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RÉSUMÉ

Les algorithmes sont de plus en plus utilisés pour prendre des décisions impactant les individus, les cohortes
et la société dans son ensemble. Cette ubiquité soulève d’importantes préoccupations éthiques et sociales,
notamment la protection de la vie privée et l’équité. Cette thèse étudie ces deux sujets techniques sous
l’angle de leur utilisation pratique et de leurs exigences sociétales. Dans une première contribution, nous
examinons le conflit entre la vie privée et la transparence lors de la publication de procédures judiciaires.
Dans une deuxième contribution, nous proposons un framework pour organiser des compétitions d’attaque
de mécanismes de protection de la vie privée afin de mieux établir leur comportement dans la pratique.
Dans une troisième contribution, nous nous concentrons sur les limites des définitions techniques d’équité
et utilisons une simulation ancrée dans la réalité comme moyen d’observer leur impact à long terme sur
l’ensemble d’un système. L’objectif principal de cette thèse est demettre en évidence les questions fondamentales
soulevées par la technicisation des défis sociaux ainsi que de proposer des outils techniques et des analyses
visant à ramener ces défis sociotechniques dans leur contexte social.

Mots clés : vie privée, équité, système de décision, socio-technique
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ABSTRACT

Algorithms are increasingly used across all layers of society, including in high-stake decision systems, impact-
ing individuals, cohorts and society as a whole. This omnipresence of algorithms raises important ethical
and social concerns, including in particular privacy and fairness. In this thesis, we study these two technical
subjects under the lens of their practical usage and strong societal requirements. In a first contribution we
investigate the conflict between privacy and transparency when publishing legal proceedings. In a second
contribution, we propose a framework to organize privacy challenges with a focus on attacking privacy-
preserving data publishing mechanisms to better define their behavior in practice. As a third contribution,
we focus on the limits of technical fairness definitions and leverage a simulation grounded in reality as a
way to observe the long-term impact of fairness on a whole system. Overall, the main objective of this the-
sis is to highlight fundamental issues raised by the technicization of social challenges as well as to propose
technical tools and analyses aimed towards bringing these sociotechnical challenges back to their social
context.

Keywords: privacy, fairness, decision systems, sociotechnical
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RÉSUMÉ ÉTENDU EN FRANÇAIS

This dissertation begins with a summary in French. The rest of this document is written in English, and starts

at page 1.

Introduction

La multiplication des collectes de données personnelles, que ce soit lors de transactions commerciales, de

déplacements, d’interactions avec les institutions ou de communications, est accompagnée d’un recours

tout aussi massif à des systèmes algorithmiques. En particulier, ces systèmes algorithmiques sont de plus en

plus utilisés pour prendre des décisions impactant les individus, les groupes et la société dans son ensemble.

Ainsi, ils prennent une place de plus en plus prépondérante dans de nombreux domaines comme outil

d’assistance à la prise de décision ou comme agent décisionnel à part entière, que ce soit pour évaluer

les curriculums vitæ de candidat·es à Amazon (Dastin, 2018), pour apparier étudiant·es et établissements

avec Parcoursup (Frouillou et al., 2019), pour évaluer le risque de récidive des accusé·es comme le fait

le logiciel COMPAS (Brennan et Dieterich, 2017) utilisé aux États-Unis ou pour l’attribution d’organes par

Eurotransplant (Schulte et al., 2018) en Europe. Cetteubiquité soulève d’importantes préoccupations éthiques

et sociales, notamment concernant la protection de la vie privée et l’équité de ces approches, comme le

montrent les nombreuses réglementations établies comme le RGPD (Parliament et Union, 2016) ou en

préparation comme l’AI Act (European Commission, Directorate-General for Communications Networks,

Content and Technology, 2021), ainsi que les multiples ouvrages abordant ces questions (Zhou et al., 2020;

Birhane et al., 2022).

La particularité sociale de ces enjeux, à la fois par leur contexte d’application et par la nature des questions,

rend leur étude sous l’angle techniqueparcellaire. Si des approches comme l’évaluationdes risques permettent

de quantifier dans une certaine mesure l’impact tant pour la vie privée que la discrimination, celle-ci ne

peut se faire qu’en connaissance des dangers. Cependant, les définitions de ces risques évoluent à travers

le temps, les cultures et les positions politiques. Les étudier nécessite de pouvoir modéliser des systèmes

sociotechniques complexes et cette modélisation peut être elle-même porteuse de biais de par le choix de

consider ou non certains éléments (Aven, 2011). Par ailleurs, les dimensions d’interprétation et de contexte

de concepts comme la “vie privée” et la “nondiscrimination” nepeuvent pas être retranscrites facilement de

façon formelle, laissant place à des redéfinitions algorithmiques commediscuté par des travaux récents (Ochigame,
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2019 ; Hoffmann, 2019 ; Kulynych et al., 2020). Des conférences comme ACM FAccT (ACM, 2023) tentent

de répondre à cet enjeu en faisant se rejoindre les expertises et outils de plusieurs communautés, avec

de nombreux articles mélant des auteur·ices issues des domaines de l’informatique, de la linguistique, du

droit ou encore de la sociologie. Cette première réponse nous semble cependant souffrir de sa limitation

au champ technique, amenant certes la dimension sociale en perspective, mais se limitant à des réponses

techniques. On peut prendre par exemple le cas du cadre analytique de l’intersectionnalité (Crenshaw,

1989), identifié par l’universitaire afroféministe américaine Kimberlé Williams Crenshaw, qui permet de

considérer les différentes formes dedomination, d’oppression et dediscriminationnonpas commecloisonnées,

mais comme un système interconnecté, avec l’idée que celles-ci sont “plus grandes que la somme de leurs

parties” (Preddie et Biernat, 2020). Si cette notion est décrite et étudiée en longueur par de multiples

ouvrages en sciences humaines et sociales, elle est formalisée dans plusieurs articles techniques (Foulds

et al., 2020; Morina et al., 2019 ; Kang et al., 2022; Molina et Loiseau, 2022) comme la simple considération

d’unemultiplicité d’attributs sensibles, par exemple l’intersectionde genre et de race. Bien que ces propositions

de formulations permettent un premier pas vers l’utilisation d’un concept abstrait dans un environnent

technique, la réductionen inéquations, par exemple formulée sur lemodèle de la confidentialité différentielle

et appliquée à des sous-groupes de la population dans (Foulds et al., 2020), ne peut conserver le contexte

et les principes méthodologiques de l’approche. La complexité d’utilisation est illustrée par (Bauer et al.,

2021) qui compare l’utilisation du cadre intersectionnel par plusieurs études quantitatives, ou par (Varley et

Kaminski, 2022) qui propose une première définition empirique. Les considérations sociales fortes rendent

particulièrement crucial d’évaluer ce qui est perdu lors de la technisisationdes concepts, au delà de l’exemple

de l’intersectionnalité utilisé ici.

Cette thèse cherche à étudier la protection de la vie privée et l’équité sous l’angle de leur utilisation pratique,

mais aussi de leurs implications sociétales. S’il est difficile de parler de technique sans être technicien·e et

tout autant de parler d’éthique sans être éthicien·ne, on gardera ici une approche d’informaticien, en ayant

pour objectif d’aller vers une ouverture sur les sciences sociales.

Protection de la vie privée

En matière de protection de la vie privée, les premières réponses se sont faites avec des mécanismes

empiriques. Par exemple, la k-anonymité introduite en 2002 (Sweeney, 2002) cache les profils individuels

en les regroupant en grappes d’aumoins k personnes. Cemodèle de vie privée a été successivement raffiné
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avec des volontés de contrôler l’utilité (plus précisément la perte d’information) et de répondre à des

attaques, amenant à la l-diversité (Machanavajjhala et al., 2007) puis à la t-proximité (Li et al., 2007).

En parallèle, la confidentialité différentielle (Dwork, 2006) a été proposée en 2006 avec un objectif formel

devant représenter le concept de vie privée auquel obéit la définition. Plus précisément, un mécanisme

respecte la vie privée (au sens de la confidentialité différentielle) si la présence ou l’absence d’un individu

dans la base de données fournie en entrée aumécanisme impacte le calcul de manière indiscernable, selon

un budget alloué. En d’autresmots, étant donné le résultat d’une requête, un·e attaquant·e ne gagne qu’une

information limitée permettant d’inférer la présence ou absence de l’individu.

Si cette définition est considérée, dans ce travail comme dans beaucoup d’autres, comme la référence,

de très nombreuses variations ont été proposées (Desfontaines et Pejó, 2020) afin de répondre à différents

modèles d’adversaire, de connaissances auxiliaires ou d’autres structures de données. À la question du choix

d’une définition s’ajoute celle du choix d’un budget (et des variables additionnelles d’autres modèles), qui

définit la quantité d’information pouvant fuiter, avec des tentatives de recommandation académiques (Hsu

et al., 2014 ; Lee et Clifton, 2011) et des utilisations pratiques différentes dans l’industrie (Tang et al., 2017).

Pour résumer, la vie privée dans le domaine de l’informatique vise à y formaliser des desiderata sociaux en

des objectifs numériques (formels), qui génèrent ensuite leurs propres questions techniques. On transforme

ainsi des concepts parfois élusifs de respect de la vie privée et d’équité, issues d’attentes individuelles, de la

morale et du droit, en des propriétés mathématiques des algorithmes et de leurs sorties (Ochigame, 2020).

Discrimination

Du côté de la non-discrimination, aussi appelé parfois équité, il s’agit d’un enjeu étudié plus récemment

en informatique que le domaine de la vie privée, mais on retrouve des similarités dans l’approche suivie.

Ainsi, les nombreuses façons de conceptualiser la discrimination et sa résolution se sont matérialisées dans

de multiples redéfinitions algorithmiques de notions complexes. Les définitions les plus communes sont

celles dites “de groupe”, qui prennent majoritairement comme cadre les décisions issues d’algorithmes

d’apprentissage supervisé, en cherchant à comparer la sortie d’un système (c’est-à-dire ses décisions) à

des données de référence. Dans ce cadre, la discrimination de groupe se définit comme l’écart entre un

certain indicateur, comme le taux de décisions positives ou le taux d’erreur, évalué entre deux groupes. De

nombreuses définitions appartenant à cette famille existent (Mehrabi et al., 2022) et sont généralement
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mutuellement exclusives (Friedler et al., 2016). Pour résumer, la question est de démontrer que le système

n’ajoute pas de discrimination, et non pas qu’il n’est pas discriminatoire à l’origine.

Une autre conception propose une vision “individuelle” (Dwork et al., 2012) de non-discrimination, en

exigeant quedeux profils “proches” reçoivent des décisions similaires, étant donnéeunenotionde similarité

entre les individus. La définition de non-discrimination repose alors sur cette mesure de similarité qui doit

être elle-mêmenon-discriminante, sans qu’elle puisse être définie à l’aide de cemodèle, posant naturellement

un problème d’applicabilité. Il est intéressant de noter que Cynthia Dwork, première autrice de ce travail, est

aussi à l’origine de la définition de confidentialité différentielle. On peut aussi citer les définitions utilisant

un modèle causal, l’objectif étant alors de supprimer l’impact des variables confondantes dans la prise de

décision, c’est-à-dire des variables qui influencent à la fois la décision et les variables d’entrée.

Cettemultiplicité de définitions et de concepts est similaire dans une certaine mesure à ce qu’il est possible

d’observer pour la vie privée, à la différencequ’aucunedéfinitionn’émerge commepréférable techniquement

ou socialement comme le fait la confidentialité différentielle en protection de la vie privée. En particulier,

il n’est pas désirable ou possible d’aboutir à une telle convergence, à la fois de par les incompatibilités

formelles (Friedler et al., 2016) de concepts “désirables”, ainsi que par la dépendance entre l’intérêt pour

un concept et l’agent qui le formule (Narayanan, 2018), laissant de fait place à des biais dans le choix de la

définition elle-même.

Nous faisons donc le constat de la difficulté à définir, choisir et utiliser des définitions de vie privée et de

discrimination dans des contextes sociotechniques. Ne cherchant pas, ni ne pensant qu’il soit possible ou

désirable de trouver, de réponse technique à ces enjeux, on s’attache dans cette thèse à étudier les limites

et à présenter des solutions dont l’utilisation pourrait se faire en dehors du cercle technique, dans une

perspective d’y lier les personnes sociales et les outils techniques.

Compromis entre vie privée et transparence

Dans une première contribution, nous examinons le conflit entre la vie privée et la transparence lors de

la publication de procédures judiciaires. Plus précisément, nous proposons de considérer la transparence

commeundesideratumhumain d’unepart et la vie privée commeuneexigencepour le traitement automatisé

d’autre part. Les décisions de justice sont aujourd’hui publiées massivement en ligne, à la fois dans un

objectif de transparence et d’accessibilité de la justice, et pour répondre à la demanded’accès à des données
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nécessaire audéveloppement d’outils automatisés pour le droit appelés “legal techs”. Cet objectif de publication

se heurte aux obligations de respect de la vie privée, pour lesquels nous identifions deux axes de tensions :

individuel et massif.

La protection “individuelle” des jugements correspond à l’approche adoptée aujourd’hui de caviardage

d’informations qui permette de façon évidente d’identifier les participant·e·s d’un jugement selon les règles

qui encadrent la protectionde chacun·e. Cette transformationpeut être appliquéedirectement aux jugements

en langage naturel et permet une grande utilité en conservant le sens à l’exception de quelques termes

comme les noms qui peuvent être remplacés par exemple par des initiales. Cependant, si cette approche

empirique rend potentiellement moins évidente une réidentification, elle n’apporte aucune garantie. Nous

présentons plusieurs extraits de jugements qui permettent de mettre en valeur ces lacunes, ainsi que les

difficultés techniques qui se présenteraient pour y répondre.Une technique comme la confidentialité différentielle

permet de répondre à ce problème, mais n’est pas applicable directement au langage.

Concernant la protection “massive”, nous partons du constat que le traitementmassif de documents correspond

au traitement automatique, et que celui-ci se fait en grandemajorité après un traitement visant à structurer

les données, par exemple en fréquence de mots. Cette séparation des pratiques nous permet de proposer

une séparation des besoins en matière de vie privée, et de suggérer que des techniques de protection

adaptées au traitement massif comme la confidentialité différentielle soient utilisées pour ce qui est de la

publication massive, tout en conservant des méthodes limitées, mais répondant à l’exigence d’utilité pour

ce qui est de l’accès individuel aux jugements. Nous proposons finalement une description d’architecture

qui permettrait de mettre en place un tel système et identifions les composants particuliers qui seraient

nécessaires à sa conception dans un cadre réel.

Évaluation empirique de la protection de la vie privée

Dans une deuxième contribution, nous proposons un cadre pour organiser des compétitions d’attaque de

mécanismes depublicationdedonnées respectueux de la vie privée afindemieux établir leurs comportements

et limites dans la pratique. Les compétitions sont couramment utilisées dans la communauté de l’apprentissage

automatique pour stimuler le développement de solutions pratiques et efficaces à des problèmes difficiles

ou nouveaux, ainsi que dans la communauté de la sécurité à des fins de formation ou pour l’évaluation de

sécurité des infrastructures existantes. Une telle tradition n’existe par contre pas encore dans le domaine

de la protection de la vie privée. Toutefois, ces dernières années, plusieurs défis axés sur les mécanismes
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de publication respectueux de la vie privée ont été organisés.

Certains se sont principalement concentrés sur l’aspect de la défense, attendant des algorithmes respectant

des garanties formelles telles que la confidentialité différentielle tout en atteignant des niveaux d’utilité

élevés. D’autres considèrent de plus une phase d’attaques sur les ensembles de données assainis générés

par les participants. Dans ce cas, la première phase est ainsi consacrée à la conceptiond’algorithmes d’assainissement,

tandis que la seconde consiste à attaquer les données assainies à l’aide des algorithmes développés au cours

de la première phase.

Si les phases d’assainissement ont permis de comprendre les compromis entre protection de la vie privée

et utilité, et ont conduit à la mise en œuvre des algorithmes d’assainissement de pointe ou même de

nouveaux algorithmes, les résultats des phases d’attaque ont généralement été plus mitigés. Par exemple,

les organisateurs du défi “Hide-and-Seek” ont rapporté des résultats d’attaques équivalents à des réponses

aléatoires (Jordon et al., 2020). Nous pensons que l’une des raisons de cette situation est que pour réussir,

la phase d’attaque doit permettre aux participants de consacrer suffisamment de temps à la conception, à

la mise en œuvre et à l’évaluation de l’attaque.

Pour ce faire, nous proposons de mettre en place une série de défis en matière de publication de données

respectueuse de la vie privée, spécifiquement adaptés aux attaques contre les algorithmes d’assainissement (Allard

et al., 2023b). En particulier, nous souhaitons concentrer l’énergie et l’expertise des participants contre un

petit ensemble d’algorithmes d’assainissement de pointe soigneusement choisis en donnant suffisamment

de temps aux participants pour concevoir et tester soigneusement leurs attaques. Finalement, nous souhaitons

aussi permettre l’exploration d’un large éventail de modèles d’adversaires possibles et de connaissances de

base. Cetteproposition se veut complémentaire des compétitions qui se concentrent sur la partie assainissement,

permettant ainsi d’aboutir à un pipeline complet de conception et d’évaluation défense-attaque.

Pour permettreun système complet et générique adaptable aux différents cadres d’attaques, nous définissons

un ensemble d’abstractions sous la forme d’un graphe de règles de transformation des données d’entrée

et soumissions des participant·es vers leur évaluation. La première édition du défi (Allard et al., 2023a), qui

sert d’implémentation de référence, se concentre sur l’inférence d’appartenance (Hu et al., 2022; Stadler

et al., 2022) dans les données tabulaires générées synthétiquement tout en satisfaisant la confidentialité

différentielle (Dwork et Roth, 2014).
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Simuler l’impact de la discrimination à long terme

Dans une troisième contribution, nous nous concentrons sur les limites des définitions techniques d’équité

et utilisons une simulation ancrée dans la réalité comme moyen d’observer leur impact à long terme sur

l’ensemble d’un système. Les définitions de discrimination utilisées aujourd’hui proposent souvent une

conception “instantanée” dans laquelle la sortie de l’algorithme est considérée sans prendre en compte

son futur, à savoir le contexte dans lequel la prédiction pourra être utilisée pour prendre d’autres décisions.

