
Individual Loss Reserving for Multi-coverage Insurance

A Preprint

Roxane Turcotte
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Abstract

Individual loss reserving methods have undergone substantial development in the past decade,

driven by increased accessibility to granular-level insurance claims data. This paper presents a

micro loss reserving model tailored for multi-coverage insurance policies, where a single insur-

ance claim might trigger payments from multiple coverage types. We employ a copula-based

multivariate regression approach to jointly model the settlement time and loss amount, effec-

tively capturing the dependence among various types of loss amounts and their correlation with

the settlement time. We stress the importance of considering both types of dependence for

accurate reserving prediction and uncertainty quantification. Furthermore, we propose com-

putationally efficient algorithms for parameter estimation and dynamic prediction. Through

numerical experiments and real data analysis, we demonstrate the effectiveness of our proposed

multivariate predictive model in loss reserving applications.

Keywords: copula regression, dependent risks, dynamic prediction, loss reserving, multi-coverage

insurance
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1 Introduction

Loss reserving, the process of predicting the insurer’s outstanding liability, is a quintessential ac-

tuarial function in the insurance industry. Accurate estimation of loss reserves is crucial to several

key operations within an insurance company, including claims management, ratemaking, and fi-

nancial reporting (Frees (2015)). Reserving methods can be broadly categorized into aggregate

(macro) and individual (micro) approach, depending on the type of claims data utilized for model

development. This work specifically concentrates on individual loss reserving methods tailored for

multi-coverage insurance products.

Individual loss reserving methods were initially formulated within a marked Poisson process

framework to accommodate granular claims data (see Arjas (1989), Norberg (1993, 1999)). The

first implementation of this model in empirical studies was due to Antonio and Plat (2014). The

point process approach is further extended to the marked Cox process to account for overdisper-

sion (see Avanzi et al. (2016), Badescu et al.(2016, 2019)), and to a copula-based point process to

accommodate informative terminal events (see Yang et al. (2024)). The core advantage of granular

models lies in their ability to integrate detailed information into the forecasting process, including

but not limited to case reserves (Taylor et al. (2008)), claim markers (i.e. claim-specific characteris-

tics) (Godecharle and Antonio (2015)), and environmental changes (Okine (2023a)). As claims data

becomes more complex and voluminous, recent literature has witnessed the application of various

machine learning methods in the context of individual loss reserving. Examples include Wüthrich

(2018), Lopez et al. (2019), Duval and Pigeon (2019), and Delong and Wüthrich (2020). We refer

readers to the recent survey of Taylor (2019) for detailed discussion on these developments.

Departing from the aforementioned literature, our work aims to develop an individual loss

reserving method specifically designed for insurance policies providing multiple types of coverage.

Multi-coverage contracts are prevalent in nonlife insurance, with examples such as automobile

insurance indemnifying financial losses due to collision and third party liability (both property

damage and bodily injury), homeowner insurance providing protection for building, contents, as well

as liability, and workers compensation offering benefits for wage replacement, medical treatment,

and vocational rehabilitation. A distinctive aspect of claims data from multi-coverage policies is

the interrelation among claims from different coverage types. This unique feature demands careful
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consideration in the development of methodologies for individual loss reserving for multi-coverage

policies. Despite the rapid expansion of the individual loss reserving literature, methods adept

at accommodating dependence among multiple types of claims remain scarce. A recent example

is Michaelides et al. (2023) where the across-coverage dependence is introduced via activation

patterns modeled with a multinomial logit regression while the loss amounts from different coverage

types are treated as independent. Our research addresses this gap by proposing an individual loss

reserving model that explicitly captures and quantifies the dependence among different types of

claims originating from a multi-coverage insurance policy.

It is noteworthy that the underdevelopment of individual loss reserving methods for multi-

coverage policies is in contrast to the extensive research on multivariate loss reserving methods

in the aggregate context using loss triangle data. In the literature of aggregate loss reserving,

various multivariate methods have been proposed to account for the dependence between different

lines of business. Notable examples include nonparametric approaches such as those proposed

by Merz and Wüthrich (2008), Merz and Wüthrich (2009), and Zhang (2010), and parametric

approaches as evidenced by Shi and Frees (2011), Shi et al. (2012), and De Jong (2012). Given

that dependence is a shared consideration for model development in both multi-coverage policies

and multi-line insurance, one would naturally anticipate a parallel advancement in multivariate

methods for individual reserving. Compared to the advanced state of multivariate aggregate loss

reserving methods, the underdevelopment of individual loss reserving methods for multi-coverage

insurance can be attributed to two primary reasons. First, from a methodology standpoint, the

concept of dependence is well understood as an element-wise relationship in the context of multiple

loss triangles. However, the notion of pairwise association becomes less clear when dealing with

claim-level losses from multiple coverage types. Second, from a data perspective, access to granular

loss data is more limited due to the constraints on data collection and data quality, and this issue

is further compounded when considering claim data categorized by coverage type.

Furthermore, the development of multivariate granular reserving methods falls behind their

ratemaking counterpart. It is widely recognized that pricing models in non-life insurance heavily

rely on granular data driven by the competitive nature of the market. In particular, numerous

multivariate pricing methods have been proposed for multi-coverage policies, such as automobile

insurance (Frees and Valdez (2008), Frees et al. (2009), and Shi et al. (2016)) and commercial
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property insurance (Frees et al. (2016)). Additionally, these methods have been expanded for

pricing multivariate insurance risks in a much broader sense, including multi-peril risks (Frees

et al. (2010), Shi and Yang (2018), and Yang and Shi (2019)) and spatially correlated risks (Zhao

et al. (2021) and Huang et al. (2023)). Beyond their application in reserving, individual loss

reserving methods arguably play a more vital role in ratemaking (Crevecoeur et al. (2023) and

Okine (2023b)). Therefore, it is imperative to develop a multivariate individual loss reserving

method to align with the demands of the ratemaking task.

In this paper, we present a copula-based granular reserving model designed for estimating loss

reserves for multi-coverage insurance. Specifically, we employ a multivariate copula to jointly model

the ultimate losses from different coverage types within a given claim, as well as the settlement

time of the claim. Consequently, our proposed approach not only enables the quantification of

dependence among losses of multiple coverage types but also captures the association between the

size of the claim and its settlement time - a notable relationship identified in recent literature (see

Okine et al. (2022) and Yang et al. (2024)). The resulting model facilitates dynamic predictions for

an insurer’s outstanding liability by leveraging information across coverage types and settlement

delay. To tackle the estimation challenges due to imbalanced and censored observations in the

data, we further introduce a stage-wise approach to estimate parameters in the proposed model.

We investigate the efficacy of the stage-wise estimation using simulation studies, and demonstrate

dynamic prediction in a loss reserving application using a large portfolio of automobile insurance

claims from a Canadian insurance company.

