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Accepted 2020 November 18. Received 2020 September 14; in original form 2020 May 6

S U M M A R Y
Surface wave tomography is a valuable tool for constraining azimuthal anisotropy at regional
scales. However, sparse and uneven coverage of dispersion measurements make meaningful
uncertainty estimation challenging, especially when applying subjective model regulariza-
tion. This paper considers azimuthal anisotropy constrained by measurements of surface wave
dispersion data within a Bayesian trans-dimensional (trans-d) tomographic inversion. A re-
cently proposed alternative model parametrization for trans-d inversion is implemented in
order to produce more realistic models than previous studies considering trans-d surface wave
tomography. The reversible-jump Markov chain Monte Carlo sampling technique is used to
numerically estimate the posterior probability density of the model parameters. Isotropic and
azimuthally anisotropic components of surface wave group velocity maps (and their asso-
ciated uncertainties) are estimated while avoiding model regularization and allowing model
complexity to be determined by the data information content. Furthermore, data errors are
treated as unknown, and solved for within the inversion. The inversion method is applied to
measurements of surface wave dispersion from regional earthquakes recorded over northern
Cascadia and Haida Gwaii, a region of complex active tectonics but highly heterogeneous
station coverage. Results for isotropic group velocity are consistent with previous studies that
considered the southern part of the study region over Cascadia. Azimuthal anisotropic fast-axis
directions are generally margin-parallel between Vancouver Island and Haida Gwaii, with a
small change in direction and magnitude along the margin which may be attributed to the
changing tectonic regime (from subduction to transform tectonics). Estimated errors on the
dispersion data (solved for within the inversion) reveal a correlation between surface wave pe-
riod and the dependence of data errors on travel path length. This paper demonstrates the value
of considering azimuthal anisotropy within Bayesian tomographic inversions. Furthermore,
this work provides structural context for future studies of tectonic structure and dynamics of
northern Cascadia and Haida Gwaii, with the aim of improving our understanding of seismic
and tsunami hazards.
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1 I N T RO D U C T I O N

Seismic anisotropy is the dependence of seismic wave speeds on the
direction of propagation, and manifests the coherent alignment of
rock fabrics via deformation in the crust and upper mantle. As such,
measuring seismic anisotropy is valuable for understanding Earth’s
evolution, dynamics and structure. Deformation can result in lattice

preferred orientation (sometimes called crystallographic orienta-
tion) of intrinsically anisotropic minerals, and shape preferred ori-
entation of discontinuous and heterogeneous Earth structure (Mon-
tagner & Guillot 2002). Seismically observable anisotropy in the
crust is generally attributed to rock microfractures, the alignment of
anisotropic minerals with major foliations and layered sequences of
sedimentary rocks (Babuska & Cara 1991). Anisotropy in the upper
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mantle may be explained by the alignment of anisotropic olivine
minerals (Montagner & Anderson 1989; Babuska & Cara 1991).
When subjected to a simple shear force, olivine aggregates develop
a lattice preferred orientation via dislocation creep, with a fast-axis
direction parallel to the direction of shear (Karato et al. 2008). For
these reasons, seismic anisotropy reflects the record of deformation
within the Earth and provides useful constraint on the dynamics of
the crust and mantle.

Seismic anisotropy can be estimated from single station tech-
niques to much larger spatial scales. Observations of shear wave
splitting from refracted teleseismic body wave (e.g. SKS) phases
offer a relatively simple method for constraining 1-D anisotropy
beneath a seismograph station (e.g. Vinnik et al. 1989, 1992; Sav-
age 1999). Shear wave splitting is also commonly considered using
local earthquake data in order to constrain crustal anisotropy (e.g.
Balfour et al. 2012). However, since these measurements represent
the depth-integrated effect of anisotropy beneath the station, they are
typically interpreted as the result of a single layer of anisotropy, with
a trade-off between the thickness of this layer and the anisotropic in-
tensity. The effects of multiple anisotropic layers beneath a station
are challenging to interpret. Single-station azimuthal dependence
has also been observed in teleseismic receiver function studies and
has been attributed to anisotropic layering structure (e.g. Savage
1998; Audet 2015). For such methods, the lateral resolution of
anisotropy depends on the spatial distribution of seismograph sta-
tions that record body waves.

Azimuthal anisotropy has been constrained using surface waves
via tomographic inversions at regional (e.g. Darbyshire & Lebedev
2009; Darbyshire et al. 2018; McLellan et al. 2018) and global (e.g.
Schaeffer et al. 2016) scales. Such tomographic studies constrain
both the lateral and depth variations in anisotropy, since different
periods of surface waves are sensitive to structure at different depth
ranges in the Earth. To date, these studies utilize linearized and regu-
larized inversions, where the resulting model depends on the choice
and level of regularization. Such methods must simultaneously solve
for the distribution of isotropic seismic velocities, in addition to seis-
mic anisotropy, with the caveat that anisotropic structures are not
as well resolved as isotropic features. As a result, anisotropy within
these models must be regularized more strongly. Such choices make
quantification of uncertainty of the various isotropic and anisotropic
features, and their interpretation, difficult. Furthermore, regulariza-
tion of anisotropy within a model is challenging. As discussed in
Schaeffer et al. (2016), this is particularly important in polar regions
where standard smoothing and gradient damping methods may pro-
duce model artifacts (where anisotropic structures appear to circle
the poles or point towards them), due to the significant changes in
ray azimuth direction (relative to north) along travel paths at these
latitudes.

Understanding and quantifying the uncertainties in estimated
anisotropy allows for more reliable interpretation of these struc-
tures. In recent years, Bayesian methods have become popular
for solving seismic tomography problems in studies considering
surface wave (e.g. Bodin & Sambridge 2009; Bodin et al. 2012;
Zulfakriza et al. 2014; Galetti et al. 2017) and body wave (e.g. Piana
Agostinetti et al. 2015) traveltime data. Bayesian inversion allows
for rigorous uncertainty quantification in geophysical inverse prob-
lems. Bayesian inversion is a probabilistic approach in which model
parameters (e.g. the distribution of isotropic seismic velocities and
anisotropy) along with the observed data are treated as random
variables. These model parameters are constrained by data as well
as prior information, which may be informative (thereby provid-
ing additional constraint) or uninformative (allowing the solution to

be entirely constrained by data information content). The posterior
probability density (PPD) of the model parameters is the solution
to the inverse problem. Typically, the PPD is numerically estimated
using Markov chain Monte Carlo (McMC) methods (Mosegaard &
Tarantola 1995; Brooks et al. 2011). A preferred model and associ-
ated uncertainty can be determined from features of the PPD.

Studies that have considered Bayesian seismic tomography have
typically applied an adaptive model parametrization that allows
the spatial complexity of the model to be determined by the data
information content. In such a framework, the number of model
parameters is treated as an unknown within the inversion. These
methods are commonly referred to as trans-dimensional (trans-d),
as the PPD spans multiple possible model dimensions (i.e. a dif-
ferent number of model parameters). In this case, the generalized
reversible-jump Markov chain Monte Carlo (rjMcMC) algorithm is
used to numerically estimate the PPD (Green 1995, 2003). Trans-
dimensional inversion allows for increased model complexity where
it is required by the data, and estimates of model uncertainty include
the uncertainty in the model complexity/parametrization. Conse-
quently, this method avoids subjective regularization choices that
can preclude meaningful uncertainty analysis, as well as avoiding
user-based choices of a particular model complexity.

