
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

AN AUTO-SCALING ARCHITECTURE FOR BLOCKCHAIN IN THE CONTEXT OF THE INTERNET OF THINGS

THESIS

PRESENTED

AS PARTIAL REQUIREMENT

TO THE PH.D IN COMPUTER SCIENCE

BY

RIHAM ELSAADANY

MAY 2024

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

UNE ARCHITECTURE POUR LA MISE-À-L’ÉCHELLE DES CHAÎNES DE BLOCS DANS LE CONTEXTE DE

L’INTERNET DES OBJETS

THÈSE

PRÉSENTÉE

COMME EXIGENCE PARTIELLE

DU DOCTORAT EN INFORMATIQUE

PAR

RIHAM ELSAADANY

MAI 2024

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 – Rév.12-2023). Cette autorisation stipule que «conformément à
l’article 11 du Règlement no 8 des études de cycles supérieurs, [l’auteur] concède à
l’Université du Québec à Montréal une licence non exclusive d’utilisation et de
publication de la totalité ou d’une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l’auteur] autorise
l’Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une
renonciation de [la] part [de l’auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l’auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

ACKNOWLEDGEMENTS

I’d like to expressmy thanks and gratitude to All Mighty God. Your guidance, love, andmercy have sustained

me through both joyful and challenging times. Thank You for never forsaking me, for always extending Your

hand of mercy, and for the countless ways You enrich my life. I’m always poor to Your kindness.

I’d like to thank Mr. Prof. Eng. Guy Begin, my research director who always gave me hope, specially when-

ever the road seemed too hard to handle and too dim to see. Thank you for every bit of help, for every

moment of encouragement, for every single instruction and for every inspiration that you guided me with,

one step at a time, throughout this long research journey, despite the long distance between two different

countries and despite the obstacles along the road. I will always appreciate all your help, starting from my

first master degree at UQAM and ending by my Ph.D. Thanks for always being there for me, I could never

have made it without all your generous help and support.

I also would like to dearly thank my dear husband who supported me all along, who gave me every bit of

help when I needed it the most, and who always pushed me forward to achieve my goals. Many thanks go

to my dear kids who tolerated my absence while I was always working on my computer, and who always

encouraged me to get going and to never give up. Many thanks for my dear brother who encouraged me

to publish my research, with every bit of advice. And last but not least, I would like to send many thanks to

my dear parents whose prayers were always a guiding star for me. All my prayers go to my dear father who

just left our world before my dissertation, may he rest in peace. My dear family, your beautiful love always

helped me find my serenity and my determination when things used to go crazy. Thanks for all your love,

help and support, I love you back from the bottom of my heart.

iii

CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACRONYMES . xii

RÉSUMÉ . xiv

ABSTRACT . xvi

INTRODUCTION . 1

0.1 Motivation . 3

CHAPTER 1 LITERATURE REVIEW . 6

1.1 Background . 6

1.2 Related Works . 8

1.2.1 Related Works - Classification based on Scalability . 8

1.2.2 Related Works - Classification based on Node Organization . 11

CHAPTER 2 RESEARCH PROBLEM . 14

2.1 The Problem in General . 14

2.2 The Specific Research Problem . 15

2.2.1 The Solution Hypotheses. 17

2.2.2 The Research Questions . 18

CHAPTER 3 RESEARCH OBJECTIVES . 20

3.1 General Objectives . 21

CHAPTER 4 THE MULTI-TIERED CONCEPT MODEL . 22

4.1 The multi-Tiered Design Concept Model- an Overview . 22

4.1.1 A Typical Flat Blockchain Model . 22

iv

4.1.2 LSB Two-Tiered Blockchain Model . 24

4.1.3 The Multi-Tiered Blockchain Model . 25

4.1.4 Comparison among Models . 31

4.2 The Multi-Tiered Design Concept Model- Details. 32

4.2.1 Selection of a Clustering Algorithm . 32

4.2.2 Node Management In SSD . 34

4.2.3 BC Operations in our Multi-Tiered Design. 35

4.3 The Proposed Architecture Options . 36

4.3.1 Architecture Option-1 . 36

4.3.2 Architecture Option-2 . 38

4.3.3 Architecture Option-3 . 39

4.4 Comparison among the Architecture Options and the Chosen Architecture . 41

4.4.1 Comparison among the Architecture Options . 41

4.4.2 Chosen Architecture Option . 43

4.5 The SSD Architecture . 44

4.5.1 Self-Scaling Dynamic (SSD) Algorithm . 44

4.5.2 Probability of Colocality . 49

4.5.3 A Quick Comparison Among All three BC Design Models in terms of Colocality 51

4.5.4 SSD Operation Under Hostile Environment . 56

CHAPTER 5 RESEARCH METHODOLOGY . 57

CHAPTER 6 THEORETICAL ANALYSIS OF THE SSD ARCHITECTURE . 61

6.1 Trees of the Forest . 61

6.2 The Height of the Structure and MUT . 62

v

6.3 Theoretical Analysis of the SSD Algorithm . 65

6.3.1 Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i ̸= N 65

6.3.2 Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i = N 66

6.3.3 Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i ̸= N 66

6.3.4 Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i = N 67

6.3.5 Decreasing the cluster size . 68

CHAPTER 7 SIMULATION OF BLOCKCHAIN OPERATION . 70

7.1 Typical Flat BlockChain Simulation Hypotheses. 71

7.2 Two-Tiered BlockChain Simulation Hypotheses . 72

7.3 SSD BlockChain Simulation Hypotheses . 74

7.4 Measured Metrics . 77

7.4.1 The Features Applied in the SSD Simulation . 79

7.4.2 Simulation Parameters . 79

7.5 Simulation Design . 82

7.5.1 The Splits And Merges Phase . 83

7.5.2 The encoding of the splitting cluster ID and the split details . 84

7.5.3 Consensus and BC . 85

7.5.4 The transactions processing . 86

7.5.5 The blocks processing . 89

7.5.6 The verification checks . 90

7.5.7 The simulation details . 91

7.6 Hypotheses to Verify . 93

7.7 Performance Metrics . 94

vi

CHAPTER 8 SIMULATION ASYMPTOTIC ANALYSIS, RESULTS AND INTERPRETATIONS 96

8.1 Practical Analysis of the SSD Algorithm . 96

8.1.1 Asymptotic Analysis of Building The Structure . 97

8.1.2 Asymptotic Analysis of the Split . 98

8.1.3 Asymptotic Analysis of the Merge . 99

8.2 Final Practical Asymptotic Analysis of the Split and Merge. 100

8.2.1 SSD Algorithm - The Increase of Cluster Size on Level i, i ̸= N . 100

8.2.2 SSD Algorithm - The Increase of Cluster Size on Level i, i = N . 101

8.2.3 SSD Algorithm - The Decrease of Cluster Size on Level i, i ̸= N . 101

8.2.4 SSD Algorithm - The Decrease of Cluster Size on Level i, i = N . 102

8.3 Comparison between the Theoretical Analysis and Practical Analysis of the SSD Algorithm 102

8.3.1 SSD Algorithm - The Increase of Cluster Size on Level i, i ̸= N . 102

8.3.2 SSD Algorithm - The Increase of Cluster Size on Level i, i = N . 102

8.3.3 SSD Algorithm - The Decrease of Cluster Size on Level i, i ̸= N . 103

8.3.4 SSD Algorithm - The Decrease of Cluster Size on Level i, i = N . 104

8.3.5 Comparison Results - Theoretical Analysis versus Practical Analysis of the SSD Algorithm 104

8.4 Comparison of the Simulation Results for the Three BC models . 105

8.5 Comparison of the Simulation Results of the SSD Architecture Built with Different Numbers of

CHs . 108

8.6 Interpretation of the Results . 110

8.6.1 Comparison of the Three Architectures Types . 110

8.6.2 Comparison of the SSD Architecture Built with Different Numbers Of CHs. 111

8.7 Simulation General Analysis . 116

vii

CHAPTER 9 CONCLUSION AND FUTURE WORK . 118

9.1 Conclusion . 118

9.2 Contribution to the Advancement of Knowledge . 119

9.3 Published Contributions . 120

9.4 Simulation Limitations . 121

9.5 Future Work . 121

BIBLIOGRAPHY . 126

viii

LIST OF FIGURES

Figure 0.1 A Binary Merkle Tree . 2

Figure 0.2 Blockchain . 2

Figure 4.1 LSB - Creation and Verification of Tx and Blocks. 25

Figure 4.2 Multi-Tiered Design Concept - Creation and Verification of Tx and Blocks. 27

Figure 4.3 Proposed Multi-tiered Design Concept withN = 4.. 29

Figure 4.4 Multi-Tiered Concept - The Number of Levels and the Colocality. 30

Figure 4.5 SSD Architecture . 36

Figure 4.6 Option-2 Architecture . 38

Figure 4.7 Ring of Rings . 40

Figure 4.8 SSD - The Expansion of the Architecture . 44

Figure 4.9 SSD - The Contraction of the Architecture . 44

Figure 4.10 SSD - The Number of Hops to Verify Tx in the Three BC models without considering Colo-
cality. 53

Figure 4.11 SSD - The Percentage of Colocality to Verify 20 000 000 Tx. 54

Figure 4.12 SSD - The Number of Hops to Verify Blocks in the Three BC models. 54

Figure 4.13 SSD - The Number of Levels and the Colocality. 55

Figure 6.1 SSD - Total Number of Nodes . 62

Figure 7.1 The current sequence of events . 91

Figure 7.2 Node Events . 92

Figure 7.3 Tx Append Latency . 94

ix

Figure 7.4 BlockCreationTime. 94

Figure 8.1 Building the Structure . 97

Figure 8.2 The Split . 100

Figure 8.3 The Merge. 101

Figure 8.4 Average Tx Latency for 100Tx in the Three BC Models. 107

Figure 8.5 Average Block Delay for 100Tx in the Three BC Models. 107

Figure 8.6 Throughput for 100Tx in the Three BC Models. 108

Figure 8.7 Comparison of the SSD BC builds for 500 Tx . 110

Figure 8.8 SSD 500Tx 8CHs - Time Elapsed and Net Time Elapsed Colocal . 113

Figure 8.9 SSD 500Tx 8CHs - Time Elapsed and Net Time Elapsed NonColocal . 114

Figure 8.10 SSD 500Tx 8CHs - Time Elapsed Colocal VS NonColocal . 114

Figure 8.11 SSD 500Tx 8CHs - Net Time Elapsed Colocal VS NonColocal . 115

Figure 8.12 Colocality Effect for the Three SSD Builds . 116

Figure 9.1 SSD architecture incorporating CHORD . 123

Figure 9.2 SSD - The Colocality through Critical Bonding . 124

x

LIST OF TABLES

Table 4.1 Proposed Designs Comparison Table . 43

Table 7.1 System Parameters. 82

Table 8.1 Global Statistics for the Flat Architecture. 106

Table 8.2 Global Statistics for the Two-Tiered Architecture with 8 CHs . 106

Table 8.3 Global Statistics for the SSD Architecture with 8 CHs . 106

Table 8.4 The Flat Architecture with varied numbers of block-generating nodes (256 total nodes). . . . 108

Table 8.5 SSD Global STATS 500Tx 2CHs . 109

Table 8.6 SSD Global STATS 500Tx 4CHs . 109

Table 8.7 SSD Global STATS 500Tx 8CHs . 109

Table 8.8 SSD Global Statistics 500Tx 2CHs VS 4CHs VS 8CHs . 109

Table 8.9 SSD Global STATS 500Tx 2CHs with a modified Tx Latency. 115

Table 8.10 SSD Global STATS 500Tx 4CHs with a modified Tx Latency . 115

Table 8.11 SSD Global STATS 500Tx 8CHs with a modified Tx Latency . 116

xi

ACRONYMS

AI Artificial Intelligence.

ACL Access Control List.

APs Access Points.

AWS Amazon Web Services.

BC BlockChain.

BCHG Backup CH Group.

BFT Byzantine Fault Tolerance.

CH Cluster Head.

CHAC CH Address Chain.

CHORD A Scalable Peer-to-peer Lookup Protocol.

CLT Control Lower Threshold.

CP Consensus Period.

DHT Distributed Hash Table.

FIFO First In First Out.

GN Guardian Nodes.

IL Local Immutable Ledger.

IoT Internet of Things.

IoTDs IoT Devices.

IP Internet Protocol.

LSB Lightweight Scalable BC.

xii

MAC address Media Access Control Address.

MLT Management Lower Threshold.

MTUs Maximum Transmission Units.

MUT Management Upper Threshold.

ON Overlay Network.

PBFT Practical Byzantine Fault Tolerance.

PK Public Key.

PoL Proof of Learning.

PoS Proof of Stake.

PoW Proof of Work.

P2P Peer-to-Peer.

QoS Quality of Service.

RSA Rivest–Shamir–Adleman.

SLAs Service Level Agreements.

SSD Self-Scaling Dynamic Architecture.

Tx Transaction.

VCP Virtual Cord Protocol.

xiii

RÉSUMÉ

Les dispositifs de l’internet des objets (IoTDs) sont omniprésents, aujourd’hui. Les IoTDs sont caractérisés
par le grand nombre de transactions produites et leur susceptibilité aux problèmes de confidentialité et de
sécurité. Les chaînes de blocs représentent un registre distribué immutable qui convient à toutes sortes
de transactions sans intermédiaire. Les chaînes de blocs sont caractérisées par des long délais reliés au
calculs mathématiques et au nombre des sauts (délais de propagations) nécessaires afin que les noeuds
participants atteignent un consensus.

Nous proposons une solution d’organisation des nœuds qui pourra permettre aux chaînes de blocs de
soutenir les IoTDs en regroupant tous les noeuds incluant les IoTDs. À cette fin, nous introduisons un con-
cept multi-niveaux (forêt) qui sert à augmenter la mise à l’échelle et l’efficacité du consensus ainsi qu’à
créer un équilibre entre la décentralisation du consensus et la lourdeur de gestion des noeuds. Au coeur
du design, se trouve un algorithme d’accélération de consensus qui sert a limiter le nombre de sauts néces-
saire entre les noeuds ainsi que le nombre de noeuds participant au consensus à un nombre borné log-
arithmiquement comparativement aux noeuds aux niveaux inférieurs. Ainsi, plus la forêt est profonde,
plus elle devient évolutive et efficace. Nous proposons trois architectures, indépendantes des applica-
tions et des algorithmes de regroupement et de consensus, tirées de notre concept multi-niveaux: i) Self-
Scalable Dynamic (SSD) (Auto-Évolutive Dynamique), ii) Partitioned (Partitionnée) et iii) Ring of Rings (An-
neau d’anneaux). Nous choisissons d’implementer une des architectures pour valider notre concept multi-
niveaux: l’architecture SSD. Dans l’architecture SSD, un seuil minimal est fixé par niveau pour la taille des
groupes afin de garantir un consensus équitable conformément aux règles de décentralisation des chaînes
de blocs. De même, un seuil maximal par niveau est établi pour faciliter une gestion efficace des nœuds
du groupe par les noeuds gérants. Compte tenu de la nature dynamique des nœuds rejoignant et quittant
le système, le respect de ces seuils maximums et minimums nécessite des ajustements dynamiques de la
taille des groupes. Par conséquent, les groupes sont conçus pour se diviser ou fusionner en cascade. Ce
redimensionnement dynamique affecte également l’architecture globale, entraînant son expansion ou sa
contraction en termes de nombre de niveaux.

Les IoTDs se trouvent au plus bas niveau de la hiérarchie où les transactions sont générées et propagées
vers les plus hauts niveaux de l’architecture. Ce trajet vertical, même s’il peut impliquer un certain nombre
de niveaux à traverser, se fait dans un seul saut grâce à l’utilisation d’un mécanisme de repérage de noeuds
conçu pour indiquer la position de chaque noeud ainsi que de ses parents aux niveaux supérieurs. La véri-
fication des transactions ainsi que la vérification des blocs se font par un petit nombre de noeuds, ce qui
réduit le temps des propagations, spécialement si l’on compare au temps nécessaire à faire les mêmes ver-
ifications dans le cas du modèle des chaînes de blocs traditionnel ou même un modèle à deux-niveaux. La
colocalité des noeuds participant dans une même transaction dans un même arbre de la forêt a un grand
effet sur l’efficacité du modèle car le nombre de sauts nécessaire pour verifier les transactions diminue
significativement. Le temps de consensus est réduit àO(1) plus une constante fois l’ordre du délai de prop-
agation maximal vers les noeuds les plus élevés. La constante est égale à trois, sans colocalité au pire cas;
tandis qu’avec colocalité, la constante est égale à deux, dans le meilleur cas.

Les simulations effectuées mettent à l’épreuve trois modèles des chaînes de blocs: le modèle traditionnel
plat, le modèle à deux-niveaux, ainsi que notre modèle SSD. Les résultats des simulations montrent que
bien que le modèle à deux niveaux ait surpassé le modèle traditionnel plat en termes de temps de con-
sensus de 23,7%, le modèle SSD a surpassé le modèle à deux niveaux et le modèle plat (lorsque le modèle

xiv

plat a 6% des nœuds en tant que nœuds générateurs de blocs) de 198%. L’avantage augmente à mesure
que le nombre de noeuds générants les blocs augmente dans le modèle plat, atteignant 2677% lorsque le
modèle plat a 88,6% des nœuds en tant que nœuds générateurs de blocs. Nous avons aussi effectué des
simulations pour le modèle SSD ayant des différents nombres de noeuds générants les blocs afin de valider
le concept de colocalité qui s’est avéré prometteur. Tous nos résultats s’accordent bien avec nos hypothèses
et représentent une preuve de concept valide.

Les designs et concepts proposés peuvent servir de solutions à usage général pour la mise à l’échelle, le
repérage de nœuds pair-à-pair et le routage demessages pour les systèmes distribués ainsi que l’équilibrage
de charge pour les systèmes en grappes.

Mots Clés– chaînes de blocs, IoT, Consensus, Mise à l’Échelle, Équilibrage de Charge, Décentralisation, Sécu-
rité, Lourdeur deGestion, ArchitectureMulti-Niveaux, Repérage desNoeuds, Acheminement desMessages.

xv

ABSTRACT

Nowadays, Internet of Things devices (IoTDs) are ubiquitous. IoTDs are characterized by generating a large
number of transactions per second and by being vulnerable to security and privacy issues. Blockchain tech-
nology represents a distributed immutable ledger designed to support various transactions and achieve
consensus without the need for intermediaries. A blockchain ledger typically requires a significant amount
of time to reach consensus due to the complexity of computations and the number of hops (propagation
delays) needed for transactions (Tx) and blocks to reach all nodes. This presents a challenge for blockchain
support in IoTDs.

We propose a node-organizing solution that allows the use of blockchain into the IoT ecosystem by in-
troducing a multi-tiered (forest) design concept that is based on clustering all nodes including the IoTDs.
The concept aims to enhance blockchain scalability and consensus efficiency while maintaining a balanced
distribution of node management overhead and consensus decentralization. At its core, the design incor-
porates a consensus-accelerating algorithm that reduces the number of hops among nodes by restricting
consensus participation to only those nodes situated at the highest level of the structure, thus to a number
of nodes logarithmically bounded compared to the number of nodes located at the levels below. Hence,
the deeper the forest, the more scalable and efficient it becomes. Drawing from the multi-tiered concept,
we introduce three blockchain architecture designs that are agnostic to applications, as well as to clustering
and consensus algorithms: i) Self-Scalable Dynamic (SSD), ii) Partitioned and iii) Ring of Rings architectures.
We choose to implement and test one of the architectures in order to validate our multi-tiered concept:
the SSD architecture. In SSD architecture, a minimum value is set per level for cluster sizes to ensure fair
consensus in accordance with blockchain decentralization rule. Similarly, a maximum value per level is es-
tablished to facilitate effective cluster node management within the hierarchy. Given the dynamic nature
of nodes joining and leaving the system, adhering to these minimum and maximum values necessitates ad-
justments in cluster sizes. Consequently, clusters are designed to split and/or merge in a cascading manner.
This dynamic resizing also affects the overall architecture, leading to its expansion or contraction in terms
of the number of levels.

The IoTDs are located at the bottom of the architecture, and transactions are generated and propagated
(by the IoTDs) upwards towards the highest level of the architecture. This upward routing is performed in
only one hop even though it may involve a number of levels to be travelled, thanks to the use of a node-
lookup mechanism specially designed to specify the position of each node and that of its parents at the
levels above. Transaction and block verifications are done by a smaller number of nodes compared to a
traditional blockchain model or even a two-tiered model. The co-existence of IoTD nodes participating in
the same Tx within the same tree of the forest (colocality) significantly enhances the model’s efficiency
by reducing the number of hops required for Tx verification. Consensus time is reduced to O(1) plus c ·
O(maximumpropagation delay towards topmost nodes), c is a constant s.t. without colocality, c ≤ 3
worst case; while with colocality, c ≤ 2, best case.

Simulations are built to test three blockchain models: the flat traditional model, the two-tiered model as
well as the SSD multi-tiered model. The simulation results show that though the two-tiered model outper-
formed the flatmodel in terms of the consensus time by 23.7%, the SSDmodel outperformed the two-tiered
model and the flat model (when the flat model has 6% of the nodes as block generating nodes) by 198%.
The advantage gets larger as the number of block generating nodes increases in the flat model, reaching
2677% when the flat model has 88.6% of the nodes as block generating nodes. We also performed simula-

xvi

tions for the SSDmodel using different numbers of block-generating nodes in order to validate the colocality
concept, which proved to be promising. All our results align well with our hypotheses and represent a valid
proof of concept.

The proposed designs and concepts may serve as general-purpose solutions for scalability; peer-to-peer
node-lookup and message-routing for distributed systems as well as load-balancing for clustered systems.

Keywords– Blockchain, IoT, Consensus, Scalability, Load balance, Decentralization, Security, Management
Overhead, Multi-Tiered Architecture, Node Look-up, Message Routing.

xvii

INTRODUCTION

Nowadays, we live in a world of pervasive Internet of Things (IoT). The IoT represents a paradigm that

provides users with a wide range of services by integrating interconnected sensors and communication

functionalities into various devices. These devices include embedded systems, mobile equipment, wear-

able computers, and more (Cor, 2018). IoT devices exchange a considerable amount of sensitive data and

monetary transactions that may reveal personal behavior and preferences or even lead to a construction of

a detailed personal profile. Unfortunately, the IoT devices (IoTDs) have limited resources to deal with such

crucial privacy and security issues.

BlockChain (BC) technology, which is a peer-to-peer distributed ledger technology originally developed to

support cryptocurrency, can be leveraged to support any type of transaction (Tx), without intermediary.

BC nodes achieve consensus to append a new block of Tx into a Merkle tree. In Figure 0.1, there is an

example of a binary Merkle Tree where a leaf node contains the hash of the data, while a non-leaf node

contains the hash of all its children nodes. Hence the Merkle tree root contains the hash of the whole

tree. BC is based on the idea of blocks chained in a Merkle tree as in Figure 0.2: the header of each block

contains the hash of the previous blocks as well as the root of the Merkle tree that contains the hash of

current block’s data. Current block’s header is in turn hashed into next block’s header to form an immutable

chain of blocks. Thus in BC, transactions are stored in blocks, and the blocks are stored in a database.

The Tx parties agree over the state of the database through a consensus mechanism. The transactions

are produced by non-trusted Tx parties without a centralized authority. The transactions are timestamped

for data audit and the blocks are chained in a Merkle tree, which makes them tamper proof. Since an

attacker has to control at least 51% of the network computing power (Lunardi et al., 2022) (of Proof of

Work-based1 BC) in order to attempt to compromise the BC network, it is impractical to launch an attack on

BC. This immutable nature along with the associated security and auditibility benefits makes BC a potential

solution for IoT challenges. However BC has limited scalability (the achievable number of transactions per

second is limited2), significant bandwidth overhead (toomany communications) and large delays (in order to

achieve consensus), which renders BC applications for IoTDs to be very challenging. Previous work has been

done to address such challenges, however several issues are yet to be addressed regarding BC scalability

aspects, namely, achieving a balance between establishing a decentralized control while reducing the node

1 Proof of Work is a consensus algorithm that requires network members to expend effort in solving a cryptographic puzzle.

2 IoT requires millions of transactions per second while current BC provides hundreds or thousands of transactions per seconds

1

management overhead.

Figure 0.1 A Binary Merkle Tree

Figure 0.2 Blockchain

The thesis aims to introduce a new node-organizing multi-tiered design concept represented by a number

of design architecture options. The concept is to address current BC models’ scalability and consensus

efficiency challenges. One of the design options (self-scaling distributed (SSD) architecture) is chosen to be

further studied and simulated in order to be compared to the literature BC models as one way to showcase

the comparative scalability and efficiency of our concept.

Our design concept is inspired by two-tiered node-organizing architectures which aim to improve scalability

and efficiency of flat traditional BC chain models. In Flat models, all nodes are located at the same level and

theymay generate transactions andbuild blocks. Nonetheless, in flatmodels, all nodes are visited to achieve

consensus regardless of the necessity, which creates considerable amounts of traffic overheads (due to the

number of broadcasts involved) as well as scalability limitations not well suited for IoT high transaction rate.

2

An example of a two-tiered BCmodel that contributed to our inspiration is the Lightweight Scalable BC (LSB)

architecture introduced by Dorri et al. (Dorri et al., 2017c; Jurdak et al., 2017; Dorri et al., 2017b; Dorri et al.,

2016). In LSB, the smart home, where the IoTDs reside, constitutes the first tier (at a bottom level), and

the overlay network nodes located at a higher level constitute the second tier, where the public BC resides.

Our design concept is also inspired by BlockSim (Alharby et Moorsel, 2020), incorporating IoTDs located at

a lower level and gateways that manage these IoTDs situated at a higher level.

In two-tiered models, we have pinpointed several scalability issues representing significant obstacles that

may impede two-tiered models from achieving complete scalability for accommodating real-world applica-

tions for today’s IoTDs and efficiently achieving consensus.

In our proposed design model, we aim to introduce an elastic design that can seamlessly adjust to accom-

modate the fluctuating presence of IoTDs within the system, addressing concerns about scalability and

flexibility. We also target an enhancement in consensus efficiency by minimizing the number of hops and

nodes required, especially as IoTD numbers increase. Our focus remains on managing node overhead ef-

ficiently, aligning it with the system’s capacity. Ensuring adherence to decentralization principles across all

nodes is another key goal. Additionally, we strive tomaintain a delicate balance between nodemanagement

overhead and consensus decentralization throughout our design process.

To the best of our knowledge, the fundamental question of how to design a distributed, hierarchical, dy-

namically self-scaling, and self-adjusting architecture for IoT-based blockchain has not been explored in the

literature so far. Additionally, we are not aware of any consensus-accelerating protocol, positioning mech-

anism, or self-scaling algorithm that can assist with multi-tiered architectures while meeting the needs of

blockchain-based IoT.

0.1 Motivation

The proposed designs and concepts may serve as general-purpose solutions for:

1. scalability, namely the multi-tiered design;

2. peer-to-peer node-lookup andmessage-routing for distributed systems, namely thepositioningmech-

anism;

3

3. load-balancing for clustered systems, namely the self-scaling algorithm.

Application scenarios of IoT systems that produce transactions (usually monetary transactions) at a high

rate through non-trusted Tx parties, and that may leverage BC are :

1. Supply Chain,

2. Smart vehicles,

3. Healthcare Systems,

4. Smart Energy Grid.

In supply chain, specially in industries like food and pharmaceuticals, IoT sensors can track the movement

and temperature of products throughout the supply chain. The sensors do not trust each other. They gen-

erate a considerable amount of transactions at a high rate to track all the food or pharmaceutical products.

Each Tx (e.g., product movement from one point to another or product purchase) can be recorded in BC for

transparency and traceability, ensuring product authenticity and quality control.

In autonomous vehicles, with the rise of autonomous vehicles, there is a massive amount of data gener-

ated and transactions occurring between vehicles, infrastructure, and other stakeholders (e.g., toll booths,

charging stations). The vehicles and the stockholders do not trust each other and they produce transactions

at a high rate. BC can be used to securely record andmanage these transactions, such as payments for tolls,

parking fees, or energy consumption.

In healthcare systems, IoT devices (IoTDs) such as wearable health monitors can continuously collect and

transmit patient data and monetary transactions. The monitors do not trust each other and they produce

transactions at a high rate. BC can securely store this data, ensuring privacy and integrity, while also enabling

patients to control access to their health information. Transactions related to data access or sharing can be

recorded on the BC. Also monetary transactions including payments for health care service providers and

insurance companies can be recorded on the BC for privacy and security.

In smart energy grids, IoTDs such as smartmeters canmonitor energy consumption in real-time. Themeters

do not trust each other. As numerous transactions occur at a high rate when energy is bought and sold

4

within the grid, BC can be used to securely record and settle these transactions, ensuring transparency and

preventing fraud.

Thus BC is important for IoT. With the rise of today’s vast use of IoTDs in the aforementioned scenarios as

well as in pretty much every aspect of life, there is a need for a BC that helps ensure privacy, transparency,

audibility and security of the transactions produced by IoTDs, while being scalable and efficient enough to

support the enormous amount of transactions produced at a high rate. Hence, there is a need to ensure

BC scalability to fulfill current and expected future amounts of transactions produced by IoTDs at a high Tx

rate.

The following chapters are organized as follows. In Chapter 1, we present related studies found in the liter-

ature. In Chapter 2, we introduce the research problem. In Chapter 3, we state our research objectives. In

Chapter 4, we showcase ourmulti-tiered concept design (themodel), our consensus-accelerating algorithm

aswell as a number of proposed architecture design options to achieve themulti-tiered design concept. We

also introduce one of the proposed architectures in details along with our proposed node look-up position-

ingmechanism and our proposed self-scaling (load balancing) algorithm that elastically shrinks and expands

the structure. In Chapter 5, we present our methodology. In Chapter 6, we present the theoretical analy-

sis of our design, including the theoritical asymptotic analysis of the self-scaling algorithm independently

from the simulations. In Chapter 7, we introduce the details of our simulations. In chapter 8, we present

the practical asymptotic analysis of the self-scaling algorithmwhile taking into consideration the operations

required to manipulate the complex data structures that holds the node and cluster data as implemented

in our simulations. In the same chapter, we compare both asymptotic analysis of the self-scaling algorithm

(the theoretical and the practical), and we present our simulations’ results along with the results’ interpre-

tations. Finally, in Chapter 9, we conclude our study and we state our study’s limitations as well as future

works.

5

CHAPTER 1

LITERATURE REVIEW

IoT devices (IoTDs) may range from the size of a grain of sand sensor to the size of a car. IoTDs are usually

characterized by having limited CPU capabilities and battery lifetime. IoT operations take place at very

high rates and may include personal, financial and other sensitive data that need to be kept private. IoT

operations are diverse and vary according to the nature of the IoTD. For example a smart fridge operations

might range from interacting with the home owner phone to interacting with other smart devices around

the house in order to alleviate the load on resources utilization such as the electric power, gas, water or

sewers, during a specific time of day. Such operations might be controlled by a smart phone, tablet or

computer, and thus analyzing them might lead to track everyday routine patterns of the home owner.

We start our literature reviewwith a brief background about BC, pinpointing strengths and weaknesses of a

number of BC consensus algorithms. Then, we introduce previous BC-based IoTwork focusing on scalability.

Finally, we introduce BC-based IoT works, classified based on their node organization, specifying how they

relate to our proposed design.

1.1 Background

A BC is a distributed database that maintains an immutable public ledger in the form of a continuously

growing list of ordered records called blocks (Androulaki et al., 2018; Buterin, 2021; Nakamoto, 2009; Kosba

et al., 2016; Valenta et Sandner, 2017; Eyal et al., 2015; Iro, 2018). A BC is usually implemented as a Peer-

to-Peer (P2P) overlay network (ON) where the nodes are BC participants. P2P systems and applications

are distributed systems without any centralized control or hierarchical organization, where the software

running at each node is equivalent in functionality (Stoica et al., 2001). Some of BC nodes act as miners

that accumulate and validate transactions (Tx), which are messages between nodes, and generate blocks

of such Tx to be added to the chain. The consensus defines the rules that determine how the next block is

created and which Tx are to be included. Consensus is established through a consensus protocol, such as

Proof of Work (PoW), Proof of Stake (PoS), Proof of Learning (PoL) (Bravo-Marquez et al., 2019), Byzantine

Fault Tolerance (BFT) (Clement et al., 2009; Sousa et al., 2018), Practical Byzantine Fault Tolerance (PBFT)

(Vukolić, 2016), etc. A PoW-based block of Tx, is created by one network miner who is randomly given a

chance to solve a computationally expensive puzzle that can be easily verified by all participating miners in

6

order to solidify a network consensus (Cachin et Vukolić, 2017). The Tx are produced and may be verified

by the non-trusted participants without involving any centralized authority (Kalis et Belloum, 2018). Tx are

timestamped in order to allow data audit, and blocks are chained in a Merkle tree (Dorri et al., 2018; Bravo-

Marquez et al., 2019; Gupta et Sadoghi, 2018; Wilkinson et al., 2016; Bogdanov et al., 2018) in order to

prevent data tampering. Nodes might appear close by in the overlay network (ON) whereas in the real,

physical network, they might be thousands of miles away, with several intermediary servers and routers in

between, causing uncontrollable delays. Due to this reason, BC is not well suited for IoTDs (Singh et Duggal,

2022).

BC’s distributed nature means that there is no master computer to manage the ledger, but rather, the par-

ticipants have a copy (or sub-copy) of the ever-growing chain (usually the BC ledger is public and a copy of

it resides on each participating node). And it also means the elimination of single points of failures as well

as the presence of P2P messaging, distributed file sharing, and autonomous device coordination (Prabhu

et Prabhu, 2017; Atlam et al.,).

Thus BC can provide flexibility and auditibility benefits to help secure IoTD interactions. However BC-based

IoT implementations lack several aspects required to allow quick response time and/or scalability for the

ever-expanding IoT environment (Raza et al., 2017). Other issues, such as the complexity of operations

required for reaching consensus, the latency of asynchronous networking, the inability to manage an ever-

growing ledger, are challenges for resource-constrained IoTDs. Our research aims to address some of these

issues.