Notre premier pas vers la considération de l’impact d’une décision et de contraintes de non-discrimination

sur les individus, les groupes et le système dans son ensemble se fait par une simulation. En effet, cet

outil technique permet de répondre, bien que de façon imparfaite, à la nécessité de pouvoir observer

le comportement de mécanismes de non-discrimination sans pour autant nécessiter d’expérimentation

immorale sur des individus ou impossible sur une société.

Plus précisément, nous adaptons un modèle proposé par Reardon et al. (Reardon et al., 2018) et issu du

domaine de l’éducation dont les valeurs sont adaptées du système américain et dans lequel des étudiant·es

de différents groupes sensibles, compétences et revenus postulent et sont admis ou non dans des écoles

de qualité variable. Ce modèle prend en compte l’évolution des écoles d’une itération à l’autre en fonction

de la qualité de ses étudiant·es. En revanche, le modèle ne considère pas l’impact des décisions sur les

étudiant·es. Nous intégrons ce mécanisme pour pouvoir ainsi prendre en compte la dimension temporelle.

La simulation finale comprend deux mécanismes de dépendances temporelles : la boucle de renforcement

des systèmes de prise de décision et l’effet “boule de neige” pour les individus. La première est similaire à sa

définition dans un contexte d’apprentissage par renforcement, à savoir que les décisions produites par un

système ont un effet sur l’environnent, qui lui-même impacte l’état du futur système. L’effet boule de neige

consiste à considérer une accumulation de décisions du point de vue des individus : une décision reçue est

potentiellement utilisée ensuite pour prendre une autre décision, comme c’est le cas par exemple pour le

passage d’un lycée à une université. À partir de cette simulation reproduite et modifiée, nous souhaitons

observer le comportement de mécanismes simples de non-discrimination et comment leur effet et mesuré

ou nous par différentes métriques.

Contributions

Afin demettre en évidence les questions fondamentales soulevées par la technicisation des défis sociaux et

comme tentative de ramener ces défis sociotechniques dans leur contexte social, cette thèse apporte donc
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les contributions suivantes :

— (Allard et al., 2020a; Allard et al., 2020b) étudient les difficultés enmatière de respect de la vie privée

rencontrées lors de la publication des décisions de justice, illustrant l’inadéquation de méthodes

génériques dans certains contextes ;

— (Allard et al., 2023b) fait la description et la démonstration d’un cadriciel visant à faciliter la mise

en place de compétitions d’attaque de mécanismes de protection de la vie privée pour mieux en

cerner les limites. (Allard et al., 2023a) est une compétition internationale d’attaque demécanismes

de génération de données synthétiques tabulaires respectueux de la vie privée, organisée sur cette

base à l’été 2023;

— (Allard et al., 2023c) décrit notre effort de reproduction d’une simulation que nous adaptons par la

suite pour étudier les impacts à long terme des mécanismes discriminatoires.

Une liste complète est présentée en page xviii.
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INTRODUCTION

Algorithms in society

The proliferation of personal data collection, whether for commercial transactions, travel, interactions with

institutions or communications, is accompanied by an equally massive use of algorithmic systems. In par-

ticular, these algorithmic systems are increasingly used to perform decisions impacting individuals, groups,

and the society as a whole. As a result, they have taken an increasingly prominent role in many fields as

a decision-making tool, or as a decision-making “agent” in their own right. For example, they are used to

assess the curricula vitae of candidates for Amazon (Dastin, 2018), to match students and institutions with

Parcoursup (Frouillou et al., 2019), to assess the risk of recidivism of accused persons as done by the COM-

PAS (Brennan et Dieterich, 2017) software used in theUSA, or for organ allocation by Eurotransplant (Schulte

et al., 2018) in Europe. This ubiquity raises important ethical and social concerns, especially regarding

the privacy and fairness of these approaches, as shown by the many regulations established such as the

RGPD (Parliament et Union, 2016) or in preparation such as the AI Act (European Commission, Directorate-

General for Communications Networks, Content and Technology, 2021), as well as the multiple works ad-

dressing these issues (Zhou et al., 2020; Birhane et al., 2022).

Sociotechnical issues

The social particularity of these issues, both in terms of their context of application and the nature of the

questions, tends to make them difficult to study from a technical angle. While approaches such as risk as-

sessment make it possible to quantify to some extent the impact on both privacy and discrimination, this

can only be done in full awareness of the dangers. However, definitions of these risks evolve over time,

across cultures, and political positions. Their study requires the ability to model complex sociotechnical

systems, and this modeling can itself be biased by the choice of whether or not to consider certain ele-

ments (Aven, 2011). Furthermore, the interpretive and contextual dimensions of concepts such as “privacy”

and “fairness” cannot be easily transcribed formally, leaving room for algorithmic redefinitions as discussed

by recent works (Kulynych et al., 2020; Ochigame, 2019; Hoffmann, 2019), which is to be understood as an

unfaithful translation of the concept of discrimination that was originally presented. Conferences such as

ACM FAccT (ACM, 2023) attempt to meet this challenge by bringing together the expertise and approaches

of several communities, with many papers mixing authors from the fields of computer science, linguistics,

law, ethics, and sociology. Nevertheless, we believe that this first response suffers from its limitation to
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the technical field, bringing the social dimension into perspective, but limiting itself to technical answers.

Social considerations make it particularly crucial to assess what is lost when concepts are technicized, be-

yond the example of intersectionality used here. This thesis seeks to study privacy and fairness from the

angle of their practical use, but also of their societal implications. Since it is difficult to talk about tech-

nology without being a technician, and just as difficult to talk about ethics without being an ethicist, the

approach adopted here is that of a computer scientist, with the aim of opening up to the social sciences. As

far as computer science is concerned, the main aim is to formalize social desiderata into (formal) numerical

objectives, which then generate their own technical questions. This transforms elusive definitions of pri-

vacy and fairness, derived from individual expectations, morality and law, into mathematical properties of

algorithms and their outputs (Ochigame, 2020).

This point is the underlying theme of this thesis, by which we want to highlight the importance of the social

context when considering these technical issues, thus requiring sociotechnical answers.

Decision systems

Interactions between individuals are governed by decisions, with decisions originating from institutions or

individuals, applied to one self or another, applied directly to group of individuals or indirectly through

its members. In addition, decisions taken in the past impact future decisions (Nash, 1990). Institutions

change over time with history, norms, or jurisprudence for the example of the judicial system. Individuals

evolve by themselves (Arad, 2013) and through interactions with both institutions or groups of individuals,

which themselves are thought over time with concepts such as social reproduction through culture and

education (Bourdieu et Passeron, 1964; Bourdieu et Passeron, 1970), or economic factors (Tombazos, 2021).

Computers have naturally become a part of decision processes (Rouet et al., 2022). This can occur indi-

rectly, when computers process and create information used to take decisions (e.g., producing statistics for

weather forecasts) or as decision support system producing recommendations that can be used to take the

final decision (such as the COMPAS software (Brennan et Dieterich, 2017) used by judges to assess recidivism

risk), or directly, which corresponds to the situation in which an algorithm is used to take the full decision

which is then applied as-is. Note that the algorithm is rarely applying decisions that impact individuals,

but rather it produces predictions, which are then used to make decisions by a human or by an automatic

system. However, the frontier between direct and indirect decision-making is blurry, if for example judges

blindly follow the COMPAS assessment, without ever refusing its prediction (Simmons, 2018).
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The first algorithmic decision systems were called expert systems. They can be defined as a translation of

the set of rules followed by experts of some domain to produce a decision. A typical representation would

be a set of rules evaluated by an inference engine, using a knowledge base constructed by domain experts.

For example, JUDGE (Mitchell et al., 1986) is a rule-based legal expert system introduced in 1986 that deals

with sentencing in the criminal legal domain for offenses relating to murder, assault and manslaughter.

SHYSTER (Tyree, 2000) is another such tool introduced in 1996, highlighting by itself the issue of such tool:

(algorithmic) pragmatism as a way to be unbiased. Since then,machine learning has progressively replaced

expert systems, with the main difference being the reliance on data to extract a set of decision patterns,

rather than requiring the process of experts to be encoded. Thus, the aim is to use previous existing deci-

sions directly to infer the rules, skipping the knowledge base. The quality of the productionwill be impacted

both by the choice of learning algorithm and parameters as well as by the quality of training dataset.

In decision-making, high-stakes decisions are described by the existence of a possible large loss and a high

cost of reversing the decision–when even possible (Rudin, 2018). For instance, high-stakes decisions can

be found in the context of justice–such as a jail sentencing which has strong repercussions on one’s life–in

healthcare–such as ranking to access an organ–in education–such as enrollment into a given university–

in workplace–such as access to a promotion–and so on. High-stakes decisions are commonly regulated in

some way by social expectations or laws, such as the GDPR (Parliament et Union, 2016). However, high-

stakes decisions are only qualified as such when taken in the context of their application, and is not a qual-

ifier of the process by which the decision is taken. Thus, issues regarding decisions require considering

the decision system as a whole, which in the case of privacy and fairness issues often implies individuals,

cohorts, and institutions.

The main focus of this thesis is therefore to look at both privacy and fairness issues in the context of algo-

rithmic high-stakes decisions systems under the lens of both technical considerations and social obligations.

A parallel is then drawn between this unification of concepts and the current state of fairness in computer

science, with many models and definitions. These limitations are already heavily discussed in the humanity

communities, as illustrated by the following quote from (Bihr et Pfefferkorn, 2008):

The system of inequalities is characterized not only by the interactions between all its con-

stituent elements, but also by the retroactive nature of some of these interactions. This feed-

back can be positive, with the effect reinforcing its own cause, which will in turn reinforce it in
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a cumulative process; or, on the contrary, negative, leading in this case to the establishment of

a certain equilibrium by self-regulation.

However, the computer science andparticularly themachine learning community havenot really researched

thoroughly this topic.

Privacy

In privacy protection, the first responses were syntactic models, transforming the data to providing some

sort of record indistinguishability (Clifton et Tassa, 2013). For example, k-anonymity (Sweeney, 2002), in-

troduced in 2002, hides individual profiles by grouping them into clusters of at least one person. This model

of privacy has been successively refined to control utility–more precisely, information loss–and to respond

to attacks, leading to l-diversity (Machanavajjhala et al., 2007) and then t-closeness (Li et al., 2007).

In parallel, differential privacy (Dwork, 2006) was proposed in 2006 with the objective of proposing a more

robust definition of privacy. More precisely, a mechanism respects privacy–in the sense of differential

privacy–if the presence or absence of an individual in the database provided as input to the mechanism

impacts the calculation in an indiscernible way, obeying to an allocated budget, which is used to bound the

privacy loss, that is, the amount of information that can leak In other words, given the result of a query, an

attacker gains only limited information to infer the presence or absence of the individual.

If this definition is considered, in this work as in many others, as the reference, a great many variations have

been proposed (Desfontaines et Pejó, 2020) in order to respond to different models of adversary, auxiliary

knowledge or other data structures. To the issue of adopting a definition is added that of choosing a budget–

and additional variables when considering variations-with attempts at academic recommendation (Lee et

Clifton, 2011; Hsu et al., 2014) and different practical uses in industry (Tang et al., 2017).

Fairness

Non-discrimination, or fairness, is a more recent topic in computer science than privacy, but there are simi-

larities in the approach taken to address it. Indeed, themany ways of conceptualizing discrimination and its

resolution have materialized in multiple algorithmic redefinitions of complex notions. The most common

definitions are the so-called “group fairness”, which mostly take as their framework the decisions made by
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supervised learning algorithms, seeking to compare the output of a system–i.e., its decisions–with ground

truth data. Within this framework, group discrimination is defined as the difference between a certain sta-

tistical indicator, such as the rate of positive decisions or the error rate, evaluated between two groups.

This notion of group is defined through so-called protected attributes–such as race, religion, gender, etc. A

sensitive group is then a group, identified by one or multiple protected attributes, which is discriminated

against. It is to be distinguished from the concepts of statistical majority and minority Many definitions

belonging to this family exist (Mehrabi et al., 2022), with some of them being mutually exclusive (Friedler

et al., 2016).

Another proposition is “individual fairness” (Dwork et al., 2012), which requires that two “similar” profiles

receive similar decisions, given some notion of similarity between individuals. The definition of fairness

then relies on this measure of similarity, which must itself be non-discriminating. It is interesting to note

that Cynthia Dwork, the first author of this work, is also behind the definition of differential privacy. We can

also cite definitions based on causal models (Plecko et Bareinboim, 2022), in which the aim is to remove

the impact of confounding variables in the decision-making process, which are variables influencing both

the decision and the input variables.

This multiplicity of definitions and concepts is similar to some extent to what can be observed for privacy,

with the difference that no definition emerges as technically or socially preferable as does differential pri-

vacy in privacy protection. In particular, it seems neither desirable nor possible to achieve such conver-

gence, both because of the formal incompatibilities (Friedler et al., 2016) of “desirable” concepts, and be-

cause of the dependence between interest in a concept and the agent who formulates it (Narayanan, 2018),

leaving room for bias in the choice of the definition itself.

As an example we can take the intersectional analytical framework (Crenshaw, 1989), as coined by the

American Afrofeminist scholar Kimberlé Williams Crenshaw, which allows to consider the various forms of

domination, oppression and discrimination not as compartmentalized, but as an interconnected system,

with the idea that these are “greater than the sum of their parts” (Preddie et Biernat, 2020). While this

notion is described and studied at length in several works in the human science community, it is formalized

in multiple technical articles (Morina et al., 2019; Foulds et al., 2020; Kang et al., 2022; Molina et Loiseau,

2022) as the simple consideration of a multiplicity of sensible attributes, such as the intersection of gender

and race. Although these proposed formulations provide a first step towards the use of a mainly abstract
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concept in a technical environment, the reduction to inequalities, for example formulated on the model of

differential privacy and applied to subgroups of the population in (Foulds et al., 2020), cannot retain the

context and methodological principles of the approach. The complexity of using this framework is illus-

trated by (Bauer et al., 2021) who compares it across several quantitative studies, or by (Varley et Kaminski,

2022), who proposes a first empirical definition.

Contributions

To investigate the fundamental issues raised by the technicization of social challenges, and as an attempt

to bring these sociotechnical challenges back into their social context, this thesis tackles a broad set of

questions in both privacy and fairness.

Privacy contextual issue

The use of privacy-preserving mechanisms can be hampered by the context in which data is used. Exam-

ples at the technical level are undefined context such as with natural language, which makes background

knowledge hard to quantify, or unstructured data which requires alternative privacy definitions and mech-

anisms. Natural language is indeed full of implicit knowledge and cultural bias which are difficult to encode

in language model, rendering the background knowledge difficult to quantify. Additionally, contextual re-

quirements such as strong utility requirements or output constraints can pose challenges greater than the

common privacy trade-off. A first problem we study is therefore how formal privacy models can be used

under strong societal constraints on their behavior and output properties. In particular, we look at the

privacy-transparency trade-off faced when publishing legal proceedings, and ask ourselves how to navigate

the trade-off between privacy and utility when publishing legal decisions.

To answer this first question, we examine in a first contribution (Allard et al., 2020b; Allard et al., 2020a) the

conflict between privacy and transparency in the publication of legal proceedings, we illustrate the inade-

quacy of generic methods and the difficulty of their application under specific constraints. Court decisions

are now published massively online, both for the sake of transparency and accessibility of justice, and to

meet the demand for legal technologies building on the wealth of legal data available. However, the sen-

sitive nature of legal decisions also raises important privacy issues. Current practices solve the resulting

trade-off between privacy and transparency by combining access control with text redaction. We show

that current practices are insufficient for coping with massive access to legal data–restrictive access control

6



policies is detrimental to openness and to utility while text redaction is unable to provide sound privacy

protection–and advocate for a integrative approach that could benefit from the latest developments of the

privacy-preserving data publishing domain. We propose to consider transparency as a human desideratum

on the one hand, and privacy as a requirement for automated processing on the other. Discarding the one-

size-fits-all approach allows to circumvent the tensions between privacy and transparency. To this end we

propose a strawmanmultimodal architecture paving the way to a full-fledged privacy-preserving legal data

publishing system.

Privacy in practice

Formal privacy models andmechanisms often depend on parameters which control their guarantees. How-

ever, selecting these parameters is challenging and often depending on contextual, cultural and individual

considerations. Although following common practice, adopting economical frameworks (Hsu et al., 2014),

or using risks based approaches can be a first step to guide the selection of a model and its parameters, un-

derstanding the actual guarantees offered by models and mechanisms still depends on many factors. The

second problem we study is to how to address this issue of evaluating privacy mechanisms in practice.

