ith node.

g(abstraction−level)(ui) is a flexible function that can take on different roles depending

35

on the self-supervision level being used in the framework. The g(abstraction−level)(ui)

function can serve as a readout, proximity function, cluster function, or identity

as defined below:

g(node)(ui) = Id(ui) = ui

g(proximity)(ui) =
1

|N (ui)|
∑

j∈Neighbors(ui)

uj

g(cluster)(ui) =
1

|Cluster(ui)|
∑

j∈Cluster(ui)

uj

g(graph)(ui) =
1

|N (ui)|
∑

j∈Graph(ui)

uj

(3.5)

Let S represent the output set of the function g as:

Su = g(abstraction-level)({u1, u2, . . . , un})

Sv = g(abstraction-level)({v1, v2, . . . , vn})

S− = g(abstraction-level)({v−1 , v−2 , . . . , v−n })

(3.6)

We denote H = GCN(X,A) as the learned representations of nodes, where hi is

the latent space representation of node i.

We define the critic θ(x, y) = sim(k(x), k(y)) where sim(., .) is the cosine similar-

ity and k(.) is a non-linear projection to enhance the expression power of the critic

function θ Chen et al. (2020); Tschannen et al. (2019). The projection function

k(.) is implemented with a two-layer multilayer perceptron (MLP). We define also

τ as a temperature parameter.

In our framework, for each iteration we generate three graph views by randomly

corrupting the original graph, denoted as G̃1, G̃2 and G̃3. We distinguish between

36

two types of graph data augmentation namely, positive augmentation denoted

as f+, and negative augmentation f−. We define positive augmentation as a

corruption technique that does not harm graph structure or node features by

creating unexciting edges or fake node features. For positive augmentation, we

adopt stochastic edge dropping and node feature masking. In contrast, we de-

fine negative augmentation as a corruption technique that may alter or harm the

structure or node features. In this case, we employ random node shuffling for neg-

ative augmentation. Then, we apply a graph neural network encoder to generate

latent space representation for each view. Next, we adopt a contrastive objective

to maximize mutual information between the generated graph views. The adapt-

ability of our function g to different roles depending on the self-supervision level

allows the proposed framework to effectively tackle various tasks and abstraction

levels within the graph representation learning process. As we have symmetric

views, we update the model parameter by maximizing the objective in Eq. 3.7.

The learning algorithm is summarized in Algorithm 1.

J =
1

2N

N∑
i=1

(L(ui, g
(abstraction-level)(vi)) + L(vi, g(abstraction-level)(ui)) (3.7)

Algorithm 1: The Proposed Training Algorithm

for i← 1 to n do
Generate three graph views G̃1, G̃2 and G̃3 by performing stochastic

corruption on G.

Generate latent representation of each view using the GCN encoder.

Compute the contrastive objective J Eq. 3.7.

Update parameters by applying stochastic gradient ascent to maximize J

with Eq. 3.7.
end

37

Node level:

At the node-level, we begin by creating two positive augmentation views through

edge dropping and node feature masking. Additionally, we generate a negative

augmentation view using node shuffling. Next, we use a graph neural network

to encode these views and produce node embeddings. To optimize the model,

we employ a contrastive loss function. This function ensures that the encoded

embeddings of each node in the two positive views agree with each other, while

also being distinguishable from embeddings of other nodes in both the positive

and negative augmented views.

Proximity level:

In the proximity-level abstraction, we aim to enhance the similarity between a

node and its close neighbors while reducing the similarity with more distant nodes.

To achieve our goal, we train our proximity-based model using three corrupted

graph views created using our graph augmentation strategies. Then, we input

those graph views into our GCN encoder. The key to optimizing the model lies in

the contrastive loss objective. This objective maximizes the similarities between

a node and its neighbors while minimizing the similarities with nodes that are

farther away. This process helps the model to capture and emphasize the local

structure and relationships within the graph. To define node proximity or neigh-

bors, we can use either a random walk approach or a more straightforward method

like node ith order node connection.

Cluster level:

In the cluster-level abstraction, our goal is to enhance the similarity among nodes

within the same cluster while reducing the similarity between nodes belonging to

other clusters. To achieve this goal, we utilize our graph augmentation techniques

to create three distinct data perspectives. Subsequently, we generate node em-

beddings by leveraging a graph neural network. The contrastive objective comes

38

into play to maximize the similarities among nodes within the same cluster and,

at the same time, minimize the similarities between nodes from different clusters.

This process helps to create more distinct and informative cluster representations.

To obtain the clustering labels, we can employ traditional clustering algorithms

such as K-means or spectral clustering.

Graph level:

In the graph-level abstraction, we repeat the same procedures by creating cor-

rupted graph views and generating node embedding. Then, we employ a con-

trastive loss function to maximize the similarity between a node and its positive

augmented graph and minimize the similarity with its negative augmented graph.

3.3 Independent training

To study the transition between different self-supervision abstraction levels from

geometric perspective, we adopt an independent training protocol consisting of

two main steps: pretraining and fine-tuning. This protocol, commonly employed

in transfer learning scenarios, enables us to take advantage of learned information

effectively. During pretraining, we specifically train our model’s embeddings on

a given pretext task at different abstraction levels, including node-, proximity-,

cluster-, and graph-levels. Subsequently, we fine-tune the pretrained model to

adapt it to another level of abstraction.