This work aims to incorporate azimuthal anisotropy in a trans-d
Bayesian tomographic inversion of surface wave dispersion data in
order to avoid subjective regularization procedures, as well as to
quantify the uncertainty in the orientation of seismically detectable
rock fabrics. Our work is motivated by the modelling challenges
posed by data collected along the west coast of Canada. The com-
plex interactions between the North American (NA), Pacific (PA)
and Juan de Fuca (JdF) plates along the coast of British Columbia
produces significant seismicity, as well as a poorly understood tran-
sition between the Cascadia subduction zone and the transpressive
Haida Gwaii region (Fig. 1). Resolving seismic velocity structure
(isotropic and anisotropic) in this region using standard single-
station passive seismological techniques is complicated by the spar-
sity of station coverage to the west of the plate boundaries, with a
large gap between Vancouver Island and Haida Gwaii. Body wave
derived velocity models (i.e. tomography, receiver functions) suffer
from insufficient lateral sampling of the 3-D volume. However, sur-
face waves can efficiently sample volumes where station coverage
is sparse. We demonstrate our novel inversion approach through
synthetic experiments, and apply this method to resolve anisotropic
surface wave velocities across northern Cascadia and Haida Gwaii.
We consider surface wave dispersion measurements obtained from
recordings of regional earthquakes over several decades. These mea-
surements allow for robust estimation of anisotropic Rayleigh-wave
group velocity maps at periods between 15 and 50 s. Our results
demonstrate the value of this novel inversion technique and pro-
vide an initial step towards resolving a full, 3-D, seismic velocity
model in future work, with the incorporation of additional data sets.
Furthermore, this work provides broad structural context for future
seismic station deployments (both onshore and offshore) to study
the tectonic structure and dynamics of the region, with the aim of
improving our understanding of seismic and tsunami hazards.

2 T E C T O N I C S E T T I N G

The west coast of British Columbia is the most seismically active re-
gion in Canada, with a history of large earthquakes and tsunamis and
the potential for hosting future large events. The region comprises
a number of active tectonic boundaries including the northernmost
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1726 J.M. Gosselin et al.

Figure 1. Tectonic setting of coastal British Columbia (a). Contours define the top of the JdF plate beneath NA (in kilometres) from Bostock et al. (2019).
Tectonic boundaries are shown in blue. The yellow shaded region marks the possible extent of subduction of the PA plate beneath Haida Gwaii from plate
kinematics (Smith et al. 2003). Plate motions are shown by black arrows and are relative to NA (Kreemer et al. 2003). HG and VI represent Haida Gwaii
and Vancouver Island, respectively. Political boundaries are shown in white. AK, BC, AB, WA, OR, CA and NV represent Alaska, British Columbia, Alberta,
Washington, Oregon, California and Nevada, respectively. The red circle marks the epicentre of the 2012 Haida Gwaii Earthquake. Broad-band seismic stations
considered in this work, and seismicity with magnitude greater than 4.5 between 2000 and 2019 are shown in (b).

extent of the Cascadia subduction zone, which has historically pro-
duced large megathrust earthquakes and associated tsunamis (Nel-
son et al. 1995; Satake et al. 1996, 2003). North of Cascadia, the
termination of subduction involves a number of triple junctions
that are poorly understood (Fig. 1). This produces significant seis-
micity and a complex system of transform faulting (Hutchinson
et al. 2019), as well as the breakup and possible capture of the
Explorer (Ex) microplate (formerly part of the JdF plate) by the
NA Plate (Braunmiller & Nábělek 2002; Audet et al. 2008; Savard
et al. 2020). Near Haida Gwaii, along the northernmost coast of
British Columbia, the transpressive interaction between the PA and
the NA plates produces significant seismicity, including Canada’s
two largest instrumentally recorded earthquakes (Bostwick 1984;
Cassidy et al. 2014). Margin-parallel motion between the PA and
NA plates is predominantly accommodated by the strike-slip Queen
Charlotte Fault (QCF). North of Haida Gwaii, the QCF continues
into Alaska as the Fairweather fault. The orientation of the QCF
with respect to the direction of plate motion requires that a com-
ponent of convergence of approximately 15 mm yr–1 exists across
the margin (Kreemer et al. 2003). However, the nature of how plate
convergence is accommodated across Haida Gwaii is unsettled.

A significant body of geophysical evidence including seismic
velocity structure, thermal and gravity modelling suggests conver-
gence is accommodated by subduction, or underthrusting, of PA
beneath NA (Hyndman 2015; Gosselin et al. 2015, and references
therein). On 28 October 2012, a moment-magnitude 7.8 thrust earth-
quake occurred off the west coast of Haida Gwaii producing a large
local tsunami (Leonard & Bednarski 2014; Cassidy et al. 2014). The
2012 earthquake occurred on a shallow northeast-dipping thrust
fault, confirming the presence of some form of convergent strain
accumulation offshore of Haida Gwaii. Plate kinematic models
place the leading edge of the subducting PA plate east of Haida

Gwaii (Fig. 1), assuming subduction initiation between 3.9 and
8 Ma, and a location of convergence initiation between northern
Vancouver Island and Haida Gwaii (Smith et al. 2003). Despite the
geophysical evidence and the occurrence of the 2012 thrust earth-
quake, the model of oblique subduction beneath Haida Gwaii does
not explain all observations in the region. Microseismicity along
the west coast of Haida Gwaii occurs predominantly in the vicinity
of the QCF (Bérubé et al. 1989; Bird et al. 1997). In the northern
Haida Gwaii region, earthquake focal mechanisms are predomi-
nantly strike slip and consistent with the QCF (Ristau et al. 2007).
In the southern Haida Gwaii region, most earthquakes have thrust
mechanisms, though they do not reside on the same fault as that of
the 2012 event. There is no clear evidence of Wadati-Benioff seis-
micity in the region, and all of the observed aftershocks from the
2012 event were observed offshore beneath the Queen Charlotte Ter-
race, and none beneath Haida Gwaii (Cassidy et al. 2014). Further-
more, recent submarine geomorphological mapping suggests plate
convergence rates across Haida Gwaii may be significantly less than
previously reported, and may be insufficient for subduction initia-
tion (Brothers et al. 2020). Understanding the extent (or existence)
of subduction has implications for the tectonic history, structure,
and dynamics of the region including the size of major seismogenic
zones along the margin. Constraining the transition from pure sub-
duction beneath southern Vancouver Island to transpressive defor-
mation near Haida Gwaii is an important objective for understand-
ing the hazards posed by large earthquakes along the west coast of
Canada.

3 S U R FA C E WAV E D I S P E R S I O N DATA

Regional earthquakes typically release surface wave energy over pe-
riod ranges that are sensitive to crustal and uppermost mantle depths,
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Figure 2. Fundamental-mode Rayleigh wave group-velocity depth sensitiv-
ity for periods considered in this work, calculated using a simple 40-km-thick
crustal model (available in the supplementary material).

making the dispersion measurements obtained from regional earth-
quakes useful for studies of tectonic structure (Fig. 2). In general,
group velocity dispersion is simpler to measure than phase velocity
dispersion, as no information on the earthquake source–time func-
tion is required. Since the source group time (the earthquake effect
on surface wave traveltime) is effectively negligible for earthquakes
shallower than approximately 25 km, for periods less than approx-
imately 75 s (Levshin et al. 1999), a wide range of earthquakes
can be considered (including those without centroid moment tensor
solutions). In contrast, accurate information of the source phase
is required for single-station phase velocity measurements from
earthquakes. Phase velocity (and group velocity) dispersion mea-
surements can also be obtained via multistation interferometric ap-
proaches (e.g. Bensen et al. 2007), where source phase information
is factored out of the processing procedure. These techniques re-
quire concurrently operating seismic stations. Unfortunately, many
of the broad-band seismic stations in western Canada considered in
this work were temporary deployments that predominantly did not
run simultaneously (Fig. 1). Measurement errors for group velocity
dispersion are typically larger than for phase velocity measurements
(e.g. Bensen et al. 2008). The interpretation of group velocity maps
is also more complex (due to the negative depth sensitivity even
in fundamental mode sensitivity kernels). Nonetheless, group ve-
locity dispersion is a valuable measurement that leads to improved
data path coverage in tomographic inversions, which is particularly
valuable in this study as station coverage along the west coast of
Canada is sparse (Fig. 3).