The consensus most commonly used in BC are BFT and PoW. In BFT, a group of replicas try to reach a con-

sensus on the execution order of Tx and blocks as well as the results of client (node) requests even though

a faulty subset of these replicas may behave arbitrarily. As long as 3f + 1 replicas behave correctly, the

agreement scheme can tolerate up to f faulty nodes. In PoW, participants choose nonces and calculate

hashes until the resulting hash is lower than a certain threshold, which is a very expensive computation

process. BFT suits permissioned BC where all participants are known in advance, and no new participants

are allowed to join in BC (e.g. Tendermint (Buchman, 2016)), which is not the case for BC-based IoTDs. In

permissionless BC, BFT does not scale and does not mitigate Sybil attacks where an attacker participates in

BC using several identities. Along with good reconfigurability (allowing nodes to join and leave the network

at any time), a high throughput and a large consensus group that can tolerate a high number of failures are

7

desirable properties of BFT. However, these properties are often in a direct conflict. Most BFT protocols

achieve high throughput but are limited to small groups of participants whose reconfiguration is not easily

achievable; while PoW supports a large number of participants with flexible reconfigurability however with

very limited throughput. Our study does not aim to introduce a new consensus protocol however it aims

to improve what is offered by the literature.

(Rüsch, 2018) proposes improvements for a permissioned BC, theHyperledger. The design enables transpar-

ent access to BFT clusters (leveraging a proxy) without the assumption that the nodes will behave correctly,

leaving the computation tomore powerful replicas while the peers are kept computation free tomatch their

resource capabilities. This renders the Hyperledger more resilient to byzantine faults with a more efficient

communication layer that enables data center machines to access each others’ memory without involving

the operating system.

1.2 Related Works

1.2.1 Related Works - Classification based on Scalability

Our work focuses on improving BC-based IoT and their scalability issues in terms of the number of IoTDs

supported by the system and the Tx throughput. Based on these issues, (Croman et al., 2016) provide a

decomposition of BC systems into a set of abstraction layers (planes) which allows for a structured classifi-

cation of the scalability issues of each plane, pinpointing why and where they emerge along with a number

of recommended solution approaches and protocol ideas.

A number of BC-based IoT implementations focus on scalability from different points of view, ranging from

the number of IoTDs supported by the system, to Tx throughput produced, to the number of Tx communi-

cated through low power networks. According to (Croman et al., 2016), BC computing complexity to reach a

consensus leads to excessive Tx processing time. This problem is addressed in the literature by either build-

ing a custom-made BC that implements the consensus in a simplified approach, by deploying a pre-existing

scaled-consensus BC platform or by removing the consensus computations off the IoTDs’ shoulders.

(Wang et al., 2019) and (Raza et al., 2017) provide surveys on BC for IoT, evaluating its suitability and detailing

how adaptations/enhancements should be elaborated on consensus protocols and data structures before

they are integrated into IoT.

8

An example of a custom-made BC focusing on scaling the number of IoTDs supported aswell as the through-

put obtained is the implementation of (Dorri et al., 2017a; Dorri et al., 2017c; Jurdak et al., 2017; Dorri et al.,

2017b; Dorri et al., 2016), which proposes a Lightweight Scalable BC (LSB). LSB is a two tiered distributed

architecture. The smart-home network with a Local Immutable Ledger (IL) is separated from the ON that

manages the public BC. It is a node-organizing tiered design where IoTDs located at the bottom level are

managed by Cluster Heads (CHs) located at the top level and performing consensus. The design aims to ad-

dress BC scalability issues and to reduce the time to approve both Tx and blocks through clustering IoTDs.

The BC ledger contains the transactions created per participant (requestee), and the consensus is simplified

by implementing a trust system where some of the Tx can skip verifications in order to accelerate the block

creation process. Our work aims to take that implementation to the next level by adding more levels to that

two-tiered architecture, thus further enhancing the scalability and the efficiency.

(Heo et al., 2022a) and (Heo et al., 2022b) propose a multi-level of cashing to solve the storage problem

introduced by IoTD-based BC, by storage optimisation based on data access patterns. Each node initially

stores new blocks broadcast fromminers in its local storage. Over time, block headers and transactions that

have not been accessed are replaced with their hash values by removing the data itself. These studies aim

to reduce BC storage requirements, while maintaining consistency and minimizing query costs.

An implementation of an existing BC platform naturally characterized by a scaled throughput is introduced

in (Huh et al., 2017) as a three device implementation on Ethereum (Buterin, 2021), leveraging its smart

contracts (Delmolino et al., 2016; Kosba et al., 2016). The design manages keys using RSA public key crypto

systems. Public keys are stored in Ethereum and private keys are saved on individual devices.

Another implementation to solve the problems related to the integration between IoT and BC by using

smart-contract in the healthcare field is (Chendeb et al., 2020). The architecture introduced is based on

publish/subscribemodel and an access control andmanagement scheme for amulti-layered system that has

the patient layer (the IoT layer), the authority layer (access all data) and the cloud provider layer (gateways

that mine using the smart contracts).

(Schiller et al., 2019) introduces various methods based on scaling the number of Tx communicated as Max-

imum Transmission Units (MTUs), to improve BC-based IoT built over a low power network using a Lo-

RaWAN communication protocol. The system performance, the reliability of transport schemes, and the

9

energy efficiency of the overall system are evaluated. The scheme provides a trade-off between submitted

Tx count, packet loss, and energy efficiency. Data integrity is obtained by providing a reliable data transmis-

sion scheme from IoTDs to the BC.

LoRaWAN network architecture is deployed in a star-of-stars topology in which gateways relay messages

between end-devices and a central network server. The gateways are connected to the network server

via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets

and vice versa. The wireless communication takes advantage of the Long Range characteristics of the Lo-

RaWAN physical layer, allowing a single-hop link between the end-device and one or many gateways. In

LoRaWAN, there is no need to achieve consensus between the network servers, spanning all of them. Fur-

thermore, the nodes typically have a star-of-stars topology, making it challenging to reorganize them into a

more flexible structure like a forest. Additionally, each node has a specific role dictated by its specifications,

establishing rigid relationships among the central server, gateways and end-devices. Consequently, nodes

may not exchange roles or positions easily. For these reasons, our design may not offer significant benefits

to LoRaWAN.

In Ethereum, there are four types of nodes: miners, full nodes, light nodes and archive nodes. Scaling our

architecture is based on the flexibility of the nodes to exchange roles and positions, which is not possible

for Ethereum nodes since the nodes have different specifications to allow each type of node to perform its

specific functionality.

Other approaches to increase the throughput, which is directly affected by the Tx processing time for con-

sensus, follow the trend of assigning the consensus computations to more powerful resources, which falls

within the focus of our study. An architecture to decentralize the ledger by assigning the Proof of Work

to a number of edge servers acting as miners that validate the produced Tx is proposed in (Angin et al.,

2018). The Tx are sent towards a number of powerful servers on the cloud to be appended to the ledger.

Keeping the ledger on powerful servers helps maintain an integrity-preserving immutable ledger replicated

at multiple sites, and thus overcoming the IoTD resource limitations, and increasing the ledger scalability.

In ourwork, we focus on simplifying the consensus protocol using clustering aswell as studying its suitability

for IoTDs. In (Sağırlar et al., 2018), the different consensus characteristics of BFT and PoW are exploited in

a hybrid BC-based IoT. As it was observed that PoW BCs containing few hundreds of geographically close

10

IoTDs have high performance (Tx throughputs) and low block propagation delays, the first step in Hybrid-BC

consists of generating multiple PoW BCs. The design uses PoW for a few nodes within small groups, and

then applies BFT to connect between the groups.

A number of works consider the suitability of consensus protocols. In (Mackenzie et al., 2018), a num-

ber of BC consensus protocols are assessed against an IoT requirement framework in order to identify the

strengths and weaknesses as the consensus protocols get implemented into the IoT environment.

Having introduced the first classification of our literature, let us consider some limitations of the introduced

designs. (Schiller et al., 2019) only address Tx transmission scalability considering real and random locations

of LoRa nodes, while node locality, where nodes that are most frequently participating in common Tx may

get logically closer over time to further increase the system performance was not exploited. Our work

will study the node locality within our model. (Angin et al., 2018) partially addresses BC storage scalability.

Nevertheless cloud servers are potential single points of failure and also due to the high complexity of the

computations required to ensure PoW security, this makes it prohibitive (in terms of energy consumption)

for the resource contained devices to participate in the block formation process, so AWS t2micro nodes are

unable to compute PoW. In (Huh et al., 2017), the produced throughput is only one Tx per twelve seconds

which is too small for today’s IoTD needs. Also the lack of a lightweight client is a challenge that cannot

be addressed by using an expensive external storage on IoTDs or by using insecure third party proxies.Their

approach will be mimicked by one of our proposed model. (Dorri et al., 2017a) and (Chendeb et al., 2020)

attempt to address the scalability question in terms of the number of IoTDs supported by replacing the com-

plex computation by a simplified consensusmechanism and by building amulti-tiered architecture based on

an access control scheme. Also (Heo et al., 2022a) and (Heo et al., 2022b) attempts to address the storage

optimization for BC based on the IoTD on-line availability degree. however scalability in those studies was

limited because of traffic overhead due to the almost flat design also due to overlooking the traffic overhead

and the node manageability issues that will eventually take place in BC applying such designs.Additionally,

we can observe that the consensus plane issues are partially addressed by delegating BC interactions to

cloud servers or on faster BC platforms such as Ethereum.

1.2.2 Related Works - Classification based on Node Organization

An alternative categorization for relatedworksmaybe conducted according to thenode-organization adapted

in each design. In this subsection, we review designed architectures that are relevant to our multi-tiered

11

concept from a node-organization perspective. The fundamental scalability and efficiency issues are some

of the main obstacles to overcome when implementing BC into IoT ecosystems. Scalability is evaluated

based on different criteria including the number of supported IoTDs and Tx throughput.

An example two tiered architecture is Lightweight Scalable BC (LSB)(Dorri et al., 2017a) where only IoTDs

are clustered and consensus is simplified by putting in place a trust system that allows some Tx to skip

verifications, hence, improving consensus time. An implementation for a two-tiered BC architecture where

IoTDs located at the bottom level produce transactions while gateways, which are CHs that are located at

the top level, interact with BC using a modeled Proof of Work (PoW)(Yu, 2023a; Qi et al., 2023) consensus,

is proposed by (Alharby et Moorsel, 2020; Alharby et Moorsel, 2022).

IOTA Tangle(IOT, 2024) is a two-tiered architecture, a cryptocurrency system for IoT based on directed acyclic

graph (DAG) structure. IOTA does not use miners to validate transactions, instead, nodes that issue a new

Tx on the network must approve two previous transactions. It supports high concurrency, scalability, and

zero Tx fees.

A multi-tiered implementation of an existing BC platform naturally characterized by a scaled throughput

and low latency is introduced in (Albulayhi et Alsukayti, 2023) as an architecture built on Ethereum (But,

2021), leveraging its smart contracts (Tanwar et al., 2023). A multi-tiered cellular network architecture is

proposed by (Alhusayni et al., 2023) and is based on clustering IoTDs and assigning cellular devices at the

level above as local BCs to connect to cellular base stations situated at a top level as a global BC. The latter

implements decentralized BC mechanisms. A similar architecture is proposed by (Pajooh et al., 2021).

A multi-tiered architecture is proposed by (Oktian et al., 2020) where a core engine, located at a top layer,

performs consensus and supervises underlying instances of sub-engines (for payment, compute, and stor-

age) which connect to IoTDs through APIs.

The aforementioned two-tiered designs have the top level prone to face the same scalability issues as in

a regular flat model. The designs are rigid s.t. there is no possibility to scale and add more levels or split

clusters (to fit more IoTDs) and there is a strict distinction between the IoTDs and CHs. Consequently, they

cannot exchange positions or roles, hindering scalability to meet the demands of today’s IoT. In these de-

signs, the structure is pre-built before the consensus mechanism is initiated and can not be modified once

built, whichmay not always alignwith the requirements of a dynamically operating BC thatmust continually

12

expand on the fly. Decentralization is not achieved in IOTA since it relies on a single coordinator node to

achieve consensus. In two-tiered models, we have identified several scalability issues stemming from the

rigidity of the design, which lacks the flexibility to accommodate additional levels. We have also identified

missed opportunities for potential improvements in consensus efficiency that can be further addressed.

We have identified issues regarding node management overhead, where the capacity of managing nodes

should not be less than the overhead of the managed nodes. These aspects are necessary key points char-

acterizing a hierarchical design. We have identified issues concerning consensus decentralization, which

is a fundamental requirement for correct blockchain functionality. All these issues are significant factors

that may hinder two-tiered models from achieving full scalability to accommodate realistic applications for

today’s IoTDs and swiftly reaching consensus.

In themulti-tiered architectures, tiers correspond to conceptual layers to implement BC rather than amulti-

tiered node organization where nodes may span across several levels while the number of levels may be

increased and clusters may split to allow for scalability. Thus they face the same issues mentioned earlier.

Lastly, all aforementioned architectures overlook creating a balance between node traffic overhead and

decentralization, a main requirement for BC security and operability.

The existing BC designs (some of which discussed above) suffer from the following drawbacks:

1. limited scalability,

2. low throughput,

3. consensus inefficiency, and

4. lack of balance between node manageability and decentralization.

In the following chapter, we present the research problems addressed in the literature and those still to be

addressed.

13

CHAPTER 2

RESEARCH PROBLEM

2.1 The Problem in General

IoT devices (IoTDs) are heterogeneous non-trusted Tx parties, typically having limited resources and often

experiencing high Tx rates. IoTDs leverage BC as a potential trust and security solution due to its immutabil-

ity, security and decentralization. In BC, all blocks are verified by all nodes which leads to significant broad-

cast traffic and processing overheads that increase quadratically with the number of nodes in the system.

This leads to long delays, as verifying one Txmay take the order ofminutes (10minutes in the case of Bitcoin)

which is not suitable for IoT interactions that are almost instant, according to each application’s Quality of

Service (QoS) and Service Level Agreements (SLAs). Moreover, most BC have a limited throughput in terms

of the number of transactions that may be stored in the ledger per second (in O(10000)), which is not

suitable for IoT applications that are characterized by producing millions of transactions per second. Thus

owing to its heavy bandwidth overhead, latency and limited throughput, classic BC is not well suited for

IoTDs. One way to calculate consensus time is to count the number of hops a Tx needs to reach BC within

the overlay network. In this research, we assess how BC node organization affects overlay network delays,

assuming that these effects will eventually impact the actual physical network.

To pinpoint the problem, let’s consider the current BC node-organizing models:

1. In the typical one-tiered (flat) model where all nodes are located at the same level and may generate

transactions and build blocks, all nodes must be visited by all transactions and blocks to perform

Tx and block verifications. This model is characterized by a significant number of broadcasts, large

consensus time and limited throughput due to the fact that all nodesmust be visited regardless of the

necessity in order to achieve consensus. This creates scalability limitations, increased traffic overhead

and increased consensus delays.

2. In the two-tiered model, where block-building nodes (referred to as Cluster Heads (CHs)) located on

the top level manage the clustered Tx-generating nodes (simply referred to as IoTDs), located at a

lower level, there is no possibility to expand the design vertically by adding more levels. Expanding

the design may only be horizontally by adding more cluster heads at the top level. However adding

extra CHs at the top level to accommodate for more IoTDs, will saturate that level at some point in

14

time. Thus the two-tiered model suffers from the same drawbacks faced by flat model, only reflected

at the top level.

In terms of security, it’s essential to maintain the blockchain’s true characteristic of proper block chaining

while ensuring decentralization of control to prevent a small number of nodes from seizing control of the

chain. This should be achieved while maintaining efficient processing of transactions, which could number

in the millions as generated by IoTDs. Scaling up for such a considerable number of Tx produces a great

amount of Traffic and workload overhead that needs to be addressed while preserving the decentralization

of control as well as the efficiency, which is a great challenge.

BC ledger can be duplicated on all participating nodes or distributed on other servers such as the cloud. Each

such implementation choice has its pros and cons. Though server-based implementations might represent

a solution to account for the heterogeneity (in terms of manufacturing, capability, functionality, etc...) as

well as the storage, processing and energy limitations of IoTDs, they also represent a reliability problem

since servers are considered as single points of failure, also there is a chance to lose some of the data while

being collected by the server.

2.2 The Specific Research Problem

Let us first consider the scalability limitations reported in the literature in terms of Croman’s (Croman et al.,

2016) network, consensus and storage planes.

At the network plane, the existing solutions need an optimization for the routing process and the distance

travelled to locate Tx parties in order to timely create and verify Tx. There is a difference between the

distance between two nodes in the physical network versus the distance between the same nodes in the

overlay network. In the physical network, the distance between two nodes is measured in terms of miles or

thousand of miles while in the overlay network (a virtual network), the distance between the same nodes

is measured as only one hop, no matter how large the distance is in the physical network. A mechanism is

needed for associating a Tx to the Tx-generating and Tx-visited nodes while limiting the use of non-scalable

solutions such as lengthy Access Control List-like lists. A mechanism is also needed for locating IoTDs man-

aged by CHsmore efficiently, whilemapping the logical locations of each node, within the design abstraction

layers.

15

A typical BC is a flat model where all Tx and blocks have to be verified by all nodes in order to append blocks

to BC. Though some studies in the literature improved the consensus plane by delegating the verification

process to only CHs that manage clustered IoTDs, they propose mostly-flat models, with at most one layer

of CHs. As more nodes join in the clusters, the number of such CHs has to increase at some point and so will

their workload (packet overhead and end-to-end delays). The workload depends on the number of nodes

that exist in a cluster. If a large number of CHsmanage such dense clusters, we’ll end up in a situation similar

to a classic BC, with latency only reflected at the CHs level, creating bottlenecks, and consequently affecting

the consensus (block creation and validation) time which will eventually become too long for fast IoT Tx.

The consensus plane issues are partially addressed in the literature (Angin et al., 2018; Huh et al., 2017).

Nevertheless what is needed is a mechanism that enhances scalability and accelerates the consensus, that

can be both lightweight while liberating most of the IoTDs from heavy computations.

The storage plane issues were addressed in the literature (Oktian et al., 2020; Heo et al., 2022a; Heo et al.,

2022b) and may be further explored as BC throughput increases down the road. Since the focus of our re-

search ismainly to provide a proof of concept for our proposedmulti-tiered design scalability and efficiency,

we choose not to address BC storage plane issues in our study.

None of the BC models from the literature considered node manageability/overhead or the necessity to

enforce a balance between consensus decentralization which is at the heart of BC, on one hand, and the

ease of cluster node management, on the other hand. The node management overhead increases when

one CHmanages a number of nodes that exceeds its capacity, preventing the CH from efficiently performing

its tasks. Control centralization takes place when only a small number of nodes decide for approving a Tx

or a block to be appended to BC, which violates the fundamental laws of BC security.

Thus existing node organizing models suffer from:

1. limited scalability,

2. low throughput,

3. consensus inefficiency,

Additionally, none of the existing models considers the necessity of following aspects:

16

1. a mechanism to logically locate nodes, specially within a tow-tiered architecture,

2. node proximity considerations: two nodes participating in the same Tx are managed by the same

cluster head. The cluster head can then efficiently verify the transactions, thereby accelerating the

consensus process. This aspect, though neglected, is one of the main virtues to leverage a two-tiered

architecture at the first place.

3. decentralization considerations,

4. node management overhead considerations.

2.2.1 The Solution Hypotheses

In the following, we list our project hypotheses ordered by decreasing priority.

1. Only some CHs may append Tx to blocks while only IoTDs may generate Tx1.

2. Tx may be simple with one participant node or multiple participants (multi-signature).

3. Node failure may be mitigated by enabling nodes to exchange roles and positions.

We envision that a comprehensive solution, addressing all requirements, could adopt a multi-tiered ar-

chitecture. In this architecture, if both nodes and CHs would be clustered, then BC interactions would be

delegated to only selected CHs (topmost level CHs), drawing inspiration from two-tiered models.

The architecture would aim to introduce self-sufficiency: Instead of relying solely on the highest-ranking

CHs to conduct the consensus, one might propose employing resilient machines, similar to the approach

used in Ethereum. In case of using robust machines to perform the consensus, the more IoTDs join in the

more robust machines would be needed. Limiting the number of those machines while more IoTDs join

in would lead to having very dense clusters managed by those machines. Both solutions would lead to

1 Although our proposed design could initially be implemented under the assumption that all nodes generate transactions, al-

lowing Cluster Heads (CHs) to generate transactions while performing consensus or maintaining the multi-tiered structure, we

have chosen to decouple transaction generation from other CH operations. Consequently, we assume that only some CHs are

responsible for appending transactions to blocks, while only IoTDs can generate transactions. It’s worth noting that alternative

implementations of our design may operate under different assumptions.

17

scalability problems. In our case, if the nodes themselves were promoted as CHs to perform the consensus,

assuming they would be robust enough, the number of those CHs would decrease as more levels are added

to accommodate more IoTDs, which would enhance both scalability and efficiency.

Additionally, if we assume that node clustering would address the resource constraints of IoTDs and the

heterogeneity of IoT networks, this approach would enable the utilization of powerful CHs for BC mining

within the network. These powerful CHs would be evenly distributed throughout the structure’s levels,

facilitating their future promotion to the topmost level based on their capabilities.

If the consensus is designed to be performed bottom-up throughout the structure, our proposed multi-

tiered design (forest) could potentially reduce the delays associated with two-tiered models while enhanc-

ing scalability. At the core of the design, the implementation of a consensus-accelerating algorithm would

significantly reduce consensus time. Consensus would be exclusively conducted by the topmost CHs, whose

number would be logarithmically bounded compared to the number of CHs at lower levels. Consequently,

the deeper the forest, the more scalable and efficient it would become.

Clusters may be subject to splitting and/or merging to maintain balance in the model by restricting the

number of nodes per cluster, ensuring compliance with the decentralization rule of BC. Additionally, this

would allow for an easier cluster management based on the capacity of the managing CHs.

2.2.2 The Research Questions

Our hypotheses raise the following questions:

1. Node Management considerations:

(a) How should we consider the nodes organization in order to achieve the consensus efficiently

while ensuring the balance between the consensus decentralization and the nodemanagement

overhead?

(b) Accordingly, how should BC traffic flow in the architecture?

2. Consensus verification considerations:

(a) How andwhere should the consensus process be achieved in terms of Tx and block verification?

18

(b) When and at what level should the verifications take place?

(c) How to perform Tx verification, in terms of delegations? Should there be a rigid rule on the

hierarchy level at which the verification should start?

In the following chapter, we introduce our research objectives and our contributions to the advancement

of knowledge.

19

CHAPTER 3

RESEARCH OBJECTIVES

The thesis aims to propose an improved BC multi-tiered design concept (a multi-tiered model) with high

scalability, based on low cost operations and high efficiency algorithms, a design concept to address current

BC flat and two-tiered models’ scalability and delay issues and to cope with todays large number of IoTDs,

with high Tx rates. The envisioneddesign conceptwould be actualized through various architectural options,

awaiting comparison and evaluation. Among these options, one could be selected for in-depth studying and

simulation, aiming at illustrating the advancements our design concept promises over existing flat and two-

tiered models.

Considering BC, there is always a number of broad-line objectives to be considered, concerning security,

workload capacity, processing delays, updating the BC using a specific consensus mechanism, etc... We

chose to focus on studying node organization and node manageability to provide a decentralized, secure,

reliable consensus with less traffic overhead. Also we evaluate the impact of node organization on the

efficiency/timely response to IoTD Tx generation. The goal is to achieve a balance between contradicting

trade-offs: the decentralization (which ensures BC security in terms of preventing a small number of nodes

from taking control of BC) versus the efficiency, while respecting the workload capacity of the nodes.

At the heart of our proposed design lies the potential for a consensus-agnostic consensus-accelerating al-

gorithm, aimed at reducing consensus time. Additionally, a node positioning mechanism could be devised

to facilitate node location and transaction routing. Furthermore, a self-scaling algorithm could be devel-

oped to maintain a balance between node management overhead and consensus decentralization. Finally,

a colocality concept leveraging node proximity within the structure may be employed to further reduce

consensus time. Our design is intended to support any consensus algorithm for enhanced efficiency and

remains application-agnostic.

We do not attempt to develop new consensusmechanisms or improve existing ones, butwewould certainly

adopt a consensus mechanism that aligns with our main objective: a node organization that achieves a

balance between decentralization and overhead capacity while achieving better consensus efficiency and

scalability than the existingmodels. Ourmain priority is to find a design that allows for a functional, efficient

BC, with minimum consensus delays, suitable for billions of IoTDs. In this chapter we provide the design

20

details of our project.

3.1 General Objectives

In order for BC to work properly within the IoT environment, BC has to accommodate up to billions of IoTDs,

hence BC design needs to allow for a number of general scalability aspects, prioritized as follows:

1. Ensuring that all IoTD nodes experience a comparable time to append a Tx to a block, independently

of their position in the structure and of their capabilities, which vary from device to device.

2. Reaching a consensus agreement with low delay, to accommodate IoTD’s growth and fast interaction

needs. Node aggregations alongwith delegating Tx appends tomore powerful nodesmight represent

a solution. Aggregation, as considered by earlier studies (Heinzelman et al., 2002), may be performed

through clustering (Clu, 2012; Clauset et al., 2005; Hwang et al., 2010;Mar, 2017; COD, 2006; Graham-

Smith, 2012; Clu, 2021) as a solution towards favoring ON scalability and accelerating the consensus.

3. Reaching a high consensus throughput in terms of the number of Tx processed per second, to account

for the volume of IoT transactions which could exceed the order of billions.

4. Avoiding a centralized consensus, so that no small subset of nodes may take control of the BC. Hence,

considering that only CHs get to append transactions to blocks, having only one or a small number of

such CHs will not achieve decentralization. Thus a design that enforces a minimum number of CH to

achieve consensus majority has to be implemented.

5. Ensuring a balance between consensus decentralization and node management overhead.

6. Providing a topology that allows IoTDs to join and leave dynamically, thus elastic enough to expand

and contract, as needed.

7. Evaluating the impact of locality: Reducing the consensus time and reducing the amount of traffic

(exchanged messages) and the distance travelled between Tx participants for transactions with more

than one participating node is needed. Node organization has to be suitable to leverage logical locality

between nodes frequently participating in common Tx.

Now that have shaped a proposed design for a BC-based IoT architecture, in the next chapter, we proceed

to present our proposedmulti-tieredmodel as well as the design architecture options to achieve themodel.

21

CHAPTER 4

THE MULTI-TIERED CONCEPT MODEL

In our study, we propose an improved BC multi-tiered design concept (a multi-tiered model) that incor-

porate some scalability concepts referenced in the literature. The design concept is achieved through the

development of a number of proposed designed architecture options that are compared and evaluated.

One design option is chosen to be further studied and simulated in order to showcase the improvements

our design concept provides compared to flat and two-tiered models.

We begin this chapter with an overview of the design concept requirements, considering the limitations of

existing BC models from the literature. We then discuss the key features of our design concept and how

they can be realized through the development of proposed design options. Additionally, we compare these

options, highlighting the requirements addressed by each architecture. Finally, we delve into the details of

one chosen design option: the SSD architecture.

4.1 The multi-Tiered Design Concept Model- an Overview

Our proposed multi-tiered design concept does not only address the scalability issues of the literature BC

systems, but it also aims to address the auto-organization and node management as well as consensus

decentralization issues that emerge while applying BC into IoT world. A set of design requirements logically

stem from the need to address such issues, aiming to define architectures that meet those needs.

The approach followed focuses mainly on the importance of producing an architecture that offers short

delay and fair consensus while giving room for scaling the number of IoTDs supported.

In this sectionwe proceed by introducing the characteristics of the flat BCmodel, followed by the two-tiered

BC model, in order to compare them to our multi-tiered model, design wise.

4.1.1 A Typical Flat Blockchain Model

A typical flat BC (Nakamoto, 2009) is usually characterized by the following:

22

1. The nodes achieve a consensus to append a new block of transactions into a Merkle tree where each

block contains the hash of the previous blocks to form an immutable chain.

2. The nodes are all unclustered and all nodes can generate Tx and build blocks as well as append blocks

into BC. All nodes have the same capabilities of action.

3. Weassume that transactions aremulti-signature, involving a requester IoTD and a requestee IoTD.We

maintain these assumptions in both the two-tiered and our proposedmulti-tieredmodels to facilitate

comparison between the flat model, the two-tiered model, and our proposed multi-tiered models.

The requester and requestee signatures (along with the Public Keys (PKs) as well as the Tx details) are

carried, each, in a message that is broadcast to all the nodes to verify the Tx. When a node receives

a message carrying a Tx, it verifies the Tx by checking that the current unique values of the requester

and requestee public key hash (h(PK)) matches the specified value in previous Tx from the same

requester and requestee on the ledger. Also it checks that the requester’s and requestee’s current

signature can be validated with their PKs. Once a Tx is verified by a node, the node broadcasts the

Tx once again so that all other nodes get a fair chance to append the Tx into a block. Then nodes

may attempt to build a block that contains a certain number of transactions. Once a block is built by

one node, the block is broadcast towards all the other nodes to be verified. So most of the nodes

are visited four times, once by each Tx party message (the requester and the requestee, assuming

that they do not know each other’s PK), once by the message carrying the verified Tx and once by the

message carrying the generated block.

4. A Tx has to be appended only once into BC. The node with a Tx pool that reaches a certain number of

transactions first gets to build the block using the consensusmechanism adopted, and gets to append

that block into BC. All Tx included into that block should not be appended again into any future blocks.

All the other blocks that are currently being built by other nodes are to be ignored.

A typical BC is an overlay design concept that is built on top of a real physical network, where all nodes

exchange messages to verify transactions and blocks. Tx information, blocks as well as a copy of BC are

broadcast to all nodes. Hence every node eventually receives three types of information: the message

carrying the Tx, the message carrying the block that contains the same Tx as well as a copy of the BC. For

the block-building nodes, such information is crucial, and since in a typical BC this information should be

always available for all the nodes that may potentially build a block, the number of required messages is

quite large. All these required message exchanges might prevent the system from scaling appropriately

23

when the number of nodes and/or the number of transactions increases, as it would be the case for the

number of transactions generated by IoTDs. The scalability issue arises because all system nodes have to

receive thesemessages, regardless of whether they are involved in the transaction in question. Ideally, only

the nodes involved in the transaction should receive the messages. We call this design “the flat model”. We

have no control on the physical network that exists beneath the ON, neither on the route that may be taken

by the Tx to reach a certain node. We can only improve the time it takes a Tx to reach BC by improving the

organization of the ON, aiming to limit the hops done by the Tx to reach unnecessary intermediate nodes.

4.1.2 LSB Two-Tiered Blockchain Model

In a two-tiered model such as LSB (Dorri et al., 2017a; Alharby et Moorsel, 2020), IoTDs are clustered and

decoupled from the more powerful managing CHs that participate in BC operations, as in Figure 4.1.

LSB model is characterized by the following:

1. As in the flat model, nodes achieve a consensus to append a new block of Tx into aMerkle tree where

each block contains the hash of previous blocks to form an immutable chain. Unlike the flat model,

nodes are organized in two levels.

2. Only bottom level nodes are clustered and only those nodes can generate Tx, while only the top level

nodes (referred to as Cluster Heads (CHs)) can build, verify and append blocks into the BC.

3. The Tx are multi-signature with a requester IoTD and a requestee IoTD. When a CH receives a Tx,

it verifies it by checking that the current unique value of the requester public key hash (h(PK))

matches the specified value in previous Tx from the same requester on the ledger. Then the CH

checks that the requester current signature matches its current PK, which changes with every newly

generated Tx; then the CH verifies that the requestee belongs to itsmanaged cluster (otherwise the Tx

ismulticast to all other CHs), andwhether the requestee accepts the Tx from that requester (according

to an ACL-like entry). The last step helps build a reputation/trust history for the requester in terms of

requestee acceptance. All verified Tx are multicast to all CHs. If a Tx is valid, it gets stored in the CH

Tx pool. Once the pool reaches a certain threshold number of Tx, the CH may start building a block.

4. A block is appended to BC if all CHs validate the signature of the block generator CH, which uses a key

known to all CHs. Then once the block is built, it will be verified by all CHs.

24

5. So visits in theO(number of theCHs) plus lists of length inO(number of the structure′s nodes)

are read once in case that the requester and the requestee do not belong to the same cluster, then

only visits in the O(number of theCHs) will be done once to diffuse the verified Tx and once to

verify each block.

6. All transactions have to be appended only once to a block at any node of the structure. The node

with a Tx pool that reaches a certain threshold number of Tx first gets to build the block according

to the consensus mechanism, and gets to append that block into BC. All Tx included into that block

should not be appended again into any future blocks. All the other blocks, containing these Tx, that

are currently being built by other nodes are to be ignored.

 IoTDs IoTDs
Level-0 IoTD clusters

Level-1 CHs } Tx and Block creation
and verification

LSB - verification and creation of Tx and Blocks

Figure 4.1 LSB - Creation and Verification of Tx and Blocks

4.1.3 The Multi-Tiered Blockchain Model

Ourmulti-tieredmodel provides a dynamic solution for the scalability limitations of the two-tieredmodel by

leveraging the concept of clustering all nodes according to their capabilities in order to efficiently facilitate

the exchange of information among nodes while they reach consensus. We introduce an expanded multi-

tiered hierarchical node organization where CHs themselves are grouped into clusters at higher levels. This

allows scaling the architecture by increasing the number of levels as well as the number of topmost CHs

at any time. Thanks to clustering, each level has a logarithmically bounded number of nodes less than the

number of nodes at the levels beneath it. Hence, the deeper the forest, the fewer the topmost nodes that

verify transactions and blocks, the shorter the consensus delays using our consensus-accelerating protocol,

and the more scalable the model becomes. This is the primary motivation for our proposed multi-tiered

clustered design concept versus other horizontally clustered flat and two-tiered designs where clustering

serves as an integral part of the consensusmechanism akin to Federated Byzantine Agreement (Tumas et al.,

2023), Quorum (Rebello et al., 2022) and context-based consensus (Lunardi et al., 2020).

