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RÉSUMÉ

Cette thèse est formée de trois chapitres ayant pour sujet l’utilisation du Machine Learning
en prévision macroéconomique dans un environnement riche en données.

Le premier chapitre propose comme nouveau modèle de prévision le Regularized Data-
Rich Model Averaging (RDRMA) et compare sa performance avec celle de cinq autres
catégories de modèles pour la prévision de plusieurs variables macroéconomiques. Les
principaux résultats se résument en quatre points. Premièrement, le RDRMA performe
généralement mieux que les autres modèles et particulièrement pour les variables réelles.
Nous attribuons cette performance à l’utilisation conjointe de la régularisation et de la
combinaison de modèles. Cela confirme que de larges ensembles de données peuvent me-
ner à des gains prévisionels substantiels par rapport à des approches univariées en utilisant
intelligemment ces deux approches. Deuxièmement, le modèle ARMA(1,1) ressort vain-
queur pour la prévision de la variation de l’inflation à court terme alors que le RDRMA
domine à plus long terme, Troisièmement, les rendements du SP500 sont prévisibles par
le RDRMA à court terme. Finalement, les performances prévisionnelles et les choix opti-
maux de régresseurs sont très instables à travers le temps.

Le deuxième chapitre met en évidence les différences dans l’effet des transformations de
données lorsque le modèle de prévision est linéaire et lorsqu’il utilise de la régularisation
ou est non-linéaire. Il évalue ensuite empiriquement l’utilité de nouvelles transformations
dans un exercice de prévision pseudo hors échantillon. Les résultats montrent que les pre-
mières composantes principales des données devraient généralement être incluses comme
régresseur et que des moyennes mobiles peuvent générer d’importants gains pour plusieurs
variables macroéconomiques. Par ailleurs, si prévoir directement le taux de croissance
moyen et combiner la prévision des taux de croissance simple n’a que peu d’importance
en utilisant les moindres carrées ordinaires, il en est tout autrement lorsque le modèle uti-
lise de la régularisation ou est non linéaire. Dans ce dernier cas, combiner les prévisions
des taux de croissance simple plutôt que de prévoir le taux de croissance moyen directe-
ment peut grandement améliorer la performance prévisionelle.

La littérature en prévision macroécomique propose généralement de nouvelles méthodes
permettant d’améliorer la performance prévisionnelle pour certaines variables et certains



xiv

horizons. Le troisième chapitre de cette thèse répond plutôt à la question suivante : How is
Machine Learning Useful for Macroeconomic Forecasting? Alors que vérifier si un mo-
dèle améliore la performance prévisionnelle nécessite uniquement une comparaison avec
un modèle de référence, déterminer d’où provient les gains prévisionnelles nécessite né-
cessairement d’identifier des sources possibles. Ce chapitre explore donc l’utilité de quatre
composantes qui caractérisent un modèle de prévision ; la non-linéarité, la régularization,
la méthode de sélection des hyperparamètres et le choix de la fonction de perte. Pour ce
faire, une expérience est construite afin d’identifier les effets associés à ces caractéristiques
en distinguant l’environnement pauvre en données de l’environnement riche en données.
Les résultats montrent (1) que la non-linéaire est la principale caractéristique qui améliore
la prévision macroéconomique, (2) que l’utilisation des premières composantes princi-
pales est la meilleure façon de considérer des grands ensembles d’information, (3) que
l’utilisation de la validation croisée K-fold est à privilégier et (4) que la fonction de perte
L2 est plus appropriée que la fonction de perte ε̄-insensitive. De plus, les gains prévision-
nels résultants de la nonlinéarité sont associés avec des épisodes d’incertitude macroéco-
nomique, de pressions financières et de l’éclatement de bulles immobilières.

Mots clés : Modèles riche en données, Modèles à facteurs, Prévision, Combinaison de

modèles, Modèles sparse, Régularisation, Apprentissage automatique, Transformation de

données.



INTRODUCTION

L’information macroéconomique n’a jamais été aussi accessible qu’aujourd’hui. Que ce

soit en terme d’indicateurs disponibles ou de taille d’échantillon, plus le temps passe et

plus l’information disponible croit. Bien que bénéfique, cette croissance vient avec ses

difficultés lors de l’estimation de modèles macroéconomiques. Comme les variables dispo-

nibles ne sont pas nécessairement toutes utiles, les prévisionnistes doivent présélectionnner

les variables les plus importantes. Ils le font en s’inspirant des théories économiques, de

la litérature empirique ou bien en utilisant leurs propres raisonnements heuristiques. Dans

un environnement riche en données cette présélection pourrait tout de même être insuffi-

sante pourl’estimation de modèles économétriques standards qui voient leur performance

se détériorer lorsque la dimensionnalité des données augmente.

Un environnement riche en données nécessite également un plus grand nombre de déci-

sions relatives à la transformation des données. Il est standard en prévision macroécono-

mique de transformer les données en utilisant des différences premières ou secondes et

de résumer l’information contenue dans ces données transformées en quelques facteurs

communs, mais il y a en fait beaucoup plus d’options lorsque l’on considère des méthodes

de prévision provenant du Machine Learning (ML). La création de nouvelles variables en

utilisant les connaissances du domaine d’application est en effet une étape importante pour

améliorer les modèles de prévisions dans le contexte du ML.

Cela suggère que des transformations non standards des données macroéconomiques pour-

raient améliorer la performance prévisionnelle des modèles. Le choix des transformations
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de variables peut alors augmenter davantage la dimensionnalité des données si plusieurs

sont combinées, rendant l’utilisation de modèles standards hasardeuse.

C’est dans ce contexte que s’inscrit cette thèse formée de trois chapitres ayant pour su-

jet l’utilisation du ML en prévision macroéconomique dans un environnement riche en

données. Le premier chapitre propose comme nouveau modèle de prévision le Regulari-

zed Data-Rich Model Averaging (RDRMA) et compare sa performance avec celle de cinq

autres catégories de modèles pour la prévision de plusieurs variables macroéconomiques.

Les principaux résultats peuvent se résumer en quatre points. Premièrement, le RDRMA

performe généralement mieux que les autres modèles et particulièrement pour les variables

réelles. Nous attribuons cette performance à l’utilisation conjointe de la régularisation et

de la combinaison de modèles. Cela confirme que de larges ensembles de données peuvent

mener à des gains prévisionels substantiels par rapport à des approches univariées en uti-

lisant intelligemment ces deux approches. Deuxièmement, le modèle ARMA(1,1) ressort

vainqueur pour la prévision de la variation de l’inflation à court terme alors que le RDRMA

domine à plus long terme, Troisièmement, les rendements du SP500 sont prévisibles par

le RDRMA à court terme. Finalement, les performances prévisionnelles et les choix opti-

maux de régresseurs sont très instables à travers le temps.

Le deuxième chapitre met en évidence les différences dans l’effet des transformations de

données lorsque le modèle de prévision est linéaire et lorsqu’il utilise de la régularisation

ou est non-linéaire. Il évalue ensuite empiriquement l’utilité de nouvelles transformations

dans un exercice de prévision pseudo hors échantillon. Les résultats montrent que les pre-

mières composantes principales des données devraient généralement être incluses comme

régresseur et que des moyennes mobiles peuvent générer d’importants gains pour plusieurs

variables macroéconomiques. Par ailleurs, si prévoir directement le taux de croissance

moyen et combiner la prévision des taux de croissance simple n’a que peu d’importance
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en utilisant les moindres carrées ordinaires, il en est tout autrement lorsque le modèle uti-

lise de la régularisation ou est non-linéaire. Dans ce dernier cas, combiner les prévisions

des taux de croissance simple plutôt que de prévoir le taux de croissance moyen directe-

ment peut grandement améliorer la performance prévisionelle.

Le troisième chapitre de cette thèse aborde quant à lui l’origine des gains prévisionnels

reliés à l’utilisation du ML. Alors que vérifier si un modèle améliore la performance prévi-

sionnelle nécessite uniquement une comparaison avec un modèle de référence, déterminer

d’où provient les gains prévisionnelles nécessite nécessairement d’identifier des sources

possibles. Ce chapitre explore donc l’utilité de quatre composantes qui caractérisent un

modèle de prévision ; la forme fonctionnelle, la régularization, la méthode de sélection

des hyperparamètres et le choix de la fonction de perte. Pour ce faire, une expérience est

construite afin d’identifier les effets associés à ces caractéristiques en distinguant l’envi-

ronnement pauvre en données de l’environnement riche en données. Les résultats montrent

(1) qu’une forme fonctionnelle non-linéaire est la principale caractéristique qui améliore

la prévision macroéconomique, (2) que l’utilisation des composantes principales reste la

meilleure façon de considérer des grands ensembles d’information, (3) que l’utilisation

de la validation croisée K-fold est à privilégier et (4) que la fonction de perte L2 est plus

appropriée que la fonction de perte ε̄-insensitive. De plus, les gains prévisionnels résul-

tants de la non-linéarité sont associés avec des épisodes d’incertitude macroéconomique,

de pressions financières et de l’éclatement de bulles immobilières.



CHAPITRE I

MACROECONOMIC FORECAST ACCURACY IN A DATA-RICH ENVIRONMENT

Abstract

The performance of six classes of models in forecasting different types of economic series
is evaluated in an extensive pseudo out-of-sample exercise. One of these forecasting mo-
dels, the Regularized Data-Rich Model Averaging (RDRMA), is new in the literature. The
findings can be summarized in four points. First, RDRMA is difficult to beat in general and
generates the best forecasts for real variables. This performance is attributed to the com-
bination of regularization and model averaging, and it confirms that a smart handling of
large data sets can lead to substantial improvements over univariate approaches. Second,
the ARMA(1,1) model emerges as the best to forecast inflation changes in the short-run,
while RDRMA dominates at longer horizons. Third, the returns on the SP500 index are
predictable by RDRMA at short horizons. Finally, the forecast accuracy and the optimal
structure of the forecasting equations are quite unstable over time.

JEL classification : C55, C32, E17

Keywords : Data-Rich Models, Factor Models, Forecasting, Model Averaging, Sparse Mo-

dels, Regularization.

This chapter was published as an article in the Journal of Applied Econometrics (Kotchoni et al., 2019).
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1.1 Introduction

Many economic datasets have now reached tremendous sizes, both in terms of the number

of variables and the number of observations. As all of these series may not be relevant for

a particular forecasting exercise, one will have to preselect the most important candidate

predictors according to economic theories, the relevant empirical literature, and own heu-

ristic arguments. In a Data-Rich environment, the econometrician may still be left with

a few hundreds of candidate predictors after the preselection process. Unfortunately, the

performance of standard econometric models tends to deteriorate as the dimensionality

of the data increases. This is the well-known curse of dimensionality. In this context, the

challenge faced by empirical researchers is to design computationally-efficient methods

capable of turning big datasets into concise information 1.

When confronted with a large number of variables, econometricians often resort to sparse

modeling, regularization, or dense modeling. Sparse models involve a variable selection

procedure that discards the least relevant predictors. In regularized models, a large number

of variables are accommodated but a shrinkage technique is used to discipline the behavior

of the parameters (e.g. Ridge). LASSO regularization leads to sparse models ex post as it

constrains the coefficients of the least relevant variables to be null. In factor models, an

example of dense modeling, the dynamics of a large number of variables is assumed to

be governed by a small number of common components. All three approaches entail an

implicit or explicit dimensionality reduction that is intended to control the overfitting risk

and maximize the out-of-sample forecasting performance.

1. Bayesian techniques developed in the recent years to handle larger than usual VAR models can be
viewed as an effort towards this objective. See Banbura et al. (2010), Koop (2013), Carriero et al. (2015) and
Giannone et al. (2015), among others.
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Giannone et al. (2021) consider a Bayesian framework that balances the quest for sparsity

with the desire to accommodate a large number of relevant predictors. They find that the

posterior distribution of parameters is spread over all types of models rather than being

concentrated on a single sparse model or a single dense model. This suggests that a well-

designed model averaging technique can outperform any sparse model. We build on this

intuition and put forward a new class of regularized data-rich models that combines regu-

larization and model averaging techniques.

Given the growing popularity of models that address big data issues, there is a need for

an extensive study that compares their performance. This paper contributes to filling this

gap by comparing the performance of six classes of models in forecasting the Industrial

Production growth, the Employment growth, the Consumer Price Index acceleration (i.e.,

variations of inflation), and the SP500 returns 2. Only few studies have done such a large-

scale comparison exercise. See Boivin and Ng (2005), Stock and Watson (2006), Kim and

Swanson (2014), Cheng and Hansen (2015), Carrasco and Rossi (2016) and Groen and

Kapetanios (2016).

The first class of forecasting models considered consists of standard and univariate spe-

cifications, namely the Autoregressive Direct (ARD), the Autoregressive Iterative (ARI),

the Autoregressive Moving Average ARMA(1,1), and the Autoregressive Distributed Lag

(ADL) models. The second class of models consists of autoregressions that are augmented

with factors that are extracted from a set of predictors beforehand : the Diffusion Indices

(DI) of Stock and Watson (2002b), the Targeted DI of Bai and Ng (2008a), the DI with

dynamic factors of Forni et al. (2005), and, to some extent, the Three-pass Regression

2. These variables are selected for their popularity in the forecasting literature. Results for the Core CPI,
interest rate, and exchange rates variations are available in the supplementary material.
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Filter (3PRF) of Kelly and Pruitt (2015). In the third type of models, one jointly speci-

fies a dynamics for the variable of interest (to be forecasted) and the factors. In the latter

category, we have the Factor-Augmented VAR (FAVAR) of Boivin and Ng (2005), the

Factor-Augmented VARMA (FAVARMA) of Dufour and Stevanović (2013), and the Dy-

namic Factor Model (DFM) of Forni et al. (2005).

The fourth class of models consists of Data-Rich model averaging techniques that are

known as Complete Subset Regressions (CSR) (see Elliott et al. (2013)). The fifth class of

models, which we term Regularized Data-Rich Model Averaging (RDRMA), consists of

penalized versions of the CSR (that is, CSR combined either with preselection of variables

or with Ridge regularization). Combining sparsity/regularization with model averaging

is quite new in the forecasting literature 3. Finally, the sixth class of models consists of

methods that average all available forecasts. We consider the naive average (AVRG), the

median (MED), the trimmed average (T-AVRG), and the inversely proportional average of

all forecasts (IP-AVRG). as in Stock and Watson (2004).

The data employed for this study are monthly macroeconomic series from McCracken

and Ng (2016a). The comparison of the forecasting models is based on their pseudo out-of-

sample performance along two metrics : the Root Mean Square Prediction Error (RMSPE)

and the Ratio of Correctly Signed Forecasts (RCSF). The results based on the RMSPE are

presented in the main text while the appendix summarize the findings for RCSF. Addi-

tional results for the Core CPI inflation, exchange rates, and interest rates are deferred to

supplementary materials. For each series, horizon, and out-of-sample period, the hyperpa-

rameters of the models are re-calibrated using the Bayesian Information Criterion (BIC).

3. Elliott et al. (2013) show that model averaging already induce a form of shrinkage that depends on
original OLS coefficients however shrinking further coefficients by the same amount could be beneficial.
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The variations of the optimal hyperparameters over time allow us to gauge the stability of

our forecast equations.

To the best of our knowledge, our paper is a rare attempt to put so many different models

together and compare their predictive performance on several types of data in a pseudo out-

of-sample forecasting experiment. Disentangling which type of models have significant

forecasting power for real activity, prices, and stock market is valuable for practitioners and

policy makers. The pseudo out-of-sample exercise generates a huge volume of empirical

results. The presentation that follows focuses on highlights that convey the most important

messages.

Irrespective of the forecast horizon and performance evaluation metrics, RDRMA and

Forecast Combinations emerge as the best to forecast real variables. Factor Structure Ba-

sed and Factor Augmented models are dominated in terms of RMSPE, but they are good

benchmarks when the RCSF is considered. This is attributable to the fact that Data-Rich

models involving factors are flexible enough to accommodate instabilities in the dynamics

of the target, as suggested by Carrasco and Rossi (2016) and Pettenuzzo and Timmermann

(2017). For the same reason, factor structure based and factor augmented models emerge

among the best to forecast real variables during recessions. Our Regularized Data-Rich

Model Averaging improves the RMSPE for industrial production by up to 24%, which

supports the finding from Stock and Watson (2006). Kim and Swanson (2014) find that the

combination of factor modeling and shrinkage works best in terms of MSPE while model

averaging performs poorly. Our results suggest that data-rich model averaging combined

with regularization outperforms the other methods in general.