To evaluate the geometric configuration of the manifolds, we compute their Intrin-

sic Dimension (ID) and Linear Intrinsic Dimension (LID). The ID metric measures

the dimension of the embedded manifolds, providing an estimate of the minimum

number of parameters required to accurately represent the latent space’s underly-

ing structure. However, estimating ID becomes more complex in the presence of

curved manifolds and non-uniform point distributions. To address this challenge,

39

we use the approach presented in Facco et al. (2017) to effectively estimate ID

and LID such that:

Let X = {xi}N1 a set of N points uniformly sampled from a data manifold, whose

intrinsic dimension is equal to d. Let µi = r2(i)
r1(i)

where r1(i) and r2(i) are the

distances between the sample xi and its first and second nearest neighbors, re-

spectively, among the set X. We can derive the intrinsic dimension d from the

Pareto distribution F (µi|d) as follow:

d = log(1−F (µi))
log(µi)

, F (µi|d) = (1− µ−d
i)I[1,+∞[(3.8)

To estimate LID, we can use PCA (Principal Component Analysis) to identify the

principal components (eigenvectors of the data’s covariance matrix) that spans

the subspace with the minimal projection error as Ansuini et al. (2019). Next,

we evaluate the performance of our model after the pretraining and fine-tuning

steps on downstream tasks, specifically node classification and clustering. These

evaluations help us gauge the quality and effectiveness of the embeddings produced

by our trained model in practical application scenarios.

3.4 Filtering mechanism

In the next chapter, we will delve into the experimental results that demonstrate

the transition between different levels of self-supervision. We will provide fur-

ther details about the Feature Twist problem, which arises during this transition

and adversely affects the quality of the generated embeddings, consequently im-

pacting the performance of downstream tasks. The Feature Twist problem is

characterized by an abrupt geometric transformation when moving from one level

of self-supervision to another. This sudden shift in the geometric configuration of

the embeddings can be detrimental to the model’s ability to capture meaningful

40

patterns and relationships, leading to lower performance in downstream tasks.

We propose a filtering mechanism to address and mitigate the negative effects

of Feature Twist. This mechanism aims to smooth Feature Twist, particularly

during the transition to proximity level and cluster level. By applying this filtering

technique, we intend to enhance the quality of the embeddings across different

abstraction levels, ultimately improving the model’s performance and adaptability

in diverse tasks.

3.4.1 Proximity level filtering strategy

In the pretraining step, we use the graph information to define the neighbors of the

nodes using a random walk strategy to optimize the proximity level objective func-

tion. This process helps us capture the local connectivity and relationships within

the graph. In the subsequent fine-tuning step, specifically during the transition

to the proximity level, we can utilize the embeddings learned in the pretraining

phase to define the node proximity on the latent space. To achieve this, we create

a notion of node proximity that incorporates both the original graph structure

and the proximity in the learned latent space. One way to define node proximity

is by using the Euclidean distance.

To further improve the model’s performance and address the Feature Twist prob-

lem characterized by an abrupt geometric transformation and deterioration of

model performance, we adopt a more powerful filtering strategy. This strategy

employs a threshold-based filter in which nodes with Euclidean distance below a

specific threshold are supposed to close or be trusted neighbors of the target node

as described in Eq. 3.9. By implementing this filtering process, we can split the

node set into two categories: nodes with trusted neighbors in the latent space and

nodes without trusted neighbors. Then, we train nodes with trusted neighbors us-

41

ing a proximity level loss while the remaining node uses the same loss function as

the pre-training step. Our approach is grounded in the understanding that not all

nodes interconnected within a topological graph structure demonstrate uniform

behavior. In scenarios where we incorporate information from untrusted neigh-

bors, there is a risk of incorporating misleading information to the target node

during training. So, we perform a proximity loss for only nodes with confident

neighbors.

Neighbors(u) = {v ∈ V , ∥u− v∥2 ≤ λ} (3.9)

λ: Threshold to identify confident neighbors.

u and v are the latent space representation of the target node u and node v.

3.4.2 Cluster level filtering strategy

Previously, to fine-tune models using cluster-level loss, we applied the K-means

algorithm on the generated embeddings to identify centroids and cluster nodes.

K-means is a simple yet efficient machine-learning clustering algorithm. However,

its performance on high-dimensional data is often unsatisfactory, mainly when

we have a curved embedding structure. Thus, to improve the transition to the

cluster level, we made a significant change to the previous method. Firstly, instead

of using K-means to determine clusters and centroids, we now employ a deep

clustering strategy based on the Student’s t-distribution method. The key idea

behind this soft clustering mechanism is to learn both the cluster assignments and

the cluster centroids simultaneously through an iterative process. So, we initialize

the cluster centers µj in the latent space randomly or by applying K-means on

the pre-trained embeddings from the previous self-supervision level. Then, the

similarity between the embedded point hi and cluster centers µj is measured by

42

Student’s t-distribution, as follows:

qij =
(1 + ∥hi − µj∥2)−1∑
k(1 + ∥hi − µk∥2)−1

(3.10)

where qij denotes the soft clustering assignments, it is the probability of assigning

an embedded point hi to the the centroid µj.