We used recordings of regional earthquakes from over 300 broad-
band seismic stations from both permanent and temporary cam-
paign networks with varying deployment times (see supplement for
a complete list of stations used in this study). For each station,
we used events with magnitude greater than 4.5 between 2000 and
2019 (see supplement for a complete list of events used in this

study). For some stations with long deployment times (i.e. several
decades), we analysed over 400 events. The majority of the earth-
quakes considered here are associated with the JdF ridge and QCF
(Fig. 1b). We extract 30-min vertical-component seismograms for
each event at each available station. Next, we remove the instru-
ment response from each seismogram and apply a zero-phase band-
pass filter for periods 5–100 s to suppress microseismic noise and
long-period instabilities. Assuming the vertical-component record-
ing of the surface wave coda is dominated by the fundamental-mode
Rayleigh wave, basic group velocity dispersion measurements can
be obtained from the maximum amplitude of the wave train enve-
lope as a function of time and period. For a known source–station
distance, this time-dependence can be easily converted to (group)
velocity. In this study, we measure Rayleigh wave group velocity
from regional earthquakes using the multiple-filter analysis tech-
nique implemented by Herrmann (2013), which allows for manual
selection of the velocity-period envelope range for each seismogram
(Fig. S1). This is important as each earthquake is unique, and the
period range of surface wave energy recorded at each station can
vary. Furthermore, significant quality control is required when con-
sidering dispersion data from earthquake recordings, which can be
accomplished via visual inspection and manual selection. In total,
over 30 000 seismograms were analysed, of which over 8000 yielded
usable dispersion curves. Although data processing involves man-
ual selection of dispersion curves in group velocity space, the data
are considered as traveltime measurements in the tomographic in-
versions. This is particularly important as surface wave travel paths
are updated within the inversion (as discussed in the next section),
and the estimated group velocities from the manual selection as-
sumes surface waves travel along minimum distance great circle
paths.

A common practice in tomographic studies that consider regional
earthquakes is to bin and average measurements from earthquakes
that are in close proximity to each other. This technique is used
to reduce the number of data that must be considered in linearized
tomographic inversions as well as to reduce the effect of path bias,
where the data are dominated by paths over a particular region.
However, such binning procedures make characterization of data
errors more challenging, and can lead to incorrect data weighting
if not accounted for. In an effort to remove outliers from the dis-
persion data set without altering the measurements themselves, we
implement a modified binning strategy. We examine the measure-
ments within each source bin (with a radius of 100 km) recorded
at each station individually and discard outlier data using a median
absolute deviation threshold of 2.5. However, we do not average
the data within each source bin but rather retain each individ-
ual measurement. Regardless of this procedure, the final data set
may still contain outliers if some source bins do not contain a
sufficient number of events (<3). Additional treatment of outliers
is considered within the inversion methodology (discussed in the
next section). We also discard data that have a propagation path
length shorter than five wavelengths. The final number of paths
considered at each period after this procedure is shown in Fig. 3.
We made group velocity dispersion measurements over the period
range between 10 and 80 seconds. However, only periods between
15 and 50 s produced adequate path coverage for tomographic inver-
sions with the aim of resolving anisotropy. Specifically, paths over a
wide range of directions are required in order to resolve azimuthal
anisotropy in tomographic inversions. In this work, azimuthal path
coverage is best over the coastal region of British Columbia includ-
ing Vancouver Island, Haida Gwaii and the continental shelf (Figs S2
and S3).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/224/3/1724/5996191 by U

niversite du Q
uebec a M

ontreal user on 17 D
ecem

ber 2020



1728 J.M. Gosselin et al.

Figure 3. Surface wave path coverage at periods considered in this work. Earthquake locations and recording stations are shown by red stars and blue triangles,
respectively. The total number of data considered in the inversion at each period is shown above each map.

4 I N V E R S I O N M E T H O D O L O G Y

We consider the contributions from isotropic and azimuthally
anisotropic components in the inversion of surface wave disper-
sion data. The parameters that describe the group velocity maps
are adaptively defined over a distribution of nodes, where the num-
ber and location of the nodes is determined as part of the inver-
sion. Furthermore, we treat the errors in the dispersion data as
unknown within the inversion. We solve for all model parameters
(including hyperparameters describing the model parametrization

and data error distribution) within a Bayesian framework in or-
der to reduce overall model dimensionality (compared to linearized
approaches) and avoid subjective regularization procedures. Each
one of these steps is detailed in the sections below. Bayesian in-
version and associated numerical methods are discussed in Taran-
tola (2005) and Brooks et al. (2011). The specific application of
Bayesian inversion to surface wave tomography is discussed in de-
tail in Bodin & Sambridge (2009) and Bodin et al. (2012). We
note that the inclusion of azimuthal anisotropy within Bayesian
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surface wave tomography represents a novel extension of existing
methods.

4.1 Azimuthal anisotropy

Seismic anisotropy, in general terms, is the dependence of seismic
wave speeds on the direction of propagation. For simplification,
studies of seismic anisotropy typically assume hexagonal symme-
try and define two types of anisotropy depending on the orientation
of the axis of symmetry. Radial anisotropy assumes a vertical axis of
symmetry within the Earth, whereas azimuthal anisotropy assumes
a horizontal axis of symmetry. Consequently, such definitions of
anisotropy can be described by a magnitude and direction. This
work considers azimuthal anisotropy, and any reference to seis-
mic anisotropy henceforth is with respect to this type. Under the
assumption of hexagonal symmetry with a horizontal axis of sym-
metry, Smith & Dahlen (1973) approximate the velocity of a surface
wave propagating through an anisotropic medium at period T and
azimuth ψ to first order by

C(T, ψ) = C0(T ) + A1(T )cos(2ψ) + B1(T )sin(2ψ)

+A2(T )cos(4ψ) + B2(T )sin(4ψ), (1)

where C0(T) is the isotropic velocity of the medium. The 2ψ and
4ψ terms represent the velocity variations with π and π /2 period-
icity, respectively. Though eq. (1) was originally defined for surface
wave phase velocities, it may be applied to model group velocity in
a similar way (e.g. Pawlak et al. 2012; Yeck et al. 2017; Darbyshire
et al. 2018). It is recognized that Rayleigh wave data have low sen-
sitivity to anisotropy with π /2 periodicity, particularly in the mantle
where anisotropic signatures are expected to be simpler and lower
in magnitude. In the crust, complex interactions of multiple fabrics
could produce seismically observable patterns with π /2 periodic-
ity. However, for computational simplification, we only consider
anisotropy with π periodicity and neglect the 4ψ terms in eq. (1).
The spatial distributions of three quantities [C0(T), A1(T) and B1(T)]
are considered in the inversion.

