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RÉSUMÉ

Cette thèse explore l’impact de la modélisation de la dépendance dans les modèles de micro-réserves en
assurance non-vie. Compte tenu de la quantité croissante de données dont disposent les assureurs, nous
développons desmodèles qui reflètentmieux l’évolution des sinistres tout au long de leur durée de vie dans
les portefeuilles des compagnies d’assurance. Par ailleurs, avec l’essor des ressources technologiques, ainsi
qu’avec l’expansion de nombreuses compagnies à travers différents pays et différentes activités, leurs porte-
feuilles de risque se sont plus que jamais diversifiés. Pourmodéliser les structures de plus en plus complexes
des portefeuilles des assureurs, nous explorons dans cette thèse diversmodèles de dépendance qui peuvent
être incorporés dans desmodèles de provisionnement. Plus spécifiquement, nous nous concentrons tout au
long de nos travaux sur la modélisation de la dépendance entre plusieurs couvertures d’assurance fournies
au sein desmêmes polices de portefeuilles. Dans un premier chapitre, nous construisons unmodèle de pro-
visionnement granulaire complet, en utilisant une régression logistique multinomiale pour les couvertures
dépendantes. Ce modèle nous permet de prédire l’évolution complète d’une réclamation, de sa déclara-
tion à son règlement. Dans le deuxième chapitre, nous utilisons des copules archimédiennes pour capturer
cette dépendance en cas de divers types de censure. Au lieu d’ajuster un modèle de copule prédéfini, nous
présentons une méthode par laquelle les assureurs peuvent bénéficier de la grande quantité de données
à leur disposition, via un estimateur non paramétrique pour la fonction génératrice des copules de cette
famille. Nous démontrons comment effectuer des simulations directement à partir de l’estimation de ce gé-
nérateur, menant à des prédictions plus proches des données originales que si nous nous étions limités à un
modèle de copule existant. Dans le troisième chapitre, nous étendons le modèle du deuxième chapitre en
introduisant un estimateur paramétrique pour les générateurs de copules archimédiennes. Nous démon-
trons comment cette nouvelle approche permet d’incorporer des variables explicatives dans le modèle, et
d’évaluer leur impact à la fois sur la force mais aussi sur la forme de la dépendance.
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ABSTRACT

This thesis explores the impact of dependence modelling in micro-level claims reserving for non-life insu-
rance. Considering the increasing quantities of data available to insurers, we investigate models that better
reflect the development of claims throughout their lifetimes in the portfolios. In addition, with the rise of
technological resources, as well as with the expansion of a lot of insurance companies across countries and
businesses, insurance portfolios have become more diversified than ever before. To capture these intricate
portfolio structures, we explore in this thesis various dependence models that can be incorporated in loss
reserving frameworks. More specifically, we focus throughout our work on modelling the dependence bet-
ween multiple insurance coverages provided within policies of insurance portfolios. In a first chapter, we
build a full reserving model, using a multinomial logit regression for dependent coverages. This model al-
lows us to predict the full development of a claim from declaration to settlement. In the second chapter, we
use Archimedean copulas to capture this dependence in the presence of highly flexible censoring scenarios.
Instead of fitting a predefined copula model, we show how insurers can benefit from their large datasets by
presenting a non-parametric estimator for the generator function of copulas from this particular family. We
demonstrate how simulations can then be performed directly from this estimated generator, leading to pre-
dictions that are closer to the original data than if we had constrained ourselves to a defined copula model.
In the third chapter, we extend the model from the second chapter by introducing a parametric estimator
for Archimedean copula generators. We show how this new approach allows to incorporate covariates and
assess their impact on both the strength and the shape of dependence.
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INTRODUCTION

Motivation

Cette thèse se situe à la croisée des chemins entre le provisionnement en assurance et la modélisation de

la dépendance. Elle se penche sur le calcul des micro-réserves, dans un but de modéliser au plus près le

développement de chaque sinistre individuel, tout au long de leur temps de vie dans le portefeuille des as-

sureurs. À cette fin, nous portons dans cette thèse un intérêt particulier à la modélisation de la dépendance

au sein de ces portefeuilles, afin de quantifier cette dernière et d’évaluer l’impact qu’elle peut avoir sur le

montant de la réserve finale.

Cet intérêt pour les modèles de calcul de réserves individuelles et pour l’inclusion de la dépendance au

sein de ceux-ci provient de la complexification et de la diversification accrue depuis plusieurs années des

portefeuilles d’assurance, s’accompagnant d’une augmentation du nombre et du niveau d’exigence des ré-

gulations du marché de l’assurance à travers le monde. Ces tendances forcent les compagnies à devoir sans

cesse repenser et améliorer leurs modèles.

Le monde de l’assurance a en effet bien évolué depuis ses prémices. Des premiers contrats formels d’assu-

rance maritime au Moyen-Âge aux polices d’assurance automobile offrant à elles seules un grande nombre

de couvertures variées, l’assurance non-vie a connu, particulièrement depuis l’émergence des technologies

et d’internet, une forte croissance et une grande dynamisation. Dans l’ère des mégadonnées, les actuaires

assument souvent de nouveaux rôles, tels que scientifiques de données, et font face à de nombreux risques

auxquels leurs entreprises sont confrontées. Ces risques, en plus de créer de nouveaux produits ou branches

d’assurance, complexifient également la structure des portefeuilles, créant parfois de la dépendance entre

risques qui étaient jusqu’alors considérés comme non-corrélés.

Face à cette ramification des profils et portefeuilles des assureurs, les réglementations visant le monde de

l’assurance ont fortement évolué. La modélisation et la quantification du risque, sous forme de besoins en

capital, est au coeur du métier d’actuaire. Lors de chaque exercice comptable, ceux-ci doivent évaluer leurs

réserves : le montant prédit des réclamations. Ces réserves permettront ensuite, en les combinant avec

d’autres éléments du bilan, d’estimer les besoins en capital de la compagnie.

La spécificité de l’assurance est que le cycle de production y est inversé : les actuaires doivent estimer
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les primes d’assurance, autrement dit le prix associé aux contrats offerts par la compagnie, bien avant de

connaître le coût de ces contrats. L’estimation des réserves est donc un élément crucial pour la santé finan-

cière et la solvabilité de la compagnie, étroitement surveillées par les régulateurs des différents pays.

Dans l’Union Européenne, le cadre réglementaire Solvabilité II, introduit par l’Autorité Européenne des As-

surances et des Pensions Professionnelles (AEAPP) pour les compagnies d’assurance et de réassurance, im-

pose de prendre en compte la dépendance entre les différents modules de risques qui composent le besoin

en capital des compagnies, via une matrice de corrélation. Il s’agit de la formule standard, appliquée par

une majorité des assureurs européens. Comme discuté par (M. et Stahl, 2021), cette formule présente de

nombreux désavantages et a souvent été critiquée pour son aspect trop réducteur qui ne permet pas de

refléter les différents profils de risques de façon appropriée. Des alternatives existent : la Directive Solvabi-

lité II permet aux compagnies d’implémenter leurs propres modèles internes, complets ou partiels, pour le

calcul de capital. Ces modèles sont cependant soumis à des contrôles rigoureux et à un long et ardu proces-

sus d’approbation par les régulateurs. De plus, le coût financier et administratif lié à l’implémentation d’un

tel modèle peut être dissuasif pour beaucoup de compagnies qui préfèreront dès lors conserver la formule

standard de l’AEAPP.

Au Canada, la dépendance entre les différents modules de risques qui composent le capital requis des com-

pagnies est inclue via le crédit de diversification, imposé par le Bureau du Surintendant des Institutions

Financières (BSIF). Dans certains cas, les compagnies optent pour un modèle interne qui reflétera plus adé-

quatement leur profil de risques. Comme en Europe, le processus d’approbation, de nombreux contrôles et

un coût significatif peuvent cependant contribuer à persuader les assureurs d’utiliser le modèle standard.

Au vu de ces nombreuses régulations et des contraintes, souvent lourdes, imposées aux compagnies sur

les modèles de calcul de risques et de capital qu’elles utilisent, le monde de l’assurance a réagi assez tar-

divement à l’arrivée massive de données ainsi qu’aux avancées technologiques et numériques. Malgré les

grandes quantités de données désormais à leur disposition, les compagnies d’assurance, ainsi que de réas-

surance, tendent à conserver des modèles avec lesquels elles ne peuvent pas tirer profit de ces ressources.

Entre autres, elles utilisent encore très souvent des modèles de provisionnement qui ne permettent pas de

modéliser dans le détail le développement des sinistres, ni de bénéficier de la grande quantité d’information

disponible sur ces sinistres ou sur les assurés. Plus encore, malgré la grande diversité de leurs portefeuilles

de risques et les nombreuses réglementations auxquelles elles sont soumises, les modèles utilisés par la
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plupart des compagnies ne prennent pas ou peu en compte la dépendance entre ces risques. Pendant très

longtemps, les compagnies d’assurance, à l’égard de divers autres acteurs des marchés financiers, se sont

basées sur des hypothèses d’indépendance entre risques et sur la théorie des grands nombres.

Cette thèse s’inscrit précisément dans cette problématique. Le but est double : premièrement, nous explo-

rons des modèles de provisionnement individuels, permettant une modélisation plus précise du dévelop-

pement des sinistres tout au long de leur temps de vie. L’objectif est de tirer parti des données collectées

par les assureurs sur les réclamations et les détenteurs de polices afin d’estimer les réserves individuelles en

modélisant le développement complet des sinistres. Ceci contraste avec l’approche usuelle de l’assurance

par laquelle seuls les montants finaux des réserves sont estimés, en ne tenant pas ou peu compte des divers

événements qui ponctuent la vie d’un sinistre, de son occurrence à sa clôture, et qui peuvent impacter la

réserve finale. Deuxièmement, au vu de la diversification des portefeuilles d’assurance et de l’augmenta-

tion et de la complexification des réglementations mises en place, nous incluons la dépendance dans nos

modèles de réserves individuelles.

Afin d’appliquer et de valider au mieux les différentes méthodologies qui seront étudiées au cours de cette

thèse, nous utiliserons une base de données d’assurance automobile d’un assureur canadien. Dans ces

données, chaque police d’assurance offre quatre couvertures distinctes aux assurés : une couverture pour

indemnités d’accident, pour blessures corporelles, pour dommages au véhicule et pour perte d’usage du

véhicule. Des analyses empiriques réalisées sur ces données nous permettent de voir très rapidement que

de la dépendance existe entre ces quatre couvertures d’assurance. En effet, il est aisé d’imaginer qu’un acci-

dent qui implique des dommages au véhicule de l’assuré puisse aussi souvent impliquer une perte d’usage

du véhicule endommagé et la nécessité d’obtenir un véhicule de remplacement. Un tel sinistre implique

alors pour l’assureur les couvertures pour dommages au véhicule et pour perte d’usage de ce dernier. Dans

le même idée, un accident suffisamment grave pour causer des blessures à l’assuré pourrait également

avoir causé des blessures à un tiers. Dans ce cas, les couvertures pour indemnités d’accident et blessures

corporelles, voire également dommages au véhicule et perte d’usage de ce dernier pourraient toutes être

impliquées.

Cette thèse se structure en trois chapitres. Dans le Chapitre 1, nous explorons un modèle de provisionne-

ment individuel prenant en compte la dépendance entre différentes couvertures d’assurance offertes sous

une même police. Nous introduisons le concept de schémas activation d’une couverture comme étant le
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premier moment auquel l’assureur se rend compte qu’un sinistre donné impacte la couverture en question.

Pour capturer la dépendance entre ces couvertures d’assurance, nous utilisons une distribution multivariée

au niveau des schémas d’activation : la distribution multinomiale logistique. Dans ce chapitre, nous modéli-

sons le développement d’un sinistre au niveau des différentes lignes d’affaire qu’il impacte. Nous commen-

çons par déterminer quel(les) couverture(s) est (sont) impactée(s). Nous modélisons ensuite la survenance

de paiements et leurs sévérités, pour obtenir une estimation de la réserve totale du portefeuille. Ce chapitre

s’inscrit dans l’effort poursuivi dans la littérature actuarielle de proposer des modèles de provisionnement

qui permettent aux assureurs de prédire non seulement le coût total de leur portefeuille, mais également le

développement des sinistres tout au long de leur vie, afin d’avoir unemeilleure connaissance et unmeilleur

contrôle sur leur portefeuille.

Dans le Chapitre 2, nous travaillons en temps continu et définissons le concept de délai d’activation, cor-

respondant au temps écoulé entre le moment de déclaration d’un sinistre et le moment auquel l’assureur

enregistre pour la première fois que celui-ci a impacté une des couvertures offertes par la police d’assu-

rance. Nous utilisons des copules archimédiennes pour modéliser la dépendance entre les délais d’acti-

vation de plusieurs couvertures. Travaillant avec des données censurées, nous présentons un estimateur

non-paramétrique de la fonction génératrice des copules appartenant à cette famille, et nous l’utilisons

ensuite pour sélectionner la copule la plus appropriée aux données par une approche graphique. Nous pré-

sentons un algorithme de simulations pour directement utiliser la fonction génératrice dans des modèles

de prédiction. Ceci nous permet de passer outre tout modèle paramétrique et d’obtenir des prédictions

plus précises.

Dans le Chapitre 3, nous étendons les techniques utilisées dans le Chapitre 2 pour y inclure des variables

explicatives, permettant ainsi de tirer profit des données collectées par les assureurs. Nous proposons une

alternative paramétrique à l’estimateur de la fonction génératrice des copules archimédiennes. Ce nouvel

estimateur permet d’analyser l’impact qu’une variable explicative peut avoir non seulement sur la force de

la dépendance via le tau de Kendall, mais aussi sur sa forme. Nous illustrons notre méthodologie à l’aide

de deux applications : l’une sur les données d’une étude sur la rétinopathie diabétique, l’autre sur les don-

nées d’un portefeuille d’assurance automobile canadien. Ce chapitre s’inscrit dans une tendance récente

de la littérature sur les copules visant à inclure l’effet de variables explicatives dans la modélisation de la

dépendance.
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Dans le reste de cette introduction, nous présentons une brève revue des modèles de provisionnement et

de dépendance, afin de remettre dans leurs contextes académiques les différents outils qui seront utilisés

dans cette thèse.

Modèles de provisionnement

Les modèles classiques de provisionnement sont les modèles dits agrégés, encore très utilisés aujourd’hui

par les compagnies d’assurance. Ils tirent leur nom du fait qu’ils agrègent les montants des réclamations

par période de survenance et de développement (traditionnellement par année comptable), et les prédic-

tions sont ensuite réalisées sur cette même base. Contrairement auxmodèles individuels, ils ne permettent

donc pas d’estimer le montant des réserves par contrat du portefeuille. Le premier de ces modèles agrégés

est le modèle Chain Ladder. Ce modèle déterministe repose sur l’hypothèse que l’évolution des coûts des

sinistres reste constante d’une période à l’autre, c’est-à-dire que les montants des sinistres ne devraient

pas être significativement différents au cours d’une période donnée par rapport à ce qui a été observé

précédemment. Ce modèle n’a pas de fondement statistique. Plusieurs variantes ont été proposées pour

l’améliorer, notamment le modèle Bornhuetter-Ferguson par (Bornhuetter et Ferguson, 1972) qui permet

d’atténuer l’impact des plus anciennes années de survenance dans la modélisation, ou la méthode Cape

Cod, qui estime des poids pour les différentes périodes de survenance à partir de l’exposition et des pé-

riodes de développement. Il faut cependant attendre le début des années 1990 et le modèle Chain Ladder

de Mack (Mack, 1993), pour que le calcul de réserves passe pour la première fois du monde déterministe

vers le monde stochastique, et que les estimations reposent sur des hypothèses statistiques.

Les bases de ce qui rendra possible par la suite la modélisation individuelle des réserves furent cependant

posées dès la fin des années 1980, entre autres par (Norberg, 1986). Grâce, également, à l’introduction par

(Nelder et Wedderburn, 1972) des modèles linéaires généralisés (Generalized Linear Models, ou GLM), la

transition du provisionnement des modèles agrégés, dits en triangles, vers des modèles plus élaborés, of-

frant une prédiction de la réserve au niveau des sinistres individuels, allait bientôt s’opérer. Les modèles

linéaires généralisés permettent de modéliser une variable réponse, Y , à partir d’une ou de plusieurs va-

riable(s) explicative(s), X . Contrairement aux modèles linéaires classiques, les GLM n’imposent ni à la va-

riable réponse de suivre la distribution normale, ni la linéarité du lien entre Y et les variables explicatives.

La variable réponse peut provenir de toute distribution appartenant à la famille exponentielle linéaire, c’est-
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à-dire à la famille de distributions dont les fonctions de densité s’expriment sous la forme

fY (y) = c(y, ϕ)exp
(yθ − a(θ)

ϕ

)
,

où θ est le paramètre canonique de la distribution, ϕ le paramètre de dispersion, c(.) est une fonction ap-

peléemesure de base et a(.) est la fonction de log-partition. Cette famille regroupe de nombreuses distri-

butions discrètes et continues fréquemment utilisées en actuariat, notamment les distributions binomiale,

Poisson, normale, exponentielle ou encore gamma.

Sous unmodèle linéaire généralisé, pour un échantillon d’observations de taille n, l’espérance de la variable

réponse Y est alors modélisée par

E[Yi] = g−1(X
′
iβ),

pour chaque observation i = 1, ..., n. Le vecteur Xi = (Xi,1, ..., Xi,p) représente les p variables explica-

tives associées à l’observation i, β = (β0, β1, ..., βp) sont les coefficients du modèle, et g(.) est la fonction

de lien qui définit la relation entre l’espérance de la variable réponse et les variables explicatives.

Les GLM sont aujourd’hui très utilisés dans la modélisation des réserves, tant dans l’industrie que dans la

littérature actuarielle. Ils souffrent cependant du désavantage de ne pas correctement capturer les effets

d’une variable explicative continue. Puisque le lien entre g(E[Yi]) et X
′
iβ est linéaire, ce type de modèle

est moins approprié lorsqu’il s’agit d’y inclure une variable continue qui pourrait impacter la variable ré-

ponse de façon non-linéaire. (Hastie et Tibshirani, 1990) proposent une extension des GLM pour palier à ce

désavantage : les modèles additifs généralisés (Generalized Additive Models, ou GAM). Ces modèles per-

mettent d’inclure des variables continues transformées par des fonctions de lissage dans le prédicteur, et

s’expriment comme suit :

E[Yi] = g−1(β0 + f1(X1) + f2(X2) + ...+ fp(Xp)),

où f(.) sont les fonctions de lissage. La flexibilité accrue desGAMs’accompagne cependant d’une perte d’in-

terprétabilité des modèles, et les assureurs optent souvent pour des GLM dans lesquels ils ne conservent

que des variables catégorielles, ou dans lesquels ils introduisent des variables continues préalablement

regroupées en diverses catégories. Certains auteurs, comme (Henckaerts et al., 2018), proposent des solu-

tions visant notamment à développer des stratégies de regroupement de données continues en différentes

classes pouvant être utilisées dans les GLM.
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Enfin, (Stasinopoulos et al., 2017) proposent plus récemment une nouvelle généralisation des GLM et des

GAM au travers des modèles additifs généralisés pour l’emplacement, l’échelle et la forme (Generalized

Additive Models for the Location, Scale and Shape, ou GAMLSS). Ceux-ci permettent de considérer des dis-

tributions en-dehors de la famille exponentielle linéaire et de modéliser non seulement l’espérance de la

variable réponse mais également sa variance et ses paramètres de forme tels que les coefficients d’apla-

tissement et d’asymétrie, avec ou sans fonctions de lissage pour les variables continues. Ces modèles pré-

sentent donc un degré de flexibilité accru et très utile enmodélisation actuarielle où les variables réponses,

que ce soit la fréquence ou la sévérité des sinistres, présentent souvent des caractéristiques que les GLM ou

GAM seuls ne sont pas complètement en mesure de capturer. Dans cette thèse, nous utiliserons principa-

lement les GAMLSS pour construire nos modèles de provisionnement, tirant ainsi parti de leur haut niveau

de flexibilité pour modéliser, entre autres, les sévérités d’un portefeuille canadien complexe d’assurance

automobile.

Malgré le développement de ces différents modèles dès la fin des années 1990, il faudra attendre le dé-

but des années 2010 et une plus grande disponibilité des ressources informatiques et computationnelles,

pour que ceux-ci prennent vraiment leur essor. Le modèle proposé par (Antonio et Plat, 2014) est aujour-

d’hui considéré comme le premier modèle complet pour le calcul de réserves individuelles. Ces modèles

fleurissent depuis dans la littérature actuarielle, avec des variantes très différentes, du paramétrique au

non-paramétrique, en temps discret comme continu. L’avènement de l’apprentissage par machine a égale-

ment apporté son lot de nouvelles techniques pour le provisionnement en assurance, utilisant des arbres

de régression (Wüthrich, 2018), des algorithmes de boosting (Duval et Pigeon, 2019) ou même des réseaux

de neurones (Delong et al., 2021). Le premier objectif de cette thèse s’inscrit dans la continuité de cet effort

de développer desmodèles de provisionnement flexibles et précis, qui tirent profit des données disponibles

aux assureurs et permettent de prédire l’évolution des sinistres tout au long de leur développement.

Modélisation de la dépendance

Le deuxième objectif de cette thèse est, au vu de la diversification des portefeuilles d’assurance ainsi que

des réglementations mises en place à travers le monde, d’inclure la dépendance entre risques dans les mo-

dèles de provisionnement. La modélisation de la dépendance est un élément clef de la quantification des

risques dans un portefeuille, et plusieurs auteurs dans la littérature actuarielle, mais aussi statistique, se

sont penchés sur ce sujet. La dépendance dans un portefeuille d’assurance peut prendre de nombreuses

formes. Lors de la modélisation du développement d’une réclamation, il peut s’agir de dépendance tempo-
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relle, par exemple entre le délai de développement et le montant final payé pour le sinistre, comme dans

(Lopez, 2019). Il peut également être question de la dépendance entre le moment de survenance d’un cer-

tain événement dans la vie du sinistre et son délai de développement, tel qu’illustré par (Zhou et Zhao,

2010). La dépendance s’immisce également entre risques concurrents d’un portefeuille. La diversification

des produits d’assurance non-vie mène les actuaires à jongler avec de plus en plus de lignes d’affaires dont

ils doivent souvent combiner les réserves en un seul montant à rapporter au régulateur. Au-delà du simple

calcul de réserves, et comme déjàmentionné précédemment, les assureurs doivent également inclure dans

leurs calculs de besoins en capital la dépendance entre leurs différents modules de risques.

Le type de dépendance sur lequel se penche cette thèse s’inscrit dans cette lignée, avec une attention

particulière à la dépendance entre différentes couvertures d’assurance offertes sous une même police. Ce

type de problématique a déjà été abordé pour des contextes de tarification dans la littérature actuarielle,

entre autres par (Frees et Valdez, 2008) qui proposent un modèle prenant en compte la dépendance entre

différents types de réclamations pour le calcul de primes.

Depuis la découverte du concept de corrélation, attribuée à Francis Galton en 1888, les méthodes de quan-

tification et modélisation de la dépendance ont lRgement évolué. Pour mesurer le niveau de corrélation

entre deux variables, les mesures d’association constituent encore aujourd’hui la méthode la plus simple et

directe. Le coefficient de corrélation de Pearson permet, par exemple, de capturer le degré de dépendance

linéaire entre des variables aléatoires. D’autres mesures, basées sur les rangs des observations plutôt que

sur les observations des variables elles-mêmes, permettent de mesurer la corrélation entre celles-ci sans

que des transformations non-linéaires des variables ne viennent perturber les résultats. Il s’agit notamment

du rho de Spearman (Spearman, 1904) et du tau de Kendall, introduit par (Kendall, 1938), que nous utilise-

rons à travers cette thèse. Ce dernier se base sur le concept de concordance.

Definition 0.1 (Concordance) Les paires d’observations (X1, Y1) et (X2, Y2) sont dites concordantes (resp.

discordantes) si, lorsqueX1 > X2, alors Y1 > Y2 (resp. Y1 < Y2).

La probabilité de concordance (resp. discordance) est donc P[(X1 − X2)(Y1 − Y2) > 0] (resp. P[(X1 −

X2)(Y1 − Y2) < 0], et le tau de Kendall est défini comme

τ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0].
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Les mesures d’association, notamment la corrélation de Pearson, permettent de construire des distribu-

tionsmultivariées. Celles-ci consistent en une combinaison linéaire pondérées des variables corrélées, dont

la dépendance est capturée par unematrice de corrélation qui doit être définie positive. Pour certaines dis-

tributions très utilisées en actuariat, telles que la normale, la distribution multivariée portera le même nom

que les distributions marginales, avec pour seule différence la matrice de corrélation. Par exemple, soit

X = (X1, X2) un vecteur de distribution normale bivariée. Les distributions marginales des composantes

X1 etX2 sont également des distributions normales, telles que X1 ∼ N (µ1, σ
2
1) etX2 ∼ N (µ2, σ

2
2). Les

paramètres de la distribution bivariée sont alors donnés par

µ =

µ1
µ2

 et Σ =

 1 cov(X1, X2)

cov(X1, X2) 1

 .

Pour d’autres types de distributions dont les marginales n’appartiendraient pas à la même famille que celle

de la distribution multivariée, il peut être moins souhaitable de travailler avec cette dernière. Bien qu’elles

s’avèrent utiles dans certains cas, il peut devenir difficile de construire des structures de dépendance plus

complexes avec des distributionsmultivariées. Le nombre de paramètres à estimer avec ces méthodes peut

aussi devenir large assez rapidement, rendant l’estimation et l’interprétation de modèles plus ardues.

Une méthode alternative pour modéliser la dépendance s’est cependant développée depuis le milieu du

XXe siècle et a fortement gagné en popularité dans de nombreux domaines depuis ; il s’agit des copules. Une

copule est une fonction qui permet de combiner plusieurs distributions univariées en une seule distribution

jointe. Abe Sklar a posé les bases théoriques de l’application des copules, notamment par le théorème

éponyme (Sklar, 1959) :

Theorem 0.2 (Théorème de Sklar ((Nelsen, 2006))) Soit H(.) une fonction de distribution bivariée avec

F (.) etG(.) comme distributions marginales. Il existe alors une copule C(.) telle que pour toutes valeurs x

et y dans R,

H(x, y) = C(F (x), G(y)). (1)

Si F et G sont continues, alors la copule C est unique. Sinon, C est définie de façon unique sur Ran(F ) ×

Ran(G). De façon équivalente, si C(.) est une copule et si F etG sont des fonctions de répartition, alors la

fonctionH(.) définie par l’Équation (2) est une fonction de répartition jointe avec F et G comme distribu-

tions marginales.
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Le grand avantage des copules est qu’elles peuvent s’appliquer peu importe les distributionsmarginales des

variables aléatoires. Elles permettent d’établir une relation de dépendance qui est distincte des distributions

marginales. De plus, elles sont un outil très flexible qui permet de construire de nombreuses structures de

dépendance, même les plus complexes. Les copules Gaussiennes sont par exemple utilisées pour modéliser

des structures de dépendance symétriques.

Plusieurs familles de copules ont été décrites dans la littérature. Une des plus populaires et utilisées en

assurance mais aussi dans de nombreux autres domaines tels que la finance, la médecine et même la mé-

téorologie, est la famille des copules archimédiennes amplement décrite par (Nelsen, 2006). Les copules

membres de cette famille s’expriment à partir d’une fonction génératrice, dénotée ψ(.) : [0,∞] → [0, 1],

avec ψ(0) = 1 et limν→∞ ψ(ν) = 0 :

C(F1(x1), ..., Fd(xd)) = ψ
{
ψ−1[F1(x1)] + ...+ ψ−1[Fd(xd)]

}
.

La popularité de cette famille découle principalement de leur simplicité et de leur flexibilité. Grâce à leur ex-

pression via la fonction génératrice, elles sont en effet faciles à construire et utiliser, et possèdentmoult pro-

priétés intéressantes. De plus, la dépendance y est établie par peu de paramètres par rapport à d’autres fa-

milles, certaines n’en possédant d’ailleurs qu’un seul. Il existe de très nombreuses copules archimédiennes,

permettant de construire des structures de dépendance différentes. Dans le cadre de cette thèse, nous ex-

plorons quatre copules en particulier : les copules de Clayton (Clayton, 1978), Frank (Frank, 1979), Gumbel

(Gumbel, 1960) et Joe (Joe, 1993). Ces quatre copules sont très populaires dans la litérature actuarielle mais

aussi financière. Elles font parties des copules archimédiennes ne dépendant que d’un seul paramètre qui

gouverne la force de dépendance. Elles permettent toutes également de modéliser des structures de dé-

pendance très variées, comme illustré à la Figure 0.2. Ces graphiques représentent les nuages de points

d’observations bivariées simulées à partir des quatre copules pour un tau de Kendall égal à 0.8. On y ob-

serve que la copule de Clayton permet de modéliser la dépendance des petites valeurs de la distribution,

la copule de Frank modélise une dépendance plus uniforme sur l’ensemble des observations, la copule de

Gumbel est utile pour établir la dépendance des valeurs extrêmes (entre les petites et les grandes valeurs) et

la copule de Joe représente mieux la dépendance dans les grandes valeurs dans la queue de la distribution.

Ces quatre copules sont donc des choix appropriés pour modéliser la dépendance dans un jeu de données.

Elles permettent, entre elles, d’analyser quatre formes de dépendance distinctes. Elles sont aussi très faciles

à implémenter car elles ne dépendent que d’un seul paramètre de dépendance et des expressions simples
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Figure 0.1 – Nuages de points des copules de Clayton (en haut à gauche), Frank (en haut à droite), Gumbel

(en bas à gauche) et Joe (en bas à droite) pour un tau de Kendall égal à 0.8.

existent pour leurs fonctions génératrices, tel qu’illustré dans l’Annexe B.1.

Motivation

This thesis lies at the intersection of loss reserving and dependence modeling. It focuses on the calculation

of micro-reserves with the goal to model the development of each individual claim as closely as possible

throughout their lifetime in the insurers’ portfolios. To this end, particular attention is paid to modeling

dependence within these portfolios to quantify it and assess its impact on the final reserve amount.

The interest in micro-level loss reserving and in the inclusion of dependence therein stems from the increa-

sing complexity and diversification of insurance portfolios over the past years, coupledwith rising regulatory

requirements in insurance markets worldwide. These trends compel companies to continually rethink and

improve their models.
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The insurance world has indeed evolved significantly over time. From the early formal maritime insurance

contracts in the Middle Ages to automobile insurance policies offering a wide range of coverages, the non-

life insurance sector has experienced substantial growth and dynamism, particularly with the emergence of

technology and the internet. In the era of big data, actuaries often assume new roles, such as data scientists,

and face numerous risks that their companies encounter. These risks not only lead to the creation of new

insurance products or lines of business but also complicate the structure of their portfolios, sometimes

creating dependence between risks that were previously considered uncorrelated.

Faced with the diversification of insurers’ profiles and portfolios, regulations governing the insurance world

have evolved significantly. Risk modeling and quantification, in the form of capital requirements, lie at the

heart of actuarial work. Actuaries must estimate their reserves, the predicted claim amounts, in each repor-

ting period. These reserves, combined with other items on the balance sheet, will then be used to estimate

the company’s capital requirements.

One peculiarity of insurance is that the production cycle is reversed : actuaries must estimate insurance

premiums, i.e., the price associated with the contracts offered by the company, long before knowing the

cost of these contracts. Reserve estimation is thus a crucial element for the financial health and solvency

of companies, closely monitored by the regulators of each country.