Subsequently, we integrated a filtering strategy inspired by the concept presented

in Mrabah et al. (2022b). The challenge lies in the fact that during the self-

supervision training process, we cannot precisely define the correct cluster cen-

troids and the nodes within each cluster. As a result, there is an accumulation of

errors due to learning with noisy clustering assignments, which can degrade the

effectiveness and robustness of the clustering model. To address this issue, we

apply a filtering strategy to identify nodes with reliable clustering assignments.

The filtering strategy involves dividing the node set into two subsets: trusted

nodes and untrusted nodes. Trusted nodes refer to those whose clustering as-

signments at a specific iteration t are considered accurate enough to confidently

decide to which cluster they belong. On the other hand, untrusted nodes have

uncertain clustering assignments and are not used for the next training iteration.

By training our model based only on the subset of trusted nodes, we focus on more

reliable and accurate cluster assignments, reducing the impact of noisy clustering

information.

To establish trusted nodes within each cluster, we implement a strategy centered

around two essential hyperparameters. The first parameter sets an upper limit on

the allowable distance between a node’s representation and the centroid represen-

tation of the cluster in the embedding space. This distance criterion determines

whether a node qualifies for membership in a given cluster. In contrast, the sec-

43

ond threshold serves a distinct purpose: it acts as a penalty for nodes situated

in close proximity to two different cluster centroids simultaneously, thereby ad-

dressing conflicts that might arise. Let Ω(t) represent the set of confident nodes

at iteration t.

Ω(t) = {i inV | λ1
i ≥ α1 and (λ1

i − λ2
i) ≥ α2} (3.11)

where: α1 andα2 are two hyper-parameters.

λ1
i = maxj∈{1...K}(qij) is the first high-confidence clustering assignment.

λ2
i = maxj∈{1...K}(qij | qij < λ1

i) is the second high-confidence clustering assign-

ment.

Algorithm 2 summarizes all the steps used to perform the fine-tuning with a

filtering strategy during the transition from node level to proximity level and the

transition from node level to cluster level.

3.5 Conclusion

This chapter provided a comprehensive overview of our proposed framework for

studying self-supervision using different abstraction levels. We began by pre-

senting our graph augmentation techniques, followed by the strategies for graph

representation learning and the proposed contrastive objective. Additionally, we

discussed the training protocols and evaluation metrics used to address the feature

twist problem. Finally, we introduced our filtering solution designed to enhance

the transition and mitigate the Feature Twist effect.

44

Algorithm 2: The Proposed Fine-Tuning Algorithm with Filtering
Load the saved training weights from the node-level model

for i← 1 to n do
Generate three graph views G̃1, G̃2 and G̃3 by performing stochastic

corruption on G.

Generate latent representation of each view using the GCN encoder.

if model == cluster-level then
Select trusted nodes using Eq. (3.11).

Compute the contrastive objective J Eq. (3.7) using trusted nodes.

end

else if model == proximity-level then
Split the node set into nodes with trusted neighbors and nodes

without trusted neighbors using Eq. (3.9).

Apply a node-level loss for nodes without trusted neighbors and a

proximity-level loss for nodes with trusted neighbors Eq. (3.5).

Compute the contrastive objective J Eq. (3.7).

end

Update parameters by applying stochastic gradient ascent to maximize J

with Eq (3.7).

end

CHAPTER IV

EVALUATION OF THE PROPOSED APPROACH

In this chapter, we conduct an experimental evaluation to assess the quality of the

node embeddings generated at different abstraction levels. We apply these embed-

dings to node classification and clustering tasks using four well-known benchmark

datasets: Cora, CiteSeer, PubMed, and DBLP. Then, we present the independent

training protocol results that enable us to gain insights into the behavior of man-

ifolds during the transition between various abstraction levels. Finally, we show

our employed filtering technique results used to mitigate the effects of the Feature

Twist problem.

4.1 Dataset details

In this study, we employ four citation network datasets Sen et al. (2008): Cora,

CiteSeer, DBLP, and PubMed. These datasets form the basis for our investigation

into the transition between abstraction levels and the evaluation of the model’s

performance on downstream tasks.

• Cora: The Cora dataset is a citation network for scientific publications in

computer science. It comprises papers as nodes, with edges denoting citation

relationships among them. Each node in the graph is linked to a bag-of-

46

words representation of its content, rendering it well suited for text-based

classification tasks.

• CiteSeer: Similarly to Cora, CiteSeer is another citation network dataset

focused on scientific literature. It includes documents from various disci-

plines covering computer science, biology, and other domains. The dataset’s

structure consists of papers connected by citation links, and, like Cora, it is

often used for document classification tasks.

• DBLP: The DBLP dataset is a citation network sourced from the Digital

Bibliography & Library Project (DBLP). It encompasses computer science-

related publications, including conference papers and journal articles. The

dataset provides citation relationships between different publications. It is

widely used for various research tasks in the computer science domain.