The ARMA(1,1) emerges as an excellent parsimonious model to forecast the variations

of inflation as short horizons. This is in line with Stock and Watson (2007) and Faust and
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Wright (2013). RDRMA dominates at horizons 9 and 12 months. During recessions, the

ARMA(1,1) delivers its best performance three months ahead only, while model avera-

ging and forecast combinations dominate at the other horizons. The presence of an MA

component in inflation time series has been suggested in the literature but the predictive

performance of the ARMA(1,1) model has not been highlighted in a large-scale model

comparison exercise as done here. One possible explanation for this good performance of

the ARMA(1,1) is that inflation anticipations are so well anchored that inflation variations

are exogenous with respect to the conditioning information set.

In general, the best approaches to forecast the SP500 returns are Data-Rich Model Ave-

raging (regularized or not) and Forecast combinations. Factor Structure models have si-

gnificant predictive power for the sign of the SP500 returns and even at long horizons.

During recessions, Data-Rich Model Averaging and Forecast combinations dominate at

short horizons, while factor structure based models dominate at longer horizons. RDRMA

and forecast combinations deliver the best performance in terms of correctly signed fore-

casts in the short-run, while the FAVAR specifications produce the best RCSF for longer

horizons. If we abstract from long horizon during recessions, Random walk (RW) models

(with or without drift) are dominated with respect to all metrics and at all horizons. This

suggests that stock returns are predictable to some extent.

Overall, our results show that sparsity and regularization can be smartly combined with

model averaging to obtain forecasting models that dominate state-of-the-art benchmarks.

Our paper therefore provides a frequentist support for the conclusions found by Giannone

et al. (2021) in their Bayesian framework. Another important finding is that the perfor-

mance of models is unstable, as we find an overwhelming evidence of structural changes

in all aspects of the forecasting equations. However, a combination of regularization and

data-rich model averaging gives a very robust and flexible model that is likely to continue
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performing well in those changing economic environments.

In the remainder of the paper, we first present forecasting models in Section 2. Section

3 presents the design of the pseudo out-of-sample exercise. Section 4 reports the main

empirical results. Section 5 analyzes the stability of the forecast accuracy and Section 6

concludes. Additional results are available in Appendix A and in supplementary mate-

rials 4.

1.2 Predictive Modeling

This section presents the predictive models considered in the paper. We consider the fol-

lowing general framework 5.

arg min
θ

T∑
t=1

L(yt+h − f (Xt; θ)) + λPen(θ) (1.1)

where yt+h is the variable to be predicted h periods ahead (target) and Xt is the N-dimensional

vector of predictors available at time t. L is a loss function that is in most occasions

assumed quadratic. The function f () models the predictors’ space in (non)linear and/or

(non)parametric way ; Pen() represents a regularization or penalization scheme associa-

ted with f () while λ is an hyperparameter that allows us to fine tune the regularization

strength.

In this paper, our forecasting models assume a quadratic loss function in-sample (i.e., for

4. Supplementary materials can be found here https://www.stevanovic.uqam.ca/LKS_
ForecastingDataRich_SuppMaterial.pdf.

5. See Mullainathan and Spiess (2017) and Frank Diebold’s blog https://fxdiebold.blogspot.
com/2017/01/all-of-machine-learning-in-one.html
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model estimation). Hence, the optimal forecast is the conditional expectation E(yt+h|Xt).

The regularization, when needed, will consist of soft and hard thresholding, as well as of

dimensionality reduction by principal component analysis.

1.2.1 Forecasting targets

Most of the time, we are confronted with I(1) series in macroeconomics. For such series,

our goal will be to forecast the average annualized growth rate over the period [t +1, t +h],

as in Stock and Watson (2002b) and McCracken and Ng (2016a). We shall therefore define

y(h)
t+h as :

y(h)
t+h = ( f req/h)

h∑
k=1

yt+k = ( f req/h)ln(Yt+h/Yt), (1.2)

where yt ≡ lnYt − ln Yt−1. In cases where ln Yt is better described by an I(2) process, we

define y(h)
t+h as :

y(h)
t+h = ( f req/h)

h∑
k=1

yt+k = ( f req/h) [ln(Yt+h/Yt+h−1) − ln(Yt/Yt−1)] , (1.3)

where yt ≡ lnYt − 2 ln Yt−1 + lnYt−2.

1.2.2 Regularized Data-Rich Model Averaging

Our main workhorse is the Regularized Data-Rich Model Averaging (RDRMA), an ap-

proach that combines pre-selection and regularization with the Complete Subset Regres-

sions (CSR) of Elliott et al. (2013). The idea of CSR is to generate a large number of

predictions based on different subsets of Xt and construct the final forecast as the simple
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average of the individual forecasts :

y(h)
t+h,m = c + ρyt + βXt,m + εt,m (1.4)

ŷ(h)
T+h|T =

∑M
m=1 ŷ(h)

T+h|T,m

M
(1.5)

where Xt,m contains L series for each model m = 1, . . . ,M 6.

We modify the CSR by following the intuition of Giannone et al. (2021), who found in a

Bayesian forecasting exercise that posterior predictive distributions are a combination of

many different models rather than being concentrated on a single sparse model or a single

dense model. This finding suggests that a well-designed model averaging technique can

outperform any sparse model. As not all the predictors in Xt will be relevant to forecast

yt+h, we propose to either pre-select those that have enough predicting power or regula-

rize each predictive regression ex-post. Similar to our strategy, Diebold and Shin (2019)

propose a Lasso-based procedure to set some forecast combining weights to zero. Instead,

we propose to shrink the space of potential regressors, and therefore the set of possible

predictive models.

Targeted CSR. In the Targeted CSR, we preselect a subset of relevant predictors (first

step) before applying the CSR algorithm (second step). This first step is intended to dis-

cipline the behavior of the CSR algorithm ex ante. We follow Bai and Ng (2008b) in this

step and consider soft and hard thresholding.

1. Hard or Soft Thresholding→ X∗t ∈ Xt

1.1 Hard thresholding

6. L is usually set to 1, 10 or 20 and M is the total number of models considered (up to 5,000 in this
paper).
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A univariate predictive regression is done for each predictor Xit :

y(h)
t+h = α +

3∑
j=0

ρ jyt− j + βiXi,t + εt. (1.6)

The subset X∗t is obtained by gathering those series whose coefficients βi have

the t-stat larger than the critical value tc : X∗t = {Xi ∈ Xt | tXi > tc}, with

tc = 1.65.

1.2 Soft thresholding

A predictive Lasso regression is performed for all predictors Xt :

β̂lasso = arg minβ

 T∑
t=1

(y(h)
t+h − α +

3∑
j=0

ρ jyt− j + βXt)2 + λ

N∑
i=1

|βi|

 . (1.7)

Here, we let the Lasso regularizer select the subset of relevant predictors X∗t =

{Xi ∈ Xt | β
lasso
i , 0}. The hyperparemeter λ is selected to target approximately

30 series, which was used in Bai and Ng (2008b) and in Giannone et al. (2021).

2. Complete Subset Regression of (1.4)-(1.5) on the subset of relevant predictors X∗t .

We consider four specifications of Targeted CSR : soft and hard thresholding, with 10 and

20 regressors, labeled T-CSR-soft,10, T-CSR-soft,20, T-CSR-hard,1.65,10 and T-CSR-

hard,1.65,20, respectively later in tables. In terms of the general predictive setup in (3.2),

the first step of this model uses two types of the regularization : subset selection and Lasso.

Ridge CSR. Alternatively, one may choose to use the entire set of predictors Xt but dis-

cipline the CSR algorithm ex post using a Ridge penalization. Each predictive regression

(1.4) of the CSR algorithm is estimated as follows :

β̂ridge = arg min
β

 T∑
t=1

(y(h)
t+h,m − c − ρyt − βXt,m)2 + λ

N∑
i=1

β2
i

 , (1.8)
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The final forecast is constructed as usual :

ŷ(h)
T+h|T =

∑M
m=1 ŷ(h)

T+h|T,m

M

The intuition here is rather simple. As the CSR consists of combining a large number of fo-

recasts obtained from randomly selected subsets of predictors, some subsets of predictors

will likely be subject to multicolinearity problems. This issue is important in macroeco-

nomic application where many series are known to be highly correlated. A Ridge penali-

zation allows us to elude this problem and produces a well-behaved forecast from every

subsample. We consider two specifications of Ridge CSR based on 10 and 20 regressors,

labeled R-CSR,10 and R-CSR,20, respectively.

1.2.3 Benchmark models

We consider several benchmark models that have been extensively used in the literature.

Table 3.1 lists all the models grouped in six categories. The detailed description is deferred

to the online appendix.

The first category of models consists of standard time series models (that use a limited

number of predictors), such as autoregressive predictive models with direct and iterative

way of constructing the forecast, ARMA(1,1), and autoregressive distributed lag models.

The second and third category of models exploit large data sets in two different ways. The

second category gathers factor-augmented regressions that are instances of the diffusion

indices model of Stock and Watson (2002b). The main feature of these models is that they

treat the factors as exogenous predictors (i.e., factors are extracted separately and plugged

into the forecasting equation). By contrast, the joint dynamics of the factors is endogenous
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in the third category of models, meaning that it is intertwined with the dynamics of the

variable that we seek to forecast.

Complete Subset Regressions are gathered in a fourth category called "Data-Rich Model

Averaging", while their regularized and sparse versions are gathered in the fifth category.

The sixth category of forecasting methods simply consists of alternative ways of averaging

all available forecasts. In total, we have 31 different forecasting approaches to evaluate in

the horse race.

1.3 Empirical Evaluation of the Forecasting Models

This section presents the data and the design of the pseudo-out-of-sample experiment.

1.3.1 Data

We use historical data to evaluate and compare the performance of all the forecasting

models described previously. The dataset employed is an updated version of Stock and

Watson macroeconomic panel. It consists of 134 monthly macroeconomic and financial

time series that are observed from 1960M01 to 2014M12 and it can be accessed via the

Federal Reserve of St-Louis’s web site (FRED). Details on the construction of these series

can be found in McCracken and Ng (2016a).

The empirical exercise is easier when the dataset is balanced. In practice, there is usually

a trade-off between the relevance of a time series and its availability (and frequency). Not

all series are available from the 1960M01 starting date in the McCracken and Ng (2016a)

database. This is accommodated in the rolling window setup by expanding the information

set used for the prediction as the window moves forward.
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Tableau 1.1: List of all forecasting models

Standard Time Series Models
ARD Autoregressive direct
ARI Autoregressive iterative
ARMA(1,1) Autoregressive moving average
ADL Autoregressive distributed lag
Factor-Augmented Regressions
ARDI Autoregressive diffusion indices, Stock and Watson (2002b)
ARDIT Targeted diffusion indices, Bai and Ng (2008b)
ARDI-DU ARDI with dynamic factors, Forni et al. (2005)
3PRF Three-pass regression filter, Kelly and Pruitt (2015)
Factor-Structure-Based Models
FAVAR Factor-augmented VAR, Boivin and Ng (2005)
FAVARMA Factor-augmented VARMA, Dufour and Stevanović (2013)
DFM Dynamic factor model, Forni et al. (2005)
Data-Rich Model Averaging
CSR Complete subset regressions, Elliott et al. (2013)
Regularized Data-Rich Model Averaging
T-CSR Targeted CSR
R-CSR Ridge CSR
Lasso Least absolute shrinkage and selection operator
Forecasts Combinations
AVRG Equal-weighted forecasts average
Median Median forecast
T-AVRG Trimmed average
IP-AVRG Inversely proportional average

Our models all assume that the variables yt and Xt are stationary. However, most macroe-

conomic and financial indicators must undergo some transformation in order to achieve

stationarity. This suggests that unit root tests must be performed before knowing the exact

transformation to use for a particular series. The unit root literature provides much evi-

dence on the lack of power of unit root test procedures in finite samples, especially with
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highly persistent series. Therefore, we simply follow McCracken and Ng (2016a) and

Stock and Watson (2002b) and assume that price indices are all I(2) while interest and

unemployment rates are I(1) 7.

1.3.2 Pseudo-Out-of-Sample Experiment Design

The pseudo-out-of-sample period is 1970M01 - 2014M12. The forecasting horizons consi-

dered are 1 to 12 months. There are 540 evaluation periods for each horizon. All models are

estimated on rolling windows. We have compared the forecast accuracy of rolling versus

expanding (or recursive) windows and the results are similar. For each model, the opti-

mal hyperparameters (number of factors, number of lags, etc.) are specifically selected for

each evaluation period and forecasting horizon. The size of the rolling window is 120 − h

months.

1.3.3 Variables of Interest

We focus on four variables in the subsequent presentation : Industrial Production (IND-

PRO), Employment (EMP), Consumer Price Index (CPI), and SP500 index. INDPRO and

EMP are real variables, CPI is a nominal variable while the SP500 represents the stock

market. Additional results are available in the supplementary materials for the Core Consu-

mer Price Index (Core CPI), the 10-year treasury constant maturity rate (GS10), and the

US-UK and US-Canada bilateral exchange rates. The logarithm of INDPRO, EMP and the

7. Bernanke et al. (2005) keep inflation, interest, and unemployment rates in levels. Choosing (SW) or
(BBE) transformations has effects on correlation patterns in Xt. Under (BBE), the group of interest rates is
highly correlated as well as the inflation rates. As pointed out by Boivin and Ng (2006), the presence of these
clusters may alter the estimation of common factors. Under (SW), these clusters are less important. Recently,
Banerjee et al. (2014) and Barigozzi et al. (2016) propose to deal with the unit root instead of differentiating
the data.
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SP500 are treated as I(1) while the logarithm of the CPI is assumed to be I(2), as in Stock

and Watson (2002b) and McCracken and Ng (2016a).

1.3.4 Forecast Evaluation Metrics

Following a standard practice in the forecasting literature, we evaluate the quality of our

point forecasts by using the Root Mean Square Prediction Error (RMSPE). A standard

Diebold-Mariano test procedure is used to compare the predictive accuracy of each model

against the autoregressive direct model.

For the sake of generality, we also implement the Model Confidence Set (MCS) introduced

in Hansen et al. (2011). The MCS allows us to select the subset of best models at a given

confidence level. It is constructed by first finding the best forecasting model, and then

selecting the subset of models that are not significantly different from the best model at

a desired confidence level. We construct each MCS based on the quadratic loss function

and 4000 bootstrap replications. As expected, we find that the (1− α) MCS contains more

models when α is smaller. The empirical results for 75% are presented in the main text

while Supplementary materials contain the results for α = 10%, 50%.

In Appendix A.1, we consider an alternative metric to evaluate our point forecasts : the

Ratio of Correctly Signed Forecasts (RCSF). This metric captures some aspects of the

distribution of the forecasts that the RMSPE may miss. For instance, a model that is domi-

nated in terms of RMSPE can still have superior performance at generating forecasts that

have the same signs as the target.
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1.4 Main Results

This section presents our main empirical results for industrial production, employment

growth, inflation acceleration, and returns on the SP500 index. The analysis is done for

the full out-of-sample period as well as for NBER recessions taken separately (i.e., when

the target belongs to a recession episode). Indeed, the knowledge of the models that have

performed best historically during recessions is of interest for policy makers, practitioners,

and real-time forecasters. If the probability of recession is high enough at a given period,

our results can provide an ex-ante guidance on which model is likely to perform best in

such circumstances.

1.4.1 Industrial Production Growth

We now examine the performance of the various models at forecasting industrial produc-

tion growth. Table C.1 presents the ratio of the RMSPE of each model and that of the ARD

model (henceforth, relative RMSPE), both for the full out-of-sample period (1970-2014)

and NBER recessions. Results are shown only for horizons 1, 3, 6, 9, and 12 months.