In the European Union, the Solvency II regulatory framework, introduced by the European Insurance and

Occupational Pensions Authority (EIOPA) for insurance and reinsurance companies, requires consideration

of dependence between the different risk modules composing the capital requirement of companies, via

a correlation matrix. This is the standard formula applied by a majority of European insurers. As discussed

by (M. et Stahl, 2021), this formula has many disadvantages and has often been criticized for its overly sim-

plistic nature, which fails to adequately reflect the different risk profiles. Alternatives exist : the Solvency

II Directive allows companies to implement their own internal models, either full or partial, for capital cal-

culation. However, these models are subject to rigorous controls and a lengthy and challenging approval

process by regulators. Moreover, the financial and administrative costs associated with implementing such

models can be prohibitive for many companies, leading them to stick to the EIOPA standard formula.

In Canada, dependence between the different risk modules composing the required capital of insurance

companies is included via the diversification credit, imposed by the Office of the Superintendent of Finan-

12



cial Institutions (OSFI). In some cases, companies opt for an internal model that better reflects their risk

profile. As in Europe, the approval process, numerous controls, and significant costs can, however, discou-

rage insurers from using a more personalized model.

Given these numerous regulations and heavy constraints imposed on companies regarding the risk and ca-

pital calculation models they use, the insurance world has responded relatively late to the massive influx

of data as well as technological and digital advancements. Despite the large amounts of data now available

to them, insurance and reinsurance companies often still use models that do not allow them to leverage

these resources. Among other things, they still frequently use reserving models that do not allow for de-

tailed modeling of claims development or benefit from the wealth of information available on these claims

or policyholders. Furthermore, despite the great diversity of their risk portfolios and the numerous regula-

tions to which they are subject, the models used bymost companies do not take into account or barely take

into account the dependence between these risks. For a long time, insurance companies, like various other

players in financial markets, have relied on independence assumptions between risks and on the theory of

large numbers.

In this thesis, we address this issue. The goal is twofold : first, we explore individual reserving models,

allowing for a more precise modeling of claim development throughout their lifetimes in insurers’ portfo-

lios. We seek to leverage the data collected by insurers on claims and policyholders to estimate individual

reserves by modeling the complete development of claims. This contrasts with the usual approach in insu-

rance where only final reserve amounts are estimated, with little or no consideration of the various events

that punctuate the life of a claim, from occurrence to settlement, and that can impact the final reserve.

Second, given the diversification of insurance portfolios and the increase and complexity of regulations, we

seek to include dependence in our micro-level reserving models.

In order to best apply and validate the variousmethodologies thatwill be investigated in this thesis, we use a

Canadian automobile insurance dataset. In these data, each insurance policy offers four distinct coverages to

policyholders : Accident Benefits, Bodily Injury, Vehicle Damage and Loss of Use. Empirical analyses carried

out on these data quickly show that there is a dependency between these four insurance coverages. Indeed,

it’s easy to imagine that an accident involving damage to the insured’s vehicle can also often involve loss of

use of the damaged vehicle and the need to obtain a replacement vehicle. For the insurer, a claim of this

kind implies both the Vehicle Damage and Loss of Use coverages. Similarly, an accident serious enough to
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cause injury to the insured may also have caused injury to a third party. In this case, the Accident Benefits

and Bodily Injury coverages, and even the Vehicle Damage and Loss of Use coverages, could all be involved.

This thesis is structured into three chapters. In Chapter 1, we explore an individual reserving model taking

into account the dependence between different insurance coverages offered under the same policy. We

introduce the concept of activation patterns of the coverages as the first moment when the insurer realizes

that a given claim impacts the coverage in question. To capture the dependence between these insurance

coverages, we use a multivariate distribution at the activation pattern level : the logit multinomial distribu-

tion. In this chapter, we model the development of a claim at the level of the different lines of business it

impacts. We begin by determining which coverage(s) is (are) activated. We then model the occurrence of

payments and their severities to obtain an estimate of the total portfolio reserve. This chapter contributes

to the ongoing effort in actuarial literature to propose reserving models that allow insurers to predict not

only the total cost of their portfolio but also the development of claims throughout their lifetime, to have

a better understanding and control over these portfolio.

In Chapter 2, we work in continuous time and define the concept of activation delay, corresponding to the

time elapsed between the declaration of a claim and the moment at which the insurer first records that

it has impacted one of the coverages offered within the insurance policy. We use Archimedean copulas

to model dependence between the activation delays of multiple coverages. Working with censored data,

we present a non-parametric estimator of the generator function of copulas belonging to this family. We

then use it to select the most appropriate copula for the data using a graphical approach. We present a

simulation algorithm to directly use the generator function in prediction models. This allows us to bypass

any parametric model and obtain more accurate predictions.

In Chapter 3, we extend the techniques used in Chapter2 to include explanatory variables, thus leveraging

the data collected by insurers. We propose a parametric alternative to the estimator of the generator func-

tion of Archimedean copulas. This new estimator allows us to analyze the impact that a covariate can have

not only on the strength of dependence via Kendall’s tau but also on its shape. We illustrate our metho-

dology using two applications : one on data from a diabetic retinopathy study, the other on data from a

Canadian automobile insurance portfolio. This chapter is part of a recent trend in copula literature aiming

to include the effect of explanatory variables in dependence modeling.
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In the rest of this introduction, we provide a brief review of reserving and dependence models to place in

their academic contexts the various tools that will be used in this thesis.

Loss reserving

Classical reserving models are the so-called aggregated models, still widely used today by insurance com-

panies. They derive their name from the fact that they aggregate claim amounts by occurrence and de-

velopment period (traditionally by accounting year), and predictions are then made on this basis. Unlike

individual models, they do not allow to estimate reserve amounts per claim in the portfolio. The first of

these aggregated models is the Chain Ladder model. This deterministic model is based on the assumption

that the evolution of claim costs remains constant from one period to another, i.e. claims amounts are not

expected to be significantly different in any given period compared to what has been previously observed.

This model has no statistical foundation. Several variants have been proposed to improve it, including the

Bornhuetter-Ferguson model by (Bornhuetter et Ferguson, 1972), which mitigates the impact of older oc-

currence years in modeling, or the Cape Cod method, which estimates weights for different occurrence

periods based on exposure and development periods. However, it was not until the early 1990s and Mack’s

Chain Ladder model (Mack, 1993) that the calculation of reserves shifted from the deterministic world to

the stochastic world for the first time, and estimates relied on statistical assumptions.

The foundations of what would later enable the individualmodeling of reserveswere laid as early as the late

1980s, among others by (Norberg, 1986). Thanks also to the introduction by (Nelder et Wedderburn, 1972)

of Generalized Linear Models (GLMs), the transition from aggregate, so-called triangle reserving models to

more elaborate models, offering prediction of reserves at the level of individual claims, was soon to occur.

Generalized Linear Models allow for modeling a response variable, Y , based on one or more explanatory

variables,X . Unlike classical linear models, GLMs do not impose the response variable to follow a normal

distribution, nor the linearity of the relationship between Y and the explanatory variables. The response

variable can come from any distribution belonging to the exponential family, i.e., the family of distributions

whose density functions are expressed in the form

fY (y) = c(y, ϕ)exp
(yθ − a(θ)

ϕ

)
,

where θ is the canonical parameter of the distribution, ϕ is the dispersion parameter, c(.) is a function cal-

led the base measure, and a(.) is the log-partition function. This family includes many discrete and conti-

nuous distributions frequently used in actuarial science, including binomial, Poisson, normal, exponential,

or gamma distributions. Under a Generalized Linear Model, for a sample of observations of size n, the ex-
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pectation of the response variable Y is then modeled by

E[Yi] = g−1(X
′
iβ),

for each observation i = 1, ..., n. The vector Xi = (Xi,1, ..., Xi,p) represents the p explanatory variables

associated with observation i, β = (β0, β1, ..., βp) are the model coefficients, and g(.) is the link func-

tion that defines the relationship between the expectation of the response variable and the explanatory

variables.

GLMs are widely used in reserving models, both in industry and in the actuarial literature. However, they

suffer from the disadvantage of not adequately capturing the effects of a continuous explanatory variable.

Since the link between g(E[Yi]) andX
′
iβ is linear, this type of model is less suitable when including a conti-

nuous variable that could impact the response variable nonlinearly. (Hastie et Tibshirani, 1990) proposed

an extension of GLMs to overcome this disadvantage : Generalized Additive Models (GAMs). These mo-

dels allow for including continuous variables transformed by smoothing functions in the predictor, and are

expressed as follows :

E[Yi] = g−1(β0 + f1(X1) + f2(X2) + ...+ fp(Xp)),

where f(.) are smoothing functions. The increased flexibility of GAMs, however, comeswith a loss of model

interpretability, and insurers often opt for GLMs in which they retain only categorical variables or in which

they introduce continuous variables pre-grouped into various categories. Someauthors, such as (Henckaerts

et al., 2018), propose solutions aimed at developing data grouping strategies for continuous data into dif-

ferent classes that can be used in GLMs. Finally, (Stasinopoulos et al., 2017) recently proposed a new genera-

lization of GLMs and GAMs through Generalized Additive Models for Location, Scale, and Shape (GAMLSS).

These models allow to consider distributions outside the exponential family and to model not only the ex-

pectation of the response variable but also its variance and shape parameters such as kurtosis and skewness

coefficients, with or without smoothing functions for continuous variables. These models therefore offer a

higher level of flexibility, which is very useful in actuarial modeling where response variables, whether it be

claim frequency or severity, often exhibit characteristics that GLMs or GAMs alone are not completely able

to capture. In this thesis, wewill primarily use GAMLSS to build our reservingmodels, thus taking advantage

of their high level of flexibility to estimate, among others, the severities of a complex Canadian automobile

insurance portfolio.

Despite the development of these different models since the late 1990s, it was not until the early 2010s,
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when computational resources and computing power became more readily available, that they truly gai-

ned momentum. The model proposed by (Antonio et Plat, 2014) is now considered the first comprehensive

model for individual reserving. These models have since proliferated in the actuarial literature, with very

different variants, from parametric to non-parametric, in both discrete and continuous time. The advent

of machine learning has also brought new techniques for insurance reserving, using regression trees (Wü-

thrich, 2018), boosting algorithms (Duval et Pigeon, 2019), or even neural networks (Delong et al., 2021).

The first objective of this thesis is in line with this ongoing effort to develop flexible and accurate reserving

models that leverage the data available to insurers and allow for predicting claims development throughout

their lifetime.

Dependence modeling

The second objective of this thesis is, given the diversification of insurance portfolios and the market re-

gulations worldwide, to include inter-risks dependence in reserving models. Modeling dependence is a key

element in risk quantification in a portfolio, and several authors in the actuarial literature, as well as statis-

tics, have explored this topic. Dependence in an insurance portfolio can take many forms. When modeling

the development of a claim, it can involve temporal dependence, for example, between the development

lag and the final amount paid for the claim, as in (Lopez, 2019). It can also be a matter of dependence bet-

ween the timing of a certain event in the life of the claim and its development lag, as illustrated by (Zhou

et Zhao, 2010). Dependence also arises between concurrent risks in a portfolio. The diversification of non-

life insurance products leads actuaries to juggle with more and more lines of business, often needing to

combine reserves into a single amount to report to regulators. Beyond simply calculating reserves, and as

mentioned previously, insurers must also include in their capital requirements calculations the dependence

between their different risk modules.

The type of dependence addressed in this thesis falls into this line, with particular attention given to depen-

dence between different insurance coverages offered under a single policy. This type of issue has already

been addressed for pricing contexts in the actuarial literature, among others by (Frees et Valdez, 2008), who

propose a model that takes into account the dependence between different types of claims for premium

calculation.

Since the discovery of the concept of correlation, attributed to Francis Galton in 1888, methods for quan-

tifying and modeling dependence have greatly evolved. To measure the level of correlation between two
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variables, association measures are still the simplest and most direct method today. The Pearson correla-

tion coefficient, for example, captures the degree of linear dependence between random variables. Other

measures, based on the ranks of observations rather than on the observations of the variables themselves,

allow to measure the correlation between them, without nonlinear transformations of the variables affec-

ting the results. These include Spearman’s rho (Spearman, 1904) and Kendall’s tau, introduced by (Kendall,

1938), which we will use throughout this thesis. The latter is based on the concept of concordance.

Definition 0.3 (Concordance) The pairs of observations (X1, Y1) and (X2, Y2) are said to be concordant

(resp. discordant) if, whenX1 > X2, then Y1 > Y2 (resp. Y1 < Y2).

The probability of concordance (resp. discordance) is therefore P[(X1 −X2)(Y1 − Y2) > 0] (resp. P[(X1 −

X2)(Y1 − Y2) < 0]), and Kendall’s tau is defined as

τ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0].

Associationmeasures, especially Pearson’s correlation, allow tobuildmultivariate distributions. These consist

of a weighted linear combination of correlated random variables, with dependence captured by a correla-

tion matrix that must be positive definite. For some distributions widely used in actuarial science, such as

the normal distribution, themultivariate distribution will bear the same name as themarginal distributions,

with the only difference being the correlation matrix. For example, let X = (X1, X2) be a bivariate nor-

mal distribution vector. The marginal distributions of componentsX1 andX2 are also normal distributions,

such asX1 ∼ N (µ1, σ
2
1) andX2 ∼ N (µ2, σ

2
2). The parameters of the bivariate distribution are then given

by

µ =

µ1
µ2

 and Σ =

 1 cov(X1, X2)

cov(X1, X2) 1

 .

For other types of distributions whosemarginals do not belong to the same family as themultivariate distri-

bution, itmay be less desirable toworkwith the latter. Although they are useful in some cases, it can become

difficult to construct more complex dependency structures with multivariate distributions. The number of

parameters to estimate with these methods can also quickly become large, making the estimation and in-

terpretation of models more difficult.

An alternative method for modeling dependence, however, has developed since the mid-20th century and

has gained popularity in many fields since then; these are copulas. A copula is a function that combines
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several univariate distributions into a single joint distribution. Abe Sklar laid the theoretical foundations for

the application of copulas, notably through the eponymous theorem (Sklar, 1959) :

Theorem 0.4 (Sklar’s Theorem ((Nelsen, 2006))) Let H(.) be a bivariate distribution function with F (.)

andG(.) as marginal distributions. Then there exists a copula C(.) such that for all values x and y in R,

H(x, y) = C(F (x), G(y)). (2)

If F and G are continuous, then the copula C is unique. Otherwise, C is uniquely defined on Ran(F ) ×

Ran(G). Equivalently, if C(.) is a copula and if F and G are cumulative distribution functions, then the

functionH(.) defined by Equation (2) is a joint distribution function with F andG as marginal distributions.

The great advantage of copulas is that they can be applied regardless of the marginal distributions of the

random variables. They establish a dependence relationship that is distinct from themarginal distributions.

Moreover, they are a very flexible tool that allows to capture many dependency structures, even the most

complex ones. Gaussian copulas, for example, are used to model symmetric dependence structures.

Several families of copulas have been described in the literature. One of the most popular and used in in-

surance but also in many other fields such as finance, medicine, and even meteorology, is the family of

Archimedean copulas extensively described by (Nelsen, 2006). Copulas belonging to this family are expres-

sed using a generator function, denoted ψ(.) : [0,∞] → [0, 1], with ψ(0) = 1 and limν→∞ ψ(ν) = 0 :

C(F1(x1), ..., Fd(xd)) = ψ
{
ψ−1[F1(x1)] + ...+ ψ−1[Fd(xd)]

}
.

The popularity of this family stems mainly from its simplicity and flexibility. Thanks to their expression via

the generator function, they are easy to build and use, and possess many interesting properties. Moreover,

dependence is capture by few parameters compared to other families, some of themhaving only one. There

are many Archimedean copulas, allowing for the construction of very different dependence structures. In

this thesis, we explore four copulas in particular : the Clayton (Clayton, 1978), Frank (Frank, 1979), Gumbel

(Gumbel, 1960), and Joe (Joe, 1993) copulas. These four copulas are very popular in actuarial literature but

also in finance. They are part of the Archimedean copulas depending on a single parameter that governs

the strength of dependence. Between the four of them, they allow to capture very different dependence

structures, as illustrated in Figure 0.2. These graphs show scatter plots of bivariate observations simulated

from the four copulas for a Kendall’s tau equal to 0.8. We observe that the Clayton copula models the
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dependence of small values in the distribution, the Frank copula models a more uniform dependence over

all observations, the Gumbel copula is useful for establishing the dependence of extreme values (between

small and large values), and the Joe copula better represents the dependence in the large values in the tail

of the distribution.

Figure 0.2 – Scatter plots of Clayton (top left), Frank (top right), Gumbel (bottom left), and Joe (bottom right)

copulas for Kendall’s tau equal to 0.8.

These four copulas are therefore appropriate choices for modeling dependence in a dataset. They allow for

analyzing four distinct forms of dependence among them. They are also very easy to implement as they

depend only on a single dependence parameter, and simple expressions exist for their generator functions,

as illustrated in Appendix B.1.
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CHAPITRE 1

INDIVIDUAL CLAIMS RESERVING USING ACTIVATION PATTERNS

Résumé

Une réclamation impacte souvent non pas une,mais plusieurs couvertures d’assurance fournies au sein d’un

même contrat. Pour tenir compte de cet aspect multivarié des réclamations, nous proposons un nouveau

modèle de calcul demicro-réserves construit autour de l’activation des différentes couvertures d’assurance.

En utilisant le cadre de la régression logistique multinomiale, nous modélisons l’activation des différentes

couvertures d’assurance pour chaque réclamation et leur évolution au cours des périodes suivantes, c’est-

à-dire l’activation d’autres couvertures au fil des périodes ultérieures et tous les paiements possibles qui

pourraient en découler. Ainsi, le modèle nous permet de compléter le développement individuel des récla-

mations ouvertes dans le portefeuille. En utilisant une base de données récente d’assurance automobile

provenant d’une grande compagnie d’assurance canadienne, nous démontrons que cette approche génère

des prédictions précises pour les montants des réserves totales, ainsi que pour les montants par couverture

d’assurance. Cette analyse permet à l’assureur d’obtenir de nouvelles perspectives sur la dynamique de ses

réserves.

Abstract

A claim often impacts not one butmultiple insurance coverages provided in the contract. To account for this

multivariate feature, we propose a new individual claim reserving model built around the activation of the

different coverages to predict the reserve amounts. Using the framework of multinomial logistic regression,

we model the activation of the different insurance coverages for each claim and their development in the

following periods, i.e., the activation of other coverages in the later periods and all the possible payments

that might result from them. As such, the model allows us to complete the individual development of the

open claims in the portfolio. Using a recent automobile dataset from amajor Canadian insurance company,

we demonstrate that this approach generates accurate predictions of the total reserves and the reserves

per insurance coverage. This analysis allows the insurer to get new insights into the dynamics of his claims

reserves.
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1.1 Introduction

Claims reserving is known to be one of themost crucial tasks performed by actuaries in insurance companies

all over the world. Insurers must accurately predict future liabilities related to open claims. It allows them

to answer the reporting standards they are subject to and to preserve sufficient capital with which they can

set aside adequate reserves to fulfil their obligations to the policyholders and avoid financial ruin.

In actuarial practice, claims data is commonly aggregated on an occurrence year and development year

basis in run-off triangles. These then help actuaries to evaluate the reserves for the portfolio as a whole.

One ubiquitous method that uses such triangles is the Chain Ladder model introduced by (Mack, 1993) and

further discussed in (Mack, 1994), (Mack, 1999) or (Mack et Venter, 2000).

Over the years, several authors have challenged the robustness of this model. In particular, the recent in-

crease in the quantity and availability of data has contributed to questioning the use of such aggregate

methods. The early work of (Buhlmann et al., 1980), (Hachemeister, 1980), and (Norberg, 1986) attempted

to benefit from these larger quantities of data. However, a few more years were required to obtain the ne-

cessary computing resources to move from the classical run-off triangles to the so-called micro-level claims

reserving models. (Antonio et Plat, 2014) were the first to truly incorporate information related to the po-

licyholder or even the claim itself into their model by building on the work mentioned above as well as on

prior work performed by (Norberg, 1993), (Norberg, 1999) and (Haastrup et Arjas, 1996). They demonstrate

that using the detailed information available to the insurer at the claim level allows them to obtain more

accurate predictions for the reserves. Following their lead, (Pigeon et al., 2013) also propose a fully para-

metric discrete-time model for the payments and then extend their work in (Pigeon et al., 2014) to include

incurred losses as well. Many authors have since then contributed to this area of research which is still very

active today, as can be seen, for example, from the recent contribution of (Crèvecoeur et al., 2022) who

focus on the treatment of RBNS claims.

Other authors have also opened the way to non-parametric approaches to claims reserving. (Wüthrich,

2018) was the first to introduce the use of (Breiman et al., 1984)’s Classification and Regression Tree (CART)

algorithm in a micro-level reserving model. Building on this work, (Lopez, 2019) and (Lopez et al., 2016)

apply the CART algorithm with censored data using, respectively, survival analysis and copulas to account

for the possible dependence between the development time of the claim and its ultimate amount. More

recently, (Delong et Wüthrich, 2020) and (Delong et al., 2021) propose to use neural networks to model the
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joint development of individual payments and claims incurred, thus benefiting from individual claims data

in a collective reserving framework.

In addition to the constant increase in the quantity of data, the growing diversification of the products

offered by insurers contributes to further complexifying the work of actuaries. Evolving in a very competi-

tive world and taking advantage of the rise of new technologies, insurers must constantly remain aware of

changes and evolutions in their clients’ needs. To answer them, they often diversify their offer, multiplying

coverages provided within a policy. Actuaries must refine their models to keep up with this diversity in their

portfolios. To do so, they must consider the correlation between these different risks. Although some au-

thors have already contributed to the claims reserving literature with models that include diverse forms of

dependence, the specific inter-coverage dependence that we highlight in this paper has yet to be modelled

in such a context, to the best of our knowledge. Among others, (Zhou et Zhao, 2010) and (Lopez, 2019) used

copulas to model the dependence between the event times and delay in the development of a claim or the

development time and the final amount of the claim. (Pešta et Okhrin, 2014) use time series and copulas

to consider the dependence between payment amounts made at different stages in the development of a

claim.

In the pricing literature, we find examples of joint modelling for correlated risks within a portfolio. In par-

ticular, (Frees et Valdez, 2008), and (Frees et al., 2009) used copulas to model the dependence between

different claim types in automobile insurance. They begin by identifying the coverage(s) impacted by a claim,

then those for which a payment is made, before predicting the associated severity. Also, with automobile

insurance data, (Shi et al., 2016) account for the cross-sectional and temporal dependence among multile-

vel claims with a copula regression for multivariate longitudinal claims. Closer to what we intend to do in

this paper, (Shi et Shi, 2022) use a multinomial logistic model for the occurrence of correlated risks. (Yang et

Shi, 2019) apply a methodology similar to that of (Shi et al., 2016) and model multilevel property insurance

claims with a Gaussian copula while considering zero inflation. (Frees et al., 2010) model the frequency and

severity of multilevel property claims with, respectively, logistic regressions and Gaussian copulas. Finally,

(Frees et al., 2013) employ a similar approach for healthcare insurance multilevel claims and use multiva-

riate binary regressions to model the different payment types, then Gaussian copulas again for the severi-

ties. More recently, (Côté et al., 2022) extend the work of (Frees et Valdez, 2008) and (Frees et al., 2009)

by introducing a Bayesian model for multivariate and multilevel claim amounts, therefore facilitating the

treatment of open claims which are of crucial importance in insurers’ datasets.
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This paper analyses a recent automobile dataset from amajor Canadian insurer that provides multiple insu-

rance coverages for each policy. Our goal is two-fold : first, we want to account for the multilevel feature of

insurance claims, i.e. single claims that can impact multiple insurance coverages, in a reserving framework.

We seek to model the total severity of the claim by breaking it down into the severities at the level of the

different coverages that it impacts. We model the dependence between the different coverages included

within a policy of the portfolio at hand. Second, we seek to separately model the main events that take

place during the lifetime of a claim, namely the activation of a coverage and the time of payment which

we consider as two separate events. As such, we contribute to the efforts to predict the development of

the claims already illustrated in (Crèvecoeur et al., 2023). We begin in Section 1.2 by introducing the data-

set. Section 1.3.2 then presents the statistical model for reported but not settled (RBNS) claims based on

activation patterns in which dependence between insurance coverages is captured via a multinomial logis-

tic regression. In Section 1.4, we present the model’s results applied to the Canadian dataset and compare

them to the results of two additional models. We conclude our analysis in Section 1.5.

1.2 Data

This section presents an overview and some exploratory analysis of our dataset.

Our data contain 656,153 automobile insurance claimswhich have occurred between the 1st of January 2015

and the 30th of June 2021 in Canada or the United States. Each of these can impact one of four different

insurance coverages provided for each policy by the insurer. In addition, we have information related either

to the insured, the car driven, or the claim itself.

Note that, as is typically done in claims reserving, we work in a discrete-time framework and group the data

in distinct development periods. Due to the limited number of calendar years available in the data and the

short-tailed nature of the portfolio, we choose to split each calendar year into two periods of six months

and use these as a basis for development periods. We illustrate this in Figure 1.1.

Using half-years as time steps will allow us, in the rest of this paper, to gain a more refined understanding

of the development of claims throughout their lifetime. However, because academics and practitioners

typically use one-year rather than six-month time steps in claims reserving, we will ensure that the model

we develop in this paper for this specific portfolio remains general enough to be easily applied to other time

units.
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Figure 1.1 – Data grouping in periods of six months. In this illustration, claim i is reported on September

1st 2015 after a delay of one period since its occurrence. It is then in its first (j = 1) development period.

Payment is made for that claim in development period j = 2. The claim settles on March 21st 2017, i.e., in

its 4th development period.

We first explore the four insurance coverages the insurance company offers for each policy in force before

taking a closer look at the risk factors we will include in the analysis in Section 1.3.2.

1.2.1 Insurance coverages

Each of the 656,153 claims in our dataset impacts one or up to four coverages the insurer offers to the

policyholders : the Accident Benefits coverage (loss of revenue, funeral expenses for the insured), the Bodily

Injury coverage (loss revenue ormedical expenses for a third party), the Vehicle Damage coverage (damages

incurred to the insured’s or a third party’s vehicle) and the Loss of Use coverage (temporary replacement

vehicle and alternative means of transportation).

To better understand the dynamics of our portfolio, Table 1.1 shows the importance of each coverage in

terms of the proportion of claims, total cost, and total reserve, taking January 1st 2019 as the valuation

date. Unsurprisingly, the Vehicle Damage coverage is the most frequently observed, with 96.39% of the

656,153 claims activating it, while only 5.70% of the claims trigger the Bodily Injury coverage.

The proportions are slightly different when we look at the repartition of the total portfolio cost over the

four coverages. In particular, Loss of Use is the coverage that weights the least cost-wise, representing less

than 4% of the total cost of the portfolio. Despite being activated by less than 6% of all claims, the Bodily
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Injury coverage still represents around 13% of the total portfolio cost. However, themost striking difference

arises from the proportion of the total reserve attributed to each coverage. We calculate the percentages

in the last column of Table 1.1 with the 1st of January 2019 chosen as valuation date. Even though only 15%

of all claims activate the Accident Benefits and/or Bodily Injury coverages, they amount to 85% of the total

reserve. In comparison, the Loss of Use coverage activated by more than half the claims represents less

than 1% of the total reserve.

Table 1.1 – Weight of each coverage in the portfolio. The percentages with respect to the total reserve are

calculated by taking the 1st of January 2019 as valuation date

Coverage % of claims % of total cost % of total reserve

Accident Benefits 9.42 12.82 30

Bodily Injury 5.70 13.13 55

Vehicle Damage 96.39 70.44 14

Loss of Use 51.89 3.61 < 1

Table 1.2 shows descriptive statistics related to the payments made for each coverage. Bodily Injury claims

are thosewith the largest average payments, while the Loss of Use coverage presents the lowest one, aswas

already hinted at in Table 1.1. The Accident Benefits, Bodily Injury, and Vehicle Damage coverages present

large values for the payments in the higher quantiles, indicating that their corresponding distributions are

probably heavy-tailed.

Table 1.2 – Descriptive statistics for the severity of payments of the four insurance coverages

Coverage Mean Std. dev.
Quantiles

Max.
0.5 0.75 0.95 0.99

Accident Benefits 12,386 53,561 3,215 6,909 47,757 127,896 2,435,334

Bodily Injury 23,271 76,027 4,000 15,150 98,449 322,612 2,039,570

Vehicle Damage 5,040 8,121 2,605 5,830 17,984 40,611 149,399

Loss of Use 545 620 419 714 1,000 2,336 52,777
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Activation and payment delays. We define each insurance coverage’s activation and payment delays. The

activation delay corresponds to the delay (in period units) between the reporting date of the claim and the

date the insurer first realises that this claim triggers the coverage. The payment delay is the time (in period

units) between the activation date of a coverage and the date the insurer makes the first payment towards

the claim related to that specific coverage. Note that we assume here that the activation of a coverage does

not necessarily imply a payment. As means of illustration, consider again the example provided in Figure 1.1

and suppose that claim i only activates the Accident Benefits coverage directly upon reporting. Since the

activation of the coverage takes place in the same development period as the reporting date, the activation

delay for that coverage is equal to 0. The first payment is thenmade in development period j = 2, indicating

a payment delay equal to 1 for the Accident Benefits coverage triggered by claim i.

Table 1.3 displays the average activation delay per coverage. The Accident Benefits, Vehicle Damage, and

Loss of Use coverages are typically activated in the same period as the reporting date for the majority of

claims (corresponding to the No delay column). However, for the Bodily Injury coverage, we observe that

around 15% of the claims activate it with a delay of at least one development period after the reporting

date.

Appendix A.1 further illustrates the dynamics between the different coverages by presenting the activation

patterns observed in the dataset for the first development period of the claims.

Table 1.3 – Percentage of claims with different activation delays for the four coverages

Activation delays

Coverage No delay 1 period 2 periods 3 periods ≥ 4 periods

Accident Benefits 93.84 5.73 0.29 0.08 0.06

Bodily Injury 85.86 9.86 1.46 1.13 1.69

Vehicle Damage 94.14 5.65 0.13 0.04 0.04

Loss of Use 92.10 7.73 0.13 0.03 0.01

Once a claim activates a coverage,we are interested in knowingwhen the first payment occurs. The payment

delay, illustrated for our data in Figure 1.2, refers to the time (in six-month units) that elapsed between
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the moment a claim activates a coverage and the date the insurer records a first payment for that same

coverage. We see from Figure 1.2 that the Accident Benefits and Bodily Injury coverages, on the one hand,

and the Vehicle Damage and Loss of Use coverages, on the other hand, display very similar shapes. The

Loss of Use coverage is the one for which payments occur the fastest after activation, with over 80% of

the claims related to that coverage receiving a payment in the same development period as the activation

period. Almost all Loss of Use claims and Vehicle Damage claims will have received their first payment by

the end of the second development period after activation of that coverage. Conversely, the Bodily Injury

coverage is the one for which time to the first payment is the longest. Only around 20% of the claims

that activate that coverage receive a first payment in the same development period as the activation of the

coverage. Several Bodily Injury claims will receive their first payment only after the 8th development period.

The situation for the Accident Benefits coverage is very similar.