• PubMed: The PubMed dataset is a citation network that primarily com-

prises biomedical publications. It is specifically related to the field of life sci-

ences and medicine. It encompasses articles sourced from PubMed, a widely

used database within the biomedical research community. The dataset con-

tains citation links between scientific publications. It is often used for tasks

such as document classification and citation recommendation.

These datasets have become popular benchmarks in the research community for

studying graph-based representation learning, citation analysis, and other machine

learning tasks. They offer diverse domains, sizes, and characteristics, making them

valuable resources for evaluating the performance and generalizability of machine

learning models. Table 4.1 below provides us with summary statistics about the

datasets, such as the number of nodes, feature dimensions, edges, classes, and

node connectivity.

47

Table 4.1 Statistics of datasets used in experiments.

Data Nodes Edges Features Classes Isolated nodes Avg node degree

Cora 2,708 5,429 1,433 7 NO 3.90

CiteSeer 3,327 4,732 3,703 6 YES 2.74

DBLP 17,716 105,734 1,639 4 NO 5.97

PubMed 19,717 88,648 500 3 NO 4.50

4.2 Hardware and software configurations and hyperparameters settings

All experiments are performed on a Linux server under the same hardware and

software environments. The specification of the software libraries and frame-

works as well as the hardware are provided in Table 4.2. The hyperparameters

for our models include the embedding dimension (128 or 256), graph augmenta-

tion scheme (uniform or adaptive augmentation), graph augmentation probability,

activation function, optimizer (we use Adam for all experiments), learning rate

(0.01 for small datasets and 0.001 for larger datasets), and the activation func-

tion (ReLU or PReLU). For the proximity-level model, we also need to define the

number of neighbors to consider.

4.3 Pre-training results

Our primary objective is to investigate self-supervision from geometric perspec-

tives, focusing on exploring the transition behavior between different levels of

abstraction. To accomplish this goal, we start by pretraining the four abstrac-

tion levels, node-level, proximity-level, cluster-level, and graph-level, using the

previously defined contrastive objective. Ensuring the effectiveness of each model

during the pretraining phase is crucial before advancing to the subsequent steps.

This step will establish a robust foundation for the remainder of our experimen-

tations. To facilitate a fair and unbiased comparison later, we will train all four

48

Table 4.2 Hardware and software used for all the conducted experiments.

Hardware

RAM 132GB

CPU model Intel(R) Xeon(R) CPU E5-2620 V4 @ 2.10GHz

Number of CPUs 32

GPU model GeForce RTX 2080 Ti

GPU memory 11 GB

Number of GPUs 2

Software

Operating System Ubuntu 18.04.5 LTS

Python 3.9.16

Pytorch 1.13.0+cu117

Sklearn 1.3.0

Table 4.3 Evaluation results of our pre-training step for the four levels of
abstraction: C-Acc stands for classification accuracy, and K-Acc stands for
clustering accuracy.

Method Cora CiteSeer DBLP PubMed

C-Acc K-Acc C-Acc K-Acc C-Acc K-Acc C-Acc K-Acc

Node Level 0.8425 0.7160 0.7292 0.6931 0.8427 0.7977 0.8433 0.6834

Proximity Level 0.8400 0.7433 0.7168 0.6946 0.8402 0.8026 0.8276 0.6982

Cluster Level 0.7957 0.5542 0.6945 0.5822 0.7956 0.6990 0.7772 0.6565

Graph Level 0.8178 0.5561 0.7212 0.6913 0.8311 0.7257 0.8040 0.6047

GRACE 0.8347 0.7023 0.7135 0.6705 0.8287 0.7934 0.8523 0.6843

DGI 0.8261 0.713 0.6872 0.688 0.8321 0.7752 0.768 0.5337

models under identical conditions, namely the same augmentation techniques and

GCN encoders.

To conduct the experimental evaluation, we adopt a linear evaluation scheme

which involves two key steps. Firstly, each model undergoes unsupervised training

on a "pretext task" to learn latent representations. Subsequently, we utilize these

49

Figure 4.1: 2D t-SNE projection of the latent space representation of Cora, CiteSeer,
PubMed and DBLP Datasets. The legend corresponds to 4 rows: Cora, CiteSeer,
PubMed and DBLP with each row containing four columns, from left to right: node-level,
proximity-level, cluster-level and graph-level. The embeddings are colored according to
the different classes of each dataset.

50

generated latent representations to train and evaluate a logistic regression classifier

for the downstream task. We assess the model’s performance using classification

accuracy and clustering accuracy.

At the proximity-level abstraction, we leverage random walk techniques to cap-

ture local node relationships and contextual information. By generating node

proximities through random walks, we create informative neighborhood struc-

tures. Our training objective function aims to maximize the similarities between

a node and its neighboring nodes while minimizing the similarities with unrelated

nodes. Moving on to the cluster-level model, we adopt the K-means algorithm

to group nodes into meaningful clusters. This clustering step enables us to cap-

ture higher-order graph patterns and distinct node clusters. During training, we

seek to maximize the similarities between a node and its corresponding cluster

centroid while minimizing the similarities with nodes belonging to the extra clus-

ters. Finally, to train the graph-level model, we introduce a readout function to

generate a comprehensive graph representation. This readout function aggregates

information from all nodes to create a global graph representation.