4.2 Model parametrization

In any inversion, a choice must be made in order to define (or
parametrize) the model to be solved for. Using a grid with large
spacing can result in underfitting the data, where significant resolv-
able structure is ignored. Conversely, too small of a grid spacing can
result in overfitting data, where non-physical signatures in the data
(i.e. noise) are fitted, causing spurious model structures. Further-
more, small grid spacing can result in significant additional com-
putational expense. Irregular grids can be applied in tomographic
inversions as a geometric approach to impose uniform resolution
of model parameters or to estimate model resolution. For example,
Debayle & Sambridge (2004) use Voronoi diagrams to qualitatively
estimate the length scale of structures that can be resolved in global
tomographic inversion by optimizing the Voronoi parametrization
to satisfy an appropriate quality criterion. Such a parametrization is
defined by a set of nodes with assigned coordinates and values. The
model value at any point in space is defined by the assigned value of
the nearest node (i.e. nearest-neighbour interpolation), generating
a set of discrete geometric cells (Fig. 4). In this case, the size of
the individual Voronoi cells is proportional to the resolution length
scale for the model parameters. In Bayesian inversion, Bodin &
Sambridge (2009) introduced an adaptive model parametrization
to seismic tomography also using Voronoi cells. The advantage of

this parametrization is that regions in space where the data require
additional complexity will be modelled with additional nodes, and
vice versa. In this way, the Voronoi cell parametrization is a sim-
ple and intuitive means of spatial model adaptation based on data
information content.

In practice, however, Voronoi cells possess several undesirable
qualities for application to seismic tomography. Foremost, the dis-
crete nature of nearest-neighbour interpolation leads to individual
models that appear non-physical. Hawkins et al. (2019) recently
introduced an alternative means of adaptive model parametrization
in geophysical inversion. This approach is similar to Voronoi cells
in that it is defined using a distribution of nodes in space. Instead of
nearest-neighbour interpolation, a Delaunay triangulation is applied
to the nodes and the model quantity [in our case, C0(T), A1(T) and
B1(T)] at any point in space is linearly interpolated using the veloc-
ity values assigned to the nodes of the confining triangle (Fig. 4).
The Delaunay triangulation avoids narrow triangles by maximiz-
ing the minimum angle of the triangulation. Linear interpolation
within the triangles is easily calculated using Barycentric coordi-
nates (Sambridge et al. 1995; Hawkins et al. 2019). Here we apply
the Delaunay triangulation with linear interpolation, which naturally
produces more realistic models than Voronoi cells and are preferable
in tomographic inversion. Each node is assigned five parameters in
total: isotropic group velocity (C0(T)), two parameters describing
anisotropy with π periodicity [A1(T), and B1(T)], and two coordi-
nate values. Similar to Bodin & Sambridge (2009) and Bodin et al.
(2012) we solve for the number of nodes in the parametrization as
part of the inversion, allowing the overall complexity of the model
to be determined by the data information content.

4.3 Bayesian inversion

Bayes’ theorem can be written as

P(m|d, H ) = P(m|H ) P(d|m, H )

P(d|H )
, (2)

where d is a random variable (of length N) representing the observed
data (in this case, surface wave traveltimes at a particular period
of interest) and m is a random variable (of length M) represent-
ing model parameters that describe an anisotropic group-velocity
map. Measured data are a fixed realization of d in practice. Bayes’
theorem describes the relationship between conditional and joint
probabilities of d and m, where H is the specific model (e.g. the
parametrization or model dimension of the Rayleigh-wave group
velocity map). P(m|H) represents the prior knowledge of the model
parameters before the inversion. P(d|m, H) represents the likelihood
of m, or L(m) (for model H, since d is fixed). P(m|d, H) is the so-
lution to the inverse problem (the PPD) since it is the probability of
the model parameters given a specific model H, prior information,
and observed data. P(d|H) is a normalization term often referred to
as Bayesian evidence.

As discussed above, we parametrize the anisotropic Rayleigh-
wave group velocity map using Delaunay triangulation with lin-
ear interpolation across a set of nodes with associated properties
(isotropic velocity, and two anisotropic parameters). The number of
nodes in the model is unknown within the inversion procedure, and
the level of model complexity is thereby defined by data information
content. Consequently, the number of model parameters required to
describe the group velocity map is not fixed. Such inversion meth-
ods are commonly referred to as trans-d. The number of nodes in
the model is a hyperparameter within the inversion that indexes over
a countable set of possible model parametrizations (i.e. model H in
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1730 J.M. Gosselin et al.

Figure 4. Examples of Voronoi and Delaunay interpolations. A distribution of nodes with randomly assigned parameter values is shown in (a). The corresponding
Voronoi interpolation is shown in (b). The corresponding Delaunay triangulation over the nodes is shown in (c). The linear interpolation using Barycentric
coordinates within each triangle of the Delaunay triangulation is shown in (d).

eq. 2). In this case, the PPD represents the complete solution to
the inverse problem over this set of models and model dimensions.
Typically, an analytic solution for eq. (2) does not exist and nu-
merical methods are used to approximate the solution. Specifically,
we use the rjMcMC algorithm to draw a series of dependent (on
the previous sample) and asymptotically unbiased samples from the
PPD (Green 1995, 2003). This algorithm is a generalization of the
Metropolis–Hastings sampler, which is a standard McMC technique
(Metropolis et al. 1953; Hastings 1970). The rjMcMC algorithm in-
volves randomly perturbing a current set of model parameters m
(i.e. the number/position of nodes, and their associated properties)
to a new state m

′
, and accepting this perturbation with probability

A(m′|m) = min

[
1,

Q(m|m′)
Q(m′|m)

P(m′)
P(m)

L(m′)
L(m)

|J|
]

, (3)

where Q(m
′ |m) is the probability of proposing the new state from the

current state, and |J| is the determinant of the Jacobian matrix for the
transition between different model states. For model perturbations
that do not change the dimension of the model (i.e. moving node
positions and changing isotropic or anisotropic parameters), the
determinant of the Jacobian is unity. Careful choices of prior and
proposal densities also result in the determinant of the Jacobian
being unity for perturbations that change model dimensionality
(i.e. adding or removing nodes, Bodin & Sambridge 2009; Dosso
et al. 2014). Specifically, bounded uniform prior distributions are
used such that P(m) = P(m

′
). Prior bound widths are listed in

Table S1, and are selected in order to constrain model parameters to
realistic values while still allowing the solution to be predominantly
determined by the data. When perturbing a model parameter, a new
value is drawn from a Gaussian distribution centered on the current
value. In this way, proposal densities are symmetric [Q(m

′ |m) =
Q(m|m′

)]. In the case of adding a new node to the model, the
values of all the parameters associated to this node are drawn from

the prior. With the chosen prior and proposal densities, it can be
shown that eq. (3) simplifies to a ratio of likelihoods for all types
of model perturbations (Bodin & Sambridge 2009; Dosso et al.
2014). Given a sufficiently large number of samples, the rjMcMC
algorithm provides a good approximation to the PPD.