Figure 1.2 – Payment delays per coverage. A delay of 0 period means that the payment occurs in the same

period the coverage becomes active

1.2.2 Risk factors

Table 1.4 presents the risk factors that we will use to build the reserving model. We provide further insights

on these covariates in Appendix A.2. Note that the variables GENDER and YOB contained a significant pro-

portion of missing values. We used the R package mice to fill them in. This package uses Fully Conditional
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Specification (FCS) where binary data (GENDER) and unordered categorical data (YOB) are imputed using,

respectively, logistic and polytomous logistic, regressions (see (Van Buuren et Groothuis-Oudshoorn, 2011)

for more details). Note that this data-filling procedure did not cause any significant changes in the results

we will discuss later.

Table 1.4 – Description of risk factors

Risk factors

GENDER Gender of the insured.

YOB Year of birth : decade during which the insured was born.

VU Use of the vehicle made by the insured.

AM Annual distance driven (in km).

PROV Place of occurrence of the claim : one of the Canadian provinces or the USA.

FR Fault rating : evaluation of the insured’s level of responsibility in the accident.

REP_DELAY Reporting delay (in 6-months periods) between the occurrence and reporting dates

of the claim.

ACT_DELAY Activation delay per coverage (in 6-month periods) between the reporting date of

a claim and the first date at which the insurer realises the claim triggers the corres-

ponding coverage.

PAY_DELAY Delay (in 6-month periods) between the activation date of a coverage by a claim and

the date at which a first payment is made towards that claim relating to that specific

coverage.

1.3 An activation pattern model for claims reserving

This section introduces the model we built to predict the granular reserves for the portfolio of claims des-

cribed in Section 1.2 considering the dependence between the insurance coverages. Note that even though

we tailor the model to the specific needs of our dataset, our goal is to provide the most general description

of the model so that an interested party may easily apply it to other studies.

We first specify the notation and the model components before presenting the model more formally for
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different development periods and proposing a simulation routine.

Figure 1.3 shows the typical development process for a single claim. When a claim occurs, the policyholder

reports it to the insurance company. As we explained in Section 1.2, this can happen with or without delay.

Once reported, the insurer records the claim and opens a new file in his claims management system. The

reporting of the claim activates at least one of the coverages provided with the policy. The insurer can then

start making payments to the policyholder. During its development, new information related to the claim

can be brought to the insurer, which can result in the activation of one or more additional coverages. Then

the insurance company will continue to make payments until the settlement of the claim.

Figure 1.3 – Development process of a claim

We seek to model how a claim can activate multiple coverages upon reporting or later and the underlying

dependence between them.

1.3.1 Notation

Let cwith c = 1, . . . , C denote a coverage provided within the policy by our insurer. Each policy in force can

incur a claim that will impact one ormore of theC insurance coverages that the policyholder benefits from.

For each claim i, with i = 1, . . . , n and development period j with j = 1, . . . , J , we define the following

components :

— Ai,j is a 1 × C random vector whose entries Ai,j,c each take the value 0 or 1, i.e.,Ai,j ∈ {0, 1}C .

We callAi,j the activation pattern vector that indicates which of the C coverages claim i activates

in its jth development period. Given C insurance coverages and assuming that at least one must

be activated when claim i is reported, there are V = 2C − 1 different activation pattern vectors in

development period j. We denote V the set of these V patterns. Note that at this stage, we do not

assume any constraints on the evolution ofAi,j over time in order to keep the definition as general
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as possible. Further details will however be added for the sake of our application to the dataset at

hand in Section 1.3.2.

— (Pi,j,c|Ai,j,c = 1) ∈ {0, 1} is a random variable that takes the value 1 if, for the corresponding cove-

rage c, the insurer makes at least one payment for claim i in development period j, given that this

coverage is active, or the value 0 otherwise. It is undefined if Ai,j,c = 0. We call Pi,j,c the payment

pattern that depends on the random vectorAi,j .

— (Yi,j,c|Pi,j,c = 1) ∈ R+ is a positive continuous random variable that represents the severity asso-

ciated with coverage c when payments have been made for it for claim i in development period j.

Yi,j,c is thus not defined if the corresponding Pi,j,c is equal to 0, i.e., if there was no payment for

coverage c and claim i in its jth development period. For claims with longer development delays, we

also define the random variable Ỹi,j,c ∈ R+ that represents the total remaining severity of claim i

for coverage c, from development period j until settlement of the claim.Wewill discuss these longer

claims in Section 1.3.2.

— x′
i is a 1×m vector of covariates for claim i that contains static risk factors.

Example 1. To illustrate the notation, we consider a simple example with C = 2 different insurance coverages. The set

of possible activation patterns isV = {(1 0) (0 1) (1 1)}, corresponding respectively to the scenarioswhere a claim i

activates either only the first coverage, only the second coverage or both of them in the same development period j.

For each of these three scenarios, various realisations of (Pi,j,c|Ai,j,c = 1) and (Yi,j,c|Pi,j,c = 1) are possible, as

illustrated in Figure 1.4.

1.3.2 Statistical model

Using the notation introduced in Section 2.3.1, we focus now on presenting our model for various deve-

lopment periods. We begin in the first development period before moving on to the following ones up to

period j∗. We then present what happens after period j∗ for claims with longer settlement delays. In our

notation, the insurer chooses j∗ as the development period from which the activation pattern for a claim

stabilises, i.e., the last development period in which the claim might still activate additional coverages. This

stabilisation point in the activation of coverages may arise from, among others, the nature of the claims

(automobile insurance claims typically present very short settlement delays) or even the legislative system

in which the insurer evolves (some types of claims may not be pursued if a certain period has passed since

31



Figure 1.4 – Illustration of the possible scenarios with C = 2 insurance coverages. The symbol “-” stands for

the cases where the patterns are not defined.

occurrence). We finally describe the severity models used for each insurance coverage.

Knowing the number of claims reported in any given period, our model allows us to determine which cove-

rages these claims activate and to predict their future development until development period j∗. Thus, we

could apply the model to reported but not paid (RBNP) claims and reported but not settled (RBNS) claims.

The model does not provide a complete framework for predicting incurred but not reported (IBNR) claims.

It lacks a process predicting the number and characteristics of the IBNR claims. However, such processes

have been widely discussed in the literature (see, for example, Antonio and Plat (2014) (Antonio et Plat,

2014) where the authors use a Position Dependent Marked Poisson Process) and can easily be used as a

preliminary step to the model presented here. Once the insurer knows the number of IBNR claims, he may

use the model to estimate their development from the first period onward.

Development period j = 1 For claim i in development period j = 1 and givenC insurance coverages, there

exists V0 = 2C − 1 possible realisations of the random activation pattern vector Ai,1, all included within

the set V0. This is the initial set of all possible activation patterns once a claim has entered the reporting

system of the insurer. We write these realisations v and use a multinomial logit regression to model the

probability thatAi,1 takes one of them :

P[Ai,1 = v] =
exp (x′

iβ1,v)∑
ν∈V′

exp (x′
iβ1,v)

, (1.1)

where x′
i is the vector of covariates introduced in Section 2.3.1. β1,v is the 1×m vector of parameters that

can vary with the different coverages and thus depends on the vth pattern.
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Knowing which coverages claim i activates in the first development period thanks to Ai,1, the insurer can

move on to the next step of the claim development process depicted in Figure 1.1 and determine which of

the active coverages will incur a payment within the period. For each insurance coverage c, we assume that

(Pi,1,c|Ai,1,c = 1) ∼ Bernoulli
(
π1,c(xi,γ1,c)

)
. (1.2)

For development period j = 1, the probability π1,c(xi,γ1,c) is given by

π1,c(xi,γ1,c) =
exp (x′

iγ1,c)

1 + exp (x′
iγ1,c)

.

The vector of covariates x′
i is the same as the one used for the activation patterns in Equation (1.1) and γ1,c

is the 1×m vector of coefficients for the period j = 1 varying with each coverage c.

Once we know which coverages are active in period 1 and which have incurred a payment, we can calculate

the corresponding severity per coverage for claim i. The actuarial literature contains many examples of the

use of Generalized Additive Models for the Location, Scale, and Shape (GAMLSS) for this purpose, thanks

to the high level of flexibility that these models provide (see (Stasinopoulos et al., 2017) for more details on

the use of GAMLSS). We use them to predict the expected severity incurred by claim i :

E[Yi,1,c|Pi,1,c = 1] = g−1(x′
iα1,c + α∗

1,c1), (1.3)

where g(.) is the link function and α1,c is the 1×m vector of coefficients for the first development period

that depend on the insurance coverages. α∗
1,c, or more generally for any period j, α∗

j,c, is the specific coeffi-

cient attached to the development period in which claim i is at the valuation date. As such, the insurer can

apply this severity model in all development periods j. The predicted severity will depend on the moment

the claim is in its lifetime at the valuation date.

With the activation patterns, payment patterns, and corresponding severities, we know which coverages

claim i activates in development period j and the severity associated with each coverage.

Note that this model implies that the dependence between the different insurance coverages is accounted

for solely by the multinomial logistic regression in Equation (1.1). We further assume the different claims in

our dataset to be independent. We only consider dependence between coverages, arising from the activa-

tion patterns, while payment patterns and associated severities are all modelled independently.

Development periods j = 2, 3, . . . , j∗ Knowing what happened in at least one development period, we
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now describe how the insurer can keep modelling the development of his RBNS claims until they reach

development period j∗, the period from which he assumes that no more coverage can become active.

We assume that once an insurance coverage is active, it remains active until settlement of the claim. For

claim i and coverage c in development period j = 2, 3, . . . , j∗, we then have

(Ai,j,c|Ai,j−1,c = 1) = 1, 1 < j ≤ j∗. (1.4)

As such, we now depict the set of possible patterns for Ai,j as Vj ⊂ V0, containing all the possible rea-

lisations v. The subset Vj , the possible realisations that it contains, and the number Vj of these possible

realisations depend on the activation pattern in development period j − 1,Ai,j−1. Knowing this, we use a

multinomial logit regression again and write

P[Ai,j = v|Ai,j−1]

=


P[Ai,j=v]∑

v∈Vj
P[Ai,j=v] , if v ∈ Vj

0, otherwise,
(1.5)

wherewe further assume aMarkovian property for the activation pattern vectors and build them using only

the information available in the previous period.

Moreover, we assume the Markovian property for the payment patterns, and we have

(Pi,j,c|Ai,j,c = 1) ∼ Bernoulli
(
πj,c(xi,γj,c)

)
, (1.6)

where

πj,c(xi,γj,c) =
exp (x′

iγj,c)

1 + exp (x′
iγj,c)

,

with the parameter vectors γj,c depending once again on the specific insurance coverage c and the vector

of risk factors x′
i is the same 1×m vector of covariates as before.

Knowing which coverages are active in period j and which incurred a payment, we can finally determine

the severity of these payments using a similar model to the one used in the first development period.

E[Yi,j,c|Pi,j,c = 1] = g−1(x′
iαj,c + α∗

j,cj). (1.7)

Development period j > j∗ For a given claim i in development period j > j∗, the insurer should not use

again the model described in Section 1.3.2 to estimate the activation and payment patterns for the new
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period since we assume that these will not change anymore after development period j∗. Instead, he can

directly model the claim settlement by calculating its remaining severity per coverage, Ỹi,j∗,c, using again

GAMLSS as described in Equation 1.7. Ỹi,j∗,c > 0 encapsulates the remaining amounts for coverage c at later

dates for claims with longer lifetimes and whose activation pattern is not expected to change anymore.

Figure 1.5 illustrates the full model described in Section 1.3.2, starting in development period j = 1 un-

til period j > j∗.

Figure 1.5 – Model illustration.

1.3.3 Simulation routine

To properly consider all open claims in a given dataset, we create a simulation routine that we can tailor to

the specific development stage of different types of claims. Even though we will solely focus on the RBNS

claims for our case study, we present the routine for both IBNR and RBNS claims, including thosewith longer
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development times for which we assume that they will not activate any additional coverages.

IBNR claims. Let i denote an IBNR claim such that i ∈ IIBNR, where the insurer already obtained the set

IIBNR using one of the claims occurrence processes available in the literature. For ease of notation, we

drop the subscript i in the description of the routine.

1. For development period j = 1 :

(a) Simulate the first activation patternA1, using the parameters estimated for themultinomial logit

model in Section 1.3.2.

(b) For the inactive coverages, i.e.A1,c = 0, then the correspondingP1,c is not defined. For the active

coverages only, simulate the payment patterns using the Bernoulli models with parameters π̂1,c.

(c) If (P1,c|A1,c = 1) = 0, then the corresponding severity for the IBNR claim related to that co-

verage is not defined (we will set it as zero in the simulations). If (P1,c|A1,c = 1) = 1 from the

previous step, we simulate the severity from the distribution selected for the specific coverage.

2. For development periods 1 < j ≤ j∗ :

(a) Knowing the activation patternAj−1 for the previous development period, only keep the activa-

tion patterns that are now still possible. Re-normalize the probabilities for the remaining activa-

tion patterns and simulate them using the multinomial logit model from Section 1.3.2 to obtain

the vectorAj |Aj−1.

(b) If Aj,c = 0, Pj,c is not defined. For the active coverages only, simulate the payment patterns

using the Bernoulli models with parameters π̂j,c.

(c) If the payment indicator (Pj,c|Aj,c = 1) = 0, the severity for the corresponding coverage is not

defined. If (Pj,c|Aj,c = 1) = 1 from the previous step, simulate the severity from the distribution

selected for the specific coverage.

(d) Repeat steps (a)-(c) until reaching development period j∗. After j∗, simulate the remaining se-

verity per coverage, Ỹj∗,c. The total severity simulated for this IBNR claim is given byY IBNR =∑j∗

j=1

∑C
c=1 Yj,c +

∑C
c=1 Ỹj∗,c.

RBNS claims. Let i ∈ IRBNS. At the valuation date, these claims are already in development period j >

1. We already know the activation patterns, payment patterns, and payments for development periods

1, . . . , j−1. The simulation routine for these claims is then exactly the same as that described for the IBNR

claims for development periods 1 < j ≤ j∗.
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RBNS claims with longer development times. To remain thorough in our analysis, we must also consider

the longer RBNS claims we previously mentioned in Section 1.3.2. After a certain development period j∗,

we assume that the activation pattern for claim i ∈ IRBNS,Ai,j∗ remains unchanged. If claim i is still open

in development period j∗ + k for k ≥ 1, we simulate the remaining severity starting from period j∗ + k

using the severity model previously described that allows the account for the specific development period

in which claim i is at the valuation date. We add the condition that the final severity per coverage for that

claimmust be at least equal to the sum of the payments observed up to period j∗+k, i.e., (Ỹi,j∗+k,c|Yi,c ≥∑j∗+k−1
j=1 Yi,j,c), c = 1, 2. The total severity simulated for this RBNS claim is Y RBNS

i =
∑j∗+k−1

j=1

∑C
c=1 Yj,c+∑C

c=1 Ỹj∗+k,c.

1.4 Numerical Application

Now that we have fully described the statistical model, we dedicate this section to its application to our

dataset. We first provide some insights into how we estimate the different model parameters before pre-

senting the results obtained by simulations for the total reserves. We finally compare these reserves to

those obtained using two other models that we describe in detail below.

1.4.1 Estimation

We apply our model to the data introduced in Section 1.2. We present the estimation results performed for

the three components of the model : the activation patterns, payment patterns, and payment severities.

From our observations in Section 1.2, we assume that the activation patterns in our dataset do not change

anymore after development period j∗ = 4. Considering the information provided in Table 1.3, where we

see that almost all claims activate the different insurance coverages no later than four periods after their

reporting date, this seems to be a valid assumption.

Appendix A.3 illustrates how we separate our dataset into a training and a valuation set, choosing the 1st

of January 2019 as valuation date of the reserves.

Sincewe have j∗ = 4 and only consider RBNS claims, we use themodel starting from Section 1.3.2 for claims

in development periods j = 2 to j = 4 and from Section 1.3.2 for claims in development periods j > 4.

Before going further with the model fitting and reserves simulations, we illustrate in Example 2 and Figure
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1.6 how the model handles a given claim from our dataset.

Example 2. We consider claim i, illustrated in Figure 1.6, for which we want to estimate the reserves on January 1st,

2019. Claim i was reported in the period ranging from January 1st 2018 to June 30th 2018. This is its first development

period, j = 1. At the valuation date, we observed the activation patterns, payment patterns, and payment severities

for the first and second development periods, as claim i enters development period j = 3. We now have to predict

the activation patterns, payment patterns, and payment severities for development periods j = 3 and j = 4. Since

we assume that the activation patterns do not change anymore after the 4th development period, we can then predict

the total remaining severity as of development period j > 4.

Activation patterns. Using the same notation as in Section 1.3.2, we have C = 4 insurance coverages, lea-

ding to V0 = 15 possible activation patterns. We fit the multinomial logit model for the activation patterns

using maximum likelihood estimation with the likelihood function given by

L(Ai,j) =

n∏
i=1

exp (x′
iβj,v)∑V

k=1 exp (x
′
iβj,k)

. (1.8)

In Appendix A.4, we provide estimated parameters for each of the V0 = 15 possible activation patterns.

We observe that the impact of some risk factors moves away from zero for the 5th pattern, i.e., the one

in which a claim simultaneously activates the Bodily Injury and Loss of Use coverages. In particular, due to

the legislation regarding automobile insurance in Quebec and Saskatchewan, the probability of observing

that specific activation pattern decreases substantially if the claim occurred in one of these provinces. In the

province of Quebec, the Bodily Injury coverage does not exist : a person injured in a car accident will benefit

from the public automobile insurance plan provided by the Société de l’assurance automobile du Québec

(SAAQ) rather than from a private insurance company. In Saskatchewan, the insured must choose between

a no-fault and a tort auto injury insurance coverage offered by the Saskatchewan driver’s licensing and

vehicle registration. Almost all residents choose the tort coverage under which they are insured regardless

of whether they are at fault or not. As such, the Bodily Injury coverage rarely appears for claims in that

province. Consequently, we see that the parameter estimates for Quebec and Saskatchewan are always

under 0 for all activation patterns, including the Bodily Injury coverage.

Moreover, the birth year is also a big driver for this particular pattern : the probability of observing it in-

creases for the younger insureds born in the 1990s and after 2000. We commonly observe in automobile

insurance data that younger drivers tend to causemore frequent andmore severe accidents. Consequently,

we can expect more accidents with injuries or even casualties and loss of use in the younger population.
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Figure 1.6 – Illustration of how themodel handles a specific claim from the dataset, taking the 1st of January

2019 as valuation date.
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Appendix A.4 illustrates this well, where the insureds born after 2000 are the only cohort that always has an

increasing impact on the probability of observing each activation pattern, even though they only represent

1.52% of all the insureds.

Payment patterns. We fit twelve Bernoulli regressions for the payment patterns : one for each of the four

coverages in development periods j = 2, j = 3, and j = 4 and use again maximum likelihood optimisation

to obtain parameter estimates for each of the models. Table 1.5 displays the results of these estimations.

Table 1.5 – Fitted average probabilities of observing a payment

Probability j = 2 j = 3 j = 4

πj,AB 0.2367 0.2194 0.1267

πj,BI 0.1426 0.1220 0.0695

πj,VD 0.6391 0.1030 0.0311

πj,LoU 0.4228 0.0368 0.0087

Payment severities. From Table 1.2, we note the importance of considering heavy-tailed distributions to

model the severity of payments, as is usually done in the actuarial literature. Among others, Frees et al.

(2009) (Frees et al., 2009) opt for the Generalized Beta of the second kind distribution to accommodate

the long-tailed nature of claims. Figure 1.7 shows the histogram of the payments made in the different

development periods considered in the model for the Accident Benefits and Bodily Injury coverages. Note

that for both of them, we cut out most of the tail of the histograms in the right part of the graph to ease

the readability.

For each coverage, we consider five commonly used distributions : the Log-Normal, Gamma, Pareto, Ge-

neralized Beta of the second kind, and Weibull distributions. As explained in Section 1.3.2, we fit each of

these models for all possible development periods, adding a covariate that specifies the development per-

iod in which a given claim is at the valuation date. Appendix A.5 presents the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) for all models and all four insurance coverages. We conclude

that the preferred distribution for the Accident Benefits, Vehicle Damage, and Loss of Use coverages is the

Generalized Beta of the Second Kind. We select the Weibull distribution for the Bodily Injury coverage.
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Figure 1.7 – Histograms of the observed payments for the Accident Benefits and Bodily Injury coverages

1.4.2 Predictive distributions and model comparisons

We focus in this section on presenting the results obtained for the estimation of the reserveswhenwe apply

themodel described in Section 1.3.2 to the dataset described in Section 1.2, choosing the 1st of January 2019

as the valuation date.We present the predictive distribution of the reserves for the portfolio as a whole and

the different insurance coverages. We compare these results to the observed reserve amount and the one
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obtained from fitting some more classical and commonly used reserving models.

For all models we consider in this section, we perform at least 5,000 simulations using the simulation rou-

tine described in Section 1.3.3. As shown in Appendix A.6, this large number brings stability to our results.

We first present the estimations from the activation patterns model before comparing them to other reser-

ving models.

Figure 1.8 displays the predictive distribution of the total RBNS reserve of our portfolio. In this graph and

all those that will follow, the red line marks the observed reserve, the blue dotted line shows the average

value of the predictions, and the continuous blue line depicts the 0.95 quantile of the distribution.

For these claims, the observed reserve amount is 524.91M CAD. Note that the true amounts that we provide

henceforth are minimum amounts because more than 1% of the claims are still open in the portfolio at the

valuation date. The final severity for these claims will probably be greater than the one observed now once

they become settled.

Figure 1.8 – Simulated RBNS reserves for the full portfolio as of the 1st of January 2019. The red line, dashed

blue line and continuous blue lines depict, respectively, the observed reserve amount, the average and the

0.95 quantile of the simulations

Figure 1.9 presents the predictive distributions obtained for the reserves of the Accident Benefits and Bodily

Injury insurance coverages. We provide further detail on these results in Table 1.6. In particular, we display

the predicted reserves for the four coverages and thewhole portfolio using six-month and one-year periods,
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the latter beingmore commonly used by academics and practitioners alike. In the remainder of this section,

wewill only use the results obtainedwith the sixmonths periods for the activation patternsmodel and other

models used for comparison. Since financial legislation around the world typically requires insurers to set

aside an amount based on a high quantile of the predictive distribution of their reserves, we provide the

95% Value-at-Risk (VaR) in addition to themean for each of the four coverages and the portfolio as a whole.

Figure 1.9 – Simulated RBNS reserves for the Accident Benefits (left) and Bodily Injury (right) coverages. The

red lines, dashed blue lines and continuous blue lines depict, respectively, the observed reserve amounts,

the average and the 0.95 quantile of the simulations

Table 1.6 – Simulated RBNS reserves (in M CAD) using the activation patterns with development periods of

6 months (columns 3 and 4) and 1 year (columns 5 and 6).

Coverage True reserves
Act. Patterns (6 mo.) Act. Patterns (1 y.)

Mean VaR0.95 Mean VaR0.95

Accident Benefits >158.90 146.61 170.46 162.15 196.64

Bodily Injury >288.17 283.27 295.02 300.02 312.58

Vehicle Damage >73.63 70.77 76.43 70.80 72.95

Loss of Use >4.20 4.17 4.24 3.41 4.01

Global reserve >524.91 504.82 546.15 536.86 574.58

For each coverage and the portfolio, the average predictions underestimate the observed reserves, while

the predictions obtained for the 95% VaR are all greater than the observed amounts. This is particularly
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the case for the Accident Benefits and Bodily Injury coverages where the VaR amounts are, respectively,

170.46M CAD and 295.02M CAD, while the observed reserves are equal to 158.90M CAD and 288.17M CAD,

respectively. For the Loss of Use coverage that represents less than 1% of the total reserve, the quantile of

the predictions is close to the observed amount.

Table 1.6 illustrates that for a short-tailed claims dataset such as ours, using 6-month rather than one-year

development periods leads to more accurate predictions, both for the portfolio as a whole and for each

separate coverage.

Next, we pursue the analysis of our results by comparing them to those obtained using a classic aggregate

model and a replica of the activation patterns model that does not take dependence into account.

Activation patterns model vs aggregate models. Table 1.7 compares the reserve estimates obtained with

the proposed model based on the activation patterns to those of the classical Overdispersed Poisson (ODP)

Chain Ladder and to the observed reserves, both for the portfolio and the four insurance coverages taken

separately. Since we only focus our analysis on RBNS claims and for the sake of comparison with the other

models, we use reporting years instead of occurrence years when building the claims triangles. We further

assume that all underlying assumptions of the ODP model are verified but do not validate them here since

this is a standard model in claims reserving and our aim is to focus on a comparison with the activation

patterns model.

Note that in Table 1.7, the global reserve for the ODPmodel is not equal to the sum of the reserves per cove-

rage. It is due to building the claims development triangles and applying the model to each coverage taken

separately, as well as to the portfolio, rather than just taking the sum of the reserves obtained per coverage

to obtain the total reserve. Before taking a closer look at the results obtained with the Overdispersed Pois-

son Chain Ladder, we remind the reader that we only have a limited number of calendar years observed in

our dataset with a claim history spanning from 2015 to mid-2021. Even if we consider development periods

of six months rather than the more traditional one-year periods, our claims development triangles are still

based on a small number of claims. We must be careful with the results obtained with an aggregate reser-

ving method, particularly when we apply it to coverages such as the Accident Benefits and Bodily Injury,

because these methods typically require large data sets for a more in-depth analysis. To compensate for

this lack of data and for the longer tailed nature of these two coverages, we use tail factors obtained from
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the simulations performed with the activation patterns model. This allows for a more suitable comparison

with the results of the other two models discussed in this section.

At the portfolio level, the aggregate model leads to predictions for the total reserves slightly above the

observed amount, with a 95% VaR equal to 529.71M CAD. If instead of applying the model to the portfolio

as is usually done, we implement it to each coverage separately and then sum up the predictions obtained,

we reach an average portfolio reserve and a 95% VaR equal to, respectively, 449.28M CAD and 469.58M

CAD. Neither of these values are sufficient to cover the observed reserve. This highlights the disadvantages

of using an aggregate model such as the ODP Chain Ladder to a more ganular level of the dataset.

The average and quantile predictions underestimate the observed reserves for all coverages except the Loss

of Use coverage where the 95% VaR is slightly above the true amount of 4.20M CAD. The aggregate model

provides overall lower predicted values than the activation patterns model and mostly falls short of the

observed amounts.

Table 1.7 – Comparison between the activation patternsmodel and the Overdispersed Poisson Chain Ladder

(in M CAD)

Coverage True reserve
Activation patterns ODP

Mean VaR0.95 Mean VaR0.95

Accident Benefits >158.90 149.61 170.46 148.73 153.41

Bodily Injury >288.17 283.27 295.02 241.43 253.23

Vehicle Damage >73.63 70.77 76.43 55.17 58.61

Loss of Use >4.20 4.17 4.24 3.95 4.33

Global reserve >524.91 504.82 546.15 515.62 529.71

Activation patternsmodel vs independencemodel. Weperform independence tests on our data to streng-

then our argument in favour of a model that considers the possible dependence between coverages. First,

we test for independence between each pair of insurance coverages using the chi-squared goodness of fit

test. Each of these two-way interaction tests rejects the hypothesis of independence. We also perform like-

lihood ratio tests comparing models with no interaction, two, three, and four-way interactions. Once again,
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the tests show the presence of dependence between the coverages and reject the simpler models in favour

of the more complex ones in each scenario.

We build an independence model to assess the impact of modelling this dependence on the reserve es-

timates. We reproduce the activation patterns model but rather than modelling the activation patterns in

development periods j = 2 to j = 4 with the multinomial logit models described in Sections 1.3.2 and

1.3.2, we model the activation of the coverages using separate and independent Bernoulli regressions for

development periods j = 2 to j = 4. We fit twelve Bernoulli regressions : one for each of the four insurance

coverages and the three development periods considered for RBNS claims. The rest of the model, i.e., the

estimation of the payment patterns, payment severities, and all the assumptions linked to them, remain

the same. We present the results obtained with this model in Table 1.8 and compare them to the observed

reserves and the estimates from our activation patterns model.

Note that since we use the same severity model in the activation patterns and independence models, the

average predictions of bothmodels are very close to each other for all insurance coverages and the portfolio.

The differences arise in the tails of the predictive distributions where VaRs obtained with the independence

model are not always higher than observed amounts, contrary to the ones obtained with the activation

patternsmodel. It is the case for the Loss ofUse and,more importantly, Accident Benefits coverages.With an

average predicted amount and 95% VaR of, respectively, 507.8M CAD and 533.90M CAD, the independence

model provides overall lower estimates for the portfolio Value-at-Risk than the activation patterns model

compared to the observed reserve. We also note that predictive distributions for the Accident Benefits

coverage, the Bodily Injury coverage, and the whole portfolio are less heavy-tailed than those from the

activation patterns model.

Results summary. Table 1.9 summarises the results discussed in Sections 1.4.2 and 1.4.2.

The predictions from a reserving model should be sufficient to cover all future liabilities for incurred but

not reported claims and, as in this paper, reported but not settled claims at the chosen valuation date.

With average predictions for the total reserves of 504.82M CAD, 515.62M CAD, and 507.8M CAD for, respec-

tively, the activation patterns, ODP Chain Ladder, and independence models, none of these models provide

estimates that are sufficient to cover the observed global portfolio reserve of 524.91M CAD. However, all

three models allow us to obtain 95% VaRs that seem large enough to cover this amount. When applied to
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Table 1.8 – Comparison between the activation patterns model and the independence model (in M CAD)

Coverage True reserve
Activation patterns Independence

Mean VaR0.95 Mean VaR0.95

Accident Benefits >158.90 149.61 170.46 151.72 158.23

Bodily Injury >288.17 283.27 295.02 283.03 292.95

Vehicle Damage >73.63 70.77 76.43 68.99 78.59

Loss of Use >4.20 4.17 4.24 4.06 4.13

Global reserve >524.91 504.82 546.15 507.8 533.90

the portfolio, the ODP Chain Ladder provides the lowest global VaR with a value that is just above the ob-

served reserve. The independence model predicts a 95% VaR of 533.90M CAD, and the activation patterns

model finally presents the highest value for the quantile with a reserve amount of 546.15M CAD.

When looking at the reserves per coverage, the activation patterns model is the only one that provides

Values-at-Risk higher than the observed reserves in every case. The quantiles of the predictive distributions

in the case of the independence model fall short of the observed amounts for the Accident Benefits and

Loss of Use coverage, and quantiles of the aggregate model underestimate the reserve for all coverages

except Vehicle Damage.

1.5 Conclusion

In this paper, we analyze a Canadian automobile dataset in which each claim can impact one ormore of four

insurance coverages provided by the company, namely Accident Benefits, Bodily Injury, Vehicle Damage,

and Loss of Use. We seek to predict the claims reserve for this portfolio while considering the underlying

dependence between these coverages. More specifically, we analyze how a single claim can simultaneously

activate multiple coverages and the potential impact this can have on the final amount of the reserve.

To do this, we build an individual model based on activation patterns for the insurance coverages to esti-

mate claims reserves. Based on the predictions of the so-called activation patterns of the four coverages

in a given development period j, we then predict whether an active coverage will incur a payment and its
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Table 1.9 – Model comparison - summary (in M CAD)

Coverage Observed Simul. Act. pat. ODP Ind.