25

We propose a design with very dense IoTD clusters at the bottom level compared to the CH cluster sizes at

the levels above, which further enhances themodel’s scalability and efficiency. The number of topmost CHs

visited to perform consensus is only a fraction compared to the number of CHs visited by transactions and

blocks in the case of two-tieredmodels while having the same number of IoTD nodes. Thus themulti-tiered

design improves BC scalability and efficiency compared to two-tiered architectures.

Also the multi-tiered hierarchical node organization allows the decoupling of Tx verification from block ver-

ification process to reach a consensus, as in Figure 4.2. The decoupling is in order to liberate CHs directly

managing IoTDs from the block processing overhead and from the packet traffic overhead and to help dis-

tribute the overhead among the different management levels above. Hence, it helps the system perfor-

mance overall. Our design is flexible such that Tx verification may be performed by CHs at the level right

above IoTDs if a common CH parent for both Tx parties is located at that level and if Tx tampering is a con-

cern, or it may take place at a higher level if a common CH parent for both Tx parties is located at that level

and if efficiency is a priority. Thus there is a trade-off between security and efficiency and careful implemen-

tation choices may be needed according to each application needs. For the sake of our study, we prioritize

efficiency and hence we choose to perform Tx verification at the topmost level of the hierarchy.Block cre-

ation and verification is deferred to CHs at the highest level of the hierarchy.1 Thus Tx and block verifications

involve a smaller number of nodes, and hence, are achieved more efficiently.

The hierarchical relationship among nodes is modeled as a tree-like node organization. At the highest level

of the architecture, in order to allow consensus for a number of nodes large enough to achieve decen-

tralization, a single tree is not suitable, thus nodes need to be organized in a forest. To keep consensus

time comparable for all IoTs, and to keep node management load-balanced for all CHs, all forest trees have

to have comparable height and branching factor, and hence, a comparable cluster size, such that each CH

manages only one cluster. Since Tx are generated at the lowest level of the architecture, going upward to

be appended into a block, the hierarchy needs to maintain its balance (comparable per-level cluster sizes,

branching factor), since this ensures that the total time elapsed between Tx creation and block creation is

similar for all nodes.

Since IoT nature dictates a need to dynamically add or remove IoTDs to/from clusters, cluster size can be-

1 When the only common CH for both Tx parties is at the highest level of the hierarchy, that CH is responsible for the both Tx

verification as well as block verification.

26

t

t

t

IoTDs IoTDs

t

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-2 CHs

level-N CHs, N=4 }Block verification/creation

Tx verification

} Tx creation

Tx and Block Creation and Verification

Figure 4.2 Multi-Tiered Design Concept - Creation and Verification of Tx and Blocks

come too large to be managed or too small to perform consensus. Therefore dynamic mechanisms are

needed to allow for cluster splits and merges, for the architecture expansion and contraction, as well as for

maintaining the architecture’s balance. Enforcing some form of lower and upper threshold on the cluster

size helps maintain a load-balance between consensus decentralization on one hand, and CH node man-

agement burden (to match the managing CH capacity), on the other hand.

Since only topmost level CHs get to build the ledger while IoTDs only generate Tx and since the clusters

continuously split and merge as IoTDs join in or leave adhering to the thresholds and to the structure’s

integrity where each cluster is exactly managed by one CH, in order for the architecture to expand and

contract, CHs and IoTDs need to exchange roles and positions within the hierarchy. Also since two distant

IoTDs within the logical structure may regularly participate in common Tx, logical node locality will be a

sought after feature. Locality implies that nodes most frequently participating in common Tx should be in

logical proximity within the structure. This may facilitate the Tx verification at the CH parent common to

both nodes, hence this may reduce consensus time.

In SSD, data should be maintained and exchanged among nodes so that each node may determine its po-

sition within the hierarchy, the subtree where it belongs and the size of its managed clusters. Since SSD

is tiered, performing faster communication among different nodes to exchange such information and to

locate nodes with a particular data item is necessary.

27

In our multi-tiered design concept, the design expand on LSB by creating several clustering levels: levels

[0 . . . N] where level N is always the topmost level. All nodes are IoTDs s.t. a Tx may only be generated

by an IoTD located at the bottom level (level 0), simply referred to as IoTD, while Tx and block verification

as well as block creation are performed solely by the topmost IoTDs (at level N), referred to as CHs2. The

rest of the nodes, located at levels [1 . . . N − 1], are simply referred to as CHs and they help maintain the

multi-tiered structure. Thus all nodes are distributed throughout the levels according to their capabilities.

A CH at level-imanages level-(i−1) nodes, level-i CHs aremanaged by level-(i+1) nodes, etc. Each cluster

is managed by one CH that holds its managed tree and/or cluster nodes’ information, including the Public

Key (PK). Clusters’ sizes are comparable by level. The nodes are distributed in clusters, such that for level

2 through N , each CH manages one cluster, on the level below, containing a number of nodes equal to a

branching factor3, t. Thus each level has a number of nodes (denoted#[level i]) less than#[level-(i− 1)]

on the level beneath it. A level-1 CH manages one IoTD cluster, each containing m0 IoTDs. IoTD clusters

located at level 0 are dense compared to the CH clusters located at levels [1 . . . N]. Each node is labeled

with a Cluster Head Address Chain (CHAC) to specify its logical position in the structure as well as its chain

of parents, s.t. CHAC length of a node is equal to the node’s depth+1. An example CHAC for the IoTD having

ID = 49 shown in Fig. 4.3, is {0 : 49, 1 : A, 2 : L, 3 : R, 4 : Y }. CHAC, as a node-lookup mechanism,

helps locating nodes, routing Tx and enabling the upward propagation of Tx from IoTDs towards topmost

CHs to occur inO(1) nomatter how deep the forest is. Hence using CHAC as a node positioning mechanism

helps to further reduce consensus delays.

We propose a consensus-accelerating protocol as follows:

1. Tx generation and propagation: A Tx involving two IoTD participants is generated by an IoTD at the

bottom of the structure. The Tx propagates upwards towards level N to be verified and appended

into a block, as in Fig. 4.3. Propagation occurs inO(1) time, thanks to the use of CHAC.

2. Tx verification: To verify a Tx, both parties’ public keys (PK) must be verified against their respective

signatures. Each party’s hash(PK) is verified against the same value in previous transactions from the

same party (IoTD) on the ledger.

2 Our multi-tiered model may be designed such that CHs are also allowed to generate Tx. The design will still provide promising

results compared to flat and two-tiered models.

3 The branching factor in our model sometimes fluctuates due to splits and merges

28

ID=R

Level-0 IoTD clusters

t

t

t

IoTDs IoTDs

t

t

t

Level-1 CHs

Level-N-1 CHs

Level-2 CHs

level-N CHs Block verification/creation
Tx verification

} Tx creation

 }

ID=49

ID=A

ID=L

ID=Y

Figure 4.3 Proposed Multi-tiered Design Concept withN = 4.

(a) Colocality consideration: If both Tx parties are located in the same tree (referred to as Colocal-

ity), Tx verification takes place at the tree root (topmost CH) common to both parties, in O(1),

since the root holds both parties’ PK.

(b) Non-colocal Tx parties: If Tx parties are in different trees, the Tx is non-colocal: after a Tx propa-

gates from an IoTD towards its topmost parent (inO(1) using CHAC), the Tx is partially verified

for the IoTD’s PK. All topmost CHs are visited by the Tx and searched for the other party’s PK.

Once the CH containing the other party’s PK is found, full Tx verification takes place at that CH,

resulting in Tx verification time of O(maxpropdelay) (maximum propagation delay towards

topmost nodes).

3. Block creation and verification: Once verified, the Tx propagates in O(maxpropdelay) towards all

topmost CHs so that the CHs append the Tx into blocks. When a topmost CH receives a predefined

number of verified transactions, it builds a block using any consensus mechanism (Proof of Work (Qi

et al., 2023; Yu, 2023b), Proof of Stake (Chen, 2023), ...etc), since our design is consensus-algorithm

agnostic. Block verification is performed by all topmost CHs at level N , taking O(maxpropdelay)

time.

4. Consensus efficiency: Consensus time is calculated as O(1) plus c · O(maxpropdelay), where c is

a constant. For non-colocal Tx, c ≤ 3; otherwise, c ≤ 2 in the best case. Consensus is performed

by the topmost CHs, whose number is logarithmically bounded compared to the number of CHs at

lower levels. Increasing the number of levels decreases the number of topmost CHs, improves node

29

colocality, and enhances consensus efficiency and overall scalability, as shown in Fig. 4.4.

t

t

m0 IoTDs m0 IoTDs m0 IoTDs

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-x CHs

mN level-N CHs, N=4

ScalabilityNumber of
Levels

Figure 4.4 Multi-Tiered Concept - The Number of Levels and the Colocality.

Control decentralization is achieved by specifying a per-level minimum number of nodes that must exist in

each cluster (control thresholds). Also the compliance with the capacity constraints, associated with the

node management, is achieved by specifying a per-level maximum cluster size that suits the management

capacity of the managing CH (management thresholds). Cluster splits and merges according to the thresh-

olds help achieve a balance between node management overhead and decentralization. Cascading splits

and merges may propagate upwards through the architecture. This can lead to the addition or removal of

levels as needed to scale the system. A forest has at least two levels: IoTDs at level 0 and CHs at level 1 (level

N = 1). A forest may have more levels of CHs till we reach levelN whereN > 1. So the forest hasN + 1

levels at most: whereN is the number of CH levels. This design provides flexibility to expand the system, as

needed, in order to support a large number of CHs, with decentralized control, and hence, a large number

of IoTDs, overall. IoTDs and CHs may exchange roles and position4 in the structure to allow for splits and

merges and for compensation for node failures.

Our proposed multi-tiered design is clustering algorithm agnostic, consensus algorithm agnostic as well as

application agnostic.

4 Roles and positions are exchanged with the assumption of always choosing more powerful nodes to be promoted as CHs, ac-

cording to nodes’ capacity.

30

4.1.4 Comparison among Models

Let us first compare themodels from a scalability perspective. In flatmodels, there are excessive broadcasts

and traffic overhead since all nodes need to be visited to perform Tx and block verification, which creates

scalability limitations and increased consensus delays. In contrast, in two-tiered models, since there is no

room to add more levels, the only way to scale the design is through increasing the number of CHs (to

accommodate for more IoTDs) at the top level5, which eventually reaches saturation at some point and

leads to the same scalability issues faced by the flatmodel, only reflected at the top level of the architecture.

Whereas in our multi-tiered model, increasing the number of CHs at a topmost level to accommodate for

more IoTDs is less likely to cause scalability issues or consensus delay since before reaching a saturation

point of the topmost level, another level is added to the design (as a new topmost level) with a fewer

number of nodes.

From an efficiency perspective, in flat models, all nodes need to be visited to achieve consensus regardless

of their participation in the consensus process. Thus consensus time is in the order of the number of the sys-

tem’s nodes. In contrast, in two-tieredmodels, only the CH located at the top level are visited to achieve con-

sensus. Consequently, consensus time is inO(1) plus c ·O(maximumpropagation delay towardsCHs),

which is in the order of the number of those CHs, which increases with the increase of the number of the

IoTDs joining the system. c is a constant that is always equal to three since node colocality is not considered.

In the case of our multi-tiered model, consensus time is O(1) plus c · O(maxpropdelay), which is in the

order of the number of topmost CHs, hence logarithmically bounded compared to the number of CHs at

the levels below. The number of CHs is small compared to the number of nodes in the system, thanks to

the dense IoTD clusters in our design. Thus consensus is achieved by a fraction of the number of nodes

performing consensus in two-tiered models. Furthermore, this number tends to further decrease with the

increase in the number of IoTDs joining the system. Even better, in the case of our multi-tiered model, Tx

verification time is reduced toO(1) when node colocality is leveraged, thus c’s value decreases from three

to two, thereby further reducing consensus time.

Comparing two-tieredmodels to our SSDmodel, consensus also takesO(1) plus c·O(maxprop), c ≤ 2 only

for a fraction of the time. Whereas for most of the time, c ≤ 3 worst case. In SSD, the worst-case scenario

5 By increasing the number of CHs, either we create enormous clusters (more traffic overhead and delays) or we limit the number

of IoTDs that may be supported (we defeat scalability).

31

involves visiting only a small number of topmost CHs, which is a fraction of the number of CHs visited in the

worst-case scenario of two-tiered models, as we will prove in the probability of colocality section.

From the perspective of balancing node management overhead and consensus decentralization, in flat

and two-tiered models, considerations of node management overhead and consensus decentralization are

often overlooked, despite being crucial, especially in two-tiered models, since they are among the main

virtues of leveraging a hierarchical model in the first place. In contrast, our multi-tiered model dynamically

maintains this balance by adhering to thresholds and invoking cascading splits and merges to adjust the

overall structure’s height as needed to accommodate IoTDs joining and departing.

From our quick comparison, it’s evident that the multi-tiered concept should enhance both scalability and

efficiency compared to flat and two-tiered models. Additionally, it provides a balance between node man-

agement overhead and consensus decentralization, a crucial requirement in BC technology that is often

overlooked by flat and two-tiered models.

4.2 The Multi-Tiered Design Concept Model- Details

4.2.1 Selection of a Clustering Algorithm

Our focus is to study the advantages of clustering in general to boost the performance of BC consensus,

rather than to specify or test a certain clustering algorithm in order to build the clusters.

By itself, the multi-tiered design concept (achieved through the development of any of the proposed design

concepts) is application agnostic and runs with any clustering algorithm without significantly affecting its

performance. It is nonetheless pertinent to consider a number of criteria that may help achieve a seamless

integration of a clustering algorithm into our multi-tiered design concept.

A suitable BC clustering algorithm is characterized by the following criteria:

1. The construction of clusters should take only one algorithm iteration.

2. The algorithm running time should be fast.

3. All topology nodes should be considered for clustering.

32

4. Node mobility should be considered.

5. Modularity is a recently introduced quality measure for graph clusterings (Feng et al., 2023). The

modularity function6 used when distributing nodes to merge clusters should be uniform. The mod-

ularity function is biased when the algorithm identifies the clusters with lower number of members

to join the neighbor cluster having the highest number of members. This produces crowded clusters

with a CH overburdened with management overhead and BC control centralization, which is not a

desirable feature to have in BC systems.

After considering several algorithms, we believe that K-meansGreedy (Han et Kamber, 2006; Tashman,

2024; Panigrahi et Panigrahi, 2024; Cor, 2018; Kousaridas et al., 2015; Yildirim, 2020; Huang, 1998; Karimi

et al., 2015; Eyal et al., 2011) would be preferable due to its short running time and suitability for our multi-

tiered design concept as it meets all the criteria mentioned above. The algorithm uses the number of hops

as a measurement for distance among nodes.

The random choice for clustering centers may yield different results on different runs. That lack of consis-

tency may not affect its integration within our multi-tiered design concept since we do not need to rerun

the algorithm to rebuild the clusters once they are built from scratch. Even in situations where a cluster

needs to split or merge, re-clustering is only needed for the one or two cluster(s) to split or merge.

K-meansGreedy algorithm has a linear complexity in our case because it runs inO(n · k · d · i):

1. We cluster a finite number of nodes, n.

2. We have no distance property to take into account. And we have no other features to consider, thus

we have only one dimension, d.

3. We need not to update the centroids with every iteration since our centroids are the predetermined

CHs to be promoted to form a new level, thus we have only one iteration, i.

4. We build a finite (small number of) k clusters.

6 Modularity compares the number of edges inside a cluster with the expected number of edges that one would find in the cluster

if the network were a random network with the same number of nodes and where each node keeps its degree, but edges are

otherwise randomly attached. (Mod, 2023)

33

The dominant factor in the time complexity remains the number of data points, n. Thus K-meansGreedy is

linear or near-linear with respect to the size of the dataset (nodes to cluster), n.

K-meansGreedy considers all nodes for clustering using a uniformmodularity function and it takes the num-

ber of clusters to be built, k, as input. That aspect makes it work hand-in-hand with our self-scaling algo-

rithm, since the latter has to start with a number of nodes ≥ CLT to build a new level with a minimum

cluster size value that may be equal to k.

The clustering algorithm is executed decentrally without a central coordinator since clustering is always

invoked through the self-scaling algorithm, as shown in the upcoming sections.

4.2.2 Node Management In SSD

In order for ourmulti-tiered design structure tomaintain its balance, there is a need for clusters to exchange

their size information as well as their position within the logical hierarchy, through their CHs as well as

through some specific nodes. Every cluster has a small number of its nodes (say 3 or 4 for redundancy)

arbitrarily selected as “guardian nodes” (GNs) to hold information about the adjacent clusters within the

same level and/or within the same tree. All nodes periodically multicast a heartbeat (in the form of Hello

messages) (Haffey et al., 2018) within the same cluster, so that cluster’s GNs can evaluate the current cluster

size. This facilitates enforcing management thresholds on cluster size.

GNs from different level-i clusters in the same subtree communicate their cluster size to their CH, so that

each CH is always aware of the size (node count) of its managed clusters and/or managed subtree. A CH

communicates that size to all of its managed GNs so that a GN are always aware of the number and size of

its neighboring clusters in the same subtree.

Each level-i node identifies the subtree it belongs to and the CH it reports to by storing a label that specifies

its logical address within the hierarchy, a CH Address Chain (CHAC). CHAC is a key-value dictionary that

contains the addresses of its level-i + X CHs, where X = [1 . . . (N − i)]. Each level-i CH communicates

(through hello messages) its address as well as its CHAC to its managed level-i − 1 cluster nodes to label

them with the same CHAC plus one more digit to identify each node. CHAC allows efficient determination

of a destination location in the forest, inO(1) no matter how deep is the forest.

34

4.2.3 BC Operations in our Multi-Tiered Design

In ourmulti-tiered design, once a Tx is created by an IoTD, the IoTD sends the Tx to its parent on the topmost

level (thanks to the use of CHAC), where all CHs exchange the Tx and update their Tx pools. Once a threshold,

Tmax, is reached for the number of Tx that exist in the Tx pool of a level-N CH, that CH can start building a

block. At the same time, that CH transfers the Tx to all topmost level CHs so that they build their own blocks

as well. This decoupling between Tx creation and block creation liberates level-1 CHs from some of the

packet traffic overhead and helps distribute the overhead among the different management levels above,

hence, it helps the system performance overall.

The architecture is characterized by:

1. IoTDs are located on level 0, while CHs are located on level 1 throughN .

2. Each level-1 CH has one IoT cluster ofm0 nodes, to manage.

3. Each level 2 throughN CH manages one cluster of t CH nodes, where t is the branching factor.

4. LevelN has only one cluster, but no CHs above.

5. For all CH clusters, we have:

(a) A per-level Control Lower Threshold (CLT) defining theminimum cluster size to form a consensus

majority;

(b) A per-level Management Upper Threshold (MUT) defining the maximum cluster size so that

cluster management would remain within the capacity of the managing CH;

(c) A per-level Management Lower Threshold (MLT) defining a minimum cluster size below which

cluster management may be too expensive, as CH capacity would be wasted.

(d) MLT and CLT can be utilized interchangeably.

6. CH Cluster size is t, such that CLT ≤ t ≤ MUT . For level N , CH Cluster size is mN , such that

CLT ≤ mN ≤ MUT .

7. All IoTD clusters have CLT0 and MUT0 cluster size thresholds, where IoTD cluster size is m0, such

that CLT0 ≤ m0 ≤ MUT0.

35

4.3 The Proposed Architecture Options

While our multi-tiered design concept, as described, may be achieved through a number of designs (archi-

tecture options) based on different conceptual approaches, all our proposed architecture options achieve

consensus through the same consensus-accelerating protocol. Searching for a node can be performed at

the price of some complexity of the initial construction and overall maintenance of the designs.

In the proposed design options, we have to constantly keep track of four main concerns:

1. the management overhead/consensus control balance;

2. the upkeep of threshold measurement checks across the dynamic structure at all times;

3. the balance of the overall forest;

4. the handling of node joining and leaving.

4.3.1 Architecture Option-1

t

t

t

m0 IoTDs m0 IoTDs m0 IoTDs

t

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-2 CHs

mN level-N CHs, N=4

Figure 4.5 SSD Architecture

Architecture option-1 is our proposed Self-Scalable Dynamic (SSD) architecture, as depicted in Figure 4.5.

SSD has a flexible elastic7 self-scaling design where IoTDs and CHs may exchange roles and positions within

the structure. The levels are constructed bottom-up through cascading cluster splits/merges, resulting in

7 Elastic design in the sense that it may shrink or expand.

36

the addition or elimination of levels at the top of the structure. This process leads to the contraction or

expansion of the structure. SSD is a self-organizing design. The architecture integrity, where each cluster is

exactlymanaged by one CH, imposes the necessity of associating a cluster split with every clustermerge and

vice-versa. At the heart of the design lies the proposed Self-Scalable Dynamic (SSD) algorithm that strives

to maintain a balance between node management overhead and consensus decentralization, while also

allowing for the maintenance of the structure’s elasticity and balance in terms of cluster size and branching

factor. Maintaining the management-decentralization balance requires an orchestration between the GN

nodes of each cluster and the parent CHs in order to continuously exchange cluster size information, check

whether cluster sizes adhere to the thresholds and accordingly invoke splits and merges. Hence, the SSD

algorithm is executed decentrally, without a central coordinator, to avoid single points of failure as well

as trust issues. The balance between management overhead and decentralization is dynamic, occurring

simultaneously with blockchain operations. With IoTDs joining and leaving, the design is autonomously,

decentrally8 and dynamically readjusted.

In order to construct SSD architecture, two levels are first built based on the two-tiered models found in

the literature. Then IoTD clusters at level 0 are overflown beyond MUT threshold with more nodes joining

in. Consequently, the SSD algorithm detects the overflow and triggers cluster splits at that level. Nodes are

promoted to join the clusters on the level above (level 1). This process, in turn, overflows those clusters

and the SSD algorithm invokes the clusters’ splits. Nodes are promoted to form a new level. And so forth,

as cascading splits and merges occur, new levels are added to the structure.

The cost of building the architecture depends on the clustering algorithm used. In case K-means Greedy al-

gorithm is applied, all IoTDs are clustered to form level-0 clusters, and subsequently, all levels are clustered

except for the current topmost level. Consequently, with each newly added topmost level (level N), the con-

struction cost linearly increases with the number of CHs on level N-1. Nevertheless, SSD maintenance cost

is high as the systemmust maintain a number of data structures to store the node-cluster-CH relationships.

Consequently, altering the position of a single node results in a substantial number of operations.

37

00

E

D

C

B

F

A

9

8 7

6

5

4

3

2

1
BCHG

For this
section,
CHAC=1

17

19

0F 10 11

14

12
13

16
15

18

1A

1E

1B

1D

1C

1F

For this
section,

CHAC=1F

Figure 4.6 Option-2 Architecture

4.3.2 Architecture Option-2

Architecture option-2 is our proposed Partitioned architecture which is based on a uniform distribution of

IoTDs on a ring using a DHT-like approach and a rigid incremental assignment of labeled CH to construct

a forest containing labeled CHs and IoTD clusters. The design abstracts the forest into a ring-like graph

where nodes are organized and logically positioned clockwise by increasing order of the hash of their MAC

addresses. The design is based on partitioning the nodes in successive passes and it represents a forest.

Partitioned architecture has a rigid design as it enforces a strict differentiation between IoTD and CH roles,

thus they may not exchange roles and positions. In this design, CHs are accounted for in advance, the

number of levels is pre-determined, the structure’s levels are built using a top-down approach and the

clusters may not split or merge. Also management-decentralization balance is not dynamic since it may not

occur at the same time as blockchain operations takes place. Management-decentralization balance only

occurs during the construction phase of the structure.

In order to construct the Partitioned architecture, levels and clusters are built top-down: for level-

N , the top level, IoTD nodes are positioned on a hypothetical ring clockwise by increasing order of

hash(MAC address). Then, the ring is partitioned by applying modulo-m reduction to the hashed ad-

dresses, where m is a power of two (m = 2k). For example, with k = 4, 16 partitions (i.e. sections) are

created, indexed with 1-digit index, for example: from 0 to F. The nodes of each section are associated to a

8 Decentrally in the sense that no control of power is allowed for any number of nodes.

38

given tree of the forest. The section node with the highest hash value is the section CH and is associated to

the root of its tree. CHs are labeledwith a one-digit-hexadecimal-CHAC. To build levelsN−1 through level 1,

we recursively partition the resulting sections using the modulo-m reduction function, assign CHs and label

additional CHs, using CHAC, to form additional subtrees with every iteration, such that: For each previous

level section, we consider the branching factor, t (assuming t = 16 for simplicity, to matchm = 2k), and we

repeat the partitioning recursively by applying modulo-t reduction to the hash addresses after truncating

the k = 4 least significant bits. Thus, for each level, we divide each of previous level sections into t = 16

smaller sections and for each section, we assign CHs, labeling them with the previous section CHAC after

appending a new one-digit-CHAC, such that each forest level is identified by one CHAC digit, as depicted in

Figure 4.6. And those sections may be further partitioned, and so on to build all the architecture levels. t

can not be randomly chosen as it is recommended that it would be equal tom = 2k. CHORD (Stoica et al.,

2001) a Distributed Hash Table lookup system, maps node identifiers and keys onto the same virtual ring.

After partitioning and labeling the CHs according to the desired number of forest levels, we obtain a series

of unlabeled IoTD sections followed by labeled CHs (with CHAC). The unlabeled IoTDs are the forest leaves

at level 0 and the sections are the IoTD clusters. We assign labels to all unlabeled IoTDs in each section using

the section’s longest CHAC (as in Figure 4.6). We then apply CHORD algorithm on each section such that

CHORD node ID is the most significant m-bit of the node’s hash(IP address), while CHORD Key ID is the

most significant m-bit taken from rest of hash(MAC address) bits that are still unused after performing

the modulo reduction. Locating CHs is inO(1) thanks to the use of CHAC, while locating IoTDs within each

section using CHORD is inO(log U), where U is the number of the section’s IoTDs.

The architecture is built at the outset, since the structure cannot be modified once constructed, thereby

incurring no maintenance costs. With every level to be added, we perform a hashing round for all nodes.

Consequently, the construction cost increases linearly with the number of levels to be built. In addition,

once all levels are constructed, the cost of constructing a CHORD ring for each resulting IoTD cluster, must

be considered.

4.3.3 Architecture Option-3

Architecture option-3 is our proposed Ring of Rings (RoR) architecture which achieves node locality as well

as CH flexibility with minimized consensus delays. The architecture is based on mapping the node’s logical

location within the forest to a logical location within a hash space using a DHT-like approach to organize

39

IoTDs IoTDs IoTDs

IoTDs
IoTDs

IoTDs

IoTDs

IoTDs IoTDs
A

FB

C D

RING with level-N CHs' CHAC

RING with level-N and level-N-1 CHs' CHAC

E

XFYB

YC ZD ZE

XA

IoTDs

X

Y
Z

IoTDs

IoTDs

X

Figure 4.7 Ring of Rings

CHs. Some of those nodes will get gradually promoted as CHs in a recursive manner so that the final result

leads to a forest-like structure, as depicted in Figure 4.7. RoR has a flexible design where IoTDs and CHs

may exchange roles and positions, as in SSD architecture. The levels are built bottom-up and clusters may

split according to thresholds similarly to SSD architecture. Also the management-decentralization balance

is dynamically adjusted while BC operations take place.

In order to construct RoR architecture, a location independentGlobalLocalityID is assigned to each node,

namely the node’s IP address. Virtual Cord Protocol (VCP) (Awad et al., 2011; Fersi, 2015) is a virtual location

based protocol that computes node relative positions and uses greedy routing. In each building/house, VCP

is used to assign a local relative ID (LocalLocalityID) to each IoTD. For each cluster, one IoTD is chosen

as CH, labeled with a CHAC. The CHAC value is communicated to the cluster’s IoTD nodes. Using a locality

table, the CHmaps an IoTD’sGlobalLocalityID to itsLocalLocalityID. Using a VCP table, the CH routes

traffic towards its managed IoTDs inO(
√
η − 1), where η is the number of the cluster’s IoTD nodes.

To add one more level : From every two adjacent clusters, one IoTD having the closestGlobalLocalityID

(IP address) to any of the CHs managing those clusters, is promoted as a CH on a new level. CHAC of the

promoted IoTD is communicated to its managed nodes. Similarly, adjacent IoTD clusters promote nodes

upwards to join the new level.

Thresholds may be set for IoTD cluster size and an algorithm similar to SSD Algorithm may be designed to

trigger cluster splits according to the thresholds. At the end of the construction process of the architecture,

we obtain a ringwith CHs having various CHAC lengths to indicate their level within the structure. Each level-

1 CH has a locality table, a VCP table and a set of managed IoTDs. A CH is identified by aGlobalLocalityID

40

and a CHAC, while a level-1 CH is additionally identified by a LocalLocalityID. Each IoTD has a VCP table

and is identified by a GlobalLocalityID, a LocalLocalityID, as well as the same CHAC as that of its

managing CH.

A CH role may change on a timeout round-robin basis to allow a fair chance for all the local IoTDs to act as

CHs. If a CH becomes unavailable or proves incapable of managing its assigned IoTD cluster, it can undergo

one of two processes: demotion as an IoTD node and replacement by another node from the IoTD nodes,

or reassignment with a lower management load. The latter process includes splitting the CH’s managed

cluster and reapplying VCP. The CH still manages a sub-cluster while the other sub-cluster is assigned to

another CH (a promoted IoTD node from that sub-cluster), thereby sharing the load.

The cost of building the architecture includes the cost of assigningGlobalLocalityID to the nodes, calcu-

lating the per-cluster VCP, creating the DHT tables, as well as promoting CHs to build the levels.

The cost of maintaining the structure (to accommodate future splits) includes the cost of splitting the clus-

ters, calculating VCP, updating the DHT tables affected, as well as promoting the associated CH. Thresholds

may be assigned to cluster sizes, akin to SSD’s MUT threshold, s.t. all level-0 clusters may split once a pre-

defined number of clusters exceeds the threshold (to keep all cluster sizes comparable), resulting in adding

more levels to the hierarchy.

4.4 Comparison among the Architecture Options and the Chosen Architecture

4.4.1 Comparison among the Architecture Options

All the proposed designs achieve the same multi-tiered design concept, adopt the same consensus-

accelerating algorithm with the same complexity. The consensus-accelerating algorithm remains algorithm

agnostic and a given architecture option may be chosen in order to better adapt for a specific consensus

algorithm. For instance, if we consider Ethereum consensus algorithm, it has four types of nodes: miners,

full nodes, light nodes and archive nodes. Scaling our architecture is based on the flexibility of the nodes

to exchange roles and positions, which is not possible for Ethereum nodes since the nodes have different

specifications to allow each type of node to perform its specific functionality. However this may match our

proposed architecture design option 2: the partitioned architecture, if the miner nodes are placed at the

upper level (limited in numbers) while the Tx proposing nodes are placed at the bottom level of the architec-

41

ture. Our design aims to accelerate consensus in general and it may work with any consensus mechanism

or system like Ethereum.

While efficiency criteria are crucial, the decision to adopt one architecture over another depends on

whether BC construction and consensus functionality timing requires a given level of flexibility. In case

where BC must continuously adapt to IoTDs exchanging roles with CHs to keep a continuous load balance

between nodemanagement overhead and decentralization (as consensus takes place), options such as SSD

and RoR architectures may be suitable. Conversely, if the construction phase has to strictly occur before

conducting BC operations with the number of CHs accounted for in advance, the Partitioned architecture

may be the appropriate choice. However, flexibility comes with associated maintenance costs that should

also be taken into account.

The cost of maintenance translates into the cost of adding levels to expand the architectures Since the Par-

titioned architecture is rigid, it has nomaintenance cost. Adding a new IoTD only takes the constant time to

hash its MAC address, to perform the modulo reduction function to obtain its CHAC and to match the CHAC

with a level-0 cluster’s CHAC (O(number of level − 0 clusters)). In case of SSD and RoR architectures,

adding a new IoTD only takes O(the number of levels) times the number of data structures containing

the node and cluster information to be updated.

The cost of maintenance in case of SSD architecture includes adding a new level of nodes due to bypassing

MUT threshold at the topmost level after a number of, possibly cascading, cluster splits at the levels below.

This may take O(the number of levels) times the number of data structures containing node and cluster

information to be updated as a result of the cluster splits and merges. Additionally, the number of nodes

in the clusters to be reclustered (assuming a linear clustering algorithm is used to perform cluster merges

and splits) has to be considered in the cost.

In case of RoR architecture, the maintenance cost includes adding a new level of CHs due to splitting the

IoTD clusters at level 0. New IoTD nodes are chosen to be promoted upwards as CHs to form the new level.

This may take O(the number of levels) times the number of data structures containing node and cluster

information to be updated. Additionally, the number of nodes in the clusters to split (assuming a linear

clustering algorithm is used to perform cluster splits) has to be considered in the cost. Additionally, the cost

of calculating VCP for the clusters resulting after the splits as well updating/creating the corresponding DHT

42

tables are additional costs that have to be taken into consideration.

In case conditions related to node proximity exist for IoTDs, choosing RoR architecture could be appropriate

since it is based on clustering the nodes according to their IP address.

Table 4.1 summarizes the advantages of each proposed architecture design concerning the earlier men-

tioned criteria.

Consensus

Effectiency

Structure

Flexibility

Maintenance

Cost

Node

Proximity

SSD x x x

Partitioned x

RoR x x x x

Table 4.1 Proposed Designs Comparison Table

4.4.2 Chosen Architecture Option

Since all proposed architecture options adhere to themulti-tiered design concept, selecting any oneof these

architecture options and providing evidence of its superiority over flat and two-tiered models suffices to

establish that the multi-tiered design concept, as embodied by this chosen architecture, outperforms flat

and two-tiered models.

Based on the comparison among the architecture options, it is easy to deduce that architecture option-1,

the SSD architecture, is characterized by a wide range of features which ensure a high degree of dynamism

and flexibility. Features, such as the architecture integrity where each cluster is exactly managed by one CH,

the splits andmerges as well as the SSD algorithmwhich dynamically strives to maintain a balance between

node management overhead and consensus decentralization, help shape the dynamic characteristics of

SSD architecture, showcasing its flexibility and making it an option to be further studied and explored.