Within the inversion, the likelihood function depends on the as-
sumed distribution of the data errors, which is typically unknown.
The Central Limit Theorem suggests that data errors may follow a
multivariate Gaussian distribution, and a likelihood function defined
by this distribution is valid. However, in the presence of data out-
liers, a Gaussian likelihood may be biased. A Laplace distribution
is similar to the Gaussian distribution, but with higher probability
at greater distance from the mean (i.e. larger tails). Alternatively,
the Gaussian distribution can be viewed as the likelihood associ-
ated with the L2 misfit norm, whereas the Laplace distribution is
the likelihood associated with the L1 misfit norm. Consequently, the
Laplace distribution is more tolerant of data outliers. As discussed
in the previous section, earthquake data from regions with limited
seismicity may elude the source binning procedure and introduce
outliers into the dispersion data set. For this reason, we apply the
Laplace likelihood function in this work, which is given by

L(m) = 1∏N
i=1 2si

exp

[
−

N∑
i=1

|ri |
si

]
, (4)

where

ri = dobs
i − di (m) (5)

are the data residuals, and si is the scale parameter that controls
the diversity (i.e. width) of the Laplace distribution for each da-
tum (similar to the standard deviation of a Gaussian distribution).
The multiple-filter analysis technique used in this work does not
provide useful estimates of the errors on the measured dispersion
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data. Furthermore, qualitatively assigning relative errors within the
dispersion data set based on uncertainties in earthquake source prop-
erties (i.e. location and timing) is not possible as this information
is only available for a small number of events in our data set. For
these reasons, we implement a parametrized error model within the
inversion framework. Similar to Bodin et al. (2012), we consider
the errors on surface wave traveltimes as unknown and model them
using a linear dependence with source-to-station distance �i (for
path i) by

si = a�i + b. (6)

In this way, each traveltime is assigned a different error accord-
ing to its associated propagation path length. Only two additional
hyperparameters (a and b) are considered within the inversion.

4.4 Practical considerations

One of the great challenges with rjMcMC is inefficient sampling
over the parameter space, particularly between spaces of differ-
ent dimensions (in this case, adding or removing model nodes).
We attempt to address this issue here by using parallel interact-
ing chains within rjMCMC sampling, often called parallel tem-
pering (Dosso et al. 2012; Sambridge 2014). In this method, the
acceptance criterion (eq. 3) in each chain is relaxed by raising the
likelihood to powers 1/T (where T is often called the sampling
temperature and is greater than unity). Chains with higher temper-
atures have greater probability of accepting models that fit the data
poorly (low-likelihood), preventing them from becoming trapped
in local minima. Probabilistic swapping between the chains allows
chains with lower temperatures to efficiently search all regions of
the model parameter space. The temperature values for each chain
are chosen such that approximately 20 per cent of proposed chain
swaps are accepted. This is unique to every problem, and is chosen
via trial-and-error. Setting these parameters is subjective. However,
in theory, the ultimate choice of these parameters has no effect
on the overall inversion solution but only on the efficiency of the
algorithm. It is computationally cheap to attempt a swap between
chains since data prediction (i.e. forward modelling) is not required.
Only chains with temperature set to unity provide unbiased sam-
pling of the PPD. Typically one chain is set at T = 1 and only
the samples drawn from this chain are kept in the final analysis.
Parallel tempering is a robust sampling technique despite the ad-
ditional computation burden of running multiple chains. For such
a large inverse problem with so many model parameters, employ-
ing schemes like parallel tempering is valuable for avoiding wasted
computation time. This is not only useful for increasing the accep-
tance rate of adding or removing model nodes to the model, but
also allows the sampler to act as a highly effective global optimizer
(Sambridge 2014). This greatly reduces the number of initial burn-in
samples (dependent on the random initial starting model) required
before the algorithm locates the high-likelihood part of the model
space.

Previous works that have considered trans-d Bayesian tomogra-
phy have implemented an iteratively non-linear inversion scheme,
where surface wave travel paths are updated after each inversion
procedure in order to provide more accurate forward modelling for
the following inversion iteration (Bodin & Sambridge 2009; Bodin
et al. 2012). More recently, Bayesian tomography has been suc-
cessfully implemented in a fully non-linear inversion where new
surface wave travel paths are computed for each new model per-
turbation in the rjMcMC algorithm, at great computational expense

(Galetti et al. 2017). Since the data considered in this work are
measured from recordings of regional earthquakes (as opposed to
ambient noise cross-correlations as in other studies) there are sig-
nificant uncertainties in the timing and locations of sources that
are likely to have a greater effect on the data than the accuracy
of the surface wave travel paths (i.e. forward model). Ritzwoller
& Levshin (1998) suggest that, other than in extreme cases, off-
great circle path propagation can be ignored at periods above ap-
proximately 30 s for paths with distances less than approximately
5000 km. Similarly, Bensen et al. (2008) suggest that these effects
are negligible in surface wave tomography at periods greater than
20 s and path lengths less than 1000 km, which is generally ap-
plicable to our group velocity data set over northern Cascadia and
Haida Gwaii. It is worth noting that previous studies on trans-d
Bayesian surface wave tomography considered much shorter period
dispersion data as well as longer propagation paths. However, our
study region includes an oceanic–continental transition with poten-
tially large lateral gradients in velocity structure that may produce
significant deviations to great-circle ray paths, despite the long pe-
riods and short path lengths considered. For this reason (and for
the sake of generality of our inversion methodology), we adopt the
iteratively non-linear procedure of Bodin & Sambridge (2009) as an
optimal balance between accurate forward modelling and compu-
tational efficiency. We assume that surface waves travel along great
circle paths during the initial iteration. For subsequent inversion
iterations, the ray paths are calculated using the inversion solution
from the previous iteration. This process is repeated four times to
produce the final models.

A consequence of the iteratively non-linear inversion scheme
is that data error hyperparameters within the inversion (i.e. a and
b values) will be estimated to be larger during initial inversion
iterations due to larger theory (forward modelling) errors (Bodin
et al. 2012). For all inversions in this work, we perform four it-
erations of ray path updating using a computationally efficient,
pseudo ray-bending procedure for piecewise traveltime minimiza-
tion (Um & Thurber 1987). In order to efficiently perform for-
ward modelling by integrating the traveltime over the surface wave
travel paths, we map the Delaunay triangulation with linear in-
terpolation model (discussed above) to a regular, finely sampled,
integration grid. We attempted several inversion tests with vary-
ing scales of integration grid and found that results do not change
significantly once the integration grid spacing is finer than 30 km.
At coarser spacing, the linear interpolations within Delaunay tri-
angles become inaccurate. At finer spacing, the forward mod-
elling becomes slower. For all subsequent inversions in this work,
we use an integration grid with 30 km spacing. Coincidentally,
30 km is approximately the minimum wavelength of the data con-
sidered for northern Cascadia and Haida Gwaii, and represents a
physical limitation on the scale of resolvable structure from the
data.

The rjMcMC algorithm is used to draw samples from the PPD.
Given a sufficient number of samples, a better approximation of the
PPD is achieved. It is important to collect enough samples so that
the inversion solution becomes stationary (with respect to properties
of the PPD). Rigorous quantification of algorithm convergence is
an emerging and challenging topic in the field of Bayesian inversion
(Brooks et al. 2011). It is especially difficult to assess convergence
for trans-d inversions, where the PPD spans multiple model dimen-
sions, and a specific parameter in one dimension does not neces-
sarily represent the same structure in a different model dimension
(Bodin & Sambridge 2009). We use a similar approach to Bodin &
Sambridge (2009) to assess converge of the algorithm by examining
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C0, A1 and B1 at given locations in the group velocity map to assess
if these quantities are stationary over the rjMcMC samples. Fur-
thermore, we ensure that the distribution over the number of nodes
in the model is stationary and provides a smooth distribution. In all
inversions discussed here, we ran 20 parallel rjMcMC samplers at
varying temperatures to generate 5 million samples each (keeping
only those sampled at T = 1). The choice of running the inver-
sion with 20 parallel tempering chains stems from the limitations
in available computing resources. Inversion tests with fewer paral-
lel chains produce similar results, though they require significantly
more samples. Of the retained samples, the first half are discarded as
burn-in samples dependent on the (random) initial starting model.
Final results for each inversion are represented by the remaining
2.5 million model samples (for the final iteration of updated ray
path geometry).