Bold characters identify the models that are selected into the 75% MCS. The best mo-

del in terms of relative RMSPE (i.e., the minimum relative RMSPE) for each horizon is

underlined, and the significance levels for Diebold-Mariano tests are displayed using the

conventional notation with three, two, and one star.

When the full out-of-sample period is considered, the best approach to forecast Industrial

Production growth belongs to either Forecast Combinations or RDRMA. Note that the

MCS contains models that belong to Factor-Augmented Regressions, Factor-Structure-

Based Models and Data Rich Model Averaging, but not to Standard Time Series Models.
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Tableau 1.2: Industrial Production : Relative RMSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD (RMSPE) 0,0856 0,0625 0,0582 0,0541 0,0506 0,1409 0,1108 0,1053 0,0943 0,085
ARI 1 1,03 1,01 1 1,02 1 1.08** 0,99 0,98 0,99
ARMA(1,1) 0.97* 0,99 1,01 1,04 1.10* 0.92** 0,99 0.97* 0,98 1,01
ADL 1 1.01* 1,01 1,03 1 0,98 1.03* 1,02 1,01 0,99
Factor-Augmented Regressions
ARDI 0.93** 0.90** 0.84** 0.83** 0.81*** 0.83*** 0.81*** 0.72*** 0.82** 0.85**
ARDI-soft 0.94* 0.90** 0.84** 0.80** 0.83** 0.75*** 0.81*** 0.70*** 0.77*** 0.79***
ARDI-hard,1.28 0.92** 0.86*** 0.85** 0.77*** 0.79*** 0.81*** 0.79*** 0.71*** 0.77*** 0.80***
ARDI-hard,1.65 0.94** 0.89*** 0.83** 0.78*** 0.77*** 0.82*** 0.79*** 0.69*** 0.74*** 0.74***
ARDI-tstat,1.96 0,98 0.89** 0.87** 0.84** 0.81*** 0.89** 0.85** 0.74*** 0.85** 0.83***
ARDI-DU 0.92** 0.88*** 0.84** 0.82** 0.82*** 0.82*** 0.82*** 0.72*** 0.85** 0.85**
3PRF 0.93** 0.93** 0.94** 0.92** 0.94** 0.86*** 0.89*** 0.91** 0.94** 0,95
Factor-Structure-Based Models
FAVARI 0.92** 0.88*** 0.85*** 0.86*** 0.86*** 0.80*** 0.82*** 0.78*** 0.85*** 0.84***
FAVARD 0.91** 0.90** 0.87** 0.87** 0.84** 0.79*** 0.82*** 0.74*** 0.84** 0.83**
FAVARMA-FMA 0.94** 0.91** 0.85*** 0.84*** 0.82*** 0.81*** 0.82*** 0.76*** 0.80*** 0.78***
FAVARMA-FAR 0,98 0,97 0,94 0,96 1 0.83*** 0.78*** 0.72*** 0.75*** 0.84***
DFM 0.92*** 0.90*** 0.85*** 0.85*** 0.86*** 0.84*** 0.88*** 0.82*** 0.86*** 0.88***
Data-Rich Model Averaging
CSR,1 0.98** 0,99 0.96** 0.96*** 0.96*** 0,98 1,05 0,99 0.98*** 0.97***
CSR,10 0.92*** 0.88*** 0.83*** 0.81*** 0.81*** 0.86*** 0.88*** 0.81*** 0.84*** 0.84***
CSR,20 0.91*** 0.86*** 0.80*** 0.78*** 0.77*** 0.84** 0.83*** 0.74*** 0.78*** 0.79***
Regularized Data-Rich Model Avrg
T-CSR-soft,10 0.93** 0.86*** 0.81*** 0.78*** 0.78*** 0.82*** 0.82*** 0.75*** 0.78*** 0.79***
T-CSR-soft,20 0,99 0.92* 0.83** 0.80** 0.83** 0.83*** 0.79*** 0.71*** 0.75*** 0.76***
T-CSR-hard,1.65,10 0.91** 0.85*** 0.80*** 0.78*** 0.76*** 0.82*** 0.81*** 0.73*** 0.79*** 0.76***
T-CSR-hard,1.65,20 0.94* 0.89*** 0.84** 0.82** 0.82** 0.83** 0.83*** 0.74*** 0.82** 0.79***
R-CSR,10 0.92*** 0.88*** 0.84*** 0.82*** 0.80*** 0.86*** 0.87*** 0.80*** 0.82*** 0.82***
R-CSR,20 0.90*** 0.85*** 0.80*** 0.77*** 0.76*** 0.81*** 0.81*** 0.74*** 0.77*** 0.76***
Lasso 1.08* 1,04 0,94 0,88 0,93 0.88* 0.82** 0.74*** 0.77** 0.79**
Forecasts Combinations
AVRG 0.90*** 0.85*** 0.80*** 0.78*** 0.77*** 0.81*** 0.82*** 0.74*** 0.78*** 0.80***
Median 0.90*** 0.85*** 0.80*** 0.78*** 0.77*** 0.81*** 0.82*** 0.74*** 0.80*** 0.80***
T-AVRG 0.90*** 0.85*** 0.80*** 0.78*** 0.77*** 0.82*** 0.82*** 0.75*** 0.80*** 0.80***
IP-AVRG,1 0.90*** 0.85*** 0.80*** 0.77*** 0.76*** 0.82*** 0.82*** 0.73*** 0.78*** 0.79***
IP-AVRG,0.95 0.90*** 0.86*** 0.80*** 0.78*** 0.77*** 0.81*** 0.82*** 0.74*** 0.79*** 0.80***

Note : The numbers in the table are relative RMSPEs of each model with respect to the ARD model. The RMSPE of the ARD model
is indicated to assess the importance of errors. Models in the MCS are indicated in bold. The best models in terms of RMSPE are
underlined while ∗∗∗, ∗∗, ∗ stand for 1%, 5%, and 10% significance levels for the Diebold-Mariano test.

Note that actual magnitudes of forecasts errors are in line with Stock and Watson (2002b).

During recessions, the best model to forecast Industrial Production growth belongs to ei-

ther Factor-Augmented Regressions or Factor-Structure-Based Models. This may be ex-

plained by the fact that these models are flexible enough to accommodate the faster than
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usual changes in economic variables during recession. Here too, the MCS contains fore-

casting models that pertain to other categories, notably Data-rich Model Averaging (regu-

larized or not) and Forecast Combinations. Interestingly, Lasso is present in the MCS at

most horizons during recessions. As expected, the magnitude of forecast errors increases

during recessions, see RMSPE for the ARD model.

Two messages emerge from these results. First, Data-Rich models and Forecast Combi-

nations dominate standard time series models when it comes to predicting the industrial

production growth. Second, the fact that several models belonging to different categories

are jointly present in the MCS naturally explains why Forecast Combinations perform so

well.

1.4.2 Employment Growth

We now examine the results for Employment Growth, presented in Table 1.3. The results

are quite similar to what is obtained for industrial production growth. As previously, stan-

dard time series model are dominated and are never selected in the MCS.

Over the full out-of-sample period, the best models to predict Employment Growth often

belong to Regularized Data-Rich Model Averaging while the MCS contains many versions

of forecast combinations. Models involving factors are much less present in the MCS than

previously. During recessions, the best models and the MCS are almost evenly distributed

between Factor-Augmented Regressions and Regularized Data-Rich Model Averaging.

Factor-Structure-Based models emerge as the best at short horizons during recession.

In summary, Regularized Data-Rich Model Averaging is a robust approach to forecasting

real series irrespective of whether we are in recession or not. The actual magnitudes of
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Tableau 1.3: Employment : Relative MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD (RMSPE) 0,0184 0,0152 0,0158 0,0163 0,0167 0,0245 0,0242 0,0261 0,0265 0,0256
ARI 1 0,99 0.98* 0,98 1,01 1 1,01 0,98 0,99 1
ARMA(1,1) 1 0,99 1 1,04 1,07 1,01 1.05** 0,99 0,99 1
ADL 0,99 1,01 1.03* 1,02 1,01 0,98 1,03 1.05** 1,02 1
Factor-Augmented Regressions
ARDI 0.94* 0.91* 0,93 0,94 0.88** 0.84** 0.84** 0.86** 0.91* 0.84**
ARDI-soft 1,02 0.88* 0,95 0.79*** 0.83*** 0,94 0.85 0.83** 0.75*** 0.83**
ARDI-hard,1.28 0,95 0.88** 0.87** 0.84*** 0.87** 0.84** 0.84* 0.83** 0.82** 0.87*
ARDI-hard,1.65 0.93* 0.89** 0.87** 0.85** 0.87** 0.82** 0.84* 0.86* 0.84** 0.86**
ARDI-tstat,1.96 0,96 0.88** 0.89** 0.86*** 0.85*** 0.90* 0.82** 0.78*** 0.85*** 0.85**
ARDI-DU 0.94* 0.91* 0,92 0.89* 0.89* 0.87** 0.87* 0.87* 0.88* 0.84**
3PRF 1 0,97 0,98 0,99 1 0.91* 0,98 1,02 1.05* 1,05
Factor-Structure-Based Models
FAVARI 0,94 0,92 0,94 0,97 0,98 0.82** 0,97 1,03 1,06 1,04
FAVARD 0.93* 0.89* 0.89** 0.90** 0.89** 0.81** 0.89* 0.89* 0,96 0,94
FAVARMA-FMA 0.93* 0.91* 0.92* 0,95 0.93* 0.83** 0,96 0,97 1,01 0,98
FAVARMA-FAR 0,95 0,92 0,96 0,99 1 0,91 0,97 1,04 1.08* 1.11**
DFM 0,96 0.91* 0.88*** 0.87*** 0.88*** 0,96 0,98 0,97 0.93** 0.90***
Data-Rich Model Averaging
CSR,1 1.06*** 1,03 0,99 0,99 0,99 1.13*** 1.11*** 1.04** 1,01 0,98
CSR,10 0,97 0.90** 0.87*** 0.86*** 0.86*** 0,98 0,95 0.91** 0.90** 0.87**
CSR,20 0.95* 0.85*** 0.84*** 0.83*** 0.84*** 0.90* 0.87** 0.85*** 0.87** 0.84**
Regularized Data-Rich Model Avrg
T-CSR-soft,10 0,96 0.85*** 0.85*** 0.80*** 0.83*** 0,91 0.87** 0.86*** 0.84*** 0.83***
T-CSR-soft,20 0,98 0.85** 0.85** 0.81*** 0.85** 0.89 0.82** 0.83*** 0.81*** 0.77***
T-CSR-hard,1.65,10 0.93* 0.85*** 0.83*** 0.83*** 0.85*** 0.88** 0.86** 0.85** 0.88** 0.87**
T-CSR-hard,1.65,20 0,95 0.83** 0.85** 0.86** 0.90* 0.85** 0.81** 0.84** 0.89* 0,91
R-CSR,10 0.93*** 0.86*** 0.85*** 0.84*** 0.83*** 0.88*** 0.85*** 0.84*** 0.85*** 0.83***
R-CSR,20 0.93** 0.83*** 0.82*** 0.80*** 0.79*** 0.85** 0.81*** 0.80*** 0.82*** 0.79***
Lasso 1.07* 0,92 0,91 0.89* 0,96 1 0.83* 0.87** 0.85** 0.79**
Forecasts Combinations
AVRG 0.91*** 0.84*** 0.83*** 0.82*** 0.82*** 0.85** 0.86** 0.87*** 0.86*** 0.85***
Median 0.91** 0.83*** 0.83*** 0.82*** 0.83*** 0.86** 0.86** 0.86*** 0.87*** 0.85***
T-AVRG 0.91** 0.84*** 0.84*** 0.82*** 0.83*** 0.85** 0.87** 0.87*** 0.87*** 0.86***
IP-AVRG,1 0.91** 0.83*** 0.83*** 0.81*** 0.82*** 0.85** 0.85** 0.85*** 0.85*** 0.85***
IP-AVRG,0.95 0.91*** 0.83*** 0.83*** 0.82*** 0.82*** 0.85** 0.85** 0.86*** 0.86*** 0.85***

Note : The numbers in the table are relative RMSPEs of each model with respect to the ARD model. The RMSPE of the ARD model
is indicated to assess the importance of errors. Models in the MCS are indicated in bold. The best models in terms of RMSPE are
underlined while ∗∗∗, ∗∗, ∗ stand for 1%, 5%, and 10% significance levels for the Diebold-Mariano test.

those improvements can be inferred from the root MSPE that is reported for the reference

model ARD. For exemple, using Ridge CSR,20 model to predict industrial growth one

year ahead increases the forecast accuracy by 120 basis points (3.85%) over the benchmark

(5.05%), which is an economically significant improvement. In case of the employment



23

growth, the same model decreases the RMSPE by 35 basis point (1.32% against 1.67%).

Forecast Combinations perform quite well on average but they may be outperformed by

Factor-Augmented or Factor-Structure-Based models during recessions. A researcher who

only cares about the average performance of his model at forecasting a real series should

consider using either Regularized Data-Rich Model Averaging or Forecast Combination.

By contrast, a researcher who cares more about the performance of his forecasting model

during recession (that is, when uncertainty and instabilities are higher than usual) should

rather use Factor-Augmented Regressions.

1.4.3 Inflation change

We now examine the performance of the various models at forecasting the variations of

the consumer price index (CPI) inflation. The target of interest here is therefore the second

difference of the logarithm of the CPI (i.e., CPI acceleration). Table C.4 shows the results.

Over the whole out-of-sample period, the ARMA(1,1) dominates all individual Data-Rich

forecasting models at short horizons. At 9 months horizon and beyond, Regularized Data-

Rich Model Averaging emerges as the best forecasting model but its performance is not

significantly different from the ARMA(1,1). During recessions, the ARMA(1,1) model

still perform well at short horizons but the targeted ARDI perform better at longer ho-

rizons. In terms of actual magnitudes, the predictive accuracy for CPI inflation change

is very good. For the full sample and one-year horizon, the R-CSR,20 model improves

the forecast precision by 29 basis points (1.94%) over the ARD model (2.23%). Beyond

the statistical significance, this amelioration is particularly valuable for monetary policy