To this issue, In a second contribution (Allard et al., 2023b), we propose a framework for organizing attack

competitions of privacy-preserving data publishing mechanisms in order to better establish their behaviors

and limits in practice. Recently, several challenges focusing on privacy-friendly publishingmechanismswere

organized, improving the understanding of trade-offs between privacy and utility, and leading to the imple-

mentation of state-of-the-art or even new sanitization algorithms. Although some challenges integrate an

attack phase, their results have generally been more mixed, such as equivalent to random guesses in one

case (Jordon et al., 2020). We aim to focus participants’ energy and expertise against a small set of care-

fully chosen state-of-the-art sanitization algorithms, giving participants sufficient time to carefully design

and test their attacks. To this end, we propose a comprehensive and generic system adaptable to differ-

ent attack frameworks, and we define a set of abstractions in the form of a graph of rules for transforming

input data and participant submissions into their evaluation. Using this framework, we organize an inter-

national attack competition (Allard et al., 2023a) on privacy-preserving tabular synthetic data generation

mechanisms, collocated with the French 13ième Atelier sur la Protection de la Vie Privée.
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Observing (un)fairness

Most definitions of fairness focus on the algorithmic part of the process by evaluating the fairness of the

algorithm rather than that of the decision. That is, current fairness metrics allow the producer of decisions

(i.e., the maker of a model) to guarantee that themodel do not add unfairness (with respect to some defini-

tion), not that it is fair. This better fits a legal requirement than an ethical/societal goal of fairness. Indeed,

group fairness definitions compare the output of the algorithm (the decision) to the input (the training data)

and assess whether the algorithm introduced bias, not whether the output is biased is the first hand. These

issues result in the absence of an “absolute fairness” notion, due both to the conceptual goal of decisions

producers–who only need their product, (i.e., the model), to be fair–and a technical limitation of existing

propositions being mutually exclusive. Furthermore, this results in “snapshot” of fairness notions, which

offer a restricted consideration of the impact on the system and its individuals. For instance, this notion

focuses on the decision itself and ignores the way this decision can be used in the future by other algo-

rithms in conjunction with other information. To address this shortcoming of a lot of works in the fairness

literature, we ask ourselves how to consider the long-term effect of deploying fairness-aware or fairness

interventions methods.

To this end, in a third contribution, we focus on the limits of technical definitions of fairness and use a reality-

based simulation as a means of observing their long-term impact on a system as a whole. The definitions of

fairness used today often propose a “snapshot” conception in which the algorithm’s output is considered

without taking into account its future impact, i.e., the context in which the prediction can be used to make

other decisions. As a first step towards considering the impact of a decision and of fairness constraints on

individuals, groups and the system as a whole, we propose to use a simulation grounded in reality. To do

so, we start by presenting our effort towards reproducing an educational policy model (Allard et al., 2023c)

which we use to evaluate the behavior of technical fairness in a context grounded in reality. This technical

tool meets the need, albeit imperfectly, to observe the behavior of non-discriminationmechanismswithout

requiring immoral experimentation on individuals or impossible experimentation on a society. We adapt

this mechanism to take into account two dependency mechanisms: the reinforcement loop for decision-

making systems and the “snowball effect” for individuals, which consists in considering an accumulation of

decisions from the point of view of individuals: a decision received is potentially then used tomake another

decision, as is the case, for example, for the move from a high school to a university. From this model,

we observe the behavior of simple non-discrimination mechanisms and how their effect is measured or
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measured by different metrics.

Outline

We first introduce the background in Chapter 1. In Chapter 2 we present our first contribution, in which

we study the tension between transparency and privacy when publishing court decisions. Chapter 3 de-

scribes and demonstrates the practicality of a framework designed to facilitate the organization of attack

challenges. We present our third contribution in Chapter 4, in which we study the long-term dimension of

fairness. We conclude in Chapter 4.6.4.
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CHAPTER 1

BACKGROUND

1.1 Privacy

1.1.1 Historically many models

One of the first popular technical definition of privacy is k-anonymity (Sweeney, 2002), first conceptualized

in 1986 (Dalenius, 1986). It relies on the idea of hiding single individuals into groups, requiring that the infor-

mation of each person cannot be distinguished from at least k − 1 other individuals. This means that each

combination of quasi-identifiers–such as the combination of gender, birthdates and postal codes (Sweeney,

2000)–must be present at least k times. Generally, to achieve k-anonymity, a space partitioning algorithm

is applied to the data to compute generalized values, which are used in place of the real values for each

individual. Figure 1.1 is an example of such a decomposition computed by following the Mondrian algo-

rithm (LeFevre et al., 2006). The representation of values depends on the context and type of each col-

umn. When a taxonomy is available, categorical values can be generalized into a more general topic, while

numerical values are typically replaced with a range or average value.

Multiple limitations of the k-anonymitymodel have been described. Without going into details, we describe

the particular “complementary release attack” (Sweeney, 2002), which will be particularly relevant when

discussing differential privacy in the next section. When releasing data adhering to k-anonymity, quasi-

identifiers are selected with respect to other external available information. Subsequent related releases

must therefore consider all the released attributes as quasi-identifier to prevent linking. Similarly, if quasi-

identifiers are wrongly defined then the guarantee falls, such as if unknown previous releases exist. The

same issue arises if an attacker has access to background knowledge, which could be used as new quasi-

identifiers.

The model of l-diversity (Machanavajjhala et al., 2007) was proposed to refine the definition and specif-

ically counter the background knowledge made of negative sentences (e.g., “Bob does not have cancer”)

attacks and other attacks benefiting of cases where sensitive attributes have little diversity. It builds upon

k-anonymity and adds intra-group diversity, requiring that classes contain at least l “well-represented”

sensitive attributes, in which “well-represented” can be defined in several ways such has simply existing, or

having a minimal entropy.

10



Figure 1.1 – Example ofMondrian executionwith k = 5 using the two-dimensional plane as quasi-identifiers.

A third refinement to the definition is t-closeness (Li et al., 2007), which considers the loss of utility incurred

by k-anonymity and l-diversity, which takes into account the distribution of values for the attributes. This

representation also helps with an issue of l-diversity, which does not consider semantic closeness when

enforcing diversity.

While we will not be using these privacy definitions in the rest of this thesis, it is worth presenting them

to review and discuss the analogy we make between the development of the privacy research and the

development the fairness one.

As a key takeaway, it is interesting to take into account the incremental aspect of the development of privacy

notions, and it was motivated by attacks against previous contributions.

1.1.2 Differential privacy

The approaches presented above define privacy as a property of the (sanitized) dataset, which can lead

to information leakage. On the other side, differential privacy is defined as a property of the publication

mechanism. It was inspired (Desfontaines et Pejó, 2020) by the privacy desideratum of Dalenius that “any-

thing about an individual that can be learned from the dataset can also be learned without access to the

dataset” (Dalenius, 1977).
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Feminist perspective

Since we consider the social dimension of privacy, it is interesting to note that women have been especially

present in the field, relative to other domains in computer science. Although not backed up by studies to

our knowledge, this relative over-representation might be an indicator of the specificity of social issues.

This was noted by Edwige Cyffers and discussed in (Benbouzid, 2023), giving the prominent examples of

Helen Nissenbaum, Cynthia Dwork, and Latanya Sweeney. (Theilen et al., 2021) also provides a feminist

perspective of the field of privacy. The same observation can be made for fairness, with discriminated

communities having a strong interest and being concerned by the issue, as highlighted by initiatives such

as Queer in AI (Diaz et Madaio, 2023).

Today’s gold standard

Differential privacy is used by many organizations. It was adopted by the U.S. Census Bureau for the 2020

Census (Abowd, 2018), by Google as a way to report usage statistics in its Chrome web browser (Erlingsson

et al., 2014), by Apple to do analytics on emoji usage (Tang et al., 2017), by Microsoft for its telemetry (Ding

et al., 2017), or by the Google to anonymize statistics on the response to policies aimed at combating COVID-

19 (Aktay et al., 2020).

Differential privacy is defined as a property of a mechanism. In a nutshell, ϵ-differential privacy ensures that

the presence or absence of the data of a single individual has a limited impact on the output of the com-

putation, thus also bounding the inference that can be done by an adversary about a particular individual

based on the observed output (Allard et al., 2020b).

Définition 1.1 (ϵ-differential privacy (Dwork, 2006)) A randomizedmechanismM satisfies ϵ-differential pri-

vacy with ϵ > 0 if

Pr[M(D1 = O)] ≤ exp(ϵ) · Pr[M(D2) = O]

for anyO ∈ Range(M) and any tabular dataset D1 and D2 that differs in at most one row, in which each

row corresponds to a distinct individual.

Differential privacy exhibits a set of composability properties that helps to analyze the impact on the overall

privacy guarantees of using a differentially-private scheme.
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Définition 1.2 (Sequential and parallel composability (Dwork et Roth, 2014)) LetMi bea set ofmechanisms

such that each provides ϵi-differential privacy. First, the sequential composability property of differential

privacy states that computing all mechanisms on the same dataset results in satisfying (
∑

i ϵi)-differential

privacy. Second, the parallel composability property states that computing each mechanism on disjoint

subsets provides (maxi ϵi)-differential privacy.

Définition 1.3 (Post-processing (Dwork et Roth, 2014)) The post-processing property of differential-privacy

states that it is always safe (i.e., at no risk of breaking the privacy guarantee) to perform arbitrary compu-

tations on the output of a differentially private mechanism. Formally, ifM satisfies ϵ-differential privacy,

then for any mechanism F , F ◦M satisfies ϵ-differential privacy.

Answering numerical queries

Since differential privacy is a property of the mechanism rather than the data, its implementation depends

on the actual query to be considered.

A common approach to implement differential privacy is to use the Laplacian mechanism, which adds noise

drawn from a carefully parameterized Laplace distribution to the true answer to a numerical query. We

introduce this mechanism on count and sum queries as a way to illustrate the impact of the budget ϵ.

Définition 1.4 (Laplace mechanism (Dwork et Roth, 2014)) Given a numerical function f : X → Y ⊂ R,

the function F : X → R defined as follows satisfies ϵ-differential privacy:

F (x) = f(x) + Laplace

(
δ

ϵ

)
in which δ is the sensitivity of f and Laplace(s) denotes sampling from the Laplace distribution with center

0 and scale s.

The sensitivity of a function is the maximal amount by which the output changes when a profile is removed

or added to the original dataset. For example, adding an individual to a dataset will change the result of a

count query by one, whereas the sensitivity of a sum query will depend on the domain of the values.
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Randomized response

Another example of amechanism is randomized response (Warner, 1965; Greenberg et al., 1969). It provides

a simple example of using differential privacy, and–benefiting from its simplicity–also illustrates the need

for privacy when considering social issues. First proposed by Stanley L. Warner in 1965–and subsequently

redefined to increase its utility–it allows a single individual to locally anonymize its answer to a sensitive

query. It was used to survey sensitive topics such as cheating to exams (Scheers et Dayton, 1987), drug

usage (Goodstadt et Gruson, 1975), or abortions (Abernathy et al., 1970), which all require respondents to

be confident in the plausible deniability of the scheme. Theway noise is applied locally, and therefore before

the aggregation, results in a high loss of utility, which is one of the drawback when using local differential

privacy (Kasiviswanathan et al., 2011).

Many variations

Although differential privacy is often presented–including by this thesis–as the flagship privacy definition,

many variations of themodel have beenproposed. For instance, (Desfontaines et Pejó, 2020) lists a hundred

of such variants and extension of differential privacy, organized on seven dimensions. These variants allow

data custodian to consider different risk models or contexts of application.

Privacy washing

With the increase in privacy risks, privacy protection becomes a marketing factor. Similar to the concept

of greenwashing, which is a form of advertising in which marketing is deceptively used to persuade that

products, aims and policies are environmentally friendly, privacy washing is a recent phenomenon in which

privacy (often along with security) awareness is made into a selling point without actual consideration of

the issue. This is made easier by the technical knowledge required to evaluate an approach. Indeed, weak

mechanisms can be used, or strongmechanismsmisused. An example is the case of Apple discussed before,

in which the “bold announcement” (Tang et al., 2017) of its deployment of differential privacy was criticized

for its lack of transparency regarding the implementation and atypical parameters that lead to low privacy

guarantees (Tang et al., 2017).
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1.1.3 Privacy attacks

Privacy attacks of decision systems, and usually of machine learning models, are categorized into different

types. For instance, (Rigaki et Garcia, 2020) proposes a taxonomy composed of reconstruction, property

inference, model extraction, and membership inference attacks.

The aim of a reconstruction attack (Fredrikson et al., 2015; He et al., 2019; Zhang et al., 2020) (sometimes

called attribute inference or model inversion) is to recreate part of the training data of a model. Some

variations create class representatives rather than an actual reconstruction of the data.

Property inference attacks (Ateniese et al., 2015; Song et Raghunathan, 2020) focus on the extraction of

information that was not encoded in the dataset, that is, to infer a property on the whole dataset or on a

subgroup of individuals. For instance, (Rigaki et Garcia, 2020) gives the example of a model that “performs

gender classification and can be used to infer if people in the training dataset wear glasses or not”, which

can interestingly be linked to fairness issues.

A model extraction attack (Tramèr et al., 2016; Krishna et al., 2020) considers black-box models–that is

when the adversary has no knowledge of themodel parameters, architecture, or training data–and attempts

to extract parameters and potentially reconstruct a substitute model that behaves similarly to the model

under attack. This attack can be used as a first step towards other attacks, such as membership inference

attacks (Nasr et al., 2019) described hereafter.

A membership inference attack aims at determining whether a sample (i.e., an individual in our case) was

used as part of the training data. As noted in (Rigaki et Garcia, 2020), this is a popular category of attacks,

withmore than 30 examples referenced in (Hu et al., 2022) It was introduced in themachine learning setting

by Shokri et al. (Shokri et al., 2017). The actual privacy risk of such an attack depends on the nature of the

data at hand. For example, we can consider amodel trained to predict a patient’s medical procedure, which

could then be attacked to infer whether a particular individual was hospitalized. It is interesting to note that

the definition of membership inference is closely related to the definition of differential privacy, which is

why it is often used as an empirical evaluation of the lower bounds of privacy guarantees in privacy auditing

papers (Nasr et al., 2019; Jagielski et al., 2020).

We focus on this specific type of attack in the rest of this section, describe the initial attack as proposed
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Figure 1.2 – Training of the shadow model attack, reproduced from (Shokri et al., 2017)

by (Shokri et al., 2017), and how its success can be evaluated.

Shadow models attack

The attack described by (Shokri et al., 2017) and illustrated on Figure 1.2 is now a common design pattern

for a lot of membership inference attacks (Hu et al., 2022). It is based on the intuition that a model will

behave differently when operated on data that do not belong to the previously seen training data. This can

be captured either in the model output or in the internal model representation, which the attack model

then uses to distinguish members from non-members.

The actual attack model contains a collection of models, one for each output class of the model under

attack, called “shadow models”. Since we consider here binary decisions, only two models are required.

To build the attack, we consider a number of datasetsDshadow that are usually assumed to come from the

same distribution as the target dataset. Each datasetDshadow is partitioned into setsDin andDout, and a

modelMshadow–typically with the same architecture as the target model–is trained on Din. The samples

(x, y) ∈ Din are used to build an “in” prediction set composed of samples ((y,y = Mshadow(x)), in).

Similarly,Dout is used to build a dataset of samples ((y,y = Mshadow(x)), out). These samples form the

attack training setDinout, which is used to train a metamodelA. Given a target sample (x, y), the attacker

gets y by feeding x to the target model, before predicting whether the data point is in the training set by

evaluating A(y,y).
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Membership advantage

The evaluation of membership inference attack is commonly performed by computing the membership

advantagewhich estimates the knowledge gained by the attacker from the release, as compared to a guess

done only from prior knowledge (Ye et al., 2022).

Définition 1.5 (Membership experiment ExpM(A, A, n,D) (Yeom et al., 2018)) Let A be an adversary, A

be a learning algorithm, n be a positive integer, and D be a distribution over data points (x, y). Themem-

bership experiment proceeds as follows:

1. Sample S ∼ Dn, and let AS = A(S).

2. Choose b← {0, 1} uniformly at random.

3. Draw z ∼ S if b = 0, or z ∼ D if b = 1

4. ExpM(A, A, n,D) is 1 ifA(z,AS , n,D) = b and 0 otherwise. Amust output either 0 or 1.

Définition 1.6 (Membership advantage (Yeom et al., 2018)) Themembership advantage ofA is defined as

AdvM(A, A, n,D) = 2 Pr[ExpM(A, A, n,D) = 1]− 1, (1.1)

in which the probabilities are taken over the coin flips ofA, the random choices of S and b, and the random

data point z ∼ S or z  ∼ D.

Equivalently, the right-hand side can be expressed as the difference betweenA’s true and false positive rates

AdvM(A, A, n,D) = Pr[A = 0|b = 0]− Pr[A = 0|b = 1]. (1.2)

1.2 Fairness

The first step required to define fairness in a technical setting is to have a concept of discrimination. This

can originate from legal definitions, cultural norms, ethical philosophy, and so on. Many such propositions

exist, and are outside the expertise of this thesis. A second issue is to have a notion of group on which to

evaluate the discrimination. These groups are then refereed as protected and defined by one or multiple

protected attributes. Typical protected attributes are race, gender, religion, etc. and can again vary across

societies. In the next section, we briefly present themain families of fairness definitions encountered in the

technical literature.
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1.2.1 Many concepts, many frameworks, many models

A first naive approach to defining non-discrimination is to require that the decision is made while ignor-

ing all protected attributes. However, this idea of “fairness through unawareness” is ineffective due to

the existence of redundant encodings (Pedreschi et al., 2008), similar to the issue with quasi-identifiers in

privacy.

Many fairness definitions have been proposed (Mehrabi et al., 2022; Garcı�a-Soriano et Bonchi, 2020), with

two main families: individual and group-based.

Individual fairness (Dwork et al., 2012) was proposed by Cynthia Dwork. It requires that similar individuals

receive similar outcomes, for some similarity metric which itself needs to be fair. The key idea as defined

by (Gupta et Kamble, 2021) is to introduce a Lipschitz condition (i.e., a uniform continuity) on the decisions of

a classifier, such that for any two individualsx, y that are at distance d(x, y), the corresponding distributions

over decisionsM(x) andM(y) are also statistically close within a distance of some multiple of d(x, y).

The group fairness family contains many metrics. At an abstract level, it requires some statistical indicator

to be equal (or similar) across groups. These indicators are commonly expressed through a combination

of variables from the confusion matrix when considering supervised learning. Common examples include

equalized odds (Hardt et al., 2016), which requires subjects in the protected and unprotected groups to

have equal true positive rate and equal false positive rate, and equal opportunity, in which subjects in the

protected and unprotected groups must have equal false negative rate.