Lastly, it is worth commenting on the significant role of dependence in the individual reserving

context. While the consideration of dependence among various types of losses is a shared aspect

in both aggregate and individual loss reserving methods, its implications on reserve prediction are

different. In the aggregate reserving context, neglecting dependence is detrimental to accurately

quantifying reserving variability. In simpler terms, uncertainty is underestimated when losses are

positively correlated and overestimated when losses are negatively correlated. In the proposed

individual loss reserving model, dependence affects prediction uncertainty similarly. Moreover and

of greater importance, accounting for dependence enables dynamic updating of predictions for the

loss from one coverage type based on the loss development from other coverage types.

The rest of the article is organized as follows: Section 2 describes the granular claims data in
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automobile insurance that motivate our work. Section 3 introduces the copula-based individual

loss reserving method for multi-coverage insurance. Section 4 delves into the two-stage estimation

method through simulation studies. Section 5 applies the proposed method to the automobile

insurance claims data and demonstrates dynamic prediction of outstanding claim payments. Section

6 concludes the paper.

2 Data

We consider a portfolio of private automobile insurance claims obtained from a Canadian insurance

company, focusing on regions such as Ontario, Alberta, and the Atlantic provinces where manda-

tory coverages aren’t provided by public insurance companies. The portfolio consists of 563,426

insurance claims recorded between January 1st, 2015 and July 31st, 2021. The data contain de-

tailed information for these claims collected by the insurer up to July 31st, 2021. It is important

to note that not all claims have been settled by the end of our observation period.

Each insurance claim involves up to three types of coverage, Automobile Physical Damage

(APD), Loss of Use (LU) and Bodily Injury (BI). APD and LU cover the policyholder’s losses related

to car damage and the need for a replacement car during repairs, respectively. BI compensates

for third-party medical expenses when the insured is at fault. Notably, Canada’s public health

insurance system limits medical expenses to what isn’t already covered, such as compensation for

severe physical impairment or loss of income resulting from a car accident.

The dataset exhibits an imbalance wherein not all claims activate all three types of coverage.

Table 1 provides a comprehensive overview of the combinations of coverage types within the insur-

ance portfolio. It is evident from the table that the predominant portion of claims emanates from

the APD coverage, with the majority of multi-coverage claims also being triggered by the APD

coverage. This observation is expected, as LU and BI losses frequently follow APD losses in many

cases.
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Table 1: Number and percentage of claims by coverage type

Coverage Number Percentage

APD 215,971 38.33

LU 304 0.05

BI 6,260 1.11

(APD, LU) 307,460 54.57

(APD, BI) 11,110 1.97

(LU,BI) 12 0.002

(APD, LU,BI) 22,309 3.96

Total 563,426 100.00%

The central outcome variables underpinning our analysis are the settlement time and loss

amount. Within our context, settlement time refers to the period an insurer takes to process

and settle an insurance claim subsequent to its reporting to the insurer, while loss amount indi-

cates the ultimate losses delineated by coverage type. Table 2 offers descriptive statistics for these

critical outcome variables. It is notable that both settlement time (measured in days) and loss

amount (measured in CAD) exhibit right skewness and heavy-tailed distributions. Moreover, we

observe that APD and LU claims are relatively high in frequency, although APD claims tend to

have larger severity compared to LU claims. Additionally, BI claims occur less frequently, yet their

loss severity surpasses that of the other two types of claims.

Table 2: Descriptive statistics for settlement time and ultimate loss amount by coverage

Variable NumOfObs Mean SD Min 25th 50th 75th Max

Settlement Time 563,426 87 168 0 22 44 83 2,389

Loss - APD 556,850 4,756 8,381 0 524 2,313 5,573 533,574

Loss - LU 330,085 419 544 0 83 307 602 52,777

Loss - BI 39,691 15,331 66,334 0 0 1,139 5,783 2,244,794

To investigate the relationship among these outcome variables, we present in Table 3 their

pairwise associations using Kendall’s and Spearman’s rank correlation coefficients. Two types
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of associations are particularly pertinent to our study: the dependence among different types of

coverage amounts and the dependence between settlement time and loss amount. The table reveals

a positive correlation among losses of different coverage types. For instance, APD and LU exhibit

a strong correlation, which can be reasonably explained by the fact that severe damage to the car

necessitates a longer time for repairs. Moreover, the table illustrates a positive relationship between

settlement time and loss amount. This positive correlation is also expected because larger claims

typically take longer to settle due to the expertise and resources involved in the settlement process.

Table 3: Pairwise rank correlation between settlement time and ultimate losses by coverage

Spearman’s ρ

YAPD YLU YBI T

K
en

d
al

l’
s
τ

YAPD 1 0.5516 0.0722 0.4180

YLU 0.4112 1 0.0057 0.1322

YBI 0.0517 0.0042 1 0.6452

T 0.2982 0.0944 0.4838 1

Furthermore, our dataset encompasses a rich array of both policy-level and claim-level informa-

tion, serving as covariates in our analytical model. Table 4 summarizes the descriptive statistics

of these predictors. All the covariates are presented as categorical variables with the percentage

reported for each level. The majority of the covariates are policy-level attributes which contain

driver characteristics such as age and gender, and metrics pertaining to the vehicle’s usage, such as

its purpose and the distance driven. In addition, amidst these covariates, there is one claim-specific

variable describing the degree of responsibility assigned for the accident.
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Table 4: Descriptive statistics for the covariates (percentage by level of each variable)

Covariate Categories

Level of responsibility At fault & NA Partly at fault Not at fault Not applicable

28.86 2.24 38.38 30.52

Province Ontario Alberta Atlantic

60.10 24.42 15.48

Gender Female Male & NA

32.83 67.17

Decade of birth 40s & before 50s 60s 70s

8.9 11.13 15.22 13.85

80s 90s 00s & after Not applicable

13.50 8.87 0.66 27.87

Main purpose usage Pleasure Business & Commercial Commute & NA

35.08 64.93

Annual kilometers [0, 14999) [15000, 19999) [20000, 24999) [25000, 29999)

40.43 17.24 30.08 4.07

[30000, 34999) [35000+ & NA

3.92 4.25

3 Methodology

3.1 Some Notations

Consider an insurance policy offering k types of coverage. For a given insurance claim indexed by i,

Ti represents the settlement time, indicating the duration from the claim’s reporting to the insurer

to its closure. Let η
(l)
i , for l = 1, . . . , k, be a binary variable indicating whether the lth type of

coverage is activated for the claim. At any given time τ during a claim’s progression, i.e. τ ∈ [0, Ti],

let Y
(l)
i (τ) represent the cumulative paid losses from coverage type l up to time τ . Furthermore, we

define the corresponding ultimate losses as Y
(l)
i = Y

(l)
i (Ti). In addition, denote baseline covariates

as xi = (Xi1, . . . , Xip)
′.
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In our study, we operate under the assumption that the coverage information η
(l)
i is available

at the time of claim submission. That is, the insurer is able to identify coverage of all types when

the claim is reported. It’s important to note that this assumption should not be perceived as a

limitation of our work. Firstly, it’s a reasonable assumption for personal automobile insurance

and is corroborated by our dataset. Secondly, even if this assumption is not applicable in certain

contexts, our proposed method remains valuable. In such cases, the method can be complemented

by a separate model focused specifically on whether coverage of each type is triggered. In this work,

we focus on reported claims. If one would like to model incurred but not reported (IBRN) losses,

they could use our model in combination with a model predicting the number of not reported claims

and their triggered coverage(s).