As illustrated in Table 4.3, the results underscore the efficacy of our proposed

framework in effectively modeling constructive loss at various levels of abstraction.

Particularly noteworthy is the performance of our graph-level model, which closely

rivals that of the state-of-the-art Deep Graph Infomax (DGI) model. Furthermore,

our node-level model showcases comparable performance to the leading model in

its category by consistently demonstrating slight improvements over the state-

of-the-art across three datasets: Cora, CiteSeer, and DBLP. Furthermore, our

proximity-level model has shown promising results and gives us the best clustering

performance on the four datasets, which validates the effectiveness of our approach

in capturing local node relationships. However, we acknowledge that our cluster-

level model’s performance falls short compared to previous models. We anticipated

51

this outcome due to the inherent challenge of effectively defining cluster centroids

during the pretraining phase. Consequently, the model may suffer from cumulative

errors arising from noisy label assignments. Despite the limitations observed in

the cluster-level model, our overall results demonstrate the potential and efficacy

of our self-supervised contrastive learning framework.

Figure 4.1 shows the t-SNE projection of the latent space representation of the

Cora, CiteSeer, PubMed, and DBLP datasets for our four models. The node-level

and proximity-level models provide good embedding representation, particularly

for Cora, CiteSeer, and DBLP, where we can observe coherence between nodes

with the same label. The embedding quality of the graph-level and cluster level

is slightly worse compared to the two previous models. Mainly, we have a closer

distance between nodes from different clusters.

4.4 Feature Twist

In the following experiments, we delve into the transition across various levels of

abstraction from a geometric perspective. Our exploration is based on the average

Intrinsic Dimension (ID) and Local Intrinsic Dimension (LID) estimations derived

from principal component analysis. Additionally, we evaluate the efficacy of our

models in classification as a downstream task using accuracy as a metric.

As we can see in Figure 4.2, the node-level model demonstrates high accuracy

in downstream classification tasks, accompanied by a consistent decrease in the

average ID and LID values throughout the pretraining phase. The LID consis-

tently surpasses the ID, indicating the presence of underlying linear structures in

the embedding space that the ID alone fails to capture. However, as we transit

from node level to higher levels, a concerning deterioration of geometric manifolds

becomes evident. This degradation is reflected in an increasingly abrupt increase

52

Figure 4.2: Evaluation of the self-supervised transition from the node level to other
levels of abstraction for the Cora dataset.

in the ID, resulting in a stark contrast between the ID and the LID. Consequently,

our observed low-dimensional manifolds remain curved. This transition adversely

affects the performance of the downstream tasks, particularly at the proximity and

cluster level. We posit that the application of filtering techniques holds the poten-

tial to enhance these outcomes. We intend to delve deeper into these techniques

and their impact on the results, which we will present in subsequent sections.

As depicted by Figure 4.3, the proximity-level model delivers notable classifi-

cation outcomes in downstream tasks, even in the presence of intricate curved

low-dimensional manifolds. Notably, we observe a gradual shift from proximity

to nodes, which appears to have a marginal impact on reducing the ID. However,

as we progress to higher abstraction levels like graph and cluster, the average

53

Figure 4.3: Evaluation of the self-supervised transition from the proximity level to other
levels of abstraction for the Cora dataset.

ID tends to escalate. Overall, transitioning from proximity to other abstraction

levels does not enhance performance in downstream tasks, and the curved low-

dimensional manifold persists, which indicates the presence of a Feature Twist

problem.

The cluster-level model exhibits lower accuracy results compared to the node- and

proximity-level models, as shown in Figure 4.4. Additionally, it demonstrates a

higher Linear Intrinsic Dimension compared to the preceding models. This differ-

ence is due to the issue of error propagation that arises from incorrect clustering

assignments. We generated cluster centroids using the K-means model applied to

untrained embeddings, which cannot provide precise cluster centroids. We then

aimed to maximize the similarity between each node and its respective cluster

54

Figure 4.4: Evaluation of the self-supervised transition from the cluster level to other
levels of abstraction for the Cora dataset.

centroid while minimizing the similarity with other cluster centroids. Transition-

ing from the cluster level to other levels can enhance model accuracy, but it still

lags behind the results of the other models. Also, we observe a sudden geomet-

ric transformation in ID and LID. Overall, it is better to apply clustering loss

after a pre-training step to mitigate the adverse effects of inaccurate clustering

assignment propagation.

The performance of the graph-level model, as depicted in Figure 4.5, exhibits

a slight lag behind both node-level and proximity-level models in the classifica-

tion tasks. In particular, an intriguing observation emerges from the higher LID

value within this model compared to the LID values of node-level and proximity-

level models. Importantly, this LID value shows a consistent decrease during the

55

pretraining phase. In contrast, the Intrinsic Dimensionality during graph-level

training displays a less discernible pattern. It fluctuates around a relatively con-

stant value without showing a clear monotonic trend. During the transition from

the graph level to distinct levels, an evident potential for enhancing classification

accuracy becomes clear. However, despite this potential, the achieved results still

fall short compared to the performance of node-level and proximity-level models.