authorities that require accurate inflation forecasts (anticipations).
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Tableau 1.4: CPI inflation acceleration : Relative RMSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD (RMSPE) 0.0318 0,0279 0,0232 0,0217 0,0223 0,0493 0.0473 0,035 0.0294 0,0277
ARI 1.00 1.05* 1.16*** 1.19*** 1.18** 1 1,09 1.27** 1.04* 1,01
ARMA(1,1) 0.94** 0.89** 0.93 0.95 0.93** 0.94 0.87** 0,99 0,98 1,01
ADL 1,02 1,06 1,21 1,06 0,99 1,05 1.06 0.88* 0.88 0,98
Factor-Augmented Regressions
ARDI 1 1,08 1,12 1,01 0.90** 0.95 1.12 0.92** 0.91* 0.91*
ARDI-soft 0.96 1.13* 1,1 1,01 0,94 0.89* 1,14 0.95 0.91 0.86**
ARDI-hard,1.28 1,01 1,06 1,11 1,02 0.91* 0.93 1,1 0,98 0.85* 0.80**
ARDI-hard,1.65 1,02 1,07 1,06 1,05 0,94 0,96 1,14 0.89* 0.84* 0.77***
ARDI-tstat,1.96 1,01 1,02 1,02 0,98 0.92** 1.00 1.03 0.96 0.95 0,92
ARDI-DU 1.00 1.06 1,16 1,03 0.93* 0.96 1.10 0,95 0.93 0,9
3PRF 1.07** 1.14*** 1.21*** 1.18*** 1.14*** 1,03 1,14 1.27*** 1.07* 1,08
Factor-Structure-Based Models
FAVARI 1.06* 1.20*** 1.50*** 1.65*** 1.70*** 0.97 1,16 1.74** 1.43** 1.49*
FAVARD 1.06* 1.18*** 1.47*** 1.62*** 1.73*** 0.96 1,14 1.73** 1.33** 1.35*
FAVARMA-FMA 1,05 1.17*** 1.47*** 1.62*** 1.64*** 0.96 1,13 1.69** 1.40** 1.43*
FAVARMA-FAR 1.21*** 1.75*** 2.73*** 3.57*** 3.99*** 1,02 1.56** 2.72*** 2.68*** 3.05***
DFM 0,98 1,03 1.16* 1.26* 1.29* 0.94 1.04 1.36* 1,03 1,03
Data-Rich Model Averaging
CSR,1 1,03 1.11** 1.25*** 1.27*** 1.24*** 0.95 1,05 1.40** 1,12 1.11*
CSR,10 1,01 1.11** 1.23*** 1.22*** 1.18** 0.92 1,08 1.36** 1,07 1,05
CSR,20 1,02 1.11** 1.26*** 1.20*** 1.16** 0.93 1,09 1.44** 1,07 1,03
Regularized Data-Rich Model Avrg
T-CSR-soft,10 0.97 1.07* 1.16*** 1.16** 1.11* 0.87 1.01 1.22** 1,02 1
T-CSR-soft,20 1.00 1.11** 1.20*** 1.19*** 1.13** 0.87 1.00 1.13*** 1,03 1,04
T-CSR-hard,1.65,10 1,01 1.09** 1.17*** 1.16** 1.12** 0.92 1.03 1.24** 1 0,95
T-CSR-hard,1.65,20 1,03 1.10** 1.17*** 1.12** 1.11** 0.92 0.96 1.16** 1,01 0,93
R-CSR,10 0.96** 0.97 1.00 0.94** 0.88*** 0.91** 0.98 0,95 0.91** 0.90*
R-CSR,20 0.95* 0.97 1,03 0.94** 0.87*** 0.88* 0.98 0,96 0.88* 0.89*
Lasso 1.09* 1.15*** 1.19*** 1.10* 1,06 0.90 1.02 0.96 0.92 1,04
Forecasts Combinations
AVRG 0.94** 0.96 1,01 1,01 0,98 0.87** 0.95 1,09 0.95 0,94
Median 0.95* 0.96 0.99 0.96 0.93* 0.87** 0.98 1,08 0.92* 0.91*
T-AVRG 0.94** 0.96 0,99 0,98 0.93* 0.87** 0.96 1,06 0.93* 0.91*
IP-AVRG,1 0.94** 0.96* 0,99 0,96 0.91** 0.87** 0.95 1,02 0.92* 0.90*
IP-AVRG,0.95 0.94** 0.96* 0.98 0.95** 0.89*** 0.87** 0.96 1,01 0.91* 0.88**

Note : The numbers in the table are relative RMSPEs of each model with respect to the ARD model. The RMSPE of the ARD model
is indicated to assess the importance of errors. Models in the MCS are indicated in bold. The best models in terms of RMSPE are
underlined while ∗∗∗, ∗∗, ∗ stand for 1%, 5%, and 10% significance levels for the Diebold-Mariano test.

Few studies document the performance of ARMA models at predicting inflation. Stock and

Watson (2007) suggest that the MA component of the inflation process has increased since

1984. Ng and Perron (1996) and Ng and Perron (2001) also document similar evidence.

Foroni et al. (2019) found that the presence of an MA component improves the forecasting
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power of mixed-frequency models when predicting the U.S. inflation.

One plausible explanation for the good performance of the ARMA(1,1) is that inflation

is generally well anticipated so that its variations behave like an exogenous noise. Conse-

quently, Data-Rich models tend to be over-parameterized and have poor predictive per-

formance for this series. During recessions, economic variables are subject to unusually

large shocks and the stability of the relationship that bound variables is not warranted. As

a result, the ARMA(1,1) model loses its predictive power and Data-Rich models become

favored.

1.4.4 Stock Market Index

We now examine the results for the SP500 returns. In principle, a forecasting model for

stock market returns should include the real-time vintages of the predictors. Unfortunately,

these vintages are not available for a large number of predictors. Our models are therefore

based on the latest information available on all predictors. Table 1.5 shows the results.

Under the assumption of market efficiency, random walk models have become the standard

benchmark in the literature on return predictability. Indeed, stock market returns are said to

be predictable if one can find a model that forecasts them better than random walk models.

Therefore, we need to consider the random walk model with or without drift (RWD and

RW) as the benchmarks for the SP500 returns.

Over the full out-of-sample period, our Regularized Data-Rich Model Averaging generates

the best point forecasts at most horizons. Table 1.5 shows that the R-CSR,10 specification

improves up to 5% and 3% with respect to RW at one and three month forecasting hori-

zon, respectively. It also dominates at longer horizons, but the forecasts are not statistically
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Tableau 1.5: SP500 returns : Relative RMSPE wrt RW

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Random walks
RW (RMSPE) 0,451 0.3069 0.2370 0.2007 0.1785 0,7126 0.4780 0.3313 0.2719 0.2329
RWD 0,99 0.99 0.98 0.98 0.98 1.01** 1.05*** 1.11*** 1.18*** 1.22***
Standard Time Series Models
ARD 0.97*** 0.98 0.98 0.99 0.98 0,98 1.05*** 1.10*** 1.15*** 1.19***
ARI 0.97*** 0.98 0.98 0.98 0.97 0,98 1.04** 1.09*** 1.14*** 1.19***
ARMA(1,1) 0.98* 0.99 0.99 0.98 0.98 0,99 1.05*** 1.10*** 1.15*** 1.19***
ADL 0.98 1,01 1.02 0.98 0.99 0.95 1,06 1.10*** 1.14*** 1.18***
Factor-Augmented Regressions
ARDI 0.96** 0.99 1,04 1,06 1,03 0.94* 1.01 1,09 1,09 1,13
ARDI-soft 1 1,03 1,12 1,04 1,07 1 1,06 1,07 1,06 1.21**
ARDI-hard,1.28 1 1.00 1,09 1,07 1,01 1 1.02 1,1 1,12 1.20*
ARDI-hard,1.65 0,99 1.00 1,11 1,07 1,01 0,98 1.02 1,09 1,09 1.19*
ARDI-tstat,1.96 0,99 1.00 1,07 1,06 1.00 0.96 1.02 1.11* 1,12 1.16*
ARDI-DU 0.96** 0.99 1.04 1,05 1,01 0.95* 1,03 1,1 1,12 1.12
3PRF 0.97* 0.99 1.03 1.03 1,02 0.96 1,04 1.03 1,02 1.12*
Factor-Structure-Based Models
FAVARI 0.98 0.99 1.01 1.04 1,04 0.98 1.01 1,05 1,01 1.04
FAVARD 0.98 1.00 1,06 1,1 1,07 0.97 1.02 1,05 0.96 1.04
FAVARMA-FMA 0.98 0.98 1.02 1.05 1,05 0.97 1.01 1.04 1,01 1.07
FAVARMA-FAR 0,99 1,05 1.11* 1.16* 1.18* 0,99 1.14** 1.24* 1.11* 1.10*
DFM 0.96** 0.98 0.99 0.99 0.98 0.96* 1.02 1,05 1,07 1.12**
Data-Rich Model Averaging
CSR,1 0.96*** 0.98* 0.98 0.97 0.97 0.97* 1.03* 1.08*** 1.14*** 1.18***
CSR,10 0.96** 0.97 1.00 0.99 0.97 0,97 1.00 1,05 1.10* 1.16**
CSR,20 0,99 1,01 1,07 1,05 1 1 1,04 1,1 1.19* 1.19**
Regularized Data-Rich Model Avrg
T-CSR-soft,10 1 1.00 1.05 1.04 1,03 1,02 1.00 1.01 1,06 1.17**
T-CSR-soft,20 1.10*** 1.11* 1,23 1.18* 1.14* 1.13** 1,05 1.02 1.01 1,15
T-CSR-hard,1.65,10 0,98 1 1.06 1.04 1 0,99 1.00 1.02 1,04 1.17*
T-CSR-hard,1.65,20 1,01 1,06 1.16* 1.16* 1.10* 1,02 1.02 1.02 1,01 1.15*
R-CSR,10 0.95*** 0.97* 0.98 0.96 0.95 0.96* 1.00 1,04 1,06 1.13**
R-CSR,20 0.96** 0.98 1.02 0.98 0.97 0,97 1.00 1.02 1,04 1.13*
Lasso 1.26*** 1.32*** 1.45** 1.46** 1.33*** 1.29*** 1.24* 1,15 0.94 1.11
Forecasts Combinations
AVRG 0.96** 0.97 1.00 0.98 0.96 0,96 0.99 1.02 1,03 1.12*
Median 0.96** 0.97 1.00 0.99 0.96 0.96 1.00 1,03 1,05 1.12*
T-AVRG 0.96** 0.97 1.00 0.98 0.96 0.96 1.00 1,03 1,04 1.12*
IP-AVRG,1 0.96** 0.97 1.00 0.99 0.97 0.96 0.99 1.02 1,04 1.13*
IP-AVRG,0.95 0.96** 0.97 1.00 1.00 0.97 0.96 1.00 1.02 1,04 1.13*

Note : The numbers in the table are relative RMSPEs of each model with respect to the RW model. The RMSPE of the RW model is
indicated to assess the importance of errors. Models in the MCS are indicated in bold. The best models in terms of RMSPE are
underlined while ∗∗∗, ∗∗, ∗ stand for 1%, 5%, and 10% significance levels for the Diebold-Mariano test.

different according to the Diebold-Mariano test. During recessions, a factor augmented re-

gression does better than Random Walk models at the shortest horizon (h=1). Finally,

RWD outperforms RW in general, but the latter model dominates significantly during re-
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cessions.

The results above support the claim that stock returns are predictable only at short hori-

zons. Further results presented in the Appendix suggest that the Ratio of Correctly Signed

Forecasts (RCSF) is higher for most models than for the RW at most horizons. This implies

that a nonlinear predictability of stock returns is still possible at longer horizons.

1.5 Stability of forecast accuracy

In this section, we examine the stability of the forecast accuracy and of the optimal struc-

ture of the forecasting equations over time.

1.5.1 Stability of Forecast Performance

Here we examine the stability of the forecast accuracy 8. Figure 1.1 plots the 3-year mo-

ving average of the RMSPE of selected models for h=3 months ahead forecasts, as well as

the cumulated forecast errors. The selected models are two of our RDRMA techniques and

the alternative models showed the best overall performance in the horse race. In the left

column of the figure we see a significant downturn in the level of RMSPE for real activity

series from the mid ’80s, which coincides with the Great Moderation period. There are

also systematic shifts during recessions : those around the oil price shocks, Great inflation

and Great Recession being by far larger compared to 1991 and 2001 downturns. These

changes in the volatility are in line with macroeconomic uncertainty dynamics in Jurado

et al. (2015). In the case of CPI inflation change, we remark a slow downward trend since

8. See Giacomini and Rossi (2009) and Rossi and Sekhposyan (2010, 2011), among others, for examples
of time-varying forecast performance.
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1982 that vanished at the beginning of the ’90s, which coincides with the inflation targe-

ting regime. As suggested by Boivin and Giannoni (2006), the monetary policy became

more agressive in stabilizing the economic activity, which also resulted in more anchored

inflation expectations. Hence, the volatility of inflation predictions shrunk during that per-

iod. However, it started rising since 2000 and skyrocketed to historical peaks during the

Great Recession. It dropped back to the usual level afterward, at least until the end of our

sample that does not cover the COVID episode. The dynamics of SP500 returns RMSPE

is closely related to NBER cycles with important increases in forecasting errors around

recessions.

Despite the large swings in the absolute measure of forecasting performance, it turns out

that the RMSPE trajectories have rather parallel trends, meaning that the relative perfor-

mance of any two models is quite stable over time (exceptions may be observed during

recession episodes). For real variables, at least one of our RDRMA models regularly pro-

duces lower RMSPEs compared to the alternatives. In the case of inflation, our R-CSR

model is close to ARMA(1,1), while all models have similar performance when predicting

SP500 returns.

The right column plots the cumulated forecast errors across the out-of-sample period. The

R-CSR model is undoubtedly the least biased when predicting industrial production and

employment growths, and has similar performance to ARMA for CPI inflation change. All

models under-estimate the level of stock returns during the Great Moderation.

Giacomini and Rossi (2010) propose a test to compare the out-of-sample forecasting per-

formance of two competing models in the presence of instabilities. Figure 1.2 shows the

results for several horizons and two critical values. We report the comparison between the
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Figure 1.1: RMSPE over time
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Note : The figure shows the 3-year moving average of the RMSPE of selected models for h = 3, and the cumulated forecast errors.



30

overall best RMSPE model for each series and the ARD alternative, except for the SP500

where the reference model is RW. Following the Monte Carlo results in Giacomini and

Rossi (2010), the moving average of the standardized difference of MSPEs is produced

with a 162-month window, which corresponds to 30% of the out-of-sample period. The

results point to some instability in the forecast accuracy, but the relative performance of

our models is still very good most of the time.

Figure 1.2: Giacomini-Rossi fluctuation test
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Note : The figure shows the Giacomini-Rossi fluctuation test for best RMSPE models against the ARD benchmark, except for SP500
where the reference model is RW. CV, 0.05 and CV, 0.10 correspond to 5% and 10% critical values respectively.
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1.5.2 Stability of Forecast Relationships

Several recent studies have suggested that factor loadings and the number of factors are

likely to change over time 9. The results presented here point towards the same direction.

The number of principal components retained in factor-augmented models varies conside-

rably across the out-of-sample period, forecasting horizons and across the series of inter-

est. In general, real variables require more factors in the in the forecasting equations than

inflation or stock market returns 10.

Figure 1.3 plots the number of series selected by soft (Lasso) and hard thresholds for all

series at the 3-month horizon. Recall that this is the first step in ARDIT models as well

as in our targeted CSR model. The results are similar for the two real activity series. The

number of candidate predictors is generally lower when predicting CPI inflation growth.

In the case of stock returns, the number of selected series is declining until the Great

Recession.

Figure 1.4 shows the type of series selected by hard thresholding with tc = 1.65 for 3-

month ahead predicting. We group the data as in McCracken and Ng (2016a) and show

whether a series has been selected or not over the whole out-of-sample period. The proba-

bility that a particular predictor will be consistently selected is higher for some groups and

depends on the series being predicted. For instance, indicators in Employment & Hours,

Consumption, and Money & Credit groups are often present when predicting industrial

production and employment. There is a lot of instability in predictor selection for CPI

9. See, among others, Breitung and Eickmeier (2011), D’Agostino et al. (2013), Eickmeier et al. (2015),
Cheng et al. (2016), Mao Takongmo and Stevanovic (2015), and Guérin et al. (2020).

10. Due to space constraints, the related figures are presented in the supplementary materials.
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where only a small number of candidates are systematically present. A similar pattern is

observed in case of SP500. However, even if a single predictor may appear to be randomly

selected, we note that categories of predictors are in general well represented over time, as

in De Mol et al. (2008). Those variations support our RDRMA technique, which relies on

regularization to smartly combine the relevant information that is likely to vary over time.

Given this historical evidence on structural instability in forecasting models and predictive

accuracy, we believe our RDMRA models are likely to continue to perform well because

of two important features. First, they rely on model averaging, which is known to im-

prove forecasting performance 11. Second, the regularization makes the set of all models,

to be averaged, more robust to structural changes (Hendry and Clements, 2004). In the

Targeted-CSR, the targeting in the first step provides a more efficient and less restrictive

framework than keeping the set of predictors fixed for every variable and horizon (Bai

and Ng, 2008b). This pre-selection works in a similar fashion as model weighting where

Del Negro et al. (2016) and Elliott and Timmermann (2005) show that allowing weights

to change improves the forecasting performance. The ex-post regularization in the second

model, the Ridge-CSR, shrinks the coefficients of uninformative predictors towards zero

to avoid overfitting, which in turn reduces the instability in model predictions (Fan and Li,

2001). This implicit weighting (ex-ante or ex-post) is exactly the source of improvement

upon the original CSR model. A combination with data-rich model averaging provides

a very robust and flexible model that is likely to continue performing well in the future,

despite the changing economic environments.