Some definitions of fairness are formulated from privacy concepts, requiring that an attacker cannot infer

the protected attribute from the output of a system (Feldman et al., 2015).

Finally, causality-based fairness notions are a more recent proposition (Plecko et Bareinboim, 2022). They

differ from the statistical ones such as group fairness in that they consider additional knowledge about the

structure of the world, in the form of a causal model (Carey et Wu, 2022). Simple causal models can be

seen in Figure 1.3. Different formulations have been proposed, corresponding to different formal models

of causality, as seen in (Carey et Wu, 2022). To give a brief overview of the family, we can consider that it

views discrimination as the causal effect of the sensitive attribute (Z on Figure 1.3) on the output attribute (Y

on Figure 1.3). Then, multiple questions correspond to different causal fairness notions, such as total causal
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Figure 1.3 – Examples of connections in a causal model, with a collider, fork, and chain. In (a), Z is a collider

since it is influenced by both X and Y. In (b), Z is a confounder since it impacts both the input variable X and

the output variable Y. In (c), T is a mediator since it lies between the input variable X and the output variable

Y in one possible path.

fairness (Pearl, 2019) which measures the impact on the output of changing the value of the protected

attribute, or counterfactual fairness (Kusner et al., 2017)which attempts to evaluate how the output variable

would have behaved in an “alternate” scenario in which the protected variable has no impact.

It has to be noted that many papers do not fall in those categories and try to come up with their own def-

initions, such as (Foulds et al., 2020; Garcı�a-Soriano et Bonchi, 2020), or mixing concepts from individual

and group fairness.

Intervention

Although we focus in this work on how fairness can be evaluated, we briefly review how these notions of

fairness are achieved in machine learning. Fairness-aware machine learning is typically available at three

levels (Mehrabi et al., 2022; Bellamy et al., 2019):

Pre-processing algorithms are usedbefore the actualmodel learning bymodifying the training data (Kami-

ran et Calders, 2011; Zemel et al., 2013; Feldman et al., 2015);

In-processing algorithms encompass many techniques where the learning step is modified to account

for fairness (Zhang et al., 2018a; Kearns et al., 2019);

Post-processing algorithms, finally, adjust the probability of specific decisions being made (Pleiss et al.,

2017).
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Long-term considerations

Recent work has focused, as we do, on evaluating the long-term impact of fairness interventions. The

most prominent of these attempts is ML-fairness-gym (D’Amour et al., 2020), which was developed as a

framework to understand long-term fairness via simulation. It implements scenarios proposed in previous

works (Liu et al., 2019; Hu et al., 2019), and leverages OpenAI Gym (Brockman et al., 2016) framework. As

noted by authors of the paper, the simulations available are “extremely simple” in both the behavior of

agents and the dynamics between components. On the other hand, the focus on machine learning makes

the system difficult to interpret when studying on the behavior of fairness notions rather than on particular

machine learning models.

1.2.2 Practical limits

Although this thesis tackles both privacy and fairness, we did not look the intersection of the two. This

occurs in several ways, which we briefly discuss hereafter even if they are out of our scope. Firstly, there is

often a technical similarity between privacy and fairness. This is heavily apparent in the case of individual

fairness, sharing authors and definitions. In fact, many researchers from the fairness community originate

from the privacy one (Benbouzid, 2023). The question of the compatibility between fairness and privacy, be

it as a trade-off or as equivalent objectives, is also the subject of many studies (Cummings et al., 2019). In

the vein of a trade-off, some studies have raised concerns regarding the unfair impact of using differential

privacy, especially in the case of the CENSUS (Fioretto et al., 2022; Pujol et al., 2020).

Snapshot discrimination

We use the term “snapshot fairness” to refer to notions of fairness that do not consider the long-term

impact, but rather are limited to enforcing a set of fair decisions at some given time. This is particularly well

illustrated when considering most group fairness metrics, which evaluate a given set of decisions against a

previous set of labeled decisions. The need to consider long-term dynamics of data and mechanisms with

respect to their fairness, and the difficulty of identifying guidance towards these approacheswas highlighted

by Chouldechova et al. (Chouldechova et Roth, 2020).
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Fairwashing

In linewith our previous remark considering privacywashing, the same issue obviously appearwith fairness,

as it would with any social desiderata. In (Aı�vodji et al., 2021), Aïvodji et al. show that given an unfair black-

boxmodel, it is possible to derive an explanation–in the formof an interpretablemodel–which exhibits both

high-fidelity with respect to the model under question and a fairer behavior. This issue highlights the risk

of trusting fairness advertising, and the difficulty of further assessments.

Fair individual fairness

When looking at individual fairness, a particular difficulty–among others (Fleisher, 2021; Gupta et Kamble,

2021)–is the reliance on a similarity measure between individuals and between treatments. The fairness

rests on the fairness of this measure, which poses an obvious issue of applicability.

Inaccessible causal model

Turning to the causal model, as we discussed above, it requires some knowledge of the model, which can

also be a source of bias, and is difficult to obtain when considering complex sociotechnical systems. (Fawkes

et al., 2022) argues that causal models used in fairness settings “entail a particularly strong causal assump-

tion, normally only seen in a randomized controlled trial”. This strong requirement is unlikely to hold and

makes the applicability in real cases particularly difficult.

Formal incompatibility

As a final technical issue, we go to the most obvious concern with technical fairness definitions: their in-

compatibility. Indeed, (Friedler et al., 2016) shows that, apart from unrealistic scenarios–such as rejecting

everyone, most fairness metrics are incompatible between each others. This can be illustrated in the case

of group fairness metrics by considering that most of these metrics are expressed from a limited set of

variables available in the confusion matrix, with only unrealistic scenarios being able to satisfy more than 3

metrics. (Chouldechova, 2017) gives the example of predictive parity (the likelihood of positive outcome is

the same across groups) and error rate balance (the false positive and false negative error rates are equal

across groups), which can only be both satisfied if the prevalence is the same between groups.
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At a higher level, and as discussed in (Friedler et al., 2016; Barocas et al., 2019), this also corresponds to

the deeper issue of different fairness concepts corresponding to different worldviews and assumptions.

This is also reflected in (Hoffmann, 2019), which advocates that technical fairness fails to address the “very

hierarchical logic that produces advantaged and disadvantaged subjects in the first place”. In other words,

these approaches consider an effect–the unfair model–rather than the cause–an unfair society.

Privacy impact

As a final point and to link the two topics of privacy and fairness, recent work has looked at two similarities

and tensions between the two.

(Fioretto et al., 2022) surveys the work at the intersection of differential privacy, and fairness, showing how

the two can both align or contrast, with differential privacy being able to sometimesmitigate fairness issues,

or to exacerbate disparities among groups of individuals. In (Pujol et al., 2020) the issue is illustrated on the

U.S. Census data where the use of differential privacy disproportionately impact some groups over others

for, as an example, the assignment of voting rights benefits. (Chang et Shokri, 2021) uses membership

inference attacks as a framework to quantify such disparate impact.
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CHAPTER 2

THE PRIVACY-TRANSPARENCY TRADE-OFF OF LEGAL DECISIONS PUBLICATION

This chapter is adapted from (Allard et al., 2020b; Allard et al., 2020a), and was presented as an invited

talk at the webinar on the use of AI in the justice field organized by the European Commission in 2021.

First in Section 2.1 we introduce the context under which legal decisions are published, and the associated

utility, transparency and privacy constraints. In Section 2.2 we state the problem by describing precisely the

content of legal data and by explaining the open legal data desiderata. Afterwards, we present the privacy

limitations of the current approach, redaction, in Section 2.3.2, before describing in Section 2.4 our proposal

of architecture for the publication of legal data ensuring both privacy and utility.

2.1 Publication of court decisions

The opening of legal decisions to the public is one of the cornerstones of many modern democracies: it

allows auditing and make accountable the legal system by ensuring that justice is rendered with respect to

the laws in place. As stated in (Bentham et Bowring, 1843), it can even be considered that « publicity is the

very soul of justice ». Additionally, in countries following the common law, the access to legal decisions is a

necessity as the law in place emerged from the previous decisions of justice courts.

Thus, it is not surprising that the transparency of justice is enshrined in many countries as a fundamental

principle, such as the right to a public hearing provided by the Article 6 of the European Convention on

Human Rights, the Section 135(1) of the Courts of Justice Act (Ontario) stating the general principle that « all

court hearings shall be open to the public » or in Vancouver Sun (Re) « The open court principle has long

been recognized as a cornerstone of the common law ». The open data movement push for free access

to law with for example the Declaration on Free Access to Law (World Legal Information Institute, 2002).

Multiple open government initiatives also consider the need for an open justice, such as the “Loi pour une

République numérique” in France, the Open Government Partnership, the Open Data Charter, the Canada’s

Action Plan on Open Government. This trend is studied in a report of the OCDE (for Economic Co-operation

et Development, 2011), in (McDermott, 2010) for the USA or (McClean, 2011) for the UK.

Combined with recent advances in machine learning and natural language processing, the (massive) open-

ing of legal data allows for new practices and applications (called legal technologies). Nonetheless, not all
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legal decisions should directly be published as such due to the privacy risks that might be incurred by vic-

tims, witnesses, members of the jury and judges. Some privacy risks have been considered and mitigated

by legal systems for a long time. For instance, the identities of the individuals involved in sensitive cases,

such as cases withminors, are usually anonymized by default because they belong to a vulnerable subgroup

of the population. In situations in which the risks of reprisal are high (e.g., terrorism or organized crimes

cases), judges, lawyers andwitnessesmight also ask for their identities to be hidden (Jacquin, 2017; Fleuriot,

2017). Finally, the identities of the members of a jury are also usually protected to guarantee that they will

not be coerced but also to ensure that the strategy deployed by the lawyers is not tailored based on their

background. Legal scholars are aware of the need for privacy when opening sensitive legal reports (Conley

et al., 2011; Jaconelli, 2002; Bailey et Burkell, 2016).

In the past, these privacy risks were limited due to the efforts that were required to access the decisions

themselves. For instance, some countries require going directly to the court itself to be able to access the

legal decisions. Even when the information is available online, the access to legal decisions is usually on a

one-to-one basis through a public but restricted API rather than enabling a direct download of the whole

legal corpus. Typical restriction mechanisms include CAPTCHAs (SOQUIJ), quotas (CanLII), registration re-

quirement aswell as policy agreement and limitation of access to research scholars (Caselaw). Furthermore,

the fact that a legal decision is public does not mean that it can, legally, be copied and integrated in other

systems or services without any restrictions.

A first approach to limit the privacy risks consists in redacting the legal decisions before publishing them.

Redactionmostly follows predefined rules that list the information thatmust be removed or generalized and

define how (e.g., by replacing the first and last names by initials, by a pseudonym) (Opijnen et al., 2017).

Redaction is in general semi-manual (and sometimes fully manual) because automatic redaction is error-

prone (Marrero et al., 2013). This makes it extremely costly, not scalable, and does not completely remove

the risks of errors (Opijnen et al., 2017). For example, 3.9 million decisions are pronounced in France every

year but only 180000 are recorded in government databases and less than 15000 aremade accessible to the

public (Fouret et al., 2019). Moreover, even a perfect redaction would still offer weak privacy guarantees.

A redacted text still contains a non-negligible amount of information, possibly identifying or sensitive, that

may be extracted, e.g., from the background of the case or even from the natural language semantics.

Another approach is access control, such as non-publication (e.g., a case involving terrorism was held in
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secret in Britain (Calamur, 2014)), rate limit, or registration requirements. However, access control mecha-

nisms are binary and do not protect the privacy of the texts for which the access is authorized. Furthermore,

restricting massive accesses for blocking also restricts the development of legal technologies that require a

massive access to legal data.

2.2 Problem statement

2.2.1 Legal data

Legal reports are defined as written documents produced by a court about a particular judgment, which is

itself a written decision of a court regarding a particular case (oral judgments are transcribed). Although

the content of a case report varies with respect to the court and the country, it can consist of elements such

as (University of Houston Law Center, 2009):

1. the case name and case citation (identifier);

2. the date of judgment and the hearing dates;

3. the court and judges involved in the decision;

4. the appearances (parties and their representatives);

5. the statement of facts: identify–sometimes in great length–the relationship and status of the parties,

the legally relevant facts (i.e., what happened), and the procedurally significant facts (e.g., cause of

action, relief request, raised defenses);

6. the procedural history: describes–if applicable–the disposition of the case in the lower court(s), the

damages awarded, the reason for appeal, etc.;

7. the issues: point of law in dispute;

8. the law of the case: elements of law that the court applies;

9. the concurring and/or dissenting opinions (of judges);

10. the orders: the decision itself.

We can broadly distinguish three different categories of judicial data depending: metadata, facts and rea-

soning. Metadata (elements 1, 2, 3 and 4) correspond to identifiers of the case and basic information (e.g.,

date, parties and judge) and is written mostly in a structured way. Facts (elements 5, 6 and 7) are informa-

tion pertaining to the parties, disclosing their personal “story”. Reasoning (elements 8, 9 and 10) is the logic

of the case, which is not specific to the parties.

25



2.2.2 Desiderata for the opening of legal data

In this sectionwe present the needs that arisewith the publication of legal decisions. We start by presenting

utility requirements for individuals in Section 2.2.2.1, and for algorithms in Section 2.2.2.2. Finally we discuss

the need for privacy in Section 2.2.2.3.

2.2.2.1 Need for readability and accessibility

The access to legal decisions is required both for ethical (transparency) and practical reasons such as case

law, which is the use of past legal decisions to support the decision for future cases. Thus, the judiciary sys-

tem is built on the assumption that legal decisions are made public and accessible by default (open-court

principle), so that (1) citizens are able to inspect decisions as a way to audit the legal system and (2) past

decisions can be used to interpret laws, and as such must be known from legal practitioners and citizens. It

follows that decisions must be made available in a form readable by humans (i.e., natural language). Nat-

ural language format can be opposed to machine-readable formats such as word-vectors representation

or logical propositions, which we will discuss later. The need for openness, the current practice in terms

of open court, and the associated risks are detailed in (Conley et al., 2011; Martin, 2008). They conclude

that, although there are powerful voices in favor of open court, radical changes in access and dissemina-

tion require new privacy constraints, and a public debate on the effect of sharing and using information in

records.

Accessibility is also an important issue. In the past, the access to decisions required attending public hear-

ings or reading books called “reporters”. Later, decisions have started to be shared on digital medium such

as compact discs or DVDs for example before being accessible onlinemore recently. For instance, in theUSA,

CourtListener (Free Law Project, 2023) shares 3.6Mdecisions and the Caselaw access project (President and

Fellows of Harvard College, 2023) 6.7M unique cases; the Canadian Legal Information Institute (Federation

of Law Societies of Canada, 2023) (CanLII) publishes 2.5M Canadian decisions. The aim of these services is

to facilitate access to legal records to individuals–law professionals (judges, lawmakers and lawyers), jour-

nalists, or citizens. The online publication also enables the large-scale access and processing of records, in

particular due to the standardized format.
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Figure 2.1 – High-level pipeline of court files processing for Legal Techs

2.2.2.2 Need for massive accesses (legal technologies)

The term legal technologies broadly encompasses all the technologies used in the context of justice. The

website CodeX Techindex (CodeX, The Stanford Center for Legal Informatics, 2023), a project by the Stan-

ford Center for Legal Informatics, references more than a thousand companies, and defines nine different

categories: (1) Marketplace, (2) Document Automation, (3) Practice Management, (4) Legal Research, (5)

Legal Education, (6) Online Dispute Resolution, (7) E-Discovery, (8) Analytics and (9) Compliance.

A subset of these categories–2, 4, 7, 8 and 9–requires some form of “understanding” of legal documents,

usually performed throughnatural languageprocessing (NLP) andmachine learning (ML) approaches (Praduroux

et al., 2016; Dale, 2019). We focus here on these categories as they are based on the analysis of a large

number of legal data. One of the main challenges we have faced is that usually companies provide very few

technical details about their actual processing and usage of legal documents.

The automatic processing and analysis of legal records have multiple applications, such as computing simi-

larity between cases (Thenmozhi et al., 2017; Minocha et Singh, 2018; Mandal et al., 2017), predicting legal

outcomes (Aletras et al., 2016; Katz et al., 2017) (e.g., by weighing the strength of the defender arguments

and the legal position of a client in a hypothetical or actual lawsuit), identifying influential cases (Marques

et al., 2019; Mozina et al., 2005) or important part of laws (Mokanov et al., 2019), estimating the risk of

recidivism (Tan et al., 2018), summarizing legal documents (Monod et al., 2010), extracting entities (e.g.,

parties, lawyers, law firms, judges, motions, orders, motion type, filer, order type, decision type and judge

names) from legal documents (Quaresma et Gonçalves, 2010; Custis et al., 2019), topic modelling (Nalla-

pati et Manning, 2008; Ashley et Brüninghaus, 2009), concept mapping (Brüninghaus et Ashley, 1997) or

inferring patterns (Kort, 1965; Ashley et Walker, 2013).
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Focus on text-based legal techs

Most of the technologies introduced in the previous section rely on the processing of large database of

legal data. However, the unstructured nature of legal data is one of themain challenges of the application of

artificial intelligence in law (Alarie et al., 2017). Consequently, the analysis of a legal text corpus first requires

to apply some pre-processing to add structure to the text. Figure 2.1 represents an abstract processing

pipeline for court files, extracted mostly from academic papers 1, and inferred from the current practice of

text analysis and descriptions of associated technologies. In the following, we assume that any application

involving the use of machine learning (as highlighted by most legal tech companies) is applied to court

records. The first NLP step transforms the unstructured data (i.e., natural language) into some structured

representation (see below) by pre-processing it.