Also, an abrupt transition of average ID becomes evident in the initial iterations,

accompanied by a consistent decrease in LID. This observation underscores the

evolving nature of the model’s latent space representation. Interestingly, the tran-

sition to proximity-level stands out due to their closely aligned ID and LID values

compared to the previous models. This alignment suggests a more flattened and

evenly distributed latent space representation during the transition to proximity

level.

In summary, the experimental findings indicate the existence of a prominently

curved latent representation within the models. Furthermore, a distinct Feature

Twist phenomenon is evident, marked by a sudden geometric shift between differ-

ent levels of abstraction. Although some transitions exhibit a smoother geometric

transformation, they do not yield noticeable enhancements in downstream task

performance. In the following section, we discuss our proposed filtering mech-

anism performance. This mechanism aims to enhance the results and address

the Feature Twist problem, offering a potential solution to mitigate the observed

challenges.

4.5 Protection mechanism against Feature Twist

In this section, we present the results of our transition process from the node

level to the proximity and cluster levels, employing a filtering mechanism. The

56

Figure 4.5: Evaluation of the self-supervised transition from the graph level to other
levels of abstraction for the Cora dataset.

choice of starting with the node level as a pretraining step is embedded in its

demonstrated superiority in both classification and clustering, as highlighted in

the previously shared results.

As a high-level overview of our intuition behind the filtering mechanisms, our aim

is to use the performance achieved during the pretraining phase to effectively im-

prove the fine-tuning step. To address the potential of encountering the Feature

Twist effect during the transition from pretraining to fine-tuning, we use a filter-

ing strategy that involves dividing the initial node set into two categories. This

strategy keeps training the nodes in the first category utilizing the loss used in

the pertaining step. The second category of nodes is trained using a loss function

of different abstraction levels. This differentiation arises from the understanding

57

that not all nodes are well suited to contribute to the cluster or proximity level

losses. Therefore, it is better to use node level loss in the pretraining step because

it is not worth training the first category using an abstraction level that does not

yield the best results.

4.5.1 Node level to proximity level improvement

Previously, we did not leverage the learned embeddings during the transition from

node level to cluster and proximity levels. To optimize our previous findings, we

introduced a filtering approach. This filter selects nodes based on their Euclidean

distances in latent space by employing a predetermined threshold. Subsequently,

we direct the training of selected nodes towards the proximity level objective,

while nodes not chosen undergo training using the node level objective. This

strategy helps us to enhance the previous results, as shown in Figure 4.6. It

yields a smoother transition in both ID and LID values between the two self-

supervised phases, concurrently boosting clustering and classification accuracy. A

closer examination in Figure 4.7 accentuates the accuracy improvements achieved

through our filtering methodology. Our filtering technique outperforms not only

the proximity-level model but also the non-filtered node-to-proximity transition

model and the node-level model. Also, when examining the 2D t-SNE embedding

representation in Figure 4.9 of the node-to-proximity model post the application

of the filtering mechanism, a discernible enhancement becomes evident. Within

this improved representation, nodes sharing the same label exhibit a heightened

proximity to each other, establishing a distinct cluster, while nodes with differing

labels maintain a greater distance from one another. This refinement is notably

more pronounced compared to both the original proximity model and the node-

to-proximity representation without applying the filtering mechanism.

58

Figure 4.6: Node to proximity evaluation on Cora using our proposed filtering strategy.

Figure 4.7: Node to proximity classification improvement on Cora using our proposed fil-
tering strategy. The y-axis represents the classification accuracy, and the x-axis denotes
the number of iterations.

In summary, the efficacy of our filtering strategy lies in its ability to acknowledge

that not all nodes possess crucial informative neighbors for propagating meaning-

ful information. As a result, our process discerns which nodes are better suited

for training with proximity loss, while others are more aptly trained solely using

the node-level loss.

59

4.5.2 Node level to cluster level improvement

To enhance the efficacy of the transition from node to cluster level, we make some

refinements to our previous methodology. Departing from the K-means used for

cluster determination and centroid identification, we use a soft clustering approach

rooted in deep clustering employing the Student’s t-distribution method. Further-

more, we introduced a filtering mechanism inspired by the concept expounded in

Mrabah et al. (2022b), aiming to intelligently select the most relevant nodes for

the clustering objective. The integration of this strategy can improve the previous

results, as illustrated in Figure 4.8.

During the initial epochs of the transition process, we observed a slight dip in

performance compared to our previous methods. This temporary decline can

be attributed to the fact that during this early phase of transition, we lack a

substantial number of trusted nodes to effectively train the model. As a result,

the model performance may not be at its optimal level at this stage. However,

as the transition progresses, our approach begins to showcase its strengths. Over

time, our strategy demonstrates the capacity to surpass the performance of the

previous cluster-level models. Furthermore, when observing the 2D embedding

representation of t-SNE in Figure 4.9 of the node-to-cluster model after applying

the filter, a distinct enhancement becomes apparent compared to the cluster-level

model and node-to-cluster before filtering. In this refined representation, nodes

sharing the same label are closer to each other, effectively increasing the cohesion

within cluster groups. At the same time, these label-aligned nodes are noticeably

more distant from dissimilar label nodes.