For the remainder of the thesis, we refer to our multi-tiered model as the SSD architecture. Thus the SSD

architecture will be further studied, analyzed and simulated, in order to be compared to flat and two-tiered

models with the goal of validating our multi-tiered model. In next section, we elaborate on the SSD archi-

tecture.

43

4.5 The SSD Architecture

4.5.1 Self-Scaling Dynamic (SSD) Algorithm

In this architecture, adjusting the height of the forest according to the thresholds while keeping the overall

forest balance is automatically triggered so that the structure is autonomously adjusting and self-scaling

whenever new IoTDs join in or leave the BC system. IoTDs are clustered under a few levels of managing CHs,

where the cluster size has to be constantly maintained between the thresholds while IoTDs join and leave.

This requirement inspired the creation of a self-scaling algorithm that constantly checks the thresholds

(MUT and CLT) and accordingly triggers cluster splits and merges, as illustrated in Figure 4.8 and Figure 4.9.

t

t

t

t

t

SSD Algorithm - The Expansion

t

X

t

X X'

t

t

Figure 4.8 SSD - The Expansion of the Architecture

t

t

t

t

t

SSD Algorithm - The Contraction

t

X

t

X X'

t

t

Y Y'
Y

Figure 4.9 SSD - The Contraction of the Architecture

The assumptions of the self-scaling algorithm are as follows:

1. In a structure of height h (with 0 to N levels), a new level can only be added on top of all existing

44

levels, i.e., above the current levelN .

2. Levels can be eliminated as needed, one level at a time, except for level-0 IoTDs and level-1 CHs.

3. Each CH directly manages only one cluster of other CHs, or of IoTDs.

4. A cluster that becomes smaller than CLT needs to merge with the smallest cluster on the same level

and within the same subtree to make a bigger cluster. The size of the cluster is communicated to the

CHs through GNs so that neighboring clusters on the same level and in the same subtree would be

notified to take further actions.

5. For simplicity, we considerMUT = MUT0, CLT = CLT0 andMUT = CLT 2. The final assump-

tion is to ensure that the resulting clusters from a new split are not smaller than CLT and the resulting

cluster from a new merge is not larger than MUT.

45

Data: i, CLT, MUT, size(localCluster), h =max(i)

Result: A self-scaling architecture - an expansion

Initialization: starts with clustered IoTDs (cluster size is not less than CLT), managed by CHs, only the

topmost level has one cluster;

while nodes join in do

if one IoT joins (at level i=0) then

//the following is distributed at the level of each cluster;

if size(localCluster)≥ MUT and localCluster is at level i ̸= h then

split localCluster ;

//one resulting cluster has size(resultCluster)=⌈((size(localCluster)− 1)÷ 2)⌉, and

the other has size(resultCluster)=⌊((size(localCluster)− 1)÷ 2)⌋;

if size(resultCluster)≤ CLT then
merge with the smallest size cluster from same level subtree using Self-Scaling

Algorithm-part2
else

assign GNs for each resultCluster;

add one node from the resultCluster without CH, as a CH, to level i+ 1;

level-i− 1 cluster previously managed by the promoted node merges with the smallest

size cluster from same level subtree (if i > 0);

else if size(localCluster)≥ MUT and localCluster is at level i==h then

cluster the CHs into CLT clusters;

add CLT CHs on a newly created level i+ 1;

perform CLT merges for level-i− 1 clusters previously managed by the promoted CHs, with

smallest size level clusters;

h = i+ 1;

end
Algorithm 1: Self-Scaling Algorithm-part1

46

Data: i, CLT, MUT, size(localCluster),h=max(i)

Result: A self-scaling architecture - a contraction

Initialization: starts with clustered IoTs (cluster size is not less than CLT), managed by CHs, only the

topmost level has one cluster;

while nodes leave do

if one IoT leaves (at level i=0) then

//the following is distributed at the level of each cluster;

if size(localCluster)≤ CLT and localCluster is at level i ̸= h then

merge localCluster with the smallest size cluster on same level and in same subtree ;

//the resulting cluster has size(resultCluster);

if size(resultCluster)≥ MUT then
split it using Self-Scaling Algorithm-part1

else

assign GNs for resultCluster;

demote one of level-i+ 1 CHs that used to manage one of the two merged clusters;

one level-i− 1 cluster will split into two resultClusters, one of which will be

managed by the demoted CH (if i > 0);

else if size(localCluster)≤ CLT and localCluster is at level i==h then
demote level-i CHs down into their previously managed level-i− 1 clusters, and uncluster

those clusters into one cluster;

eliminate level i // topmostlevel;

perform≤ CLT splits for level-i− 2 clusters so that the demoted CHs would manage half

of the newly formed clusters;

h = i− 1;

end
Algorithm 2: Self-Scaling Algorithm-part2

The algorithm starts with two levels: a clustered level i, i=0, with#[level i], cluster size is not less than CLT;

and a level i, i=1, with only one cluster with#[level i], cluster size not less than CLT; where h = max(i) = 1.

Part-1) As nodes keep joining while SSD expands, if MUT is reached in one of a non-topmost-level cluster,

it splits into two. The resulting clusters will check their size for necessary merges using Algorithm-part2, if

any is less than CLT. This check is only valid in case MUT is assumed not equal to CLT 2, as in case MUT

47

is equal to CLT 2, there will be no need for any further merges. If none of the resulting clusters is less

than CLT, each resulting cluster will assign some GNs to take care of the cluster statistics, and the resulting

cluster without a CH will promote one node as a CH on the level above. On the level below, the cluster

previously managed by the promoted node has to merge with the smallest size cluster on the same level

and in the same subtree (within the shortest logical distance so that both clusters would be under the same

direct parent according to their CHAC). In case the resulting cluster size exceedsMUT, it has to be split using

Self-Scaling Algorithm-part1. For the case of the topmost level (levelN), nodes are considered as clustered

into only one cluster. If MUT is reached on the topmost level, the level’s nodes need to be clustered into

CLT clusters, while creating a new level above. Add CLT CHs are added on the new level. On the level below,

the CLT clusters previously managed by the promoted CHs are merged with the smallest size clusters. The

height of the structure is adjusted accordingly.

Part-2) As nodes start leaving (SSD contracts), if CLT is reached in one of a non-topmost-level clusters, it

merges with the smallest size cluster on the same level and in the same subtree. The resulting cluster

checks its own size for necessary splits using Algorithm-part1, if it exceeds MUT. This check is only valid in

case that MUT is assumed not equal to CLT 2, as in case MUT is equal to CLT 2, there will be no need for

any further splits. If the resulting cluster size is not more than MUT, the resulting cluster assigns some GNs

to take care of the cluster statistics, and demotes one of the CHs previously managing one of the merging

clusters back into its managed cluster. the demoted CH will manage a newly formed cluster as one split will

take place at the level below. In case any of the resulting clusters is smaller than CLT, each of them is merged

with the smallest size cluster from the same subtree using Self-Scaling Algorithm-part2. For the case of the

topmost level, if CLT is reached, all CHs (≤ CLT CHs) are demoted back to their managed clusters on the

level below, and those clusters get unclustered into one cluster. The topmost level is eliminated while a

number less than CLT of cluster splits are performed in the next level below, so that the demoted CHs

would manage half of the newly created clusters. Then, the height of the tree is adjusted accordingly.

From the self-scaling algorithm, we can observe that with network expansion, CLT can be automatically en-

forced at the creation of every layer while MUT triggers either the creation of new layers, or the creation of

new clusters on the same layer. With network contraction, CLT triggers either the elimination of a layer or

the elimination of one or more cluster(s) on the same layer. Both the expansion and the contraction parts

involve splits and merges, and further layers can be added or eliminated down the road while respecting

the thresholds, to allow SSD to easily scale up or down as needed. Each threshold check takes place while

48

enforcing the other threshold, dynamically alternating between both parts of the algorithm. Thus the self-

scaling algorithm involves a dynamic cyclic behavior that helps enforcing both thresholds at all times, hence,

ensuring the balance between node management overhead and consensus decentralization. The SSD algo-

rithm converges according to each application needs. The algorithm operates in a decentralized manner,

thanks to the dynamic coordination between cluster GN nodes and CHs, without relying on a central coor-

dinator, hence preventing single points of failure and trust issues. The implementation may be adaptable,

allowing the algorithm to persistently run alongside blockchain operations.

4.5.2 Probability of Colocality

Our goal is to minimize the number of node visits (the number of hops between nodes) in order to improve

consensus time within the overlay network, assuming that this improvement will be eventually reflected

on the real underlying physical network. Once way to decrease the number of hops is through leveraging

the concept of node colocality. We refer to the case where nodes most frequently participating in com-

mon Tx are in a logical proximity within the structure in terms of their distance on the ON, as “ the IoTD

logical colocality ” . Considering a uniform distribution, let us call the probability of two nodes to be lo-

cated within the same tree “ The Probability of Collision ” , according to a hashing terminology. When

a collision exists between two nodes (colocality), both nodes are in the same tree of the structure and

hence, in order to verify a Tx, the Tx propagates from the IoTD requester that generates the Tx upwards

to reach the topmost parent CH common for both Tx parties (the requester and the requestee), in O(1)

thanks to the use of the IoTDs CHAC. Then the Tx is verified by that CH in O(1) since the CH holds the

information (namely the Public Key (PK)) of both Tx parties. Otherwise, if both Tx parties are not colo-

cal as they are located in different trees, the Tx propagates upwards in O(1) using CHAC towards the re-

quester topmost parent CH which verifies the Tx partially, then the Tx propagates towards all topmost CHs

inO(maximumpropagation delay towards topmost nodes) searching for a CH that holds the requestee

information (PK) to fully perform Tx verification. Hence Tx verification takes only O(1) best case in case of

node colocality, while it takes O(1) plus O(maximumpropagation delay towards topmost nodes), oth-

erwise. Colocality is determined at IoTD level using IoTD CHAC in O(1).

In our SSDdesign, transaction verification takes place at the topmost level of the architecture since efficiency

is prioritized, rather than security. Nevertheless if node tampering is a concern, the multi-tiered design

is flexible enough to allow transaction verification to take place anywhere from level [1 . . . N] only if a

49

verifying node that is a common parent of both IoTD transaction parties is located at that level. In that

case, a transaction needs to propagate throughout all the structure’s levels looking for a common parent to

both transaction parties in order to verify the transaction, sacrificing efficiency for the sake of prioritizing

security. Hence node colocality is defined in terms of each levels as follows: Colocality is determined at

the IoTD level, where an IoTD’s CHAC helps determining the logical distance between nodes in O(N + 1).

Let us define the distance between two nodes as dist = 0 if they are in the same cluster (under the same

level-1 parent CH). They then have identical CHAC digits for levels 1 to N (except for the least significant

digit), hence they have a direct colocality. When 1 ≤ dist ≤ N , they have in indirect colocality. Nodes

have dist = 1 if they belong to different clusters that share the same level-2 parent CH and so they have

identical CHAC digits for levels 2 toN . So nodes have dist = β−1, β ≥ 1, if they share a level-β CH parent

and so they have the same CHAC for levels β to N and they have an indirect colocality. Also let us refer

to these two nodes in the same cluster, by having a logical distance, dist of 0; if they belong to different

clusters that share the same level-1 parent CH, then their dist = 1; and if their clusters share level-2 parent

CH, their dist = 2; and so on. So if the shared CH is on level-n, where n = [0 . . . N], their dist = n.

Alternatively, if efficiency is prioritized over security, transaction verification takes place at the topmost level

of the structure and transaction upwards propagation takes only one hop, as it is the case in our proposed

SSD design.

In order to better explain the colocality concept, let’s consider the situation where the nodes are uniformly

distributed within the structure. A concept like the bin and ball hashing problem (Motwani et Raghavan,

1995) can be applied for the structure: we can then consider the number of IoTDs, I , as balls and the number

of trees of the architecture (#[levelN]),E, as bins. The expected number of collisions (with dist <> 0) is:

(︁
I
2

)︁
(1/E) = (I(I − 1)/2)(1/E) = O(I2/E), which is in O(E) if I ≈ C, is O(1) if E = O(I2), and is

O(I2) if E ≈ smallconstant.

So in case E (the number of trees at the topmost level) is a small constant, the expected number of colli-

sions will dramatically increase. The smaller the value of E, the greater the node colocality achieved. The

selection of the value of E should be made carefully, taking into account various constraints imposed by

BC application requirements, such as consensus decentralization and the necessity to maintain a certain

value for CLT , which represents the minimum number of trees required. Additionally, the choice of E

50

must adhere to BC MUT , which signifies the maximum allowable value for E. Exceeding this threshold

necessitates clustering the topmost level and expanding the structure by adding more levels.

If we expect to leverage/enforce the colocality within the architecture, we need to work towards enforcing

node colocality by getting the nodes frequently participating in the same Tx logically closer to each other in

the architecture (hence increasing the rate of colocality for the nodes). In order to achieve a colocality, we

need two nodes to be within the same tree, so we need to maximize the expected number of collisions as

much as possible.

The colocality analysis introduced here is based on the hypothesis of a uniform random distribution of Tx

among the IoTDs. In a real-life BC, the distribution might be different yielding better or worse results.

Provided amechanism for analyzing the frequency of interaction between any twonodes participating in the

same transaction (Tx) is available, along with a mechanism for predicting future frequency of interactions

between those nodes, then colocality can be leveraged by adjusting the logical distribution of the nodes

(node organization) to exploit the advantage of simplified processing. Wewill not pursue this aspect further

and will leave the topic for future research.

4.5.3 A Quick Comparison Among All three BC Design Models in terms of Colocality

In order to achieve colocality, we need two nodes to be within the same tree. So we need to examine

the expected number of collisions in all three architectures (the multi-tiered SSD, the two-tiered LSB and

the one-tiered Flat architecture) in order to determine the number of node hops (visits) needed to verify

transactions and blocks.

Let’s compare the three BC models in terms of the worst case scenarios where a Tx needs to be verified by

almost all the nodes of the architecture, in the absence of node colocality. This comparison has the goal

of illustrating the superiority of our design in terms of efficiency, in worst case scenarios, as well as the

importance of the colocality concept.

In the the flat design, in oder to verify a Tx, all nodes are visited, worst case in the absence of colocality,

twice: once by messages looking for each Tx party PK, assuming that the requester and requestee do not

know each other’s PK. And in order to verify a block, all nodes are visited once by messages carrying the

51

block. So all nodes are visited two times the number of Tx and one times the number of blocks generated.

In the two-tiered design, in oder to verify a Tx, all CHs are visited (as well as lists of length in

O(number of the structure′s nodes) are read) once, in case the requester and the requestee do not be-

long to the same cluster. And in order to verify a block, the CHs are visited once by messages carrying the

block.

By the bin and balls hashing analogy, if we denote by I , the number of IoTDs and by E, the number of

clusters, the expected number of collisions (i.e. the requester and requestee are in the same cluster) is(︁
I
2

)︁
(1/E) = O(I2/E). If we assume a two-tiered model having 10 000 IoTDs distributed in 500 clusters

performing 20 000 000 Tx, the expected number of collisions is 99 990 collisions. In other words, this is

the expected number of times where both nodes interacting in the same Tx exist within the same cluster.

It also represents the expected number of Tx that occur between two nodes in the same cluster, which is

0.49% of all Tx. This means that all 500 CHs (eachmanaging one cluster on the IoTD level), are visited 99.5%

of the time to verify transactions (as well as lists of length in O(number of the structure′s nodes)). Thus

most of the time (99.5% of the time), all 500 CHs are visited while rarely (only 0.49% of the time), only

one CH is visited in case of a two-tiered model. So to verify transactions, in case of node colocality, one CH

is visited only 0.49% times the number of Tx, while without colocality, all CHs are visited 99.5% times the

number of Tx. And in order to verify blocks, all 500 CHs are visited once to verify each block, which is only

5% of the number of nodes that would be visited using the flat architecture.

In our proposed multi-tiered design, to verify transactions, O(all topmostCHs) are visited,

worst case, once, if the requester and requestee are non-colocal (as well as lists of length in

O(number of the structure′s nodes) are read once). Otherwise, if the requester and requestee

are colocal, only one CH is visited. To verify a block, all topmost level CHs are visited once. Since our

architecture is multi-tiered, we have control over the concentration of nodes in a tree, and our interest

is to maximize the number of cases where the requester and the requestee fall within the same tree by

increasing the number of the architecture’s levels9. In our multi-tiered design, the number of CHs on one

level is logarithmically bounded compared to the number of nodes on the levels below.

9 The number of trees must always adhere to CLT andMUT, complying with the decentralization and node management overhead

requirements.

52

Figure 4.10 SSD - The Number of Hops to Verify Tx in the Three BC models without considering Colocality.

With the same number of IoT devices, increasing the number of levels results in fewer trees, thus the final

count of trees depends on the chosen number of levels according to the application’s requirements. If we

assume that we have the same 10 000 IoTDs distributed into 500 clusters, and these clusters fall under five

trees over more than two levels, we can see that the expected number of collisions is 9 999 000 collisions

(which is the expected number of Tx that occur between two nodes within the same tree), which is 100

times more than the number of collisions that takes place assuming the two-tiered architecture. Thus, for

20 000 000 Tx, a 49.99% or, in other words, about half of those Tx occur between two nodes in the same

tree, leaving 50.01% Tx, or about the other half of the Tx where all five topmost CHs are visited to perform

the Tx verification. Thus to verify a Tx within our multi-tiered model, almost half the time, only one CH is

visited in case of colocality (best case) while the other half of the time all topmost CHs, whose number is

very small, are visited (worst case). Thus in order to verify transactions our SSD design, worst case, without

even considering node colocality, only 2.5 CHs are to be visited by each Tx, which is 0.5% of the number of

CHs visited assuming a two-tiered architecture, and is 0.025%of the number of CHs visited assuming a flat

architecture, as in Figure 4.10.

To verify transactions our SSD design while considering colocality, only one CH is visited about half the time

compared to only about 5% of the time in a two-tiered model and compared to 0% of the time in a flat

model, as in Figure 4.11.

To verify blocks, the number of topmost CHs are visited (five of them), which is 1% of the number of the CHs

53

Figure 4.11 SSD - The Percentage of Colocality to Verify 20 000 000 Tx.

Figure 4.12 SSD - The Number of Hops to Verify Blocks in the Three BC models.

54

visited assuming a two-tiered architecture and which is 0.025% of the number of nodes visited assuming a

flat architecture, as in Figure 4.12.

The comparisons made in this section consider the number of visits made in the case of a flat architecture

assuming that the messages propagated are sent directly to the visited nodes, which actually underesti-

mates the number of messages needed to achieve each visit, since the messages in a flat architecture are

propagated by broadcasting and hence to achieve one visit, it takes O(ζ) hops where ζ is the number of

nodes in the whole structure. Thus each of the calculation results made above for a flat architecture, let’s

call it α is actually αζ . These results put our architecture at an advantage over the flat architecture.

t

t

m0 IoTDs m0 IoTDs m0 IoTDs

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-x CHs

mN level-N CHs, N=4

Colocality

SSD - The Number of Levels and the Colocality

Number of
Levels

Figure 4.13 SSD - The Number of Levels and the Colocality.

As we can see from the previous examples, the more we increase the number of levels in the SSD architec-

ture and themore we decrease the number of the topmost CHs, we increase the proportion of Tx with node

colocality as in Figure 4.13 and hence we decrease the number of hops needed to be taken by the messages

verifying the Tx, even when those Tx are non-colocal. We also decrease the number of hops needed to ver-

ify blocks. And hence, the total number of hops needed to complete the Tx journey towards BC decreases

overall, which puts our architecture at an advantage over the two-tiered architecture.

Also we can see that adopting the colocality aspect may alleviate the latency related to about 50.01% of the

Tx as in the case of SSD architecture, about 99.5% of the Tx in the case of the two-tiered model.

55

From the analysis, we deduce that colocality is achieved nearly half the time in our multi-tiered model,

while it occurs in 0.5% of instances with a two-tiered model and never in a flat model. Thus, our model

demonstrates greater achievability of colocality compared to both flat and two-tiered models, potentially

reducing consensus time.

The ratio of IoTDs to CHs in the two-tieredmodel may vary depending on the application design, potentially

resulting in different colocality outcomes. However, our SSDmulti-tieredmodel outperforms the two-tiered

model by offering a dynamic solution to scalability limitations and by making better use of the colocality

aspect through increasing the number of topmost CHs and the number of the architecture levels as needed,

according to CLT/MUT thresholds.

4.5.4 SSD Operation Under Hostile Environment

In our study, we concentrate on enhancing the scalability and efficiency of blockchain (BC) systems,

prompted by several scalability and efficiency drawbacks identified in the literature regarding flat and two-

tiered models. Our primary focus is on BC scalability and efficiency, all while ensuring proper functionality

adhering to the requirements of consensus decentralization and dynamically maintaining a balance be-

tween decentralization and node management overhead.

Ensuring blockchain functionality in hostile environments is beyond the scope of our study, as it represents

an additional layer of security that could be incorporated into our solutions and mechanisms to further

enhance their resilience. Mechanisms such as Proof of Work (Qi et al., 2023; Yu, 2023b) or LSB’s trust

algorithm (Dorri et al., 2017a)may be adopted by future research to bolster our system’s resilience to hostile

environments.

In this chapter, we have introduced the Multi-tiered concept achieved through the development of the SSD

model. In the following chapter, we present our methodology through which we will conduct and evaluate

our research.

56

CHAPTER 5

RESEARCH METHODOLOGY

In this chapter, we describe the steps we take in order to proceed with our research and to obtain results

for our simulations. In our research, we propose an IoTD-based BC multi-tiered node-organizing concept

to enhance BC scalability and efficiency as well as a number of suggested design options to achieve the

concept. The design options are evaluated and compared to each other. Each architecture corresponds to

a specific set of project hypotheses.

The general approach that we follow starts by identifying the design goals we aim for, and by classifying

them according to a priority defined by the design requirements. Inspired by the literature, we consider

the architecture option that is closest to our design goals, the SSD architetcure, and we take the design

goals as a foundation to improve that architecture in terms of node organization and routing (consensus-

accelerating) algorithms applied. We test the improved components in order to evaluate their feasibility to

reach the design goals.

The precise design requirements emerge based on the drawbacks that we pinpointed in the systems de-

scribed by the literature review. We identify the required operations and design features required to maxi-

mize the observed strengths and to address the reported limitations. We also consider different data struc-

tures than those found in the literature to better depict our new node organization and to keep track of

node data for the IoTDs and CHs throughout the levels. We build an event-driven simulation with cascading

splits and merges invoked by bypassing cluster size thresholds spanning all levels and working their way

bottom-up.

We build a first set of simulations for all three models: the flat, the two-tiered as well as the multi-tiered

model achieved through the SSDarchitecture design option, andweuse the samemetrics in all threemodels

in order to fairly compare between them. The goal of this set of simulations is to provide a proof of concept

for the multi-tieredmodel compared to the two-tiered and flat models in terms of scalability and efficiency.

In our architectures, wherever tradeoffs between functionality (that favors a decentralized consensus) and

complexity arise, we prioritize the choices that allow a fair consensus for all nodes while updating and/or

maintaining their logical addressing (within the architecture to keep the relationships between each CH and

57

its managed nodes), giving functionality a higher priority.

We perform theoretical complexity analyses for our SSD design independently from the simulations’ data

structure considerations, then we build our simulations for the three models to measure the practical com-

plexity analyses of the design as coded in python while considering our complex data structures, in order

to compare both complexity analyses.

For BC systems found in the literature, no theoretical results were found, thus we had to reproduce those

systems in a number of separate simulations in order to compare their results to the SSD results.

We also perform a second set of simulation by building different variants of SSD architecture having 2, 4

and 8 topmost CHs, all performing the cascading splits and merges. The goal of this set of simulations is to

provide a proof of concept of the colocality concept.

Our methodology to evaluate each design is based upon the following:

1. Given the infeasibility of creating a system of millions nodes, we rely on theoretical analysis as a first

means for validating our models. This is achieved by evaluating the theoretical complexity and cost

of operations involved with constructing the architecture, as well as with the splits and merges.

2. We also conduct performance analyses by simulations for IoTD-based BC mimicking our design in

order to validate our theoretical complexity bounds and our proposed model functionalities.

3. We use python3 to recreate and stress test the flat, the two-tiered as well as the multi-tiered mod-

els. Since even simulations with millions of IoTDs may not be feasible, we extrapolate in order to

extend our results aiming to find general trends resulting from varying the number of Tx and IoTDs

as reflected on the amount of traffic, node interactions and required operations.

4. In order to build a simulation for ourmulti-tiered architecture, we first build a two-tiered architecture,

then we overflow the clusters in the lower level to invoke the cascading splits and merges working

their way upwards in the structure. The clusters at the highest level end up to be overflown as some

nodes from the level below join that level. This causes the split of the clusters at the highest level and

the promotion of some of that level’s nodes to create a third level on top. All node movement will

be reflected in the node data, including the node type (CH or IoTD), the node CHAC value, the node

58

managed nodes (for CHs), the node cluster value, etc... Once the levels are set, Tx generation process

takes place at the IoTD level such that a Tx is transferred to the levels above towards the topmost

CHs, the block-generating nodes.

5. Similar simulations are built for the two-tiered model as well as for the flat model (excluding the split

and merge functions).

6. All simulations utilize the same parameters to determine the propagation delay functions for both

the Tx and the blocks.

In this section, we reconsider the use cases mentioned in the thesis introduction in order to clarify the

simulation hypotheses. The process of event generation is as follows in all aforementioned scenarios:

We assume that the Tx emitted and/or captured by the IoT sensors follow a Poisson process throughout the

day. In terms of the position within the architecture, the node representing the Tx-generating IoT sensor

would be either considered as an IoTD node located at the lower level of hierarchy (level 0) to produce

transactions, considered as CHs located on one of the upper levels to maintain the hierarchical structure

or considered as CHs located at the topmost level to interact with BC. In terms of the cluster position,

we assume that the IoT sensor acting as Tx-generating IoTDs tend to fall randomly into different clusters.

We assume that the position within a cluster are taken randomly or according to a realtime geographical

distribution. The generated Tx are multi signature with two or more participants.

Finding a genericmodel for awide variety of plausible use cases, we can deduce amodel where transactions

are generated following a Poisson process throughout the day, which is a common model for this type

of simulations. The position in the hierarchy is at the lowest level IoTD level 0 for Tx generating nodes.

Generally, a Tx is a multi signature and likely has two or three participants, all of which are likely located in

different clusters following a uniform distributionmodel (for IoTD node positioning). This is themain reason

why we model our simulation with two-party transactions.

Testing the SSD model is performed on a fixed number of IoTDs in a three-tiered structure with two CHs at

the third level, then the number of CHs increases exponentially. As a validation we examine the possibility

of achieving a consensus inO(10seconds) or less.

The following metrics need to be measured, as they have an impact on the quality of service:

59

1. The maximum number of Tx supported per second in order to be processed.

2. The throughput (number of Tx appended to the ledger per each second of the simulation duration);

3. The consensus time, which is the time elapsed between the Tx generation and its insertion into the

ledger;

4. The number of IoTDs supported by the system, assuming adequate throughput and consensus time,

was fixed to 256-260 IoTDs.

Metrics like the consensus time yielded by the system may provide points of comparison with other archi-

tectures, namely the flat and two-tiered architectures, in order to showcase the validity of our multi-tiered

concept. The metrics may also provide points of comparison between the different variations (builds) of

the SSD multi-tiered model in order to showcase the validity of the colocality concept.

The detailed criteria stemming from our design objectives enable us to rank the proposed architectures

and decide whether a given architecture achieves a specific, prioritized set of goals with respect to BC

functionalities, security and reliability requirements. The capacity to fulfill the objectives even as system

size grows will be ascertained according to the trends and asymptotic behaviors identified by the analysis.

60

CHAPTER 6

THEORETICAL ANALYSIS OF THE SSD ARCHITECTURE

In this chapter, we analyze elements of the SSD architecture: the characteristics of the forest trees and

the relationships between the height of the structure, the number of nodes and MUT. We also perform a

detailed analysis of the SSD algorithm.

6.1 Trees of the Forest

The forest tree described in our architecture is similar to a B-tree (Cormen et al., 1990) in the node insertion

and the possible expansion of the tree, as well as the node deletion and the possible contraction of the tree.

The advantage of a B-tree lies in the fact that its height grows logarithmically with the number of keys. Let

us consider e to be the number of keys in the whole B-tree, t to be themaximum branching factor per node,

andO(logt e) to be the height of the B-tree. Each node has a number of ordered keys that is at least equal

to the t − 1 and at most equal to twice the t − 1. All leaves are at the same depth, so the tree is always

balanced in height. Starting at the root, each node can be reached in O(t logt e). At each level from root

down the B-tree, each node has to be searched for one of theO(t) keys.

The expansion of the tree is triggered by an attempt to insert a new key into a full node. The expansion

is based on choosing the median among the node keys in order to split the node around the median into

two sets of t − 1 ordered keys each, then to elevate the median upwards to a parent node on the next

level above (to a parent with less depth). In case the parent node is full as well, that parent node needs to

split before the key insertion takes place. And similarly, the node splitting can propagate all the way up to

the root. The median of the node keys can be found linearly in O(t), if a binary search algorithm is used,

otherwise, it can be found in order ofO(log t).

Our architecture shares some properties with B-trees, and is similar to a collection of B-trees having their

roots located at level N . The number of such roots, mN , is between MUT and CLT. In our design, clusters

are equivalent to B-tree nodes, while nodes are equivalent to B-tree keys. Nodes can be CHs in level 1 to

levelN , or IoTDs on level 0. Levels [1 . . . N] contain CH clusters such that each CH manages one CH cluster

of t CHs each, where t is an average branching factor, taken over all levels, such that CLT ≤ t ≤ MUT .

The bottom level contains IoTDs, such that a CH from the level above manages only one IoTD cluster ofm0

61

nodes each. Similarly to B-trees, our structure is always balanced in height by design, since a level can be

added or eliminated only if it is a topmost level. Reaching a topmost CH starts at the leaf level upwards in

O(1) using CHAC, while starting at each topmost CH, each node may be searched by reading a list of the

CH’s managed nodes.

IoTD node joins or departures lead to the expansion or contraction of the tree onceMUT0 orCLT0 thresh-

olds are reached within an IoTD cluster or once MUT or CLT thresholds are reached within an CH cluster;

similarly to the expansion and contraction of a B-tree. Contrary to the regular B-tree structure, reaching

a node starts at the leaf level and goes upwards towards the roots, taking the order of the height of the

structure. Thanks to the use of CHAC, traveling the height of the structure will be in O(1). Similarly to a

B-tree, splitting a cluster will result into elevating a node upwards to the level above, however the split

basically divides the cluster by two and the promoted node is not themedian, it is a randomly chosen node,

so finding that node is inO(1).

The main difference between both splits is that the node data in our structure changes with every split (i.e.

the cluster number that the node belongs to and the node CHAC among other info); whereas in B-trees,

the node information does not change. Also in order to maintain the integrity of our structure where every

cluster has to be managed by exactly one CH, every split must be always accompanied by a merge and

vice-versa; whereas B-trees do not have such a restriction.

6.2 The Height of the Structure and MUT

t

t

m0 IoTDs m0 IoTDs m0 IoTDs

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-2 CHs

Figure 1- The Total Number of Nodes in SSD structure.

mN level-N CHs, N=4 mN

mN . t

mN . t . t

mN . t h-1

 mN . t h-1 . m0

Figure 6.1 SSD - Total Number of Nodes

62

Let us analyze the number of nodes for a structure of a height h and an average branching factor, taken

over all levels, t, such that CLT ≤ t ≤ MUT . At levelN (depth d = 0), we getmN CH nodes (such that

CLT ≤ mN ≤ MUT) ; at level N − 1 (depth d = 1), we get mN · t CH nodes; at level N − 2 (depth

d = 2), we getmN · t · t CH nodes and so on till we reach levelN − (h−1) (depth d = h−1), where we get

mN · th−1 CH nodes. Whereas at level 0 (depth d = h), we getmN · th−1 ·m0 IoTD nodes, as in Figure 6.1.

So the total number of nodes in the structure is:

Tstructure = mN · (
∑︁h−1

j=0 t
j + (t(h−1) ·m0)) nodes.

To calculate the height of the structure, h, we can first consider the height of the CH portion of the forest, h′

(without considering the IoTD level), then we can add one level to that height later on in order to calculate

the whole structure while including the IoTD level. Thus withC CHs, spread over the forest levels, and with

mN root nodes, we get:

C =
∑︁h′

j=0mN tj , so C = mN ((th
′+1 − 1)/(t− 1))

Thus the height, h′, is:

h′ = (logt(((C/mN) · (t − 1)) + 1)) − 1. Hence the full height, h, including the IoTD level is h =

(logt(((C/mN) · (t − 1)) + 1)) − 1 + 1 = (logt(((C/mN) · (t − 1)) + 1)). Since the branching fac-

tor depends on the per-level values of CLT and MUT, we can consider an average value for t taken over all

levels, CLT ≤ t ≤ MUT .

Comparing the height of our forest with a B-tree height assuming that each structure contains the same

number of nodes, we can see that the height of a B-tree grows logarithmically with the number of keys,

which is equivalent to the number of nodes in our structure. While the height of our structure grows loga-

rithmically with a fraction of that number for the following reasons:

1. We compare a tree to a whole forest thus considering the same number of nodes distributed all over

both structures, the height of the forest is much less that the height of a tree.

2. The node distribution in a B-tree is uniform throughout the levels, while the node distribution in our

63

structure is not uniform since the nodes are more concentrated in the IoTD clusters (which are very

dense) at the leaf level while the top levels have smaller size clusters comparably, such that average

branching factor t taken over all levels is small and the number of overall CHsC is much smaller than

the entire number of nodes.

3. We compare the number of what is equivalent to the number of our nodes in a B-tree to the number

of our CHsC, which is too small compared to the entire number of nodes because in our architecture,

IoT clusters are much more dense than CHs clusters.

4. In our formula, the number of CHsC is further divided by the number of topmost CHs and ismultiplied

it by a a comparably small value of t.

All those reasons make the height of our structure much more advantageous than a B-tree height.