3.2 Joint Model

Considering the interconnected nature of settlement time and loss amounts, we employ a multi-

variate regression framework to describe their relationship. Specifically, given covariates Xi, the

(conditional) joint distribution function of (Y
(1)
i , . . . , Y

(k)
i , Ti), denoted by F , can be represented

via a (k + 1)-variate copula as:

F (y1, . . . , yk, t|Xi)

=Pr(Y
(1)
i ≤ y1, . . . , Y

(k)
i ≤ yk, Ti < t|Xi)

=H(F1(y1|Xi), . . . , Fk(yk|Xi), FT (t|Xi)) (1)

where Fl is the distribution function of Y
(l)
i for l ∈ {1, . . . , k}, , FT is the distribution of Ti, and H

is a (k + 1)-variate copula. Let H̄ denote the survival copula associated with H. We can express

the joint survial function of (Y
(1)
i , . . . , Y

(k)
i , Ti), denoted by S, by:

S(y1, . . . , yk, t|Xi)

=Pr(Y
(1)
i > y1, . . . , Y

(k)
i > yk, Ti > t|Xi)

=H̄(1− F1(y1|Xi), . . . , 1− Fk(yk|Xi), 1− FT (t|Xi)) (2)

Next we delineate the marginal models for Y
(l)
i and Ti. We employ the generalized linear models

(GLMs) for the specification of the ultimate payment Y
(l)
i , for l ∈ {1, . . . , k}, and an accelerated
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failure time model (AFT) for the settlement time Ti. Specifically, the marginal model for the loss

amount is expressed as:

Y
(l)
i |Xi ∼ ED(µ

(l)
i , ϕ)

E(Y
(l)
i |Xi) = µi = sl(Xi;α

(l))

Var(Y
(l)
i |Xi) = ϕlV (µ

(l)
i )

where ED denotes the exponential dispersion family parameterized by the mean µ and dispersion

ϕ. Furthermore, the mean is modeled through a smooth function s(·;α) with parameters α, while

the dispersion is considered constant. The marginal model for the settlement time is given by:

log(Ti) = ζ(Xi;β) + σWi

Wi|Xi
i.i.d.∼ F0

where F0 belongs to a log-location-scale family. Under the AFT model, we have

FT (t|Xi) = F0

(
log(t)− ζ(Xi;β)

σ

)
In above, ζ(·;β) is a smooth function parameterized by β. In both the GLM and AFT, we consider

the special case of a linear model, i.e., sl(Xi;α
(l)) = X ′

iα
(l) and ζ(Xi;β) = X ′

iβ. Note that an

intercept should be included in the linear model.

Lastly, we utilizes a (k + 1)-variate Gaussian copula with an unstructured correlation matrix.

We denote the Gaussian copula as:

H(u1, . . . , uk, uk+1) = Φk+1(Φ
−1(u1), · · · ,Φ−1(uk),Φ−1(uk+1);Σ) (3)

where Σ is the (k+1)× (k+1) correlation matrix. The Gaussian copula is most commonly used in

multivariate analysis. The selection of the copula is a balance of interpretability, model complexity,

and computational efficiency. In particular, the following two properties of the Gaussian copula are

desirable for our method. First, the copula is symmetric such that H̄ = H. Second, consider the

partial derivatives for l = 1, . . . , k − 1:

∂l:T H̄(u1, . . . , uk, uk+1) =
∂l+1

∂u1 · · · ∂ul∂uk+1
H̄(u1, . . . , uk, uk+1)
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Straightforward calculations show:

∂l:T H̄(u1, . . . , uk, uk+1)

=Φk−l((Σ22 −Σ21Σ
−1
11Σ

′
21)

−1/2(z2 −Σ21Σ
−1
11 z1))

ϕl+1(z1)

ϕ(Φ−1(u1)) · · ·ϕ(Φ−1(ul))ϕ(Φ−1(uk+1))

where for l = 1, . . . , k − 1:

z1 = (Φ−1(u1), . . . ,Φ
−1(ul),Φ

−1(uk+1))

z2 = (Φ−1(ul+1), . . . ,Φ
−1(uk))

and

Σ11 =



1 ρ12 · · · ρ1l ρ1,k+1

ρ12 1 · · · ρ2l ρ2,k+1

...
...

. . .
...

...

ρ1l ρ2l · · · 1 ρl,k+1

ρ1,k+1 ρ2,k+1 · · · 1 1


,

Σ21 =


ρ1,l+1 · · · ρl,l+1 ρl+1,k+1

...
. . .

...
...

ρ1,k · · · ρl,k ρk,k+1

 , Σ22 =



1 ρl+1,l+2 · · · ρl+1,k

ρl+1,l+2 1 · · · ρl+2,k

...
...

. . .
...

ρl+1,k ρl+2,k · · · 1


.

3.3 Estimation

In practice, it is common for reserving models to be trained prior to the valuation date, where the

insurer’s book of claims typically comprises both open and closed claims. Let’s consider a portfolio

of n insurance claims. We denote Ci as the valuation time (from the reporting to the valuation)

associated with the ith claim (i = 1, . . . , n). It’s worth noting that for a common valuation time for

the portfolio, Ci could be claim-specific due to different reporting times. We define ∆i = 1(Ti ≤ Ci).

Furthermore, we define T̃i = min{Ti, Ci} and Ỹ
(l)
i = Y

(l)
i (T̃i) = min{Y (l)

i (Ti), Y
(l)
i (Ci)}. Denote

Ỹi = (Ỹ
(1)
i , . . . , Ỹ

(k)
i )′ and ηi = (η

(1)
i , . . . , η

(k)
i ). To facilitate presentation of the density and survival

functions for different coverage combination in a general form, we define v = (v1, . . . , vk), where
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vl ∈ 0, 1 for l = 1, . . . , k (analogous to ηi), and introduce :

g(u1, . . . , uk, uk+1|v) =
∂
∑k

l=1 vl+1

∂uv11 · · · , ∂u
vk
k ∂uk+1

H(uv11 , . . . , uvkk , uk+1) (4)

Ḡ(u1, . . . , uk, uk+1|v) = H̄(uv11 , . . . , uvkk , uk+1). (5)

Denote the vector of model parameters as θ = (θ1, . . . ,θk,θT ,θΣ), where θl, l = 1, . . . , k, repre-

sents the parameter vector in the marginal model of Y
(l)
i , θT is the parameter vector in the marginal

model of Ti, and θΣ denotes the parameter vector in the copula. Let Dn = {Xi, δi,ηi, t̃i, ỹi : i =