60

Figure 4.8: Node to cluster evaluation on the Cora using our proposed filtering strategy.

4.6 Conclusion

In this chapter, we provided a comprehensive overview of our training procedures.

We presented the results of our pretraining phase, showcasing the effectiveness of

our framework in modeling the different abstraction levels. Through experimen-

tation, we demonstrated the existence of the Feature Twist problem, which poses

challenges during the transition between abstraction levels. Finally, we introduced

our filtering mechanism, which effectively improves the quality of the results.

61

Figure 4.9: 2D t-SNE projection of the latent space representation of Cora. The first row
present from left to right the proximity level model, the node to proximity model before
applying filter and the node to proximity after applying filter. The second row present
from left to right the cluster level model, the node to cluster model before applying filter
and the node to cluster after applying filter.

CHAPTER V

CONCLUSION

This work established the first geometric exploration of the self-supervision paradigm.

Our novel graph contrastive learning framework can train models at different ab-

straction levels, including node, proximity, cluster, and graph levels. The frame-

work utilizes graph augmentation techniques to generate corrupted graph views,

and by maximizing the agreement of representations between these views, we

improve the quality of our learned embeddings.

To explore the transition between different abstraction levels in self-supervision,

we adopted a pretraining-finetuning protocol. The performance of our models

during the pretraining phase yielded competitive results, surpassing state-of-the-

art methods. Using intrinsic dimension and linear intrinsic dimension as metrics,

we identified the presence of the Feature Twist issue problem characterized by

a sudden and abrupt shift between abstraction levels. To address this issue,

we introduced a filtering mechanism to improve the transition, particularly at

proximity and cluster levels.

To improve the transition to the proximity level, we adopted a threshold-based

approach considering only nodes with distances below a certain threshold as prox-

imity to the target node. To enhance the transition to the cluster level, we cate-

gorized nodes into trusted and untrusted nodes based on their distances to cluster

63

centroids. Then, we gradually trained the model using only a set of trusted nodes.

These filtering techniques can help improve the model’s performance on down-

stream tasks. By addressing the Feature Twist problem, we enhance the models’

adaptability and effectiveness, leading to more reliable and robust embeddings.

This research opens new avenues for understanding the interplay between self-

supervision and geometric properties in graph representation learning.

As part of a future perspective, we aim to investigate the competition between

self-supervision abstraction levels from a geometric perspective using a joint train-

ing strategy. By adopting a joint training approach, we can explore how different

levels of self-supervision interact and complement each other in the learning pro-

cess. This investigation will help us better understand the interplay between the

various abstraction levels and how they collectively contribute to the overall model

performance.

BIBLIOGRAPHY

Ansuini, A., Laio, A., Macke, J. H. & Zoccolan, D. (2019). Intrinsic dimension of

data representations in deep neural networks. Advances in Neural Information

Processing Systems, 32.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A.

& Hjelm, D. (2018). Mutual information neural estimation. In International

Conference on Machine Learning, pp. 531–540. PMLR.

Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E. & Cui, P. (2020). Structural deep

clustering network. In Proceedings of the Web Conference 2020, pp. 1400–1410.

Chen, J., Ma, T. & Xiao, C. (2018). FastGCN: Fast learning with graph con-

volutional networks via importance sampling. In International Conference on

Learning Representations (ICLR).

Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. (2020). A simple framework

for contrastive learning of visual representations. In International Conference

on Machine Learning, pp. 1597–1607. PMLR.

Defferrard, M., Bresson, X. & Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. Advances in Neural

Information Processing Systems, 29.

Donnat, C., Zitnik, M., Hallac, D. & Leskovec, J. (2018). Spectral graph wavelets

for structural role similarity in networks.

65

Facco, E., d’Errico, M., Rodriguez, A. & Laio, A. (2017). Estimating the intrin-

sic dimension of datasets by a minimal neighborhood information. Scientific

Reports, 7(1), 12140.

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 855–864.

Hamilton, W., Ying, Z. & Leskovec, J. (2017a). Inductive representation learning

on large graphs. Advances in Neural Information Processing Systems, 30.

Hamilton, W. L., Ying, R. & Leskovec, J. (2017b). Representation learning on

graphs: Methods and applications. IEEE Data Engineering Bulletin, 40(3),

52–74.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P.,

Trischler, A. & Bengio, Y. (2019). Learning deep representations by mutual in-

formation estimation and maximization. In International Conference on Learn-

ing Representations (ICLR).

Hu, Z., Dong, Y., Wang, K., Chang, K.-W. & Sun, Y. (2020). Gpt-gnn: Generative

pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 1857–

1867.

Ji, S., Pan, S., Cambria, E., Marttinen, P. & Philip, S. Y. (2021). A survey

on knowledge graphs: Representation, acquisition, and applications. IEEE

Transactions on Neural Networks and Learning Systems, 33(2), 494–514.