Accident Benefits >158.90
Mean 149.61 148.73 151.72

VaR0.95 170.46 153.41 158.23

Bodily Injury >288.17
Mean 283.27 241.43 283.03

VaR0.95 295.02 253.23 292.95

Vehicle Damage >73.63
Mean 70.77 55.17 68.99

VaR0.95 76.43 58.61 78.59

Loss of Use >4.20
Mean 4.17 3.95 4.06 -

VaR0.95 4.24 4.33 4.13

Global reserve >524.91
Mean 504.82 515.62 507.80

VaR0.95 546.15 529.71 533.90

corresponding amount. We capture the dependence between the coverages in the activation patterns with

multinomial logit regressions. Even though we tailor our model to our specific study, we present it in the

most general way possible such that one can easily extend it to other applications. For instance, the num-

ber of insurance coverages, the number of development periods after which the activation patterns remain

stable, the length of the development period, or the severity distributions are all features of the model

that one can adapt to other situations. Further developments of this model could include the addition of

the age of the claim as a risk factor to account for time dependence. We could also drop the assumption

of independence between the claims and seek to model it in a similar way as the dependence between

coverages.

We then compare the results obtained for our dataset with those from two additional models : the classical

Overdispersed Poisson Chain Ladder and a replica of the activation patterns model that does not consider

dependence. Specifically, this replica, named the independence model in the paper, predicts the activation

patterns of the four coverages using four independent Bernoulli regressions per period rather than a mul-

tinomial logit model. It guarantees that the activation of a coverage does not impact the activation of the

other coverages in a given period.
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We observe in the results that, while all three models provide predictions for the 95% portfolio VaRs of

the global reserve larger than the observed amount, only the predicted values from the activation patterns

model appear to be above the observed amounts aswell for each coverage taken separately.While the other

methods also allow us to obtain large enough predictions for the total reserves, they seem less efficient at

the coverage level.

With the activation patterns model, we aim to better highlight and understand the underlying dynamics of

the claims portfolio at hand through the activation of the different insurance coverages. It is a good illus-

tration of the challenge faced nowadays by many practitioners in the insurance industry that are required,

either by regulators or their own internal processes, to predict their claims reserves with increasing levels

of granularity.

49



CHAPITRE 2

SIMULATIONS OF ARCHIMEDEAN COPULAS FROM THEIR NON-PARAMETRIC GENERATORS FOR LOSS

RESERVING UNDER FLEXIBLE CENSORING

Résumé

Les assureurs bénéficiant de quantités de données de plus en plus larges et de complexité croissante, nous

explorons dans cet article une méthode axée sur ces données pour modéliser la dépendance au sein de ré-

clamationsmultivariées. Plus précisément, nous étendons l’estimateur non paramétrique pour les fonctions

génératrices de copules archimédiennes, ainsi que la procédure de sélection de copules graphiques intro-

duits par Genest et Rivest (1993), à des scénarios de censure flexibles, en utilisant des techniques dérivées

de l’analyse de survie. Nous proposons ensuite une méthode alternative permettant de se passer de toute

hypothèse paramétrique en simulant directement de nouvelles données à partir de l’estimateur de la fonc-

tion génératrice. Nous utilisons à cet effet des algorithmes basés sur les transformées de Laplace-Stieltjes

inverses. Nous illustrons la performance des deux approches par le biais de plusieurs études de simulation

et les comparons avec une application à un jeu de données récent d’assurance automobile d’une compa-

gnie canadienne pour lequel nous modélisons la dépendance entre les délais d’activation des couvertures

d’asssurance dépendante. Nous montrons que, bien que les deux approches fonctionnent dans divers scé-

narios de censure et pour de grandes quantités de données, simuler de nouvelles observations directement

à partir dumodèle non paramétrique peut conduire à des prédictions plus précises qui peuvent ensuite être

utilisées dans le cadre plus large du calcul de réserves.

Abstract

With insurers benefiting from ever-larger amounts of data of increasing complexity, we explore a data-

driven method to model dependence within multilevel claims in this paper. More specifically, we extend

the non-parametric estimator for Archimedean copula generators and graphical copula selection procedure

introduced by Genest and Rivest (1993), to flexible censoring scenarios, using techniques derived from sur-

vival analysis. We then propose an alternative method that allows to forego any parametric assumption by

directly simulating from the estimator of the generator function, using algorithms based on inverse Laplace-

Stieltjes transforms.We illustrate the performance of both approaches withmultiple simulation studies and
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compare them with an application to a recent Canadian automobile insurance dataset for which we mo-

del the dependence between the activation delays of correlated coverages. We show that although both

approaches work well under various censoring scenarios and for large amounts of data, performing simula-

tions directly from the non-parametric model can lead to more accurate predictions that can then be used

as part of a larger claims reserving framework.

2.1 Introduction

With the increasing ease in data collection and greater availability of computational resources for financial

institutions, actuarial practitioners and academics face everyday larger quantities of complex data. All this

data grants insurers access to detailed information about their insureds and the claims that are typically

collected over long periods of time, allowing for a better understanding of their portfolio and, among other,

more accurate loss modelling.

This increase in quantity, however, also leads to an increase in data complexity. Actuaries must sort through

large datasets to retrieve relevant information and derive predictions for premiums or the development of

claims, using data that is more often than before unstructured, missing or untimely. One particular com-

plexity frequently encountered in insurance is the issue of incomplete or censored data, arising when part

of the information is missing for a specific observation. This situation can arise, for example, in a model for

coupled lifetimes when death occurs for one of the individuals in the study, as illustrated in (Deresa et al.,

2022). Claims severities can be censored as well if the insurer benefits from a reinsurance treaty that covers

a predefined portion of the losses. We can also consider the case where a given prescription period on the

payments made by the insurer has passed, thereby stopping further payments towards the claimant even if

the claim is still open. Multiple factors can also cause censoring. In the example with the coupled lifetimes,

observations can be censored either by the death of one individual or if they simply revoke their contract

with the insurance company. Insurers can thus observe a multitude of censoring scenarios in which one or

more variables can be censored or where multiple factors can cause censoring.

Additionally, a second complexity often encountered in insurance data is the correlation between different -

potentially censored - variables of interest to the insurers. This dependence can take the form, for example,

of temporal dependence between the occurrence of a specific event and a claim’s development delay as in

(Zhou et Zhao, 2010), (Shi et al., 2016) and (Shi et Yang, 2018). (Frees et Valdez, 2008), (Frees et al., 2009)

or (Yang et Shi, 2019) also illustrate hierarchical dependence within multi-features claims. We can even find
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cross-sectional dependence between losses and expenses, as in (Frees et Valdez, 1998), or between a claim’s

lifetime and its final amount, as in (Lopez, 2019).

To account for this, many authors in the actuarial literature have used the framework of copulas, i.e., multi-

variate distribution functions whose marginals are uniformly distributed on the unit interval. Copulas allow

a representation of the joint distribution function of multivariate data by separating their marginal dis-

tributions from the inherent dependence structure. Examples of their application abound in the statistical

literature, and since their introduction by (Sklar, 1959), many authors have extensively studied and analyzed

their properties.

Among the different classes of copulas, (Schweizer et Sklar, 1983) introduced theArchimedean family, widely

applied today in many fields beyond insurance. Contrarily to other copula families, Archimedean copulas

are not derived from Sklar’s theorem, as highlighted in (Größer et Okhrin, 2021). They are characterized

instead by a function called the generator,ψ(.) : [0,∞] → [0, 1] with ψ(0) = 1 and limν→∞ ψ(ν) = 0,

defined with one or more so-called dependence parameters. The d−variate Archimedean copulaC(.) then

takes the following form :

C(u1, ..., ud) = ψ(ψ−1(u1) + ...+ ψ−1(ud)).

Given a copula C(.), we can retrieve Kendall’s tau using the relation

τ = 4

∫ 1

0
...

∫ 1

0
C(u1, ..., ud)dC(u1, ..., ud)− 1.

It is clear that finding an estimator for the generator allows us to directly capture both the shape and

strength of dependence for a given set of multivariate observations.

For this purpose, (Genest et Rivest, 1993) propose a non-parametric approach relying on a study of the

bivariate probability integral transformation for Archimedean copulas. Their estimator is, however, only

applicable to complete data, seldom encountered in insurance. In addition, this estimator has only been

used so far to identify the Archimedean copula best fitted to a given dataset but has not been directly used

itself in, for example, simulation studies.

The motivation of our paper is thus two-fold. First, considering the large amounts of data available to in-

surers and the highly diverse censoring schemes that these datasets can contain, we present a graphical

selection procedure for Archimedean copulas based on a non-parametric estimator of the generator. The
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contribution that we bring to this graphical approach is that we extend it to different flexible censoring

scenarios for the data, thereby rendering it well suited to, among others, insurance applications. For this

purpose, we base ourselves on the method proposed in (Genest et Rivest, 1993) andmodify it, using results

from (Wang etWells, 2000) and an estimator for the joint distribution proposed by (Akritas et Van Keilegom,

2003) in survival analysis in order to account for various censoring schemes. To the best of our knowledge,

this estimator has never been used in an actuarial context nor in the application of a non-parametric estima-

tor for Archimedean copulas. In addition, it contrasts with the more naive copula modelling approach that

usually consists of fitting a certain number of copulas and comparing their performance using information

criteria such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC). When using

such criteria, we are required to fit all the candidate copula models to the data as a first step, including esti-

mating the dependence parameters. When estimating the generator function, no prior fitting of parametric

models is required, and the dependence parameters for various candidate models can be directly derived

from the generator, even in the presence of censoring, as we will illustrate in this paper.

Second, we go a step further and, instead of finding the most fitted Archimedean copula, we show how

to directly perform simulations from the non-parametric generator. This novel approach allows to use the

Archimedean family without assigning a specific copula to the data and thereby limiting ourselves to a na-

med and pre-defined model. This method readily applies to the large amounts of data faced by insurers

and frees them from the constraint of defining a parametric model that might miss some of the finer com-

plexities of their datasets. In addition, we show how, in a claims reserving context, performing analysis and

predictions directly from the non-parametric estimator of the generator function can lead tomore accurate

reserves calculations and thereby financial gains for the insurers. Without the constraints of a parametric

model that, even though it might be well suited to the data, is unlikely to be a perfect fit, we decrease the

risk of prediction inaccuracies arising from model misspecification.

We structure our paper as follows : first, we provide a brief literature review in Section 2.2. In Section 2.3,

we describe the statistical model for the non-parametric estimator using methods borrowed from survi-

val theory. Section 2.4 describes the graphical comparison procedure and presents three model validation

approaches applicable to different censoring scenarios. In Section 2.5, we show how to directly generate

correlated observations starting from the non-parametric estimator, without formulating any parametric

model assumptions. We present an application to a claims reserving framework and a comparison between

the graphical and simulation approaches in Section 2.6, using a Canadian automobile dataset in which po-
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licyholders benefit from multiple insurance coverages. This dataset provides a good illustration of a more

complex censoring scheme. We conclude our work in Section 2.7.

2.2 Literature review

In recent years, a lot of attention has been paid to Archimedean copulas, particularly in finance and insu-

rance. Allowing for very flexible dependence structures, this class of copulas has become popular thanks

to their simple form and statistical tractability, among other interesting properties. Notably, many of them

allow high-dimensional dependence modeling using only one parameter governing the strength of depen-

dence. Although initially more widely used in life insurance where they arise from frailty models, Archime-

dean copulas have grown popular in non-life insurance as well.

Thanks to the large quantities of data more easily available, benefits can be reaped from using a non-

parametric estimator such as the one proposed by (Genest et Rivest, 1993) to directly retrieve the generator

of Archimedean copula models. We discuss two interesting examples of the application of this estimator

in the case of censored data. First, the work of (Denuit et al., 2006) combines an estimator for the gene-

rator from (Wang et Wells, 2000) to an estimator of the joint distribution proposed by (Akritas, 1994) to

model the dependence between the allocated loss adjustment expenses and right-censored losses. Their

methodology is, however, only applicable to cases where only one variable is subject to censoring, thereby

limiting possible replications to more flexible scenarios.

To the best of our knowledge, the only non-parametric approach for more flexible censoring scenarios is

the work proposed in (Gribkova et Lopez, 2015). In their paper, the authors propose a discrete estimator

and two smooth estimators for Archimedean copulas and any type of copula applicable to various censoring

scenarios. Their discrete estimator extends the empirical copula estimator proposed in (Deheuvels, 1997)

by using random weights in the empirical joint distribution to account for the bias caused by censored

observations. For the two smooth copula estimators, (Gribkova et Lopez, 2015) introduce kernel functions

in addition to the weights of the empirical joint distribution estimator.

In the present paper, we use an estimator situated between those of (Denuit et al., 2006) and (Gribkova et

Lopez, 2015). As in (Denuit et al., 2006), we focus only on Archimedean copulas and use a non-parametric

estimator specifically for Archimedean generators. We, however, seek to allow for the same level of flexibi-

lity in the choice of censoring scenarios as (Gribkova et Lopez, 2015). As such, we extend thework of (Denuit
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et al., 2006) to the case where any or all variables can be subject to censoring by replacing the estimator

for the joint distribution with that proposed in (Akritas et Van Keilegom, 2003).

We obtain a non-parametric estimator for Archimedean copula generators that we then propose to use in

two different approaches. First, in a graphical comparison similar to the one used in (Denuit et al., 2006)

to select the most appropriate parametric copula model for the data. Second, in a simulation routine to

generate correlated observations with the same strength and shape of dependence as the original data.

In the first approach, since the choice of the copula model is driven solely by a graphical comparison, we

want to use robust approaches to validate it. Goodness-of-fit tests for copulas have been discussed by some

authors in the literature, notably (Genest et al., 2009) who present a review of available tests or (Größer et

Okhrin, 2021) who account for all the latest developments in copula theory, including estimation and testing

methods.

However, all these tests only apply to complete data. The literature on goodness-of-fit tests for copulas

with censored data is much scarcer. For Archimedean copulas, (Lakhal-Chaieb, 2010) proposes a test based

on a Cramer-von-Mises type distance and Kendall distribution. (Wang, 2010) presents a test based on a

multiple-imputation procedure of the censored data, and (Emura et al., 2010) use a cross-ratio function.

Some authors have also proposed tests for other families of copulas, such as the likedlihood and pseudo-

likelihoog tests of (Yilmaz et Lawless, 2011). More recently, (Zhou, 2021) and (Sun et al., 2023) presented

general tests based on information matrices applicable to various copula families. In addition to their three

non-parametric copula estimators, (Gribkova et Lopez, 2015) also propose a test similar to that of (Lakhal-

Chaieb, 2010) that can be used with different kinds of distances such as Kolmogorov-Smirnov, Cramer-von-

Mises or the square-root of a quadratic integrated distance.

In this paper,weuse three approaches to validate the non-parametric estimation of theArchimedean copula

generator. More specifically, we use an omnibus procedure based on the likelihood function, a method

based on the L2-norm distance, inspired by (Lakhal-Chaieb, 2010) and (Gribkova et Lopez, 2015), and the

test proposed by (Wang, 2010).

Our second approach, namely direct simulations from the non-parametric estimator of the generator func-

tion, is inspired by the work of (Hofert, 2008) who described various sampling schemes for nested Archi-

medean copulas. In the various algorithms presented in his work, the author however assumes a known
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Archimedean copula family with a well-defined parametric generator, or generators for which the Laplace-

Stieltjes transforms are known. (Ridout, 2009) proposes an algorithm that can generate random observa-

tions from a distribution specified by its inverse Laplace-Stieltjes transform. In this work, we adapt (Ridout,

2009)’s algorithm to the case where the Laplace-Stieltjes transform is defined by a non-parametric func-

tion, then use this combined with some algorithms presented by (Hofert, 2008) to sample from our original

data, without specifying a parametric copula model.

2.3 Statistical Model

In this section, we describe an approach to retrieve the Archimedean copula generator ψ(.) in the case of

flexible censoring.More specifically, we present a non-parametric estimator building on thework of (Akritas

et Van Keilegom, 2003) in survival analysis. The advantage of using such a non-parametric estimator lies in

the possibility of directly tailoring the model to the data, even in the presence of complex censoring.

We begin by defining the notation before describing the estimator. For clarity, we focus solely on the biva-

riate case, but the notation and model described hereafter can easily be extended to a multivariate frame-

work.

2.3.1 Notation

We define the following model components :

— T = (T1, T2)withTi ∈ R+ for i = 1, 2 is the initial vector of variables of interest. They can represent

times-to-event, losses, etc. To avoid identifiability issues with the copula, we assume these variables

to be continuous ;

— X = (X1, X2) with Xi ∈ R+ for i = 1, 2 is the vector of censoring variables, such that T andX

are independent ;

— ω = (ω1, ω2), with ωi > 0 for i = 1, 2 are constants acting as additional censoring factors on T .

We call these the limits.

— Y = (Y1, Y2) where Yi = min(Ti, Xi, ωi) for i = 1, 2 is the observed bivariate vector, taking

censoring of T into account ;

— ∆ = (1[Y1=T1],1[Y2=T2]) is the vector of censoring indicators.

To illustrate the difference between the censoring variable X and the limit ω, consider a study of the time

to recovery after administration of a treatment of patients suffering from a medical condition. The time to
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recovery, denoted by T , is censored if the patient dies, with the time to death being the censoring variable

X . In addition, health professionals might consider the treatment ineffective if the patient does not recover

after a given amount of time, even if he is still alive. Further treatments will then need to be considered.

In this example, the time elapsed until the treatment is deemed to have failed is the limit ω. Even if the

patient is still alive, i.e., T > X , the imposition of ω will censor his time to recovery. The observed delay

Y = min(T,X, ω) is of interest to medical practitioners. Y represents the delay until the first event, being

either full recovery, death, or need for additional treatments.

Further applications can be found in finance, insurance, and other fields. Section 2.6 focuses on an applica-

tion to bivariate claims delays.

2.3.2 Non-parametric estimator of the generator

We now describe the non-parametric approach leading to the identification of the copula linking the pairs

of censored variables (Y1, Y2).

Assuming flexible censoring scenarios where either one or both variables can be subject to random censo-

ring, we follow the methodology laid out in (Akritas et Van Keilegom, 2003) and work with the following

extension of (Beran, 1981)’s estimators for the conditional distributions of Y1 (resp. Y2) given Y2 = y2 (resp.

Y1 = y1) :

F̂1|2(y1|y2) = 1−
∏

Yi1≤y1,∆i1=1

(
1− Wni2(y2;hn)∑n

j=1Wnj2(y2;hn)1Yj1≥Yi1

)
, (2.1)

where y2 must be uncensored and

Wni(y;hn) =


k

(
y−Yi2
hn

)
∑

∆j1=1 k

(
y−Yj2

hn

) , if ∆i2 = 1

0, if ∆i2 = 0.

Here, k(.) is a known kernel function and {hn} is the bandwidth : a sequence of positive constants such

that hn → 0 as n→ ∞. We work with a similar estimator for P[Y2 ≤ y2|Y1 = y1] = F̂2|1(y2|y1).

The estimator of the joint distribution proposed in this context by (Akritas et Van Keilegom, 2003) is then

given by :

F̂ (y) = w(y)

∫ y2

0
F̂1|2(y1|z2)dF̃2(z2) + (1− w(y))

∫ y1

0
F̂2|1(y2|z1)dF̃1(z1), (2.2)
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where F̃1 and F̃2 are the marginal estimators of Kaplan and Meier (1958) :

F̃j(yi) = 1−
∏

Yi,j≤yi,∆ij=1

(
1− 1

n− i+ 1

)
, j = 1, 2.

Theweightsw(y)minimise themean-squared error of F̂ (y). Equation (2.2) is the estimator that, combined

with (Genest et Rivest, 1993)’s approach, allows us to retrieve the generator of the copulas in the presence

of different censoring scenarios. We start from (Genest et Rivest, 1993)’ proposition laid out just below.

Proposition 2.1 ((Genest et Rivest, 1993)) Let S1(t1) and S2(t2) be marginal survival functions whose de-

pendence function C(.) is of the form

C(S1(t1), S2(t2)) = ψ
{
ψ−1(S1(t1)) + ψ−1(S2(t2))

}
,

with ψ(.) : [0,∞] → [0, 1] with ψ(0) = 1 and limν→∞ ψ(ν) = 0. Let

U =
ψ−1(S1(t1))

ψ−1(S1(t1)) + ψ−1(S2(t2))
and V = ψ

{
ψ−1(S1(t1)) + ψ−1(S2(t2))

}
= C(S1(t1), S2(t2)).

Then,

1. U is uniformly distributed on (0, 1) ;

2. V follows the Kendall distribution defined asK(ν) = ν − ψ−1(ν)

[ψ−1](1)(ν)
, for 0 < ν ≤ 1 ; and

3. U and V are independent.

(Genest et Rivest, 1993) suggest the following estimator for the Kendall distribution in the presence of com-

plete data :

K̂n(ν) =
1

n
#{i|νi ≤ ν},

where# denotes the cardinality of a set.

We cannot use this estimator in the presence of censored data. Instead, we choose to apply the extension

proposed by (Wang et Wells, 2000) to estimate the Kendall distribution by

K̂n(ν) =

∫ ∞

0

∫ ∞

0
1[F̂ (y)≤ν]F̂ (dy), (2.3)

in which we insert (2.2) as the estimator of the joint distribution, allowing for all possible censoring scena-

rios.
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Finally, we insert K̂n(ν) in the estimator for the Archimedean generator proposed by (Genest et Rivest,

1993) :

ψ̂−1
n (ν) = exp

{∫ ν

ν0

1

t− K̂n(t)
dt

}
, (2.4)

with 0 < ν0 < 1 an arbitrarily chosen constant. Thanks to the use of Equation (2.2), we can retrieve the

generator non-parametrically, regardless of the level of censoring present in the data.

In Section 2.4 and 2.5, we now present two different methods to use ψ̂n(ν) to perform further analysis and

predictions.

2.4 Graphical comparison

Given the empirical estimator K̂n(ν), we can select the parametric copula model best fitted to the data at

hand using the graphical procedure introduced by (Genest et Rivest, 1993). Let the univariate function λ(ν)

be defined from the Kendall’s distribution as

λ(ν) = ν −K(ν) =
ψ−1(ν)

[ψ−1](1)(ν)
.

An estimator of λ(ν) is easily retrieved by

λ̂n(ν) = ν − K̂n(ν). (2.5)

The idea is now to graphically compare the empirical estimator λ̂n(ν) to the corresponding λα̂(ν) of dif-

ferent competing copula models under consideration, where α̂ is the dependence parameter of the copula.

Knowing λ̂n(ν), we proceed as described below :

1. Estimate Kendall’s tau using the following equality proposed by (Genest et Rivest, 1993) :

τ̂ = 4

∫ 1

0
λ̂n(ν)dν = 3− 4

∫ 1

0
K̂n(ν)dν (2.6)

2. Given the relationship between Kendall’s tau and the dependence parameter α for some Archime-

dean copulas, retrieve these copula parameters using

α̂ = g−1(τ̂). (2.7)

Table B.1 in B.1 provides the functions g(.) as well as other specific information for some popular

Archimedean copulas.
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3. Given α̂, trace the curves of λα̂(ν) for some competing copula models, using again the information

provided in B.1.

4. Select the parametric copula modelm for which the curve of λα̂m(ν) is closest to that of λ̂n(ν).

One important benefit of this graphical procedure is that, contrarily to the more classical model selection

using information criteria, it only requires to estimate λ̂n(ν). From this estimator, we can directly evaluate

on the graph what type of Archimedean copula might best fit our data by observing the shape of the λ̂n(ν)

curve. We also easily retrieve the copula parameter using Equation (2.7). There is no need to fit different

copula models beforehand and compare them using AIC and BIC. Estimating λ̂n(ν) is enough to identify the

most appropriate model, even in the presence of incomplete data.

2.4.1 Results validation

While practical and easy to implement, the estimator described in Section 2.3.2 is non-parametric, and

the choice of the copula model is driven at this stage by a graphical analysis only. Goodness-of-fit tests

for copulas are rare in the literature, even more so in the presence of censoring. To validate our graphical

choice and increase the level of confidence in our selected model, we briefly describe three approaches in

this section. More details on each of them can be found in B.3.

A first way to verify whether the selected copulamodel is appropriate for the data at hand is to compare the

dependence parameter α̂ estimated from Equation (2.7) to its equivalent α̂∗, obtained from an optimisation

procedure. This is the omnibus procedure, ormaximumpseudo-likelihood procedure that consists in a semi-

parametric optimization that substitutes empirical versions of themarginal distributions in the (parametric)

likelihood function of the copula model, L(.). This procedure has been used, for example, in (Genest et al.,

1995) and (Denuit et al., 2006).

The second approach is based on theL2-norm. Following the original idea of (Wang etWells, 2000), we ve-

rify that the distance between the non-parametric estimator of the Kendall distribution K̂n(ν) andKα̂m(ν)

for the selected model m is the smallest in comparison with the distances to the Kendall distributions of

all other candidate models. We propose the following parametric boostrap procedure, inspired by (Lakhal-

Chaieb, 2010) and (Gribkova et Lopez, 2015) to select themost appropriate copulamodel based on a pseudo

p−value :
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Step 1. Compute K̂n(ν) for the data at hand and, for the M candidate models under consideration, es-

timate α̂m, form = 1, ...,M .

Step 2. For each candidate model Cα̂m , generate B censored samples of size n.

Step 3. For each of the B samples, estimate α̂m,b andD(α̂m,b) =
∑n

i=1

(
K̂n(ν(i))−Kα̂m,b

(ν(i))
)2
(ν(i) −

ν(i−1)).

Step 4. For each modelm, obtain the pseudo p-value as

pm =
1

B

B∑
b=1

1[min
l
D(α̂b,l) > D(α̂b,m)]

with m ̸= l. The copula model m best fitted to the data is the one for which the pseudo p-value is the

smallest. In this case, we can interpret pm as the number of times amongB replications that copula model

m is selected as most fitted for the data at hand.

The third andfinal approach to validate the chosen copulamodel is amore robust statistical test proposedby

(Wang, 2010). This goodness-of-fit test bases its premise on Proposition 2.1 from (Genest et Rivest, 1993) :

under the null hypothesis that an Archimedean copula can model the dependence between the pairs of

observations (T1, T2) with generator ψ(.), the correlation coefficient between the variables U and V is

null. (Wang, 2010) describes the test in details and extends it to censored data using a multiple imputation

procedure.

2.4.2 Simulation study

Using simulation studies, we now illustrate the graphical approach described in this section. We provide a

few examples to showcase the graphical model selection procedure and the validation approaches discus-

sed in Section 2.4.1.

Independence case. The first way to validate the results from the estimator for the generator in Section 2.3

is to analyze how it handles independent data. Setting Kendall’s tau equal to 0, each of the four copulas

should converge to the independence copula. This is the case if α = 0 for both the Clayton and Frank

copulas and α = 1 for the Gumbel and Joe copulas.

We simulate samples of size n = 1000 from each of the four copulas with τ = 0. We then use the metho-

dology laid out in Section 2.3 to estimate K̂n(ν), τ̂ and, finally, α̂ for each copula. Figure 2.1 presents the

graphical comparison between the average of the 1000 non-parametric curves λ̂n(ν) and the correspon-
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ding λα̂(ν) for four candidate models, namely the Clayton, Frank, Gumbel and Joe copulas. We also present

the average estimates of α̂ over the 1000 simulations in Table 2.1.

Figure 2.1 shows that the curves for the four candidate parametric models as well as the non-parametric

curve, all converge towards the same curve on the plot, i.e. the curve of the independence copula, and

it is hard to differentiate between them. Table 2.1 confirms these results by showing that the parameter

estimates of the Clayton and Frank copula tend to 0, while those of the Gumbel and Joe copulas tend to 1.

Our approach using (Akritas et Van Keilegom, 2003)’s estimator for the joint distribution provides adequate

estimates of the dependence parameters when τ = 0.

Table 2.1 – Average estimates of α̂ for 1000 simulations when τ = 0.

Clayton Frank Gumbel Joe

α̂ 0.0249 0.0352 1.0163 1.0150

Figure 2.1 – Graphical comparison of the estimated λ̂(ν) functions for the independent samples.

Graphical comparison.Wenowmove away from the independence scenario and focus on thenon-parametric

estimator of λ̂n(ν) used for the graphical comparison.

We simulate bivariate samples (T1, T2) of n = 1000 observations from the Clayton, Gumbel, Frank, and

Joe copulas. In each case, we select the dependence parameter such that Kendall’s tau equals 0.4, and we

work with unit-exponential distributions for the marginals. We simulate the vector of censoring variables
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(X1, X2) from exponential distributions with their parameters set such that 20% of observations have at

least one censored component. We are in a double-censoring scenario where one or both variables can be

censored.

Figure 2.2 displays the empirical estimator λ̂n(ν) and the curves ofλα̂(ν) for the four copulas under conside-

ration, for each of the four simulated samples. In each plot, the continuous curve depicts the non-parametric

estimator presented in Equation (2.5). For all, λ̂n(ν) appears to be closest to the curve of the correct co-

pula, i.e., the copula from which the sample was simulated. These graphical comparisons suggest that the

graphical approach proposed in this section performs quite well under flexible censoring scenarios.

Figure 2.2 – Graphical comparison of the estimated λ̂(ν) functions for the four simulated samples. We

simulate n = 1000 bivariate observations from a Clayton (top left), Frank (top right), Gumbel (bottom left)

and Joe (bottom right) copulas.

Omnibus procedure. We begin validating the results from Figure 2.2 with the omnibus procedure. In ad-

dition to the double-censoring scenario considered here, we add two other censoring schemes : one with
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complete data (no censoring) and one where we allow for only one censored variable. We work again for

these two additional scenarios with simulated samples of size n = 1000, Kendall’s tau equal to 0.4, and

unit-exponential margins. For the single-censoring scenario, we simulate the censoring variable following

an exponential distribution such that around 20% of observations have a censored component, similar to

the double-censoring scheme.

Table 2.2 shows the results of performing the omnibus comparison between α̂ and α̂∗ one thousand times.

Each value in this table represents the percentage of simulations in which the competing models were

not considered best-fitted for the sample in terms of the difference between the estimated dependence

parameters. We observe, for example, that when we simulate a sample from the Clayton copula with τ =

0.4 in a double-censoring scenario, only 276 simulations out of a thousand reject the Claytonmodel as best-

fitted. Among these 276 simulations, 188 opt for a Joe model, 71 for a Gumbel model, and 17 for a Frank

model.

Table B.3 in B.4 shows the results of one of these simulations when τ = 0.4 by comparing the dependence

parameters α̂ estimated with Equation 2.7 to the corresponding α̂∗ for the omnibus procedure.

The results displayed in both Table B.3 and B.4 illustrate that the omnibus procedure is a good first indicator

of the appropriateness of the copula model selected via the graphical procedure.
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Table 2.2 – Percentage of simulations in which different candidate copula models are rejected with the

omnibus procedure.

Scenario True copula
Candidate model

Clayton Frank Gumbel Joe

No censoring
Frank 0.876 0.322 0.853 0.949

Joe 0.897 0.680 0.845 0.578

Single-censoring
Frank 0.880 0.274 0.884 0.962

Joe 0.892 0.844 0.868 0.396

Double-censoring

Clayton 0.276 0.983 0.929 0.822

Frank 0.865 0.392 0.947 0.796

Gumbel 0.906 0.992 0.370 0.732

Joe 0.936 0.942 0.962 0.160

L2-norm.Next, we perform a second study in whichwe simulate bivariate samples of n = 500 observations

from various copulaswith Kendall’s tau equal to 0.2, 0.4, and 0.6.We use the same exponential distributions

of parameters equal to one for the marginal distributions of (T1, T2). We again consider three censoring

schemes : onewith no censoring, onewherewe allow only one variable to be censored, and onewhere both

variables are subject to censoring. For the double-censoring scheme, we also analyze the independence

case.