1, . . . , n} be the data available by the valuation, which contains information on valuation time,

claim status, and settlement time for closed claims, along with baseline covariates. The overall

loglikelihood function for the data can be expressed as:

L(θ) =

n∑
i=1

{
δi log f(ỹ

(1)
i , . . . , ỹ

(k)
i , t̃i|Xi,ηi) + (1− δi)S(ỹ

(1)
i , . . . , ỹ

(k)
i , t̃i|Xi,ηi)

}
, (6)

where

f(ỹ
(1)
i , . . . , ỹ

(k)
i , t̃i|Xi,ηi) = fT (t̃i|Xi)

k∏
l=1

{
fl(ỹ

(l)
i |Xi)

}η
(l)
i

× g(F1(ỹ
(1)
i |Xi), . . . , Fk(ỹ

(k)
i |Xi), FT (t̃i|Xi)|ηi),

S(ỹ
(1)
i , . . . , ỹ

(k)
i , t̃i|Xi,ηi) = Ḡ(1− F1(ỹ

(1)
i |Xi), . . . , 1− Fk(ỹ

(k)
i |Xi), 1− FT (t̃i|Xi)|ηi).

The model parameters can be estimated using the full information likelihood approach by

directly maximizing the overall log-likelihood function defined by (6). However, the maximum

likelihood estimation could be computationally inefficient and impractical. To address this issue,

we propose a stage-wise estimation method to implement the full information likelihood in a com-

putationally efficient manner. Let’s denote θΣY T
= {θlT : l = 1, . . . , k} where θlT describes the

dependence between Y
(l)
i and Ti, and θΣY Y

= {θll′ : l, l′ = 1, . . . , k and l < l′} where θll′ describes

the dependence between Y
(l)
i and Y

(l′)
i . Further denote θΣ = (θΣY T

,θΣY Y
). Let Hl:T be the

bivariate copula associated with (Y
(l)
i , Ti), i.e.

Hl:T (ul, uk+1) = H(1, . . . , 1, ul, 1, . . . , 1, uk+1), for l = 1, . . . , k.

And let hl:T and H̄l:T represent the corresponding density and survival copula of Hl:T . In a similar

manner, we define the trivariate copula H(l,l′):T , copula density h(l,l′):T , and survival copula H̄(l,l′):T
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for a triplet (Y
(l)
i , Y

(l′)
i , Ti). The stage-wise estimation procedure is summarized as follows:

1. Estimate parameter θT in the marginal model for the settlement time Ti by

θ̂T = arg maxLT (θT )

where

LT (θT ) =
n∑

i=1

{
δi log fT (t̃i|Xi) + (1− δi) log(1− FT (t̃i|Xi))

}
.

2. For l = 1, ..., k, and η
(l)
i = 1, estimate parameter θl in the marginal model for Y

(l)
i and the

dependence parameter θlT in the bivariate copula for pair (Y
(l)
i , Ti) simultaneously. Specifi-

cally, estimates are obtained by maximizing the likelihood function based on the conditional

distribution of Y
(l)
i |Ti while fixing the estimates θ̂T from the first stage. That is,

θ̂l, θ̂lT = arg maxLl(θl; θ̂T ),

where

Ll(θl, θlT ; θ̂T ) ∝
n∑

i=1

δi

{
log fl(ỹ

(l)
i |Xi) + log hl:T (Fl(ỹ

(l)
i |Xi), FT (t̃i|Xi))

}
+

n∑
i=1

(1− δi) log H̄l:T (1− Fl(ỹ
(l)
i |Xi), 1− FT (t̃i|Xi)).

3. Fixing the estimated parameters from the previous two stages, estimate dependence param-

eters θΣY Y
based on the full likelihood by

θ̂ΣY Y
= arg maxL(θΣY Y

; θ̂1, . . . , θ̂k, θ̂T , θ̂ΣY T
),

where

L(θΣY Y
; θ̂1, . . . , θ̂k, θ̂T , θ̂ΣY T

)

∝
n∑

i=1

δi log g(F1(ỹ
(1)
i |Xi), . . . , Fk(ỹ

(k)
i |Xi), FT (t̃i|Xi)|ηi)

+

n∑
i=1

(1− δi) log Ḡ(1− F1(ỹ
(1)
i |Xi), . . . , 1− Fk(ỹ

(k)
i |Xi), 1− FT (t̃i|Xi)|ηi).

To further improve computational efficiency, dependence parameters θΣY Y
in the last stage

can be estimated pairwisely based on the conditional distribution of (Y
(l)
i , Y

(l′)
i )|Ti. That is,
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for l, l′ = 1, . . . , k, l < l′, and η
(l)
i = η

(l′)
i = 1, we have:

θ̂ll′ = arg maxLll′(θll′ ; θ̂l, θ̂l′ , θ̂T , θ̂lT , θ̂l′T ),

where

Lll′(θll′ ; θ̂l, θ̂l′ , θ̂T , θ̂lT , θ̂l′T )

∝
n∑

i=1

δi log h(l,l′):T (Fl(ỹ
(l)
i |Xi), Fl′(ỹ

(l′)
i |Xi), FT (t̃i|Xi))

+
n∑

i=1

(1− δi) log H̄(l,l′):T (1− Fl(ỹ
(l)
i |Xi), 1− Fl′(ỹ

(l′)
i |Xi), 1− FT (t̃i|Xi)).

It’s worth noting that the stage-wise estimation strikes a balance between statistical efficiency

and computational efficiency. To further enhance efficiency, one could either iterate the stage-wise

procedure multiple times or utilize the stage-wise estimates as initial values in the full likelihood

approach. This approach allows for flexibility in optimizing computational resources while still

achieving reliable parameter estimates.

3.4 Dynamic Prediction

In the context of loss reserving, the objective is to predict the ultimate loss for each open claim

as well as for the entire portfolio. To set appropriate reserves, reserving actuaries aim not only to

provide a point prediction of outstanding payments but also to quantify the uncertainty surrounding

reserves accurately. With this goal in mind, we delve into the predictive distribution of outstanding

payments. We introduce a simulation-based algorithm enabling analysts to derive the predictive loss

distribution for individual claims using the proposed multivariate reserving model. This approach

equips actuaries with the tools needed to make informed decisions while accounting for the inherent

uncertainty in loss reserving.