Afterwards, the secondML step corresponds to the actual application, which is the training (i.e., processing)

of theML algorithm, whose output is represented by the “internal representation” block. The term instance

represents the output of the model given some query (e.g., applicable laws given a set of keywords repre-

senting infractions).

The pre-processing can be diverse and depends on the task (e.g., extracting a citation graph between cases).

However, most NLP-based applications usually rely on a text model. Many models are statistical-based

ones, such as document-word-frequency matrix, in which the corpus is decomposed into a matrix in which

each cell contains the number of times a particular word appears in a document. This model has multiple

variations such as bag-of-words (BoW) (Joachims, 1998), term frequency-inverse document frequency, or

n-grams (Zhang et al., 2015). For example, a combination of those techniques are used in (Aletras et al.,

2016) to predict decisions from the European Court of Human Rights, and by (Kim et al., 2019) to identify

law articles given a query or to answer to questions given a law article. More recent approaches follow a

neural network architecture in which a model is trained on the corpus with the objective to predict a word

given a context, which is called word embeddings (Mikolov et al., 2013). Multiple variations of this structure

exist (Joulin et al., 2017; Kim, 2014; Liu et al., 2016; Lai et al., 2015; Zheng et al., 2018). This approach has been

used for example in (Marques et al., 2019) to rank and explain influential aspects of law, or by (Mokanov

et al., 2019) to predict the most relevant sources of law for any given piece of text using “neural networks

1. The majority of the legal technologies market consists in commercial applications. They do not give information about their

inner working and underlying techniques.
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and deep learning algorithms”.

2.2.2.3 Need for privacy

The massive opening of legal decisions for transparency and technological reasons must not hinder the

fundamental rights such as the right to privacy as emphasized by current open justice laws. In particular

in this setting, the privacy of a least three main actors must be protected: namely the individuals directly

involved in decisions (i.e., the parties), the individuals cited by decisions (e.g., experts or witnesses), and

the individuals administering the laws (i.e., magistrates).

However, the problem of publishing legal decisions in a privacy-preserving manner is a difficult one. For

instance, authorship attacks (Abbasi et Chen, 2008) may lead to the re-identification of magistrates be-

hind written decisions, or the presence of quasi-identifiers 2 within the text decisions may lead to the

re-identification of the individuals involved in or cited. Famous real-life examples, such as the governor

Weld’s (Sweeney, 2002) or Thelma Arnold’s re-identification (Arrington, 2006), both based on the exploita-

tion of quasi-identifiers, are early demonstrations of the failure of naive privacy-preserving data publishing

schemes. Thus despite the fact that legal decisions are written as unstructured text, structured information

can be extracted from them, including the formal argument, the decision itself (e.g., “guilty” or “innocent”),

as well as arbitrary information about the individuals involved (e.g., gender, age and social relationships).

Pseudonymization schemes simply consist in removing directly identifying data (e.g., social security number,

first name and last name, address) and keeping unchanged the rest of the information (quasi-identifiers

included). These schemes provide a very weak protection level, as acknowledged in privacy legislations

(e.g., GDPR), which has led to the development of new approaches for sanitizing personal data in the last

two decades (see for instance the surveys (Chen et al., 2009; Majeed et Lee, 2021)). In this paper, we

focus on privacy-preserving data publishing schemes providing formal privacy guarantees that hold against

several publications (as required by any real-life privacy-preserving data publishing system). These schemes

are based on (1) a formal model stating the privacy guarantees the scheme as well as a privacy parameter

for tuning the “privacy level” that must be achieved, and (2) a sanitization algorithm designed to achieve

the chosen model.

2. A quasi-identifier is a combination of attributes that are usually unique in the population, thus indirectly identifying an

individual. A typical example is the triple (age, zip code, gender).
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2.3 Analysis of current practices

In the following section, we review the current practice for legal data anonymization and privacy regulations.

We also make a connection with health data anonymization techniques on which most papers rely. To be

concrete, we illustrate the privacy risks through examples of re-identification attacks. Finally, we argue that

rule-based anonymization is not sufficient to provide a strong privacy protection and discuss the (formal)

issues surrounding text anonymization.

2.3.1 Redaction in the wild

2.3.1.1 Redaction of legal data

The redaction process consists in removing or generalizing a set of predefined terms defined by law through

a semi-manual process (Opijnen et al., 2017). Furthermore, access to legal documents or even public hear-

ings can be restricted in well-defined cases. The common practice is to replace sensitive terms, as defined

below, by initials, random letters, blanks or generalized terms (e.g., “Montréal” becomes “Québec”). The

specific set of rules regarding protected terms and the associated replacement practice can differ between

countries and courthouses (Opijnen et al., 2017).

According to (Plamondon et al., 2004), the following information is to be systematically removed for any

person (subject to a restriction on publication), as well as for each of his or her relatives (parents, children,

teachers, neighbors, employers, colleagues, school, …):

1. names,

2. date and place of birth

3. contact details (number, street, municipality, postal code, telephone, fax, email, web page, IP ad-

dress),

4. unique personal identifiers (social security number, health insurance number, medical file, passport,

bank account, credit card, …),

5. personal possessions identifiers (license or serial number, cadastral designation, company name, …)

In some context, the following data is also removed if it can be used to identify one of the individuals

aforementioned:

7. small communities or geographic locations,

8. the accused and co-accused if their identity is not already protected by law,
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9. the intervenors (court experts, social workers, police officers, doctors, …)

10. unusual information (number of children if abnormally high, income if particularly high, exceptional

occupation or function).

(Conley et al., 2011) present numerous examples of legislation framing the publication of specific terms and

putting restriction to the open-court principle. For instance, it is common by default to hide the identity of

victims of sexual offenses or children in youth courts. The identity of jurors and witnesses is also kept secret

to avoid coercion or parties tailoring their strategy. In addition, in the USA, the fear for national security or

the possible prejudice to another trial can lead to a complete ban on reporting being issued.

2.3.1.2 Paper versus digital

The main difference between paper and digital access is the “practical obscurity” of paper records on the

one hand, and the easy accessibility of digital records, on the other. The awkwardness of accessing paper

records stored in a public courthouse puts inherent limitations on the ability of individuals or groups to

access those records. In contrast, digital records are easy to analyze, can be searched in “bulk” by combining

various key factors (e.g., divorce and children) and can potentially be accessed from any computer. Thus,

traditional distribution provides “practical obscurity” (Judges Technology Advisory Committee, 2003), in

that it is inconvenient (i.e., time-consuming) to attend the courthouse or read case reports.

2.3.1.3 Anonymization of health data

The Health Insurance Portability and Accountability Act (HIPAA) in the USA defines the security and pri-

vacy requirements of health information for both health professionals and technologies involved in health

data. The search for complying with HIPPA has led to an important body of work on the redaction of health

records. In particular, automated redaction or generalization of the sensitive terms defined in HIPPA gener-

ally involves domain specific named-entity recognition and generalization of terms throughmedical ontolo-

gies. As a concrete anonymization tool, Scrub (Sweeney, 1996) uses template matching to detect sensitive

terms, which are replacedwith synthetic data of similar type (e.g., a namewith a name, a diseasewith a sim-

ilar disease). t-PAT (Jiang et al., 2009) replaces sensitive words or phrases–recognized by an ontology–with

more general terms using an early privacy-preserving data publishing model, called k-anonymity (Sweeney,

2002), to preserve the privacy of patients.
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2.3.2 Limitations of current approaches

Our objective in this section is to provide examples of potential attacks in order to illustrate the technical

difficulties of raw text anonymization. Quotes 1, 2, 3, 4, and 5 are translated excerpts from French and

Canadian opinions.

A common redaction practice is to replace names by initials as shown in Figure 1. The uniqueness of ini-

tials (Finseth, 1993) is increased by combining multiple parties, especially if the relationship between the

parties is known (e.g., in a divorce case).

E.B. Petitioner v. V.I. Respondent

Judgment for Dissolution of Marriage

Quote 1 – Droit de la famille–15334, 2015 QCCS 762 (CanLII), (CanLII, 2015)

A combination of attributes, which can be extracted using dedicated named-entity recognition, is presented

in Quote 2: names of parties, parties are divorced, date of marriage, parties have a daughter, birthdate of

the daughter, date of divorce, reside in Ontario near a Dr. James. This combination could be used as a

quasi-identifier by a re-identification attack.

Katopodis v. Katopodis

SUPREME COURT OF ONTARIO

The parties were married on August 25, 1968; a daughter was born on November 30,

1972; the parties separated in April, 1977. The wife first went to see Dr. James

Quote 2 – Katopodis v. Katopodis, 1979 CanLII 1887 (ON SC), (CanLII, 1979)

Quote 3 is anonymized according to the CNIL recommendations of 2006, which requires the last name of in-

dividuals to be replaced by its initial. However, widely available background knowledge on the “RealMadrid

Club de Futbol” combined with the (real-life) pseudonyms of the “players” trivially leaks their identity.

The de-anonymization of Quote 4 relies on the text semantics instead of background knowledge. It requires

the adversary (1) to identify the link (X) between “M. […] Abdel X” and “the use of the name ‘X’ to designate
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the association Real Madrid Club de Futbol and several players of this team, Zinedine Z.,

David B., Raul Gonzalès B. aka Raul, Ronaldo Luiz Nazario de L., aka Ronaldo, and Luis

Filipe Madeira C., aka Luis Figo

Quote 3 – CA Paris, 11e ch., sect. B, 14 February 2008, Unibet Ltd c/ Real Madrid et autres, RG n◦ 06/11504,

GP (Legalis, 2009)

a drink”, and (2) to infer that the drink is called “sango”, thus leading to the conclusion that X = “sango”.

While this attack may not be easy to automatize due to the hardness of detecting the semantics inference,

it is, however, trivial to perform for a human (e.g., by crowdsourcing it).

the American company Coca Cola Company markets drinks under the French trade mark

“Coca Cola light sango”, of which it is the proprietor; that M. […] Abdel X, relying on

the infringement of his artist’s name and surname, has brought an action for damages

against the Coca Cola Company […] On the ground that Abdel X maintains that, as an

author and screenwriter, he is entitled to oppose the use of the name “X” to designate

a drink marketed by the companies of the Coca Cola group.

Quote 4 – Civ. 1re, 10 April 2013, n◦ 12-14.525, Sango c/ Coca-Cola, D. 2013. 992; CCE July 2013, n◦

73 (Légifrance, 2013)

Similar to Quote 2, Quote 5 could be attacked through a combination of attributes and relationship (e.g.,

extracted with Snorkel (Ratner et al., 2020)). This opinion from the Youth court involves children and, as

such, follows the strictest anonymization rules of the SOQUIJ: only the year’s birthdate of children is given

and names are replaced by random letters. However, an adversary can extract an extensive relationship

graph (see Figure 2.2), which could be matched over a relationship database (e.g., Facebook). In this case,

a quasi-identifier could be the relationship graph (or parts of it).

A study (Anandan et Clifton, 2011) has shown that generalization-based sanitization is vulnerable to correla-

tion attacks in which the generalized terms can be correlated with other terms, seemingly non-identifying,

in order to jeopardize the effects of the generalization and consequently disclose sensitive terms.

Besides the content of legal documents, stylometry (Neal et al., 2018) can be used to identify authors (i.e.,
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X, born […] 2017; Y, born […] 2018 the children and C; D the parents

Applications are submitted for X, aged 1 year, and Y, aged 2months. The Director of Youth

Protection (DYP) would like X to be entrusted to her aunt, Ms. E, until June 25, 2019. As

for Y, that he be entrusted to a foster family for the next nine months. The father has

two other children, Z and A, from his previous unionwithMrs. F. Themother has another

child, B, from her union with Mr. G.

Quote 5 – Protection de la jeunesse–186470, 2018 QCCQ 6920 (SOQUIJ, 2018)
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Figure 2.2 – Relationship graph manually extracted from Quote 5
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Figure 2.3 – Multimodal publication architecture

magistrates) by their writing style. Mitigation for this kind of attack exist (Fernandes et al., 2019; Weggen-

mann et Kerschbaum, 2018) but their output is only machine readable. Similarly, it is possible to exploit

decision patterns to re-identify judges, as done for the Supreme Court of the United States (Katz et al.,

2017).

2.3.3 Reasons for the failure of rule-based redaction

The review of current practices for tackling the privacy of legal documents in Section 2.3.1 has highlighted

the widespread use of rule-based redaction, in which a set of patterns is defined as being sensitive and is

either removed or replaced. However, as shown in Section 2.3.2 (1) privacy can be violated even in “simple”

instances and (2) identifying information remains in most cases. In other words, rule-based redaction does

not provide any sound privacy guarantee. We observe that it suffers from the following main difficulties.

1. Missing rule difficulty. Many combinations of quasi-identifiers can lead to re-identification and the

richness of the output space offered by natural language (i.e., what can be expressed) can hardly

be constrained to a set of rules. Furthermore, identifying the sensitive terms is challenging and

domain-specific. This issue is the subject of multiple studies in the context of health data (Sweeney,

1996; Atallah et al., 2000; Douglass et al., 2005).

2. Missingmatch difficulty. The current state of the art about relationship extraction and named-entity

recognition makes it hard to ensure that all terms that should be redacted will be detected, in par-

ticular because of the many possible ways to express the same idea (e.g., circumlocution).

Although these observations make the rule-based redaction difficult, it is important to note that attacks,

e.g., re-identification, remain simpler than protection. Indeed, an adversary has to find a single attack
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vector (i.e., a missing rule or a missing pattern) whereas the redaction process needs to consider all the

possibilities.

2.4 Towards a multimodal publication scheme

In Section 2.2, we have shown that the publication of legal documents serves two distinct and complemen-

tary purposes: (1) the traditional objective of transparency and case law, and (2) the modern objective of

legal technologies of providing services to citizens and legal professionals. These two purposes obey to dif-

ferent utility and privacy requirements. More precisely, the traditional use case requires human-readable

documents while legal techs need a machine-readable format for automated processing. Moreover, trans-

parency and case law involve the access to opinions on an individual basis (i.e., one-at-a-time), similarly to

attending a hearing in person. In contrast, legal technologies rely on the access to massive legal databases.

This difference in cardinality (i.e., one versus many) entails different privacy risks. In particular, the massive

processing of legal data requires the use of a formal privacy framework with composability properties (see

Section 2.2.2.3). All this suggests the inadequacy of any one-size-fits-all approach.

2.4.1 Access modes

As a consequence, we propose that the organization in charge of the publication of legal decisions should

consider two modes of publication: the precise access mode and themassive access mode.

2.4.1.1 Precise access mode

To fulfill the “traditional” use case, the precise access mode provides full access to legal decisions that are

only redacted using the current practices. This access mode is designed for the transparency and case law

usages, and is to be used typically by individuals (e.g., law professionals, journalists and citizens). Similar to

the “traditional” paper-based publication scheme, in the precise access mode (Hartzog et Stutzman, 2013),

a user has access to text documents, either in full or only extracts (partial access is useful for crowdsourcing

tagging in order to build a dataset). While the current practice of redacting identifiers could be combined

with more automated approaches such as (Sánchez et al., 2013; Hassan et al., 2019). The aim of this mode

is to provide strong utility first. It is similar to the websites currently publishing legal documents (e.g.,

Legifrance or CanLII), as it allows browsing, searching and reading documents.
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To prevent malicious users from diverting the precise access mode for performing massive accesses, users

must be authenticated, and their access must be restricted (e.g., rate limitation or proof of work (Dwork et

Naor, 1992)). The main objective of the restricted access is to make it difficult to rebuild the full (massive)

database. In addition, this mode provides privacy through “practical obscurity” similarly to the paper-based

system.

2.4.1.2 Massive access mode

Themassive accessmode gives access only to pre-processed data resulting fromprivacy-preserving versions

of the standard NLP pipelines available on the server, i.e., aggregated and structured data extracted from or

computed over large numbers of decisions, as required for the “modern” use case. It should be compatible

with most legal tech applications that traditionally use a database of legal documents (see Section 2.2.2.2).

Note that the perturbations due to privacy-preserving data publishing schemes have usually less impact (in

terms of information loss) when applied late in the pipeline (see Figure 2.3), at the cost of a loss of generality

of the output.

Users need to be able to tune the pre-processing applied. For the sake of simplicity, we assume that the

user (i.e., legaltech developer) provides the parameters for a given NLP pipeline (see Fig. 2.3). These pa-

rameters can be for instance the maximum number of features or n-grams range to consider in the case

of a BoW model or the window for word embeddings. But more complex implementations can be de-

signed, e.g., allowing experiments by the users, fine-tuning for each dataset/task, as well as customiza-

tion (e.g., for cleaning the data). This can be done (1) by generating structured synthetic testing data

(e.g., a set of features extracted from legal data) in a privacy-preserving manner (e.g., PATE-GAN (Jordon

et al., 2019) or MST (McKenna et al., 2021)) and (2) by designing a full pre-processing pipeline that embeds

privacy-preserving calls to the server (e.g., through a privacy-preserving computation framework such as

Ektelo (Zhang et al., 2018b)).

The massive access mode must also authenticate users in order to monitor the overall privacy guarantees

satisfied for each user based on his disclosures log and on the composability properties of the privacy-

preserving data publishing schemes used.

As a result, the data is protected using authentication and strong privacy definitions as presented in Sec-

tion 2.2.2.3. Examples of applications of differential privacy to NLP models include (Fernandes et al., 2019),
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which adds noise toword-frequency-matrix to achieve differential privacy, or (Weggenmannet Kerschbaum,

2018), which samples the dictionary of themodel using the differentially-private exponentialmechanism (Dwork

et Roth, 2014). The aim of these two approaches is to protect against authorship attribution.