When working with complete data, we use (Genest et Rivest, 1993)’s estimator K̂n(ν) to computeD(α̂) :

K̂n(ν) =
1

n
#{i|νi ≤ ν},

with

νi =
1

n− 1
#{(t1,(j), t2,(j))|t1,(j) < t1,(i), t2,(j) < t2,(i)}.

For the single-censoring scenario,we use a (Wang etWells, 2000)’s estimator K̂n(ν) similar to Section 2.3.2,

but with a different estimator for the joint distribution F̂ (y). Namely, we compute the estimator proposed
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by (Akritas, 1994) for single-censoring scenarios. Assuming that T1 is the variable that can be censored by

X1, we have :

F̂ (y1, t2) =

∫ t2

0
F̂Y1|T2(y1|z)dF̂T2(z)

=
1

n

n∑
k=1

1[0 ≤ t2,k ≤ t2]F̂Y1|T2(y1|t2,k),

where F̂Y1|T2(y1|z) is (Beran, 1981)’s estimator from Equation (3.4).

For the two censoring scenarios, we simulate the censoring variables using exponential distributions with

parameters such that at least 20% of observations have one (or two) censored components. For each

sample, we then perform the bootstrap procedure described earlier to obtain estimates of the L2-norm

distance between K̂n(ν) estimated non-parametrically for the data and the corresponding Kα̂(ν) for dif-

ferent candidate models.

Table 2.3 presents the results of 1000 simulations for each sample. Each value in this table corresponds to

the pseudo p-value from the bootstrap procedure and should be understood as the percentage of bootstrap

simulations inwhich the candidatemodel was not selected as the bestmodel for the simulated sample. That

is the percentage of simulations for which the L2-norm distance between K̂n(ν) andKα̂(ν) for the candi-

date model was not the smallest one compared to the other models under consideration. We use samples

from both Frank and Joe copulas in the no-censoring and single-censoring schemes. At the same time, in

the double-censoring scenario, we analyze samples from the Clayton, Frank, Gumbel, and Joe copulas.

We observe that in all three scenarios for each copula, the pseudo p-value is the smallest for the candidate

model corresponding to the true copula. For example, in the double-censoring scenario, when we simulate

the data from a Frank copula with Kendall’s tau equal to 0.4, we observe that the Frank copula is rejected

as an appropriate candidate model in just 1.5% of the bootstrapped simulations performed. The Gumbel

model is rejected in 98.5% of simulations, and the Clayton and Joe copulas are rejected in all simulations. In

addition, we observe that as the value of Kendall’s tau increases, the percentage of rejection for the correct

model decreases. For the Frank sample in the double-censoring scenario, 8.7% of the bootstrap simulations

reject the Frank model when τ = 0.2. This percentage decreases to 1.5%when τ = 0.4 and to 0.9%when

τ = 0.6. We observe similar results and trends in all scenarios for each copula considered. This showcases

the strength of our test.
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In addition, for the doubly-censored scenario, we simulate samples from each of the four copulas with Ken-

dall’s tau equal to 0. This is equivalent to simulating four bivariate samples from the independence copula.

We observe that the results of the bootstrap simulations are much more random. For the Joe sample, for

example, 45% of simulations reject the Clayton model, all reject the Frank model, 80% reject the Gumbel

model, and 75% reject the Joemodel. This is to be expected since, when τ = 0, all four copulas converge to-

wards the same independence copula. The estimates that we thereby get forKα̂(ν) and λα̂(ν) all converge

towards the same functions. The choice of the smallest distance between K̂n(ν) and Kα̂(ν) for the dif-

ferent candidate models thus becomes much more random. This was already well illustrated in Figure 2.1

that shows the plot of λ̂(ν) and those of λα̂(ν) for the four candidate models considered—the curves for

the Clayton, Frank, Gumbel, and Joe copula overlap.

67



Table 2.3 – Pseudo p-values for different candidate copula models under different censoring scenarios.

Scenario True copula τ
Candidate model

Clayton Frank Gumbel Joe

No censoring

Frank

0.2 1.000 0.091 0.909 1.000

0.4 1.000 0.067 0.948 0.985

0.6 1.000 0.001 0.999 1.000

Joe

0.2 1.000 0.999 0.924 0.077

0.4 1.000 1.000 0.998 0.002

0.6 1.000 1.000 0.999 0.001

single-censoring

Frank

0.2 1.000 0.078 0.923 0.999

0.4 1.000 0.054 0.946 1.000

0.6 1.000 0.012 0.999 0.989

Joe

0.2 1.000 1.000 0.928 0.072

0.4 1.000 1.000 0.987 0.013

0.6 1.000 1.000 0.999 0.001

double-censoring

Clayton

0.0 0.470 0.890 0.790 0.850

0.2 0.170 0.831 0.999 1.000

0.4 0.079 0.921 1.000 1.000

0.6 0.000 1.000 1.000 1.000

Frank

0.0 0.230 1.000 0.770 1.000

0.2 0.986 0.087 0.928 0.999

0.4 1.000 0.015 0.985 1.000

0.6 1.000 0.009 0.991 1.000

Gumbel

0.0 0.620 1.000 1.000 0.038

0.2 1.000 0.970 0.168 0.862

0.4 1.000 0.975 0.135 0.890

0.6 1.000 0.986 0.057 0.957

Joe

0.0 0.450 1.000 0.800 0.750

0.2 1.000 1.000 0.843 0.157

0.4 1.000 1.000 0.929 0.071

0.6 1.000 1.000 0.949 0.051

68



Goodness-of-fit test. Using the same censoring scenarios, marginal distributions, and copulas as for the

L2−norm with Kendall’s tau equal to 0.2, 0.4, and 0.6, we now apply (Wang, 2010)’s goodness-of-fit test

described in B.3.3. We present the results of 1000 simulations for simulated samples of size n = 200 in

Table 2.4. For the single-censoring and double-censoring scenarios, we useM = 5 imputed datasets.

We observe similar results to those obtained by (Wang, 2010) and to those from Table 2.3. When depen-

dence is weak, the test does not always accurately predict the best model for the data. In particular, we see

that in the single-censoring scenario when the sample comes from the Frank copula with τ = 0.2, even

though the lowest percentage of rejection of the null hypothesis is correctly observed when the candidate

model is the Frank copula, this percentage is also relatively low for the three alternative models. As already

observed in (Wang, 2010), the power of the test, however, increases when we increase the sample size. To

illustrate this, we present in Figure 2.3 what happens to the p-values in the no-censoring scenario when

the true model is the Frank copula with τ = 0.4 when we progressively increase the sample size from

n = 200 to n = 2000. We work with increasing steps of 200 observations ; in each case, we perform 1000

simulations. The strength of the test increases quite steeply with the sample size. For the Frank candidate

model, the resulting p-value starts at a low level of approximately 5%, as was reported in Table 2.4, and

quickly tends to 0 as we increase the sample size. The Gumbel copula displays a low p-value of less than

10% for the smallest sample size. However, it greatly increases such that for a sample of 2000 observations,

it is correctly rejected by over 85% of simulations. The Joe and Clayton candidate models display similar

increasing trends, even though they started with a higher p-value for small sample sizes than the Gumbel

copula.

Similarly to the results of theL2-norm in Table 2.3, we also observe in Table 2.4 that the strength of the test

increaseswith the level of dependence. In all scenarios and for all copulamodels, the percentage of rejection

of the null hypothesis increases with τ when the null hypothesis is incorrectly specified and decreases with

τ when the true and null copula coincide.

Impact of the limit. In Section 2.3.1, we introduced a limit ωi for i = 1, 2 acting as an additional censoring

layer. Depending on the context, these limits can be imposed by practitioners, authorities, etc. They can

be the maximum time before treatment is considered ineffective, even if the patient is still alive, or the

maximum payment delay authorized for a claim for example.
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Figure 2.3 – Evolution of the p-values of competing models based on 1000 simulations for varying sample

sizes simulated from the Frank copula with Kendall’s tau equal to 0.4 in a no censoring scenario.

In this section, we conduct a simulation study to assess the impact of ω on the strength and form of depen-

dence between two censored variables.

Consider a bivariate vector of time-to-events T = (T1, T2)with log-normal distributions such that µT1 = 8,

µT2 = 7, σT1 = 1 and σT2 = 3. We set the correlation ρ between T1 and T2 at 0.35. LetX = (X1, X2) be

the censoring vector withX1 independent fromX2. BothX1 andX2 are log-normally distributed, with pa-

rameters µX1 and µX2 chosen to allow for different levels of censorship. We also set σX1 = 1 and σX2 = 1.

We perform three simulation studies : one with low levels of censorship for both variables (approx. 2% and

1% for, respectively, T1 and T2), one with medium levels of censoring (approx. 25% and 40%) and one with

higher levels of censorship (approx. 65% and 75% for, respectively, T1 and T2). Finally, consider the limits

ω1 and ω2 such that we observe the bivariate vector Y = (Y1, Y2) =
(
min(T1, X1, ω1),min(T2, X2, ω2)

)
.

We use the strategy laid out in Section 2.3 to derive the joint distribution (2.2) from Beran’s estimators. As

in (Akritas et Van Keilegom, 2003), we choose the weights w(y) = 0.5 for the sake of simplicity although

better results could be obtained by optimizing them. Using the estimated joint distribution, we then derive

Kendall’s tau and estimate λ̂n(ν) for a sample of n = 500 observations. We use different quantiles from

the distributions of Y1 and Y2 to set the values of the limits ω1 and ω2.

Figure 2.4 displays the results of decreasing the limit as well as the level of censoring on the form of depen-
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Table 2.4 – Percentage of rejection of the null hypothesis for different copulas n = 200

Scenario True copula τ
Copula underH0

Clayton Frank Gumbel Joe

No censoring

Frank

0.2 0.351 0.082 0.030 0.074

0.4 0.728 0.058 0.086 0.679

0.6 0.859 0.022 0.196 0.956

Joe

0.2 0.814 0.206 0.248 0.022

0.4 0.922 0.776 0.724 0.018

0.6 0.944 0.970 0.942 0.003

single-censoring

Frank

0.2 0.142 0.032 0.229 0.142

0.4 0.712 0.084 0.800 1.000

0.6 0.760 0.000 0.968 0.990

Joe

0.2 0.720 0.030 0.052 0.016

0.4 0.970 0.232 0.081 0.007

0.6 0.980 0.400 0.131 0.004

double-censoring

Clayton

0.2 0.097 0.031 0.512 0.239

0.4 0.021 0.203 0.835 0.945

0.6 0.016 0.645 0.968 0.958

Frank

0.2 0.391 0.022 0.057 0.029

0.4 0.810 0.012 0.850 0.999

0.6 0.944 0.001 0.975 1.000

Gumbel

0.2 0.456 0.082 0.010 0.012

0.4 0.848 0.172 0.030 0.051

0.6 0.962 0.458 0.025 0.775

Joe

0.2 0.990 0.468 0.535 0.081

0.4 1.000 0.530 0.727 0.002

0.6 1.000 0.880 0.843 0.000

dence via the function λ̂n(ν) and the strength of dependence via Kendall’s tau.We observe that neither the

limit nor the level of censoring seem to have an impact on the form of dependence : in all cases, the shape
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of the generator function remains similar. As we increase the level of censoring and the limit, we notice that

the shape of dependence becomes even more pronounced. This is in line with the results from Tables 2.3

and 2.4 where we noted that, even though both tests were able to correctly choose the most appropriate

copula for a given sample and low dependence levels, their strength increased with Kendall’s tau.

Figure 2.4 – Plots of λ(ν) and Kendall’s tau for the joint distribution using different limits and different levels

of censoring. Low, medium and high levels of censoring correspond to, approximately, 5%, 30% and 75%.

2.5 Simulation from ψ̂n(.)

Although the graphical procedure described in Section 2.4 can lead to the selection of an adequate parame-

tric copula model for a given dataset, we might be interested in working directly from the non-parametric

estimator of the generator ψ̂n(ν) obtained in Section 2.3. This could be particularly interesting in cases

where the graphical comparison does not lead to a clear copula, for example if the curve of λ̂n(ν) lies

somewhere between the curves of two candidate models.

When this occurs, an attractive alternative would consist in foregoing any parametric model and avoid la-

belling the copula. Besides the obvious advantage of removing any parametric constraints linked to the

already-defined models, working directly from ψ̂n(ν) implies that we do not have to select a pool of candi-

datemodels nor perform any goodness-of-fit tests ormodel validations. Instead, wewould directly simulate

from the generator to retrieve the starting correlated variables. This is possiblewhen considering Bernstein’s
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theorem :

Theorem 2.2 (Bernstein) A function ψ(.) is strictly monotonic and ψ(0) = 1 if and only if it can be written

as

ψ(ν) = LΘ(ν), (2.8)

where L(.) is the Laplace-Stieltjes transform of the strictly positive random variable Θ.

As highlighted by (Hofert, 2008), if we are able to sample from the inverse Laplace-Stieltjes transform of

the generator, then we can use existing algorithms such as the one proposed in (Marshall et Olkin, 1988) to

simulate d-variate vectors of observations (U1, ..., Ud) from the Archimedean copula from which the data

originates.

Algorithm 1:Marshall, Olkin
1: Generate a random observation θ from the distribution with Laplace transform ψ.

2: For i = 1, ..., d, generate i.i.d.Xi ∼ U(0, 1) .

3: Return (U1, ..., Ud) where Ui = ψ(− log(Xi)/θ), for i = 1, ..., d.

(Ridout, 2009) proposes a method for the first step of Algorithm 1, namely the RLAPTRANS Algorithm. This

algorithm is a standard modification of the classic Newton-Raphson method to ensure convergence when

generating random numbers with an inverse Laplace transform. We slightly modify it in order to be able to

use it with our non-parametric estimator function ψ̂n(ν). The main steps are summarized below but more

details can be consulted in (Ridout, 2009).

Algorithm 2: RLAPTRANS
1: Generate n independent U(0, 1) observations and sort them : u(1) < ... < u(n).

2: Find a value θmax to serve as upper bound, i.e. ψ−1(θmax) ≥ u(n).

3: Set the lower bound θL = θ(i−1) and upper bound θU = θmax. Repeat the modified Newton-Raphson

procedure for i = 1, ..., n to obtain the ordered sample θ(1), ..., θ(n).

4: Permute the ordered sample randomly to obtain the unordered sample θ1, ..., θn.

Thanks to this approach, we can relax any assumption related to a parametric model and are able to directly

use the data to perform new simulations and, in a next step, predictions. We also note that since any censo-
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ring schemes present in the original data is already accounted for in the non-parametric estimator ψ̂n(ν),

this method works well regardless of the censoring scenario at hand.

2.5.1 Simulation study

We now illustrate the use of the non-parametric generator function ψ̂n(ν) instead of a pre-defined para-

metric copula model by means of some simulation studies.

In a first example, we generate a dataset of n = 500 bivariate observations from a Clayton copula with

Kendall’s tau equal to 0.4, marginal exponential distributions of parameter equal to 1 for (T1, T2) and with

the censoring variables (X1, X2) also following exponential distributions with parameters set such that

around 20% of observations have at least one censored component. Figure 2.5 displays the original non-

parametric estimator λ̂n(ν) for the Clayton data in black compared to the results of direct simulations from

ψ̂n(ν) in blue. In total, we simulated 100 new sets of size n = 500, i.e. 50 000 new pairs of observations

(Y1, Y2). For each of these new sets, we used again the approach laid out in Section 2.3 to retrieve the

estimator λi,ψ̂n
(ν), for i = 1, ..., 1000. The dashed blue curve depicted in Figure 2.5 is the average of

these 1000 curves, i.e. λ̄ψ̂n(ν)
and the two dotted curves represent the 95% confidence interval of these

simulations.

Figure 2.5 – Comparison between λ̂n(ν) (black continuous curve) initially obtained for the original data and

the average λ̄ψ̂n
(ν) (dashed blue curve) obtained across 1000 simulations using Algorithms 2 and 1. The

shaded area represents the 95% confidence interval for the simulations.
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Weobserve that our non-parametric simulations provide results that are very close to the original data. This

is further confirmed by the plots displayed in Figure 2.6 that show the scatter plots of the original Clayton

data in black (top left) and of the average simulations in blue (top right), as well as a comparison between

the original and simulated densities for Y1 (bottom left) and Y2 (bottom right). On the density plots, the

black continuous curves represent the original densities and the black vertical curves the average observed

values for both variables. The dashed blue curve and vertical blue curves show, respectively, the simulated

densities and simulated average values.

From the curves in Figure 2.5 and the scatterplots in Figure 2.6, we see that the simulated sets have the same

shape and strength of dependence as the original data. Both scatterplots display the typical shape expected

for data issued from a Clayton copula, with a clear concentration of points on the bottom left corner of the

plot. The similar levels of concentration of points observed in both plots, as well as the similar shapes of the

curves in Figure 2.5 further show that the dependence between our simulated bivariate observations is also

of similar strength to that of the original couples. In addition, we observe in Figure 2.6 that the simulated

marginal densities for Y1 and Y2 in, respectively, the bottom left and bottom right plots, are similar to the

original densities shown in black. This further illustrates that directly simulating from the non-parametric

generator allows to generate very similar sets of observations, without the need to specify a parametric

model nor perform any model validation tests.

In Figure 2.7, we show similar simulation results when the data originates from a Frank, Gumbel and Joe

copulas for different values of Kendall’s tau, using heatmaps for the simulated scatterplots. In each case, we

observe that the sets simulated using the non-parametric generator display the same shapes and strength

of dependence as the original data. When τ = 0.25, the heat maps of the simulated data points are rather

diffuse and it is harder to recognise the copula fromwhich the data originates. As τ increases, however, the

shapes of the heat maps become clearer and look more and more like the typical shapes expected for the

different copula models. For the data issued from the Frank copula on the first row of plots, we observe

that the points gather more on the diagonal as the level of dependence increases. For the Gumbel copula,

we clearly see the higher densities in the bottom left and top right corners of the plots becoming more

apparent as τ increases. Finally, for the Joe copula, we see the density becoming more important on the

top right corner of the plot as Kendall’s tau becomes larger.

These simulations illustrate how using the RLAPTRANS algorithm in combination with an algorithm such
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Figure 2.6 – Scatterplots of the original data issued from a Clayton copula (top left) and of the re-simulated

sample (top right), and comparison between the original and simulated densities of Y1 (bottom left) and Y2

(bottom right). On the density plots, the black continuous curves show the original densities and the black

vertical line the observed average values, while the dashed blue curves and vertical blue lines represent,

respectively, the simulated densities and simulated average values.

as the one proposed by (Marshall et Olkin, 1988) allows to efficiently simulate correlated pairs of observa-

tions from an Archimedean family without the need to define a parametric copula model. Using the non-

parametric estimator ψ̂n(ν), we are easily able to simulate new pairs of observations with the same shape

and strength of dependence as the original sample. These new simulations can then be used in prediction

models, as we illustrate in the next Section.

2.6 Application to automobile insurance claims

In this section, we apply the approach described in Section 2.3 to claims reserving, using a recent Canadian

automobile insurance dataset.
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Figure 2.7 – Heat maps for the scatterplots of data simulated from the non-parametric estimator of the

generator function, when the original sample comes from either the Frank, Gumbel or Joe copulas for dif-

ferent values of Kendalls’s tau.

2.6.1 Data description

The data comprises over 600 000 claims that occurred between January 2015 and June 2021. For each of

these claims, we have information related to the policyholder, the vehicle driven or the claim itself. In ad-

dition, each policy in force in this dataset provides four different coverages to its holder, and each claim

can fall under one or more of these coverages : the Accident Benefits coverage (loss of revenue, funeral

expenses for the insured), the Bodily Injury coverage (loss revenue or medical expenses for a third party),

the Vehicle Damage coverage (damages incurred to the insured’s or a third party’s vehicle) and the Loss of

Use coverage (temporary replacement vehicle and alternative means of transportation). Table 2.5 provides

some insights into the dynamics of our portfolio by presenting the relative importance of each of these

four coverages in terms of the proportion of claims, total cost and total reserve that they represent. We ob-

serve that even though the Vehicle Damage and Loss of Use coverages are triggered by much more claims

than the Accident Benefits and Bodily Injury coverages, they barely represent together 15% of the total

reserve, taking January 1st, 2019 as valuation date. Although less than 6% of all claims trigger the Bodily
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Injury coverage, this coverage alones represent more than half of the total portfolio reserve.

Table 2.5 – Weight of each coverage in the portfolio. The percentages with respect to the total reserve are

calculated by taking the 1st of January 2019 as valuation date

Coverage % of claims % of total cost % of total reserve

Accident Benefits 9.42 12.82 30

Bodily Injury 5.70 13.13 55

Vehicle Damage 96.39 70.44 14

Loss of Use 51.89 3.61 < 1

Table 2.6 further illustrates the importance of the Accident Benefits and Bodily Injury coverages for the

insurer by presenting some descriptive statistics for the severity of payments of all four coverages. Bodily

Injury and Accident Benefits claims have the largest average payments and present large values in the higher

quantiles, indicating heavy-tailed distributions. In the rest of this section, we thereby choose to focus on

these two coverages only, which are clearly the most important cost-wise in the portfolio.

Table 2.6 – Descriptive statistics for the severity of payments of the four insurance coverages

Coverage Mean Std. dev.
Quantiles

Max.
0.5 0.75 0.95 0.99

Accident Benefits 12,386 53,561 3,215 6,909 47,757 127,896 2,435,334

Bodily Injury 23,271 76,027 4,000 15,150 98,449 322,612 2,039,570

Vehicle Damage 5,040 8,121 2,605 5,830 17,984 40,611 149,399

Loss of Use 545 620 419 714 1,000 2,336 52,777

2.6.2 Notation

Our goal is to model the dependence between them using their activation delays. These are defined as the

time elapsed between the reporting date of the claim and the date at which the insurer first triggers the

coverage in the claims management system. This is the date the insurer records that the claim falls under
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that specific coverage.We denote the vector of activation delays by T = (T1, T2). If the claim settles before

one of the coverages is triggered, then the delay for this coverage is censored. The censoring variable, that

we denote byX = (X1, X2), represents the claim settlement delay, i.e. the delay between the reporting

date and settlement date of the claim.

In this specific application, we choose not to consider claims that settle with no payment emitted from

the insurance company, nor claim re-openings. As such, we might need to be careful with the indepen-

dence assumption between T and the censoring times. However, empirical analyses not shown here have

demonstrated that the correlation between the activation delays and settlement delays for the Accident

Benefits and Bodily Injury coverages is close to zero. In more classical reserving applications, actuaries typi-

cally use datasets with claims that might reopen after being settled the first time, that could settled without

payment or even that could become settled for external reasons. The assumption that the activation delays

are independent from the settlement delays chosen as censoring times thereby holds in general reserving

frameworks.

In addition, policyholdersmay be unable to receive compensation for a specific coverage if a certain amount

of time has passed since reporting. This limit on the delays can depend on the nature of the claims, local or

governmental regulations, or even on company-level rules of the insurer. Both internal and external agents

can set it. This is our limit ωi, for i = 1, 2 introduced in Section 2.3.1. Suppose a coverage has not been

triggered yet when this limit passes. In that case, its activation delay becomes censored, even if the claim

remains open.

Figure 2.8 illustrates the typical development of a claim and the notation introduced above. In this example,

a claim occurred on June 1st and was reported the following day. On June 5th, the insurer records that the

claim has impacted coverage 1. Recording the delays in days, the activation delay for this coverage is then

T1 = 3. Assuming a limit of ω1 = ω2 = 30 days on the activation delays, coverage 2 becomes censored on

July 2nd, even if the claim is still open. It settles two days later, leading toX1 = X2 = 32. The observed de-

lays are then givenby (Y1, Y2) =
(
min(T1, X1, ω1),min(T2, X2, ω2)

)
=
(
min(3, 32, 30),min(∞, 32, 30)

)
=

(3, 30).

Considering the observed activation delays shown (in periods of six months) in Table 2.7 for the Accident

Benefits and Bodily Injury coverages in the portfolio at hand, we set the limit at ω1 = ω2 = 730 days,

79



Figure 2.8 – Typical claim development and illustration of the notation used.

equivalent to two calendar years. Almost 94% of all Accident Benefits claims trigger that coverage within

six months of reporting, andmost of the remaining claims will be labelled as Accident Benefits no later than

a year after the reporting date. The activation delays are longer for Bodily Injury claims, with 1.69% of them

taking two years or more after reporting to be labelled as such. In our portfolio, a claim always triggers at

least one coverage. As such, 22.4% of observed claims trigger both the Accident Benefits and Bodily Injury

coverages, 55.4% of the claims only activate the Accident Benefits coverage and the remaining 22.2% of

claims are solely Bodily Injury claims. In other words, the levels of censoring observed for both coverages

are of 22.2% and 55.4% for, respectively, Accident Benefits and Bodily Injury.

Table 2.7 – Percentage of claims with different activation delays, shown in periods of six months.

Activation delays

Coverage No delay 1 period 2 periods 3 periods ≥ 4 periods

Accident Benefits 93.84 5.73 0.29 0.08 0.06

Bodily Injury 85.86 9.86 1.46 1.13 1.69
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2.6.3 Analysis

After using the approach described in Section 2.3 to find the non-parametric estimator of K̂n(ν) and ψ̂n(ν),

we first find the parametric copula best fitted to our portfolio using the graphical procedure from Section

2.4. We present the plots of the non-parametric estimators K̂n(ν) and λ̂n(ν) in Figure 2.9, along with

the corresponding fitted curves for four candidate Archimedean models. In both plots, the non-parametric

estimator is closest to the curves of the Joe copula. With an estimated τ̂ = 0.2705, the Joe copula with

α̂J = 1.6652 best fits our data.

The omnibus procedure first confirms this result. We estimate the dependence parameters for the com-

peting models using the likelihood in Equation (B.1). The results shown in the third and fourth columns of

Table 2.8 indicate that the Joe copula ismost appropriate since it presents the smallest difference between α̂

and α̂∗. Similarly, the results of 1000 bootstrapped simulations for the L2-norm validation approach shown

in the fifth column of Table 2.8 show that D(α̂) is the smallest for the Joe copula. We finally apply (Wang,

2010)’s goodness-of-fit test and find again in the last column of Table 2.8 that the Joe model presents the

smallest percentage of rejection when we perform 1000 simulations for each competing model.

Figure 2.9 – K(ν) and λ(ν) for the different copulas and for the Canadian automobile insurance dataset

with a limit at 730 days.
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Table 2.8 – Results validation, based on 1000 bootstrapped simulations for the L2-norm and 1000 simula-

tions for (Wang, 2010)’s test.

Copula τ̂
Omnibus procedure L2-norm (Wang, 2010)

α̂∗ α̂ D(α̂) % rejectionH0

Clayton

0.2705

0.2432 0.7417 0.00399 0.9994

Frank 1.1166 2.5612 0.00180 0.9265

Gumbel 1.0554 1.3708 0.00084 0.8742

Joe 1.3821 1.6652 0.00033 0.0476

Even though the results from Table 2.8 indicate that the Joe copula is an appropriate fit for the data, we

observe on the plot of theλ(.) functions in Figure 2.9 that the non-parametric λ̂n(ν), although being indeed

closest to the curve λα̂J
(ν) for the Joe model, is still a little distance away from it. In this case, it might then

be more fitting to directly work with the non-parametric generator ψ̂n(ν), using the algorithms described

in Section 2.5. In what follows, we compare simulation results obtained with the Joe copula selected with

the graphical procedure and by working directly from the generator function for the data at hand.

In Figure 2.10, we present a comparison between λ̂n(ν) (black continuous curve), the non-parametric es-

timator of λ(.) obtained for our insurance portfolio using the methodology laid out in Section 2.3, λα̂J
(ν)

(dark blue dotted curve), the corresponding curve for the selected parametric Joe model, and λψ̂n
(ν) (light

blue dashed curve), the curve obtained when re-simulating the data using the non-parametric generator

ψ̂n(ν) and Algorithms 1 and 2. The dashed blue curve displayed on the plot is the average of performing

1000 simulations and the shaded area shows the distance between the smallest and highest curves among

these simulations. We observe that the curve for the data simulated from the non-parametric generator

is much closer to the curve for the original data than the one from the parametric Joe copula model. This

indicates that the new simulated observations for the Accident Benefits and Bodily Injury activation delays

have a dependence structure and a strength of dependence that are closest to the ones observed in the

original data than the observations simulated using the parametric copula model.

In Figures 2.11 and 2.12, we compare the results obtained from simulations using the parametric and non-
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Figure 2.10 – Comparison between the non-parametric λ̂n(ν) estimated for the original data (blue conti-

nuous curve), the parametric λα̂J
(ν) (dark blue dotted curve) for the selected Joe copulamodel and λψ̂n

(ν)

(light blue dashed curve) for the data simulated 1000 times using the generator ψ̂n(ν).

parametric models. Figure 2.11 shows the heat maps for the scatterplots of the Accident Benefits and Bo-

dily Injury activation delays, simulated from the parametric Joe copula model (left) and using the non-

parametric estimator of the generator function (right). We observe that, although both heat maps display

a high concentration of points in the top right corner of the plots, as is typically observed with Joe copulas,

this concentration seems higher for the non-parametric model. This would indicate a closer fit with the ty-

pical Joe copula scatterplot than for the data simulated from the parametric model. This is aligned with the

results observed in Figures 2.9 and 2.10. In Figure 2.9, the curve of the Joe copula model is quite close to

the curve for the Gumbel model. This could explain that we also observe a small concentration of points at

the bottom left corner of the scatterplot for the parametric model in Figure 2.11 : although we are indeed

simulating from a Joe copula, the plots from Figure 2.9 indicate that this model is not too far from a Gum-

bel copula. In Figure 2.10, the curve for the non-parametrically simulated data is closer to the curve of the

original data and more pulled towards the bottom left corner of the plot than the curve for the Joe copula.

As such, the dependence structure usually observed in a Joe model seems more pronounced in the original

data and in the non-parametric simulations than it is in the parametric simulations.

In Figure 2.12, we compare the original density functions of the Accident Benefits and Bodily Injury activation

delays to the densities simulated using the parametric and non-parametric models. For both coverages,

we observe that the densities for the non-parametric simulations (light blue dashed curves) are closest to
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Figure 2.11 – Heatmaps of the scatterplots for some simulations of the Accident Benefits and Bodily Injury

activation delays, using the parametric Joe copula model (left) and the non-parametric generator function

(right).

the true densities (black continuous curves) than the densities for the parametric model (dark blue dotted

curves). This is particularly true for the Bodily Injury coverage, where we see some very similar shapes

between the black and light blue curves. The vertical lines represent the average observed activation delays

(black), average simulated delays with the non-parametric model (light blue) and with the Joe copula (dark

blue). These values are also given in Table 2.9. The Joe copulamodel appears to underestimate the activation

delays for both coverages, particularly for Bodily Injury claims with a difference of over 60 days between an

average simulated delay of 167.17 days compared to an observed average of 233.50 days. The difference if of

almost 40 days for the Accident Benefits coverage, with an average simulated delay of 67.67 days compared

to an observed delay of 107.12 days. The non-parametric model simulations provide better accuracy, with

a close average simulated delay of 100.29 days for the Accident Benefits coverage and a slightly higher

estimated delay of 245.12 days for Bodily Injury claims.

Table 2.9 – Average activation delays (observed and simulated).