Let τ be the valuation time for an open claim. Define y
(l)
τ = Y

(l)
i (τ), l = 1, . . . , k, to be the

cumulative paid losses from coverage type l by time τ . Without loss of generality, assume η(l) = 1

for l ∈ {1, . . . , k}. Our prediction relies on the conditional multivariate predictive distribution of
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Y
(1)
i , . . . , Y

(k)
i , Ti given (Y

(1)
i > y

(1)
τ , . . . , Y

(k)
i > y

(k)
τ , Ti > τ, ;Xi), which can be derived as:

Sτ (y1 + y(1)τ , . . . , yk + y(k)τ , t + τ |y(1)τ , . . . , y(k)τ , τ ;Xi)

=Pr(Y
(1)
i > y1 + y(1)τ , . . . , Y

(k)
i > yk + y(k)τ , Ti > t + τ |Y (1)

i > y(1)τ , . . . , Y
(k)
i > y(k)τ , Ti > τ ;Xi)

=
H̄(1− F1(y1 + y

(1)
τ |Xi), . . . , 1− Fk(yk + y

(k)
τ |Xi), 1− FT (t + τ |Xi))

H̄(1− F1(y
(1)
τ |Xi), . . . , 1− Fk(y

(k)
τ |Xi), 1− FT (τ |Xi))

(7)

for y1 ≥ 0, . . . , yk ≥ 0, t ≥ 0. In principle, the predictive distribution can be derived for the

settlement time and ultimate losses for each coverage type from (7). However, it is mathemat-

ically involved and the explicit form is not readily available, which further complicates deriving

the predictive distribution of outstanding payments for the entire portfolio. Consequently, we ob-

tain the predictive distribution of these outcomes using Monte Carlo simulation. We employ a

sequential approach based on the following decomposition of the conditional joint distribution of

Y
(1)
i , . . . , Y

(k)
i , Ti given (Y

(1)
i > y

(1)
τ , . . . , Y

(k)
i > y

(k)
τ , Ti > τ, ;Xi) as below:

fτ (y1 + y(1)τ , . . . , yk + y(k)τ , t + τ |Y (1)
i > y(1)τ , . . . , Y

(k)
i > y(k)τ , Ti > τ ;Xi)

=f(t + τ |Y (1)
i > y(1)τ , . . . , Y

(k)
i > y(k)τ , Ti > τ ;Xi)

× f(y1 + y(1)τ |Y
(1)
i > y(1)τ , . . . , Y

(k)
i > y(k)τ , Ti = t + τ ;Xi)

× f(y2 + y(2)τ |Y
(1)
i = y1 + y(1)τ , Y

(2)
i > y(2)τ , . . . , Y

(k)
i > y(k)τ , Ti = t + τ ;Xi)

...

× f(yk + y(k)τ |Y
(1)
i = y1 + y(1)τ , . . . , Y

(k−1)
i = yk−1 + y(k−1)

τ , Y
(k)
i > y(k)τ , Ti = t + τ ;Xi).

We summarize the procedure for generating realizations of (Y
(1)
i , . . . , Y

(k)
i , Ti) from the predic-

tive distribution (7) in the following algorithmic manner:

(1) Generate Ti = t + τ from distribution

S(t + τ |Y (1)
i > y(1)τ , . . . , Y

(k)
i > y(k)τ , Ti > τ ;Xi)

=
C̄(F̄1(y

(1)
τ |Xi), . . . , F̄k(y

(k)
τ |Xi), F̄T (t + τ |Xi))

C̄(F̄1(y
(1)
τ |Xi), . . . , F̄k(y

(k)
τ |Xi), F̄T (τ |Xi))

.
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(2) Generate Y
(1)
i = y1 + y

(1)
τ given Ti = t + τ from distribution

S(y1 + y(1)τ |Y
(1)
i > y(1)τ , . . . , Y

(k)
i > y(k)τ , Ti = t + τ ;Xi)

=
∂T C̄(F̄1(y1 + y

(1)
τ |Xi), F̄2(y

(2)
τ |Xi) . . . , F̄k(y

(k)
τ |Xi), F̄T (t + τ |Xi))

∂T C̄(F̄1(y
(1)
τ |Xi), . . . , F̄k(y

(k)
τ |Xi), F̄T (t + τ |Xi))

.

(3) For l = 1, generate Y
(l+1)
i = yl+1+y

(l+1)
τ given Y

(1)
i = y1+y

(1)
τ , . . . , Y

(l)
i = yl+y

(l)
τ and Ti = t+τ

from distribution

S(yl+1 + y(l+1)
τ |Y (1)

i = y1 + y(1)τ , . . . , Y
(l)
i = yl + y(l)τ , Y

(l+1)
i > y(l+1)

τ , · · · , Y (k)
i > y(k)τ , Ti = t + τ ;Xi)

=
∂l:T C̄(F̄1(y1 + y

(1)
τ |Xi), . . . , F̄l+1(yl+1 + y

(l+1)
τ |Xi), F̄l+2(y

(l+2)
τ |Xi), · · · , F̄k(y

(k)
τ |Xi), F̄T (t + τ |Xi))

∂l:T C̄(F̄1(y1 + y
(1)
τ |Xi), . . . , F̄l(yl + y

(l)
τ |Xi), F̄l+1(y

(l+1)
τ |Xi), . . . , F̄k(y

(k)
τ |Xi), F̄T (t + τ |Xi))

(4) Set l ← l + 1, go to step (3). Stop when l = k. In the questions provided earlier, we define

F̄ = 1 − F . This algorithm enables the generation of a random sample of settlement time and

ultimate loss amount by coverage type for each individual open claim. From these samples, we can

derive the predictive distribution for these outcomes using non-parametric methods, and similarly

the predictive distribution of outstanding payments for the entire insurance portfolio.

4 Numerical Experiments

We conduct two sets of numerical experiments to investigate the operating characteristics of the

proposed methodology. Within the context of loss reserving applications, the first set focuses on

the finite sample performance of the proposed stage-wise estimation technique, and the second set

aims to assess the prediction performance of the copula-based multivariate regression.

In the data generating process, we assume there are k = 3 types of coverage for each insurance

claim. We consider a shared vector of predictors for both settlement time and loss amount. Let

Xi = (Xi1, Xi2) be the predictors and assume Xi1 ∼ Bernoulli(0.4) and Xi2 ∼ Normal(0, 1).

We use a Gamma GLM for the ultimate claim amount of each type. Specifically, the marginal

models for Y
(l)
i , l = 1, 2, 3, are specified as below:

Y
(l)
i |Xi ∼ Gamma

(
µ
(l)
i , ϕ(l)

)
µ
(l)
i = exp

{
α
(l)
0 + α

(l)
1 Xi1 + α

(l)
2 Xi2

}
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We set the mean parameters as (α
(1)
0 , α

(1)
1 , α

(1)
2 ) = (5.00, 2.50, 0.50), (α

(2)
0 , α

(2)
1 , α

(2)
2 ) = (4.50, 1.50, 0.05),

and (α
(3)
0 , α

(3)
1 , α

(3)
2 ) = (6.00, 2.00, 0.50). The dispersion parameters are set to be (ϕ(1), ϕ(2), ϕ(3)) =

(0.20, 0.10, 0.15).