(Fernandes et al., 2019) uses a relaxation of differential privacy, dχ-privacy (Alvim et al., 2018) which allows

the authors to consider a distance between documents computed using word embeddings, rather than the

row-based distance presented in Definition 1.1. The objective is to modify BoW representation of docu-

ments “similar in topics” remain “similar to each other” (w.r.t. the metrics defined on word embeddings),

irrespective of authorship. In practice, this is achieved by drawing BoWwhere the probability of each word

being associated to a document is distributed according to a Laplace probability density function.

The goal of (Weggenmann et Kerschbaum, 2018) is to derive a differentially private synthetic feature vectors,

keeping the theme of each document while preventing authorship attribution. Feature vectors map a set

of words (the dictionary) to probabilities of the word appearing in each document. The main idea of the

approach is to sample the dictionary from a reference dictionary (e.g., using synonyms from WordNet’s

synsets) using the differentially private exponential mechanism.

In practice, the massive access mode can be plugged into the existing platforms that store massive number

of legal documents and already support the precise access mode, such as CourtListener or CanLII.

Finally, another potential need is the annotation of documents, which is the addition to terms, sentences,

paragraphs or documents of metadata such as syntax information (e.g., verb or noun), semantic, pragmatic

(e.g., presupposition and implicature). This step is crucial in NLP, and is usually done manually, for example

through crowdsourcing. Crowdsourcing-specific approaches for privacy-preserving task processing (Kajino

et al., 2014) require to split the task (i.e., annotation of a set of documents) between non-colluding workers

(e.g., at the sentence level) before aggregating the result. Such approach is compatiblewith our architecture

assuming the aggregation is done locally on the platform.

2.4.2 System overview

We now outline an abstract architecture for a privacy-preserving data publishing system for legal decisions.

Our objective is not to provide exhaustive implementation guidelines, but rather to identify the key com-

ponents that such an architecture should possess.
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Figure 2.3 depicts the proposed architecture. The precise and massive access modes are both protected

by the Authentication module. The Authentication module can be implemented by usual strong

authentication techniques (e.g., for preventing impersonation attacks). Authentication is necessary for en-

forcing the access control policy through the Access Control module and for maintaining for each user

his Disclosure Log. The log contains all the successful access requests performed by a user. It is required

for verifying that the overall privacy guarantees are not breached, e.g., the rate limitation is not exceeded

for the precise access mode, or the composition of the privacy-preserving data publishing schemes, formal-

ized in the Composability Properties, does not exceed the disclosure allowed. Finally, the Privacy

Parameters contain the overall privacy guarantees that must always hold, defined by the administrator

(e.g., rate limit or higher bound on the ϵ differential privacy parameter). The user may additionally be

allowed to tune the privacy parameters input by a privacy-preserving data publishing scheme (e.g., the

fraction spent in the higher bound on the ϵ differential privacy parameter) provided it does not jeopardize

the overall privacy guarantees.

2.5 Conclusion

In this chapter, we analyzed the needs for publishing legal data and the limitations of rule-based redac-

tion (i.e., the current approach) for fulfilling them successfully. We proposed to discard any one-size-fits-all

approach and outlined a straw man architecture balancing the utility and privacy requirements by distin-

guishing the traditional, one-to-one, use of legal data from the modern, massive, use of legal data by legal

technologies. This step back from current practice allowed us to–in some way–avoid the tension between

social and technical requirements.

Although our proposition could easily be implemented on current platforms, components of our framework

pose new research questions. For example, reasoning with composability properties from different privacy

models such as presented in Section 1.1.2 is a challenge. Another issue, discussed in Section 2.2.2.3 is the

difficulty to evaluate empirical properties of approaches such as pseudonymization. Such a question could

be answered by following the approach we describe in the following chapter.
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CHAPTER 3

EMPIRICAL PRIVACY EVALUATION

This chapter is adapted from (Allard et al., 2023b), and from the first edition of the SNAKE challenge (Allard

et al., 2023a) organized during Summer 2023.

3.1 SNAKE framework

Competitions and challenges are commonly used both in the machine learning community–for boosting

the design and development of practical and efficient solutions to hard or new problems–and in the se-

curity community–for training purposes or for the evaluation of existing infrastructures. In contrast, in

the privacy community, there is not a long tradition of holding such challenges. However, in recent years

several competitions focusing on data sanitization algorithms (also called data anonymization algorithms

or privacy-preserving data publishing algorithms) have been launched (Boutet et al., 2020; Jordon et al.,

2020; Murakami et al., 2023; Ridgeway et al., 2021).

Some of them, like the 2018 Differential Privacy NIST Challenge (Ridgeway et al., 2021), have focused pri-

marily on the defense aspect. More precisely, their main requirements were that the proposed algorithms

have to (1) meet formal guarantees such as differential privacy, (2) achieve high utility levels on real-life

cases, and (3) are efficient enough for being run on today’s off-the-shelf computer systems. Others, like

the Hide-and-Seek challenge (Jordon et al., 2020), the INSAnonym competition (Boutet et al., 2020) or the

PWSCUP (Murakami et al., 2023) additionally consider attacks on the sanitized datasets generated by the

participants. More precisely, these competitions were generally composed of two phases, in which the first

one is dedicated to the design of sanitization algorithms (usually focus on a particular type of data and use

case) while the second one usually consists in attacking the data sanitized with the algorithms developed

during the first phase.

While the sanitization phases of past challenges have been successful, in the sense that it has provided in-

sights on the privacy/utility trade-offs, lead to implementations from state-of-the-art sanitization algorithms

or even novel algorithms, the outcomes of the attack phases were usually moremitigated. For example, the

organizers of the Hide-and-Seek challenge have reported attack results equivalent to random guesses (Jor-

don et al., 2020). We believe that one of themain reason for this is that in order to be successful, the attack
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phase must allow participants (1) to dedicate sufficient time to the design, implementation and testing of

their attack strategies and (2) to focus on a few algorithms.

In this chapter, we propose a series of privacy challenges called SNAKE specifically tailored to attacks against

sanitization algorithms. More precisely, the general structure of the SNAKE challenge provides the following

salient features: it (1) enables to concentrate the energy and expertise of participants against a small set of

carefully chosen state-of-the-art sanitization algorithms, (2) enables to give sufficient time to participants

to design and test carefully their attacks, (3) enables the exploration of a wide range of possible adversary

models and background knowledge and (4) complements nicely the current sanitization competitions that

focus on the sanitization part, thus resulting in a complete defense-attack pipeline. The first edition of

the challenge focuses on the Membership Inference Attack setting (Hu et al., 2022; Stadler et al., 2022)

(see Section 1.1) over tabular data synthetically generated while satisfying differential privacy (Dwork et

Roth, 2014). The adversarial background knowledge consists in the record(s) of the target(s) of the attack.

Further editions will showcase other inference attacks, adversarial background knowledge, privacy models

and sanitization algorithms.

The abstractions defined in SNAKE consist in aworkflowand its functional specifications. Figure 3.1 describes

the SNAKEworkflow. The rule Prepare data creates themain dataset of the challenge, called Base data, from

some existing source of data, called Original data. Each task of the challenge is created by Create task, as a

set of Public and Private files, with the former shared to participants, and the former used organizers (and

the platform) for evaluation. The third rule Create bundle packages all the competition files into (1) a bundle

can be uploaded to CodaBench to instantiate the full competition, (2) a public bundle which is to be hosted

online to share the data necessary for participants and (3) a private bundle that is to be shared after the

challenge.

3.1.1 Technical Foundations

SNAKE leverages (1) the Snakemake workflow management system (Köster et Rahmann, 2018) for its inner

working and (2) the CodaBench competition platform (Xu et al., 2021) for all the features necessary for run-

ning a competition in real-life (e.g., user registration, submission management, leaderboard). Snakemake

is a bioinformatics workflow engine which provides a domain specific language implemented as an exten-

sion to Python to describes pipelines. Workflows are specified as a directed acyclic graph of rules which

transform input files into target files, similar to makefile directives. SNAKE uses Snakemake to prepare all
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Figure 3.1 – High level view of the workflow. Rhombuses represent rules (i.e., programs) and rectangles data

(i.e., files).

files required to define the challenge and outputs a “bundle” which can be uploaded to CodaBench to build

a complete challenge.

3.1.2 Key properties

The design of the SNAKE framework adheres to the following key goals. They form the minimal set of

properties that are both necessary to the successful organization of attack challenges targeting sanitization

algorithms and general enough to adapt smoothly to the advances of the field.

Genericity

The SNAKEworkflow (see Figure 3.1) is high-level and generic enough to allow the design of most challenges

in which participants attack the privacy properties of a sanitization algorithm. Indeed, any sanitization al-

gorithm inputs prepared data and output sanitized data (e.g., a perturbed model), and any task consists in

a challenge given to the participants (public part) and in the answer to the challenge (private part). In par-

ticular, the definition of a task as a pair of public and private data allows the framework to support a broad

range of attacks scenarios (e.g., varying the background knowledge, the parameters, the kind of sanitization

algorithm attacked).
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Extensibility

The SNAKE framework provides the two following levels of extensibility. First, it offers a simplistic challenge

overview, which allows for further specification. For example, considering multiple attacks or allowing on-

line attack evaluation is possible without deviating from the framework. Second, steps of the workflow are

organized as Snakemake rules which (1) allow for generic input, output, script, execution environment,

and parameters; and (2) can be broken down into sub-rules if the need arises.

Usability

By leveraging the Snakemake workflowmanagement, the SNAKE framework does not require strong devel-

opment skills to be used and can be run on commodity hardware. It can thus be used easily by participants

during a competition for building a complete local competition environment allowing local executions of

the sanitization algorithms and of the participants’ attacks. On the organizer side, existing challenges can

easily be framed within SNAKE. Note that using SNAKE does not generate any computational overhead

compared to a SNAKE solution. Moreover, the SNAKE framework outputs a package compliant with the

CodaBench platform, which allows for user-friendly participation (documentation, live ranking, automated

scoring using a Python script).

Reproducibility

SNAKE allows a challenge to be reproduced in full, thanks to the functionalities offered by Snakemake. For

example, inputs, outputs, execution environments, parameters and scripts are tracked through hashing.

Random seeds used by Create task are saved in the private part of the related task. They can be kept by the

organizers and disclosed to participants after the competition. The genericity and reproducibility properties

allow the framework to support different threatmodels over both participants and organizers. For example,

our framework is designed to allow participants to verify locally that their scores, given by the organizer,

are indeed correct. This can simply be done by the participant through a local evaluation of the submission

performed after the distribution of the private part of the tasks. Preventing any tampering of the private

part of tasks can be done, e.g., by storing their hash in the public bundle and by letting participants check

that they match with the private parts distributed by the organizers after the competition.
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Figure 3.2 – High level view of the workflow implementation for the first edition. Rectangles represent data

with rules as edge labels. The Attack rhombus is the (local) attack algorithm created by the participant. The

Score ellipse is computed on CodaBench.

3.2 SNAKE1: Membership inference attack against differentially-private synthetic data generators

SNAKE1 is the first challenge based on the SNAKE framework. It focuses on membership inference at-

tacks (e.g., (Hilprecht et al., 2019; Hyeong et al., 2022; Hu et al., 2021)) over differentially private synthetic

data generation algorithms (e.g., (McKenna et al., 2021)), is co-located with APVP 2023 and takes place all

along the Summer 2023.

Figure 3.2 describes the workflow of the challenge for a single task. First, the data used by the challenge

is prepared–as described afterwards. Each execution of a sanitization algorithm takes as input a private

dataset consisting of random samples from the base dataset. The attack used as input the synthetic data, a

set of targets for which membership is to be guessed, the base data and the parameters of the sanitization

algorithm. The participants then perform their attack locally 1 and submit their guesses to the CodaBench

space of SNAKE1. The CodaBench platform scores the tasks by comparing the submission with the (private)

ground-truth.

1. Participants can use the framework to generate their own versions of the tasks locally and therefore can evaluate their

submission on their side before submission.
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3.2.1 Attacks algorithm

Each team has to design an attack algorithm as follows:

Input The following information is provided to the attack algorithms:

— The synthetic dataset generated by an execution of the targeted sanitization algorithm over a

private dataset;

— The targets to attack;

— The base dataset from which the private dataset is sampled;

— The parameters of the execution of the sanitization algorithm attacked.

Output The output of the attack algorithm is a real number in [0, 1] indicating the predicted probability

of each target being within the private dataset or not.

We detail below the computation of the private datasets, the targets, the sanitization algorithms as well as

the attack success measure.

3.2.1.1 Base dataset and private datasets

SNAKE1 makes use of the publicly available EPI CPS Basic Monthly data provided by the Economic Policy

Institute (Economic Policy Institute, 2023). The CPS dataset is divided in years in which a yearly dataset

contains more than 106 records and 125 columns. A record contains information about a single individual

in a household. Our base dataset is built by using a pre-processed sample of columns and rows from the

original dataset. Full details is available in the competition documentation. From this base dataset, we

generate one private dataset for each parameterized sanitization algorithm attacked.

3.2.1.2 Targets and background knowledge

In SNAKE1, any household that contains at least 5 individuals might be a target, with the target consisting

of the full set of records of the household. SNAKE1 considers the following background knowledge about

each target. The adversary knows (1) the exact records of the household targeted, and (2) the full base

dataset 2. The adversary is also given the information about the sanitization algorithm targeted as well as

the parameters used for the executions and has access to its implementation. However, the randomness

generated internally during the execution of the algorithm is unknown to the adversary.

2. It gives teams the knowledge of the population distribution commonly assumed in membership inference attacks.
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3.2.1.3 Sanitization algorithms under attacks

The sanitization algorithms under attack during SNAKE1 are differentially-private synthetic data generation

algorithms. More precisely, we have selected a set of algorithms according to the following two criteria:

technical soundness assessed by a rigorous peer-selection process (e.g., published at top-tier conferences

or winner of a dedicated competition) and available open-source implementation. In particular, we have

used the implementation available in the Reprosyn package (Mole, 2023). Except for parameters related to

differential privacy, we use the default values set in their implementations. The PrivBayes algorithm (Zhang

et al., 2017) generates synthetic data by capturing the underlying distribution of the private data through

a specific Bayesian network. The MST algorithm (McKenna et al., 2021) is a generalization of the NIST-MST

algorithm, which has won the 2018 NIST Differential Privacy Synthetic Data challenge. It generates syn-

thetic data by perturbing themarginals that capture the data distribution through the Gaussian mechanism

and by post-processing them through the Private-PGM algorithm (McKenna et al., 2019). The PATE-GAN

algorithm (Jordon et al., 2019) is an extension of generative adversarial networks (Goodfellow et al., 2020)

based on the private aggregation of teacher ensembles framework (Papernot et al., 2017).

3.2.1.4 Success measure

The success of a team is computed by first measuring the successes of its attack on each parameterized

algorithm attacked (e.g., MST parameterized by ϵ = 1.0, δ = 10−5) and second by aggregating the success

measures in a single final score. The success of a given attack for a given parameterized algorithm is eval-

uated based on the membership advantage measure (Yeom et al., 2018) (see 1.6). The number of targets

must be at the same time large enough for obtaining a sufficiently stable estimation and small enough for

being practical (e.g., r = 100).

3.2.1.5 Execution environment

The design, coding, and executions of attacks are performed locally by each teamwith its own resources. As

a result, there is no restriction on the computing environment used to develop the attacks and the choice of

the programming language and the available resources are unconstrained. Note however that we provide

to participants the SNAKE1 Python environment.
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Figure 3.3 – Best membership advantage scores on October 5th, 2023

3.2.2 Preliminary results

The initial ending of the challenge was planned to September 1st, 2023, which we then moved to October

1st. At that time, the challenge had 21 participants, as individuals or teams. Due to technical issues with

the platform we had to postpone the ending by another month, to November 1st, which prevents us for

presenting the detailed results of the challenge.

As a first feedback, we note that the best scores are not attained for the highest values of ϵ, as could have

been expected. Figure 3.3 shows the best score among all submissions for each task. The results for MST

are as expected, with scores increasing with a larger budget. The best results for PATEGAN are close to each

other. A first hypothesis might be that the learning error is higher than the impact of the noise added by

differential privacy. Lastly, the values for PrivBayes are the most surprising: three of the tasks have similar

scores, with the exception of ϵ = 100 which exhibits a particularly high membership advantage.

3.3 Future editions

The SNAKE framework is dedicated to facilitating the organization of challenges stress-testing sanitization

algorithms. Overall, wehope that the SNAKE challenges canhelp gain understanding of the empirical privacy
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guarantees of sanitization algorithms and of their parameters and pave theway to a greater democratization

of sanitization algorithms providing strong privacy guarantees. We envision SNAKE as a series of challenges,

with future editions focusing on different datasets, privacymechanisms and frameworks, attackmodels, etc.

Though first envisioned as a proof of concept, we created a toy competition named EKANS which could be

the basis for a future edition. It is thought as the “reverse” of SNAKE1, in that its objective is to propose a

sample method for targets that are the easiest to attack. EKANS asks participants to submit Python code in

charge of sampling “good” targets for membership inference attacks, which is executed by the CodaBench

platform before performing a basic attack on the sampled targets using the TAPAS package (Houssiau et al.,

2022).

Finally, as a future work, and considering the technical issues that we faced, we are considering building a

platform customized to the SNAKE framework. This platform could benefit from the generic architecture

and automated production of tasks to, in addition, deploy an API and database tailored to the challenge as

described in for Snakemake.
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CHAPTER 4

SIMULATING LONG-TERM DISCRIMINATION

In this chapter we focus on the fairness issues presented in Section , in whichwe highlighted the importance

of considering the long-term impact of (un)fairness, and associated concepts that are often discarded in

formal formulations of fairness. We start by advocating for the need of using a simulation for studying

long-term evolution of (un)fairness mechanisms. Then, we present the main components of the model we

adopt (Reardon et al., 2018), followed by a overview of the efforts need to undertook its reproduction.