Coverage Observed ˆψ−1(ν) Joe copula

Accident Benefits 107.12 100.29 67.67

Bodily Injury 233.50 245.12 167.17

84



Figure 2.12 – Comparison between the original (black continuous curve) and simulated marginal densities

for the Accident Benefits (left) and Bodily Injury (right) coverages. The light blue dashed curves represent

the simulated density using direct estimation from the generator function,while the dark blue dotted curves

show the simulated density using the Joe copula. The vertical lines represent the average of the observed

and simulated delays.

2.6.4 A simple claims reserving example

To illustrate the usefulness of our model and the way it can be used as part of a larger framework, we

provide in this section a simple reserves simulation scheme.

Assuming that a claim costs a fixed amount of 1$, we use the classic exponential growth model to evaluate

the portfolio reserve for different levels of inflation, taking January 1st, 2019 as valuation date. Let r denote

the annual inflation rate. The annualised cost for claim i related to insurance coverage j, denoted by Zi,j ,

is given by

Zi,j =
(
1 +

r

360

)Yi,j
,

where Yi,j is the activation delay of coverage j for claim i.

Table 2.10 presents the results of 5 000 simulations for the Accident Benefits and Bodily Injury reserves,

estimated using the parametric Joe copula models and the non-parametric model. We let the inflation r

vary from 2% to 8% by increments of 2%. In each scenario, we observe that the simulated reserves with

the non-parametric model are closer to the true amounts than those obtained with the parametric copula.

This was to be expected, considering the results observed in Figures 2.10, 2.11 and 2.12. For the Accident

Benefits coverages, the simulated reserves with the non-parametric model are slightly smaller than the
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true reserves but higher than the predictions obtained with the Joe copula. Note, however, than in a more

realistic reserving setting where we would fit models for the claim severities, the small underestimation

that we observe here would probably disappear or become insignificant. For the Bodily Injury coverage,

non-parametric predictions are slightly larger than the true amounts while the predictions made from the

Joe model underestimate the true reserves. These results are in line with what we observe in Table 2.9,

where the predictions for the Accident Benefits delays are a bit smaller than the observed delay with the

non-parametric model and even smaller with the parametric model. For the Bodily Injury coverage, the

predictions for the delays are a bit higher for the non-parametric model and much lower for the Joe copula

model.

Although we use here a very simplified model for illustration purposes, the results already hint that using

themore accurate delay predictions from the non-parametric models will certainly lead to greater accuracy

in the reserves predictions as well.

Table 2.10 – Comparison between the true reserves and predicted reserves from the non-parametric and

parametric models under different inflation scenarios.

Coverage Model Value
Inflation rate

0.02 0.04 0.06 0.08

Accident Benefits

Observed 7593.67 7644.94 7697.88 7752.53

Non-parametric
Average 7585.83 7628.75 7672.76 7717.97

VaR0.95 7587.33 7631.95 7677.47 7724.44

Parametric
Average 7578.17 7613.32 7649.56 7687.01

VaR0.95 7579.70 7616.51 7654.29 7693.47

Bodily Injury

Observed 7640.68 7740.23 7842.75 7948.33

Non-parametric
Average 7648.70 7756.59 7867.75 7982.11

VaR0.95 7650.93 7761.01 7874.65 7991.37

Parametric
Average 7618.66 7695.55 7774.71 7856.43

VaR0.95 7620.71 7699.67 7780.94 7865.09
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2.7 Conclusion

In this paper, we present a non-parametric estimator for the generator function of the Archimedean family

of copulas, applicable to flexible censoring scenarios. Following the initial idea of (Genest et Rivest, 1993)

and combining it with tools from survival analysis in order to account for the presence of incomplete data,

we derive the estimator ψ̂n(ν).

We thenpresent two approaches to use it.Webeginwith a graphical procedure that compares the estimator

for a given dataset to different parametric copulamodels, and select the best fitted one among them. Thanks

to our extension of the non-parametric estimator to various censoring schemes, we show that this simple

graphical selection method works well with both complete and incomplete data by illustrating three results

validation approaches.

Then, rather than seeking to use a well-defined parametric copula model, we suggest to directly work from

the non-parametric estimator of the generator function to perform simulations and further analysis on

the data. This approach is interesting, for example, when the graphical comparison does not lead to a clear

resemblance between the non-parametric curve and one of the candidate copulamodels. It allows to forego

any parametric assumptions and work instead directly from the non-parametric estimator without labelling

it to any Archimedean family. Viewing the generator as the Laplace-Stieltjes transform of a strictly positive

random variable, we propose to use the RLAPTRANS algorithm of (Ridout, 2009) in combination with an

Archimedean copula sampling algorithm like the one suggested by (Marshall et Olkin, 1988). With just a

smallmodification of the RLAPTRANS algorithm to use the non-parametric function rather than a parametric

one, we are able to generate random observations using the inverse Laplace-Stieltjes transform. We then

use these random observations to generate couples of observations with the same shape and strength of

dependence as those in the original data. Considering that the non-parametric estimator we derive for

the generator function takes into account the flexible censoring scenarios that can be found in the data,

this method can also be used in the presence of incomplete data. We demonstrate this by means of some

simulations studies.

We then apply our methods to an automobile claims insurance portfolio for which we seek to model the

dependence between two insurance coverages by means of their activation delays. These correspond to

the time elapsed between the reporting date of a claim and the date at which the claim triggers one of

the coverages under which the policyholder is insured. Our data presents two levels of censoring. First,
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if a coverage does not become active before the claim settles, then the activation delay for this specific

coverage is censored. Second, considering current insurance legislation in Canada and the specific nature

of our claims, we apply a limit of 730 days after which, even if a claim is still open, additional coverages can

not be triggered anymore. This limit implies that after a certain amount of time has passed, policyholders

are not able to seek new compensation anymore, even if their claim is still open. This acts as a second level

of censoring on the activation delays of the coverages. We find non-parametrically the generator function

in this specific censoring scenario and then compare the estimation results when using both the best-fitted

parametric copula model, selected via the graphical procedure, and direct simulations from the generator.

In this specific case, even though the Joe copula with parameter α̂ = 1.6652 is deemed well-fitted to the

data by the three model validation approaches, there exists a small gap on the plot of the λ(.) functions in

Figure 2.9 between this parametric model and the curve for the data. We show that in this case, directly

simulating from the generator function using Algorihtms 1 and 2, leads to more accurate predictions of

the activation delays than when using the Joe copula model. We conclude by a simple illustration of how

these results can then be used as part of a larger claims reserving framework. We demonstrate that using

the predictions from the non-parametric model can lead to reserves predictions that are closer to the true

reserves amounts.

This approach could be used as part of a larger model such as the one proposed in (Michaelides et al., 2023)

or (Côté et al., 2022) where the estimation of the activation delays can replace, respectively, the activation

patterns and the multinomial estimation of the claim type. A similar methodology could also be used in

different models such as that proposed in (Antonio et Plat, 2014) where, for example, the next event’s exact

time for reported but not settled claims could be extended to a multivariate framework by considering

simultaneously, as in Section 2.6, different business lines or insurance coverages.
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CHAPITRE 3

PARAMETRIC ESTIMATION OF CONDITIONAL ARCHIMEDEAN COPULA GENERATORS FOR CENSORED

DATA

Résumé

Dans cet article, nous proposons une approache novatrice afin d’estimer la fonction génératrice des copules

archimédiennes de façon conditionnelle, en y incorporant des variables explicatives. Notreméthode permet

d’évaluer l’impact de différents niveaux de ces variables à la fois sur la force et la forme de la dépendance,

en portant directement sur l’estimation de la fonction génératrice plutôt que la copule elle-même. Ce fai-

sant, nous contribuons à assouplir l’hypothèse simplificatrice inhérente à la modélisation traditionnelle des

copules. Nous démontrons l’efficacité de notre approche à travers des applications dans deux contextes dif-

férents : une étude sur la rétinopathie diabétique et un modèle de micro-réserves. Dans les deux cas, nous

montrons comment la prise en compte de l’influence des variables exogènes permet une modélisation plus

précise de la structure de dépendance sous-jacente dans les données, améliorant ainsi l’applicabilité des

modèles de copules, en particulier dans des contextes actuariels.

Abstract

In this paper, we propose a novel approach for estimating Archimedean copula generators in a conditional

setting, incorporating endogenous variables. Our method allows for the evaluation of the impact of the

different levels of covariates on both the strength and shape of dependence by directly estimating the ge-

nerator function rather than the copula itself. As such, we contribute to relaxing the simplifying assumption

inherent in traditional copula modeling. We demonstrate the effectiveness of our methodology through

applications in two diverse settings : a diabetic retinopathy study and a claims reserving analysis. In both

cases, we show how considering the influence of covariates enables a more accurate capture of the under-

lying dependence structure in the data, thus enhancing the applicability of copula models, particularly in

actuarial contexts.

89



3.1 Introduction

Copulas are a powerful tool when we want to address the dependence among correlated variables. Wi-

dely used since their introduction by (Sklar, 1959) in various fields from finance and insurance to medicine,

they allow to separate the dependence structure within a multivariate distribution. Multiple authors have

extensively studied their different families. The Archimedean copulas, introduced by (Schweizer et Sklar,

1983), are particularly useful thanks to their easy characterization via a generator function ψ(.). To model

the dependence for a vector of d variablesY = (Y1, ..., Yd) ∈ Rd, the d−variate Archimedean copulaC(.)

takes the form

C(F1(y1), ..., Fd(yd)) = ψ
{
ψ−1[F1(y1)] + ...+ ψ−1[Fd(yd)]

}
,

where the generator function ψ(.) : [0,∞] → [0, 1] must be such that ψ(0) = 1 and limν→∞ ψ(ν) = 0.

From a copula C(.), one can recover Kendall’s tau and as such, assess the degree of association between

the variables under consideration. Archimedean copulas are typically characterized by a small number of

dependence parameters, some of them even possessing only one for which a direct relationship exists with

Kendall’s tau. This is notably the case for the Clayton, Frank, Gumbel and Joe copulas.

Although widely popular in the literature for a few decades now, it is only in recent years, thanks to the

early work of (Patton, 2006), that some authors have began to consider the impact of risk factors on the

dependence between randomvariables. (Patton, 2006) extended Sklar’s theorem to incorporate a covariate

Z in the copulamodel. More specifically, this novel approach allows tomodel the dependence between the

random variables (Y1, ..., Yd), conditionally on a covariateZ. The conditional copulaC(.|Z = z) is given by

the joint distribution function of (F1|Z(Y1|z), ..., Fd|Z(Yd|z)), where Z = z. In the bivariate case, (Patton,

2006) showed that the joint conditional distribution is then uniquely defined for any z in the support of Z

as

HZ(y1, y2|z) = C
(
F1|Z(y1|z), F2|Z(y2|z)|Z = z

)
,

for all (y1, y2) ∈ R2.

Very often in conditional copula models, authors rely on the so called simplifying assumption. This assump-

tion states that a copula C(.|Z) is independent of Z :

C
(
F1|Z(y1|z), F2|Z(y2|z)|Z = z

)
= C

(
F1|Z(y1|z), F2|Z(y2|z)

)
∀z ∈ Z.
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The effects of the covariateZ are only captured through themarginal distributionsF1|Z(.) andF2|Z(.)while

the copula itself remains unchanged for all values of z. The simplifying assumption is particularly useful

in pair copula constructions that allow to specify multivariate distributions using only bivariate copulas as

building blocks. They allow to capture highly complex dependence structures. In addition, assuming that the

conditional copulas used in the hierarchical structure do not depend on the conditioning variables keeps

the resultingmultivariate distribution tractable for inference andmodel selection. Although this assumption

greatly simplifies conditional copula models, voices have been raised in the statistical literature against it,

see for example (Hobæk Haff et al., 2010), (Acar et al., 2012) or (Stöber et al., 2013). In particular, some

authors like (Levi et Craiu, 2018) argue for the need of effective tests against the simplifying assumption.

Some contributions to the literature have worked towards relaxing this assumption. Most of these focus

on incorporating endogenous variables in the strength of dependence, often to estimate Kendall’s tau or,

equivalently, the dependence parameters for Archimedean copulas, as in (Acar et al., 2011). However and

to the best of our knowledge, no model presented so far allows for both the strength and the structure of

dependence to implicitly vary with the values of a covariate.

The approach that we present in this paper aims at relaxing the simplifying assumption in the case of Ar-

chimedean copulas. More specifically, we propose a new parametric estimator for the generator function

ψ(.), suitable for censored data and inspired by the non-parametric estimator presented in (Genest et Ri-

vest, 1993). With this new parametric model, we include covariates in the estimation of the generator func-

tion, thereby considering their impact on both the strength and shape of dependence between random

variables of interest. This contrasts with most approaches presented in the literature that incorporate en-

dogenous variables directly in the copula C(.) rather than in the generator function. Besides enabling the

relaxation of the simplifying assumption, this approach is parametric, contrarily to a lot of the models in

the existing literature. Although non-parametric frameworks help avoiding assumptions that could be mis-

leading, incorporating covariates in these models often proves difficult, and interpreting their effects is

seldom straightforward. By using parametric models, we can more easily include multiple covariates and

more readily analyze their impact. Another interesting feature of our model is that it is suitable for various

censoring schemes for the dependent random variables. Incomplete data is often encountered in a variety

of fields and althoughmultiple authors have proposed copulamodels that can accommodate different types

of censoring, see for example (Gribkova et Lopez, 2015), very few so far allow to incorporate endogenous

variables. Finally, while most contributions to conditional copula models are found in the medical field, this
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paper contributes to the actuarial literature. To the best of our knowledge, very few authors have used

such frameworks in actuarial modeling. Considering the important quantity of information available to in-

surers, incorporating risk factors related to the claims or the policyholders in actuarial models helps refine

the predictions made by actuaries. In this paper, we present an application of a conditional copula model

to micro-level loss reserving.

This paper is structured as follows. In Section 3.2, we review the existing conditional copula models as

well as some tests for the simplifying assumption. Section 3.3 presents the parametric estimator for the

generator function of Archimedean copulas. In Section 3.4, we apply our model to the Diabetic Retinopathy

dataset used, among others, by (Geerdens et al., 2018). We present an application to granular reserving in

Section 3.5. Using a Canadian automobile insurance dataset in which each policy in force provides different

coverages, we investigate the dependence between these coverages and the impact that some covariates

may have on this dependence. Section 3.6 concludes our work.

3.2 Literature review

In this section,we present an overviewof the literature on conditional copulas.Wediscuss the contributions

made since the pioneering work of (Patton, 2006), starting with the parametric approaches before moving

on to the non-parametric and semi-parametric models. We then discuss some of the works related to the

simplifying assumption.

As mentioned in Section 3.1, (Patton, 2006) was the first to set the basis of conditional copula modeling by

extending Sklar’s theorem. He uses conditional copulas to capture the dependence between the Deutsche

mark-dollar and Yen-dollar exchange rates and the effect of time on this dependence, particularly before

and after the introduction of the Euro. Several applications of these conditional copulas emerged in the

financial literature simultaneously, each concentrating on integrating time-varying aspects into the depen-

dence structure of ARMA models.

Several authors followed suit, marking the start of the literature on conditional copulas. Most contributions

to date fall in the non-parametric domain. Among the first, (Acar et al., 2011) use likelihood estimation for

covariate-adjusted copulas in a local polynomial framework. Assuming the conditional marginal distribu-
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tions F1|Z and F2|Z known, the authors focus on the model

(U1i, U2i)|Zi ∼ C(u1i, u2i|θ(zi)),

with θ(zi) = g−1
{
η(zi)

}
, for i = 1, .., n, the dependence parameter. Here, g−1 is a known inverse link

function that keeps the dependence parameter in its appropriate range. η is the unknown calibration func-

tion that the authors estimate using local maximum likelihood and the framework of local polynomials.

In a similar vein, (Valle et al., 2017) also opt for a non-parametric approach, using a flexible Bayesian fra-

mework for the estimation of conditional copula densities. Their method allows to overcome the issue of

selecting among various types of copulas. (Bouezmarni et al., 2019) use an inverse-probability-of-censoring

weighting approach in a bivariate case to derive a non-parametric estimator of the conditional marginal

distribution with one covariate when only one of the correlated variables is subject to random censoring.

Focusing solely on modeling the strength of dependence, (Derumigny et Fermanian, 2019) directly esti-

mate the conditional Kendall’s tau in the presence of a vector of covariates by using different kernel-based

methods. The authors then prove several theoretical properties of these estimators. In (Derumigny et Fer-

manian, 2022), the same authors prove the weak convergence of conditional empirical copulas processes

under various conditioning events with non-zero probabilities, extending the work of (Segers, 2012).

In the actuarial literature, only few authors until now have delved into the early work of (Patton, 2006) and

explored conditional copulas within actuarial models. Among rare examples, (Yang et al., 2020) propose a

non-parametric method to estimate copula regression models with discrete outcomes, introducing a per-

turbed version of the probability integral transform. They apply their methodology to estimate insurance

claim frequencies across different business lines. Also in the context of multiple business lines in insurance,

but this time in a claims reserving setting, (Yang, 2022) develops a copula estimator for mixed data. In his

paper, the author accounts for the mixed nature of claims severities with a probability mass at zero and a

positive continuous part.

Although the literature on conditional copula accounts for a lot of non-parametric models, some authors

have also built on the work of (Patton, 2006) to propose parametric approaches, mostly using Bayesian

regression copulas. This is the case, for example, in (Pitt et al., 2006), with different types of outcomes and

distributional assumptions for the marginals. (Fermanian et Wegkamp, 2012) propose time-dependent co-

pulas where each dependent random variable depends on its value at the previous lag. Another interesting

example, (Hans et al., 2022) use boosting to estimate the coefficients of Generalized Additive Models for
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the Location, Scale and Shape (GAMLSS) for the parameters of the marginal distributions and dependence

parameters of Gaussian, Clayton and Gumbel copulas. The authors apply their methodology to birth co-

hort data to predict the correlated birth length and birth weight of newborns, using 36 covariates. Recently,

(Wei et al., 2023) propose to model time to graft failure and time to death since kidney transplantation

with conditional survival copulas using parametric distributions for the marginals. They then evaluate the

effects of different covariates by means of hazard ratios estimated from the copula models. One of the few

examples handling censored data, (Geerdens et al., 2018) use a local likelihood approach for the copula

parameter with both parametrically and non-parametrically estimated marginal survival functions. The au-

thors also propose a generalized likelihood ratio test to evaluate the constancy of the conditional copula

parameter.

Most applications of these Bayesian regression copulas are, however, found in medicine, and only a few

examples have found their way to the actuarial literature. Notably, (Shi et Lee, 2022) employ a copula re-

gression framework with vine copulas to jointly estimate a policyholder’ deductible, claim frequency and

claim amounts.

Other propose models in-between the non-parametric and parametric frameworks. (Klein et Smith, 2021)

use a copula decomposition of the joint distribution of a vector of values from a single response variable.

The authors assume that the dependence structure is an unknown smooth (parametric) function of the

covariates and use non-parametric estimators for the marginal distributions. They construct the copula

by inverting a pseudo regression. (Liu et al., 2021) propose a semi-parametric conditional mixture copula

model, where the copula is a weighted average of different conditional copulas. They model not only the

copula parameters but also the weights of each individual copula in the mixture based on a covariate and

using a two-step semi-parametric estimation procedure. This allows to model highly flexible dependence

structures. Very recently in the actuarial literature, (Wang et al., 2023) apply conditional copulas to model

the dependence between a pair of discrete and continuous outcomes, namely the number of claims and

average claim amount observed for policyholders. They use the distribution regression approach to provide

a semi-parametric estimation framework for the joint distribution of these outcomes. More precisely, they

use regressions to estimate the marginal distribution of the number of claims using covariates. Knowing

this, they then estimate the marginal distribution for the claim amount, conditional on the covariates and

on the number of claims. Combining these two regressions, they are able to retrieve the joint conditional

distribution.
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Most contributions mentioned in this section so far rely on the simplifying assumption, i.e. endogenous va-

riables are included in themodel solely through themarginal distributions and they assume that the copula

does not vary with the covariates. As mentioned in Section 3.1, some authors have however challenged this

assumption and proposed formal tests to assess its validity in recent years. A nice overview can be found

in (Derumigny et Fermanian, 2017). Among others, (Gijbels et al., 2017) develop a test based on a Rao-type

score statistic. Their test allows both for assessing the impact of a vector of risk factors on the dependence

parameter but also on the specification of the copula model. Working with three-dimensional vine copulas,

(Kraus et al., 2017) investigate the differences between simplified and non-simplified models. (Spanhel et

Kurz, 2019) question the simplifying assumption for pair copula constructions and explore cases where it

does not hold, leading to a partial vine copula approximation. In (Spanhel et Kurz, 2022), the same authors

present a test for the simplifying assumption, applicable to high-dimensional vine copulas by discretizing

the support of the conditioning covariate and using a penalty in the proposed test statistic.

3.3 Parametric estimator for Archimedean copulas generators

In this section, we present a parametric model to estimate the generator function of Archimedean copulas

in the presence of endogenous variables. We show how directly working with the generator rather than the

copula itself relaxes the simplifying assumption by allowing both the dependence parameters and shape of

dependence to vary with different levels of the covariates.

We consider the vector of times-to-events T = (T1, T2). Note that we present here the bivariate case for

the sake of simplicity. LetX = (X1, X2) be the vector of censoring times such that we only observe

Y = (Y1, Y2) =
(
min{T1, X1},min{T2, X2}

)
and the censoring indicators

δj = 1[Tj≤Xj ],

for j = 1, 2. LetZ ∈ Rn×P be a vector of risk factors, whereZi = (Zi,1, Zi,2, ..., Zi,P ) is the vector of risk

factors for the ith observation.

Our goal is to capture the dependence between Y1 and Y2 with an Archimedean copula, while including

the effect of the covariatesZ. To do this, we consider the following non-parametric estimator of the Archi-
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medean generator function ψ−1(.) first introduced by (Genest et Rivest, 1993) :

ψ−1(ν) = exp

{∫ ν

ν0

1

t−K(t)
dt

}
, (3.1)

with 0 < ν0 < 1 an arbitrarily chosen constant and where K(ν) is the univariate Kendall distribution,

defined as

K(ν) = ν − ψ−1(ν)

ψ−1(1)(ν)
, 0 < ν ≤ 1.

In the presence of censored data, (Wang et Wells, 2000) propose the following non-parametric estimator

for the Kendall distribution

K̂n(ν) =

∫ ∞

0

∫ ∞

0
1[F̂ (y)≤ν]dF̂ (y), (3.2)

where F̂ (y) is an appropriate non-parametric estimator for the joint distribution of Y . A non-parametric

estimator for the Archimedean generator function ψ̂−1
n (.) can then be recovered by substituting (3.2) in

(3.1).

When both T1 and T2 are subject to random censoring, (Akritas et Van Keilegom, 2003) propose the follo-

wing estimator for the joint distribution

F̂ (y) = w(y)

∫ y2

0
F̂1|2(y1|ξ2)dF̃2(ξ2) + (1− w(y))

∫ y1

0
F̂2|1(y2|ξ1)dF̃1(ξ1), (3.3)

where F̃1 and F̃2 are the marginal estimators of Kaplan and Meier (1958) :

F̃j(yi) = 1−
∏

Yi,j≤yi,∆ij=1

(
1− 1

n− i+ 1

)
, j = 1, 2,

and the weights w(y)minimize the mean-squared error of F̂ (y). The functions F̂1|2(y1|y2) and, similarly,

F̂2|1(y2|y1), are the estimators of the conditional distributions of, respectively, Y1 and Y2. These are obtai-

ned using the following extension of (Beran, 1981)’s estimator :

F̂1|2(y1|y2) = 1−
∏

Yi,1≤y1,∆i,1=1

(
1− Wni2(y2;hn)∑n

j=1Wnj2(y2;hn)1Yj,1≥Yi,1

)
. (3.4)

In this estimator, the values of y2 must be uncensored and

Wni2(y2;hn) =


k

(
y2−Yi,2

hn

)
∑

∆j,1=1 k

(
y2−Yj,2

hn

) , if ∆i2 = 1

0, if ∆i2 = 0,
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where k(.) is a known kernel function and {hn} is the bandwidth : a sequence of positive constants such

that hn → 0 as n→ ∞. A similar estimator is used for the conditional distribution of Y2.

Although using Beran’s estimator allows to incorporate a covariate in the model, the method suffers from a

lack of interpretability of the effect of this covariate on the response. In addition, including more than one

covariate can become tedious. We propose instead a parametric model for the conditional distribution of

Y1 (resp. Y2) given Y2 (resp. Y1) and the vector of continuous or discrete covariatesZ. More specifically, we

use the framework of generalized additive models for location, scale and shape (GAMLSS) to build censored

regressions for both Y1 and Y2. The great flexibility of GAMLSS allows us to choose the best fitting distribu-

tion among a very large selection and to estimate the different parameters of the chosen distribution using

linear, non-linear or smooth functions of the covariates. As such, we are able to build and compare various

censored parametricmodels and better assess the impact of each covariate on the conditional distributions.

We thereby seek to model (Yi,j |Zi = zi, Yi,k = ti,k), the observed time-to-event for observation i, with

i = 1, ..., n and j = 1, 2, knowing the vector of risk factors Zi and the second time-to-event ti,k, k ̸= j.

Given a candidate distribution Fj(.|θj) with a vector ofD parameters θj , we use GAMLSS as follows :

θi,j,d = g−1(z′
iβp,j + β∗j ti,k), (3.5)

where g(.) is an appropriate link function, βp,j is a 1 × P vector of coefficients associated to covariate Zp

and linked to parameter θj,d that is estimated, and β∗j is the specific coefficient attached to the (uncensored)

activation delay of coverage k, for k = 1, 2 and k ̸= j and observation i. Following (Geerdens et al., 2018),

one can easily retrieve the coefficient estimates via maximum likelihood using

β̂j,d = argmax

n∑
i=1

δi,j ln fj|Z,tk(yi,j |Zi, ti,k,βp,j) + (1− δi,j) lnFj|Z,tk(yi,j |Zi, ti,k,βp,j), (3.6)

where f(.) and F (.) are, respectively, the density and cumulative distribution functions of the chosen pa-

rametric model.

Oncewe select an appropriatemodel forYj , we estimate themodel coefficients for the different distribution

parameters using (3.6) and then obtain the parameters estimates θ̂j for each observation i using (3.5). We

can now easily obtain the estimators for the conditional distributions

F̂j|Z,tk(yj |Z, tk, θ̂j). (3.7)
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For a 1× P vector of covariates, the estimation of the joint distribution then becomes

F̂ (y) = w(y)

∫ z1

0
. . .

∫ zP

0

∫ y2

0
F̂1|Z,t2(y1|ζ, ξ2, θ̂1)dF̃2|Z(ξ2|ζ)dFZP

(ζP ) . . . dFZ1(ζ1)

+ (1− w(y))

∫ z1

0
. . .

∫ zP

0

∫ y1

0
F̂2|Z,t1(y2|ζ, ξ1, θ̂2)dF̃1|Z(ξ1|ζ)dFZP

(ζP ) . . . dFZ1(ζ1).

(3.8)

From (3.8), it is then possible to isolate the effects of one covariate, or of a subset of covariates, to assess

their impact on the joint distribution. Suppose that we want to analyze the impact of the subset ZQ =

(Z1, ..., ZQ) ⊂ Z, withQ < P . We then have

F̂ (y|ZQ) = w(y)

∫ zQ+1

0
. . .

∫ zP

0

∫ y2

0
F̂1|Z,t2(y1|ζ, ξ2, θ̂1)dF̃2|Z(ξ2|ζ)dF̆ZP

(ζP ) . . . dF̆ZQ+1
(ζQ+1)

+ (1− w(y))

∫ zQ+1

0
. . .

∫ zP

0

∫ y1

0
F̂2|Z,t1(y2|ζ, ξ1, θ̂2)dF̃1|Z(ξ1|ζ)dF̆ZP

(ζP ) . . . dF̆ZQ+1
(ζQ+1).

(3.9)

In (3.8) and (3.9), F̃j|Z(yj |Z) for j = 1, 2 are themarginal parametric estimators, fitted through a GAMLSS,

and F̆Zp(Zp) for p = 1, ..., P are the marginal estimators for each covariate.

With this new parametric estimator for the joint distribution F̂ (y), we propose the following estimator for

the univariate Kendall distribution :

K̂(ν) =

∫ ∞

0

∫ ∞

0
1[F̂ (y)≤ν]dF̂ (y) = ν − λ̂(ν),

where F̂ (y) is the estimator shown in (3.8). Similarly as before, we can isolate the effects of a subset of

covariatesZQ ⊂ ZP , with 1 ≤ Q ≤ P , using

K̂(ν|ZQ) =

∫ ∞

0

∫ ∞

0
1[F̂ (y)≤ν]dF̂ (y|Z

Q) = ν − λ̂(ν|ZQ). (3.10)

Thanks to the estimator shown in (3.10), we obtain a different Kendall distribution based on the values of

the endogenous variables of interest. Finally, we obtain a parametric estimator for the Archimedean copula

generator function :

ψ̂−1(ν) = exp

{∫ ν

ν0

1

t− K̂(t)
dt

}
, (3.11)

or, with the isolated effects of a subset of covariates,

ψ̂−1(ν|ZQ) = exp

{∫ ν

ν0

1

t− K̂(t|ZQ)
dt

}
. (3.12)
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Thanks to the estimator of the Kendall distribution in (3.10), we can compute Kendall’a tau either across all

covariates, as shown below

τ̂ = 4

∫ 1

0
λ̂(ν)dν = 3− 4

∫ 1

0
K̂(ν)dν,

or while taking into account the impact of the selected subset of risk factors, using the relation

(τ̂ |ZQ) = 4

∫ 1

0
λ̂(ν|ZQ)dν = 3− 4

∫ 1

0
K̂(ν|ZQ)dν. (3.13)

Even more interestingly, in addition to being able to quantify the impact of a subset of covariates on the

strength of dependence as in (3.13), using the estimator proposed in (3.12) allows the risk factors to impact

the generator function and thereby, the shape of dependence. As such,we can relax the simplifying assump-

tion when using ψ̂−1(ν|ZQ) since we do not work with the hypothesis that the structure of dependence is

invariant to the effects of the covariates.

3.4 Diabetic Retinopathy Study

To illustrate the methodology laid out in Section 3.3, we consider the Diabetic Retinopathy Study (RDS)

dataset used by (Geerdens et al., 2018) and (Huster et al., 1989). This dataset contains 197 entries, corres-

ponding to 197 diabetic patients, for which we observe the effect of a treatment by laser photocoagulation

in delaying the time to blindness. For each patient, one eye is randomly selected to remain untreated while

we observe the effect of the laser treatment in the other eye. The objective is to model the dependence

between the time to blindness of both eyes, as well as the impact of a covariate, namely the age at onset

of diabetes, on this dependence. The times to blindness, in months, can be censored if blindness did not

occur while the patient was observed in the study.

For each entry i in the dataset, for i = 1, ..., 197, we observe the following vector : (Yi,1, Yi,2, δi,1, δi,2, Zi).