Jiang, H. & Huang, Y. (2022). An effective drug-disease associations prediction

model based on graphic representation learning over multi-biomolecular net-

work. BMC Bioinformatics, 23, 1–17.

66

Kipf, T. N. & Welling, M. (2017). Semi-supervised classification with graph con-

volutional networks. In Proceedings of the 5th International Conference on

Learning Representations (ICLR), pp. 1–14.

Li, Z., Shen, X., Jiao, Y., Pan, X., Zou, P., Meng, X., Yao, C. & Bu, J. (2020).

Hierarchical bipartite graph neural networks: Towards large-scale e-commerce

applications. In 2020 IEEE 36th International Conference on Data Engineering

(ICDE), pp. 1677–1688. IEEE.

Lukashina, N., Kartysheva, E., Spjuth, O., Virko, E. & Shpilman, A. (2022).

Simvec: predicting polypharmacy side effects for new drugs. Journal of Chem-

informatics, 14(1), 1–12.

Mavromatis, C. & Karypis, G. (2020). Graph infoclust: Leveraging cluster-level

node information for unsupervised graph representation learning. arXiv preprint

arXiv:2009.06946.

McPherson, M., Smith-Lovin, L. & Cook, J. M. (2001). Birds of a feather: Ho-

mophily in social networks. Annual Review of Sociology, 27(1), 415–444.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of

word representations in vector space. In Proceedings of the 1st International

Conference on Learning Representations (ICLR) Workshop.

Mrabah, N., Bouguessa, M. & Ksantini, R. (2022a). Escaping feature twist: A

variational graph auto-encoder for node clustering. Proceedings of the 31st

International Joint Conference on Artificial Intelligence (IJCAI), pp. 3351–

3357.

Mrabah, N., Bouguessa, M., Touati, M. F. & Ksantini, R. (2022b). Rethinking

graph auto-encoder models for attributed graph clustering. IEEE Transactions

on Knowledge and Data Engineering.

67

Murali, V., Muralidhar, Y. P., Königs, C., Nair, M., Madhu, S., Nedungadi,

P., Srinivasa, G. & Athri, P. (2022). Predicting clinical trial outcomes using

drug bioactivities through graph database integration and machine learning.

Chemical Biology & Drug Design, 100(2), 169–184.

Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T. & Huang, J. (2020).

Graph representation learning via graphical mutual information maximization.

In Proceedings of The Web Conference 2020, pp. 259–270.

Perozzi, B., Al-Rfou, R. & Skiena, S. (2014). Deepwalk: Online learning of so-

cial representations. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 701–710.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. (2008).

The graph neural network model. IEEE Transactions on Neural Networks,

20(1), 61–80.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B. & Eliassi-Rad, T. (2008).

Collective classification in network data. AI magazine, 29(3), 93–93.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer, E. L., Munos, R.,

Veličković, P. & Valko, M. (2022). Large-scale representation learning on graphs

via bootstrapping. In International Conference on Learning Representations

(ICLR).

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S. & Lucic, M. (2019). On

mutual information maximization for representation learning. In International

Conference on Learning Representations (ICLR).

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y. & Hjelm, R. D.

(2019). Deep graph infomax. International Conference on Learning Represen-

tations (ICLR) (Poster), 2(3), 4.

68

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. & Bengio, Y.

(2018). Graph attention networks. In International Conference on Learning

Representations (ICLR).

Wang, C., Pan, S., Hu, R., Long, G., Jiang, J. & Zhang, C. (2019). Attributed

graph clustering: A deep attentional embedding approach. In Proceedings

of the 28th International Joint Conference on Artificial Intelligence (IJCAI),

pp. 3670–3676.

Wu, J., He, J. & Xu, J. (2019a). Demo-net: Degree-specific graph neural networks

for node and graph classification. In Proceedings of the 25th ACM International

Conference on Knowledge Discovery and Data Mining, pp. 406–415.

Wu, Z., Pan, S., Long, G., Jiang, J. & Zhang, C. (2019b). Graph wavenet for deep

spatial-temporal graph modeling. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1907–1913. AAAI Press.

Xia, W., Gao, Q., Yang, M. & Gao, X. (2021). Self-supervised contrastive at-

tributed graph clustering. arXiv preprint arXiv:2110.08264.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L. & Leskovec,

J. (2018). Graph convolutional neural networks for web-scale recommender

systems. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 974–983.

You, Y., Chen, T., Wang, Z. & Shen, Y. (2020). When does self-supervision

help graph convolutional networks? In International Conference on Machine

Learning, pp. 10871–10880. PMLR.

Zhang, S., Tong, H., Xu, J. & Maciejewski, R. (2019). Graph convolutional

networks: a comprehensive review. Computational Social Networks, 6(1), 1–23.

69

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S. & Wang, L. (2020). Deep Graph Con-

trastive Representation Learning. In ICML Workshop on Graph Representation

Learning and Beyond. Retrieved from https://arxiv.org/abs/2006.04131

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S. & Wang, L. (2021). Graph contrastive

learning with adaptive augmentation. In Proceedings of the Web Conference

2021, pp. 2069–2080.