4.1 The case for a simulation

As a first step towards the addition of long-term concepts in fairness, we need to be able to observe and

identify effects of fairness effects in a long-term context. To achieve this goal, we adapted an agent-based

simulation originating from the domain of educational policy, which, we hope, ground our work in reality–

although highly simplified.

The use of a simulation is motivated by multiple factors. First and foremost, experimenting with fairness–

and therefore unfairness–in high-stakes contexts cannot be done in an ethical fashion. This, the ability to

draw observations without impacting individuals is obviously needed in this context. Second, the long-

term effects in which we are interested requires long-term observation, which itself poses challenges. In

particular, following individuals on the long-term is expansive and difficult (Guerin et Guerin, 2007). Addi-

tionally, with observations being done over a long time period, more factors have to be taken in account

since the number of decisions taken or received by an individual will increase. This is an effect of the curse

of dimensionality, and directly linked to the argument towards the consideration of a snowball effect. In-

deed, if decisions accumulate with time, the presence of unforeseen or uncontrolled decisions will make

observations noisy.

Studying the long-term impact of a chain of decision, as an observation and without intervention, still re-

quires access to a dataset following individuals during their life. Accuracy of measurements would require

many individuals while meaningful observations would require collecting data over a long duration. Ad-

ditionally, experimenting using machine learning models requires a large training set. To the best of our

knowledge, no such dataset exists at the best of our knowledge. For example, the United States Census re-
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ports a high number of features on many individuals (Abowd, 2018), but longitudinal linkage is limited (Hel-

gertz et al., 2022).

As a result, observing the impact of the decision is not possible without simulation–or would require taking

high-stakes decisions with all models to be experimented with in real life, which would be unethical and

impractical. A simulation has the benefit of providing any number of decisions over any period of time.

Additionally, the bias introduced by the simulation is known and controlled. On the other hand, the realis-

tic aspect of the simulation is a concern. We opted for the model described in (Reardon et al., 2018) that

studies the impact of affirmative action–which refers to the set of practices that seek to include particu-

lar groups that were discriminated against–in college admissions using a simulation. This is motivated by

several factors. First, this model comes from the education policy community and is used to draw conclu-

sions on a real-life process. In particular, the authors note that “although [their] model falls short of be-

ing completely realistic, it captures important, dynamic features of the application/admissions/enrollment

processes that enable the investigation of the ways that affirmative action might affect enrollments.” In

addition, parameters are chosen to fit observation of the Education Longitudinal Study of 2002 (National

Center for Education Statistics, 2002). Second, the model is described extensively. Although we faced sev-

eral difficulties regarding the implementation–typical of the issue of reproduction in science, particularly

in an interdisciplinary context–the paper makes extensive efforts to describe the model in details. Finally,

we required a simulation that considers bias. For that matter, we searched for models in social sciences

that cited “race”. This potentially fits any simulation using sensitive attributes (such as gender or race), but

the case study of (Reardon et al., 2018) considers the issue of discrimination itself, doing so through the

correlated attributes of race and socioeconomic status.

4.2 College-student model

This section provides an overview of the model described by (Reardon et al., 2018). A more technical de-

scription is available in Appendix A.Wefirst introduce the two types of agents that interact in this simulation:

colleges and students. Then we go over the three successive decisions that are taken at each iteration:

1. students apply to a subset of colleges depending on their own preferences and probability of being

accepted;

2. colleges admit the top applying students;

3. students enroll into the best college they are admitted into.
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Figure 4.1 – Simplified causal model. Colored arrows represent causal relationship on future states.

Figure 4.1 is a complete view of the causal relationships between variables, which are described in Table 4.1.

Wewill present relevant subsets of this figure along the sectionwhen discussing specific parts of themodel.

Specifically, Figures 4.2, 4.2, and 4.4 focus respectively on the application, admission and enrollment deci-

sions.

4.2.1 Colleges and students

The model is composed of J = 40 colleges andN = 10 000 students.

Colleges are represented by their quality attribute, initially drawn from a normal distribution and later up-

dated depending on the enrolled students, as represented by the orange arrows on Figure 4.1.
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Variable Description

Race Student’s quality

Ach Student’s achievement

Res Student’s resources

Qual College’s quality

SAch Student’s perception of their own achievement

CAch College’s perception of a student’s achievement

SQual Student’s perception of a college’s quality

PAdm Student’s estimation of its probability of admission into a college

Util Student’s perception of the utility of a college

#App Student’s number of applications

#Adm College’s number of admissions

EnrYield College’s estimation of its enrollment yield

App Student’s application to a college

Adm College’s admission of a student

Enr Student’s enrollment into a college

Table 4.1 – Description of variables of the college-student model
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Students are represented by three variables: race, resources and achievement. The race of each students is

drawn from a non-uniform distribution over the categories Asian, Black, Hispanic, andWhite. Note that, fol-

lowing (Reardon et al., 2018), the numerical majority isWhite, while Asian is the least represented race, and

that “minority” corresponds to Black and Hispanic students. Resources and achievement are sampled from

race-specific bivariate normal distributions with non-zero correlation. The students’ mixture distribution is:

Race ∼ Categorical(θRace)

Res,Ach | Race = Normal2(µz,Σz)
(4.1)

4.2.2 Application

Race

Ach Res

SAch SQual

Qual

PAdm Util

App #App

Figure 4.2 – Simplified causal model of the application decision.

During the first stage, illustrated on Figure 4.2, students select a subset–called portfolio–of colleges to ap-

ply to. Students observe colleges’ quality with some amount of uncertainty representing “imperfect in-

formation and idiosyncratic preferences”. This error depends on students’ resources as a way to model

high-resources families having better information about college quality. Based on their noisy observations

of their own achievement and college quality, students estimate their probabilities of admission into each

college using a logistic model fitted on admission patterns over the past five years, represented by blue ar-

rows on Figure 4.1. Each student applies to a subset of colleges that maximize their overall expected utility.
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More precisely, the expected utility of an application portfolio is computed as:

EU(∅) = 0

EU(c1, c2, . . . , cn) = Util(c1) · PAdm(ci) + (1− PAdm(c1) · EU(c1)
(4.2)

with c1, c2, . . . , cn ordered by descending utility.

The model assumes that all students are rational, utility-maximizing agents. The variability in student ap-

plication portfolios originates from the imperfect observation of variables.

4.2.3 Admission
Race

Ach Res

CAch Adm

App

#Adm EnrYield

Figure 4.3 – Simplified causal model of the admission decision.

The second decision phase, illustrated by Figure 4.3, consists in the admission of students by colleges. Col-

leges observe the achievement of applicants with some noise, similar to the observation of quality by stu-

dents and serves the same purpose of modeling uncertainty and idiosyncratic preferences. Colleges rank

applicants according to this variable and select the top subset of applicants, with the objective of enrolling

150 students. The number of admitted students is computed by each college from its previous enrollment

yield, represented by green arrows on Figure 4.1.
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4.2.4 Enrollment

Race

Ach Res SQual

Qual

Util Adm

Enr

Figure 4.4 – Simplified causal model of the enrollment decision.

The final decision, illustrated by Figure 4.4, is straightforward. Students enroll in the collegewith the highest

estimated utility to which they were admitted.

4.2.5 Fairness interventions

Three fairness mechanisms are considered by (Reardon et al., 2018): two affirmative action bonuses and

one “targeted recruitment”. The methods are introduced after the 15th iteration by a subset of colleges.

Affirmative action

can be based on race or socioeconomic status (SES). During the observation of students’ achievement by

colleges, an additional weight is added. In the case of race-based affirmative action, the added weight is

constant added to minority students, that is Black and Hispanic students as introduced in Section 4.2.1. In

the case of SES-based affirmative action, a weight is applied in accordance with each student’s resources,

such as 150×Res. The actual weight varies between experiments, and is a source of difficulties regarding

the reproduction which we discuss later in Section 4.4.

Targeted recruitment

is the targeting of underrepresented racial minority students. It is represented as an increase in the ob-

served utility of attending a college by students. Its implementation in reality would require colleges to

take action towards students through targeted communication.
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4.3 Reproduction

4.3.1 Method

Although the model is described in details, missing detailsinformation and inconsistencies hindered its re-

production (Allard et al., 2023c).

We have mostly followed the detailed description of the model given in (Reardon et al., 2018, Appendix C).

We have also referred to (Reardon et al., 2016), which is often cited by the authors as an inspiration for

this work. Code for this latter model is available in the (proprietary) Stata programming language (Reardon

et al., 2014). We have read this code for clarification, but we were not able to run it 1. We have contacted

the first two authors of (Reardon et al., 2018) (Sean F. Reardon and Rachel Baker) in May 2021 but got no

answer as of today.

For our implementation, we have used the Python programming language, with most of the processing

done using NumPy (van der Walt et al., 2011). We have used scikit-learn (Kramer et Kramer, 2016) for learn-

ing the logistic regressionWe have experimented with the Xarray library (Hoyer et Hamman, 2017), which

provides labeled multidimensional arrays. Our motivation was to deduplicate the join between students

and colleges. However, we have achieved no storage or time improvement by doing so.

In addition to the replication effort, we focused on execution speed to be able to use the model as a syn-

thetic data generator in other works. For this purpose, random data for all future iterations is drawn at

initialization, and we took extensive care to use vectorized operations provided by the Numpy framework.

We do not provide an extensive benchmark but still enjoy more than 5 iterations per seconds on off the

shelf hardware.

4.4 Difficulties

In this section, we present the main issues encountered with respect to the description of the model in

the original paper (Reardon et al., 2018). Hereafter, inconsistent descriptions are quoted, but we refer the

reader to the full paper for more context. Afterwards, we describe the interpretation that we have followed

for the results presented in this paper.

1. Executing this model seems to require Stata version 11, but the dependency “college sorting napps.do” is not dis-

tributed in the archive.
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Socioeconomic status (SES)-based affirmative action.

— « It is during the calculation of A∗∗
cs that colleges with an affirmative action policy apply additional

weight to a student’s perceived admissions desirability in accordancewith that policy. This additional

weight is captured by the term Tc × [G× (Blacks | Hispanics) +H × resourcess]. In this term,

Tc indicates whether a college has an affirmative action policy, […]H is the size of the weight given

to students under SES-based affirmative action policies, which is applied linearly in accordance with

the student’s resources, resourcess. » (Reardon et al., 2018, Section 3)

— « SES-affirmative action (corresponding to an increase in admissions consideration of 0, 50, 100

and 150 achievement points for each decrease of one standard deviation in applicants’ resources); »

(Reardon et al., 2018, Section 4).

UsingH×resourcess as in the first quote would advantage high-income students, which is the opposite of

the objective. Moreover, the weight would not follow the description of the next two quotes, which involve

the standard deviation. In our implementation, a weight H × max(−zscore(resourcess), 0) is added to

the score of low-income students, with zscore being the standard score 2 with respect to resources, and

H the size of the weight (e.g., 0, 50, 100 and 150). We keep only negative values of the standard score

(see Figure B.2 for a version without truncation) to impact only low-income students (“for each decrease

of one standard deviation”). Note that while our interpretation is not totally satisfactory (see Section 4.5),

the formula of the first quote (see Figure B.1) was equally unsuccessful.

Quality and own achievement reliability.

— «Quality reliability and own achievement reliability bounded by minimum values of 0.5 and maxi-

mum values of 0.9. » (Reardon et al., 2018, Table 1)

— « the reliability of student perceptions of their own achievement, is a function of student resources

and bounded between 0.5 and 0.9 » (Reardon et al., 2018, Appendix C)

— « the reliability of student perceptions of college quality, is a function of student resources and

bounded between 0.5 and 0.7 » (Reardon et al., 2018, Appendix C)

Weassume that 0.7 is a typo and clip the values between0.5 and0.9. However, the impact is quite negligible

2. The zscore variable is the number of standard deviations by which the value of a raw score is above or below themean value

of what is being observed or measured
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as seed by comparing Figures 4.7 and B.3.

Race-targeted recruiting.

« Colleges’ binary recruitment statuses (Sc)–which had previously all been0–are set based onmodel param-

eters that determine which colleges will use recruitment […] Utility is then calculated using model-specific

recruitment magnitude values (L): U∗
cs = as + bs ×Q∗

cs +Rsc. » (Reardon et al., 2018, Appendix C)

There is no use ofSc in the document apart from the definition, andRsc is also not defined. We assume that

it is a typo and that Sc is to be understood asRsc. The recruitment magnitude valueL is not used (but is an

experimental parameter later). No specific definition of race-targeted recruitment is given but from « Re-

cruitment efforts work in part by making students aware of specific colleges and by making these colleges

seem more appealing to prospective students through additional, targeted contact with those students. »

(Reardon et al., 2018, Section 3) our understanding is that targeted groups have an increased chance of ap-

plying to colleges using race-targeted recruitment. However, the race attribute is not used in conjunction

with L.

We assume that the race-targeted recruitment weight is added to the perceived utility of attending colleges

for minority students, such that

U∗
cs = as + bs ×Q∗

cs +R× (Blacks | Hispanics)× T ′
c

in which T ′
c indicates whether a college uses race-targeted recruitment andR is the recruitment weight.

Quality update window.

It is unclear whether the quality of colleges depends only on the previous year or on the past five years:

— « Colleges’ quality values (Qc) are updated based on the incoming class of enrolled students before

the next year’s cohort of students begins the application process » (Reardon et al., 2018, Appendix C).

— « College quality is calculated as the five-year running average of enrolled student caliber. » (Rear-

don et al., 2018, Figure C5)

The later point is given in the caption of a figure, whereas the first is part of the model description. Using
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only the previous year to update colleges’ quality gives satisfying results (see Figure 4.8). Thus, we assume

that the five-year running average is not used for the model but only to smooth the plots.

Initial college quality.

« Initial college quality (Q) is normally distributed » (Reardon et al., 2018, Appendix C), but the values of the

mean and variance are not given. We relied on the values from (Reardon et al., 2016): Q ∼ N (1070, 1302).

Admission probability estimation.

After the fifth iteration, each iteration requires fitting a logistic model on submitted application over the

past five years. This allows students to estimate their probability of admission into each college, which is

required for them to select a subset to apply to.

Apart from a significant speed increase, we observe no difference when fitting on the previous year only

(and using the previously fitted model’s parameters to initialize the new fit). However, our code still uses

the past five years.

Weights of affirmative actions and targeted recruitment.

The actual mapping between weights and their label changes between «moderate SES-based affirmative

action and moderate race-based recruitment, which corresponds to a weight of 100 and 75, respectively. »

(Reardon et al., 2018, Figure C3) and « strong SES-based affirmative action and strong race-based recruit-

ment, which corresponds to a weight of 100 and 75, respectively. » (Reardon et al., 2018, Figure C3)

4.5 Experiments

This section contains original figures from (Reardon et al., 2017) along with our replications, followed by

discussions of each result. To ease readability, we force the positioning of figures, which is therefore not

optimal. We apologize to the reader for the resulting empty spaces. Furthermore, please note that to

ease comparison we attempt–to the best of our ability–to reuse the style of the original figures, even when

not ideal. We also apologize for the gray color palette. Original figures in the published version of the

paper (Reardon et al., 2018) are colored. However, because of the high costs of the reproduction rights, we
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Description Domain

Number of years 30, 50

Number of top colleges implementing policy 0, 4

Race-based affirmative action weight 0, 150, 300, 260

SES-based affirmative action weight 0, 50, 75, 100, 150

Race-based recruiting weight 0, 25, 50, 100

Table 4.2 – Experimental parameters

chose to use the black and white versions of the preprint.

Our objectivewas to replicate the overall tendencies of themodel. We compare belowour replicated results

to the original results.

Figures 4.5 to 4.14 present side by side examples of reproduction, with plots taken from the preprint ver-

sion (Reardon et al., 2017) of the original paper (Reardon et al., 2018) (due to copyright issues) along with

our replication results. We attempt to replicate a representative subset of the plots, covering the gist of

the model: impact of race-based affirmative action (Figures 4.6, 4.13, and 4.14) and impact of SES-based

affirmative action and race-based recruitment (Figures 4.7 to 4.12). Additional replications are available in

Appendix B. Table 4.2 describes the available parameters and the values used in the experiments.

Figures 4.11 to 4.14 present the impact of the different strategies on the final (years 25 to 29) composition–

racial and socioeconomic 3–of enrolled students in colleges. Our replication effort involved experimenting

with the full set of plots presented in the original paper. We also resorted to additional plots (not pre-

sented in the original paper or the current one) to assess the correlation between admission probability

and academic achievement. Every experiment results from an average of 10 runs.

3. Our socioeconomic distribution is represented by the quintiles of the full students’ resources distribution (not only the

enrolled students) as doing otherwise results in incomparable categories.
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(b) Replication

Figure 4.5 – Minority enrollment without using affirmative action or recruiting.

The results without using positive discrimination policy presented on Figure 4.5 are similar to the original

paper. The first years appear to exhibit a reversed trend, which could be due to difference in the way the

logistic regression is being fitted.
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(b) Replication

Figure 4.6 – Minority enrollment with the top four colleges using real-world race-based affirmative action

(weight of 260).

Figure 4.6 shows that we replicated the main trends but still indicates an issue with race-based affirmative
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action: our replication leads to a greater impact on minority students.
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(b) Replication

Figure 4.7 –Minority enrollmentwith the top four colleges using strong SES-based affirmative action (weight

of 150) and strong race-based recruitment (weight of 100).

Looking at Figure 4.7, the combination of SES-based affirmative action and race-based recruitment is sat-

isfactory in terms of range, but the average impact on minority students is lower than the original. This is

also the case with Figure B.4 in Appendix B which considers the same parameters. However, race-based

and SES-based affirmative actions use the same mechanism, which leads us to believe that race�based

recruitment is successfully replicated with a potential issue for SES-based affirmative (as with Figure 4.6).
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(b) Replication

Figure 4.8 – College quality with the top four colleges using strong SES-based affirmative action (weight of

150) and strong race-based recruitment (weight of 100).