Yi,1 (resp. Yi,2) is the time to blindness for the treated (resp. untreated) eye, δi,1 (resp. δi,2) is the censoring

indicator for the treated (resp. untreated) eye, equal to 0 if the observation is censored, i.e. if the study has

stopped before the onset of blindness in that eye. The time to blindness in the treated eye is censored for

73% of the 197 patients observed in the dataset, against only 49% for the untreated eye. The covariate Zi

represents the age at onset of diabetes (in years) for the individual, ranging from 1 to 58 years old.
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3.4.1 Dependence modeling without covariate

We first analyze the dependence structure present in this dataset without taking the covariate Z into ac-

count. Assuming that we can model the data with an Archimedean copula, we find an estimator of the

generator function ψ−1(.) and use it to estimate Kendall’s tau. We compare two approaches : first, we find

the estimator ψ̂−1
n (ν) non-parametrically, combining the method proposed in (Genest et Rivest, 1993) in

(3.1) and (Beran, 1981)’s estimators for the conditional marginal distributions, as in (Akritas et Van Keile-

gom, 2003) in (3.3). We use Epanechnikov kernels and select the optimal bandwidth by cross-validation for

Beran’s estimators. Second, we replace these non-parametric estimators by parametric models for themar-

ginal distributions of the times to blindness. As such, we estimate the joint distribution using (3.8), without

the terms related to the vector of covariatesZ. Following (Geerdens et al., 2018), we opt forWeibull margi-

nal distributions, with parameter vectors θj = (θj,1, θj,2) for j = 1, 2, where θj,1 and θj,2 are, respectively,

the scale and shape parameters for the time to blindness in eye j. The joint distribution is then given by

F̂ (y) = w(y)

∫ y2

0
F̂1|2(y1|ξ2)dF̃2(ξ2) + (1− w(y))

∫ y1

0
F̂2|1(y2|ξ1)dF̃1(ξ1),

where

F̂1|2(yi,1|ξi,2) = 1− exp
[
−
( yi,1
θ̂i,1,1

)θ̂i,1,2]
,

with

θ̂i,1,1 = exp(β̂0,1 + β̂∗1ξi,2),

the scale parameter for the Weibull distribution, where β̂0,1 is the intercept of the model for parameter θ̂1

and β̂∗1 is the coefficient linked to ξ2. For the shape parameter, we have

θ̂i,1,2 = exp(γ̂0,1 + γ̂∗1ξi,2),

where γ̂0,1 is the intercept of the model for parameter θ̂2 and γ̂∗1 is the coefficient linked to ξ2. F̃2(y2) is

the parametric marginal estimator of y2. We proceed similarly for F̂2|1(.).

Figure 3.1 shows the estimated Kendall distribution K̂(.) (left) and, equivalently, λ̂(.) (right), obtained using

both the non-parametric (black curves) and parametric (grey curves) approaches from, respectively, (3.1)

and (3.11).

We observe that the results of both methods are very close. The curves of the λ̂(.) functions on the right

plot display similar shapes, indicating that the dependence structure is the same with both estimations,
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which was to be expected. The resulting values for Kendall’s tau are τ̂NP = 0.1864 and τ̂P = 0.1859 for,

respectively, the non-parametric and the parametric models. The estimated strength of dependence is thus

also almost identical. Since we do not include any risk factor in the model at this stage, we expect both

approaches to give similar results.

Figure 3.1 – K̂(ν) and λ̂(ν) with the non-parametric (black lines) and parametric (gray dashed lines) ap-

proaches for the RDS data.

3.4.2 Dependence modeling with a covariate

We now enter the age at onset of diabetes as covariate in the parametric model. The joint distribution thus

becomes

F̂ (y) = w(y)

∫ z

0

∫ y2

0
F̂1|Z,t2(y1|ζ,ξ2)dF̃2|Z(ξ2|ζ)dFZ(ζ)

+ (1− w(y))

∫ z

0

∫ y1

0
F̂2|Z,t1(y2|ζ, ξ1, )dF̃1|Z(ξ1|ζ)dFZ(ζ),

with

F̂1|Z,t2(yi,1|ζi, ξi,2) = 1− exp
[
−
( yi,1
θ̂i,1,1

)θ̂i,1,2]
,

where

θ̂i,1,1 = exp(β̂0,1 + β̂∗1,1ξi,2 + β̂1ζi)

and

θ̂i,1,2 = exp(γ̂0,1 + γ̂∗1,1ξi,2 + γ̂1ζi).
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For F̂2|Z,t1 , we have

F̂2|Z,t1(yi,2|ζi, ξi,1) = 1− exp
[
−
( yi,2
θ̂i,2,1

)θ̂i,2,2]
,

where

θ̂i,2,1 = exp(β̂0,2 + β̂∗1,2ξi,1 + β̂2ζi)

and

θ̂i,2,2 = exp(γ̂0,2 + γ̂∗1,2ξi,1 + γ̂2ζi).

Figure 3.2 shows again the curves of the estimated Kendall distribution on the left and of λ̂(ν) on the right,

this time for the parametricmodelwith (black dotted line) andwithout (grey dashed lines) the covariate.We

observe a clear jump in the curve, corresponding to a jump in the value of Kendall’s tau, from τ̂ = 0.1859

in the model without the age at onset of diabetes to τ̂ = 0.3001 when including this variable in the joint

distribution of the times to blindness.

Figure 3.2 – K̂(ν) and λ̂(ν) with (black dotted lines) and without (gray dashed lines) covariate for the RDS

data, under the parametric model.

This risk factor thus has an important impact on the strength of dependencewhen considering all the indivi-

duals in the dataset. We now investigate the impact of different values of the covariate on the dependence

model. Using (3.9), we could obtain a separate estimator of the generator function for each different value

of the age at onset of diabetes, that is a different curve for the Kendall distribution for each age. For illus-

trative purposes, we analyze the impact for individuals who were younger and older than 20 years old at
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onset of diabetes. The choice of this splitting point is, at this stage, only motivated by the results derived in

(Geerdens et al., 2018), where the authors show that with the inclusion of the covariate in the model, the

average estimate of Kendall’s tau for the whole dataset is around 0.3. It is below (resp. above) this value

for individuals who were first diagnosed with diabetes before (resp. after) the age of 20. This splitting point

also separates the dataset into two subsets of roughly the same size. We will further discuss the choice of

the splitting point for the conditioning variable in Section 3.6.

Figure 3.3 compares the curves of the Kendall distribution and the lambda function for all individuals, i.e.

K̂(ν), (in black) and for those who were younger or older than twenty at onset of diabetes (in grey), i.e.

respectively, K̂(ν|Z ≤ 20) and K̂(ν|Z > 20). The black curve for all individuals is the same as the one

depicted in Figure 3.2. Interestingly, we observe that the shapes of the three curves on both plots are quite

different, indicating that conditionally on the value of the covariate, both the strength and the shape of

dependence vary.

We first show the differences on the strength of dependence via Kendall’s tau in Table 3.1. While the esti-

mated value for the population as a whole is around 30%, it it slightly smaller at 26.3% for individuals who

were first diagnosed with diabetes before turning twenty, and quite higher at almost 56% for individuals

who started suffering from diabetes after the age of twenty. These results are in line with those presented

in (Geerdens et al., 2018).

Figure 3.3 – Plots of K̂(ν) (black continuous curve), K̂(ν|Z ≤ 20) (grey dashed curve) and K̂(ν|Z > 20)

(grey dotted curve) on the right and λ̂(ν), λ̂(ν|Z ≤ 20) and λ̂(ν|Z > 20) on the left.
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Table 3.1 – Kendall’s tau for different values of the age covariate Z

Model τ̂

All 0.3001371

Z ≤ 20 0.2629644

Z > 20 0.5591597

Next, we observe the impact of these two different age groups on the shape of dependence. From Figure

3.3, the shape of the λ̂(.) curve for the dataset as a whole points towards the bottom left corner of the plot,

depicting the typical shape of a Gumbel or a Joe copula. The curve for the patients whose disease started

before the age of 20 points more towards the center or the bottom right corner of the plot, indicating that a

Frank or a Clayton copula might be more fitted for this age group. To determine which model best fits these

two populations, we perform simulations from the estimated generator functions and apply the L2−norm

model validation method used in, among others, (Lakhal-Chaieb, 2010). We use the RPLATRANS algorithm

described in (Ridout, 2009), together with theMarshall, Olkin algorithm from (Marshall et Olkin, 1988). The

RPLATRANS algorithm allows to sample from a distribution specified by its inverse Laplace-Stieltjes trans-

form. Knowing this, we can use the Marshall, Olkin algorithm to simulate bivariate vectors of observations

(U1, U2) from the Archimedean copula from which the data originates. More details on these algorithms

are provided in Appendix C.1. More specifically, we perform the simulation procedure presented below.

In Algorithm 3, the pseudo p-value pm can be interpreted as the percentage of simulated samples for which

candidate model m presents the smallest distance between its Kendall distribution and that of the data.

The copula with the largest pseudo p−value will be the most appropriate model.

Figure 3.4 shows the results of J = 1000 simulations for thewhole dataset (left) and for the individuals who

had diabetes before the age of twenty. The black curves correspond to the λ̂(ν) estimated parametrically

from the original data. The dashed grey curves represent the average of the simulations and the shaded

areas show the 95% confidence intervals.
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Algorithm 3: Copula simulation and selection procedure
1: For j in 1, ..., J where J is the total number of simulations performed, simulate a new bivariate

sample of size n from the parametric estimator ψ̂(ν), using the RLAPTRANS and Marshall, Olkin

algorithms : (Y (j)
1 ,Y

(j)
2 ) = {(Y (j)

1,1 , Y
(j)
1,2 ), ..., (Y

(j)
n,1 , Y

(j)
n,2 )}.

2: For each new simulated sample (j), compute again the Kendall distribution K̂(j)(ν) and estimate τ̂ (j).

3: For theM candidate copula models under consideration, use τ̂ (j) to estimate the dependence

parameter α̂m, form = 1, ...,M . For each candidate model, estimateK(j)
α̂m

(ν).

4: Calculate the L2−norm betweenK(j)
α̂m

(ν) and K̂(j)(ν) as

D(j)(α̂) =

∫ 1

ξ

(
K̂(j)(ν)−K

(j)
α̂m

(ν)
)2
dν.

5: For each candidate modelm, obtain the pseudo p−value as

pm =
1

J

J∑
j=1

1[min
l
D(j)(α̂l) > D(j)(α̂m)],

with l,m = 1, ...,M and l ̸= m.

Figure 3.4 – λ(.) for the samples simulated using the generator functions for the whole population (left)

and for the patients who were first diagnosed with diabetes before the age of twenty (right).

Table 3.4 shows which copula models among the Clayton, Frank, Gumbel and Joe were selected with the

validation procedure for each simulation. Note that the results are presented here in terms of (1-p-values).

The best fitted model is then the one with the smallest value displayed in the table. For the subset of

individuals whose diabetes started before the age of twenty, 460 out of 1000 simulations select the Clayton
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copula as the most appropriate model, 305 simulations prefer the Frank copula and 235 opt for the Gumbel

model. None of the simulations result in the Joe copula being selected as best fitted to this subset of the

data. For the data as a whole, only 138 out of the 1000 simulations select the Clayton copula as best fitted.

Most simulations, that is 464 out of the 1000, opt for the Frankmodel, 354 select the Gumbel copula and 41

choose the Joe model. The Frank copula thus appears to be best fitted for the whole data, followed by the

Gumbel copula while for the subset of patients who were diagnosed with diabetes before turning twenty,

the Clayton copula is the preferred model, followed by the Frank copula in second place. The age at onset

of diabetes thereby seems to have an impact not only on the strength of dependence as discussed earlier,

but also on the shape of dependence. When modeling the correlated times to blindness in both eyes, one

might want to use different copula models for different groups of patients.

Note, however, that the pseudo p-values in Table 3.4 do not lead to a clear decision, particularly for the

Clayton, Frank and Gumbel that present relatively similar values. More specifically, with the high levels of

right-censoring observed in the data, copulas such as the Clayton and Frank may more closely resemble

each other, leading to uncertainty in the choice of the most appropriate model. In their paper, although

(Geerdens et al., 2018) only use the covariate for modeling the dependence parameter, they implement

a generalized likelihood ratio test to determine whether the assumed copula model is adequate. The test

leads them to similar conclusions as observed here. However, since our approach leads to an estimator of

the copula generator, we do not need to specify a known copula family, contrarily to other approaches found

in the literature so far. Our method allows us to conclude that the conditioning variable impacts both the

level and shape of dependence between the times to blindness. Even if we can not define specific copula

families with a sufficient level of confidence for different levels of the covariate, we can directly work from

the estimated generator functions obtained in the different cases and as such, acknowledge that the copula

model varies with the conditioning variable.

Table 3.2 – Results from the copula selection procedure using the L2-norm.

Z Clayton Frank Gumbel Joe

≤ 20 0.540 0.695 0.765 1.000

All 0.862 0.536 0.646 0.959
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3.5 Automobile insurance dataset application

In this section, we apply the non-parametric estimator for Archimedean copula generators presented in

Section 3.3 to a loss reserving context, using a Canadian automobile insurance dataset.

The data includes over 600 000 claims that occurred between 2015 and 2021. Each of these claims relate

to a policy in force under which four insurance coverages are provided : the Accident Benefits, Bodily In-

jury, Vehicle Damage and Loss of Use coverages. Note that, to simplify the presentation, we will work in a

bivariate framework and only consider the Accident Benefits and Bodily Injury coverages that are the most

important cost-wise in the portfolio.

From its moment of declaration to the insurer, each new claim will impact at least one of these coverages.

We define the activation delay of a claim for a coverage as the time elapsed between the moment of decla-

ration of the claim and the first moment at which the insurer realizes that this claim triggers the coverage

and registers this information in his claims management system. For illustrative purposes, consider a claim

declared on June 1st, 2016. On the same day, based on the information available at the time, the insurer

labels it as an Accident Benefits claim. The activation delay for this claim under this coverage is then equal

to one day. On June 25th, the insurer receives new information leading to label the claim as a Bodily Injury

claim as well. The activation delay for this claim under the Bodily Injury coverage is thereby 25 days.

Considering that not all claims impact all coverages, the activation delays are subject to right-censoring. This

occurs when, for a given claim that has reached its settlement date, a coverage has not been triggered yet.

The censoring variable is thus the settlement delay, defined here as the time elapsed between the declara-

tion and settlement dates of a claim. In this portfolio, 21.63% of all claims impact both the Accident Benefits

and Bodily Injury coverages. These are the claims for which neither of the activation delays are censored.

For 23.46% of claims, only the Bodily Injury coverage is triggered. This corresponds to the percentage of

claims for which we observe a censored value for the Accident Benefits coverage. The remaining 54.91% of

claims only activate the Accident Benefits delay, i.e. these are the claims for which the activation delays of

the Bodily Injury coverage are censored.

In addition to the coverages, the dataset provides for each claim information related to the policyholder,

the vehicle driven or the claim itself. Our goal is to model the dependence between the coverages provided

within a single policy by means of their activation delays and the impact of some risk factors on this depen-
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dence, using the framework of Archimedean copulas. More specifically, we focus on the decade of birth of

the policyholders, which is provided as a covariate in the dataset. Figure 3.5 shows more information about

this risk factor. We choose to create a new categorical variable with three levels, grouping the different de-

cades of birth in three groups of approximately equal sizes. Let Zi be the value of this new covariate for

claim i, such that

Zi =


1, if the policyholder was born in or after 1990

2, if the policyholder was born between 1970 (incl.) and 1989

3, if the policyholder was born in or before 1969.

Figure 3.5 – Frequency of the different decades of birth of individuals in the dataset.

Wewill use this covariate as the conditioning variable in our copulamodel to investigate the possible effects

of the age of policyholders on the strength and structure of dependence between the activation delays. We

use the following notation :

— Ti = (Yi,1, Yi,2) is the vector of activation delays for our two coverages, for claim iwith i = 1, ..., n.

— Xi = (Xi,1, Xi,2) is the vector of censoring times for both coverages and for claim i. This vector

corresponds in this case to the settlement delay of the claim.

— Yi = (Yi,1, Yi,2) = (min(Ti,1, Xi,1),min(Ti,2, Xi,2)) is the vector of observed activation delays for

claim i, taking censoring into account.

— δi,j = 1(Ti,j≤Xi,j) for j = 1, 2 are the censoring indicators for claim i.

— Zi is the age of the policyholder upon occurrence of claim i, belonging to one of three groups pre-

viously defined.
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For illustration purposes, suppose that a policyholder born in the 1980s files a claim following a car acci-

dent. His claim only triggers the Accident Benefits coverage upon reporting, i.e. with a delay of one day,

and settles 90 days later, without activating further coverages. The data entry related to this claim i is

(Yi,1, Yi,2, δi,1, δi,2, Zi) = (1, 90, 1, 0, 2).

3.5.1 Dependence modeling without covariate

Like we did for the diabetic retinopathy study, we first model the dependence between the censored activa-

tion delays without conditioning on the covariate. We compare the results derived from a non-parametric

model using Beran’s estimators in the joint distribution to those derived from a parametric model where

we replace Beran’s estimators by censored parametric regressions. Similarly to what we did in Section 3.4,

we choose Weibull distributions to model the marginal distributions of both activation delays.

Figure 3.6 shows the estimatedKendall distributions and correspondingλ(.) functionswith both approaches.

Both give almost identical results in the shapes of dependence. The strenght of dependence, captured via

the estimated Kendall’s tau is also almost identical with both models. For the non-parametric model, with

obtain τ̂ = 0.2534 and for the parametric model, τ̂ = 0.2569.

Figure 3.6 – K(ν) with Beran’s estimator (black lines) and GAMLSS (blue dashed lines) for all data, with

censored delays set as the settlement delays.
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3.5.2 Dependence modeling with a covariate

We now focus on the parametric model only and use Z as the conditioning variable. We estimate four

univariate Kendall distributions : one for the dataset as a whole, K̂(ν), one for the subset of the data in

which policyholders were born after 1990, K̂(ν|Z = 1), one in which they were born between 1970 and

1989, K̂(ν|Z = 2), and one in which they were born before 1969, K̂(ν|Z = 3). We use again Weibull

censored regressions for the marginal distributions of the activation delays.

Figure 3.7 shows the plot of these four Kendall distribution curves on the left, and the corresponding curves

for the λ(.) function on the right. The black continuous curves depict, respectively, K̂(ν) and λ̂(ν), the

dark grey dashed curves stand for K̂(ν|Z = 2) and λ̂(ν|Z = 2), the dark grey dotted curves represent

K̂(ν|Z = 1) and λ̂(ν|Z = 1), and the light grey curves show K̂(ν|Z = 3) and λ̂(ν|Z = 3). The simplifying

assumption clearly does not hold here, as different values of the age of policyholders result in different

copulas.

Figure 3.7 –K(ν) and λ(ν) when conditioning on Z.

Table 3.3 displays the estimated values of Kendall’s tau for the data as a whole and for the different subsets.

While conditioning on the age group of the policyholders does not appear to have a strong impact for the

population as a whole, the results are quite different when we consider the different values of Z separa-

tely. While the dependence seems to decrease for the younger and older policyholders in the portfolio, it

increases from 25.81%when considering all individuals to 33.8% for the individuals born between 1970 and

1989.
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Table 3.3 – Kendall’s tau for different values of the covariate

Model τ̂

All 0.2581

Z = 1 0.1919

Z = 2 0.3379

Z = 3 0.1813

Next, we apply the same simulation procedure as the one described in Section 3.4 to investigate the best

copula model in each scenario. For the complete population and for each of the three sub-groups of po-

licyholders, we perform simulations from the estimators of the generator functions ψ̂(ν), ψ̂(ν|Z = 1),

ψ̂(ν|Z = 2) and ψ̂(ν|Z = 3) using the RLAPTRANS algorithm. For each simulated sample, we select the

most fitting model among the Clayton, Frank, Gumbel and Joe copulas by searching for the minimal L2-

norm. The graphical results of 1000 of these simulations are presented in Figure 3.8. In these plots, the

black continuous curves are identical to those from Figure 3.7, i.e. they represent the original λ̂(.) functions

estimated from the data, for the whole population (top left) and when conditioning on the three different

levels of the covariate Z. The grey dashed curves show the average of the simulations and the grey areas

represent the 95% confidence intervals. On average, using simulations from the generator functions in each

case produces results that are very similar to the original data.
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Figure 3.8 – Estimated generators (continuous curve) for the different levels of the covariates, and average

results of new simulations performed from these generators (dashed curve), as well as 95% confidence

intervals for these simulations (grey shaded areas).

The shapes of the curves in Figure 3.8 seem to resemble each other. This indicates that, although the dif-

ferent age groups of policyholders clearly have an impact on the strength of dependence, the shape seems

to remain stable. We see that it is not entirely true when looking at the results displayed in Table 3.4. For

each conditioning scenario, this table shows the 1-p-values obtained from performing the simulation pro-

cedure described in Section 3.4 1000 times. The copula model for which the displayed value is smallest is

the one that was selected as best fitting by most simulations. We also present here the average estimate of

Kendall’s tau over all simulations for each conditioning scenario.

For the population as a whole and for each of the three age groups, the Joe copula appears to be the best

fitting model. For all policyholders, 35 out of 1000 simulations reject and Joe copula as best fitting model

and opt instead for the Gumbel copula. For the policyholders for which Z = 2, i.e. born between 1970 and

1989, only three of the thousand simulations reject the Joe model and favor the Gumbel copula. For the
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whole population and for this sub-group, none of the simulations select the Frank or Clayton copulas. The

Joe model comes out as the largely favoured choice in these two cases.

It is however not as evident for the younger and older policyholders. Although most simulations in both

these cases still favor a Joe copula, there seems to be more variability in the choice. For the younger poli-

cyholders, that is those for whom Z = 1, 384 simulations out of a thousand reject the Joe copula, i.e. ten

times more than for the population as a whole and a hundred times more than for the policyholders born

between 1970 and 1989. Among these 384 simulations, 344 opt instead for a Gumbel copula, 27 for a Frank

copula and the remaining 13 for a Clayton model. For the older policyholders, 266 simulations reject the

Joe model. They opt for the Gumbel (233), Clayton (20) and Frank copulas (13). Although the Joe copula still

appears best suited for both sub-groups, almost 40% and 27% of simulations reject it for, respectively, the

younger and older policyholders. This clearly shows that different levels of the covariate have an impact on

the dependence structure of the data.

Table 3.4 – Results from the copula selection procedure using the L2-norm.

Z Clayton Frank Gumbel Joe τ̄

All 1.000 1.000 0.965 0.035 0.2512

Z = 1 0.987 0.973 0.656 0.384 0.1925

Z = 2 1.000 1.000 0.997 0.003 0.3451

Z = 3 0.980 0.987 0.767 0.266 0.1882

Next, we illustrate the results of using the four different approaches described below to predict the activa-

tion delays for both coverages.

— Approach 1 : we do not condition on the different levels of Z and use the results displayed in Table

3.4, that is a Joe copula with Kendall’s tau set to 0.2512, to perform predictions for the activation

delays of the population as a whole.

— Approach 2 : we condition on the three levels of the covariate and use again the results from Table

3.4 to predict the activation delays for the different sub-groups of policyholders. We thereby use

Joe copulas with Kendall’s tau equal to 0.1925, 0.3451 and 0.1882 for, respectively, the younger,

middle-aged and older policyholders.
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— Approach 3 : we do not condition on the different levels of Z and obtain predictions by simulating

directly from the generator ψ̂(ν) using the RLAPTRANS algorithm.

— Approach 4 : we condition on the three levels of Z and obtain predictions by simulating directly

from the three generators ψ̂(ν|Z = 1), ψ̂(ν|Z = 2) and ψ̂(ν|Z = 3), using again the RLAPTRANS

algorithm.

While approaches 1 and 2 use known copulas, approaches 3 and 4 do not impose a specific model. Figure

3.9 shows the simulated densities for the activation delays of the Accident Benefits (left) and Bodily Injury

(right) coverages. On each plot, the black curves represent the observed densities. The grey continuous

(resp. dashed) curves show the densities resulting from approach 1 (resp. approach 2) and the blue conti-

nuous (resp. dashed) curves display the densities resulting from approach 3 (resp. approach 4). The vertical

lines represent the observed average activation delays (in black) and average simulated delays for the cor-

responding approaches. These values are also displayed in Table 3.5.

We first observe on the plots of Figure 3.9 that the simulated densities of approaches 1 and 2 are quite

similar and that the same goes for approaches 3 and 4. This is particularly true for the Accident Benefits

coverage where the two grey (resp. blue) curves almost entirely overlap. For the Bodily Injury coverage, the

blue curves, corresponding to the densities simulated directly from the generator functions, appear to be

closer to the true density of the activation delays.

Figure 3.9 – Observed and simulated densities of the activation delays for both coverages, using the four

different approaches. The vertical lines stand for the average activation delays.

We now look at the average values represented both by the vertical lines on the plots of Figure 3.9 and by

the values in Table 3.5. For the approaches using Joe copulas, namely approaches 1 and 2, conditioning on
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the age group of the policyholders appears to provide predictions that are closer to the observed activation

delays. For the Accident Benefits coverage, approach 1 provides the highest prediction with an average de-

lay of 141.47 days, while when conditioning on the covariate Z in approach 2, the average predicted delay

decreases to 132.65 days, closer to the observed 114.81 days. We observe similar patterns for the Bodily

Injury coverages. Approaches 3 and 4 show comparable results, although the difference between them is

slightly less marked. For the Bodily Injury coverage, using the generator function for all policyholders pro-

vides an average estimated delay of 247.05 days while using the generator functions for the three different

age groups results in an average delay of 235.59 days. For the Accident Benefits coverages, approach 3

results in an average estimated delay of 106.23 days, while it is 108.86 days for approach 4.

For both the Accident Benefits and Bodily Injury coverages, the observed activation delays are, respec-

tively, 114.81 and 228.39 days. We can thereby conclude this section with the two following interesting

observations. First, with both sets of approaches, namely approaches 1 and 2 based on the Joe copulas and

approaches 3 and 4 based on the generator functions, the predictions closest to the true activation delays

are obtained when conditioning on the age group of the policyholders. Second, using the generator func-

tions rather than the Joe copulas and thereby not imposing a knownmodel seems to lead to closer average

predictions.

Table 3.5 – Average activation delays (observed and simulated).

Coverage Observed Approach 1 Approach 2 Approach 3 Approach 4

Accident Benefits 114.81 141.47 132.65 106.23 108.86

Bodily Injury 228.39 293.66 276.75 247.05 235.59

3.6 Conclusion

In this paper, we present a new parametric estimator for the generator function of Archimedean copulas

that is suitable for censored data. By incorporating covariates in the estimator, we allow both the strength

and shape of dependence to vary with different values of the endogenous variables, thereby bypassing the

simplifying assumption often used in conditional copula models. Our model allows to capture the effects

of some covariates of interest simply by conditioning the joint distribution on them. We demonstrate its

performance in two different applications.
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First, we study the diabetic retinopathy dataset andmodel the dependence between the times to blindness

in both eyes for diabetic patients, as well as the effects of the age at onset of diabetes on this dependence.

We do this for the patients population as a whole then investigate the model for different values of the

covariate. In line with the results presented in (Geerdens et al., 2018), we find that different ages at onset

of diabetes lead to different estimates of Kendall’s tau, the level of correlation being lower (resp. higher)

for patients who were diagnosed with diabetes at a younger (resp. older) age. Even more interestingly, we

show that in addition to impacting the strength of dependence, different values of the conditioning variable

lead to different copula models. Although, because of high levels of censoring and a rather small sample of

observations, wemay not be able to define the copula families best suited to different levels of the covariate

with high degrees of confidence, our model still allows us to use specific copulas for these different levels,

thanks to the fact that we directly estimate the generator function rather than the copula itself.

Next, we provide an application to micro-level reserving. We use a Canadian automobile insurance data-

set in which each policy in force provides multiple coverages to the insureds. We model the dependence

between two of these coverages by means of their activation delays while conditioning on the age of the

policyholders. We find again that different levels of the covariate provide different estimates of Kendall’s

tau. We also observe an impact of the covariate on the structure of dependence. Although Joe copulas

are selected as best fitted to the data in both the unconditional and conditional models, this choice is not

evident for some levels of the conditioning variable. We compare four different prediction approaches for

the activation delays of the insurance coverages, using Joe copulas or the estimated generator functions,

with and without conditioning on the age group of the policyholders. We show that using direct simulations

from the generator function provides predictions that are closer to the observed activation delays. In addi-

tion, conditioning on the covariate also seems to result in better predictions, whether using Joe copulas or

the generators.

These applications demonstrate the benefits that can be reaped from considering the impact of endogenous

variables in dependencemodels. By doing so, we seem to be able to better capture the specific dependence

structure present in a dataset. In a claims reserving setting as the one described in Section 3.5 where a lot

of information is available to insurers, we show that making use this information can lead to predictions

that more closely fit the data.

In this paper, we have selected the levels of the conditioning covariates forwhich to analyse the dependence
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structure in a trivial way. For both the diabetic retinopathy study and the loss reserving application,we chose

splitting points that provided subsets of similar size. It would be interesting, in future research, to explore

a more robust method to select the levels of the conditioning variables at which the dependence model

experiences a significant change.
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CONCLUSION

Dans cette thèse, nous poursuivons deux objectifs. Premièrement, nous visons à contribuer à la littérature

relative au calcul de micro-réserves en assurance non-vie. Nous proposons des approches permettant non

seulement d’estimer le montant de la réserve au niveau individuel de chaque réclamation, mais également

de modéliser différents événements prenant place durant le temps de vie de cette réclamation au sein du

portefeuille de l’assureur. Nous cherchons ainsi à prédire le développement de chaque réclamation au plus

près, de sa déclaration à sa fermeture, en passant par l’estimation des couvertures d’assurance que cette

dernière impacte, les occurrences de paiements et les montants de ceux-ci.

Notre deuxième objectif est, au vu de la diversification et complexification des portefeuilles des assureurs,

ainsi que des réglementations croissantes sur les marchés mondiaux de l’assurance, d’inclure la dépen-

dance entre les risques dans nos modèles de provisionnement. Nous nous concentrons sur un portefeuille

d’assurance automobile et proposons diverses approches afin d’incorporer la dépendance entre les diffé-

rentes couvertures proposées au sein d’une même police dans l’estimation des réserves. Pour ce faire, les

approches que nous employons visent à tirer parti de la grande quantité de données récoltées par les com-

pagnies d’assurance, afin de représenter au mieux la structure de dépendance en leur sein.

Dans le premier chapitre, nous présentons un modèle de micro-réserves permettant une modélisation du

développement complet de chaque réclamation. Cemodèle est basé sur le concept de schémas d’activation

des couvertures d’assurance par lequel nous y incluons la dépendance entre ces dernières. Pour chaque ré-

clamation, nous définissons le schéma d’activation comme étant un vecteur de longueur égale au nombre

de couvertures offertes pour chaque police dans le portefeuille de l’assureur. Chaque entrée du vecteur est

un élément binaire prenant la valeur 1 si la réclamation impacte, ou a activé, la couverture en question,

et 0 sinon. Nous utilisons un modèle logistique multinomial qui nous permet d’estimer conjointement les

entrées du vecteur et donc de prendre en compte la dépendance entre les différentes couvertures. Condi-

tionnellement à l’activation des couvertures, nous modélisons par la suite l’occurrence de paiements pour

chacune d’elles, et les sévérités en cas de paiement. Nous montrons comment utiliser cette stratégie pour

plusieurs périodes de développement successives afin d’obtenir une estimation de la réserve totale pour

notre portefeuille. Une comparaison entre ce modèle et des modèles de provisionnement plus classiques,

ne prenant pas compte de la dépendance, permet d’illustrer la performance de notre approche. Par celle-ci,

nous obtenons en effet des prédictions pour le montant des réserves plus proches des montants observés
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que par des méthodes plus traditionnelles.