The smaller height of our structure does not provide an advantage to the consensus-accelerating protocol

since the latter leverages the use of CHAC positioning mechanism which helps propagating nodes upwards

throughout the levels of the structure inO(1), no matter the height of the forest. However the small height

is significantly useful for the performance of the SSD algorithm since the algorithm has to account for node

and cluster data updates all over the levels of the forest. And in the simulations, we will observe that node

and cluster data are stored in complex data structures with multiple dimensions due to the intricacy of the

design. The number of dimensions in the data structures is equal to the number of levels in the structure,

and the complexity of the SSD algorithm grows logarithmically with the number of levels in the structure.

Thus the smaller the height of the structure, the more efficient the SSD algorithm becomes.

To calculate the MUT threshold per level, we consider the processing capacity of a CH for each level. In

other words, the processing cost for the nodes managed by each CH. We consider the case where there is

a small number of Tx and a large number of managed nodes versus the case where there is a small number

of managed nodes and a large number of Tx. The MUT provides a guarantee that the CH are capable of

performing the processing in terms of the number of managed nodes and the number of Tx generated.

Let us consider the number of nodes managed by each CH. At level 1, a CHmanages 1 cluster ofm0 IoTDs or

in other words, t1−1 ·m0 IoTDs; at level 2, a CH manages 1 cluster of t nodes, each of which are managing 1

cluster ofm0 IoTDs, or in other words, t2−1 ·m0 nodes; and so on till we reach levelN where a CHmanages

tN−1 ·m0 nodes.

64

Any node at levelN − d, where d is the node’s depth in SSD, with a branching factor, t, will manage a total

number of nodes of tlevel−1 · m0, and this will hence need a maximum per-level processing effort, MUT

that is the maximum of all theMUT values calculated per CH situated on the same level, where each such

MUT is calculated as: MUT ≥ γ · (tlevel−1 ·m0), where γ is the maximum per managed node processing

cost, as required by the application.

6.3 Theoretical Analysis of the SSD Algorithm

In this section, we analyse the SSD algorithm - Part 1 and Part 2, so we consider the case where the local

cluster that we split or merge is at the topmost level of the architecture as well as the case where it is on

a non-topmost level of the architecture in each part. The goal of the analysis is to evaluate the complex-

ity of the operations for a comparison with the complexity of the same operations as done through the

implementation.

6.3.1 Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i ̸= N

If size(localCluster)≥ MUT and localCluster is at level i ̸= h:

a) Splitting one of level-i clusters as it exceeds MUT, will cost O(M), where M is the number of nodes of

the to-be-split level-i cluster.

b) One node will leave level i and will join level i + 1: The cost for one level-i node to leave level i of Y

nodes isO(Y); while the cost for the node to join level i+ 1 of Z nodes isO(Z). Adding both costs: Since

we know#[leveli + 1] always has a number of nodes that is less than#[leveli]’s, we know that O(Y) is

the higher order term.

c) Merging the level-(i− 1) cluster that was previously managed by the promoted node, with the smallest

level-i − 1 cluster. We consider that merging two clusters of L andW nodes costs the same as clustering

both clusters. So the cost isO(L+W).

The total cost of horizontal re-clustering is O(max(M,Y, (L + W))), which is is O(max(Y, (L + W))),

where Y is the number of nodes of level i where the split takes place and L and W are the number of

nodes in the clusters to merge at level i− 1.

65

6.3.2 Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i = N

If size(localCluster)≥ MUT and localCluster is at level i = h:

a) Considering i in [0 . . . N] to identify the levels, clustering the nodes of the current topmost level-N =

max(i)with a number of clusters not less than CLT, will costO(Y), where Y is the number of nodes on the

level to be clustered (the current topmost level).

b) Creating a new layer with S nodes, where S is the subset of nodes not less than CLT that have been

elevated from the current level N , where N = max(i), to form the newer topmost level N , where N =

max(i + 1). So the cost for a subset S of nodes to leave level i lower layer of Y nodes will be O(S · Y);

while the cost for level-i S nodes to join level i + 1 of Z nodes will be O(S · Z). Adding both costs: Since

we know#[leveli+ 1] always has a number of nodes that is less than#[leveli]’s, we know thatO(S · Y)

is the higher order term.

c) Merging S clusters with the smallest size clusters of the same subtree at level N − 2 (level i − 1) will

take place. Each one of such S clusters was formerly managed by one of the S nodes that moved from

level-N − 1 to the new levelN . We consider merging two clusters of L andW nodes will cost the same as

clustering both clusters. So the cost is O(L +W). Repeat that for all clusters formerly managed by the S

nodes. So the cost isO(S · (L+W)).

The total cost of vertical re-clustering isO(max((Y, S ·Y, S · (L+W))). Thus the total cost isO(max((S ·

Y, S · (L+W))), where S is the number of nodes at the newly created levelN , Y is the number of nodes

at levelN − 1, and L andW are the number of nodes in the clusters to merge at levelN − 2.

6.3.3 Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i ̸= N

If size(localCluster)≤ CLT and localCluster is at level i ̸= h:

a) Merging the level-i local cluster that is less than CLT (let us call it “cluster F”) ofL nodes, with the smallest

size cluster (ofW nodes) on the same subtree under the same parent, will costO(L+W).

b) Cluster F’s CH will leave level i+1 and will join level i. The cost for a node to leave level i+1 of Z nodes

66

will beO(Z); while the cost for that node to join level i of Y nodes will beO(Y). Adding both costs: Since

we know#[levelN = i+1] always has a number of nodes that is less than#[leveli]’s, we know thatO(Y)

is the higher order term.

c) one level-i − 1 clusters of size P will split into two so that the demoted CH that joined level i would

manage one of the resulting clusters. This costsO(P).

Adding the costs, we get a total cost ofO(max((L+W), Y, P)), whereL andW are the number of nodes

in the clusters to merge at level i, Y is the number of nodes at level i and P is size of the cluster to split at

level i− 1. So the total cost is total cost ofO(max(Y, P)).

6.3.4 Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i = N

If size(localCluster)≤ CLT and localCluster is at level i = h:

a) Each of level-N = max(i) Z nodes get lowered as a regular level-N − 1 cluster node, Z ≤ CLT . The

cost for Z nodes to leave levelN of Z nodes will beO(Z2); while the cost for Z nodes to join levelN − 1

of Y nodes will be O(Z · Y). the value ofN decreases to eliminate the the topmost level where Z nodes

left. Adding both costs: Since #[leveli − 1] is always larger than #[leveli], then O(Z · Y) is the higher

order term.

b) All clustering on the newly called level-N , will be reverted, to form one cluster. This will cost the re-

clustering of all Y and the joined Z nodes, so it isO(Y + Z).

c)Z Level-N −1 (using a new value ofN) clusters of maximum size, T , will split so that half of the resulting

clusters would be managed by the demoted Z nodes. Thus the split cost will beO(Z · T).

Thus the total cost of the topmost layer elimination is : O(max((Z · Y), (Y +Z), (Z · T))). Thus the total

cost isOmax((Z · Y), (Z · T)), where Z is the number of nodes at levelN = max(i) to be eliminated, Y

is the number of nodes at levelN − 1 and T is the maximum size of the Z clusters to merge at levelN − 2.

67

6.3.5 Decreasing the cluster size

Decreasing the clustering may involve one of the following level elimination cases. In our design and simu-

lation, we only consider the topmost level elimination.

1. Topmost level elimination:

If size(localCluster)≤ CLT and localCluster is at level i = h:

The complexity is calculated as shown above.

2. Intermediary level elimination:

If size(all localCluster)≤ CLT and all localCluster is at level i ̸= h:

a) Every level-i node (for allR nodes) gets lowered as a regular level-i− 1 node of the cluster it used

to formerly manage. The cost for R nodes to leave level i of R nodes will be O(R2); while the cost

forR nodes to join level i− 1 ofQ nodes will beO(R ·Q). Level i− 1 ends up havingQ+R nodes,

where R = S · t, and Q = S · t · t, S is the number of nodes at level i + 1 and t is the branching

factor. Adding both costs: Since #[leveli − 1] is always larger than #[leveli], then O(R · Q) is the

higher order term.

b) Decrement i for level-i+1 S nodes as well as the levels above. So level i+1 becomes level iwith

a smaller number of nodes (S) than before. This costsO(1).

c) Level-i− 1 clusters (which includeQ+R nodes) will perform a number of 2 ·S · tmerges in order

to match the new #[leveli] number of managing nodes, S, times t, where CLT ≤ t ≤ MUT . If

the size of the average resulting clusters is W , where CLT ≤ W ≤ MUT , then the cost will be

O(2 · S · t ·W).

Thus the total cost of a level-i layer/middle CHORD ring elimination isO(max(R ·Q, 1, (2 ·S ·t ·W))).

Thus the total cost isO(max(R ·Q, (2 · S · t ·W))), whereR is the number of nodes at level i to be

eliminated,Q is the number of nodes at level i− 1, S is the number of nodes at level i+1,W is the

size of each cluster resulting from the merges that will take place at level i− 2 and t is the branching

factor.

The theoretical analysis described above pertains to an SSD structure with three levels. Increasing the

number of levels in the SSD structure may yield different results because each CH retains information about

68

its managed cluster (or subtree) nodes, and this information changes with each split and merge. Therefore,

the node’s information needs to be updated at every parent CH, affecting all parent CHs across all levels.

Thus, the complexity increases with the number of levels in the hierarchical structure.

Due to the complexity of the SSD model, which requires accessing many nodes in order to keep track of

the node dynamically changing data as well as the clusters node modification during the splits and merges

(that involve a number of node repositioning in the structure), a theoretical analysis of the SSD algorithm

might be too general and might differ from a real coding simulation complexity of the SSD model, a simu-

lation that includes all the aspects of accessing all the required node and cluster data structures as well as

copying all the required data that are involved in the system’s splits and merges. Thus we aim to verify the

theoretical analysis made thus far with the complexity analysis of our design as it is simulated in real code

simulation programmed in Python that will serve both as a proof of concept for our SSD design, as well as

a sample simulation example to provide a more feasible and comprehensive complexity analysis according

to functional simulated BC requirements.

Therefore, now that we presented the theoretical analysis of the SSD model in general, we can present the

simulation as well as the complexity of the SSD model as it is simulated according to our Python coding, in

the next couple of chapters, in order to allow for such comparison.

69

CHAPTER 7

SIMULATION OF BLOCKCHAIN OPERATION

BC can be implemented as a flat one-tiered application as in Bitcoin (Nakamoto, 2009), a two-tiered ap-

plication as in BlockSim (Alharby et Moorsel, 2022) or a multi-tiered application as in our SSD simulation,

presented in this study. The goal of this section is to simulate a BC operation in order to evaluate the time

the Tx takes from the time it gets generated by an IoTD until it gets appended into BC (after being inserted

in a block). The ultimate goal is to measure that time in the SSD model, in the flat model as well as as in

the two-tiered model and to compare them, and also to perform comparisons among different variants of

the SSD model (having different number of topmost level CHs). Since BC is an overlay hypothetical design

concept that is built on top of a real physical network, measuring the time of a Tx journey is made possible

by measuring the number of hops that represent the different interactions that a Tx needs to make and

the number of nodes it needs to encounter in order to complete its journey. Measuring that time through

simulation does not take into account the actual physical network propagation delays1 since we have no

control over such delays because nodes may be physically far apart, with several routers in between. What

we have control over is the node organization and the BC design in order to decrease the number of such

hops as much as possible. Hence, our design is only concerned about the overlay network (ON) delays

as they occur in a typical BC system. Therefore, we aim to evaluate the impact of node organization and

BC design on the ON delays, assuming these impacts will be eventually reflected at the physical level. For

the purposes of the simulation, we have modeled the propagation delays between the overlay nodes as

drawn from an exponential distribution to represent the delay that might happen during each hop the Tx

takes achieving its journey towards BC. It is in our interest to decrease the numbers of such hops in order

to achieve a better efficiency for the consensus, and the simulation aims to prove whether reducing the

number of hops is achievable using our SSD architecture.

Our SSDmulti-tiered architecture has the goal of decreasing the number of hops necessary for a Tx to make

in order to reach BC by exploiting two important concepts:

1. Themulti-layered architecture benefits fromnodes colocality and hence eliminates unnecessary hops

for a Tx.

1 measuring real network propagation delays can not be performed through simulations, hence it is out of the scope of our study.

70

2. Adopting the CHAC concept eliminates unnecessary hops between levels, no matter how deep the

forest trees are.

In our implementation, we use Python version 3 along with pandas, numpy, sklearn and xlsxwriter to sim-

ulate a BlockChain based on the Proof-of-Work (PoW) consensus.

In the following, we start by introducing the simulations design hypotheses for a typical flat BC, for a two-

tiered BC, and for our SSD BC, followed by the features applied in the simulations and a quick comparison

among all three BC design concepts. Then we follow with the design parameters, the simulation design

details, then the simulation results.

7.1 Typical Flat BlockChain Simulation Hypotheses

In our flat BC simulation, we assume the following hypotheses:

1. The nodes do not have logical addresses.

2. Flat BC systems are characterized by broadcasting themessages within the P2P ON, so that amessage

carrying a Tx can be sent to the next node that will, in turn, send it to next node, and so on till the

message reaches the block generating node, as one possibility; or the message can take shortcuts

being propagated by other nodes that are closer to the block generating node, as another possibility.

This broadcast characteristic causes the messages, in order to propagate from one destination to

another, to take O(λ), worst case, where λ is the number of all the BC system, or to take O(1), best

case, if the block generating node is the next node ahead. Such propagation is hard to simulate,

and hence we decided to consider only a portion of the nodes as being block-generating nodes, and

simulate the messages carrying the Tx to start at a couple of IoTDs, thus, taking the maximum of both

propagation delays starting at the IoTDs and reaching the block-generating node, and repeating that

process for each of the block-generating nodes; then the Tx will be propagated to all other regular

nodes (thus adding the previous delay to the maximum of all propagation delays towards the rest of

the non-block-generating IoTD nodes). Thus we assume that the requester and requestee know each

other’s Public Key (PK) in advance, for simplicity.

71

3. In the physical network, the IoTD nodes are assumed to be randomly2 distributed and the resulting

delays aremodeled by a propagation delay drawn from an exponential distribution for every hop that

the Tx carrying-messages needs to take in order to achieve its journey towards BC. We differentiate

between the Tx delays as the Tx propagates from the IoTDs towards the block-generating nodes aswell

as towards all the BC nodes versus the block delays as they propagate between the block-generating

nodes.

4. Most of the nodes may attempt to generate a block that contains a certain number of Tx. Once a

block gets generated by one node, it gets broadcast towards all the other nodes to get verified.

5. Visits are inO(4 ∗number of the structure′s nodes) (worst, without node colocality and best case,

with node colocality). These visits occur because most of the nodes are visited two times looking

for each Tx party’s public key. Then all nodes are visited once a Tx is verified since the Tx needs to

propagate towards all nodes to give each node a chance to append the Tx into a block. And finally all

nodes are visited once by the message carrying each block to verify the block.

6. A Tx has to be appended only once to a block at any node of the structure. The node with a Tx pool

that reaches Tmax Tx first gets to build the block that is currently built, and gets to append that block

into the BC. All Tx included into that block should not be appended again into any future blocks. All

the other blocks that are currently being built be other nodes are to be ignored.

7. The consensus modeled is PoW, simulated by a simplified consensus mechanism.

8. In order to simulate Tx verification, we simply ensure that a Tx propagates towards the nodes involved

in Tx verification, namely all BC nodes.

9. In order to simulate block verification, we simply ensure that a Tx propagates towards the nodes

involved in block verification, namely all the block-generating nodes.

7.2 Two-Tiered BlockChain Simulation Hypotheses

In our two-tiered BC simulation, we assume the following hypotheses:

1. The nodes do not have a logical addresses.

2 In the absence of information about the nodes distribution, we chose to simulate themas being randomly (uniformly) distributed.

72

2. The IoTDs at the lower level are clustered and can generate Tx, while only the upper level nodes (CHs,

having higher capabilities) can build, verify and append blocks into BC.

3. In the physical network, the IoTD nodes are randomly distributed and the resulting delays are mod-

eled by a propagation delay drawn from an exponential distribution for every hop that the Tx carrying-

message needs to take in order to achieve its journey towards BC. We differentiate between the Tx

delays as a Tx propagates from the IoTDs upwards towards the CH level, versus the Tx delays as a

Tx propagates between the CHs. We calculate the latter delays similarly to the calculation of block

delays as blocks propagate between the CHs.

4. A Tx gets stored in the Tx pool of each CH. Once the pool reaches a threshold, Tmax, the CH may

start building a block.

5. Once a block is built, it propagates (in a message) towards all CHs (to simulate block verification).

6. Visits in O(CHs) are performed (and lists of length in O(number of the structure′s nodes) are

read once) in case that the requester and the requestee do not belong to the same cluster, worst

case. Otherwise, visits in O(1) are performed if both the requester and requestee are in the same

cluster, best case. In the latter case, no need to read the list of the managed cluster nodes thanks

to the use of CHAC that helps determine whether a pair of IoTDs are colocal in only O(1). Once a

Tx is verified, visits in the O(CHs) are performed as the Tx needs to propagate towards all CHs to

give each CH a chance to append the Tx into a block. To verify each block, visits in the O(CHs) are

performed once. Thus we assume that the requester and requestee do not know each other’s Public

Key (PK) in advance.

7. All Tx have to be appended only once to a block at any node of the structure. The node with a Tx pool

that reaches Tmax Tx first, gets to build the block that is currently built, and gets to append that

block into BC. All Tx included into that block should not be appended again into any future blocks. All

the other blocks that are currently being built by other nodes are to be ignored.

8. The consensus modeled is PoW, simulated by a simplified consensus mechanism.

9. In order to simulate Tx verification, we simply ensure that a Tx propagates towards the nodes involved

in Tx verification, namely the CH managing the IoTD generating the Tx.

10. In order to simulate block verification, we simply ensure that a Tx propagates towards the nodes

involved in block verification, namely all CHs.

73

11. A random clustering algorithm is used to cluster the IoTDs.

7.3 SSD BlockChain Simulation Hypotheses

In our SSD simulation, we assume the following hypotheses:

1. IoTD nodes are at the lower level of the architecture (at level 0), they are clustered and managed by

CHs.

2. IoTD clusters are assumed to have similar size to avoid bottlenecks at the CHs and to ensure a fair

consensus time for all nodes, in case where nodes, including CHs, have comparable capabilities. The

modularity function of the clustering algorithm is biased when the algorithm identifies the clusters

with lower number of members to join a neighboring cluster having the highest number of mem-

bers, in case of a merge. Whereas a uniform modularity function will allow clusters to merge with a

neighboring cluster having a small number of members, which is more desirable. Though in our sim-

ulation, we used a random clustering algorithm, applying a clustering algorithm with a non-biased

modularity function (K-means clustering algorithm as an example) along with a design that ensures

a load-balanced structure is assumed and should be explored.

3. The CHs are located at the upper levels of the architecture (levels 1 to N). Levels-1 through N-1 CHs

are clustered and managed by upper level CHs. Level N is the topmost level, the only level where the

CHs are in one cluster and are allowed to verify and build blocks.

4. The CHs store the logical addresses (CHAC) as well as the Public Keys (PK) along with the node data

of the nodes they manage.

5. There are three types of nodes, according to their functionality and position in the structure. Only

the lower level nodes (the IoTDs) can generate Tx, while only the topmost level nodes (topmost CHs,

having higher capabilities) can build blocks and append blocks into the BC. The CHs at intermediate

levels, possessing greater capabilities, not only assist in maintaining the structure but also facilitate

splits, merges, and management of lower nodes.

6. In the physical network, the IoTD nodes are randomly distributed and hence the resulting delays in

the ON are modeled by a propagation delay drawn from an exponential distribution for every hop

74

that the Tx carrying-message needs to take in order to achieve its journey towards BC. We differen-

tiate between the Tx delays as a Tx propagates from the IoTDs upwards towards the topmost level

versus the Tx delays as a Tx propagates between the topmost level CHs. We calculate the latter delays

similarly to the calculation of block delays as blocks propagate between the topmost level CHs.

7. When nodes join a cluster, the cluster size may exceed the Management Upper Threshold (MUT),

which triggers a cluster split into two clusters.

8. When nodes leave a cluster, the cluster size may become less than the Control Lower Threshold (CLT),

which triggers a cluster merge with the smallest size cluster on the level.

9. The consensus modeled is PoW, simulated by a simplified consensus mechanism. We modeled Proof

of Work [6] consensus (Qi et al., 2023; Yu, 2023b) simply as a means of comparison between models.

Since our approach is consensus agnostic, we expect similar results would be obtained with other

consensus mechanisms.

10. The different node actors are : the requester, the requestee, the requester parents, the requestee

parents, the requester topmost parent (topmost CH), the requestee topmost parent (topmost CH)

and the other topmost CHs. The Tx as well as the signatures, the PK and the blocks are carried in

messages that propagate among the nodes. The requester is the node that generates the Tx. The

requester parents are the nodes that propagate the Tx upwards. The requester topmost parent prop-

agates the Tx towards other topmost CHs. The other topmost CHs add the Tx to their Tx pools in

order to build a block. Once Tmax Tx are in a topmost CH pool, a block is built by that CH, then the

block gets propagated towards all other topmost level CHs. In the simulation, the block propagation

is performed by scheduling the block to be received by other topmost CHs (to simulate the block

verification).

11. Each topmost level CH keeps track of its managed nodes data (node ID, cluster ID, CHAC, ..etc) for the

clusters it manages throughout all levels and keeps that data in a managed nodes list.

12. Tx aremulti-signaturewith a requester IoTD and a requestee IoTD.When the requester and requestee

are in the same tree, the topmost CH common to both Tx parties holds their Public Keys (PKs) and Tx

verification takes place at that topmost CH (inO(1)) by checking that the value of the public key hash

(h(PK)) matches the specified value in the previous Tx from the same Tx parties on the ledger and

that the parties’ current signatures may be validated with their PKs. In the event that no common

topmost CH is found (non-colocal requester/requestee), all topmost level CHs are visited by amessage

75

carrying the requester PK and the CHsmanaged nodes list are searched for the requestee’s PK. The Tx

is verified by the topmost CH where the requestee PK is found. In that case, (O(all topmostCHs))

are visited. In order to simulate Tx verification, we simply ensure that a Tx propagates towards the

nodes involved, as specified in the Tx verification process. Thus we assume that the requester and

requestee do not know each other’s Public Key (PK) in advance. Once a Tx is verified, it propagates

towards all topmost CHs to give each CH a chance to append the Tx into a block. All topmost level

CHs attempt to generate a block that contains a certain number of Tx. Once a block is generated by

one topmost level CH, the CH propagates the block in a message towards all the other topmost level

CHs to verify it.

13. Tx are created and assigned creation times that are drawn from a Poisson process following an expo-

nential distribution, whereas the choice of the requester and the requestee nodes is random as it is

based on a uniform distribution.

14. As far as a Tx is concerned, the goal for BC is to propagate a Tx (carried by amessage) from the bottom

level, where the IoTDs reside, towards topmost CHs, so that such CHs get the same chance to build

blocks. When the Tx is generated by colocal nodes, the Tx is transferred to the requester’s topmost

parent CH first then it gets propagated to all other topmost CHs so that they get the same chance to

append that Tx to their Tx pool to build the block, and the first Tx pool that reaches Tmax Tx is the

pool where the block will be built. All the Tx used for that pool will be excluded from consideration

for future blocks.

15. If both Tx parties (requester and requestee) reside in the same tree, the message carrying the Tx

propagates towards the common top-level CH before reaching other top-level CHs. Otherwise, the

message carrying the Tx propagates from the bottom level towards the requester’s top-level CHwhile

the requestee information is obtained by searching all other top-level CHs managed nodes.

16. Tx have to be appended only once to a block. Each block contains up to Tmax Tx.

17. A blocks is appended into BC, by one of the topmost CHs. This is assumed to take place by using a hash

function that includes the hashing of the previous blocks into the current block. In our simulation,

the hashing process was simply modeled by including the previous block ID into the current block.

18. The values of MUT and CLT may vary as applied to the different architecture levels according to each

SSD application needs. In our simulation, we use the same value for MUT throughout the levels and

we use the same CLT value throughout the levels, for simplicity. These values, however, vary from

76

one simulation to another as we vary the number of the topmost CHs to simulate the different SSD

builds.

19. Node reliability is assumed to be in place but in real life BC systems, reliability might present an issue:

Node failuremay occur at any point of the P2P system, thus amechanism to verify connectivity among

IoTDs (CHORD as an example) may be required and is assumed. A mechanism is assumed to help

quickly adapt the architecture to churn caused by frequent new node joins and old node departure

or failure; and to efficiently provide a location service for the nodes that store a particular data item,

even if the system’s organization is continuously changing.

20. Supporting node mobility to accommodate the node movement within the system, is assumed.

7.4 Measured Metrics

In this section, we discuss the metrics to be measured in the simulations as introduced in the methodology

chapter, since such metrics have an impact on the quality of service of the BC system as it performs in the

context of the case studies mentioned:

1. Metric: The number of levels necessary to ensure a consensus time of O(10seconds) maximum for

a given number of IOTDs.

Considering only three levels in our simulation was sufficient to measure the latency of SSD archi-

tecture. More levels can be added in case the number of level-N CHs becomes larger than MUT, so

splits may take place at the topmost level (along with the associated required merges) and another

topmost level may be added. Considering the BC functioning according to our multi-tiered design,

addingmore levels to the architecture does not affect the latency or the complexity of the operations

since traveling all levels will be performed in O(1) (one hop only) thanks to the use of CHAC along

with the multi-tiered architecture. Thus the number of levels does not affect the consensus time

however it has to be be adjusted accordingly to always adhere to MUT bound.

2. Metric: The maximum number of Tx supported per second in order to be processed by the CHs veri-

fication for a given number of IOTDs.

We do not consider Tx verification in particular into our simulation since our main concern is consen-

sus latency in terms of the number of hops performed among the different nodes of the BC system

77

as they are organized in a multi-tiered architecture. In order to measure the number of Tx processed

by the BC system, we considered producing 500, 1000 and 2000 Tx in one second to measure the

reliability of the simulation. The simulation proved to be reliable processing that large number of Tx

per second, however due to the computation limit of the laptop used to run the simulations, we had

to stop at 2000 Tx/second. Our architecture ran smoothly with that number of Tx and based on that

trend, we can expect the same smooth performance for a very large estimated number of Tx provided

more computing power is available, assuming that the trends will continue and that the current SSD

architecture will remain applicable.

3. Metric: The growth rate of the incoming Tx that may be supported (interval of Tx arrival). The growth

rate can be measured by setting counters at topmost CHs to measure the number of processed Tx at

different time intervals.

In the simulation, Tx at topmost CHs are forwarded in a simple process: once a topmost CH receives a

Tx relayed from an IoTD, the CH either 1) verifies the Tx locally if both the requester and the requestee

are colocal, or 2) the CH sends the Tx to all other topmost CHs to look for the requestee information

and the verification takes placewhere the requester’s information is found. Once the Tx is verified, the

verifying CH sends the Tx to all other topmost CHs so that they append the Tx into blocks. Therefore

the Tx will be processed by all topmost CHs any way.

The incoming rate of Tx depends on Tx creation rate which is generated according to an exponen-

tial function to represent the probability distribution of the time between events in a Poisson point

process, i.e., a process in which events occur continuously and independently at a constant average

rate.

4. Metric: The throughput (number of Tx appended to the ledger per second);

In the simulation, the throughput is measured as the number of Tx per simulation duration (as in

BlockSim (Blo, 2020)).

5. Themetric: The consensus time, which is the timeelapsedbetween the Tx generation and its insertion

into the ledger;

In the simulation, the consensus time is exactly calculated as mentioned in the metric.

6. Metric: The number of IoTDs supported by the system assuming adequate throughput and consensus

time.

78

For SSD architectures, we have built simulations supporting 30 IoTDs (in a simulation having two CHs),

supporting 60 IoTDs (in a simulation having four Chs) and supporting 260 IoTDs (in simulations having

two, Four and eight CHs). Following that trend, we can also estimate having a very large estimated

number of IoTDs providedmore computing power is available, assuming that the trends will continue

and that the current SSD architecture will remain applicable.

7.4.1 The Features Applied in the SSD Simulation

In the simulation, we took into consideration all the simulation hypotheses stated above except for the fact

that we skipped the verification process of the requester/requestee PKs and signatures as well as the Tx

and block verification. This is due to the fact that the time taken by these verification will be the same

whether the architecture is flat or tiered and so it will not help answer the research questions. Also since

the focus of our research is on improving the BC consensus time through clustering over many levels in

order to improve the propagation delay between the nodes, implementing a specific type of consensus will

not directly affect our results, and hence we simulated the block appends to the Blockchain to be done so

that the nodes would take turns to generate the blocks after waiting for a random time, simulating PoW, by

introducing a delay that models the time taken by the fastest CH to create a block. Once a Tx is appended

into a block it will get eliminated from the set of the Tx available for the other nodes to generate blocks

from.

7.4.2 Simulation Parameters

In order to obtain valid comparison results, we studied and simulated a flat architecture, a two-tiered

and the multi-tiered SSD architecture. All three architectures were simulated using the same probabilis-

tic model, which is the same probabilistic model used in other simulations as well ((Blo, 2020), (Eth,

2016), (Dorri et al., 2017a)). All simulation times are measured in seconds. The simulations are modeled

based on the following parameters:

1. In order to compare our SSD simulation to BlockSim (Blo, 2020), we considered the same value for

Binterval3, which is the average time for creating a block in the blockchain, where 1/Binterval is

3 Changing the values of the parameters will not change the ranking obtained by the simulations for themodels or themulti-tiered

builds, since we used the same parameters in all our simulations.

79

the average number of blocks that are created per second. We built a function called “Protocol()”

and we applied it per miner CH. In that function, we modeled PoW consensus protocol (Protocol)

by drawing the time it takes the miner to finish the PoW from an exponential distribution based

on the invested hash power (computing power) fraction of the nodes (Blo, 2020). So the miner’s

hash power is calculated as the average hash power of that miner divided by the sum of the hash

power of all miners in the simulation (TotalHashPower). Then we use an exponential distribution

function of the hash power times 1/Binterval (Blo, 2020). The consensus time (Consensus), which

is modeled as the interval time between the creation time of a new block and the creation time of the

previous block will be calculated as the result of the Protocol() function divided by 1000 to decrease

the consensus time to get more realistic values for the simulation, as in BlockSim (Blo, 2020). Then

we increment the simulation time (currentT ime) with the consensus time (Consensus) so it would

get assigned to the new block timestamp (blockT ime).

hashPower = miner.hashPower/miner.TotalHashPower

Protocol = random.expovariate(hashPower ∗ 1/Binterval)

random.expovariate produces intervals according to an exponential distribution. So here we use

for each miner node, an exponential distribution with an average rate of hashPower ∗1/Binterval

arrivals per second, to simulate the time intervals between the blocks that can be created by that

miner.

Consensus = Protocol(miner)/1000

currentT ime+ = Consensus

blockT ime = currentT ime

2. Bdelay is the average block and Tx propogation delay among topmost CHs. In block_prop_delay()

function, we modeled the block delay by drawing the time it takes a block to make one hop from one

topmost CH towards another topmost CH, using an exponential distribution based onBdelay value.

Thus, Bdelay value is the expected value of the exponential distribution. We considered the same

value forBdelay in our simulations for all three architectures in order to compare our SSD simulation

to the flat architecture as well as the two-tiered architecture.

When a block is created by a topmost CH, messages carrying the block get propagated to all other

topmost CHs to validate it. The block delay is simulated for every topmost CH receiving the block by

taking the maximum of the propagation delays towards these CHs and adding it to the creation time

80

of the block.

block_prop_delay = random.expovariate(1/Bdelay)

For Tx where the requester and requestee are non-colocal, we also modeled the Tx delay as the Tx

propagates amongst topmost CHs using Bdelay, since in that case, their propagation delay mimics

a block propagation delay as the distance traveled by the block or the Tx at the topmost level is the

same, though the types of the propagated messages are different (a block versus a Tx).

tx_prop_delaylevelN = random.expovariate(1/Bdelay)

3. In order to compare our SSD simulation to Ethereum (Eth, 2016), we considered the same value for

Tdelay, which is the average Tx propogation delay between an IoTD and a topmost level CH. In

tx_prop_delay, we modeled the Tx delay by drawing the time it takes a Tx to make one hop from

an IoTD towards a topmost CH from an exponential distribution based on Tdelay value (Blo, 2020).

tx_prop_delay_non_levelN = random.expovariate(1/Tdelay)

For each Tx, there is a Tx propagation delay per non_level-N CH that is simulated as an exponential

distribution with an average rate of 1/Tdelay arrivals per second (Poisson process), where the ex-

pected value of the exponential distribution is Tdelay, to simulate the number of Tx that can arrive

at the topmost CH per second.

4. In order to compare our SSD simulation to BlockSim (Blo, 2020), we considered the same value for

ProcDelay, which serves tomodel the processing delay to append a block into BC (Blo, 2020). Calcu-

lating a block “appendTime” into BC, we add the max propagation delay of the block towards level-N

CHs which validate that block, as well as another delay to process the block appends to BC, to the

block creation time (Block timestamp) in order to calculate the block Append Time to BC. The lat-

ter is calculated by drawing the time it takes a block to get appended into BC from an exponential

distribution where ProcDelay value is the expected value of the exponential distribution.

block_process_delay = random.expovariate(1/ProcDelay)

For each block, there is a block processing delay per CH that is simulated as an exponential distribu-

tion with an average rate of 1/ProcDelay arrivals per second, where the mean of the exponential

distribution is ProcDelay, to simulate the number of blocks that can arrive at the CH per second.

The block Append Time to BC is set to the maximum receiving time of the block by each topmost CH

plus the processing delay.

81

5. In order to compare our SSD simulation to LSB (Dorri et al., 2017a), we considered the same value for

Tmax, which is the maximum number of Tx allowed per block, as implemented by LSB (Dorri et al.,

2017a). Once the number of Tx to build a block reaches Tmax at one topmost CH, the block is built

and starts to propagate towards all the other topmost CHs.

Table 7.1 states the values used for the delays as implemented in Ethereum (Eth, 2016), LSB (Dorri et al.,

2017a) and BlockSim (Blo, 2020), so that our SSD implementation would be comparable to those imple-

mentations.