11. See Bates and Granger (1969), Hendry and Clements (2004), and Elliott et al. (2015) for theoretical
and empirical demonstrations, and Boot and Nibbering (2019) for a theoretical derivation of expected gains
of the CSR.
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Figure 1.3: Number of series pre-selected by hard and soft thresholding

Note : The figure shows the number of series selected by the hard and soft thresholding when predicting at the 3-month horizon.
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Figure 1.4: Series pre-selected by hard thresholding

Note : The figure shows the series pre-selected by the hard thresholding with tc = 1.65 when predicting at the 3-month horizon. The
content of each group is described in McCracken and Ng (2016a).

1.6 Conclusion

This paper adds the Regularized Data-Rich Model Averaging technique to the list of pre-

dictive models in the context of a data-rich environment. We compare its performance

to five classes of forecasting models on different macroeconomic series in an extensive
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out-of-sample exercise. The series considered are the Industrial Production growth, the

Employment growth, the inflation growth, and the SP500 returns. The comparison of the

models is based on their pseudo out-of-sample performance. For each series, horizon, and

out-of-sample period, the hyperparameters of our models (number of lags, number of fac-

tors, etc.) are re-calibrated using the (BIC).

Considering the growth rate of real series, we find that Regularized Data-Rich Model Ave-

raging and Forecast Combinations deliver the best forecasts in terms of RMSPE over the

full out-of-sample period. During recessions, factor structure-based and factor-augmented

models deliver the best performance ; although, Forecast Combinations and Regularized

Data-Rich Models Averaging are still often selected into the MCS during recessions. Uni-

variate models are largely dominated. We therefore conclude that Regularized Data-Rich

Model Averaging and Forecast Combinations are robust approaches to predict real series.

The ARMA(1,1) model delivers incredibly good forecasts in terms of RMSPE for inflation

acceleration at a quite moderate cost. The best Data-Rich or Forecast Combination ap-

proach does not outperform the ARMA(1,1) model. During recessions, factor-augmented

regression may outperform the ARMA(1,1) model at horizons beyond three months.

Considering the SP500 returns, Regularized Data-Rich Model Averaging delivers the best

forecasts one month ahead in terms of RMSPE. At longer horizons, Data-Rich Model Ave-

raging (Regularized or not) delivers the lost RMSPE but the MCS encompasses random

walk models. During recessions, factor-augmented models outperform random walk mo-

dels only at the one month horizon. At longer horizons, random walk models are selected

again into the MCS. Random walk models are dominated at all horizons in terms of RCSF.

Overall, Regularized Data-Rich Model Averaging and Forecast Combinations emerge as

robust forecast approaches when the performance evaluation metric is the RMSPE. Thus,
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our results suggest that sparsity and regularization can be smartly combined with model

averaging to obtain forecasting models that dominate state-of-the-art benchmarks.

Finally, we examine the stability of the forecasting equations and their performance over

time. The results suggest significant time instability in the forecast accuracy as well as

in the structure of the optimal forecasting equations over time. However, our RDRMA

models are flexible enough to adapt to those structural changes and maintain a very good

relative predictive performance.



CHAPITRE II

MACROECONOMIC DATA TRANSFORMATIONS MATTER

Abstract

In a low-dimensional linear regression setup, considering linear transformations of pre-
dictors does not alter predictions. However, when the forecasting technology either uses
shrinkage or is nonlinear, it does. This is precisely the fabric of the machine learning
(ML) macroeconomic forecasting environment. Pre-processing of the data translates to an
alteration of the regularization – explicit or implicit – embedded in ML algorithms. We re-
view old transformations and propose new ones, then empirically evaluate their merits in
a substantial pseudo-out-sample exercise. It is found that traditional factors should almost
always be included as predictors and moving average rotations of the data can provide im-
portant gains for various forecasting targets. Also, we note that while predicting directly
the average growth rate is equivalent to averaging separate horizon forecasts when using
OLS-based techniques, the latter can substantially improve on the former when regulari-
zation and/or nonparametric nonlinearities are involved.

JEL classification : C53, C55, E37

Keywords : Machine learning, Big data, Forecasting, Feature engineering, Regularization.

This chapter was published as an article in the International Journal of Forecasting (Goulet Coulombe
et al., 2021a).
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2.1 Introduction

Following the recent enthusiasm for Machine Learning (ML) methods and the availabi-

lity of big data, macroeconomic forecasting research gradually evolved further and fur-

ther away from the traditional tightly specified OLS regression. Rather, nonparametric

non-linearity and regularization of many forms are slowly taking the center stage, lar-

gely because they can provide sizable forecasting gains when compared with traditional

methods (see, among others, Kim and Swanson (2018); Medeiros et al. (2019); Goulet

Coulombe et al. (2022); Goulet Coulombe (2020a)), even during the Covid-19 episode

(Goulet Coulombe et al., 2021b). In such environments, different linear transformations of

the informational set X can change the prediction and taking first differences may not be

the optimal transformation for many predictors, despite the fact that it guarantees viable

frequentist inference. For instance, in penalized regression problems – like Lasso or Ridge

–, different rotations of X imply different priors on β in the original regressor space. Moreo-

ver, in tree-based models algorithms, since the problem of inverting a near singular matrix

X′X simply does not happen, making the use of more persistent (and potentially highly

cross-correlated regressors) much less harmful. In sum, in the ML macro forecasting envi-

ronment, traditional data transformations – such as those designed to enforce stationarity

(McCracken and Ng, 2016b) – may leave some forecasting gains on the table. To provide

guidance for the growing number of researchers and practitioners in the field, we conduct

an extensive pseudo-out-of-sample forecasting exercise to evaluate the virtues of standard

and newly proposed data transformations.

From the ML perspective, it is often suggested that a "feature engineering" step may im-

prove algorithms’ performance (Kuhn and Johnson, 2019). This is especially true of Ran-

dom Forests (RF) and Boosted Trees (BT), two regression tree ensembles widely regarded
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as the most performing off-the-shelf algorithms within the modern ML canon (Hastie et al.,

2009). Among other things, both successfully handle a high-dimensional X by recruiting

relevant predictors in a sea of useless ones. This implies the data scientist leveraging some

domain knowledge can create plausibly more salient features out of the original data ma-

trix, and let the algorithm decide whether to use them or not. Of course, an extremely

flexible model, like a neural network with many layers, could very well create those re-

levant transformations internally in a data-driven way. Yet, this idyllic scenario is a dead

end when data points are few, regressors are numerous, and a noisy y serves as a predic-

tion target. This sort of environment, of which macroeconomic forecasting is a notable

example, will often benefit from any prior knowledge one can incorporate in the model.

Since transforming the data transforms the prior, doing so properly by including well-

motivated rotations of X has the power to increase ML performance on such challenging

data sets.

Macroeconomic modelers have been thinking about designing successful priors for a long

time. There is a wide literature on Bayesian Vector Autoregressions (VAR) starting with

Doan et al. (1984). Even earlier on, the penalized/restricted estimation of lag polynomials

was extensively studied (Almon, 1965; Shiller, 1973). The motivation for both strands of

work is the large ratio of parameters to observations. Forty years later, many more data

points are available, but models have grown in complexity. Consequently, large VARs

(Banbura et al., 2010) and MIDAS regression (Ghysels et al., 2004) still use those tools to

regularize over-parametrized models. ML algorithms, usually allowing for sophisticated

functional forms, also critically rely on shrinkage. However, when it comes to nonlinear

nonparametric methods – especially Boosting and Random Forests – there are no expli-

cit parameters to penalize. Nevertheless, in the case of RF, the ensuing ensemble avera-

ging prediction benefits from ridge-like shrinkage as randomization allows each feature
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to contribute to the prediction, albeit in a moderate way (Hastie et al., 2009; Mentch and

Zhou, 2020). Just like rotating regressors changes the prior in a Ridge regression (see dis-

cussion in Goulet Coulombe (2020b)), rotating regressors in such algorithms will alter the

implicit shrinkage scheme – i.e., move the prior mean away from the traditional zero. This

motivates us to propose two rotations of X that implicitly implement a more time-series-

friendly prior in ML models : moving average factors (MAF) and moving average rotation

of X (MARX). Other than those motivated above, standard transformations are also being

studied. This includes factors extracted by principal components of X and the inclusion of

variables in levels to retrieve low frequency information.

We are interested in predicting stationary targets through a direct (in opposition to itera-

ted) forecasting approach. There are at least two ways one can construct direct forecasts of

the average growth rate of a variable over the next h > 1 months – an important quantity

for the conduct of monetary policy and fiscal planning. A popular approach is to forecast

the final object of interest by projecting it directly on the informational set X (e.g., Stock

and Watson 2002a). An alternative is the path average approach where every step until the

final horizon is predicted separately. A potential benefit of fitting the whole path first and

then constructing the final target is to allow for the selected predictors, the harshness of re-

gularization, and the type of nonlinearities to fully adapt when different relationships arise

among the variables during the path. 1 Since those three modelling elements are wildly

nonlinear operations in the original input, averaging the path before or after ML is perfor-

med can produce very different results.

To evaluate the contribution of data transformations for macroeconomic prediction, we

conduct an extensive pseudo-out-of-sample forecasting experiment (38 years, 10 key monthly

1. An obvious drawback is that implies estimating and tuning h models rather than one.
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macroeconomic indicators, 6 horizons) with three linear and two nonlinear ML methods

(Elastic Net, Adaptive Lasso, Linear Boosting, Random Forests, and Boosted Trees), and

two standard econometric reference models (autoregressive and factor-augmented autore-

gression).

Main results can be summarized as follows. First, combining non-standard data transfor-

mations, MARX, MAF and Level, minimizes the RMSE for 8 and 9 variables out of 10

when respectively predicting at short horizons 1 and 3-month ahead. They remain resi-

lient at longer horizons as they are part of best RMSE specifications around 80% of time.

Second, their contribution is magnified when combined with nonlinear ML models – 38

out of 47 cases 2 – with an advantage for Random Forests over Boosted Trees. Both algo-

rithms allow for nonlinearities via tree base learners and make heavy use of shrinkage via

ensemble averaging. This is precisely the algorithmic environment we conjectured could

benefit most from non-standard transformations of X. Third, traditional factors can help

tremendously. The overwhelming majority of best information sets for each target included

factors. On that regard, this amounts to a clear takeaway message : while ML methods can

handle the high-dimensional X (both computationally and statistically), extracting com-

mon factors remains straightforward feature engineering that pays off. Fourth, the path

average approach is preferred to the direct counterpart for almost all real activity variables

and at most horizons. Combined with high-dimensional methods that use some form of

regularization improves predictability by as much as 30%.

The rest of the paper is organized as follows. In section 2.2, we present the ML predictive

framework and detail the data transformations and forecasting models. In section 2.3, we

detail the forecasting experiment and in section 2.4 we present main results. Section 2.6

2. There are 47 cases where at least one of these transformations is used.
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concludes.

2.2 Machine Learning Forecasting Framework

Machine learning algorithms offer ways to approximate unknown and potentially compli-

cated functional forms with the objective of minimizing the expected loss of a forecast

over h periods. The focus of the current paper is to construct a feature matrix susceptible

to improve the macroeconomic forecasting performance of off-the-shelf ML algorithms.

Let Ht = [H1t, ...,HKt] for t = 1, ...,T be the vector of variables found in a large ma-

croeconomic dataset and let yt+h be our target variable that is supposed stationary. The

corresponding prediction problem is given by

yt+h = g( fZ(Ht)) + et+h. (2.1)

To illustrate the data pre-processing point, define Zt ≡ fZ(Ht) as the NZ-dimensional fea-

ture vector, formed by combining several transformations of the variables in Ht. 3 The

function fZ represents the data pre-processing and/or featuring engineering whose effects

on forecasting performance we seek to investigate. The training problem for fZ = I() is

min
g∈G

 T∑
t=1

(yt+h − g (Ht))2 + pen(g; τ)

 . (2.2)

The function g, chosen as a point in the functional space G, maps transformed inputs into

the transformed targets. pen() is the regularization function whose strength depends on

some vector/scalar hyperparameter(s) τ. Let ◦ denote the function product and g̃ := g ◦ fZ.

3. Obviously, in the context of a pseudo-out-of-sample experiment, feature matrices must be built recur-
sively to avoid data snooping.
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Clearly, introducing a general fZ leads to

min
g∈G

 T∑
t=1

(yt+h − g ( fZ(Ht)))2 + pen(g; τ)

 ↔

min
g̃∈G

 T∑
t=1

(yt+h − g̃ (Ht))2 + pen( f −1
Z ◦ g̃; τ)


which is, simply, a change of regularization. Now, let g∗( f ∗Z (Ht)) be the "oracle" combina-

tion of best transformation fZ and true function g. Let g( fZ(Ht)) be a functional form and

data pre-processing selected by the practitioner. In addition, denote ĝ(Zt) and ŷt+h the fitted

model and its forecast. The forecast error can be decomposed as

yt+h − ŷt+h = g∗( f ∗Z (Ht)) − g( fZ(Ht))︸                      ︷︷                      ︸
approximation error

+ g(Zt) − ĝ(Zt)︸         ︷︷         ︸
estimation error

+et+h. (2.3)

While the intrinsic error et+h is not shrinkable, the estimation error can be reduced by either

adding more relevant data points or restricting the domain G. The benefits of the latter can

be offset by a corresponding increase of the approximation error. Thus, an optimal fZ is

one that entails a prior that reduces estimation error at a minimal approximation error

cost. Additionally, since most ML algorithms perform variable selection, there is the extra

possibility of pooling different fZ’s together and let the algorithm itself choose the relevant

restrictions. 4

The marginal impact of the increased domain G has been explicitly studied in Goulet

Coulombe et al. (2022), with Zt being factors extracted from the stationarized version of

FRED-MD. The primary objective of this paper is to study the relevance of the choice

4. More concretely, a factor F is a linear combination of X. If an algorithm pick F rather than creating
its own combination of different elements of X, it is implicitly imposing a restriction.
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of fZ, combined with popular ML approximators g. 5 To evaluate the virtues of standard

and newly proposed data transformations, we conduct a pseudo-out-of-sample (POOS)

forecasting experiment using various combinations of fZ’s and g’s.

Finally, a question often overlooked in the forecasting literature is how one should construct

the forecast for average growth/difference of the level variable Yt, which is the popular

target in macroeconomic applications. The usual approach – and also the least computa-

tionally demanding – is that of fitting the model on yt+h =
∑h

h′=1 ∆Yt+h′/h directly and using

ŷdirect
t+h as prediction, where ∆Yt+h′ = Yt+h′ − Yt+h′−1 is the simple growth/difference of the

variable of interest. Another approach, requiring the estimation of h different functions, is

the path average approach where each ∆Yt+h′ is fitted separately and the forecast for yt+h

is obtained from ŷpath-avg
t+h =

∑h
h′=1 ∆̂Y t+h′/h.

The common wisdom – from OLS – is that such strategies are interchangeable. But the

equivalence does not hold when regularization and nonparametric nonlinearities are invol-

ved. For instance, it breaks in the simplest possible departure from OLS, a ridge regression,

where

ŷpath-avg
t+h =

1
h

h∑
h′=1

Z(Z′Z + λh′ I)−1Z′∆Yt+h′ , (2.4)

and only if λh′ = λ ∀h′ then

ŷpath-avg
t+h = Z(Z′Z + λI)−1Z′

∑h
h′=1 ∆Yt+h′

h
= ŷdirect

t+h . (2.5)

5. There are many recent contributions considering the macroeconomic forecasting problem with econo-
metric and machine learning methods in a big data environment (Kim and Swanson, 2018; Kotchoni et al.,
2019). However, they are done using the standard stationary version of FRED-MD database. Recently, Mc-
Cracken and Ng (2021) studied the relevance of unit root tests in the choice of stationarity transformation
codes for macroeconomic forecasting with factor models.
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This setup naturally includes the known equivalence in the OLS case (λh′ = 0 ∀h′). We

get even further from the equivalence with Lasso, Random Forests, and Boosted Trees

which all imply the nonlinear hard-thresholding operation of variable selection – and basis

expansion creation for the last two. With those, we get even further from the equivalence

by having a different Z∗h′ ⊂ Z in each prediction function.