The behavior of quality on Figure 4.8 is similar to the original paper, indicating the adequacy of our quality

initialization. A strong claim in the original paper is the decline in quality of colleges using policies, which

is not as clear in our replication as only two of the four active colleges suffer such decline. This might be

attributed to the lower impact of our actions, as highlighted by the other figures.
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(b) Replication

Figure 4.9 – Mean achievement and proportion low-income with top four colleges using (respectively not

using) strong SES-based affirmative action (weight of 150) and strong race-based recruitment (weight of 100)

on the left sides, and real-world race-based affirmative action (weight of 260) on the right sides. Arrows

start at year 14 with no affirmative action, and end at year 29.

Figure 4.9 suffers from the same issue of affirmative actions as Figure 4.6, but the general behavior is similar

to the paper. Figures B.5 and B.6 in Appendix B present the same plot for minority and low-income students

with varying number of active colleges.

It is important to note that this figure corresponds to an average over 10 runs (as the original paper), which

requires the colleges to be sorted by quality.

The additional left-most arrow covers students who do not enroll. However, it is unspecified however

whether it captures students who do not enroll while having applied, being admitted or without condition.

We use the latter (see Appendix B).
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(a) Original (Reardon et al., 2017, Fig. 2)
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(b) Replication

Figure 4.10 – Black and Hispanic enrollment in colleges using SES-based affirmative action and race-based

recruitment, as a share of estimated enrollment under race-based affirmative action (using estimated real-

world affirmative action weight 260).

Figure 4.10 shows a successful replication of the general tendency of the model (i.e., the relative values)

and a failure in replicating the absolute numbers, probably due to the issue related to the affirmative action

observed above.
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Figure 4.11 – Racial composition of colleges using SES-based affirmative action and race-based recruitment,

by affirmative action and recruitment weights.
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(b) Reproduction

Figure 4.12 – Socioeconomic composition of colleges using SES-based affirmative action and race-based

recruitment, by affirmative action and recruitment weights.

Figures 4.11 and 4.12 shows a successful replication regarding the racial impact of targeted recruiting and SES-

based affirmative action strategies, but highlight an issuewith the socioeconomic composition (Figure 4.12).

Indeed, the impact of our SES-based affirmative action is higher than the original paper.
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Figure 4.13 – Racial composition of colleges using SES-based and racial affirmative actions, by affirmative

action weights.
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Figure 4.14 – Socioeconomic composition of colleges using SES-based and racial affirmative actions, by af-

firmative action weights.

Figures 4.13 and 4.14 lead to the same observation that SES-based affirmative action is not behaving as the

original paper. However, race-based affirmative action is satisfactory. Note that the combinations (race

weight = 150, SES weight = 150) and (race weight = 300, SES weight = 75) are not presented in the original

paper.
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Result

Although we achieve mostly partial successes, the overall behavior is successfully reproduced, with dis-

crepancies regarding the impact of positive discrimination policies. We attribute the latter to issues with

our understanding of the paper, thus highlighting the difficulties of describing and understanding complex

systems, and the need for open-access to code. The resulting implementation, while not producing re-

sults entirely faithful to the ones from the original paper, can still be useful to simulate data grounded in

real-world in the context of college admission.

4.6 Towards an unfairness warning system

This section presents the next step towards building an unfairness warning system based on the model

presented in this chapter.

4.6.1 Long-term dynamic

To observe the impact of fairness concepts on the long-term, we need to model two concepts of long-term

impact: the feedback loop and a “snowball effect”. The first is already encompassed in the dependencies

across states, since variables which represent the context of the decision are impacted by previous deci-

sions, mainly quality of the colleges and probability of admission.

4.6.1.1 Snowball: decision accumulation

To model the snowball effect, we add a dynamic aspect to the students, so that innate attributes of individ-

uals are impacted by previous states. Our original definition of the snowball effect considers decisions at

each steps as features for the next. This would imply (1) an ever-growing accumulation of features and (2)

a require several modifications to the decision process itself, whereas we try to keep the model as is. In-

stead of following this individual formulation, we could apply the accumulation on the groups: the weights

and distribution of resources and achievement of racial groups are modified according to their respective

enrollment, as represented by the red arrows on Figure 4.1. This formulation is equivalent to our original

definition if we consider an aggregating step: rather than appending decision y to the features X , we set

the new features as a function ofX and y. A way to view our proposition is to consider students as children

of the parent cohort, benefiting from their successes. In short, we canmodel the impact on students in two
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ways:

Representativity The weights of the race distribution can be modified to fit the enrollment success of

each race. This impacts the representativity of each group, and models a unique cohort of students

going to successive stages of selection.

Reproduction The race-based weights of achievement and resources can be penalized or advantaged

depending on the enrollment rate of past cohorts, potentially taking into account the quality of

colleges in which students where enrolled. This would correspond to future students benefiting or

not from their parents academical background.

4.6.2 Interventions

Themodel allows for a broad kind of fairness intervention policies. First, it mixes different kinds of decisions:

(1) a numerical estimation of the probability of admission used by students, (2) an optimization problem to

build the application portfolio, (3) a top-k ranking for the admission of students, as well as finally a top-1

ranking for the final enrollment. Since eachmechanism can independently use noisy observation or perfect

observation, different combinations can be envisioned. In particular, the point (3) allows our model to be

used to evaluate fair rankings (Zehlike et al., 2023), while the point (1) would allow tools such as (Bellamy

et al., 2019) to be plugged in, providing multiple fairness-aware machine learning models.

Apart from algorithmic interventions, the way bias is added through observation of variables by students

and colleges (e.g., through the SAch, CAch, and SQual variables), allows for more classical fairness policies

to be studied. Affirmative action, in the form of a bonus weight added to minority groups, is already part

of the model. Random noise can be used as a baseline by removing the correlation between observation

noise and race.

4.6.3 Reference scenarios

In addition to providing a playground for multiple fairness-aware algorithms, the model allows for many

different fairness assumptions. As discussed in Section 1.2, the particular state of reference used to evaluate

fairness is crucial, and a matter of social consideration. Leveraging a simulation is particularly interesting

here since we can compare the impact of using a particular reference. Figure 4.15 illustrates such options

with red arrows. Fair transitions of the alternate chain can be achieved by accessing the pre-bias students

variables (i.e., “innate”) resources and achievement, which are available as random variables beforemixing.
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When evaluating fairness at state Si, several references can be used:

Previous using the previous state is the typical choice of many fairness papers, with the data used to

“train” the current state Si is used as reference;

Past similarly, an arbitrary state in the past Sj can be used, increasing the window of observation;

Initial although generally undefined in real-world scenarios, we can also use the initial state of the

simulation S0;

Alternative more interesting, we can use for reference an alternative state Si′′ which is the result of

using an alternative transition, for example one implementing a specific fairness intervention, as

defined above;

Parallel finally, as an option only available in the context of a simulation, we can use for reference a state

Si′ , which is the state existing in a parallel chain in which every transition was using an alternative

fair transition.
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4.6.4 Red flag notion of fairness

The idea of “automated ‘early warning system’ for discrimination” is proposed in (Benbouzid, 2023), and

we share this objective with this model. This requires the definition of a “warning”, therefore needing an

indicator to be selected. However, selecting one fairness metric above the others would go against this

thesis. As an agnostic fairness metric–if any–we advocate for a distance between distributions, such as the

earthmover’s distance for instance. This does not provide a fairness notion by itself–outside of the extreme

case of requiring everyone to receive the samedecision, but can be used as a “red flag” indicating a potential

issue to be investigated. Indeed, itwould be “raised”whendisparity arises between the distributions of both

attributes and decisions across groups, alerting experts of the field that a deeper inspection is required to

ensure that themechanism under scrutiny is fair. Rather than taking a state as reference as discussed above,

we would then need to compare the evolution between two states of time, assessing the rate by which the

distance increases (or, ideally, decreases) and comparing that rate to another one. This is represented
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with blue arrows on Figure 4.15, in which the distribution changes V−1 (between states Si and Si−1) can

be compared to the change V ′′ or V ′. This approach would allow to define a “(un)fairness rate”, which

corresponds to a direction (i.e., increase or decrease of distance) and velocity of (un)fairness. Rather than

adding to the existing fairness metrics, this could serve as a way to detect if an investigation by proper

experts is potentially needed.
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CONCLUSION

In this thesis, we have attempted to highlight the intrinsic difficulties of applying technical solutions to social

issues, and how these solutions appear unsuited to the actual concern. More precisely, first we have looked

at the difficulties encountered when state-of-the-art privacy-preserving mechanisms need to be applied

under strong–if not immutable–utility and transparency constraints. This clash is arising with the will to

develop technological tools benefiting from data that is, at the same time, subject to social requirements,

as is the case with legal proceedings.

Afterwards, we shifted towards the evaluation of privacy empirical guarantees, with the objective of better

understanding how formal frameworkswould impact real-life data and processes. Thiswas done by creating

a framework to help with the instantiation of attack challenges, and by organizing a competition on the

issue of membership inference attacks of privacy-preserving synthetic data. Our hope is to organize further

editions, and potentially to tackle further questions such as the aforementioned trade-off between privacy

and utility of natural language sanitization, or the study of the fairness impact of privacy mechanisms.

As a last contribution, we finally turned to fairness issues with the objective of proposing a framework to

observe long-term dynamics of technical fairness notions. To this end, we reproduced and adapted amodel

originating from the community of education policy, with the aim of providing a technical tool grounded in

reality. This last point should be thought as both the ending note of this thesis and the broad direction that

we identify for the future of this work: identifying not how to use social concepts in technical contexts, but

rather identifying when and how technical tools can be used to help with those social issues. Therefore,

keeping social issues in the domain of social sciences, and avoiding the technicization of social concepts as

if the “technical” was outside the sociotechnical system.
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APPENDIX A

COLLEGE-STUDENT MODEL

In this appendix we present in details the model as described in (Reardon et al., 2018).

A.1 Notation and variables

Variables

All used variables along with their dimensions and indexes are listed in Table A.1. We note S the set of

students, C the set of colleges, and Y the set of iterations.

A.2 Model

For each run of the model, J = 40 colleges are generated. At each iteration, a new cohort ofN = 10000

students is sampled. Colleges are represented by a quality attribute Q, initially drawn from a normal dis-

tributionN (130, 1100). Students have three attributes: race, resourcesR, and achievementA. The latter

two are sampled from race-specific bivariate normal distributions with non-zero correlation.

Three successive decisions are taken at each iteration:

1. Students apply to a subset of colleges;

2. Colleges admit a subset of students from the applications;

3. Students enroll into the best college they are admitted to.

Race is samples from a categorical distribution as given in Table A.2.

Resources and achievement are sampled from bivariate normal distributions with non-zero correlation and

conditioned on race. The student model can be expressed as the followingmixture model, with parameters

of the components given in Table A.3.

Race ∼ Categorical(θRace) (A.1)

Res,Ach | Race = Normal2(µz,Σz) (A.2)
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Name Index Dimension Description

Race y, s Y × S Student’s race

Res y, s Y × S Student’s resources

Ach y, s Y × S Student’s achievement

Qual y, c Y × C College’s quality

SAch y, s Y × S Student’s perception of self achievement Ach

CAch y, c, s Y × C × S College’s perception of a student’s achievement Ach

SQual y, c, s Y × C × S Student’s perception of a college’s quality Qual

NApp y, s Y × S Student’s number of applications

NAdm y, c Y × C College’s number of admissions

YieldEnr) y, c Y × C College’s enrollment yield

ρAS y, s Y × S Reliability of SAch

ρQS y, s Y × S Reliability of SQual

ρAC Reliability of CAch

Util y, c, s Y × C × S Student’s perceived utility of attenting a college

PAdm y, c, s Y × C × S Probability of a student being admited to a college

App y, c, s Y × C × S Application of student to college

Adm y, c, s Y × C × S Admission of student to college

Enr y, c, s Y × C × S Enrollment of student to college

Table A.1 – Variables

Code Name Probability

A Asian 0.05

B Black 0.15

H Hispanic 0.2

W White 0.6

Table A.2 – Race distribution
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Race
Resources Achievement

Correlation ρ
µR σR µA σA

Asian 0.012 0.833 1038 202 0.441

Black -0.224 0.666 869 169 0.305

Hispanic -0.447 0.691 895 185 0.373

White 0.198 0.657 1052 186 0.395

Table A.3 – Parameters of ressources and achievement

Figure 4.1 proposes an abstract view of the model, dropping the educational context. Individuals have a

sensitive attribute Z, which impacts their attributes I and E. Attributes I is innate–that is they cannot be

acted upon–and attributesE are external (i.e. received). Those two kinds of attributes are combined as an

observed feature setX , with the “objective” ofX capturing I but suffering the impact of E. A decision Y

is taken on X , and on some context Q independent of the individuals. The decision then impacts future

contexts and future external variables.

A.2.1 Application

During the first stage, students select a subset–called portfolio–of colleges to apply to. Students observe

colleges’ quality with some amount of uncertainty which represents “imperfect information and idiosyn-

cratic preferences”. This error depends on students’ resources as a way to model high-resources families

having better information about college quality.

ρQS = max(0.5,min(0.9, 0.7 + 0.1× Res) (A.3)

τ = var(Qual)× (1− ρQS)× 1/ρQS (A.4)

u ∼ N(0, τ) (A.5)

SQual = Qual+ u (A.6)

Students use observed college quality to evaluate the utility of attending that college:

Util = SQual− 250 (A.7)
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Students may augment their own achievement, and they perceive their own achievement with noise. Thus,

their assessment of their achievement, for purposes of deciding where to apply, is:

ρAS = max(0.5,min(0.9, 0.7 + 0.1× Res) (A.8)

σ = var(A)1− ρAS × 1/ρAS (A.9)

e ∼ N(0, σ) (A.10)

α = 0.1× Res× σAch,Race (A.11)

SAch = Ach+ α+ e (A.12)

where αs represents enhancements such as extracurricular activities. As above, the error in a student’s

assessment of his or her own achievement has a variance that depends on his or her family resources.

Based on their noisy observations of their own achievement and college quality, students estimate their

probabilities of admission into each college using a logistic model fitted on admission patterns over the

prior 5 years. For the first 5 years of the simulation, the intercept is set to 0 and the slope to -0.015.

Each student applies to a set of NApp = 4+ [0.5×R] colleges that maximize their overall expected utility.

A.2.2 Admission

The second decision phase consists in the admission of students by colleges.

Colleges observe the achievement of applicants with some noise, similar to the observation of quality by

students and serves the same purpose. Colleges assess students’ achievement with a reliability of 0.8.

ϕ = var(A)× 1− 0.8

0.8
(A.13)

w ∼ N(0, ϕ) (A.14)

A∗∗ = As + α+ w (A.15)

“in the model, colleges’ uncertainty and idiosyncratic preferences have the effect of adding noise with a

standard deviation of 100 points (half a standard deviation of achievement) to each student’s application.”

Colleges rank applicants according to A∗∗ and admit the top NAdm = 150/Y ield applicants with the

objective of enrolling 150 students. The first iteration, colleges assume a proportion of admitted students
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expected to enroll yield computed as

Y ield = 0.2 + 0.6× (College rank percentile) (A.16)

“The lowest-quality college expects slightly over 20 percent of admitted students to enroll and the highest

quality college expects 80 percent of admitted students to enroll.” In subsequent iterations, colleges use

up to 3 years of enrollment history to compute the expected yield.

Note that, alternatively, we can use the survival function of the Qualdistribution to model the college rank

percentile.

A.2.3 Enrollment

Students enroll in the college with the highest estimated utility of attendance (U∗) to which they were

admitted.

A.2.4 Iteration

Colleges’ quality (Q) are updated each year based on the new enrolled students as:

Q′ = 0.09×Q+ 0.1× Ā, (A.17)

where Ā is the average value of A among the newest cohort of students enrolled in college c.

A.2.5 Simulation duration

The scenarios in (Reardon et al., 2018) last 30 or 50 iterations, with the first 10 years used as “bootstrapping”

to stabilizes iteration-dependent variables such as the logistic regression or colleges’ quality.
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APPENDIX B

FURTHER QUESTIONS OF REPRODUCTIBILITY

Condition None Applied Admitted Original

Mean achievement 990.01 979.33 1177.59 ∼ 800

Prop. minority 0.35 0.36 0.17 ∼ 0.6

Prop. low-income 0.6 0.59 0.4 ∼ 0.5

Table B.1 – Values for Figure 4.9 (red arrow only) when considering students who do not enroll without

condition, while having applied, or while being admitted. The last row displays the values from the original

figures. Restricting to student having applied gives similar results as having no condition, while capturing

only students with an admission gives values further to the original ones.
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Figure B.1 –Minority enrollmentwith the top four colleges using strong SES-based affirmative action (weight

of 150) and strong race-based recruitment (weight of 100) using the formula provided in (Reardon et al.,

2018) for the SES-based affirmative action. See Section 4.4
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Figure B.2 –Minority enrollmentwith the top four colleges using strong SES-based affirmative action (weight

of 150) and strong race-based recruitment (weight of 100) with penalization of high-income students (no

truncation to≥ 0). See Section 4.4
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Figure B.3 –Minority enrollmentwith the top four colleges using strong SES-based affirmative action (weight

of 150) and strong race-based recruitment (weight of 100) truncating reliability of student perceptions of

college quality to 0.7. See Section 4.4
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Figure B.4 – « Changes in Black and Hispanic Enrollment over Time with Top 4 Colleges using Moderate SES-

Based Affirmative Action and Moderate Race-Based Recruiting » (Reardon et al., 2017, Figure C3)
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Figure B.5 – « The mean achievement and proportion minority by number of schools using admissions poli-

cies. » (Reardon et al., 2017, Figure D2)
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Figure B.6 – « The mean achievement and proportion low-income by number of schools using affirmative

action. » (Reardon et al., 2017, Figure D3)
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