Table 7.1 System Parameters.

Parameter Value Unit

Binterval 600 seconds

Bdelay 0.15 seconds

Tdelay 0.000690847927 seconds

ProcDelay 0.000004 seconds

Tmax 10 Tx

7.5 Simulation Design

To build the architecture, we build two two-dimensional arrays: one array holds the data representing the

nodes (NodeArray), while the other array holds the data representing the cluster IDs of the clusters where

the nodes belong to (ClusterArray). In both arrays, the horizontal dimension corresponds to the archi-

tecture levels while the vertical dimension corresponds to the data of each array, such that the structure of

both arrays are the same (same number of dimensions and same number of cells in each dimension). The

relationship between the arrays is based on the indices of the arrays, such that a node’s index in the first

array corresponds to the cluster ID at the equivalent index in the second array.

In order to facilitate the navigation and the signature verification throughout the architecture, each CH

maintains a list (named “managed_nodes”) that contains the nodes that this CH manages along with their

CHAC(s). For the same reason, all CHs maintain a list of their managed clusters (named “managedCluster”).

82

7.5.1 The Splits And Merges Phase

In this phase of the simulation, we focus on testing the functionality of SSD splits and merges. In order for

the structure to keep the balance between the security constraints of BC bymaintaining aminimumnumber

of nodes to perform the consensus per cluster, and between node manageability constraint for each CH.

Merges and splits take place in the structure adhering to the MUT and CLT thresholds.

Our simulations follow the same concepts and produce the same results for an architecture of three or

more levels, thanks to the use of CHAC which allows travelling the architecture height in O(1) no matter

how deep the forest is. Thus we only simulate for an architecture having three levels, since adding more

levels will not give different results. Adding more levels could only be required in case the number of IoTDs

increases inside the clusters to the point where their management overhead becomes a burden for the

current number of CHs; in this case splitting the architecture, and eventually adding more levels, would be

necessary. This is programmed in the simulation as we start by an architecture having only two levels, then

we overflow the IoTD nodes in the lowest level, which triggers cascading splits of the clusters at the lowest

level, followed by the second level, which requires the addition of the third level.

A violation of MUT is simulated where the number of nodes in one cluster is made to exceed the Manage-

ment Upper Threshold (MUT), so a cluster split is simulated, followed by a merge at the level below for the

cluster containing the nodes that become orphans (without a managing CH) due to the split. Similarly, a

violation of the Control Lower Threshold (CLT) is simulated where the cluster size is less than the CLT, so a

cluster merge is simulated, followed by a split at the level below so that the demoted CH, due to the merge,

manages a cluster.

Considering the architecture levels, when a cluster at level i splits into two clusters, the first cluster keeps

its cluster ID and its managing CH on level i + 1, while the second cluster at level i gets a different ID that

identifies its level, its number as well as the original cluster it separated from, as described in the next

section. One of the second cluster nodes is randomly selected as a new CH for the second cluster and is

promoted to level i+1. The cluster on level i−1 that used to bemanaged by the recently promoted cluster

node merges with the smallest cluster on level i − 1 to form a larger cluster and is managed by the same

CH that manages the cluster it merged with.

When a cluster’s size becomes less that CLT at level i, the cluster merges with the smallest size cluster on

83

the level. The CH at level i + 1 that previously managed one of the clusters is demoted to join the newly

formed cluster at level i and is assigned a cluster to manage at the level i − 1 as a split (of the largest size

cluster on the level i− 1) takes place.

Tracking the smallest size or the largest size cluster is done by traversing the array that contains the cluster

numbers at that level and by counting the number of array cells that have the same integers4. The number

of cells having the same integer (same cluster ID) represent the size of that cluster identified by that cluster

ID. In case two or more clusters have the same number of nodes (cells) and are considered the largest

clusters, then choosing any of them will be ok.

To implement the MUT and CLT for a level, the cluster number that repeats more than MUT times in the

ClusterArray indicates a violating cluster whose number of nodes exceeds MUT. The indices of the vio-

lating cluster number will be considered as the node indices of the cluster that needs to split at that level.

The nodes in the indices corresponding to that cluster in theNodeArray will split into two halves (groups),

where the first group of nodes will keep its values in both arrays, while the second group of nodes will be as-

signed a different cluster number in theClusterArray at the corresponding indices to those node indices

in theNodeArray.

7.5.2 The encoding of the splitting cluster ID and the split details

If the split does take place on the topmost level, two group of nodes form: the first group of nodes is

assigned to the original CH that managed that cluster before the split and retains the same cluster number,

while the second group of nodes is assigned to a uniformly randomly chosen CH fromwithin that group and

is given a new cluster number. In order to differentiate the cluster numbers according to whether they’re

newly generated or whether they are pre-existing, and in order to determine where the split taks place in

the structure, we systemize the generation of the newly generated cluster number.

As an example, let us consider a cluster number like “1010005”. The encoding of the number has a meaning

in order to identify the splitting clusters and to differentiate among them according to their level and their

position in the hierarchy. Thus the digits, starting at the most significant, are as follows:

4 Those integers are the cluster IDs

84

(i) 1: the first digit identifies a constant value for the second half (group) of the splitting cluster.

(ii) 0: the second digit identifies the level where the split takes place (here it’s level 0)

(iii) 1: the third digit identifies the current split among the number of splits that already took place to the

original cluster (here it’s only the first split)

(iv) 5: the last digit identifies the original cluster where the split takes place (here it’s cluster number 5)

The split function keeps track of the nodes changing position by tracking/changing the cluster number in

the Cluster Array at the index of the node that changed position in the structure. So the chosen CH becomes

the parent of the second half (group) of the cluster and this is reflected in the cluster nodes CHAC. Then

the chosen CH is promoted one level up and its managed_nodes, managedCluster as well as its CHAC are

adjusted accordingly. The newly promoted node index is also modified in the Cluster Array to indicate the

current cluster number where the node belongs after the promotion. All these changes are also associated

with deleting the old position of the promoted node within the Node Array and within the Cluster Array.

Otherwise, if the split takes place at the topmost level which includes only one cluster having a number of

nodes equal or greater than MUT (a violating cluster), the number of the resulting clusters is equal to CLT

and one node from each of such clusters is randomly chosen as a CH and is promoted to the level above,

in order to create a new level having CLT nodes. Since promoting nodes creates orphan nodes a necessity

for a merging action arises at one level below the level where the split takes place. The splitting action may

propagate/cascade from the lowest level towards the upper levels and additional levels may form adhering

to CLT threshold.

7.5.3 Consensus and BC

Once the architectural organization stabilizes after performing the splits/merges and expansion/contraction

of the structure, the BC simulation takes place. First, all transactions are generated such that the time

intervals between Tx creation times are drawn from an exponential distribution that represents a Poisson

process, and transactions are randomly assigned to chosen requester and requestee nodes. Then the Tx is

directly sent to the requester topmost parent as indicated by the requester’s CHAC (one hop to travel no

matter how deep is the forest). In case both the requester and the requestee exist in the same tree, the

Tx verification takes place at that topmost parent (since it is the parent common to both the requester and

85

requestee). The common topmost CH verifies the Tx and further propagates the verified Tx to all topmost

CHs so that all such CHs get a chance to append the Tx into their Tx pool in order to build blocks. In case

the requester and requestee are in different trees, the Tx reaches the topmost CH managing the requester,

which propagates messages to all topmost CHs, looking for the requestee information stored in the CHs’

managed_nodes list. Once found, the Tx verification takes place at that CHwhere the requestee information

is found (the requestee topmost parent), and that CH verifies the Tx and further propagates the verified Tx

to all topmost CHs so that such CHs get a chance to append the Tx in their Tx pool in order to build blocks.

Hence, node colocality (where the requester and the requestee share a common parent) is leveraged in

order to reduce the number of hops required for Tx verification. CHAC is leveraged in order to reduce the

number of hops required for performing the consensus as whole.

Once all the Tx are generated by the simulation, initial blocks which are called “genesis blocks” are created

by the topmost CHs. Then those CHs start to create regular blocks (containing Tx) and append them to the

global blockchain. Each block contains up to Tmax Tx and is built according to a PoW consensus so that

the block creation time is always larger than the maximum creation time of all the Tx contained within. A Tx

is appended to a block only once. A block is appended into a global BC, where each block has a “.previous”

variable that acts as a hook attaching it to the global BC, we thus skip the usual BC hashing technique for

simplicity. Once a block is built at a top-level CH, it is propagated (as carried in a message) to other top-level

CHs to be verified, then appended into the global BC.

In the simulation, the block propagation is performed by scheduling the block to be received by other top-

most CHs to simulate block verification. In order to simplify the implementation, building a block and ap-

pending it to BC takes place once it is received by all topmost CHs, without having to compare the topmost

CHs’ local BCs to each other. This simplifies our simulation in order to focus on measuring the number of

hops required for a Tx to travel within the architecture.

7.5.4 The transactions processing

We followed a probabilistic model to generate Tx, such that the Tx are generated with a random id (using

a uniform distribution), at times exponentially distributed with random intervals during the simulation du-

ration (using an exponential distribution to represent a Poisson process). Each Tx is randomly assigned to a

randomly chosen requester node as well as a randomly chosen requestee node (using a uniform distribu-

tion). The transaction is first created by a requester. Examining the requester’s CHAC, the message carrying

86

the Tx shows whether the requestee belongs to the same tree as the requester (whether they are colocal).

For Tx verification, the message carrying the Tx propagates as follows:

(A) Tx propagates upwards in the structure in only one hop (no matter the number of levels of the archi-

tecture) to reach the topmost parent.

(B) If the requestee is colocal:

(i) Tx is verified by the topmost parent.

(C) If the requestee is non-colocal:

(i) The topmost parent sends messages to all other topmost CHs to looks for the requestee.

(ii) Once the requestee is found at one of the topmost CHs, the verification of requester and re-

questee takes place at that CH.

So in case of colocality, the Tx propagates in one hop (upwards) plus in O(1) to be verified by only

one topmost CH. While in case of non-colocality, the Tx propagates in one hop (upwards) plus in

O(numberoftopmostCHs) looking for a topmost CH that holds the requestee information to verify the

Tx.

Once verified, the Tx is sent to all other topmost CHs in O(numberoftopmostCHs) so that they append

that Tx to their current or future block.

Propagating in O(numberoftopmostCHs) is simulated by taking the maximum of the propagation to-

wards all topmost CHs. This is done by generating those propagation delays towards all the topmost CHs,

while adding them into an array, then getting the maximum value.

The Tx sender is a variable that changes during the simulation in order to identify the current node sending

a Tx. Each node has a Tx pool that contains the Tx that have reached the node so far. Once a node becomes a

sender and sends those Tx towards another node on the upper level of the architecture, that pool becomes

empty. Only the topmost CHs are allowed to preserve their Tx within their pools while being a sender to

other topmost CHs. This modeling ensures that by the end of the simulation, all topmost CHs have the same

87

snapshot of all Tx, hence getting the same chance to append Tx into blocks. Also this mechanism prevents

any Tx loss while being sent upwards (in only one hop thanks to the use of CHAC) and then amongst the

topmost level CHs.

Each Tx has a timestamp list that contains its creation time, its receive time by CHs (which is equal to the

Tx creation time at the beginning and then keeps incrementing with the transaction propagation delay with

each hop traveled by the Tx) as well as its append time into a block. A Tx receive time is tracked for each Tx

received at a specific node and it includes the accumulation of all the propagation delays of the Tx thus far.

In order to simulate Tx colocality verification, we verify the Tx colocality in the same tree of the forest by

using two counters counting the nodes according to the colocality of the requester and the requestee. This is

in order to define the colocalitywithin the same cluster and the colocalitywithin the same tree, respectively.

To verify the Tx colocality in the same tree, we use a function which checks whether the direct parent of

the requester and the direct parent of the requestee are the same within the CHAC of the requester and

the CHAC of the requestee. And to verify the colocality within the same tree, we apply the same logic to

verify the parents on all the levels within the CHAC of the requester and the CHAC of the requestee. This

verification can take place at the topmost level CH that is a direct or indirect parent for the requester.

Considering the Tx propagation design, our simulation produce the same results for an architecture of three

ormore levels thanks to the use of CHAC. Thuswe only simulate for an architecture having three levels, since

adding more levels will not give different results.

For the Tx verification, due to the time and computation consumption involved in that process, we simulate

it only by performing the number of the nodes interactions required for such verification to take place. So

what is supposed to be programmed is: we generate private and public keys for a Tx requester, and the

Tx is signed by the requester at the creation time in order to be verified later on. verifying the Tx is a two

step process: The first step is to compare the hash(requester public key) to the same value in previous Tx

on the ledger. The second step is to verify the requester and requestee signatures, comparing them to the

requester and requestee public key on the Tx.

The second step verification can take place at two different locations, depending on the trade-off envisioned

and the application needs:

88

(i) The first location is at the closest direct parent in common while traveling up the architecture. If no

common parent exists, then the requester gets verified at its topmost parent and the requestee gets

verified at its own topmost parent (the CH that holds the information of the requestee).

(ii) The other location is at the topmost direct or indirect parent in common if such parent exists, other-

wise the requester is verified at the topmost parent and the requestee is verified at its own topmost

parent (the CH that holds the information of the requestee).

If node altering is a concern, the first location is adopted to provide more security. However since reaching

that location may involve intermediary hops to be travelled by the message carrying the Tx to reach its

destination towards its topmost CH parent, adopting that location is less efficient. If efficiency is a priority,

adopting the second location will be key, since it avoids unnecessary intermediate hops while the Tx travels

upwards in the architecture.

Since security is not our main concern in our model, we adopt the approach simulating the requester and

the requestee signature verification using the second location, by skipping the actual signature verification

and by only reflecting the number of hops necessary to perform such verifications within our simulation,

which is the approach that favors efficiency.

7.5.5 The blocks processing

A block is created by a topmost CH with a number of Tmax Tx that are randomly assigned from all the Tx

generated. The ids of such Tx are appended into a Tx pool at a topmost level CH, and are then stored in

a global variable, (used_Tx) list, in order to keep track of the Tx already assigned to blocks, and to avoid

their reassignment for future block creations. Each block creation event is assigned a timestamp generated

according to PoW consensus.

The block creation time is always larger than the creation time of all the Tx contained within the block.The

block creation time is equal to the largest receive time of the Tx contained in the block.

Block creation is based upon using a scheduler of events that are queued and processed according to their

time schedule. Event types are mainly creating a block at a topmost level CH, or receiving a block by a

topmost level CH. Once such a CH creates a block, the CH propagates the created block to all other topmost

89

CHs then that creator CH gets a chance to create more blocks using the generate_next_block() function.

Once propagated to another topmost CH, the receiver CH gets a chance to validate the block and then

creates another new block (using the generate_next_block() function). Creating new blocks is always based

on the Tx available in the creator CH Tx pool as long as those Tx are not already included into the used_Tx

list.

Once a block is created and validated, it is appended by the creator CH into the BC. The block’s appendTime

includes the accumulation of all the propagation delays of the block. This time value is then assigned to the

corresponding Tx append timestamp. The difference between the Tx append time and the Tx creation time

gives us the elapsed time for a Tx from its creation until its inclusion into a block.

The created block is appended to the topmost level CH’s local BC, which starts by a genesis block. It is

also appended into the global_BC shared by all topmost CHs, where blocks are chained in the order of their

creation and validated by topmost CHs. PREVIOUS is a global variable to represent the chaining of global_BC

indicating the ID of the previous block on the chain and relating a newblock to the previous block. PREVIOUS

is initiatized by -1 when the BC has no blocks, then it is incremented to 0 when the BC has one genesis block

(it is the first genesis block generated by the topmost CHs) and then it gets the id of the next block to join

the global_BC and gets updated every time a new block is appended to the global_BC.

Block appends into the BC are simplified by directly appending the block into the global BC by one miner at

a time, skipping the comparison between the local BC of each topmost level CH (miner) as well as forking.

This shortcut is due to the fact that themain aspect that we need to evaluate is the number of hops travelled

by the Tx and the blocks within the architecture before the append to the BC. This approach adopted by

the simulation has been introduced in other BC simulations to achieve simplification as well (Dorri et al.,

2017a).

7.5.6 The verification checks

We incorporated a few checks in our simulation, as follows:

(i) check_Block_id_is_UNIQUE() function to assert the block ID non duplicate status.

(ii) check_Tx_id_is_UNIQUE() function to assert the Tx ID non duplicate status.

90

(iii) check_each_LevelN_CH_has_GenisisBlock() function to assert that each level-N CH has one genesis

block at the beginning of its local blockchain.

7.5.7 The simulation details

The simulation is event-driven: The creation of a block takes place before the propagation of the block, then

handling the creation event takes place before the propagation which includes the validation of the block

by other level-N CHs. The sequence of the block generation is shown as in Figure 7.1, the node events are

shown as in Figure 7.2.

Figure 7.1 The current sequence of events

According to the figures, we can see that a block is generated with Tmax Tx drawn from a Tx pool that

contains all the Tx available in the system (here the pool started with 30 Tx available for the first block

created), then once another block is created, the number of the Tx pool gets smaller to prevent reusing the

Tx already appended into a previously created block (the pool then has 20 Tx available for the second block

created), and so on until Tx available get all consumed.

Also we can notice that though Block A was created and added to the queue before block B, block B was

processed first since the time associated with its addition to the queue of events comes before block A. The

block processing is : handling create block, receive block by other topmost CHs, and appending Block to

BC. We can notice that the append to BC takes place after the block propagation towards all other topmost

level CHs takes place.

91

Figure 7.2 Node Events

92

As far as node colocality is concerned, there are two approaches to choose from in order to verify node

locality: the first approach verifies the locality at the first direct parent of the Tx requestee, which consumes

one hop (thus one propagation delay). The second approach verifies the locality directly at the requester,

through verifying both the requester and the requestee CHAC, which is an approach that may save some

delay for the Tx, by eliminating one propagation delay (hop towards the first direct parent). Our design aims

for the latter approach as implemented in our simulation.

The next point that we need to emphasize lies in the fact that the requester and requestee signature verifi-

cation takes place at the topmost level CHs, no matter the number of the architecture levels, and reaching

such a level will take only one hop (one propagation delay) in all cases, thanks to the use of CHAC. Thus

building an architecture with only three levels is sufficient as a proof of concept. And that’s the reason why

our implementation is limited to model one tier to represent Bitcoin, two tiers to represent the literature

and three tiers to represent our design. The only case where it will be recommended to increase the num-

ber of tiers in our design is when the number of the topmost CHs increases to the point that exceeds MUT

threshold, which represents the point beyond which managing one cluster of that size becomes too much

of a burden or, in the case of the topmost level, the point beyond which the number of the topmost level

CHs becomes too large, which renders the block verification process too expensive. Such a threshold is ap-

plication agnostic and, hence, can be implemented according to each organization needs. Thus, increasing

the number of tiers will decrease the number of topmost CHs and will hence decrease the number of hops

amongst them and, eventually, the total time needed to verify Tx and blocks and to achieve consensus.

Otherwise, the implementation performs the same way whether the number of tiers is three or more and

hence, there is no need to test the design with more than three tiers in terms of time performance.

Another hypothesis that does not need to be verified is the effect of including the requester and requestee

signature verification in the simulation. We expect that such verification will add a factor of delay for the

Tx and block delays. Since the main focus of our study is on decreasing the number of hops necessary for

a Tx to get appended into Blockchain, including the Tx verification or not will not directly affect our results,

thus it will not be tested.

7.6 Hypotheses to Verify

We aim to verify the following hypotheses:

93

(i) Themulti-level architecture is better than flat architectures in terms of the Tx throughput, the average

Tx delay and the average block delay.

(ii) Themulti-level architecture is better than two-tiered architectures in terms of the Tx throughput, the

average Tx delay and the average block delay.

(iii) The multi-level architecture has a better performance for nodes that are colocal within the same tree

and it has an even better performance when the colocality verification takes place directly at the

requester.

7.7 Performance Metrics

Figure 7.3 Tx Append Latency

Figure 7.4 BlockCreationTime

In order to verify our hypotheses stated above, we evaluate a number of performance metrics to use when

comparing our architecture to a flat one-tier Bitcoin as well as to a two-tier architectures:

(i) The Tx throughput: the number of the appended Tx divided by the simulated duration.

(ii) The simulated duration: the difference between the earliest Tx creation time and the latest block

append time.

94

(iii) The Tx append latency (Tx time elapsed): the difference between the Tx creation time and the Tx

append time into BC, as shown in Figure 7.3.

(iv) The Tx net append latency (net time elapsed): the difference between the Tx creation time and the

Tx append time into a newly created block, as in Figure 7.3.

(v) The block creation time: the maximum of the following : the creation time of the block according to

the consensus; and the maximum creation time of all the block’s Tx. The block creation time is equal

to the block timestamp.

(vi) The block delay: the delay taken by the block to join all the topmost CHs, which is the maximum

propagation delay towards each such CHs.

(vii) The block append time: the time at which the block is appended to the BC. The way this time is

calculated in the simulation is by adding the block timestamp, the block delay, as well as a processing

delay to append the block into BC.

(viii) The net block delay: the difference between the block creation time (block timestamp) and the block

append time, as in Figure 7.4.

Now that we have introduced our SSD simulation details, in the next chapter, we show the SSD asymptotic

analysis according to the simulation, the simulation results along with the required interpretations.

95

CHAPTER 8

SIMULATION ASYMPTOTIC ANALYSIS, RESULTS AND INTERPRETATIONS

In Chapter 6, we introduced a theoretical asymptotic analysis of the SSD algorithm. In this chapter, we

produce the detailed practical asymptotic analyses of the SSD algorithm as it was implemented in our sim-

ulations while taking into account the data structures used, as well as the comparison between those anal-

yses and the theoretical analyses of BC that were performed in Chapter 6. The chapter also includes the

comparison among the simulation results of the three different BC architecture models (the flat, two-tiered

and multi-tiered models) as well as the comparison among the simulation results of the three different SSD

builds (having two, four and eight level-N CHs).

Thus in this chapter, we introduce two sets of event-driven simulations. All simulations are programmed in

Python3.

We run a first set of simulations for the three BC models: the SSD, the two-tiered and the flat architecture.

Let’s call them “themodels”. We run the simulations for eachmodel for 10 runs, each processing 100 Tx and

each having 260 IoTDs (with 1.5% fluctuations for the number of IoTDs). The goal of this set of simulations is

to verify the hypothesesmentioned in the previous chapter and to validate themulti-tiered design concept.

Both the SSD architecture and the two-tiered model use 8 CHs in the topmost level.

We also run a second set of simulations for the different SSD builds, each having a different number of

topmost level CHs: 2 CHs, 4 CHs and 8 CHs. Let’s call them “the SSD builds”. So we run the simulations

for each SSD build for 10 runs, each processing 500 Tx and each having 260 IoTDs (with 1.5% fluctuations

for the number of IoTDs). The goal of this set of simulations is to evaluate the impacts of leveraging node

colocality.

8.1 Practical Analysis of the SSD Algorithm

In this section, we introduce the results of the practical analysis of the SSD algorithm according to our

simulations, while taking into consideration the data structures used, particularly for the split and merge

actions required so that the structure expands and contracts easily. To better express the analysis, we

consider the same symbols and definitions used for the number of per-level nodes expressed in section 6.3

96

SSD Algorithm - Building the Structure

mN

M0

M0

M0

level−N

level−0

The
Architecture

Levels

Figure 8.1 Building the Structure

(Theoretical Analysis of the SSD Algorithm). Accordingly, let’s consider an architecture of three levels, level

0 having#[level0] = Y nodes, followed by level 1 having#[level1] = Z nodes, where the first set of CHs

reside, followed by the topmost level of the architecture, levelN having#[levelN] = S nodes.

8.1.1 Asymptotic Analysis of Building The Structure

In this section, let’s analyze the cost of building the architecture. The architecture is built by first building

two data structures: one data structure to store the node IDs and another to store the cluster numbers

of the nodes. Both data structures are identically built so that the index of a node ID in the node struc-

ture refers to that node cluster number when used in the cluster structure. Each data structure is a list of

lists (two-dimensional arrays), NODES[Level][nodeID], and CLUSTERS[Level][ClusterNumber], where each

list represents a level of the architecture. After building the structure, we start the splits and merges. In

this section, we analyses the structure building.

To build the cluster structure, we start by building two levels as in Figure 8.1. A nested loop sweeps all

#[level −N] CHs (mN) and travels each level-0 cluster’s nodes (m0), then the cost will beO(mN ·m0).

To build the node structure, a loop that sweeps all#[level−N] CHs (mN) and then a nested loop sweeps

all level-N CHs (mN) and sweeps each level-0 cluster’s nodes (mN · m0), then the cost is O(mN · m0),

which is the total number of nodes in the architecture.

Considering the costs of building both structures, since the latter is the higher order term, then we can

97

consider that building the architecture takesO(mN ·m0).

8.1.2 Asymptotic Analysis of the Split

In order to split one cluster of size M that’s managed by a parent node X and that resides on level-i,

we have to go over all the nodes in NODES[i] list in order to identify the nodes that belong to the cluster

to be split, split them and assign them to two different clusters, renaming the second cluster according

to the method explained before in chapter 7. Also going over the nodes is necessary to adjust each node’s

managed_list by removing the node itself from that list. We go over the nodes of the newly renamed cluster

to chose a randomly chosen node. The latter is to be promoted to the level above to manage the newly

renamed cluster. This will be reflected in the CHAC of that cluster nodes as well as in the managed_list of

the promoted node. The promoted node will be extracted from NODES[i] and CLUSTERS[i] lists and will join

NODES[i+1] and CLUSTERS[i+1] lists.

In order to achieve that, we need to do the following:

1. Append one extra node in one or more cluster(s) in NODES[i] at level 0, this takes O(1). The newly

appended node(s) will violate the MUT of that level.

2. Identify theMUT violating cluster by calculating the cluster size of each cluster at level Y , which takes

O(Y).

3. Divide the violating cluster in two by traveling all that cluster nodes, thus it takes O(M). This step

will costO(Y) in case the split is at the topmost level.

4. Travel the second half of the cluster to remove those nodes reference from the managedNodes of

the parent nodeX , to change their cluster number stored in their nodes in the NODES[i] list of lists

which costsO((1/2) ·M). Thus it takesO(M).

5. Travel the second half of the cluster to update those nodes cluster number in the CLUSTERS[i+1] list

of lists which costsO((1/2) ·M). Thus it takesO(M).

6. Travel the second half of the cluster to append those nodes in a temporary list (O((1/2) · M)) and

to choose a random node (new parent CH) out of that list (O(1)). Then update that chosen node’s

information and insert it as a new CH in the level above (O(1)). (O((1/2) ·M))

98

7. Travel the second half of the cluster to change the CHAC of those nodes to reflect the newly chosen

parent CH(O((1/2) · M)), and insert the new CH in the level above in NODES[i+1] (O(1)), and in a

nested loop, loop through these nodes again to assign their CHAC into themanagedNodes of the new

CH(O((1/2) ·M)). Thus it takesO(M2).

8. Remove the new CH from the level below in NODES[i] and remove its reference cluster number in

CLUSTERS[i] and insert a new reference cluster number in CLUSTERS[i+1]. This takesO(1).

Thus the final split takes O(Y) + O(M2) + O(M). So it takes O(max(Y,M2)), where Y is the number

of nodes in the level where the split takes place, andM is the number of nodes in the cluster to split. This

cost analysis is for the splits whether they are at the topmost level or not.

In case the split takes place on the topmost level, we follow the same process except that, instead of only

considering the second half of the cluster to split, we consider both halves, which will give the same com-

plexity.

8.1.3 Asymptotic Analysis of the Merge

There are two cases when we have to merge one cluster of sizeM that’s managed by a parent nodeX and

that resides on level i. The first case is when the cluster size is less that CLT and the second case is when a

split happens at NODES[i] where one or more CH needs to be promoted to NODES[i+1]. In the former case,

the parent of the merging cluster that exists in NODES[i+1] will rejoin it’s own cluster in NODES[i]. In the

latter case, the managed nodes of the promoted cluster at NODES[i-1] will need to be merged with another

cluster at the same level in order to share the same CH that manages that cluster. And the parent of the

merging cluster that exists in NODES[i+1] will be promoted to join NODES[i+2].

For the merge to be successful, clusters that belong to one tree can merge only with other clusters on the

same level in the same tree.

In order to realize that, we need to do the following:

1. Identify the CLT violating cluster of all clusters at level i, thus it takesO(Y).

2. Identify the considered clusters to merge with under the same tree at level i, thus it takesO(Y).

99

3. Identify the specific cluster to merge with under the same tree at level i, thus it takesO(Y).

4. Identify the nodes of the cluster to merge with from all the nodes at this level, thus it takesO(Y).

5. Travel NODES[i+1] to identify the CH parent of the merging cluster and in a nested loop, travel

NODES[i] to get the nodes in the cluster to merge and change their CHAC and their cluster number.

Thus it takesO(Z · Y).

Thus the final merge takesO(Y)+O(Z ·Y). So it takesO(Z ·Y) since this is the higher order term, where

Y is the number of nodes in the level where the merge takes place, and Z is the number of nodes in the level

above.

In case the merge requires a CH to join the level above or to rejoin its own cluster at the level below, this

takesO(1) in both cases and so the complexity will remain the same.

8.2 Final Practical Asymptotic Analysis of the Split and Merge

8.2.1 SSD Algorithm - The Increase of Cluster Size on Level i, i ̸= N

The split algorithm described here is when the cluster to split is at level 0. In case the cluster to split is at

level i where i > 0 (having Y nodes), the algorithm will also include a merge at level i− 1 (having Z nodes)

as shown by Figure 8.2.

SSD Algorithm - The Split

M M/2

Total
Number of
nodes per

level

S nodes

Z nodes

Y nodes

level−i

The
Architecture

Levels

level−i

level−i

M/2
Split

Merge

Figure 8.2 The Split

In that case, the complexity of the split will be the maximum of these two values:

100

1. O(max(Z,M2)), where Z (previously referred to as Y) is the number of nodes at the level where

the split takes place (level i), andM is the number of nodes in the cluster to split.

2. O(Z · Y), where Y is the number of nodes at level i− 1 where the merge takes place, and Z is the

number of nodes at the level above (level i).

In that case, the Cost of the split will be in O(max(Z · Y,M2)), where Z is the number of nodes in the

level where the split takes place, Y is the number of nodes at level i− 1 where the merge takes place and

M is the number of nodes in the cluster to split.

8.2.2 SSD Algorithm - The Increase of Cluster Size on Level i, i = N

The split of the topmost level includes the clustering of the current topmost level, which implies the ex-

pansion of the architecture by one level (future topmost level), which is inO(Z)where Z is the number of

nodes at the level above (level i) where the split takes place (the current topmost level), whereas adding

Chs on the new topmost level costsO(1). Which keeps the cost toO(max(Z · Y,M2)), still.

8.2.3 SSD Algorithm - The Decrease of Cluster Size on Level i, i ̸= N

For the merge at level i where i > 0 (having Z nodes), the algorithm will also include a split at level i − 1

(having Y nodes) as shown by Figure 8.3.

t

t

t

t

t

SSD Algorithm - The Merge

t

t

W

t

t

R R/2
R/2

L
L W

Merge

Split

Total
Number of
nodes per

level

S nodes

Z nodes

Y nodes

level−i

The
Architecture

Levels

level−i

level−i

 Figure 8.3 The Merge

In that case, the complexity of the merge will be the maximum of these two values:

101

1. O(Z · Y), where Z is the number of nodes in the level where the merge takes place, and S is the

number of nodes in the level above.

2. O(max(Y,R2)), where Y is the number of nodes in the level where the split takes place, and R is

the number of nodes in the cluster to split.

8.2.4 SSD Algorithm - The Decrease of Cluster Size on Level i, i = N

In that case, the Cost of the split will be inO(max(Z · S,R2), where Z is the number of nodes in the level

where the merge takes place at level i, S is the number of nodes at level i + 1 and R is the number of

nodes in the cluster to split at level i − 1. The merge of the topmost level, which implies the shrinkage of

the architecture by one level, was not considered in the simulation, due to its impracticality.

8.3 Comparison between the Theoretical Analysis and Practical Analysis of the SSD Algorithm

8.3.1 SSD Algorithm - The Increase of Cluster Size on Level i, i ̸= N

If size(localCluster)≥ MUT and local cluster is at level i ̸= h:

The cost of splitting a cluster with a size violating MUT at level i , followed by a merge at level i − 1 is

calculated as follows :

1. Theoretically, the total cost isO(max(Z, (L+W))), whereZ is the number of nodes of level iwhere

the split takes place and L andW are the number of nodes in the clusters to merge at level i− 1.

2. Practically, as per the simulations, the total cost is O(max(Z · Y,M2)), where Z is the number of

nodes in the level where the split takes place, Y is the number of nodes at level i − 1 where the

merge takes place andM is the number of nodes in the cluster to split.

We can see that the simulation complexity costsmore than the theoretical analysis due to the need to travel

all the nodes in one level to search for a specific node/set of nodes.

8.3.2 SSD Algorithm - The Increase of Cluster Size on Level i, i = N

If size(localCluster)≥ MUT and localCluster is at level i = h:

102

The cost of splitting a cluster with a size violating MUT at level i , followed by a merge at level i − 1 is

calculated as follows :

1. Theoretically, the total cost isO(max((S · Y, S · (L+W))), where S is the number of nodes at the

newly created level N , Y is the number of nodes at level N − 1, and L and W are the number of

nodes in the clusters to merge at levelN − 2.

2. Practically, as per the simulations, the total cost is still the same as in the the case when the merge

O(max(Z · Y,M2)), where Z is the number of nodes in the level where the split takes place, Y is

the number of nodes at level i−1where the merge takes place andM is the number of nodes in the

cluster to split.

Since the higher the level the less the number of nodes it contains, we can consider that (Z ·Y) ≥ (Z ·Y),

however since levelN − 2might be the IoTD level, with clusters containing a very large number of nodes,

we can not be certain wether (S · (L+W)) ≥ (M2))

8.3.3 SSD Algorithm - The Decrease of Cluster Size on Level i, i ̸= N

If size(localCluster)≤ CLT and localCluster is at level i ̸= h:

1. Theoretically, the total cost is O(max(Z,R)), where Z is the number of nodes at level i where the

merge takes place andR is size of the cluster to split at level i− 1.