Of course, the path average approach can be rather demanding since it implies h estimation

(and likely cross-validation) problems — with the benefit of providing a whole path rather

than merely yt+h. The second question address then concerns whether those benefits could

additionally include forecasting gains. To investigate this and how this choice interacts

with the optimal fZ, we conduct the whole forecasting exercise using both schemes.

2.2.1 Old News

Firstly, we consider more traditional candidates for fZ.

Including Factors. Common practice in the macroeconomic forecasting literature is to

rely on some variant of the transformations proposed by McCracken and Ng (2016b) to

obtain a stationary Xt out of Ht. Letting X = [Xt]T
t=1 and imposing a linear latent factor

structure X = FΛ + ε, we can estimate F by the principal components of X. The feature

matrix of the autoregressive diffusion index (FM hereafter) model of Stock and Watson

(2002a,b) can be formed as

Zt =
[
yt, Lyt, ..., Lpyyt, Ft, LFt, ..., Lp f Ft

]
(2.6)

where L is the lag operator and yt is the current value of the target. In Goulet Coulombe

et al. (2022), factors were deemed the most reliable shrinkage method for macroeconomic
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forecasting, even when considering ML alternatives. Furthermore, the combination of fac-

tors (and nothing else) with nonlinear nonparametric methods is (i) easy, (ii) fast, and (iii)

often quite successful. Point (iii) is further re-enforced by this paper’s results, especially

for forecasting inflation, which contrasts with the results found in Medeiros et al. (2019).

Including Levels. In econometrics, debates on the consequences of unit roots for frequen-

tist inference have a long history 6, just as does the handling of low frequency movements

for macroeconomic forecasting (Elliott, 2006). Exploiting potential cointegration has been

found useful to improve forecasting accuracy under some conditions (e.g., Christoffersen

and Diebold (1998); Engle and Yoo (1987); Hall et al. (1992)). From the perspective of

engineering a feature matrix, the error correction term could be obtained from a first step

regression à la Engle and Granger (1987) and is just a specific linear combination of exis-

ting variables. When it is unclear which variables should enter the cointegrating vector –

or whether there exist any such vector – one can alternatively include both variables in

levels and differences into the feature matrix. This sort of approach has been pursued most

notably by Cook et al. (2017) who combine variables in levels, first differences and even

second differences in the feature matrix they provide to various neural network architec-

tures in the forecasting of US unemployment data. 7

From a purely predictive point of view, using first differences rather than levels is a li-

near restriction (using the vector [1,−1]) on how Ht and Ht−1 can jointly impact yt. De-

pending on the prior/regularization being used with a linear regression, this may largely

6. See for example, Phillips (1991b,a); Sims (1988); Sims et al. (1990); Sims and Uhlig (1991).

7. Another approach is to consider factor modelling directly with nonstationary data (Bai and Ng, 2004;
Peña and Poncela, 2006; Banerjee et al., 2014).
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decrease the estimation error or inflate the approximation one. 8 However, it is often ad-

mitted that in a time series context (even if Bayesian inference is left largely unaltered

by non-stationarity (Sims, 1988)), first differences are useful because they trim out low

frequencies which may easily be redundant in large macroeconomic data sets. Using a

collection of highly persistent time series in X can easily lead to an unstable X′X inverse

(or even a regularized version). Such problems naturally extend to Lasso (Lee et al., 2021).

In contrast, tree-based approaches like RF and Boosted Trees do not rely on inverting any

matrix. Of course, performing tree-like sample splitting on a trending variable like raw

GDP (without any subsequent split on lag GDP), is almost equivalent to split the sample

according to a time trend and will often be redundant and/or useless. Nevertheless, there

are numerous Ht’s where opting for first differencing the data is much less trivial. In such

cases, there may be forecasting benefits from augmenting the usual X with levels.

2.2.2 New Avenues

When regressors outnumber observations, regularization, whether explicit or implicit, is

necessary. Hence, the ML algorithms we use all entail a prior which may or may not be

well suited for a time series problem. There is a wide Bayesian VAR literature, starting

with Doan et al. (1984), proposing prior structures that are thought for the multiple blocks

of lags characteristic of those models. Additionally, there is a whole strand of older lite-

rature that seeks to estimate restricted lag polynomials in Autoregressive Distributed Lags

(ARDL) models (Almon, 1965; Shiller, 1973). While the above could be implemented in

a parametric ML model with a moderate amount of pain, it is not clear how such priors

framed in terms of lag polynomials can be put to use when there is no explicit lag polyno-

8. A similar comment would apply to all parametric cointegration restrictions. For recent work on the
subject, see for example Chan and Wang (2015).
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mial. A more convenient approach is to (i) observe that most nonparametric ML methods

implicitly shrink the individual contribution of each feature to zero in a Ridge-ean fashion

(Hastie et al., 2009; Elliott et al., 2013) and (ii) rotating regressors implies a new prior in

the original space. Hence, by simply creating regressors that embody the more sophistica-

ted linear restrictions, we obtain shrinkage better suited for time series. 9 A first step in that

direction is Goulet Coulombe (2020a) who proposes Moving Average Factors to specifi-

cally enhance RF’s prediction and interpretation potential. A second is to find a rotation

of the original lag polynomial such that implementing Ridge-ean shrinkage in fact yields

Shiller (1973) approach to shrinking lag polynomials.

Moving Average Factors. Using factors is a standard approach to summarize parsimo-

niously a panel of heavily cross-correlated variables. Analogously, one can extract a few

principal components from each variable-specific panel of lagged values, i.e.

X̃t,k =
[
Xt,k, LXt,k, ..., LPMAF Xt,k

]
X̃t,k = MtΓ

′
k + ε̃k,t, k = 1, ...,K (2.7)

to achieve a similar goal on the time axis. Define a moving average factor as the vector

Mk. 10 Mechanically, we obtain weighted moving averages, where the weights are the prin-

cipal component estimates of the loadings in Γk. By construction, those extractions form

moving averages of the PMAF lags of Xt,k so that it summarizes most efficiently its tempo-

9. A cross-section RF-based example is Rodríguez et al. (2006) who propose "Rotation Forest" that build
an ensemble of trees based on different rotations of X.

10. While we work directly with the latent factors, a related decomposition called singular spectrum ana-
lysis works with the estimate of the summed common components, i.e. with MkΓ

′
k. Since this decomposition

naturally yields a recursive formula, it has been used to forecast macroeconomic and financial variables
(Hassani et al., 2009, 2013), usually in an univariate fashion.
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ral information. 11 By doing so, the goal to summarize information in X1:PMAF
t,k is achieved

without modifying any algorithm : we can use the MAFs which compresses information

ex-ante. As it is the case for standard factors, MAF are designed to maximize the explained

variance in X1:PMAF
t,k , not the fit to the final target. It is the learning algorithm’s job to select

the relevant linear combinations to maximize the fit.

Moving Average Rotation of X. There are many ways one can penalize a lag polynomial.

One, in the Minnesota prior tradition, is to shrink all lags coefficients to zero (except for

the first self-lag) with increasing harshness in p, the order of the lag. Another is to shrink

each βp to βp−1 and βp+1 rather than to zero. Intuitively, for higher-frequency series (like

monthly data would qualify for here) it is more plausible that a simple linear combination

of lags impacts yt rather than a single one of them with all other coefficients set to zero. 12

For instance, it seems more likely that the average of March, April, and May employment

growth could impact, say, inflation, than only May’s. Mechanically, this means we expect

March, April, and May ’s coefficients to be close to one another, which motivated the prior

βp ∼ N(βp−1, σ
2
uIK) and more sophisticated versions of it in other works (Shiller, 1973).

Inputting in the ML algorithm a transformed X such that its implicit shrinkage to zero is

twisted into this new prior could generate forecasting gains. The only question left is how

to make this operational.

The following derivation is a simple translation of Goulet Coulombe (2020b)’s insights

11. PMAF is a tuning parameter analogous to the construction of the panel of variables (usually taken as
given) in a standard factor model. We pick PMAF = 12. We keep two MAFs for each series and they are
obtained by PCA.

12. This is basically a dense vs sparse choice. MAFs go all the way with the first view by imposing it via
the extraction procedure.
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for time-varying parameters model to regularized lag polynomials à la Shiller (1973). 13

Consider a generic regularized ARDL model with K variables

min
β1...βP

T∑
t=1

yt −

P∑
p=1

Xt−pβp


2

+ λ

P∑
p=1

‖βp − βp−1‖
2. (2.8)

where βp ∈ IRK , Xt ∈ IRK , up ∈ IRK×P, and both yt and εt are scalars. 14 While we adopt the

l2 norm for this exposition, our main goal is to extend traditional regularized lag polyno-

mial ideas to cases where there is no explicitly specified norm on βp − βp−1. For instance,

Elliott et al. (2013) prove that their Complete Subset Regression procedure implies Ridge

shrinkage in a special case. Moving away from linearity makes formal arguments more

difficult. Nevertheless, it has been argued several times that model/ensemble averaging

performs shrinkage akin to that of a ridge regression (Hastie et al., 2009). For instance,

random selection of a subset of eligible features at each split encourage each feature to be

included in the predictive function, but in a moderate fashion. 15 The resulting "implicit"

coefficient is an average of specifications that included the regressor and some that did

not. In the latter case, the coefficient is always zero by construction. Hence, the ensemble

shrinks contributions towards zero and the so-called mtry hyperparameter guides the level

of shrinkage like a bandwidth parameter would (Olson and Wyner, 2018).

To get implicit regularized lag polynomial shrinkage, we now rewrite problem (2.8) as a

ridge regression. For all derivations to come, it is less tedious to turn to matrix notations.

13. Such reparametrization schemes are also discussed for "fused" Lasso in Tibshirani et al. (2015) and
employed for a Bayesian local-level model in Koop (2003).

14. We use P as a generic maximum number of lags for presentation purposes. In Table 2.1 we define
PMARX .

15. Recently, (Goulet Coulombe, 2020c) argued that ensemble averaging methods à la RF prunes a latent
tree. Following this view, the need for cleverly pre-assembled data combinations is even clearer.
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The Fused Ridge problem is now written as

min
β

(y − Xβ)′ (y − Xβ) + λβ′D′Dβ

where D is the first difference operator. The first step is to reparametrize the problem by

using the relationship βk = Cθk that we have for all k regressors. C is a lower triangular

matrix of ones (for the random walk case) and define θk = [uk β0,k]. For the simple case

of one parameter and P = 4 : 
β0

β1

β2

β3

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1



β0

u1

u2

u3

 .
For the general case of K parameters, we have

β = Cθ, C ≡ IK ⊗C

and θ is just stacking all the θk into one long vector of length KP. Using the reparametri-

zation β = Cθ, the Fused Ridge problem becomes

min
θ

(y − XCθ)′ (y − XCθ) + λθ′C′D′DCθ.

Let Z ≡ XC and use the fact that D = C−1 to obtain the Ridge regression problem

min
θ

(y − Zθ)′ (y − Zθ) + λθ′θ. (2.9)

We arrived at destination. Using Z rather than X in an algorithm that performs shrinkage

will implicitly shrink βp to βp−1 rather than to 0. This is obviously much more convenient

than modifying the algorithm itself and is directly applicable to any algorithm using time
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series data as input. One question remains : what is Z, exactly? For a single polynomial at

time t, we have Zt,k = Xt,kC. C is gradually summing up the columns of Xt,k over p. Thus,

Zt,k,p =
∑P

p′=1 Xt,k,p′ . Dividing each Zt,k,p by p (just another linear transformation, Z̃t,k,p ), it

is now clear that Z̃ is a matrix of moving averages. Those are of increasing order (from

p = 1 to p = P) and the last observation in the average is always Xt−1,k. Hence, we refer to

this particular form of feature engineering as Moving Average Rotation of X (MARX).

Recap. We summarize our setup in Table 2.1. We have five basic sets of transformations

to feed the approximation of f ∗Z : (1) single-period differences and growth rates following

McCracken and Ng (2016b) (Xt and their lags), (2) principal components of Xt (Ft and their

lags), (3) variables in levels (Ht and their lags), (4) moving average factors of Xt (MAFt),

and (5) sets of simple moving averages of Xt (MARXt). We consider several forecasting

models in order to approximate the true functional form : Autoregressive (AR), Factor

Model (FM, à la Stock and Watson (2002a)), Adaptive Lasso (AL), Elastic Net (EN),

Linear Boosting (LB), Random Forest (RF), and Boosted Trees (BT). Lastly, we apply

those specifications to forecasting both direct and path-average targets.

Furthermore, most ML methodologies that handle well high-dimensional data perform

some form or another of variable selection. For instance, RF evaluates a certain fraction

of predictors at each split and selects the most potent one. Lasso selects relevant predic-

tors and shrinks others perfectly to zero. By rotating X, we can get these algorithms (and

others) to perform restriction/transformation selection. Thus, one should not refrain from

studying different combinations of fZ’s. 16 As a result, all the combinations of fZ thereof are

admissible and 16 of them are included in the exercise. Moreover, there is a long-standing

16. Notwithstanding, some authors have noted that a trade-off emerges between how focused a RF is and
its robustness via diversification. Borup et al. (2020) sometimes get improvements over plain RF by adding
a Lasso pre-processing step to trim X.
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worry that well-accepted transformations may lead to some over-differenced Xk’s (McCra-

cken and Ng, 2021). Including MARX or MAF (which are both specific partial sums of

lags) with X can be seen as bridging the gap between a first difference and keeping Hk

in levels. Hence, interacting many fZ is not only statistically feasible, but econometrically

desirable given the sizable uncertainty surrounding what is a "proper" transformation of

the raw data (Choi, 2015).

Tableau 2.1: Model Specification Summary

Cases Feature Matrix Zt

F Zt :=
[
{Li−1Ft}

p f
1

]
F-X Zt :=

[
{Li−1Ft}

p f
1 , {Li−1Xt}

pm
1

]
F-MARX Zt :=

[
{Li−1Ft}

p f
1 , {MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1

]
F-MAF Zt :=

[
{Li−1Ft}

p f
1 , {MAFi

yt}
rK
1 , {MAFi

1t}
rK
1 , . . . , {MAFi

Kt}
rK
1

]
F-Level Zt :=

[
{Li−1Ft}

p f
1 ,Yt ,Ht

]
F-X-MARX Zt :=

[
{Li−1Ft}

p f
1 , {Li−1Xt}

pm
1 , {MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1

]
F-X-MAF Zt :=

[
{Li−1Ft}

p f
1 , {Li−1Xt}

pm
1 , {MAFi

yt}
rK
1 , {MAFi

1t}
rK
1 , . . . , {MAFi

Kt}
rK
1

]
F-X-Level Zt :=

[
{Li−1Ft}

p f
1 , {Li−1Xt}

pm
1 ,Yt ,Ht

]
F-X-MARX-Level Zt :=

[
{Li−1Ft}

p f
1 , {Li−1Xt}

pm
1 , {MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1 ,Yt ,Ht

]
X Zt :=

[
{Li−1Xt}

pm
1

]
MARX Zt :=

[
{MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1

]
MAF Zt :=

[
{MAFi

yt}
rK
1 , {MAFi

1t}
rK
1 , . . . , {MAFi

Kt}
rK
1

]
X-MARX Zt :=

[
{Li−1Xt}

pm
1 , {MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1

]
X-MAF Zt :=

[
{Li−1Xt}

pm
1 , {MAFi

yt}
rK
1 , {MAFi

1t}
rK
1 , . . . , {MAFi

Kt}
rK
1

]
X-Level Zt :=

[
{Li−1Xt}

pm
1 ,Yt ,Ht

]
X-MARX-Level Zt :=

[
{Li−1Xt}

pm
1 , {MARXi

yt}
py
1 , {MARXi

1t}
pm
1 , . . . , {MARXi

Kt}
pm
1 ,Yt ,Ht

]
Note : This table show the combinations of data transformation used to assess the individual marginal contribution of each fZ . Lags of
month-to-month (log)-change of the series to forecast are always included.