We use Weibull AFT for the settlement time. The marginal model for Ti is specified as:

log(Ti) = β0 + β1Xi1 + β2Xi2 + σWi

Wi|Xi ∼ F0(w) = 1− exp{− exp(w)}

Here Wi is the Gumbel (Extreme Value) distribution. Under this formulation, Ti is Weibull distri-

bution with:

FT (t|Xi) = 1− exp

{
−
(

t

exp(X ′
iβ)

) 1
σ

}

hT (t|Xi) = h0(t) exp
{
−X ′

iβ/σ
}

=
1

σ
t
1
σ
−1 exp

{
−X ′

iβ/σ
}

Furthermore, the AFT model is a proportional hazard regression. We set location parameters

(β0, β1, β2) = (4.50, 0.25, 0.05) and scale parameter σ = 2.

We consider a four-dimensional Gaussian copula to model the (conditional) joint distribution

of
(
Y

(1)
i , Y

(2)
i , Y

(3)
i , Ti

)
. We assume θ1T = θ2T = θ3T := ρY T and θ12 = θ13 = θ23 := ρY Y . The

correlation matrix Σ of the copula is expressed as:

Σ =

 1 Σ′
Y T

ΣY T ΣY Y

 =



1 ρY T ρY T ρY T

ρY T 1 ρY Y ρY Y

ρY T ρY Y 1 ρY Y

ρY T ρY Y ρY Y 1


(8)

We consider three levels of dependence in the simulation, varying from low (ρY T = −0.15, ρY Y =

0.15), medium (ρY T = −0.5, ρY Y = 0.5) to high (ρY T = −0.85, ρY Y = 0.85). We choose the above

dependence parameters for illustration purposes. Nonetheless, our model can readily accommodate

more flexible association such as unstructured dependence.

The described data generating process enables us to generate a data set of n claims with

settlement time and ultimate loss amount from multiple coverage types. In the context of loss

reserving, the copula model is formulated at the valuation time with both open and closed claims.

To accommodate this scenario, we adopt a three-year (1095 days) window. For each simulated claim,
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we generate an occurrence date uniformly between 0 and 1095. The claim is deemed closed if the sum

of the occurrence date and the settlement time falls within three years; otherwise it remains open.

This procedure essentially assumes the valuation time to be Ci ∼ Uniform(0, 1095). For open

claims, we further generate the paid loss as of the valuation date from Yi(Ci)
(l) ∼ Uniform(0, Y

(l)
i )

for l = 1, 2, 3. We use data on both open and closed claims as of the valuation date to develop the

copula model and to predict outstanding payments for open claims.

4.1 Finite Sample Performance

In this experiment, we let the sample size (number of claims m) be 500 and 1000, and the association

parameters to be low, medium, and high. For each scenario, we replicate the simulation 100 times,

and we estimate the model parameters using the stage-wise procedure described in Section 3.3.

The estimation results are summarized in Table 5 and Table 6 for different scenarios of sample

size. Specifically, we report the bias and the associated standard error for each parameter. There

are several observations to highlight. First, across all settings with different sample sizes and

dependence levels, model parameters are estimated with a negligible bias and a small standard

error. Second, as sample size increases, both bias and standard error decrease as anticipated.
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Table 5: Performance of stage-wise estimation: Sample size = 500

Correlation Low Medium High

Parameters Bias SE Bias SE Bias SE

β
(T )
0 = 4.50 0.0012 0.0013 0.0023 0.0013 0.0029 0.0015

β
(T )
1 = 0.25 0.0056 0.0020 0.0049 0.0024 0.0039 0.0021

β
(T )
2 = 0.05 0.0022 0.0010 0.0029 0.0011 0.0015 0.0010

σ(T ) = 2.00 0.0120 0.0035 0.0076 0.0037 0.0148 0.0036

α
(1)
0 = 5.00 0.0009 0.0005 0.0024 0.0006 0.0002 0.0005

α
(1)
1 = 2.50 0.0043 0.0008 0.0012 0.0008 0.0032 0.0008

α
(1)
2 = 0.50 0.0003 0.0004 0.0019 0.0005 0.0001 0.0004

ϕ(1) = 0.20 0.0013 0.0003 0.0006 0.0003 0.0014 0.0003

α
(2)
0 = 4.50 0.0005 0.0003 0.0007 0.0003 0.0003 0.0002

α
(2)
1 = 1.50 0.0005 0.0004 0.0005 0.0004 0.0015 0.0004

α
(2)
2 = 0.50 0.0005 0.0002 0.0007 0.0002 0.0002 0.0002

ϕ(2) = 0.10 0.0006 0.0001 0.0002 0.0002 0.0006 0.0002

α
(3)
0 = 6.00 0.0018 0.0004 0.0018 0.0004 0.0003 0.0004

α
(3)
1 = 2.00 0.0001 0.0006 0.0015 0.0007 0.0011 0.0006

α
(3)
2 = 0.50 0.0001 0.0003 0.0009 0.0003 0.0005 0.0003

ϕ(3) = 0.15 0.0007 0.0002 0.0009 0.0002 0.0009 0.0002

θ1,T 0.0012 0.0022 0.0057 0.0016 0.0031 0.0007

θ2,T 0.0077 0.0020 0.0024 0.0016 0.0016 0.0006

θ3,T 0.0076 0.0021 0.0024 0.0017 0.0007 0.0005

θ1,2 0.0001 0.0021 0.0026 0.0017 0.0011 0.0006

θ1,3 0.0035 0.0018 0.0047 0.0016 0.0012 0.0006

θ2,3 0.0040 0.0019 0.0024 0.0017 0.0015 0.0006
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Table 6: Performance of stage-wise estimation: Sample size = 1000

Correlation Low Medium High

Parameters Bias SE Bias SE Bias SE

β
(T )
0 = 4.50 0.0006 0.0007 0.0004 0.0007 0.0001 0.0007

β
(T )
1 = 0.25 0.0017 0.0011 0.0014 0.0010 0.0021 0.0011

β
(T )
2 = 0.05 0.0011 0.0005 0.0022 0.0005 0.0006 0.0005

σ(T ) = 2.00 0.0004 0.0015 0.0078 0.0014 0.0152 0.0018

α
(1)
0 = 5.00 0.0021 0.0003 0.0031 0.0003 0.0003 0.0003

α
(1)
1 = 2.50 0.0015 0.0005 0.0015 0.0004 0.0008 0.0004

α
(1)
2 = 0.50 0.0003 0.0002 0.0001 0.0002 0.0001 0.0002

ϕ(1) = 0.20 0.0010 0.0002 0.0013 0.0001 0.0012 0.0001

α
(2)
0 = 4.50 0.0003 0.0001 0.0013 0.0001 0.0002 0.0001

α
(2)
1 = 1.50 0.0000 0.0002 0.0002 0.0002 0.0003 0.0002

α
(2)
2 = 0.50 0.0003 0.0001 0.0006 0.0001 0.0000 0.0001

ϕ(2) = 0.10 0.0002 0.0001 0.0003 0.0001 0.0008 0.0001

α
(3)
0 = 6.00 0.0020 0.0002 0.0021 0.0002 0.0003 0.0002

α
(3)
1 = 2.00 0.0008 0.0003 0.0004 0.0003 0.0003 0.0003

α
(3)
2 = 0.50 0.0004 0.0002 0.0002 0.0001 0.0003 0.0001

ϕ(3) = 0.15 0.0002 0.0001 0.0004 0.0001 0.0012 0.0001

θ1,T 0.0093 0.0010 0.0057 0.0008 0.0031 0.0003

θ2,T 0.0060 0.0009 0.0061 0.0008 0.0025 0.0003

θ3,T 0.0065 0.0012 0.0045 0.0008 0.0028 0.0003

θ1,2 0.0015 0.0011 0.0023 0.0008 0.0017 0.0003

θ1,3 0.0006 0.0010 0.0015 0.0007 0.0020 0.0003

θ2,3 0.0009 0.0009 0.0024 0.0008 0.0017 0.0003

4.2 Prediction Accuracy

In our prediction analysis, we focus on two key quantities of interests at the valuation time τ for

each claim. The first is the settlement time Ti, and the second is the ultimate losses denoted by
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Wi = Y
(1)
i + Y