Dans le deuxième chapitre, nous passons en temps continu et troquons les schémas d’activation pour des

délais d’activation. Ceux-ci sont définis, pour chaque couverture, comme le temps écoulé entre le moment

de déclaration de la réclamation et le premier moment auquel l’assureur enregistre cette réclamation sous

la couverture d’assurance en question. Si, pour une réclamation donnée, une couverture n’a pas été ac-

tivée, le délai d’activation pour cette dernière est censuré et prend la valeur du délai de fermeture du si-

nistre. Nous utilisons la famille des copules archimédiennes pour modéliser conjointement les délais des

différentes couvertures du portefeuille. Plus précisément, nous nous concentrons sur la fonction généra-

trice caractéristique des copules de cette famille et étendons un estimateur non-paramétrique proposé par

(Genest et Rivest, 1993) au cas de données censurées. Pour ce faire, nous utilisons des techniques emprun-

tées à l’analyse de survie. Une fois un estimateur non-paramétrique obtenu pour la fonction génératrice,

nous proposons deux approches différentes pour réaliser des prédictions. Premièrement, nous illustrons

une méthode graphique permettant de choisir la copule archimédienne la plus appropriée aux données,

simplement en sélectionnant celle dont la fonction génératrice ressemble le plus à celle estimée. Nous dis-

cutons de plusieurs outils pour valider ce choix graphique. Deuxièmement, nous présentons un algorithme

permettant de simuler des données directement à partir de l’estimateur non-paramétrique de la fonction

génératrice. Nous montrons que ces données simulées présentent la même force et forme de dépendance

que les données originales. Cette nouvelle méthode permet de ne pas imposer une copule pré-définie aux

données, et est particulièrement utile lorsque la méthode graphique mentionnée précédemment ne mène

pas à un choix évident de modèle. Dans une application au calcul de micro-réserves, nous montrons que

l’approche par simulations à partir du générateur permet d’obtenir des prédictions pour les délais d’activa-

tion des couvertures plus proches des délais observés que l’approche utilisant une copule existante.

Le dernier chapitre de cette thèse s’inscrit dans la continuité des deux précédents. Nous y poursuivons la

modélisation de la dépendance entre couvertures d’assurance au travers de leurs délais d’activation, à l’aide

de la famille de copules archimédiennes. Dans cette dernière partie, nous poussons plus loin l’analyse de

cette dépendance en y incorporant les effets de variables explicatives. Ce faisant, nous cherchons à nous

soustraire à l’hypothèse simplificatrice qui accompagne très souvent la modélisation par copules. Cette hy-

pothèse implique qu’une copule est invariante aux effets de variables explicatives. Pour nous en défaire,

nous nous concentrons une fois de plus sur la fonction génératrice des copules archimédiennes pour la-

quelle nous proposons un nouvel estimateur paramétrique. En incorporant des variables explicatives dans
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cet estimateur, nous sommes en mesure d’évaluer leur impact non seulement sur la force de dépendance

via le tau de Kendall, mais également sur la forme de la copule. Nous démontrons l’utilité de notremodèle à

travers deux applications : l’une sur une étude de la rétinopathie diabétique et une sur les données de notre

portefeuille d’assurance pour lequel nous désirons estimer les réserves granulaires. Dans les deux cas, le fait

de conditionner le modèle de dépendance sur une variable explicative fournit des résultats différents des

modèles qui n’incluent pas ce conditionnement. Dans le cas du portefeuille d’assurance automobile, nous

observons par exemple qu’en fonction de l’âge des détenteurs de police, la force et la forme de dépendance

varient. Les prédictions obtenues par la suite avec les modèles qui prennent en compte ces variations sont

plus proches des valeurs observées dans les données initiales que celles obtenues avec des modèles qui

n’en tiennent pas compte.

Au travers de ces trois chapitres, nous présentons des méthodes novatrices pour inclure la dépendance

au sein de modèles de calcul de micro-réserves en assurance non-vie. L’intérêt de ces méthodes dans un

contexte d’assurance relève notamment du fait qu’elles tirent profit de la grande quantité de données dis-

ponibles aux compagnies d’assurance. Elles leur permettent également de représenter plus fidèlement les

structures complexes et diversifiées de leurs portefeuilles de polices.

Cette thèse ouvre la porte à de possibles futurs travaux de recherche. Premièrement, lesméthodes utilisées

pour modéliser la dépendance entre couvertures d’assurance pourraient être étendues à d’autres types de

dépendance. En particulier, nous pourrions ajouter à la dépendance entre les délais d’activation celle avec

les délais de déclaration, avec la fréquence voire la sévérité des sinistres. Il pourrait également être inté-

ressant d’investiguer d’autres familles de copules que la famille archimédienne. Comme dans le Chapitre 2,

nous pourrions trouver une stratégie plus générale et s’appliquant à un plus grand nombre de familles de

copules, pour estimer la force et la structure de dépendance d’un jeu de données sans devoir imposer une

copule pré-définie. Enfin, dans le cadre du Chapitre 3, il serait intéressant d’élaborer une stratégie permet-

tant de déterminer de façon non-triviale les niveaux d’une variable explicative pour lesquels le modèle de

dépendance varie.
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In this thesis, we pursue twomain goals. First, we contribute to the actuarial literature onmicro-level claims

reserving for non-life insurance. We investigate approaches that not only estimate the reserve amount at

the individual level of each claim, but also model various events occurring during the lifetime of each claim

within the insurer’s portfolio. As such, we seek to predict the development of each claim from reporting

to settlement, by estimating the insurance coverages it impacts, the occurrences of payments, and their

amounts.

Our second objective is, given the diversification and complexity of insurers’ portfolios, as well as the in-

creasing regulations in global insurance markets, to incorporate dependence between risks in our reserving

models. We focus on an automobile insurance portfolio and propose various approaches to incorporate

dependence between the different coverages offered within a single policy in our reserving models. To

achieve this, our methods aim to leverage the large amount of data collected by insurance companies to

best represent the dependency structure within them.

In the first chapter, we present a micro-level reserving model that allows to estimate the complete develop-

ment of each claim. This model is based on the concept of activation patterns for the insurance coverages,

through which we incorporate dependence. For each claim, we define the activation pattern as a vector

of length equal to the number of coverages offered for each policy in the insurer’s portfolio. Each entry

of the vector is a binary element taking the value 1 if the claim impacts, or activates, the corresponding

coverage, and 0 otherwise. We use a multinomial logit model to jointly estimate the vector entries, thus

accounting for dependence between the different coverages. Conditioning on coverage activation, we sub-

sequently model the occurrence of payments for each coverage and their severities in case of payment.

We demonstrate how to use this strategy for successive development periods to obtain an estimation of

the total reserve for our portfolio. A comparison between this model and more classical reserving models,

which do not account for dependence, illustrates the performance of our approach. Using our model, we

obtain predictions for the reserve amounts closer to the observed amounts than those obtained with more

traditional methods.

In the second chapter, we move to continuous time and exchange activation patterns for activation delays.

These are defined, for each coverage, as the time elapsed between the moment the claim is reported and
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the first moment at which the insurer records this claim under the respective insurance coverage. If, for a

given claim, a coverage has not been activated, its activation delay is censored and takes the value of the

claim’s settlement delay. We use the family of Archimedean copulas to jointly model the delays of the dif-

ferent coverages in the portfolio. Specifically, we focus on the generator function that characterizes copulas

from this family and extend a non-parametric estimator proposed by (Genest et Rivest, 1993) to the case

of censored data. To do this, we use techniques borrowed from survival analysis. Once a non-parametric

estimator is obtained for the generator function, we propose two different approaches for making predic-

tions. First, we illustrate a graphical method allowing the selection of the most appropriate Archimedean

copula for the data, simply by selecting the one whose generator function most closely resembles the es-

timated generator. We discuss several methods to validate this graphical choice. Second, we present an

algorithm to simulate new data directly from the non-parametric estimator of the generator function. We

show that these simulated data exhibit the same strength and form of dependence as the original data. This

new method allows us to avoid imposing a predefined copula on the data and is particularly useful when

the graphical method mentioned above does not lead to an obvious model choice. In an application to loss

reserving, we show that the simulation approach from the generator allows for predictions of coverage

activation delays closer to observed delays than the approach using an existing copula.

The last chapter of this thesis builds on the previous two. We continue the modeling of dependence bet-

ween insurance coverages through their activation delays, using the family of Archimedean copulas. In this

final part, we further analyze this dependence by incorporating the effects of explanatory variables. In doing

so, we aim to move away from the simplifying assumption that often accompanies copula modeling. This

assumption implies that a copula is invariant to the effects of covariates. To overcome this, we once again

focus on the generator function of Archimedean copulas, for which we propose a new parametric estima-

tor. By incorporating endogenous variables into this estimator, we are able to evaluate their impact not only

on the strength of dependence via Kendall’s tau but also on the shape of the copula. We demonstrate the

usefulness of our model through two applications : one on a diabetic retinopathy study and one on our

insurance portfolio data for which we want to estimate the reserves. In both cases, conditioning the depen-

dence model on a covariate provides results different from models that do not include this conditioning. In

the case of the automobile insurance portfolio, for example, we observe that depending on the age of poli-

cyholders, the strength and form of dependence vary. Predictions subsequently obtained with models that

take these variations into account are closer to the values observed in the initial data than those obtained

with models that do not.
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Through these three chapters, we present innovative methods for including dependence in non-life micro-

level claims reserving. The interest of these methods in an insurance context lies in the fact that they le-

verage the large amount of data available to insurance companies. They also allow them to more faithfully

represent the complex and diversified structures of their portfolios of claims.

This thesis opens the door to possible future research. First, the methods used to model dependence bet-

ween insurance coverages could be extended to other types of dependence. In particular, we could add to

the dependence between activation delays that between reporting delays, with frequency or severity of

claims. It could also be interesting to investigate other families of copulas than the Archimedean family. As

in Chapter 2, we could find a more general strategy applicable to a larger number of copula families to esti-

mate the strength and structure of dependence in a dataset without having to impose a predefined copula.

Finally, in the context of Chapter 3, it would be interesting to develop a strategy to determine non-trivially

the levels of an explanatory variable for which the dependence model varies.
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APPENDIX A

CHAPTER 1

A.1 Observed activation patterns

Table A.1 presents the activation patternsAi,1 observed in the dataset for the first development period of

the claims. The value 1 stands for the activation of the coverage. 85.67% of all claims activate the Vehicle

Damage coverage alone or simultaneously with the Loss of Use coverage. The Accident Benefits coverage

is most often triggered with the Vehicle Damage coverage or on its own. We also observe that around 1%

of all claims simultaneously activate all four coverages upon their reporting.

Table A.1 – Frequency of the activation patterns observed in the first development period and some des-

criptive statistics (all delays are in periods of 6 months).

AB BI VD LU % of claims Average payment Average reporting delay Average settlement delay

0 0 1 0 42.95 2924.37 1.08 1.31

0 0 1 1 42.72 3181.20 1.03 1.45

1 0 1 1 4.98 6983.12 1.01 2.94

0 1 1 1 1.99 10117.42 1.02 3.15

1 0 0 0 1.44 15641.02 1.13 2.97

0 1 1 0 1.24 16496.29 1.07 3.28

1 0 1 0 1.07 10643.04 1.02 2.65

0 0 0 1 1.04 918.83 1.05 1.38

1 1 1 1 1.01 14802.81 1.01 3.82

0 1 0 0 0.61 27863.38 1.30 3.59

1 1 1 0 0.43 27505.77 1.04 4.04

1 1 0 0 0.38 44262.49 1.14 4.41

1 0 0 1 0.10 6833.90 1.01 3.18

0 1 0 1 0.04 9856.29 1.01 3.20

1 1 0 1 0.01 15799.64 1.02 4.86
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A.2 Risk factors

Figure A.1 completes Section 1.2.2 by providing further insights on the different risk factors used in the ac-

tivation patterns model.

Figure A.1 – Risk factors

Our dataset includes around 60% of male insureds against 40% of female insureds, more than half born

between 1960 and 1989. Approximately half of the insureds use their vehicle for commuting, while an addi-
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tional 37% use it for pleasure. The remaining 13% of the insureds use their car for commercial or business

reasons or did not disclose that information to the insurer. 76% of the insureds drive between 10,000 and

20,000 kilometers per year according to the annual mileage risk factor, which is the only continuous one

in our dataset. More than 50% of the claims occur in Ontario, 20% in Alberta, and the remaining 30% in

other Canadian provinces or in the United States of America. Finally, the insurance company assesses the

insured’s level of responsibility in an accident and issues a fault rating. In 37% of the claims, the insurance

company considered the insured not to be at fault. The company could not apply the rating for 32% of the

claims, and in 27% of the cases, the insured bore the entire fault. For the remaining 4% of the claims, there

was either no fault at all or the fault was divided between the insured and any other parties involved in the

claim.
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A.3 Training and valuation sets

To fit the activation patternsmodel, we split the data into a training set for estimation, and a valuation set for

simulation, as illustrated in Figure A.2. In this Figure, each black continuous (resp. dashed) line symbolizes

the observed (resp. future) development of a claim.

The red vertical line in Figure A.2 represents the chosen valuation date of the reserves. All the information

displayed on the left of this valuation date (continuous lines) is the observed claims data at the valuation

date. Since we only focus on RBNS claims in this paper, it contains all the claims that were reported before

the valuation date. For those already settled, it includes the complete claim development. For those still

open at the valuation date, it contains all the information (i.e., activation of coverages, payments made,

and corresponding amounts) observed up to that date. All the information on the right of the red line,

represented by the dashed lines, makes up the valuation dataset we will use to predict the reserves. Our

dataset also contains around 1% of open claims, i.e., claims not yet settled on the 31st of June 2021. We

include these claims by taking their last observed payment as the settlement date.

Figure A.2 – Illustration of the separation of the dataset into the training and valuation sets.

A.4 Multinomial logit model
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A.5 Choice of the severity models

Table A.3 – Choice of distributions for the severity

Coverage Model
∀j

AIC BIC

Accident Benefits

Log-Normal 1,101,322 1,101,790

Gamma 1,099,669 1,100,137

Pareto 1,093,130 1,093,598

Generalized Beta II 1,092,513 1,092,998

Weibull 1,096,566 1,097,034

Bodily Injury

Log-Normal 519,469 519,896

Gamma 519,451 519,878

Pareto 520,152 520,580

Generalized Beta II 518,800 519,236

Weibull 517,012 517,439

Vehicle Damage

Log-Normal 6,818,688 6,819,250

Gamma 6,811,968 6,812,530

Pareto 6,767,629 6,768,192

Generalized Beta II 6,760,099 6,760,684

Weibull 6,797,965 6,798,528

Loss of Use

Log-Normal 2,318,483 2,319,003

Gamma 2,315,044 2,315,564

Pareto 2,345,577 2,346,097

Generalized Beta II 2,305,159 2,305,699

Weibull 2,338,368 2,338,888
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A.6 Results stability

Figure A.3 – Results of the RBNS reserves (95% VaR) based on the number of simulations performed
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CHAPTER 2
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B.1 Useful functions and relationships for some popular Archimedean copulas

Table B.1 – Expressions of the copula, generator function and relation between α, Kendall’s tau and λ(.) for some commonly used Archimedean

copulas.

Copula Cα(u1, u2) ψ(ν) τ λα(ν)

Clayton (u−α1 + u−α2 − 1)−1/α (1 + t)−1/α α/(α+ 2) ν(να − 1)/α

Frank − 1
α ln

(
1 + (e−αu1−1)(e−αu2−1)

e−α−1

)
−(ln(e−t(e−α − 1) + 1))/α 1 + 4

α

( ∫ α
0

ξ
α(eξ−1)

dξ − 1
)

− ln
{
(e−αν − 1)/(e−α − 1)

}
/(−α/(eαν − 1))

Gumbel-Hougaard exp
(
− [(ũ1)

α + (ũ2)
α]1/α

)
exp(−t1/α) 1− 1/α ν ln(ν)/α

Joe 1− (ūα1 + ūα2 − ūα1 ū2
α)1/α 1− (1− e−t)1/α − − ln

{
1− (1− ν)α

}
/−

(
(α(1− ν)(α−1))/(1− (1− ν)α)

)

132



B.2 Distributions of U and V proposed in (Wang, 2010) for diverse censoring patterns

The following results are based on Corollary 1., Corollary 2. and Theorem 4. from (Wang, 2010).

Let (T1, T2) be a bivariate vector submitted to censoring by the bivariate continuous vector (X1, X2), as

described in Section 2.3.1. Let S1(t1) and S2(t2) be the marginal survival functions of, respectively, T1 and

T2, whose dependence function can be modelled by an absolutely continuous Archimedean copula such

that

C(S1(t1), S2(t2)) = S(t1, t2) = ϕ−1
{
ϕ(S1(t1)) + ϕ(S2(t2))

}
.

Then, we have that :

1. if both observations are censored, the distribution function of (V |T1 > x1, T2 > x2) is

F1(v, x1, x2) =
1

S(x1, x2)

[
v − ϕ(v)− ϕ{S(x1, x2)}

ϕ′(v)

]
, 0 ≤ v ≤ S(x1, x2)

and the distribution function of (U |T1 > x1, T2 > x2) is uniformly distributed on the interval[
ϕ{S1(x1)}
ϕ(v)

, 1− ϕ{S2(x2)}
ϕ(v)

]
;

2. if only the second observation is censored, the distribution function of (V |T1 = t1, T2 > x2) is

F2(v, t1, c2) =
p′(ϕ(v))

p′(ϕ(S(t1, x2)))
, 0 ≤ v ≤ S(t1, x2)

with p(.) = ϕ−1(.) and the distribution function of (U |T1 = t1, T2 > x2) is

G2(y, t1, x2) =
p′{ϕ(S1(t1))/u}
p′{ϕ(S(t1, x2))}

, 0 ≤ u ≤ ϕ{S1(t1)}
ϕ{S(t1, x2)}

;

3. if only the first observation if censored, the distribution function of (V |T1 > x1, T2 = x2) is

F3(v, x1, t2) =
p′(ϕ(v))

p′(ϕ(S(x1, t2)))
, 0 ≤ v ≤ S(x1, t2)

and the distribution function of (U |T1 > x1, T2 = t2) is

G3(y, x1, t2) =
p′{ϕ(S2(t2))/(1− u)}
p′{ϕ(S(x1, t2))}

,
ϕ{S1(x1)}
ϕ{S(x1, t2)}

≤ u ≤ 1;

4. if both observations are uncensored, the distribution function of (V |T1 = t1, T2 = t2) is the same

as in Proposition 1.1. from (Genest et Rivest, 1993) and the conditional distribution of (U |V = v) is

just a uniform distribution on [0, 1] independent of V .
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B.3 Model validation approaches for the parametric copula selected via the graphical procedure

B.3.1 Omnibus estimation procedure

The omnibus estimation procedure is a semi-parametric optimization procedure that substitutes empirical

versions of the marginal distributions in the (parametric) likelihood function of the copula model, L(.).

We use rescaled Kaplan-Meier estimators for T1 and T2, multiplying the original Kaplan-Meier versions by

n/(n+1), where n is the total number of observations in the sample. As mentioned in (Genest et al., 1995)

as well as (Denuit et al., 2006), this rescaling prevents issues related to the potential unboundedness of the

copula log-density as u1 and u2 tend to one.

Once we have themarginal distribution functions, we use them in the estimation step, i.e., the optimization

of the model likelihood to obtain the pseudo-likelihood estimator α̂∗ of the dependence parameter :

α̂∗ = argmaxL(u1, u2,δ1, δ2;α),

where the likelihood function under flexible censoring scenarios is given by :

L(u1, u2;δ1, δ2;α) =
n∏
i=1

cα(u1i, u2i;α)
δ1iδ2i +

(
∂Cα(u1i, u2i;α)

∂u1

)δ1i(1−δ2i)
+

(
∂Cα(u1i, u2i;α)

∂u2

)(1−δ1i)δ2i
+ Cα(u1i, u2i;α)

(1−δ1i)(1−δ2i).

(B.1)

Cα is the candidate Archimedean copula under consideration, cα its density and δji = 1 if Tj < Xj for

j = 1, 2 for observation i and equals zero otherwise (i.e., for a censored observation). The partial derivatives

with respect to either u1 or u2 can be found in Table B.2.

In order to use the omnibus procedure to validate themodel choice resulting from the graphical comparison,

we retrieve the pseudo-maximum likelihood estimator α̂∗ for the chosen candidate copula models and

compare them to the estimators α̂ found using Equation (2.7). The copula with the smallest difference

between these two estimators is the most appropriate for the data.

B.3.2 L2-norm

The second approach to validate the choice of copula model is based on the L2-norm. We follow the me-

thodology laid out in (Wang et Wells, 2000) that introduce a goodness-of-fit statistic specifically designed
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Table B.2 – Partial derivatives for some popular Archimedean copulas with ũ = − lnu and ū = 1− u.

Copula ∂Cα(u1.u2)/∂u1

Clayton [1 + uα1 (u
−α
2 − 1)]−1−1/α

Frank [e−αu1 − e−α(u1+u2)]× [(1− e−α)− (1− e−αu2)(1− e−αu1)]−1

Gumbel u−1
1 e{−(ũα2+ũ

α
1 )

1/α}[1 + (ũ2/ũ1)
α]−1+1/α

Joe (1− ūα2 )(1− ūα2 + ūα2 ū
−α
1 )−1+1/α

for Archimedean copulas with censored data under the assumption that a consistent non-parametric esti-

mator of the bivariate joint distribution function is available. Note that with estimated parameters present

in the specification of the null hypothesis for this test, the approach we show here is not an actual statistical

test but rather a way to validate our model. However, we will use the word test in this section for simplicity.

As mentioned in the introduction, more formal and general methods have been proposed in the literature.

We discuss one in the next paragraph.

(Wang et Wells, 2000)’s test relies on the L2-norm distance between the empirical estimator K̂n(ν) and

the correspondingKα̂(ν) of the hypothesized parametric copula model,

D(α̂) =

∫ 1

ξ

(
K̂n(ν)−Kα̂(ν)

)2
dν.

We use Riemann sum approximations to simplify numerical analysis :

D(α̂) =
n∑
i=1

(
K̂n(ν(i))−Kα̂(ν(i))

)2
(ν(i) − ν(i−1)),

where ν(i) is the ith ordered value of {ν1, ν2, ..., νn}. However, the asymptotic distribution ofD(α̂) is diffi-

cult to retrieve analytically.

B.3.3 Goodness-of-fit test for censored dependent data

The omnibus procedure and L2-norm validation approach are easy to implement and give a good idea of

whether a copula model is appropriate for the data at hand. However, neither are formal statistical tests.

To further increase the confidence in our choice of copula model, we present a more formal approach for

Archimedean copulas, proposed by (Wang, 2010).
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This goodness-of-fit test applies to uncensored and right-censored data thanks to a multiple imputation

procedure. It bases its premise on Proposition 1.1. from (Genest et Rivest, 1993).

For a bivariate vector of dependent observations (T1, T2)whosemarginal survival functions S1(.) andS2(.)

have a dependence function C(.) of the form

C(S1(t1), S2(t2)) = ψ
{
ψ−1(S1(t1)) + ψ−1(S2(t2))

}
,

then, the random variables

U =
ψ−1(S1(t1))

ψ−1(S1(t1)) + ψ−1(S2(t2))
and V = ψ

{
ψ−1(S1(t1)) + ψ−1(S2(t2))

}
= C(S1(t1), S2(t2)).

(B.2)

are independent. In other words, under the null hypothesis that an Archimedean copula can model the

dependence between (T1, T2) with generator ψ(.), the correlation coefficient between U and V is null :

H0 : ρ = 0 vs H1 : ρ ̸= 0.

Let

rn =

∑n
i=1(Ûi −

¯̂
U)(V̂i − ¯̂

V )√∑n
i=1(Ûi −

¯̂
U)2

∑n
i=1(V̂i −

¯̂
V )2

where Û and V̂ are consistent estimators of U and V and where ¯̂
U and ¯̂

V are the sample means of Ûi and

V̂i. The test statistic is defined as

Zn =
1

2
log
[1 + rn
1− rn

]
and we have that

√
nZn → N(0, 1) in distribution.

For censored data, we can not directly retrieve Ûi and V̂i from the estimators proposed by (Genest et Rivest,

1993) based on Equation (B.2). Instead, (Wang, 2010) shows that, depending on the censoring pattern, the

data can be simulated using amultiple imputation procedure fromone of the distributions presented below.

All proofs and further details are in (Wang, 2010).

Let (T1, T2) be a bivariate vector submitted to censoring by the bivariate continuous vector (X1, X2), as

described in Section 2.3.1. Let S1(t1) and S2(t2) be the marginal survival functions of, respectively, T1 and
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T2, whose dependence function can be modelled by an absolutely continuous Archimedean copula such

that

C(S1(t1), S2(t2)) = S(t1, t2) = ψ
{
ψ−1(S1(t1)) + ψ−1(S2(t2))

}
.

Then, we have that :

1. if both observations are censored, the distribution function of (V |T1 > x1, T2 > x2) is

F1(v, x1, x2) =
1

S(x1, x2)

[
v − ψ−1(v)− ψ−1{S(x1, x2)}

ψ−1′(v)

]
, 0 ≤ v ≤ S(x1, x2)

and the distribution function of (U |T1 > x1, T2 > x2) is uniformly distributed on the interval[
ψ−1{S1(x1)}
ψ−1(v)

, 1− ψ−1{S2(x2)}
ψ−1(v)

]
;

2. if only the second observation is censored, the distribution function of (V |T1 = t1, T2 > x2) is

F2(v, t1, c2) =
p′(ψ−1(v))

p′(ψ−1(S(t1, x2)))
, 0 ≤ v ≤ S(t1, x2)

with p(.) = ψ(.) and the distribution function of (U |T1 = t1, T2 > x2) is

G2(y, t1, x2) =
p′{ψ−1(S1(t1))/u}
p′{ψ−1(S(t1, x2))}

, 0 ≤ u ≤ ψ−1{S1(t1)}
ψ−1{S(t1, x2)}

;

3. if only the first observation if censored, the distribution function of (V |T1 > x1, T2 = x2) is

F3(v, x1, t2) =
p′(ψ−1(v))

p′(ψ−1(S(x1, t2)))
, 0 ≤ v ≤ S(x1, t2)

and the distribution function of (U |T1 > x1, T2 = t2) is

G3(y, x1, t2) =
p′{ψ−1(S2(t2))/(1− u)}
p′{ψ−1(S(x1, t2))}

,
ψ−1{S1(x1)}
ψ−1{S(x1, t2)}

≤ u ≤ 1;

4. if both observations are uncensored, the distribution function of (V |T1 = t1, T2 = t2) is the same

as in Proposition 1.1. from (Genest et Rivest, 1993) and the conditional distribution of (U |V = v) is

just a uniform distribution on [0, 1] independent of V .
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B.4 Simulation study : Results of the Omnibus procedure

For each of the three scenarios, Table B.3 displays the results of the omnibus procedure. For each simulated

sample, we compare the dependence parameters α̂ retrieved from Equation (2.7) to the maximum likeli-

hood estimator α̂∗.We observe that inmost cases, the distance between α̂ and α̂∗ is minimal for the correct

copula, i.e., the omnibus procedure leads to selecting the copula model from which the data was originally

simulated. We count three occurrences where the procedure selects an alternative model. In the single-

censoring scenario, the Gumbel model is chosen for the Clayton sample, and the Joe copula is selected for

the Gumbel sample. The Gumbel copula is selected for the Frank sample in the double-censoring scenario.

However, we observe that the correct copulas present in each case are the second smallest distance bet-

ween α̂ and α̂∗ and that the difference with the third and fourth distances is quite marked. For the Gumbel

sample in the single censoring scenario for example, the smallest distance between the parameters is equal

to 0.0428 for the Joe copula, 0.0992 for the Gumbel copula and then, 0.3988 and 0.4971 for, respectively,

the Clayton and Frank copulas.

Table B.3 – Omnibus procedure for different censoring scenarios.

True copula Candidate model
No censoring single-censoring double-censoring

α̂ α̂∗ α̂ α̂∗ α̂ α̂∗

Clayton (α = 1.3332)

Clayton 1.7694 1.8284 1.1789 1.3263 0.9240 0.8541

Frank 5.2063 5.7575 3.7724 4.1154 2.1323 2.7655

Gumbel 1.8846 1.7294 1.5895 1.4926 1.4621 1.3070

Joe 2.6347 1.7373 2.0732 1.4713 1.5231 1.2792

Frank (α = 4.1611)

Clayton 1.3202 0.8049 1.2055 0.7428 1.0034 0.5326

Frank 4.1284 4.2527 3.8403 3.9827 3.3149 2.9126

Gumbel 1.6602 1.5274 1.6029 1.4533 1.5018 1.1694

Joe 2.2066 1.6870 2.0983 1.6260 1.9084 1.1759

Gumbel (α = 1.6667)

Clayton 1.1377 0.6557 1.1380 0.7392 0.9464 0.6493

Frank 4.1641 4.3241 3.6674 4.1645 2.8121 3.6805

Gumbel 1.5690 1.5934 1.5691 1.6683 1.4734 1.5283

Joe 2.0345 1.8735 2.0347 1.9919 1.8671 1.7554

Joe (α = 2.2191)

Clayton 1.2609 0.6067 1.1494 0.5514 0.9344 0.5170

Frank 3.9802 4.2203 3.6968 3.8131 3.1298 3.4508

Gumbel 1.6305 1.7284 1.5748 1.6356 1.4674 1.5638

Joe 2.151 2.1997 2.0454 2.0431 1.8441 1.9360
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APPENDIX C

CHAPTER 3

C.1 Simulating bivariate samples from a univariate distribution

In this appendix, we provide more details on the Marshall, Olkin ((Marshall et Olkin, 1988)) and RLAPTRANS

((Ridout, 2009)) algorithms that can be used to simulate a d-variate vector of dependent random variables

from the generator function of Archimedean copulas. This strategy relies on Bernstein’s theorem.

Theorem C.1 (Bernstein) A function ψ(.) is strictly monotonic and ψ(0) = 1 if and only if it can be written

as

ψ(ν) = LΘ(ν), (C.1)

where L(.) is the Laplace-Stieltjes transform of the strictly positive random variable Θ.

Knowing that Archimedean generators can be expressed as the Laplace-Stieltjes transform of a random

variableΘ, we can generate samples from this random variable and use an algorihtm such as the Marshall,

Olkin algorithm described below to obtain a d-variate vector from an Archimedean copula characterized by

its generator.

Algorithm 4:Marshall, Olkin
1: Generate a random observation θ from the distribution with Laplace transform ψ.

2: For i = 1, ..., d, generate i.i.d.Xi ∼ U(0, 1) .

3: Return (U1, ..., Ud) where Ui = ψ(− log(Xi)/θ), for i = 1, ..., d.

Algorithm 5, the so-called RLAPTRANS algorithm, provides a simple strategy based on a standard modifica-

tion of the Newton-Rapjsommethod for the first step of Algorihtm 4. Knowing the generator function ψ(.),

we can sample from its inverse Laplace-Stieltjes transform and generate observations from the random

variableΘ.
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Algorithm 5: RLAPTRANS
1: Generate n independent U(0, 1) observations and sort them : u(1) < ... < u(n).

2: Find a value θmax to serve as upper bound, i.e. ψ−1(θmax) ≥ u(n).

3: Set the lower bound θL = θ(i−1) and upper bound θU = θmax. Repeat the modified Newton-Raphson

procedure for i = 1, ..., n to obtain the ordered sample θ(1), ..., θ(n).

4: Permute the ordered sample randomly to obtain the unordered sample θ1, ..., θn.
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