2. Practically, as per the simulations, the total cost is O(max(Z · S,R2), where Z is the number of

nodes in the level where the merge takes place at level i, S is the number of nodes in the level above

andR is the number of nodes in the cluster to split at level i− 1.

We can clearly see that the simulation costs more than the theoretical analysis due to the fact that we need

to travel all the nodes in one level to search for a specific node/set of nodes.

103

8.3.4 SSD Algorithm - The Decrease of Cluster Size on Level i, i = N

In theory, the BC architecture may decrease in size through one or more level eliminations. However in

practice BC size is mainly expected to increase as more BC nodes will join in with time. That’s why we did

not test clustering decreases in our simulations.

8.3.5 Comparison Results - Theoretical Analysis versus Practical Analysis of the SSD Algorithm

Both the theoretical and the practical analysis of the SSD algorithm are performed for only three levels of

the architecture. Increasing the number of levels yields different results due to the fact that each CH holds

information about its managed nodes, and while node information changes with every split and merge,

it needs to be updated at every parent CH, affecting all parent CHs across all levels. Thus, the complexity

increases with the increase of the depth of the structure.

The practical cost analysis of the SSD algorithm (for three levels) in simulations exceeds its theoretical cost.

This disparity is attributable to the necessity to account for node and cluster data updates across all forest

levels (such as CHAC, list of managed nodes, etc.). These data are stored in complex, multi-dimensional

structures to reflect the intricacies of the multi-tiered design and the number of levels involved. Conse-

quently, the updates of these data structures increase exponentially with the number of dimensions or

forest levels.

We can see that inmost cases, the practical costs observed by simulation are larger thanwhat was expected

given the theoretical analysis. This is due to the fact that, in the simulation, we need to travel the data

structures sequentially in order to search for one node or a set of nodes. The search becomes linear in the

case of searching within one dimension of the data structure; and becomes quadratic, worst case, when it

involves a second dimension, specially if the numbers of nodes on both levels are comparable. Since the

splits andmerges take place in pairs on different levels, as we explained above, those costs can be quadratic.

Adding a third dimension makes the cost cubic and so forth. Hence the cost exponentially increases with

the number of dimensions. We believe that this will be the case for all possible simulations implemented

for the SSD architecture, due to the complexity of the node organization involved and due to the need of

keeping track of the relationship between the nodes, the clusters, and the CH managed nodes as well as

the CHAC, no matter how dynamically the nodes change their positions, their levels, their clusters, their

managed nodes and the CHs that they belong to, within the architecture.

104

The simulationwas not considered for the case of the architecture shrinkage, which involves the elimination

of one or more levels off the architecture. This is due to the fact that BC architectures in general tend to in-

crease in size with time. Hence the BC decreasing casewas not considered for our simulation. Nevertheless,

the architecture shrinkage can be expected to yield a comparable cost to the architecture expansion.

We expect that a real SSD architecture implementation would give results closer to the asymptotic analysis

results of our simulation rather than our SSD theoretical analysis results due to the fact that a real imple-

mentation is expected to eventually face similar programming restrictions as our simulation, as described

above, unless faster search algorithms are applied in order to search the data structures more efficiently

and to improve the results, which will be mostly logarithmically reduced, in that case.

8.4 Comparison of the Simulation Results for the Three BC models

In this section, we present the first set of simulations. This set of simulations is to compare the efficiency of

flat, two-tiered and multi-tiered models. All simulations ran for 10 runs while processing 100 transactions

with about 260 IoTDs (with 1.5% fluctuations). SSD and two-tiered models have 8 CHs at the topmost level.

SSD has three levels since adding more levels barely affects the calculations of the consensus-accelerating

protocol due to the use of CHAC.

We present the global results for the runs performed for each of the three BC architecture models in order

to verify the hypotheses stated in chapter 7 and to validate the efficiency of the SSD model. The global

results for all three architectures are presented in Table 8.1, Table 8.2 and Table 8.3. In each table, each row

corresponds to the data of one run.

In Table 8.1, the flat architecture has one level of 256 total number of nodes, generating a hundred Tx in ten

blocks. In Table 8.2, the two-tiered architecture has two levels of 256 total number of nodes: eight topmost

level CHs (each, managing a cluster of 32 IoTDs), generating a hundred Tx in ten blocks. In Table 8.3, the

SSD architecture has three levels of 260 total number of nodes: eight topmost level CHs (each, managing a

cluster of three to four other CHs on the second level, and each of the managed CHs managing a cluster of

IoTDs), generating a hundred Tx in ten blocks.

Considering the average Tx latency in the three tables, we can see a better latency in the two-tiered model

compared to the flat model by 23.7%. Whereas the SSD model outperformed the flat model by 198% and

105

Txthroughput AverageTxLatency Simulation Duration Average Block Delay

2.05 23.67 48.86 14.76

2.00 25.12 50.04 11.78

2.27 24.75 44.10 14.62

2.20 23.40 45.39 13.37

1.98 27.13 50.44 14.31

2.46 23.07 40.60 14.32

2.29 26.80 43.64 14.86

2.56 22.60 39.12 13.64

2.47 23.93 40.52 14.32

1.71 23.13 58.35 13.30

Average 2.20 24.36 46.11 13.93

Table 8.1 Global Statistics for the Flat Architecture

.

Txthroughput AverageTxLatency AverageTxLatencyColocal AverageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

2.50 17.78 20.70 17.69 3.00 97.00 39.93 4.48

2.22 17.12 32.41 16.97 1.00 99.00 44.95 3.12

1.95 26.95 29.48 26.85 4.00 96.00 51.27 3.33

2.59 18.14 15.08 18.27 4.00 96.00 38.58 3.83

2.05 18.08 16.68 18.09 1.00 99.00 48.75 3.42

2.26 16.81 16.16 16.82 1.00 99.00 44.21 3.73

2.86 16.93 14.78 17.00 3.00 97.00 34.93 3.59

2.12 23.12 10.75 23.24 1.00 99.00 47.07 3.16

1.89 21.43 14.85 21.56 2.00 98.00 53.02 4.64

1.96 19.54 25.42 19.29 4.00 96.00 50.93 2.90

2.09 20.28 24.30 20.11 4.00 96.00 47.79 3.49

2.16 20.02 33.25 19.32 5.00 95.00 46.39 2.68

Average 2.22 19.68 21.15 19.60 2.75 97.25 45.65 3.53

Table 8.2 Global Statistics for the Two-Tiered Architecture with 8 CHs

Txthroughput AverageTxLatency AverageTxLatencyColocal AverageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

6.61 8.18 8.04 8.20 16.00 84.00 15.14 2.12

6.09 8.61 9.04 8.56 10.00 90.00 16.43 2.65

4.93 8.94 7.73 9.00 6.00 94.00 20.30 2.17

6.26 8.24 8.68 8.19 11.00 89.00 15.98 2.44

6.78 7.34 6.80 7.38 6.00 94.00 14.76 2.90

5.73 7.95 8.40 7.89 14.00 86.00 17.44 2.37

6.11 8.35 8.33 8.35 12.00 88.00 16.36 2.99

6.50 8.36 7.33 8.47 10.00 90.00 15.39 2.46

6.40 7.94 7.60 7.98 14.00 86.00 15.62 2.02

5.97 7.84 8.06 7.81 12.00 88.00 16.74 2.59

Average 6.14 8.17 8.00 8.18 11.10 88.90 16.41 2.47

Table 8.3 Global Statistics for the SSD Architecture with 8 CHs

106

Figure 8.4 Average Tx Latency for 100Tx in the Three BC Models.

outperformed the two-tiered model by 143%, as in Figure 8.4.

Figure 8.5 Average Block Delay for 100Tx in the Three BC Models.

Considering the average block delay, we can see that the two-tiered model produced shorter delays than

the flat model by 294% , whereas the SSD model produced even shorter delays compared to the flat model

with a better latency of 463.8% and compared to the two-tiered model with a better latency of 42.9%, as

in Figure 8.5.

Considering the throughput, we can see that the two-tiered model produced a higher throughput than

the flat model with a better latency of 1%, whereas the SSD model produced an even better throughput

compared to the flat model with a better latency of 179% and compared to the two-tiered model with a

better latency of 176%, as in Figure 8.6.

What’s interesting is the fact that those results are based on a flat architecture having only 6% of the nodes

as block generating nodes. Considering the results shown in Table 8.4 (each row corresponds to one run),

107

Figure 8.6 Throughput for 100Tx in the Three BC Models.

Txthroughput AverageTxLatency Simulation Duration Number of Blocks Average Block Delay Block Generating Nodes

2.20 24.36 46.11 10 13.93 16

0.89 69.07 89.55 8 53.89 60

0.77 72.24 103.73 8 53.49 100

0.16 119.49 122.15 2 114.75 130

0.10 185.60 209.75 2 161.23 200

0.12 226.96 257.05 3 192.57 220

Table 8.4 The Flat Architecture with varied numbers of block-generating nodes (256 total nodes)

where we varied the number of generating nodes, SSD outperformed the flat model by 745%, 783%, 1362%,

2170.9%and 2677% for the average Tx latency in the case of a flatmodel having 23%, 39%, 50%, 78%and85%

of the nodes as as block generating nodes. SSD outperformed the flat model by 88.6% for the average Tx

latency in the case of a flat model having 61% of the nodes as as block generating nodes. We can clearly see

that the latency of the flatmodel exponentially increaseswith the growth of the number of block generating

nodes.

8.5 Comparison of the Simulation Results of the SSD Architecture Built with Different Numbers of CHs

In this section, we present the second set of simulations. This set of simulations is to compare the SSD

builds. Each built has a different number of topmost level CHs and approximately 260 IoTD nodes (with a

fluctuation of 1.5% for the number of IoTDs, among all three builds) while processing 500 Tx, and building

50 blocks. Each simulation runs for ten runs. The splits and merges take place through running the SSD

algorithm so that the end result lead to three three-level structures (since adding more levels lead to same

results using CHAC) having a number of level-N nodes equal to 2CHs, 4CHs and 8CH . The goal is to

108

study how the number of topmost level CHs influences the latency of the SSD BC model in order to validate

the concept of colocality.

Table 8.5, Table 8.6, Table 8.7 and Table 8.8 as well as in Figure 8.7, where each row corresponds to one

run, will allow us to compare the three SSD builds in terms of a number of criteria, such as the efficiency of

the node colocality, the average Tx delay as well as the average block delay (among others).

Txthroughput AverageTxLatency AverageTxLatencyColocal AverageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

38.99 6.73 6.68 6.77 258.00 242.00 12.82 0.82

38.39 7.99 7.97 8.00 244.00 256.00 13.02 0.90

28.08 8.56 8.53 8.58 227.00 273.00 17.80 0.89

31.90 7.99 7.98 8.00 258.00 242.00 15.68 0.83

35.72 9.17 9.14 9.20 233.00 267.00 14.00 1.07

34.73 7.52 7.43 7.60 242.00 258.00 14.40 0.89

39.59 6.55 6.52 6.58 261.00 239.00 12.63 0.83

36.96 7.68 7.67 7.70 271.00 229.00 13.53 0.81

29.43 8.05 8.01 8.09 250.00 250.00 16.99 0.94

34.25 10.15 10.14 10.17 259.00 241.00 14.60 0.71

Average 34.80 8.04 8.01 8.07 250.30 249.70 14.55 0.87

Table 8.5 SSD Global STATS 500Tx 2CHs

Txthroughput AverageTxLatency AverageTxLatencyColocal AverageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

24.00 10.61 10.55 10.63 112 388 20.84 1.82

25.49 9.40 9.18 9.47 120 380 19.62 1.59

21.25 10.00 9.89 10.03 118 382 23.53 1.85

21.48 10.02 9.93 10.05 126 374 23.28 1.95

27.35 9.49 9.31 9.56 133 367 18.28 1.80

24.88 11.29 11.23 11.31 112 388 20.10 1.91

31.99 9.53 9.52 9.53 147 353 15.63 1.80

29.03 8.99 8.69 9.11 134 366 17.22 1.67

20.31 10.18 9.87 10.27 112 388 24.62 1.70

27.51 9.68 9.55 9.73 121 379 18.18 1.48

Average 25.33 9.92 9.77 9.97 123.5 376.5 20.13 1.76

Table 8.6 SSD Global STATS 500Tx 4CHs

Txthroughput AverageTxLatency averageTxLatencyColocal averageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

16.79 13.86 12.99 14.02 79 421 29.78 2.40

13.17 14.00 12.93 14.16 66 434 37.98 2.31

14.45 14.28 13.89 14.33 56 444 34.61 2.33

14.85 13.34 12.58 13.44 59 441 33.67 2.42

18.97 12.78 12.00 12.92 76 424 26.36 2.23

15.65 14.21 13.16 14.35 59 441 31.96 2.27

14.73 14.01 13.84 14.04 71 429 33.94 2.40

20.89 12.99 12.02 13.14 69 431 23.93 2.38

18.94 11.99 11.76 12.02 58 442 26.40 2.39

21.52 12.46 12.15 12.49 49 451 23.23 2.30

Average 17.00 13.39 12.73 13.49 64.2 435.8 30.19 2.34

Table 8.7 SSD Global STATS 500Tx 8CHs

Txthroughput AverageTxLatency averageTxLatencyColocal averageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Average Block Delay

SSD- 2CHs 34.80 8.04 8.01 8.07 250.3 249.7 14.55 0.87

SSD- 4CHs 25.33 9.92 9.77 9.97 123.5 376.5 20.13 1.76

SSD- 8CHs 17.00 13.39 12.73 13.49 64.2 435.8 30.19 2.34

Table 8.8 SSD Global Statistics 500Tx 2CHs VS 4CHs VS 8CHs

109

Figure 8.7 Comparison of the SSD BC builds for 500 Tx

Considering the average Tx latency, we can see a better latency of 102% in the 2CH SSD build (8.04 seconds)

compared to the 4CH SSD build (9.92 seconds), which outperforms the 8CH SSD build (13.39 seconds) by

35%.

Considering the average block delay, we can see that the 2CH SSD build produced shorter delays (0.87

seconds), which are 51% shorter that the 4CH SSD build which took 1.76 seconds, whereas the 8CH SSD

build took 2.34 seconds (33% higher that the 4CH SSD build), which is the longest delay in all three models.

Considering the colocality in SSD, we can see that the average Tx latency for the colocal Tx is less than the

average Tx latency for the non-colocal Tx in all three builds. That difference is 0.6% in the case of the 2CH

SSD build, whereas it is 2% in the case of the 4CH SSD build, and it is 5.9% in the case of the 8CH SSD build.

Considering the throughput, we can see that the 2CH SSD build outperformed the 4CH SSD build by 37%,

whereas the 4CH SSD build outperformed the 8CH SSD build by 49%. The simulation duration increases

with the number of the topmost level CHs, so it increases by 38% going from two CHs to four CHs, whereas

it increases by 50% going from four CHs to eight CHs.

8.6 Interpretation of the Results

8.6.1 Comparison of the Three Architectures Types

Considering the comparison among the SSD, the two-tiered and the flat architectural models, we can see

that the SSDmodel outperformed both the flat and the two-tieredmodels in terms of the average Tx latency

and the average block latency. This is due to the fact that the SSD model has a smaller number of level_N

110

CHs to handle the Tx and the blocks and thus less propagation delays thanks to the multi-tiered design and

the use of CHAC. Since the efficiency of the flat model deteriorates exponentially with the number of the

block generating nodes, SSD outperformance for the flat model would also increase exponentially with the

growth of the number of the block generating nodes in the flat model.

Considering the comparison of the three models in terms of the throughput, SSD also outperformed both

models due to the fact that SSD simulation duration is 179% less than the two-tiered model’s and is 180%

less than the flat model. So we can notice that there is an inverse relationship between the throughput and

the duration of the simulation, because the throughput is the number of the appended Tx divided by the

simulation duration. So since we process a fixed number of 100Tx during each simulation where a 100% of

such Tx get appended into blocks on every run, the numbers produced make sense.

8.6.2 Comparison of the SSD Architecture Built with Different Numbers Of CHs

Comparing the three different builds of the SSDmodel, we can see, by observing the average Tx latency and

the average block delay values, That a smaller number of level−N CHs is more efficient in terms of Tx delay

and block delay. This is due to the fact that the more the number of level −N CHs that exist in the build,

the more the number of hops needed to propagate the Tx as well as the blocks among those level − N

CHs, which affects the Tx and block latency.

In the architecture, we leverage the fact that each node has a CHAC to eliminate the extra hop required

for colocalitity verification that may be performed at the direct parent CH. Instead, the colocality can be

directly verified at the requester node that generates the Tx by checking the CHAC of the requester and the

requestee , and if there is a match, hence they are colocal, the Tx is sent directly to the parent topmost level

CH inO(onehop). Otherwise, the Tx is sent to the requester parent topmost level CH, where it propagates

among all topmost level CHs to look for the topmost level CH that is parent for the requestee. In all cases,

the Tx signature verification takes place at the topmost level parent. Verifying the Tx at the topmost level

instead of performing that verification at the direct parent eliminates one extra hop (one propagation delay)

while the Tx travels up the architecture. This improvement savesO(t) hops, each costing one Tx propagation

delay, where t is the number of Tx generated.

Considering the improvement of the average Tx latency for the colocal nodes participating in the same Tx

versus the non-colocal nodes, we can see that the latency improvement achieved by the node colocality

111

becomes more obvious the more we increase the number of level-N CHs within an SSD build. Actually

with a small number of level-N CHs, the probability of colocality for the nodes participating in the same Tx

increases since that probability is proportional to the inverse of the number of the level-N CHs. In that case,

if the nodes are non-colocal, the number of hops needed to be performed by a Tx forwarded towards level-

N CHs in a search for the requestee information will be small, and hence the maximum of the propagation

delays associated with such hops will be small. Thus whether the Tx is colocal or not will not make that big

of a difference. Whereas with a larger number of level-N CHs, the probability of colocality for the nodes

participating in the same Tx decreases, and the number of hops needed to be performed by a Tx forwarded

towards level-N CHs in a search for the requestee information becomes significant, andhence themaximum

of the propagation delays associatedwith such hops will be significant and this is where leveraging the node

colocality comes into play, as it will save that extra “significant” propagation delay associatedwith the search

for the requestee, which will have a great effect on the overall latency.

From Table 8.5, we can see that with a small number of level-N CHs, the probability of colocality increases,

as shown by the ratio of the number of colocal versus the number of non-colocal Tx in the case of the 2CH

build. This fifty fifty ratio might make us think that this will translate into a large difference between the

average Tx latency for the colocal and the non-colocal Tx. However that difference gets smaller (0.7% in

the case of the 2CH build) the smaller the number of level-N CHs within the SSD build due to the smaller

number of hops needed to propagate the Tx in that case. Whereas if we look at the case of the 8CH build,

we see that the ratio of colocal versus non-colocal Tx is almost 25% versus 75% and the difference between

the average Tx latency for the colocal and the non-colocal Tx is 5.9%.

We can also consider the Tx Time Elapsed, which is the duration starting from the Tx creation until it gets

appended into BC, versus the Tx Net Time Elapsed, which is the duration starting from the Tx Creation until

it reaches a block as shown in Figure 8.8 and Figure 8.9, as well as in Figure 8.10 and Figure 8.11. We can see

that time elapsed and the net time elapsed for colocal Tx are eleven and nine, approximately, respectively,

whereas for the non colocal Tx, those values are thirteen andmore than eleven, approximately, respectively.

These figures represent one run of the simulation, and those values varies from run to run, however they

show the clear efficiency benefit achieved by leveraging the node colocality, as it improves the value of the

time elapsed (which is the whole journey the Tx needs to travel till it reaches BC), in case of colocal Tx, to

be equivalent to the value of net time elapsed (which is the journey the Tx needs to travel till it reaches a

block, only) in case of non-colocal Tx. Which is a great improvement, equivalent to the red portion shown

112

in Figure 8.9.

Though this improvement is only represented for this specific run, this improvement has been the case of

90% of the runs and hence, it proves the feasibility of leveraging the node colocality as a main factor to

improve BC consensus duration in our multi-tiered architecture.

Figure 8.8 SSD 500Tx 8CHs - Time Elapsed and Net Time Elapsed Colocal

The Tx propagation delay base value is a system parameter used to calculate Tx propagation delays as a Tx

(colocal or non-colocal) propagates from an IoTD towards a topmost CH. In Table 8.5, Table 8.6, Table 8.7

and Table 8.8, the increase of the difference between colocal and non-colocal average Tx latency values

are by 0.75% for the 2CH build, by 2.1% for the 4CH build and by 6% for the 8CH build. Increasing the Tx

propagation delay base value bymultiplying it by 1000 for 10 runs for each of the 2CH, the 4CH and the 8CH

builds results in an increase of the difference between colocal and non-colocal average Tx latency values by

1.5% for the 2CH build, by 3.25% for the 4CH build and by 6.8% for the 8CH build, as shown in Table 8.9,

Table 8.10 and Table 8.11, respectively, where each table row corresponds to one run.

As we can see, though the system parameter modified does not have a relationship with node colocality,

since it is the same for all Tx, its modification does have a direct effect over the difference between colo-

cal and non-colocal average Tx latency values. This gives us an insight that changing any of the system

113

Figure 8.9 SSD 500Tx 8CHs - Time Elapsed and Net Time Elapsed NonColocal

Figure 8.10 SSD 500Tx 8CHs - Time Elapsed Colocal VS NonColocal

114

Figure 8.11 SSD 500Tx 8CHs - Net Time Elapsed Colocal VS NonColocal

parameters, even the ones non related to node colocality, may affect the difference between colocal and

non-colocal average Tx latency values.

Txthroughput AverageTxLatency averageTxLatencyColocal averageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Number of Blocks Average Block Delay

31.06 9.07 9.06 9.08 255 245 16.10 50 0.83

38.01 8.27 8.25 8.30 272 228 13.15 50 0.77

30.25 8.25 8.08 8.44 262 238 16.53 50 1.03

30.72 9.00 8.98 9.03 257 243 16.28 50 1.00

34.52 9.39 9.33 9.44 253 247 14.48 50 1.05

31.00 8.60 8.39 8.79 237 263 16.13 50 1.15

32.63 9.52 9.48 9.57 239 261 15.32 50 0.83

34.61 10.04 9.99 10.09 258 242 14.45 50 0.94

35.08 6.94 6.91 6.97 242 258 14.25 50 0.74

28.22 8.18 8.14 8.22 238 262 17.72 50 1.06

34.16 8.52 8.47 8.56 242 258 14.64 50 0.82

Average 32.75 8.71 8.64 8.77 250.45 249.55 15.37 50 0.93

Table 8.9 SSD Global STATS 500Tx 2CHs with a modified Tx Latency

Txthroughput AverageTxLatency averageTxLatencyColocal averageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Number of Blocks Average Block Delay

20.93 10.83 10.63 10.90 130 370 23.89 50 1.60

32.42 10.45 10.16 10.56 140 360 15.42 50 1.58

26.62 10.41 10.20 10.48 128 372 18.79 50 1.64

25.05 11.66 11.51 11.71 108 392 19.96 50 1.60

26.77 10.30 10.05 10.39 133 367 18.68 50 1.56

20.74 11.90 11.68 11.95 98 402 24.10 50 1.63

22.62 11.72 11.52 11.79 125 375 22.11 50 1.50

27.45 10.79 10.40 10.92 121 379 18.22 50 1.41

26.08 10.70 10.28 10.86 137 363 19.17 50 1.79

24.84 11.54 11.32 11.61 120 380 20.13 50 1.48

Average 25.35 11.03 10.77 11.12 124 376 20.05 50 1.58

Table 8.10 SSD Global STATS 500Tx 4CHs with a modified Tx Latency

115

Txthroughput AverageTxLatency averageTxLatencyColocal averageTxLatencyNonColocal Number of Colocal Tx Number of Non-Colocal Tx Simulation Duration Number of Blocks Average Block Delay

20.28 12.40 11.81 12.49 68 432 24.65 50 2.51

15.52 12.46 11.99 12.53 68 432 32.22 50 2.25

14.71 13.69 12.73 13.82 60 440 33.98 50 2.35

10.70 13.75 12.97 13.86 63 437 46.74 50 2.29

14.67 13.88 12.77 14.02 56 444 34.09 50 2.31

16.66 13.48 12.57 13.60 58 442 30.01 50 2.48

17.02 13.23 12.43 13.34 58 442 29.38 50 2.26

21.24 13.04 12.47 13.12 61 439 23.54 50 2.23

16.02 13.92 13.43 13.98 57 443 31.21 50 2.44

14.27 12.76 11.90 12.85 49 451 35.05 50 2.29

Average 16.11 13.26 12.51 13.36 59.8 440.2 32.09 50 2.34

Table 8.11 SSD Global STATS 500Tx 8CHs with a modified Tx Latency

Figure 8.12 Colocality Effect for the Three SSD Builds

According to the observations, BC will be more efficient with more colocal Tx (less number of topmost CHs).

However this leads to the risk of having too few level-N CHs, and thus, to a concentration of power into BC.

This creates a conflict between performance and security and hence, a tradeoff to be carefully taken care

of, when the design of the architecture gets implemented. Also here, it is important to note that doubling

the architecture’s performance does not always mean halving the security guarantees (or in other words,

doubling the security risks), both factors affect each other by different ratios. So careful decisions must be

made towards creating a balance between those two tradeoffs.

8.7 Simulation General Analysis

Considering the overall results, we can deduce that the multi-level architecture outperformed both the flat

and two-tiered architectures. This superiority was evident in terms of average Tx latency, block delays, and

Tx throughput. The hierarchical design reduced the overall number of hops required for a Tx to make, as

well as the number of nodes it needs to encounter from the time it gets generated by an IoTD until it is

appended into the BC. The hierarchical multi-tiered design reduces the number of CHs needed to build

blocks to a small number of forest trees. Thus to achieve Tx verification with the absence of colocality, a

116

Tx travels towards a very small number of nodes in case of our multi-tiered model, contrasting with the

two-tiered model where a Tx travels towards a large number of nodes at the top level of the structure,

and with the flat model where a Tx traverses all the structure’s nodes. Additionally, the colocality of nodes

participating in the same Tx within the same tree of the SSD model further improves consensus efficiency

(latency).

The detailed criteria stemming from our results enable us to provide a proof of concept for the SSD design

along with the SSD algorithm and to rank SSD architecture as a BC model that surpasses both flat and two-

tiered models. Furthermore, the multi-tiered model successfully achieves its objectives regarding adhering

to node management overhead bounds and consensus decentralization bounds, while also complying with

blockchain functionality, security, and reliability requirements. The system’s capacity to fulfill SSD objec-

tives, even as the system size grows, is well ascertained based on the trends and asymptotic behaviors

identified in the results.

117

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

In this study, we introduce a multi-tiered blockchain (BC) node-organizing design concept, along with three

distinct multi-tiered architecture designs (SSD, Partitioned and RoR) constructed based on various concep-

tual approaches, all aiming to realize the proposed design model. The multi-tiered design model aims to

address the issues related to flat and two-tiered models found in the literature. Thus our model aims to

improve BC scalability and efficiency in the context of the Internet of Things (IoT) by improving the node

organization of the overlay network while providing a balance between node management overhead and

consensus decentralization—a critical security consideration for BC technology.

At the heart of themodel, we propose a consensus-agnostic consensus-accelerating protocol such that con-

sensus time is reduced toO(1) plus c ·O(maximumpropagation delay towards topmostCHs), where

c is a constant s.t. without colocality, c ≤ 3 worst case; while with colocality, c ≤ 2, best case. We also

propose a node look-up positioning mechanism, named CHAC, for locating nodes inO(1) time complexity.

Additionally, we introduce the concept of node colocality, which, when leveraged, allows consensus time to

be further improved. Both CHAC and the colocality aspects are incorporated into our model to overcome

some of the design’s complexity challenges and to make BC efficiency goals more achievable. The design

concept as well as the architecture designs are clustering algorithm agnostic, consensus algorithm agnostic

as well as application agnostic.

All the proposed designs are crafted based on the same multi-tiered design concept, adopt the same

consensus-accelerating algorithmwith equivalent complexity and improve consensus timewhen compared

to flat and two-tiered architectures. This improvement is attributable to the multi-tiered design concept,

which increases scalability and reduces the number of topmost CHs involved in the consensus process to

a logarithmically bounded reduction of the CHs located at the levels below. The asymptotic analysis of the

consensus-accelerating protocol is similar for all the architecture designs, thus the designs may be consid-

ered as equally efficient in that respect.

The Self-Scaling Dynamic (SSD) architecture has been selected for further study, implementation, and test-

118

ing. At the core of the SSD architecture is a dynamic SSD algorithm that, through the use of MUT and CLT

thresholds, strives to maintain a dynamic load balance between node management overhead and control

decentralization thanks to the cyclic aspect of the algorithm. The algorithm helps the architecture dynami-

cally expand and shrink, through cascading cluster splits and merges, in order to adequately accommodate

node joins and departures.

SSD’s overall efficiency has an inverse relationship with the number of the topmost CHs. The deeper the

forest, the fewer the topmost CHs that verify transactions and blocks, the shorter the consensus delays, and

themore scalable and efficient themodel becomes. Nevertheless, having too few topmost CHsmay lead to a

concentration of power, which is a security concern. Thus there is a conflict between performance, security

andworkload balancewhile expanding and shrinking the architecture and those factors affect each other by

different ratios, hence, a trade-off is to be carefully considered. SSD is application agnostic, however careful

decisions must be made towards choosing appropriate values for MUT and CLT for the different levels of

the architecture and for the number of minimum levels required. Such decisions, along with the trade-offs

mentioned, have to be carefully considered when SSD model gets implemented in a real-word application.

The simulation provides a proof of concept for our dynamic SSD design and algorithm as it showed the

plausibility of performing the dynamic architectural modifications without sacrificing the integrity1 of the

node and cluster data and location, while achieving all the sought after goals. Also the simulation results

rank the SSD architecture along with SSD algorithm as a BC model that outperforms both the flat and the

two-tiered model, while also achieving the load balance, scalability and efficiency goals with respect to BC

functionality and security requirements. The simulation results demonstrate assertive trends regarding the

system’s ability to continue tomeet its objectives as it continues to grow. Additionally, the simulations prove

the validity of the colocality concept, as well as its promising impact on reducing consensus time.

9.2 Contribution to the Advancement of Knowledge

This research has presented solutions to help BC-based IoTD achieve adequate scalability in terms of con-

sensus throughput as well as in terms of block and Tx latency. We have obtained trends through evaluating

the behavior of BC system during our simulations. In this effort, we have not aimed to design a new form of

1 The integrity is dictated by the rule that each cluster must be managed by exactly one CH. The integrity of the node data might

be sacrificed as the nodes change positions during the cluster splits and merges in such a dynamic architecture.

119

a custom-made consensus. We have rather aimed to improve the node organization, and the overall archi-

tectural aspects, starting from recommending the choice of the clustering algorithm, passing by the routing

mechanisms that aim to map the logical locations of each node within the design abstraction layers and

ending by evaluating the impact of node locality to reduce the number of hops made by messages carrying

Tx common for nodes that are in logical proximity, hence, decreasing consensus time. In our research, we

have presented a number of varied architectures for BC-based IoTDs, built based on different designs. The

reason for adopting such approach is to evaluate the rising needs that each architecture presented, once

built, which have lead us to produce better methods and more efficient designs and algorithms in order to

meet those needs. Our approach was an attempt to find a solution to many BC problems, particularly the

triangular tradeoff between security (in terms of consensus decentralization), traffic overhead and scalabil-

ity, as we have decoupled all three aspects in order to reach better architectures that better meet todays

BC-based IoTD scalability needs.

Our proposed design includes: a multi-tiered model to enhance flat and two-tiered models’ scalability and

efficiency algorithms, a number of architecture options to implement the model, a consensus-agnostic

consensus-accelerating algorithm, a node positioning mechanism, a self-scaling algorithm to balance con-

sensus decentralization versus node management overhead as well as a colocality concept to be leveraged

to further reduce consensus time.The design is also application-agnostic and clustering algorithm-agnostic.

The proposed designs and concepts may serve as general-purpose solutions for:

1. scalability, namely the multi-tiered design;

2. peer-to-peer node-lookup andmessage-routing for distributed systems, namely the node positioning

mechanism (CHAC);

3. load-balancing for clustered systems, namely the self-scaling algorithm that load-balances consensus

decentralization versus node management overhead.

9.3 Published Contributions

Our work has led to the following publications:

1. Published conference papers:

120

(a) “A Blockchain Node Organizing and Auto-Scaling Architecture for the Internet of Things” (El-

saadany et Bégin, 2023).

(b) “A Self-Scaling Dynamic Blockchain Model for IoT” (Elsaadany et Bégin, 2024d).

2. Submitted and in-progress papers:

(a) “A Blockchain Auto-Scaling Node Organizing Design Model for the Internet of Things” (El-

saadany et Bégin, 2024b).

(b) “ANumber of Conceptual Scalable Peer-to-PeerMessage-Routing andNode-OrganizingMulti-

Tiered Blockchain Architectures for IoT” (Elsaadany et Bégin, 2024c).

(c) “A Blockchain Auto-Scaling Node Organizing Design for the Internet of Things” (Elsaadany et

Bégin, 2024a).

9.4 Simulation Limitations

We performed our simulation on an macAir with 1.1 GHz Dual-Core Intel processor and 8 GB memory. This

limited computing power forced us to restrict the size of our simulation parameters, in terms of the number

of Tx generated aswell as the number of IoTDs simulated. Our architecture ran smoothlywith the number of

Tx and IoTDs simulated in Chapter 7 and based on the resulting trends, we can expect smooth performance

for larger numbers of transactions and IoTDs in the future provided more computing power is available,

assuming that the trends will continue and that the current SSD architecture will remain applicable.