(2)
i + Y

(3)
i . We consider a portfolio of 2,500 simulated insurance claims. We then

derive the predictive distributions of the outcomes of interest at both claim and portfolio level using

the simulation method detailed in Section 3.4.

We first examine the predictive distribution of outcomes of interest at the individual claim

level. Specifically, for each open claim, we obtain the predictive distribution for Ti, denoted by

F̂Ti(·|Hi(τ)), where Hi(τ) denotes the historical data up to the valuation time. We employ prob-

ability integral transformation (PIT) to assess the probabilistic calibration of the predictive dis-

tribution. This entails the calculation of the PITs using the actual values of ti as F̂Ti(ti|Hi(τ)).

A well-calibrated predictive distribution would exhibit PITs conforming to a uniform distribu-

tion over [0, 1]. For visualization purposes, we compute the normal scores of the PITs using

Φ−1(F̂Ti(ti|Hi(τ))), with normality as the null pattern. Figure 1 exhibits the QQ plot of nor-

mal scores and the histogram of PITs. The results suggest that the predictive distribution of

settlement time is probabilistically calibrated.
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Figure 1: QQ plot of normal scores and histogram of PITs for settlement time.

We apply the same procedure to Y
(l)
i for l = 1, 2, 3, and display the corresponding results in

Figure 2. Similarly, the normality of the normal scores and the uniform distributions of PITs signify

accurate predictions for the loss amount by coverage type. We replicate this analysis across various

levels of dependence, and the findings remain consistent. To maintain brevity, we solely present

the results corresponding to medium dependence.
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Figure 2: QQ plots of normal scores and histograms of PITs for loss amount by coverage type.

Next we examine the predictive distribution of the total losses for the entire insurance portfolio.

To this end, we perform two sets of analysis to explore the effect of dependence on the predictive

distribution of total losses. Firstly, we investigate the effect of the correlation between settlement

time and loss amount. Specifically, we consider two scenarios corresponding to either a positive or

a negative correlation, i.e. ρTY ∈ {−0.5, 0.5}. To maintain clarity, we set the correlation among

loss amounts of different coverage types as zero, i.e. ρY Y = 0. Figure 3 shows the predictive

distribution of the portfolio losses. As a reference, the actual realized losses are displayed as the

vertical dotted line. For comparison, we also present the predictive distributions obtained under

the incorrect assumption of independence. It becomes evident that disregarding the correlation

between settlement time and loss amount significantly biases the prediction of portfolio losses.

Specifically, one might overestimate (underestimate) the outstanding liability when the settlement

time is negatively (positively) related to the loss amount.
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Figure 3: Predictive distributions of portfolio losses under correct dependence and incorrect in-
dependence specification between settlement time and loss amount. The left and right panels
correspond to the negative and positive dependence respectively.

Secondly, we delve into the effect of the correlation among different types of losses. Similar

to the previous analysis, we set ρTY = 0 and consider two dependence cases ρY Y ∈ {−0.5, 0.5}

in the data generating process. For each scenario, we compare the predictive distributions of

portfolio losses derived under the true dependence with those derived when incorrectly assuming

independence. The outcomes are presented in Figure 4. A comparison between Figure 3 and Figure

4 suggests that the dependence among different types of losses plays a distinct role compared to

the dependence between settlement time and loss amount in terms of their effect on the predictive

distribution of portfolio losses. In particular, the dependence across loss types has minimal impact

on the center of the predictive distribution; instead, its effect is more pronounced in terms of

reserving uncertainty. That is, a negative (positive) correlation leads to smaller (larger) variation,

and thus the misspecified independence model significantly overestimates (underestimates) the

reserving uncertainty. In contrast, the dependence between settlement time and loss amount could

substantially shift the predictive distribution while having little effect on the prediction uncertainty.
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Figure 4: Predictive distributions of portfolio losses under correct dependence and incorrect inde-
pendence specification among loss amount of different coverage types. The left and right panels
correspond to the negative and positive dependence respectively.

5 Application

The proposed approach is calibrated on the Canadian insurance dataset described in Section 2.

In the reserving context, actuaries are tasked with evaluating the outstanding liabilities as of the

valuation date. To illustrate the process, we designate December 31th, 2016, as the valuation date.

Utilizing the information accessible at this time, we train our model. Subsequently, we employ the

outstanding payments on the open claims as test data for an out-of-sample analysis.

Specifically, there are in total 161,156 claims reported by the valuation time, out of which,

140,427 claims are closed. The model is estimated using data on both closed and open claims as

of December 31th, 2016, and is employed to predict the outstanding payments of the 20,729 open

claims. The actual paid losses between January 1st, 2017 and the end of our observation period

July 31st, 2021 are summarized in Table 7 and will be used to assess the predictive performance of

our model. The information in the “%CompDev” row represents the percentage of claims settled

by the end of the observation period, indicating those for which we observed complete development

within this timeframe. It is important to note that 630 claims remain open as of the end of our data

collection period, July 31st, 2021. As a result, the information regarding settlement amounts for

these claims is incomplete. Despite this, these files are kept in the analysis because they represent

complex cases requiring a longer settlement time, which is precisely the problem tackled by this

study. Therefore, the observed realization of the outstanding liability should be understood as an
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approximation and the minimum amount necessary to settle all open claims.

Table 7: Summary statistics of loss development since evaluation

Loss - APD Loss - LU Loss - BI Total

Num Of Claims 19,753 13,072 6,171 20,729

%CompDev (percentage) 97.31 97.31 90.37 96.96

TotalObsAmount (in CAD) 58,365,065 2,885,441 286,882,559 348,133,065

The most predictive covariates for each coverage and the time to settlement were the province

of loss and the level of responsibility in the accident. These two components have a direct influence

on the level of compensation because of contract terms like the province regulation or deductibles

that depend on whether the policyholder was or was not at-fault. In the case of the LU and APD

coverages, there is one additional predictive covariate which is the main use of the vehicle. It is

intuitive to think that how much the vehicle is used and what for have an influence over the need

to get a replacement car. In the absence of information on the value of each vehicle, these predictor

act as a proxy in the prediction of the material damage loss to the vehicle : business cars and

vehicles that travel a great deal tend to be newer, more expensive cars. To model the time to

settlement, the vehicle use is included in addition to the province and the responsibility because

this factor influences how proactive the policyholder is to settle the claim.