5 S Y N T H E T I C I N V E R S I O N T E S T S

Performing tomographic inversions on simulated data (for a known
true model) is useful for studying the resolving power of observed
data through so-called checkerboard or resolution tests. In this case,
synthetic inversions are also valuable for studying and testing new
methodologies. In theory, solving for the PPD in Bayesian tomogra-
phy precludes resolution tests. However, in practice, these tests can
help illuminate possible deficiencies in the data, or artifacts in the
final model solution. This section demonstrates the Bayesian sur-
face wave tomography with azimuthal anisotropy, and illustrates the
spatial resolution for the northern Cascadia and Haida Gwaii data
set. The synthetic inversion test presented here is for the source–
station path coverage of the data set at a period of 15 s. Tests at
other periods show similar results, as the spatial and azimuthal path
coverage is similar for the periods considered in this work, even
though the total number of data at each period differs (Fig. 3).
The true model consists of an alternating checkerboard pattern of
slow and fast group velocity anomalies that are ±25 per cent of
the average velocity in the 15 s period data set (3.0 km s–1), with
a length scale of 360 km. Azimuthal anisotropy in the true model
consists of 5 per cent anisotropy (relative to the isotropic velocity)
with an alternating opposing pattern of fast-axis directions. The
ray paths for the true model are estimated using piecewise travel-
time minimization (Um & Thurber 1987), and are used to calcu-
late the simulated data. Gaussian-distributed errors with a standard
deviation of 1 s are added to the simulated traveltime data. Fur-
thermore, Gaussian-distributed errors with a standard deviation of
20 s are added to 1 per cent of the data set to simulate outliers.
Inversions were carried out using the Bayesian methodology de-
scribed in the previous section (with four iterations of ray path
updating).

Fig. 5 summarizes the results of the synthetic inversion test.
The mean values of isotropic and azimuthally anisotropic group
velocity extracted from the ensemble of rjMcMC samples at each
location in the 2-D map are shown. In general, the inversion test
recovers the pattern of isotropic group velocities and azimuthal
anisotropy. However, the anisotropic components of the true model
are less well recovered, and only resolved in regions with greater
azimuthal path coverage. The magnitudes of isotropic anomalies are
accurately recovered, especially in regions with dense path coverage.
Fig. 5 also shows the estimated model uncertainty for the isotropic
group velocity map, and the estimated uncertainty in the orientation
of the fast-axis direction of anisotropy. Isotropic group velocity
uncertainty is estimated from the standard deviation of the ensemble

of rjMcMC samples at each location in the 2-D map. Since the fast-
axis direction is a polar quantity estimated from A1 and B1 (eq. 1),
we propagate the errors in A1 and B1 through the simple equation
1
2 arctan(B1/A1) rather than taking the standard deviation of fast-
axis directions themselves. These figures reveal that the estimated
model uncertainty depends on the data path coverage as well as the
underlying group velocity model. Uncertainty is greater where path
coverage is poor. Furthermore, estimated uncertainty is greater near
lateral heterogeneity in the velocity model, as the inversion is not
able to perfectly recover the location of discontinuous structure.

Fig. 6 shows the distribution of the estimated inversion hyper-
parameters for the synthetic test. Since the simulated errors on the
data were simply Gaussian-distributed, the inversion test correctly
estimates no linear relationship between the level of data errors
and the length of the data travel paths. The inversion also cor-
rectly estimates the constant term for the data errors (b in eq. 6).
The slight underestimation of the constant error terms is likely the
result of the discrepancy between the simulated error distribution
(Gaussian) and the modelled likelihood (Laplace), where the error
diversity (modelled by a and b parameters) is smaller than the error
standard deviation by a factor of 21/2. The results appear insensi-
tive to outliers. However, the effect of outliers within the inversion
may be significant if outliers are present in the data in regions with
sparse path coverage. Ultimately, the inversion performs well for
estimating the unknown level of data errors. Additional synthetic
tests were performed using anomalies with a smaller length scale
(240 km) under varying noise conditions with Gaussian-distributed
errors with a standard deviation of 1, 2 and 5 s added to the sim-
ulated traveltime data with outliers as described above (Figs S4
and S5). These tests are shown in the supplement and reveal that
the estimation of azimuthal anisotropy in surface wave tomography
depends on the tradeoff between the length scale (or magnitude)
of anisotropy and the level of data errors. In some cases, the data
can be adequately fit without anisotropy when data errors are large
(and anisotropy signal is small). Ultimately, the inversion will not
recover anisotropy if it is not required by the data, as the mean of
the prior distributions for the anisotropic parameters is zero (i.e.
no anisotropy). The Bayesian inversion approach allows for de-
tailed examination of the data information content and how this
affects the resolution of isotropic group velocity and azimuthal
anisotropy.

6 A N I S O T RO P I C G RO U P V E L O C I T Y
OV E R N O RT H E R N C A S C A D I A A N D
H A I DA G WA I I

In this section, we present results for Bayesian tomographic in-
version of surface wave dispersion data collected over northern
Cascadia and Haida Gwaii. It is challenging to make detailed inter-
pretations from group velocity maps without inverting for a pseudo
3-D velocity model (by estimating 1-D velocity profiles at each
location in the study region, then combining them). Interpretation
of group velocity maps in our study region is further complicated
due to the combination of onshore-offshore structure, where water
depth and thick accretionary sediments can have a significant effect
on surface wave velocities (e.g. Yeck et al. 2017; Darbyshire et al.
2018; Janiszewski et al. 2019). As such, we provide only a synoptic
interpretation of the isotropic and anisotropic group velocity maps
and reserve more detailed investigation for future work. For the pe-
riods considered here, surface waves on land are sensitive from mid
crustal depths to shallow lithospheric mantle depths (Fig. 2).
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Anisotropic McMC tomography 1733

Figure 5. Results of the synthetic Bayesian inversion test. The isotropic and anisotropic components of the true model are shown in (a) and (b), respectively.
The surface wave travel paths used to calculate the simulated data set are shown in (c). Mean isotropic velocities estimated from the ensemble of rjMcMC
samples for the inversion are shown in (d). Similarly, the recovered fast-axis orientations and magnitudes of anisotropy are shown in (e). The standard deviations
of isotropic velocities estimated from the ensemble of rjMcMC samples are shown in (f). The uncertainty of anisotropy fast-axis directions are shown in (g).
Red lines delineate the fast direction of anisotropy.

Fig. 7 shows variations in isotropic group velocity as a function of
period. At short periods, isotropic group velocity anomalies derive
predominantly from compositional variations in the crust, as well
as from the presence of sedimentary basins, volcanic provinces,
and mountain ranges. At longer periods, surface waves are increas-
ingly sensitive to crustal thickness as well as temperature anomalies
in the lower crust and uppermost mantle (Moschetti et al. 2007).
At periods between 15 and 25 s we observe a significant change
in isotropic group velocity along the continental margin that de-
lineates the boundary between oceanic and continental lithosphere
(Fig. 7). At 15 s, we observe a narrow band of very slow group
velocity, which is likely attributed to water-laden sediments, and

sedimentary rocks, along the continental shelf (AC in Fig. 7). This
slow velocity anomaly also extends onshore through the Olympic
Peninsula south of Vancouver Island, consistent with the location of
the onshore Cascadia accretionary complex (Brandon et al. 1998).
At periods between 25 and 36 s we observe a margin-parallel band
of relatively slow group velocity, with higher velocities further in-
land, throughout the Cascadia margin (CR and FB in Fig. 7). This
pattern is consistent with results from other surface wave stud-
ies in Cascadia and reflects the presence of the Cascade range
(slow) and the Columbia river flood basalts (fast) further inland (e.g.
Moschetti et al. 2007; Janiszewski et al. 2019). At periods between
25 and 42 s we observe a margin-parallel band of high group velocity
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1734 J.M. Gosselin et al.