2.3 Forecasting Setup

In this section, we present the results of a pseudo-out-of-sample forecasting experiment for

a group of target variables at monthly frequency from the FRED-MD dataset of McCra-

cken and Ng (2016b). Our target variables are the industrial production index (INDPRO),

total nonfarm employment (EMP), unemployment rate (UNRATE), real personal income

excluding current transfers (INCOME), real personal consumption expenditures (CONS),
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retail and food services sales (RETAIL), housing starts (HOUST), M2 money stock (M2),

consumer price index (CPI), and the production price index (PPI). Given that we make

predictions at horizons of 1, 3, 6, 9, 12, and 24 months, we are effectively targeting the

average growth rate over those periods, except for the unemployment rate for which we

target average differences. These series are representative macroeconomic indicators of the

US economy, as stated in Kim and Swanson (2018), which is also based on Goulet Cou-

lombe et al. (2022) exercise for many ML models, itself based on Kotchoni et al. (2019)

and a whole literature of extensive horse races in the spirit of Stock and Watson (1999).

The POOS period starts in January of 1980 and ends in December of 2017. We use an

expanding window for estimation starting from 1960M01. Following standard practice in

the literature, we evaluate the quality of point forecasts using the root Mean Square Error

(RMSE). For the forecasted value at time t of variable v made h steps before, we compute

RMS Ev,h,m =

√
1

#OOS

∑
t∈OOS

(yv
t − ŷv,h,m

t−h )2 (2.10)

The standard Diebold and Mariano (2002) (DM) test procedure is used to compare the

predictive accuracy of each model against the reference factor model (FM). RMSE is the

most natural loss function given that all models are trained to minimize the squared loss

in-sample. We also implement the Model Confidence Set (MCS) that selects the subset of

best models at a given confidence level (Hansen et al., 2011).

Hyperparameter selection is performed using the BIC for AR and FM and K-fold cross-

validation is used for the remaining models. This approach is theoretically justified in time

series models under conditions spelled out by Bergmeir et al. (2018). Moreover, Goulet

Coulombe et al. (2022) compared it with a scheme which respects the time structure of the

data and found K-fold to be performing as well as or better than this alternative scheme.
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All models are estimated every month while their hyperparameters are reoptimized every

two years.

2.4 Results

Table 2.2 shows the best RMSE data transformation combinations as well as the associated

functional forms for every target and forecasting horizon. It summarizes the main findings

and provide important recommendations for practitioners in the field of macroeconomic

forecasting.

Tableau 2.2: Best model specifications - with target type

INDPRO EMP UNRATE INCOME CONS RETAIL HOUST M2 CPI PPI
H=1 RF���� RF���� BT�� RF� FM� FM� EN�� RF�� AL� EN��
H=3 RF� RF�� RF���� RF�� RF�� BT��� EN�� AL�� RF� EN�
H=6 RF� BT�� RF�� RF��� RF�� AL�� RF��� RF�� RF� RF�
H=9 RF� BT�� LB���� RF�� RF� BT���� BT�� RF�� RF� RF�
H=12 RF� BT�� LB���� RF�� RF�� BT��� RF� BT�� RF� RF�
H=24 RF�� BT� BT�� RF��� RF�� BT��� RF� RF�� RF� BT��

Note : Bullet colors represent data transformations included in the best model specifications : F, MARX, X, L and MAF. Path average
specifications are underlined.

First, including non-standard choices of data transformation, MARX, MAF and Level, mi-

nimize the RMSE for 8 and 9 variables out of 10 when respectively predicting 1 and

3-month ahead. Their overall importance is still resilient at longer horizons as they are

part of best specifications for most of the variables. Second, their success is often paired

with a nonlinear functional form g, 38 out of 47 cases, with an advantage for Random

Forests over Boosted Trees. The former is used for 26 of those 38 cases. Both algorithms

make heavy use of shrinkage and allow for nonlinearities via tree base learners. This is

precisely the algorithmic environment that we precedently conjectured to be where data

transformations matter.
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Without a doubt, the most visually obvious feature of Table 2.2 is the abundance of green

bullets. As expected, transforming X into factors is probably the most effective form of

feature engineering available to the macroeconomic forecaster. Factors are included as

part of the optimal specification for the overwhelming majority of targets. Furthermore,

including factors only in combination with RF is the best forecasting strategy for both CPI

and PPI inflation for the vast majority of horizons. This is in line with findings in Goulet

Coulombe et al. (2022) but in contrast with the results found in Medeiros et al. (2019).

The major difference with the latter is that they estimate and evaluate models on the basis

of single month inflation rate, which is only the intermediary step in our path average

strategy. In addition, we explore the possibility that F alone could be better than X, rather

than always both together. As it turns out, the winning combination is RF using factors as

sole inputs to directly target the average growth.

Finally, the omission of factors from optimal specifications for industrial production growth

3 to 12 months ahead is naturally surprising. This points out that current wisdom based on

linear models may not be directly applicable to nonlinear ones. In fact, alternative rotations

will sometimes do better.

There is plentiful of red bullets populating the top rows of Table 2.2. Indeed, our most

salient new transformation is MARX. In combination with nonlinear tree-based models,

it contributes to improve forecasting accuracy for real activity series such as industrial

production, employment, unemployment rate, and income, while they are best paired with

penalized regressions to predict the CPI and PPI inflation rates. The dominance of MARX

is particularly striking for real activity series as the transformation is included in every

best specification for those variables at all horizons ranging from one month to a year.

We further investigate how those RMSE gains materialize in terms of forecasts around the

Great Recession in section 2.4.2. While MAF performance is often positively correlated
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with MARX, the latter is usually the better of the two, except for longer-run forecasts – like

those 2-years where MAF is featured for four variables.

Considering levels is particularly important for the M2 money stock as it is included in the

best model for all horizons. For other variables, its pertinence is rather sporadic, with at

least two horizons featuring it for INDPRO, UNRATE, CONS, and RETAIL.

The preference for ŷdirect
t+h vs ŷpath-avg

t+h mostly go on a variable by variable basis. However,

there is clear consensus ŷpath-avg
t+h � ŷdirect

t+h for all variables which strongly co-move with

the business cycle (INDPRO, EMP, UNRATE, INCOME, CONS) with the notable ex-

ception of retail sales and housing starts. When it comes to nominal targets (M2, CPI,

PPI), ŷpath-avg
t+h ≺ ŷdirect

t+h is unanimous for horizons 6 to 12 months, and so are the affiliated

data transformations as well as the g choice (all tree ensembles, with 8 out of 9 being RF).

The quantitative importance of both types of gains on both sides is studied in section 2.4.1,

while section 2.4.2 looks at implied forecasts to understand when and why ŷpath-avg
t+h � ŷdirect

t+h ,

or the reverse.

These findings are particularly important given the increasing interest in ML macro fore-

casting. They suggest that traditional data transformations, meant to achieve stationarity,

do leave substantial forecasting gains on the practitioners’ table. These losses can be suc-

cessfully recovered by combining ML methods with well-motivated rotations of predictors

such as MARX and MAF (or sometimes by simply including variables in levels) and by

constructing the final forecast by the path average approach.

The previous results were desirably expeditive. The detailed results on the underlying

performance gains and their statistical significance are presented in Appendix B.
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2.4.1 Marginal Contribution of Data Pre-processing

In order to disentangle marginal effects of data transformations on forecast accuracy we

run the following regression inspired by Carriero et al. (2019) and Goulet Coulombe et al.

(2022) :

R2
t,h,v,m = αF + ψt,v,h + vt,h,v,m, (2.11)

where R2
t,h,v,m ≡ 1 −

e2
t,h,v,m

1
T

∑T
t=1(yv,t+h−ȳv,h)2 is the pseudo-out-of-sample R2, and e2

t,h,v,m are squared

prediction errors of model m for variable v and horizon h at time t. ψt,v,h is a fixed effect

term that demeans the dependent variable by “forecasting target,” that is a combination

of t, v, and h. αF is a vector of αMARX, αMAF, and αF terms associated to each new data

transformation considered in this paper, as well as to the factor model. H0 is α f = 0 ∀ f ∈

F = [MARX, MAF, F]. In other words, the null is that there is no predictive accuracy

gain with respect to a base model that does not have this particular data pre-processing.

While the generality of (2.11) is appealing, when investigating the heterogeneity of specific

partial effects, it will be much more convenient to run specific regressions for the multiple

hypothesis we wish to test. That is, to evaluate a feature f , we run

∀m ∈ M f : R2
t,h,v,m = α f + ψt,v,h + vt,h,v,m (2.12)

whereM f is defined as the set of models that differs only by the feature under study f .

MARX. Figure 2.1 plots the distribution of α(h,v)
MARX from equation (2.12) done by (h, v) sub-

sets. Hence, we allow for heterogeneous effects of the MARX transformation according to

60 different targets. The marginal contribution of MARX on the pseudo-R2 depends a lot

on models, horizons, and series. However, we remark that at the short-run horizons, when

combined with nonlinear methods, it produces positive and significant effects. It parti-
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Figure 2.1: Distribution of MARX Marginal Effects (Average Targets)
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Note : This figure plots the distribution of α(h,v)
f from equation (2.12) done by (h, v) subsets. That is, it shows the average partial effect

on the pseudo-R2 from augmenting the model with MARX featuring, keeping everything else fixed. SEs are HAC. These are the 95%
confidence bands.

cularly improves the forecast accuracy for real activity series like industrial production,

labor market series and income, even at larger horizons. For instance, the gains from using

MARX with RF achieve 16% when predicting INDPRO at the h = 3 horizon, and 14% in

the case of employment if h = 6. When used with linear methods, the estimates are more

often on the negative side, except for inflation rates and M2 at short horizons, and a few

special cases at the one and two-year ahead horizons.

Direct vs Path Average. Figure 2.2 reports the most unequivocal result of this paper :

ŷdirect
t+h can prove largely suboptimal to ŷpath-avg

t+h . For every method using a high-dimensional
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Figure 2.2: Distribution of Marginal Effects of Target Transformation
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Note : This figure plots the distribution of α(h,v)
f from equation (2.12) done by (h, v) subsets. That is, it shows the average partial effect

on the pseudo-R2 from accumulating single period predictions (ŷpath-avg
t+h ) instead of targeting the average growth rate directly (ŷdirect

t+h ),
keeping everything else fixed. SEs are HAC. These are the 95% confidence bands.

Zt shrunk in some way, i.e., not the OLS-based AR and FM, ŷpath-avg
t+h will do significantly

better than the direct approach, with α(h,v)
path-avg sometimes around 30% and highly statisti-

cally significant. As mentioned earlier, those gains are most prevalent for the highly cy-

clical variables and longer horizons. Cases where ŷpath-avg
t+h ≺ ŷdirect

t+h are rare and usually not

statistically significant at the 5% level, except for AR and FM which are both fitted by

OLS.

How to explain this phenomenon? Aggregating separate horizon forecasts allows to le-

verage the "bet on sparsity" principle of Tibshirani et al. (2015). Presume the model for
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∆̂Y t+h′ is sparse for each h′, yet different. This implies that the direct model for ŷdirect
t+h is

dense, and a much harder problem to learn. RF, BT, and Lasso will all perform better un-

der sparsity, as every model struggle in a truly dense environment (unless it has a factor

structure, upon which it becomes sparse in rotated space). An implication of this is that

one should, as much as possible, try to make the problem sparse. Yet, whether sparsity will

be more prevalent for ŷpath-avg
t+h or ŷdirect

t+h depends on true DGP. The evidence from Figure 2.2

suggests that DGPs favoring ŷpath-avg
t+h are more prevalent in our experiment.

We find it useful to connect this question to recent works on forecasts aggregation, like

Bermingham and D’Agostino (2014) who forecast the year on year inflation and com-

pare two strategies : forecasting overall inflation directly vs forecasting individual ele-

ments of the consumption basket and using a weighted average of forecasts. They find that

using more components and aggregating individual forecasts improves performance. 17

They provide a simple example to rationalize their result : forecasting an aggregate va-

riable made of two series with differing levels of persistence using only past values of the

aggregate will be misspecified. In ML forecasting context, where Z contains "everything"

anyway, this problem translates from misspecification into making once sparse problems

into a dense one, which is harder to learn. Consider a toy multi-horizon problem

∆Yt+h′ = βhXt,k∗(h′) + εt+h′ , h′ = 1, 2

yt+2 =
∆Yt+2 + ∆Yt+1

2

⇒ yt+2 =
β1

2
Xt,k∗(1) +

β2

2
Xt,k∗(2) +

εt+1 + εt+2

2
.

(2.13)

where one needs to select a single predictor for each horizon. In this simple analogy to a

high-dimensional problem, unless k∗(1) = k∗(2), that is, the optimally selected regressor

17. In a similar vein, Marcellino et al. (2003) found that forecasting inflation at the country level and then
aggregating the forecasts does better than forecasting at the aggregate level (Euro).
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is the same for both horizon, the direct approach implies a "denser" problem – estimating

two coefficients rather than one for separate regressions. A scaled-up version of this is

that if each horizon along the path implies 25 non-overlapping predictors, then the average

growth rate model should have 25 × h predictors, a much harder learning problem.

Of course, the ŷdirect
t+h approach might work better, even in a ML environment. For instance,

the "aggregated" error term in (2.13) could have a lower variance if Corr(εt+1, εt+2) < 0.

Note that this would not imply substantial differences in the OLS paradigm since such

errors would rather average out at the aggregation step in ŷpath-avg
t+h . However, if a regula-

rization level must be picked by cross-validation (like Lasso’s λ), an environment where

there is a strong common component across h′’s for the conditional mean could favor ŷdirect
t+h .

The reason for this is that choosing a regularization level optimized for a single horizon h′

could be different than what may be optimal for the final averaged prediction – as exampli-

fied by our ridge regression case of equations (2.4) and (2.5). This observation is closely

related to that of Granger (1987) who shows that the behavior of the aggregate series can

easily be dominated by a common component even if it is unimportant for each of the mi-

croeconomic unit being aggregated. Translated to our ML-based multi-horizon problem,

this means we want to avoid having overly harsh regularization throwing out negligible

effects for a given h′ whose accumulation over all h′’s makes them in fact non-negligible.

Thus, if the noise level is much higher for single horizons forecasts, an overly strong λh′

for each h′ may be chosen whereas λh for ŷdirect
t+h could be milder and allow for otherwise

neglected signals to come through.

These potential explanations are illustrated using variable importance (VI) in Figure 2.3.

As shown earlier, the path average approach has outperformed the direct one when predic-

ting real activity variables. VI measures in top panels show how models for ŷpath-avg
t+h use a

much more polarized set of variables whereas those aiming for ŷdirect
t+h using a very diverse
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set of predictors in case of Income and Employment. This shed light on our bet-on-sparsity

conjecture, i.e. that ŷpath-avg
t+h will have the upper hand if ∆Ŷt+h′ predictive problems are quite

heterogenous. In both cases, horizon 1 is quite different from 2-3-4, which also differ from

the 5-12 block. It is noted in the bottom panels of Figure 2.6 that ŷpath-avg
t+h visibly demons-

trate a better capacity for autoregressive behavior (even at h = 12) which provides it with

a clear edge over ŷdirect
t+h during the Great Recession. Interestingly, the foundation for this

finding is also visible in Figure 2.3 for real activity variables : ŷpath-avg
t+h reliance on plain AR

terms is more than twice that of ŷdirect
t+h .

The bottom panels show VI measures for CPI inflation and M2 growth. Recall that ŷpath-avg
t+h ≺

ŷdirect
t+h was unambiguous for those variables. Here again, results are in line with the above

arguments. The retained predictors’ sets are much more similar across the two approaches,

which results from the presence of a strong common component over horizons (i.e., per-

sistence which constitutes about 75% of normalized VI), which favors ŷdirect
t+h .

MAF. Figure 2.4 plots the distribution of α(h,v)
MAF, conditional on including X in the mo-

del. The motivation for that is that MAF, by construction, summarizes the entirety of

[Xt−p]p=PMAF
p=1 with no special emphasis on the most recent information. 18 Thus, it is better-

advised to always include the raw X with MAF, so recent information may interact with

the lag polynomial summary if ever needed. MAF contributions are overall more muted

than that of MARX, except when used with Linear Boosting method. Nevertheless, it is no-

ticed that it shares common gains with the latter as short horizons (h = 3, 6) of real activity

variables also benefit from it. More convincing improvements are observed for retail sales

at the 2-year horizons for nonlinear methods.