The coverage losses and the time to settlement are modeled with Gamma and Weibull distri-

butions. The heaviness of each coverage distribution tail is different. While BI claims are half as

numerous as the other two, the outstanding liabilities associated with this coverage are more than

four times higher than the combined amount of APD and LU coverages. Additionally, more BI

claims are still open by the end of the observation period (90.37% vs 97.31%). The Generalized

Beta distribution of the second kind was employed to model the marginal distribution of each cov-

erage. This distribution is known to be able to accommodate heavier tails compared to the Gamma

distribution and offers greater flexibility in shape. It is characterized by three shape parameters and

a scale parameter, ν. Covariates are incorporated into the first shape parameter of each marginal

distribution. The estimated parameters can be found in Table 8. The copula estimated parameters

are presented in 9.
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Table 8: Estimated parameters in the marginal models for the settlement time and loss amount

Loss - APD Loss - LU Loss - BI Settlement Time

Parameter GB II GB II GB II Weibull

β0 -1.5646 -0.2707 -1.5325 0.5620

βResp.(NotFault) 0.0028 -0.1330 -0.3292 0.2024

βResp.(PartlyFault) 0.0371 -0.2583 0.1963 0.3055

βResp.(NotApp.) 0.1042 0.0370 0.1847 0.0738

βProv.(Atlantic) 0.0464 -0.0261 -0.2469 -0.0243

βProv.(Ontario) 0.0293 0.0797 -0.5115 -0.0001

βUse(Pleasure) -0.0087 -0.0101 0.2485

log(ν) -4.5049 7.2740 8.9714 -1.3206

log(shape 2) 4.6028 0.4789 1.5717

log(shape 3) 2.2963 2.1408 2.5330

Table 9: Estimated association parameters in the Gaussian copula

Parameter Estimate Parameter Estimate

θT,YAPD
0.7515 θYAPD,YLU

0.7640

θT,YLU
0.7496 θYAPD,YBI

0.7063

θT,YBI
0.9035 θYLU ,YBI

0.7010

With these estimated parameters, a distribution of the outstanding liabilities for each coverage

can be generated. Figure 5 displays the predictive distribution based on 1,000 replicates of the

reserve by coverage and for the entire portfolio. The solid black lines represent the median of the

distributions and the dotted lines the 95th and 99th quantiles of the distributions. It provides an

estimate of the proportion of the reserve that should be asigned to each coverage. As expected,

the predictive distributions tend to be higher than the censored approximations of the reserves

represented by the red lines. The censored approximations of the reserves are the payments made

between evaluation date (December 31th, 2016) and the end of observation period (July 31st,

2021), that is the observed loss amount in the test set. This means that the red lines in Figure 5
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will move to the right, closer to the medians of the distributions once all claims are closed. The

approximations from the test set (red lines) respectively stand at the 23.7th quantile of the simulated

distribution for the APD coverage, 45.6th for LU, 39.1th for BI and 38.2th for all coverages. Besides,

no matter the number of coverages triggered by a claim, there is only one settlement time for the

whole claim. APD and LU coverages are short tail businesses. However, when a claim triggers

the BI coverage in addition to these coverages, the claim might remained open because the BI

component is not settled, while the APD and LU parts are likely to be paid entirely after a while.

To avoid overestimating the reserve, a prediction is made only for the coverages that are going to

generate a future payment recorded in the test set. It seems reasonable to believe the coverage is

settled if nothing is recorded within 5.5 years after the evaluation date. This is in line with our

working assumption that the coverage information is available, i.e. the insurer is able to identify

coverage of all types requiring a future payment. A specific model could be used to complement

the proposed approach if the context requires it.

Comparing the estimates from Table 9 with the statistics from Table 3, we can see the impor-

tance of properly considering the censoring nature of the data. All information in the database,

even the unsettled claims (censored loss amounts), were used to calculate the association measures

of Table 3 without considering the payments might be incomplete. However, the model structure

take into account that the claim might continue to develop when estimating the association pa-

rameters of Table 9. When censoring is included in evaluating the association between the model’s

components, we see it is globally stronger, highlighting the risk of neglecting this aspect.
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Figure 5: Predictive distribution of outstanding payments. The first three represents the payments
by coverage type, and the last represents the total payments across all coverage types. The solid red
line indicates the actual payments, and the solid black line indicates the median of the predictive
distribution.

6 Concluding Remarks

In this paper, we have presented a copula-based granular reserving model tailored for multi-coverage

insurance policies, addressing a significant gap in the literature regarding individual loss reserving

methods for such policies. Our model utilizes a multivariate copula to jointly model ultimate

losses from different coverage types within a claim and the settlement time of the claim. This

approach not only quantifies dependence among losses of multiple coverage types but also captures

the association between claim size and settlement time, a crucial relationship identified in recent

literature.

By leveraging information across coverage types and settlement delays, our model enables dy-

namic predictions for an insurer’s outstanding liability. We introduced a stage-wise estimation

approach to handle challenges arising from imbalanced and censored observations in the data, and

we demonstrated the efficacy of this approach through simulation studies. Moreover, we showcased

the practical applicability of our model by applying it to a large portfolio of automobile insurance
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claims from a Canadian insurance company, illustrating its ability to provide accurate and dynamic

predictions of outstanding claim payments.

Our research highlights the importance of considering dependence among various types of losses

in individual loss reserving, emphasizing its implications for prediction uncertainty and the dynamic

updating of predictions. While aggregate loss reserving methods have extensively addressed de-

pendence, our work contributes to bridging the gap in individual loss reserving methodologies,

particularly for multi-coverage insurance policies.

It is important to highlight several key assumptions that the proposed method relies on. These

assumptions limit the application of our approach in practice, suggesting directions for future

research:

• The proposed approach focuses on reported but not settled (RBNS) claims, making it more

suitable for business lines with negligible reporting delays. A separate model is needed to predict

pure incurred but not reported (IBNR) claims when reporting delays are significant.

• Our model requires that all types of coverage are triggered and known to the insurer once a

claim is reported. If this is not the case, one should treat each type of coverage as a separate claim,

and predict the reporting of multiple coverage types.

• Our approach assumes that the cumulative paid losses of any claim is increasing over time,

implying no recovery during the settlement of the claim. A stochastic process is warranted if there

is significant recovery for the insurance claims.

In conclusion, our proposed copula-based granular reserving model offers a valuable tool for

insurance companies to accurately estimate loss reserves for multi-coverage policies, ultimately

enhancing their claims management, ratemaking, and financial reporting processes. As insurance

data continue to evolve in complexity and volume, further research in this direction is warranted to

advance the field of individual loss reserving and better serve the needs of the insurance industry.
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