Figure 6. Hyperparameter estimates from the synthetic Bayesian inversion test. The number of nodes in the Delaunay triangulation with linear interpolation
is shown in (a). The linear coefficient between unknown data errors and travel path length is shown in (b). The constant term for unknown data error is shown
in (c).

Figure 7. Isotropic group velocity over northern Cascadia and Haida Gwaii. The mean isotropic velocities estimated from the ensemble of rjMcMC samples
for inversions at periods 15–50 s are shown. AC, CR, FB and MB stand for accretionary complex, Cascade range, flood basalts and morphological belts,
respectively, and are discussed in the text.
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Anisotropic McMC tomography 1735

Figure 8. Azimuthal anisotropy in group velocity over northern Cascadia and Haida Gwaii. The mean magnitude and directions of anisotropy estimated from
the ensemble of rjMcMC samples for inversions at periods 15–50 s are shown.

over 200 km east of the coast (MB in Fig. 7). The geology of British
Columbia comprises a series of margin-parallel morphological belts
that contain various accreted terranes (Nelson et al. 2013). The ob-
served velocity anomalies likely reflect compositional changes be-
tween these belts/terranes or possibly variations in crustal thickness
beneath these belts/terranes (Clowes et al. 1995). Further detailed
examination of the structure of inland British Columbia may be
challenging as group velocities are less well resolved here, and may
be biased due to the lack of resolvable anisotropy. At the longest
periods considered in this work (42 and 50 s), velocity anomalies
are generally small in magnitude (note the narrower colour scale
range with increasing period) but are generally large in spatial ex-
tent, reflecting the large integrated effect of long wavelength surface
wave data.

Fig. 8 shows the mean magnitude and directions of anisotropy
estimated from the Bayesian inversion. Our anisotropy results show
consistent directions across all periods from Vancouver Island to

Haida Gwaii, as expected from the overlap in depth sensitivity for
the periods considered here (Fig. 2). The slight change in anisotropy
direction and magnitude between northern Vancouver Island and
Haida Gwaii (most clearly seen at 42 and 50 s in Fig. 8) correlates
with a change in isotropic group velocity (42 and 50 s in Fig. 7)
and may be a result of the transitional tectonic regime along the
coast. At periods considered in this work, seismically observable
anisotropy is expected to be attributed to the local compressive
stress field, or major foliations within the crust. Local horizontal
compressive stress can result in aligned fluid-filled cracks, which
produce fast anisotropy directions parallel to the stress direction
(Crampin 1994). Throughout northern Cascadia, local shear wave
splitting measurements show margin-parallel fast-axis directions
(Currie et al. 2001; Balfour et al. 2012), which are consistent with
horizontal compressive stress directions estimated from earthquake
moment tensor solutions (Balfour et al. 2011). The complicated
and low-amplitude pattern of anisotropy recovered over southern
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1736 J.M. Gosselin et al.

Figure 9. Uncertainty of isotropic group velocity over northern Cascadia and Haida Gwaii. The standard deviations of isotropic velocities estimated from the
ensemble of rjMcMC samples for inversions at periods 15–50 s are shown.

Vancouver Island (most notable at 15–25 s) is a robust feature,
due to excellent path coverage over this region. It may be the re-
sult of superimposed structural anisotropy as some of the stations
in this region are located near margin-perpendicular crustal faults
with strong anisotropic signatures (Bostock & Christensen 2012).
Further north, near Haida Gwaii, limited local shear wave splitting
measurements also show margin-parallel fast-axis directions (Cao
et al. 2017). However, these are perpendicular to local compres-
sive stress directions (Ristau et al. 2007), suggesting that crustal
anisotropy near Haida Gwaii is the result of structural foliations,
possibly related to the QCF. Recent work by Eilon & Forsyth (2020)
suggests that shallow offshore anisotropy within and beneath the
JdF crust is predominantly margin-perpendicular, though weak in
magnitude. Offshore path coverage in our model is not as dense
as the continental shelf region, and we suspect such weak offshore
anisotropy is likely not resolvable with our data set. In general, our

estimates of fast-axis directions in this region appear consistent with
local shear wave splitting measurements.

Figs 9 and 10 show the uncertainties in isotropic group velocity
and fast-axis direction of azimuthal anisotropy estimated from the
standard deviations of the ensemble of rjMcMC samples from the
Bayesian inversion. Since the fast-axis direction is a polar quantity
estimated from A1 and B1 (eq. 1), we propagate the errors in A1

and B1 through the simple equation 1
2 arctan(B1/A1) rather than

taking the standard deviation of fast-axis directions themselves.
Uncertainty in isotropic group velocity is low throughout Van-
couver Island and the continental shelf northward towards Haida
Gwaii (Fig. 9). Uncertainties are also low throughout the north-
western United States likely due to the high seismic station density
throughout this region (Fig. 3). Uncertainties in the fast-axis direc-
tion of azimuthal anisotropy are generally low across all periods for
the continental shelf region including Vancouver Island and Haida
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Anisotropic McMC tomography 1737

Figure 10. Uncertainty of fast-axis direction of azimuthal anisotropy over northern Cascadia and Haida Gwaii, for inversions at periods 15–50 s.

Gwaii (Fig. 10). However, uncertainties throughout the northwest-
ern United States are higher despite the abundant station coverage.
This is likely the result of the lack of azimuthal coverage through-
out this region (i.e. all of the ray paths are pointing in a similar
direction). This may also be the result of weaker or more complex
anisotropy in this region. In summary, only the continental shelf
region including Vancouver Island and Haida Gwaii presents low
uncertainties in both isotropic group velocity and the direction of
azimuthal anisotropy. As such, only results from this region (includ-
ing associated uncertainties) may be considered for future analysis.
Uncertainties in the magnitude of anisotropy are shown in the sup-
plementary material, and are of the order of 1 per cent where recov-
ery is best (Fig. S6). For both the isotropic and anisotropic structure,
estimated uncertainties correlate with the recovered isotropic and
anisotropic maps, where larger uncertainty is estimated near lateral
heterogeneity as the inversion is not able to perfectly recover the
location of discontinuous structure.

Fig. 11 shows the distribution of the estimated inversion hyper-
parameters at each period. In general, all inversions at all periods
recover a similar number of nodes in the inversion. The equivalent
figure for the distribution of the estimated inversion hyperparame-
ters after 1 inversion iteration (i.e. assuming great circle ray paths)
is shown in the supplement (Fig. S7). Comparison between the
inversion iterations suggests that, other than for 15 s period data,
updating the ray path geometry had little effect on the estimated data
errors, as might be expected when considering long period data over
short path lengths. It is reasonable then that the inversion of 15 s
data should initially recover the smallest number of nodes, since the
inversion estimates the largest errors (a and b parameters) for these
data, suggesting that they have reduced information content and are
not able to resolve more complex structure. After four iterations of
ray path updating, the inversion estimates similar constant terms for
data errors, b values (Fig. 11c), for all periods. This suggests some
consistent, period-independent, source of errors in the data that may
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1738 J.M. Gosselin et al.