9.5 Future Work

The goal of our study was to overcome the main issues causing delays in a flat BC as well as in two-tiered

BC, and to address them with a newer design. Nevertheless, there is room for more improvement, through

applying features that are yet to improve the efficiency of the architecture as follows:

9.5.0.1 Combining CHORD with the Self-Scaling Algorithm

In SSD, there is a need for a mechanism that provides resilience for the BC architecture. Resilience allows

communication between nodes located at the same level of the forest. In our design, the topmost CHs holds

their managed nodes’ data and CHAC helps locating the managed nodes in O(1). Nevertheless, if same-

level communication is necessary, it would be beneficial to have a mechanism that efficiently provides a

121

location service for nodes storing a particular data item, even amidst continuous changes in the system’s

organization. According to the self-scaling algorithm, there exist an amount of data that should be always

maintained and quickly exchanged amongst all nodes to allow each such node to determine its position

in the hierarchy, its corresponding subtree where it belongs, and the size of its managed cluster(s). Since

SSD is tiered, creating faster communication amongst different tiered nodes to exchange such information

and to locate nodes with a particular data item (i.e. CHAC) located at a certain level, is necessary, which

is another challenge faced. Our architecture aims to provide a practical BC-based IoT scalability, however

such issues might slow our architecture down if they remain untacked.

Such issues can be addressed by incorporating CHORD protocol into our architecture. Verifying the rele-

vance of employing CHORD at each level of the architecture to enhance node communication could prove

beneficial. CHORD, a distributed lookup protocol to efficiently locate node(s) storing a particular data

item.CHORD considers the nodes as being organized on a circle (ring). Given a key, CHORD maps it onto a

node using Consistent Hashing and takesO(logX) running time, whereX is the number of CHORD nodes.

CHORD maintains its routing information as nodes join and leave the system in no more than O(log2X)

messages (scaling logarithmically with the number of CHORD nodes). CHORD specifies how to find the

locations of keys, how new nodes join the system, and how to recover from node failure (or planned de-

parture). In particular, it can help to load balance the keys on each node, avoiding single points of failure or

control while maintaining scalability. In CHORD, each node only needs to be aware of its successor node on

a CHORD circle. Queries for a given identifier can be passed around the circle via successor pointers until

they first encounter a node that succeeds the identifier; this is the node the query maps to. Its ability to

associate versatile values with keys and to handle node joining and leaving with only O(1/X) fraction of

keys changing locations (in order to maintain load balance), are the reasons why we recommend leveraging

CHORD to support SSD, as a future work.

CHORD is to be used differently in our architecture options in order to complement our designs. As another

logical layer, CHORD can be applied on each SSD layer independently to accelerate message routing, to

locate nodes, to connect layers, as depicted in Figure 9.1, which provides reliability for the SSD system.

It can be applied on level-0 of D nodes, where O(logD) nodes will service CHORD routing on that ring.

Then it can be applied on level-1 CHs as a second ring built inside the first ring, whereO(log level1−CHs)

nodes will service CHORD routing. And so on. SSD will be built as one CHORD circle inside another where

the innermost circle corresponds to level-N , and the outermost circle corresponds to level-0 IoTDs. We

122

t

t

t

m0 IoTDs m0 IoTDs m0 IoTDs

t

t

t

Level-0 IoTD clusters

Level-1 CHs

Level-N-1 CHs

Level-N-2 CHs

mN level-N CHs, N=4

Figure 9.1 SSD architecture incorporating CHORD

recommend integrating CHORD into SSD architecture as a future work since the preliminary cost analysis

for integrating CHORD into SSD seem promising.

9.5.0.2 The Probability of Colocality

As a future work, we can find a mechanism to analyze the frequency of interaction between any two nodes

that happen to be parties of the same Tx, and apply an algorithm to predict future frequency of interactions

between those two nodes (e.g. an AImechanism). Depending on the analysis and prediction results, we can

decide to leverage the concept of colocality for those twonodeswhile applying a different node organization

(reorganization). In this section, we suggest a mechanism for node reorganization that may help leveraging

the colocality between frequently interacting nodes within the same Tx.

In order to achieve a direct colocality, we need two nodes to be within the same tree (collisions) as much as

possible. If we get no collision, the whole height of the structure will get travelled once (starting from the

IoTD generating the Tx, the requester, towards its topmost parent) then all topmost nodes will be visited as

well as their managed nodes (until the IoTD participating in the Tx, the requestee, is found) in order to find

the parties of a multi-signature Tx. Which will be in O(n), where n is the number of nodes in the whole

structure.

As a solution, a mechanism that aims to enforce a logical shorter distance (colocality) between nodes with

history of frequent transaction interactions could be applied. Themechanismwould aim to logicallymigrate

123

Figure 9.2 SSD - The Colocality through Critical Bonding

one IoTD from one cluster towards another, or even to let two IoTDs of different clusters to exchange their

positions (to maintain load balancing) in order to get closer to the IoTDs with which they make Tx more

frequently. This would take place by getting the parent CH to register the frequency with which two nodes

interact in common Tx and once a threshold is reached, one node migration takes place towards the cluster

with the least size. For the frequency of interaction, the parent CH (or one of level-N CHs, if no common

parent CH between both nodes) registers the number of common Tx interactions between nodes A and B

within a time frame. If the interaction frequency reaches a predefined threshold, the CH marks both nodes

as being in a “critical bond” state, such that if two other nodes, C and D, happen to be in a critical bond state

as well, such that nodes C and A are at dist=0, while nodes D and B are at dist=0, and both pairs (A, C), and

(B, D) are not in a critical bond state, then the pairs can be considered as a potential breakable pairs. The

CH can then invoke a node exchange between breakable pairs, exchanging one node belonging to the first

critical bond with another from the second critical bond, while their dist ̸= 0, as in Figure 9.2. Clusters will

end up with critical bonds nodes and hence, stronger node colocality for better Tx performance.

9.5.0.3 Other issues to improve

The following mechanisms can be added to the SSD architecture in order to further improve it:

1. Introducing variability in cluster sizes at each level may be an interesting aspect to test.

2. Researching the impact of IoTD mobility and churn2 may be an interesting aspect to further study.

3. A mechanism that takes into account mobile IoTDs, necessitating changes in routing and CHAC ac-

2 A mechanism is needed to facilitate the rapid adaptation of the architecture to churn resulting from frequent new node joins

and the departure or failure of old nodes

124

cording to the location of each new IoTD, could be considered.

4. Since we have addressed all the research questions, the question concerning workload considera-

tions still remains. Providing a mechanism to assess the managed node workload (in terms of the

number of nodes within the managed clusters (cluster size) as well as the node workload, as well as

the of managed clusters) versus the CH workload capacity, which may differ according to the level

where the CH resides, an issue that may be considered as design agnostic. The CH capacity should

be considered as an important constraint to determine MUT for each of the per-level CHs. Also a

mechanism is required for determining a per-level CLT that ensures the decentralization of power

within the node’s as well as the CH’s clusters according to each BC application constraints. Determin-

ing theMUT to be limited by/match the CHs capacity as well as the CLT to assure the decentralization

of power will help a better design for the splits and merges in order to scale the architecture up or

down accordingly. Also determining at which frequency will the workload be compared to the CH

capacity (the frequency according to which MUT will change per level), and at which frequency the

CLT will be modified according to the change of each application demands, is required. Determining

an accurate MUT and CLT are application agnostic however further future work might take place to

set some general guidelines in order to facilitate the decision for easily configuring them.

5. Assuming that only CHs get to append Tx to blocks while only managed IoTDs get to produce Tx,

all nodes need to have a fair chance to append Tx to blocks and to produce Tx. A mechanism for

nodes to exchange roles of IoTDs and CHs has been applied in order to allow the nodes to change

position within the hierarchy’s levels, however such a mechanism did not address the the exchange

of positions and the possibility for the nodes to exchange roles of delegations in order to allow a fair

chance to build blocks, a technique to address that latter issuewouldmake SSDmore comprehensive.

6. Researching node resilience mechanisms to face hostile scenarios is recommended for future works.

125

BIBLIOGRAPHY

(2006). Computer Science Department, Duke University cod cluster-on-demand.
https://www2.cs.duke.edu/nicl/cod/, Accessed: 2019-03-22. Récupéré de
https://www2.cs.duke.edu/nicl/cod/

(2012). StackOverflow-what’s the diffference between cloud, grid and cluster. Accessed: 2019-03-22.
Récupéré de https://stackoverflow.com/questions/9723040/
what-is-the-difference-between-cloud-grid-and-cluster

(2016). Modularity (networks). Accessed: 2022-01-07. Récupéré de https:
//en.wikipedia.org/wiki/Modularity_(networks)#:~:text=Modularity%20compares%
20the%20number%20of,edges%20are%20otherwise%20randomly%20attached.

(2017). Marklogic server-scalability, availability, and failover guide (cluster configuration). Accessed:
2019-03-22. Récupéré de https://docs.marklogic.com/guide/cluster.pdf

(2018). Cs1114: Study guide 3 (clustering algorithms). Récupéré de http:
//www.cs.cornell.edu/courses/cs1114/2012sp/lectures/cs1114-studyguide3.pdf

(2018). Hyperledger iroha documentation. Accessed: 2021-01-21. Récupéré de
https://iroha.readthedocs.io/en/master/

(2020). Blocksim: An extensible simulation tool for blockchain systems. Accessed: 2021-12-16. Récupéré
de https://www.frontiersin.org/articles/10.3389/fbloc.2020.00028/full

(2021). A next-generation smart contract and decentralized application platform, ethereum_whitepaper.
Accessed: 2024-02-21. Récupéré de
https://scholar.google.co.kr/citations?view_op=view_citation&hl=en&user=
DLP9gTAAAAAJ&citation_for_view=DLP9gTAAAAAJ:IjCSPb-OGe4C

(2021). Wikipedia weekend project build your own supercomputer (pc and tech authority). Accessed:
2019-03-22. Récupéré de https://en.wikipedia.org/wiki/Computercluster

(2023). Uncle mining, an ethereum consensus protocol flaw. Accessed: 2023-06-07. Récupéré de
https://bitslog.wordpress.com/2016/04/28/
uncle-mining-an-ethereum-consensus-protocol-flaw/

(2024). Iota. Accessed: 2024-02-22. Récupéré de www.IOTA.org

Albulayhi, A. et Alsukayti, I. (2023). A blockchain-centric iot architecture for effective smart contract-based
management of iot data communications. Electronics, 12, 2564.

Alharby, M. et Moorsel, A. V. (2020).

Alharby, M. et Moorsel, A. V. (2022).

Alhusayni, A., Thayananthan, V., Albeshri, A. et Alghamdi, S. A. (2023). Decentralized multi-layered
architecture to strengthen the security in the internet of things environment using blockchain

126

https://www2.cs.duke.edu/nicl/cod/
https://stackoverflow.com/questions/9723040/what-is-the-difference-between-cloud-grid-and-cluster
https://stackoverflow.com/questions/9723040/what-is-the-difference-between-cloud-grid-and-cluster
https://en.wikipedia.org/wiki/Modularity_(networks)#:~:text=Modularity%20compares%20the%20number%20of,edges%20are%20otherwise%20randomly%20attached.
https://en.wikipedia.org/wiki/Modularity_(networks)#:~:text=Modularity%20compares%20the%20number%20of,edges%20are%20otherwise%20randomly%20attached.
https://en.wikipedia.org/wiki/Modularity_(networks)#:~:text=Modularity%20compares%20the%20number%20of,edges%20are%20otherwise%20randomly%20attached.
https://docs.marklogic.com/guide/cluster.pdf
http://www.cs.cornell.edu/courses/cs1114/2012sp/lectures/cs1114-studyguide3.pdf
http://www.cs.cornell.edu/courses/cs1114/2012sp/lectures/cs1114-studyguide3.pdf
https://iroha.readthedocs.io/en/master/
https://www.frontiersin.org/articles/10.3389/fbloc.2020.00028/full
https://scholar.google.co.kr/citations?view_op=view_citation&hl=en&user=DLP9gTAAAAAJ&citation_for_view=DLP9gTAAAAAJ:IjCSPb-OGe4C
https://scholar.google.co.kr/citations?view_op=view_citation&hl=en&user=DLP9gTAAAAAJ&citation_for_view=DLP9gTAAAAAJ:IjCSPb-OGe4C
https://en.wikipedia.org/wiki/Computer cluster
https://bitslog.wordpress.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/
https://bitslog.wordpress.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/
www.IOTA.org

technology. Electronics, 12, 4314. http://dx.doi.org/10.3390/electronics12204314

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A., Enyeart, D., Ferris, C.,
Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Sethi, M., Singh, G., Smith, K., Sorniotti,
A., Stathakopoulou, C., Vukolić, M. et Yellick, J. (2018). Hyperledger fabric: A distributed operating
system for permissioned blockchains.

Angin, P., Mert, M., Mete, O., Ramazanli, A., Sarica, K. et Gungoren, B. (2018). A Blockchain-Based
Decentralized Security Architecture for IoT, (p. 3–18).

Atlam, H. F., Alenezi, A., Alassafi, M. O. et Wills, G. B. Blockchain with internet of things: Benefits,
challenges, and future directions. volume 10.
http://dx.doi.org/10.5815/ijisa.2018.06.05

Awad, A., German, R. et Dressler, F. (2011). Exploiting virtual coordinates for improved routing
performance in sensor networks. Mobile Computing, IEEE Transactions on, 10, 1214 – 1226.
http://dx.doi.org/10.1109/TMC.2010.218

Bogdanov, A., Degtyarev, A., Korkhov, V., Kamande, M., Iakushkin, O. et Khvatov, V. (2018). About some of
the blockchain problems.

Bravo-Marquez, F., Reeves, S. et Ugarte, M. (2019). Proof-of-learning: A blockchain consensus mechanism
based on machine learning competitions. http://dx.doi.org/10.1109/DAPPCON.2019.00023

Buchman, E. (2016). Tendermint: Byzantine fault tolerance in the age of blockchains.

Buterin, V. (2021). Ethereum white paper: A next generation smart contract decentralized application
platform. Accessed: 2021-01-25. Récupéré de ethereum.org

Cachin, C. et Vukolić, M. (2017). Blockchains consensus protocols in the wild.

Chen, M. (2023). Comparison on proof of work versus proof of stake and analysis on why ethereum
converted to proof of stake. Advances in Economics, Management and Political Sciences, 12,
200–204. http://dx.doi.org/10.54254/2754-1169/12/20230624

Chendeb, N., Khaled, N. et Agoulmine, N. (2020). Integrating blockchain with iot for a secure healthcare
digital system. 8th International Workshop on ADVANCEs in ICT Infrastructures and Services
(ADVANCE 2020), hal-02495262f.

Clauset, A., E J Newman, M. et Moore, C. (2005). Finding community structure in very large networks.
Physical review. E, Statistical, nonlinear, and soft matter physics, 70, 066111.
http://dx.doi.org/10.1103/PhysRevE.70.066111

Clement, A., Wong, E., Alvisi, L., Dahlin, M. et Marchetti, M. (2009). Making byzantine fault tolerant
systems tolerate byzantine faults. 153–168.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. et Stein, C. (1990). INTRODUCTION TO ALGORITHMS. MIT
Press, McGraw-Hill.

127

http://dx.doi.org/10.3390/electronics12204314
http://dx.doi.org/10.5815/ijisa.2018.06.05
http://dx.doi.org/10.1109/TMC.2010.218
http://dx.doi.org/10.1109/DAPPCON.2019.00023
ethereum.org
http://dx.doi.org/10.54254/2754-1169/12/20230624
http://dx.doi.org/10.1103/PhysRevE.70.066111

Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Gün Sirer, E.,
Song, D. et Wattenhofer, R. (2016). On scaling decentralized blockchains (a position paper).

Delmolino, K., Arnett, M., Kosba, A., Miller, A. et Shi, E. (2016). Step by step towards creating a safe smart
contract: Lessons and insights from a cryptocurrency lab. volume 9604, 79–94.
http://dx.doi.org/10.1007/978-3-662-53357-4_6

Dorri, A., Kanhere, S. et Jurdak, R. (2018). Mof-bc: A memory optimized and flexible blockchain for large
scale networks. Future Generation Computer Systems, 92.
http://dx.doi.org/10.1016/j.future.2018.10.002

Dorri, A., Kanhere, S., Jurdak, R. et Gauravaram, P. (2017a). Lsb: A lightweight scalable blockchain for iot
security and privacy. Journal of Parallel and Distributed Computing, 134.
http://dx.doi.org/10.1016/j.jpdc.2019.08.005

Dorri, A., Kanhere, S. S., Jurdak, R. et Gauravaram, P. (2017b). Blockchain for iot security and privacy: The
case study of a smart home. 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerComWorkshops), 618–623.

Dorri, A., S. Kanhere, S. et Jurdak, R. (2016). Blockchain in internet of things: Challenges and solutions.
CoRR, abs/1608.05187. Récupéré de http://arxiv.org/abs/1608.05187

Dorri, A., S. Kanhere, S. et Jurdak, R. (2017c). Towards an optimized blockchain for iot. 2017 IEEE/ACM
Second International Conference on Internet-of-Things Design and Implementation (IoTDI),
173–178.

Elsaadany, R. et Bégin, G. (2023). A blockchain node organizing and auto-scaling architecture for the
internet of things. Dans 2023 Fifth International Conference on Blockchain Computing and
Applications (BCCA), 36–43. http://dx.doi.org/10.1109/BCCA58897.2023.10338882

Elsaadany, R. et Bégin, G. (2024a). A blockchain auto-scaling node organizing design for the internet of
things. Special Issue on Innovation In Computing, Engineering Science & Technology organized by
Advances in Science, Technology and Engineering Systems Journal (ASTESJ). Manuscript in
preparation, due December 2024.

Elsaadany, R. et Bégin, G. (2024b). A blockchain auto-scaling node organizing design model for the
internet of things. Cluster Computing Journal by Springer. Manuscript submitted for review.

Elsaadany, R. et Bégin, G. (2024c). A number of conceptual scalable peer-to-peer message-routing and
node-organizing multi-tiered blockchain architectures for iot. Dans 2024 Seventh IEEE
International Conference on Blockchain (Blockchain 2024). Manuscript submitted for review.

Elsaadany, R. et Bégin, G. (2024d). A self-scaling dynamic blockchain model for iot. Dans 2024 3rd IEEE
International Conference on Computing and Machine Intelligence (ICMI). Manuscript accepted to
be published.

Eyal, I., Gencer, A. E., Sirer, E. et Van Renesse, R. (2015). Bitcoin-ng: A scalable blockchain protocol.

Eyal, I., Keidar, I. et Rom, R. (2011). Distributed data clustering in sensor networks. Distributed Computing,

128

http://dx.doi.org/10.1007/978-3-662-53357-4_6
http://dx.doi.org/10.1016/j.future.2018.10.002
http://dx.doi.org/10.1016/j.jpdc.2019.08.005
http://arxiv.org/abs/1608.05187
http://dx.doi.org/10.1109/BCCA58897.2023.10338882

24, 207–222. http://dx.doi.org/10.1007/s00446-011-0143-7

Feng, Z., Qiao, M. et Cheng, H. (2023). Modularity-based hypergraph clustering: Random hypergraph
model, hyperedge-cluster relation, and computation. Proceedings of the ACM on Management of
Data, 1, 1–25. http://dx.doi.org/10.1145/3617335

Fersi, G. (2015). A distributed and flexible architecture for internet of things. Elsevier B.V, Procedia
Computer Science 73, 130–137.

Graham-Smith, D. (2012). Weekend project-build your own supercomputer (pc and tech authority).
Accessed: 2019-06-06. Récupéré de
https://www.alphr.com/features/374980/build-your-own-supercomputer

Gupta, S. et Sadoghi, M. (2018). Blockchain transaction processing.
http://dx.doi.org/10.1007/978-3-319-63962-8_333-1

Haffey, M., Arlitt, M. et Williamson, C. (2018). Department of Computer Science, University of Calgary-
network heartbeat traffic characterization. Récupéré de
https://pages.cpsc.ucalgary.ca/~carey/talks/Heartbeats-CLW.pdf

Han, J. et Kamber, M. (2006). Data Mining Concept and Techniques.

Heinzelman, W., P. Chandrakasan, A. et Balakrishnan, H. (2002). An application-specific protocol
architecture for wireless micro-sensor networks. Wireless Communications, IEEE Transactions on,
1, 660 – 670. http://dx.doi.org/10.1109/TWC.2002.804190

Heo, J. W., Dorri, A. et Jurdak, R. (2022a). Multi-level distributed caching on the blockchain for storage
optimisation. In Proceedings of the 2022 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC).

Heo, J. W., Ramachandran, G., Dorri, A. et Jurdak, R. (2022b). Blockchain storage optimisation with
multi-level distributed caching. IEEE Transactions on Network and Service Management, 19(4).

Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values.
Data Min. Knowl. Discov., 2, 283–304. http://dx.doi.org/10.1023/A:1009769707641

Huh, S., Cho, S. et Kim, S. (2017). Managing iot devices using blockchain platform. 464–467.
http://dx.doi.org/10.23919/ICACT.2017.7890132

Hwang, K., Fox, G. et Dongarra, J. (2010). Distributed Computing: Cluster, Grids and Clouds (Chapter 3:
Clustered Systems for Massive Parallelism). Accessed: 2019-03-22. Récupéré de https:
//pdfs.semanticscholar.org/bc62/5258e06df87eb96b76ce2279997fbedb17c2.pdf

Jurdak, R., Kanhere, S., Dorri, A., Malik, S., Steger, M., Oham, C., Dedeoglu, V., Gupta, P., Hill, A.,
Dharma Putra, G. et Jha, S. (2017). CSIRO- blockchain for iot security and privacy. Accessed:
2018-10-30. Récupéré de
https://research.csiro.au/dss/blockchain-iot-security-privacy

Kalis, R. et Belloum, A. (2018). Validating data integrity with blockchain. 272–277.

129

http://dx.doi.org/10.1007/s00446-011-0143-7
http://dx.doi.org/10.1145/3617335
https://www.alphr.com/features/374980/build-your-own-supercomputer
http://dx.doi.org/10.1007/978-3-319-63962-8_333-1
https://pages.cpsc.ucalgary.ca/~carey/talks/Heartbeats-CLW.pdf
http://dx.doi.org/10.1109/TWC.2002.804190
http://dx.doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.23919/ICACT.2017.7890132
https://pdfs.semanticscholar.org/bc62/5258e06df87eb96b76ce2279997fbedb17c2.pdf
https://pdfs.semanticscholar.org/bc62/5258e06df87eb96b76ce2279997fbedb17c2.pdf
https://research.csiro.au/dss/blockchain-iot-security-privacy

http://dx.doi.org/10.1109/CloudCom2018.2018.00060

Karimi, H., Medhati, O., Zabolzadeh, H., Eftekhari, A., Rezaei, F., Dehno, S. et jamalpoor, A. (2015).
Implementing a reliable, fault tolerance and secure framework in the wireless sensor-actuator
networks for events reporting. Procedia Computer Science, 73.
http://dx.doi.org/10.1016/j.procs.2015.12.007

Kosba, A., Miller, A., Shi, E., Wen, Z. et Papamanthou, C. (2016). Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. 839–858.
http://dx.doi.org/10.1109/SP.2016.55

Kousaridas, A., Falangitis, S., Magdalinos, P., Alonistioti, N. et Dillinger, M. (2015). Systas: Density-based
algorithm for clusters discovery in wireless networks. 2126–2131.
http://dx.doi.org/10.1109/PIMRC.2015.7343649

Lunardi, R., Michelin, R., Nunes, H., Neu, C., Zorzo, A. et Kanhere, S. (2022). Consensus algorithms on
appendable-block blockchains: Impact and security analysis. Mobile Networks and Applications,
27. http://dx.doi.org/10.1007/s11036-022-02015-4

Lunardi, R. C., Alharby, M., Nunes, H. C., A. F. Zorzo, C. D. et v. Moorsel, A. (2020). Context-based
consensus for appendable-block blockchains. 401–408.
http://dx.doi.org/10.1109/Blockchain50366.2020.00058

Mackenzie, B., Bellekens, X. et Ferguson, I. (2018). An assessment of blockchain consensus protocols for
the internet of things. http://dx.doi.org/10.1109/IINTEC.2018.8695298

Motwani, R. et Raghavan, P. (1995). Randomized Algorithms. Accessed: 2022-05-25. Récupéré de
https://rajsain.files.wordpress.com/2013/11/
randomized-algorithms-motwani-and-raghavan.pdf

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at
https://metzdowd.com.

Oktian, Y., Lee, S. et Lee, H. (2020). Hierarchical multi-blockchain architecture for scalable internet of
things environment. Electronics, 9, 1050. http://dx.doi.org/10.3390/electronics9061050

Pajooh, H. H., Rashid, M., Alam, F. et Demidenko, S. (2021). Multi-layer blockchain-based security
architecture for internet of things. Sensors, 21, 772. http://dx.doi.org/10.3390/s21030772

Panigrahi, L. et Panigrahi, R. (2024). An Enhancement in K-means Algorithm for Automatic Ultrasound
Image Segmentation, (p. 1–8).

Prabhu, K. et Prabhu, K. (2017). Converging blockchain technology with the internet of things.
International Education and Research Journal, [S.l.], v. 3, n. 2.

Qi, L., Tian, J., Chai, M. et Cai, H. (2023). A cooperative pow and incentive mechanism for blockchain in
edge computing. IEEE Internet of Things Journal, PP, 1–1.
http://dx.doi.org/10.1109/JIOT.2023.3278314

130

http://dx.doi.org/10.1109/CloudCom2018.2018.00060
http://dx.doi.org/10.1016/j.procs.2015.12.007
http://dx.doi.org/10.1109/SP.2016.55
http://dx.doi.org/10.1109/PIMRC.2015.7343649
http://dx.doi.org/10.1007/s11036-022-02015-4
http://dx.doi.org/10.1109/Blockchain50366.2020.00058
http://dx.doi.org/10.1109/IINTEC.2018.8695298
https://rajsain.files.wordpress.com/2013/11/randomized-algorithms-motwani-and-raghavan.pdf
https://rajsain.files.wordpress.com/2013/11/randomized-algorithms-motwani-and-raghavan.pdf
http://dx.doi.org/10.3390/electronics9061050
http://dx.doi.org/10.3390/s21030772
http://dx.doi.org/10.1109/JIOT.2023.3278314

Raza, S., Abdelraheem, M. A. et Sedrati, A. (2017). Blockchain and iot: Mind the gap.

Rebello, G. A. F., Camilo, G. F., Guimarães, L. C. B., de Souza, L. A. C. et Duarte, O. C. M. B. (2022). Security
and performance analysis of quorum-based blockchain consensus protocols. 1–7.
http://dx.doi.org/10.1109/CSNet56116.2022.9955597

Rüsch, S. (2018). High-performance consensus mechanisms for blockchains. Accessed: 2021-01-21.
Récupéré de
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/eurodw18-ruesch-final.pdf

Sağırlar, G., Carminati, B., Ferrari, E., Sheehan, J. et Ragnoli, E. (2018). Hybrid-iot: Hybrid blockchain
architecture for internet of things - pow sub-blockchains. 1007–1016.
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00189

Schiller, E., Rafati niya, S., Surbeck, T. et Stiller, B. (2019). Scalable transport mechanisms for blockchain iot
applications. http://dx.doi.org/10.1109/LCNSymposium47956.2019.9000673

Singh, S. et Duggal, S. (2022).

Sousa, J., Bessani, A. et Vukolić, M. (2018). A byzantine fault-tolerant ordering service for the hyperledger
fabric blockchain platform. 51–58. http://dx.doi.org/10.1109/DSN.2018.00018

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F. et Balakrishnan, H. (2001). Chord: A scalable peer-to-peer
lookup service for internet applications. Dans SIGCOMM’01, 149–160.

Tanwar, S., Gupta, N., Tomar, J., Kumar, K., Treľová, S. et Ivanochko, I. (2023). A review on blockchain smart
contract applications. 175–187.

Tashman, A. (2024). Clustering with K-Means, (p. 289–306).

Tumas, V., Rivera, S., Magoni, D. et State, R. (2023). Federated byzantine agreement protocol robustness
to targeted network attacks. 443–449.
http://dx.doi.org/10.1109/ISCC58397.2023.10217935

Valenta, M. et Sandner, P. (2017). Comparison of ethereum, hyperledger fabric and corda. Accessed:
2020-10-30. Récupéré de
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf

Vukolić, M. (2016). The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. 112–125.
http://dx.doi.org/10.1007/978-3-319-39028-4_9

Wang, X., Zha, X., Ni, W., Liu, R., Guo, Y., Niu, X. et Zheng, K. (2019). Survey on blockchain for internet of
things. Computer Communications, 136.
http://dx.doi.org/10.1016/j.comcom.2019.01.006

Wilkinson, S., Boshevski, T., Brandoff, J., Prestwich, J., Hall, G., Gerbes, P., Hutchins, P. et Pollard, C. (2016).
Storj- a peer-to-peer cloud storage network.

Yildirim, S. (2020). Top machine learning algorithms for clustering. Accessed: 2020-05-17. Récupéré de

131

http://dx.doi.org/10.1109/CSNet56116.2022.9955597
https://www.ibr.cs.tu-bs.de/users/ruesch/papers/eurodw18-ruesch-final.pdf
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00189
http://dx.doi.org/10.1109/LCNSymposium47956.2019.9000673
http://dx.doi.org/10.1109/DSN.2018.00018
http://dx.doi.org/10.1109/ISCC58397.2023.10217935
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
http://dx.doi.org/10.1007/978-3-319-39028-4_9
http://dx.doi.org/10.1016/j.comcom.2019.01.006

https://towardsdatascience.com/
top-machine-learning-algorithms-for-clustering-a09c6771805

Yu, Y. (2023a). Analysis of pow in bitcoin and pos in peercoin. Highlights in Science, Engineering and
Technology, 39, 784–788. http://dx.doi.org/10.54097/hset.v39i.6645

Yu, Y. (2023b). Analysis of pow in bitcoin and pos in peercoin. Highlights in Science, Engineering and
Technology, 39, 784–788. http://dx.doi.org/10.54097/hset.v39i.6645

132

https://towardsdatascience.com/top-machine-learning-algorithms-for-clustering-a09c6771805
https://towardsdatascience.com/top-machine-learning-algorithms-for-clustering-a09c6771805
http://dx.doi.org/10.54097/hset.v39i.6645
http://dx.doi.org/10.54097/hset.v39i.6645

	List of Figures
	List of Tables
	ACRONYMES
	RÉSUMÉ
	Abstract
	INTRODUCTION
	Motivation

	Chapter 1 LITERATURE REVIEW
	Background
	Related Works
	Related Works - Classification based on Scalability
	Related Works - Classification based on Node Organization

	Chapter 2 RESEARCH PROBLEM
	The Problem in General
	The Specific Research Problem
	The Solution Hypotheses
	The Research Questions

	Chapter 3 Research Objectives
	General Objectives

	Chapter 4 THE MULTI-TIERED CONCEPT MODEL
	The multi-Tiered Design Concept Model- an Overview
	A Typical Flat Blockchain Model
	LSB Two-Tiered Blockchain Model
	The Multi-Tiered Blockchain Model
	Comparison among Models

	The Multi-Tiered Design Concept Model- Details
	Selection of a Clustering Algorithm
	Node Management In SSD
	BC Operations in our Multi-Tiered Design

	The Proposed Architecture Options
	Architecture Option-1
	Architecture Option-2
	Architecture Option-3

	Comparison among the Architecture Options and the Chosen Architecture
	Comparison among the Architecture Options
	Chosen Architecture Option

	The SSD Architecture
	Self-Scaling Dynamic (SSD) Algorithm
	Probability of Colocality
	A Quick Comparison Among All three BC Design Models in terms of Colocality
	SSD Operation Under Hostile Environment

	Chapter 5 RESEARCH METHODOLOGY
	Chapter 6 THEORETICAL ANALYSIS of the SSD ARCHITECTURE
	Trees of the Forest
	The Height of the Structure and MUT
	Theoretical Analysis of the SSD Algorithm
	Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i ≠N
	Self-Scaling Algorithm-part1 - The increase of cluster size on level i, i=N
	Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i≠N
	Self-Scaling Algorithm-part2 - The decrease of cluster size on level i, i = N
	Decreasing the cluster size

	Chapter 7 SIMULATION OF BLOCKCHAIN OPERATION
	Typical Flat BlockChain Simulation Hypotheses
	Two-Tiered BlockChain Simulation Hypotheses
	SSD BlockChain Simulation Hypotheses
	Measured Metrics
	The Features Applied in the SSD Simulation
	Simulation Parameters

	Simulation Design
	The Splits And Merges Phase
	The encoding of the splitting cluster ID and the split details
	Consensus and BC
	The transactions processing
	The blocks processing
	The verification checks
	The simulation details

	Hypotheses to Verify
	Performance Metrics

	Chapter 8 SIMULATION ASYMPTOTIC ANALYSIS, RESULTS AND INTERPRETATIONS
	Practical Analysis of the SSD Algorithm
	Asymptotic Analysis of Building The Structure
	Asymptotic Analysis of the Split
	Asymptotic Analysis of the Merge

	Final Practical Asymptotic Analysis of the Split and Merge
	SSD Algorithm - The Increase of Cluster Size on Level i, i ≠N
	SSD Algorithm - The Increase of Cluster Size on Level i, i=N
	SSD Algorithm - The Decrease of Cluster Size on Level i, i≠N
	SSD Algorithm - The Decrease of Cluster Size on Level i, i=N

	Comparison between the Theoretical Analysis and Practical Analysis of the SSD Algorithm
	SSD Algorithm - The Increase of Cluster Size on Level i, i ≠N
	SSD Algorithm - The Increase of Cluster Size on Level i, i=N
	SSD Algorithm - The Decrease of Cluster Size on Level i, i≠N
	SSD Algorithm - The Decrease of Cluster Size on Level i, i=N
	Comparison Results - Theoretical Analysis versus Practical Analysis of the SSD Algorithm

	Comparison of the Simulation Results for the Three BC models
	Comparison of the Simulation Results of the SSD Architecture Built with Different Numbers of CHs
	Interpretation of the Results
	Comparison of the Three Architectures Types
	Comparison of the SSD Architecture Built with Different Numbers Of CHs

	Simulation General Analysis

	Chapter 9 CONCLUSION AND FUTURE WORK
	Conclusion
	Contribution to the Advancement of Knowledge
	Published Contributions
	Simulation Limitations
	Future Work

	Bibliography