Figure 11. Hyperparameter estimates from Bayesian inversions. The number of nodes in the Delaunay triangulation with linear interpolation is shown in (a).
The linear coefficient between unknown data errors and travel path length is shown in (b). The constant term for unknown data error is shown in (c).

be related to errors in source location or onset time. This may
be significant as many of the events considered in this work are
located offshore and are likely poorly located (and often have
analyst-fixed depths). Unfortunately, information on location un-
certainty is not available for the majority of the events considered
in this work. Fig. 11(b) shows an interesting trend between period
and the estimated linear dependence of data errors with travel path
length. At long periods, the dependence is estimated to be low (small
a value), and vice versa. This suggests that surface wave traveltime
errors are a function of wavelength, as well as the number of wave-
lengths between source and receiver. These wavelength-dependent
data errors may be attributed to unaccounted-for scattering
effects.

7 D I S C U S S I O N A N D C O N C LU S I O N S

In this paper, we consider tomographic inversion of surface wave
dispersion data using a novel Bayesian approach to quantify az-
imuthal anisotropy and associated uncertainty while avoiding sub-
jective regularization procedures. We implement an alternative
model parametrization compared to previous work that considered
Bayesian tomography in order to produce continuous (more realis-
tic) models. Like previous studies, we consider the inverse problem
within a trans-d Bayesian framework, and allowed the model di-
mensionality (complexity) to be determined by the data information
content. Like previous works, non-linearity in the tomographic in-
verse problem (i.e. ray path geometry) is considered via an iterative
process in which paths are updated after each inversion run. It is well
known that isotropic structures are better resolved than anisotropic
structures using surface wave data. Future work will consider de-
coupling the parametrizations of isotropic and anisotropic structure.
This is similar to Bodin et al. (2016) who considered anisotropy in
1-D shear wave velocity profiles constrained by data from single-
station seismic methods.

Our inversion method was applied to surface wave dispersion data
at periods between 15 and 50 s measured from recordings of earth-
quakes over northern Cascadia and Haida Gwaii, a region of com-
plex active tectonics but limited station coverage. Group velocity
dispersion measurements from regional earthquakes have greater er-
rors than dispersion data obtained from other methods. We consider
data errors in a robust way via manual dispersion selection for each

seismogram, outlier removal procedures, and the use of a Laplace
Likelihood distribution (with unknown diversity estimated within
the inversion). Our results for isotropic group velocities are consis-
tent with previous studies further south over Cascadia. Our results
for azimuthal anisotropic fast-axis directions are consistent with,
and supplement, the limited shear wave splitting measurements over
the region. In general, our inversion recovers margin-parallel fast-
axis directions between Vancouver Island and Haida Gwaii, with a
small change in direction and magnitude along the margin. These
results are broadly consistent with azimuthal anisotropy from tele-
seismic shear wave splitting measurements (Mosher et al. 2014;
Cao et al. 2017), which presumably sample the lithospheric and/or
sublithospheric mantle, possibly pointing to vertically coherent de-
formation.

Our method estimates the unknown level of data errors, and re-
veals a correlation between surface wave period and the dependence
of data errors on travel path length. For periods greater than 15 s,
we find that estimated data errors do not change significantly be-
tween inversion iterations (i.e. ray path updating) suggesting that
for such long period data, over such short propagation path lengths,
deviations from the great circle paths are not the dominant source
of data errors. The consistency between periods for the estimated
constant term of the data errors suggests a systematic source, po-
tentially related to poor event locations (particularly for offshore
seismicity). The inversion method provides robust results in re-
gions with sufficient azimuthal path coverage to recover anisotropy.
Otherwise, estimated anisotropy is equivalent to the prior distri-
bution (with a mean of zero anisotropy) and recovered isotropic
velocities may be biased. Our results demonstrate the value of this
novel inversion technique for robust determination of anisotropy
from surface wave dispersion data. Our results over the continen-
tal shelf, including Vancouver Island and Haida Gwaii, provide an
initial step towards resolving a full, 3-D, seismic velocity model
in future work. This work provides broad structural context for
future seismic station deployments (both onshore and offshore)
to study the tectonic structure and dynamics of the region, with
the aim of improving our understanding of seismic and tsunami
hazards.

Finally, one of the great advantages of Bayesian inversion meth-
ods is the ability to incorporate meaningful prior information into
the problem. Future work, particularly with respect to structural
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studies of northern Cascadia and Haida Gwaii, will consider addi-
tional model constraints through the use of informative prior infor-
mation and other data sets.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Example of surface wave dispersion processing from
a regional earthquake recording. The location of the earthquake
and the recording station are shown by the red star and the blue
triangle, respectively. The right-hand panel shows the display of the
CPS program (Herrmann 2013). White markers show the manually
selected period band for this event at this station. M, AZ, DIST
and STA refer to the event magnitude, source-to-station azimuth,
distance and station name, respectively.
Figure S2. Surface wave path coverage at periods considered in this
work. Hitcounts are shown through the underlying model integration
grid (discussed in the text).
Figure S3. Surface wave azimuthal path coverage at periods con-
sidered in this work over Vancouver Island and Haida Gwaii. His-
tograms of source-to-station azimuths through the underlying model
integration grid along the transect A–A’ are shown. Azimuthal
path coverage is best between central Vancouver Island and Haida
Gwaii.
Figure S4. Results of synthetic Bayesian inversion tests under vary-
ing noise conditions. The isotropic and anisotropic components of
the true model are shown in (a) and (b), respectively. Mean isotropic
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velocities estimated from the ensemble of rjMcMC samples for in-
version tests with Gaussian-distributed noise with 1, 2 and 5 s
standard deviations are shown in (c), (e) and (g) respectively. Mean
azimuthal anisotropy estimated from the ensemble of rjMcMC sam-
ples for inversion tests with Gaussian-distributed noise with 1, 2 and
5 s standard deviations are shown in (d), (f) and (h), respectively.
Red lines delineate the fast direction of anisotropy.
Figure S5. Hyperparameter estimates from synthetic Bayesian in-
version tests under varying noise conditions. The number of nodes
in the Delaunay triangulation with linear interpolation is shown in
(a). The linear coefficient between unknown data errors and travel
path length is shown in (b). The constant term for unknown data
error is shown in (c).
Figure S6. Uncertainty of azimuthal anisotropy magnitude over
northern Cascadia and Haida Gwaii. The estimated uncertainty of
anisotropy magnitudes estimated from the ensemble of rjMcMC
samples for inversions at periods 15–50 s are shown (as per cent
anisotropy with respect to isotropic velocity). In general, anisotropy
magnitudes are poorly resolved.
Figure S7. Hyperparameter estimates from Bayesian inversions af-
ter first inversion iteration (assuming great circle ray paths). The

number of nodes in the Delaunay triangulation with linear interpo-
lation is shown in (a). The linear coefficient between unknown data
errors and travel path length is shown in (b). The constant term for
unknown data error is shown in (c).
Table S1. Prior bounds for model parameters in Bayesian tomo-
graphic inversion. C0 is the isotropic group velocity. A1 and B1 are
the anisotropic terms for group velocity with azimuthal periodicity
of π .
Table S2. Seismograph stations considered for processing of surface
wave dispersion from recordings of regional earthquakes. Specific
information on each network is available at https://www.fdsn.org/n
etworks/.
Table S3. Regional earthquakes considered for processing of sur-
face wave dispersion.
Table S4. Simple crustal model for surface wave sensitivity kernel
estimation (see main text for detail).
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