18. Of course, one could alter the PCA weights in MAF to introduce priority on recent lags à la Minesota-
prior, but we leave that possibility for future research.
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Figure 2.3: Variable Importance

Income Employment

Inflation M2 money Stock

Notes : This figure displays the relative variable importance (VI) measures for the Random Forest F-X-
MARX model for horizon H = 12. Group values are additions of VI for individual series weighted by the
share of each groups with the total VI normalized to 1. The first 12 bars reflect horizon-wise differences for
the ŷpath-avg

t+h models whose forecasts are accumulated and the subsequent bar shows the average importance
across those horizons. The last bar displays the equivalent for the ŷdirect

t+h model.

Traditional Factors. It has already been documented that factors matter – and a lot (Stock

and Watson, 2002a,b). Figure 2.5 allows us to evaluate their quantitative effects. Including

a handful of factors rather than all of (stationary) X improves substantially and significantly

forecast accuracy. The case for this is even stronger when those are used in conjunction



65

Figure 2.4: Distribution of MAF Marginal Effects
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Notes : This figure plots the distribution of α(h,v)
f from equation (2.12) done by (h, v) subsets. That is, it shows the average partial effect

on the pseudo-R2 from augmenting the model with MAF featuring, keeping everything else fixed. SEs are HAC. These are the 95%
confidence bands.

with nonlinear methods, especially for prediction at longer horizons. This finding supports

the view that a factor model is an accurate depiction of the macroeconomy, as originally

suggested in the works of Sargent and Sims (1977) and Geweke (1976) and later expan-

ded in various forecasting and structural analysis applications (Stock and Watson, 2002a;

Bernanke et al., 2005). In this line of thought, transforming X into F is not merely a me-

chanical dimension reduction step. Rather, it is meaningful feature engineering uncovering

true latent factors which contains most, if not all, the relevant information about the cur-

rent state of the economy. Once F’s are extracted, the standard diffusion indexes model

of Stock and Watson (2002b) can either be upgraded by using linear methods performing
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Figure 2.5: Distribution of F Marginal Effects
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Notes : This figure plots the distribution of α(h,v)
f from equation (2.12) done by (h, v) subsets. That is, it shows the partial effect on the

pseudo-R2 from considering only F featuring versus including only observables X. SEs are HAC. These are the 95% confidence bands.

variable selection, or nonlinear functional form approximators such as Random Forests

and Boosted Trees.

2.4.2 Case Study : The Great Recession

In this section we conduct an "event study" to highlight more explicitly the importance of

data pre-processing when predicting real activity and inflation indicators.

In Figure 2.6, we look more closely at each model’s forecasts during the Great Recession

and subsequent recovery. Specifically, we plot the 3-month ahead forecasts of industrial
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production and the 12-month ahead forecasts of employment for the period covering 3

months before, and 24 months after the recession. The forecasting models are all RF-

based, and differ by their use of either F, X or F-X-MARX. On the right side, we show

the RMSE ratio of each RF specification against the benchmark FM model for the whole

POOS and for the episode under analysis. In the case of industrial production (top panels),

the F-X-MARX specification outperforms the others during the Great Recession and its

aftermath, and improves even more upon the benchmark model compared to the full POOS

period. We observe on the left panel that forecasts made with F-X-MARX are much closer

to realized values at the end of recession and during the recovery.

The bottom panels of Figure 2.6 illustrate the relative performance of the two target trans-

formations for employment. ŷpath-avg
t+h dramatically improves performance over ŷdirect

t+h and

much of that edge visibly comes from adjusting itself more or less rapidly to new eco-

nomic conditions. In contrast, ŷdirect
t+h is extremely smooth and report something close to

the long-run average. Since the Great Recession was characterized by a slow recovery,

ŷpath-avg
t+h procures much more credible forecasts of employment simply by catching up soo-

ner with realized values. This behavior is understandable through the lenses of Figure 2.3

where early horizons of ŷpath-avg
t+h make a pronounced use of autoregressive terms for both

employment.



68

Figure 2.6: Recession Episode of 2007-12-01

(a) Industrial Production 3-month ahead (Direct)

(b) Employment 12-month ahead (Path Average)

Notes : The figure plots forecasts for the period covering 3 months before and 24 months after the
recession. RMSE ratios are relative to FM model for average growth rates and the episode RMSE refers to
the visible time period and Random Forest models use F-X-MARX.
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2.5 Extraneous Transformations

We evaluate four additional data transformation strategies in combination with direct and

path average targets. First, we accommodate for the presence of error correction terms

(ECM) by considering the Factor-augmented ECM approach of Banerjee et al. (2014) and

include level factors estimated from I(1) predictors. Second, we consider volatility factors

and data inspired by Gorodnichenko and Ng (2017), where both factors from X2 and X2

itself are included as predictors. Third, we evaluate the potential predictive gains from

including Forni et al. (2005)’s dynamic factors in Z.

Figure B.1, in Appendix B.1, reports the distribution of average marginal effects of adding

level factors in the predictors’ set Z. Their impact is generally small and not significant at

short horizons, while it depends on methods and forecasting approach at longer horizons.

In the case of the direct average approach, as depicted in panel B.1a, adding level factors

generally deteriorates the predictive performance except for M2 with nonlinear methods.

The effects are qualitatively similar when the target is achieved by the path average ap-

proach, as shown in B.1b.

Adding volatility data and factors is generally harmful with linear methods and has almost

no significant impact when random forest and boosted trees are used, see Figure B.2. 19

Hence, letting ML methods generate nonlinearities proves to be more resilient than to

include simple power terms. This also suggests that volatility or other uncertainty proxies

may not be the major sources of nonlinearities for macroeconomic dynamics since they

would otherwise be an indispensable form of feature engineering which variable selection

19. The very weak contribution of volatility terms to BT or RF is expected given that those transformations
are locally monotone (i.e, for all points where Xk,t > 0 or Xk,t < 0) and trees are invariant to monotone
transformations.
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algorithms build their predictions from.

Finally, Figures B.3 and B.4 evaluate the marginal predictive content of dynamic factors

as opposed to MAF and static factors (PCs) respectively. Considering dynamic factors as

opposed to MAF improves the predictability at longer horizons when used to construct

ŷdirect
t+h , while their effects are rather small with ŷpath-avg

t+h . When it comes to the choice bet-

ween dynamic and static factors, the results are in general quantitatively small but suggest

that standard principal components are preferred, especially in combination with nonlinear

methods, which is analogous to the findings of Boivin and Ng (2005) in linear environ-

ments.

2.6 Conclusion

This paper studies the virtues of standard and newly proposed data transformations for

macroeconomic forecasting with machine learning. The classic transformations comprise

the dimension reduction of stationarized data by means of principal components and the

inclusion of level variables in order to take into account low frequency movements. Newly

proposed avenues include moving average factors (MAF) and moving average rotation of

X (MARX). The last two were motivated by the need to compress the information within

a lag polynomial, especially if one desires to keep X close to its original – interpretable

– space. In addition to the aforementioned transformations focusing on X, we considered

two pre-processing alternatives for the target variable, namely the direct and path average

approaches.

To evaluate the contribution of data transformations for macroeconomic prediction, we

have considered three linear and two nonlinear ML methods (Elastic Net, Adaptive Lasso,

Linear Boosting, Random Forests and Boosted Trees) in a substantive pseudo-out-of-
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sample forecasting exercise was done over 38 years for 10 key macroeconomic indicators

and 6 horizons. With the different permutations of fZ’s available from the above, we have

analyzed a total of 15 different information sets. The combination of standard and non-

standard data transformations (MARX, MAF, Level) is shown to minimize the RMSE, par-

ticularly at shorter horizons. Those consistent gains are usually obtained when a nonlinear

nonparametric ML algorithm is being used. This is precisely the algorithmic environment

we conjectured could benefit most from our proposed fZ’s. Additionally, traditional factors

are featured in the overwhelming majority of best information sets for each target. The-

refore, while ML methods can handle the high-dimensional X (both computationally and

statistically), extracting common factors remains straightforward feature engineering that

works.

The way the prediction is constructed can make a great difference. The path average ap-

proach is more accurate than the direct one for almost all real activity variables (and at

various horizons). The gains can be as large as 30% and are mostly observed when the

path average approach is used in conjunction with regularization and/or nonparametric

nonlinearity.

As the number of researchers and practitioners in the field is ever-growing, we believe

those insights constitute a strong foundation on which stronger ML-based systems can be

developed to further improve macroeconomic forecasting.



CHAPITRE III

HOW IS MACHINE LEARNING USEFUL FOR MACROECONOMIC

FORECASTING?

Abstract

We move beyond Is Machine Learning Useful for Macroeconomic Forecasting? by adding
the how. The current forecasting literature has focused on matching specific variables and
horizons with a particularly successful algorithm. To the contrary, we study the usefulness
of the underlying features driving ML gains over standard macroeconometric methods.
We distinguish four so-called features (nonlinearities, regularization, cross-validation and
alternative loss function) and study their behavior in both the data-rich and data-poor en-
vironments. To do so, we design experiments that allow to identify the “treatment” effects
of interest. We conclude that (i) nonlinearity is the true game changer for macroeconomic
prediction, (ii) the standard factor model remains the best regularization, (iii) K-fold cross-
validation is the best practice and (iv) the L2 is preferred to the ε̄-insensitive in-sample loss.
The forecasting gains of nonlinear techniques are associated with high macroeconomic un-
certainty, financial stress and housing bubble bursts.

JEL classification : C53, C55, E37

Keywords : Machine Learning, Big Data, Forecasting.

This chapter was published as an article in the Journal of Applied Econonometrics (Goulet Coulombe
et al., 2022).
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3.1 Introduction

The intersection of Machine Learning (ML) with econometrics has become an important

research landscape in economics. ML has gained prominence due to the availability of

large data sets, especially in microeconomic applications (Belloni et al., 2017; Athey et al.,

2019). Despite the growing interest in ML, understanding how ML procedures can contri-

bute when they are applied to predict macroeconomic outcomes remains challenging. 1

Yet that very understanding could prove very useful, probably more so than crowning a

single algorithm. It is more appealing to applied econometricians to upgrade a standard

framework with a subset of specific insights rather than to drop everything altogether for

an off-the-shelf ML model.

Despite appearances, ML has a long history in macroeconometrics (see Lee et al. (1993);

Kuan and White (1994); Swanson and White (1997); Stock and Watson (1999); Trapletti

et al. (2000); Medeiros et al. (2006)). However, only recently did macroeconomic forecas-

ting experience a surge in the number of studies applying (successfully) ML methods. 2

The vast catalogue of tools creates a large conceptual space, much of which remains to

1. The linear techniques have been extensively examined since Stock and Watson (2002a,b). Kotchoni
et al. (2019) compare more than 30 forecasting models, including factor-augmented and regularized re-
gressions. Giannone et al. (2021) study the relevance of sparse modeling in various economic prediction
problems.

2. Moshiri and Cameron (2000); Nakamura (2005); Marcellino (2008) use neural networks to predict
inflation and Cook et al. (2017) explore deep learning. Sermpinis et al. (2014) apply support vector regres-
sions, while Diebold and Shin (2019) propose a LASSO-based forecast combination technique. Ng (2014),
Döpke et al. (2017) and Medeiros et al. (2019) improve forecast accuracy with random forests and boosting,
while Yousuf and Ng (2021) use boosting for high-dimensional predictive regressions with time varying pa-
rameters. Others compare machine learning methods in horse races (Ahmed et al., 2010; Stock and Watson,
2012; Li and Chen, 2014; Kim and Swanson, 2018; Smeekes and Wijler, 2018; Chen et al., 2019; Miluno-
vich, 2020). Works such as Joseph (2019) and Zhao and Hastie (2021) contribute to the interpretability of a
given model.
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be explored. To map that space without getting lost in it, we move beyond the coronation

of a single winning model and its subsequent interpretation. Rather, we conduct a meta-

analysis of many ML products by projecting them in their "characteristic" space. Then, we

provide a direct assessment of which characteristics matter and which do not.

More precisely, we aim to answer the following question : what are the key ML features

improving macroeconomic predictions? In particular, no clear attempt has been made at

understanding why one algorithm might work while another does not. We address this

question by designing an experiment to identify important characteristics of machine lear-

ning and big data techniques. The exercise consists of an extensive pseudo-out-of-sample

forecasting horse race between many models that differ with respect to the four main fea-

tures : nonlinearity, regularization, hyperparameter selection and loss function. To control

for the big data aspect, we consider data-poor and data-rich models, and administer those

patients one particular ML treatment or combinations of them. Monthly forecast errors are

constructed for five important macroeconomic variables, five forecasting horizons and for

almost 40 years. Then, we provide a straightforward framework to identify which features

are responsible for substantial forecasting accuracy improvements.

The main results can be summarized as follows. First, the ML nonparametric nonlinearity

constitutes the most salient feature as they improve substantially the forecasting accuracy

for all macroeconomic variables in our exercise, especially when predicting at long ho-

rizons. 3 Second, in the big data framework, alternative regularization methods (Lasso,

3. These novel empirical results also complement a growing theoretical literature on nonlinear ML me-
thods beyond the assumption of independent observations (Alquier et al., 2013). Mohri and Rostamizadeh
(2010) provide generalization bounds for Support Vector Machines and Regressions, and Kernel Ridge Re-
gression under the assumption of a stationary joint distribution of predictors and target variable. Kuznetsov
and Mohri (2015) generalize some of those results to non-stationary distributions and non-mixing processes.
Davis and Nielson (2020) provides consistency for Random Forest in a time series context.
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Ridge, Elastic-net) do not improve over the workhorse factor model, which remains the

preferred strategy for dimensionality reduction.

Third, the hyperparameter selection by K-fold cross-validation (CV) and the standard BIC

(when possible) do better on average than any other criterion. This suggests that ignoring

information criteria when opting for more complicated ML models is not harmful. This

is also quite convenient : K-fold is the built-in CV option in most standard ML packages.

Fourth, replacing the standard in-sample quadratic loss function by the ε̄-insensitive loss

function in Support Vector Regressions (SVR) is not useful, except in very rare cases.

The latter finding is a direct by-product of our strategy to disentangle treatment effects. In

accordance with other empirical results (Sermpinis et al., 2014; Colombo and Pelagatti,

2020), in absolute terms, SVRs do perform well – even if they use a loss at odds with the

one used for evaluation. However, that performance is a mixture of the attributes of both

nonlinearities (via the kernel trick) and an alternative loss function. Our results reveal that

this change in the loss function has detrimental effects on performance in terms of both

mean squared errors and absolute errors. Fifth, the marginal effect of big data is positive

and significant, and improves as the forecast horizon grows. The robustness analysis shows

that these results remain valid when : (i) real-time data are used ; (ii) the absolute loss is

considered ; (iii) quarterly targets are predicted ; (iv) the exercise is reconducted with a

large Canadian data set.

We find that the evolution of economic uncertainty and financial conditions are important

drivers of the NL treatment effect. ML nonlinearities are particularly useful : (i) when the

level of macroeconomic uncertainty is high ; (ii) when financial conditions are tight and

(iii) during housing bubble bursts. The effects are bigger in the case of data-rich models,

which suggests that combining nonlinearity with factors made of many predictors is an

accurate way to capture complex macroeconomic relationships.
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These results give a clear recommendation for practitioners. For most cases, one may first

reduce dimensionality using principal components and then augment the standard diffusion

indices model by a generic ML nonlinear function approximator. That recommendation is

conditional on being able to keep overfitting in check. To that end, if cross-validation must

be applied to hyperparameter selection, the best practice is the standard K-fold.

In the remainder of this paper, we first present the general prediction problem with ma-

chine learning and big data. Section 3.3 describes the four features of machine learning

methods. Section 3.4 presents the empirical setup, Section 3.5 discusses the main results,

followed by section 3.6 that aims to open the black box. Section 3.7 concludes. Appendice

C contains an analysis of the overall performance of the estimated models in section C.1,

a complete analysis using the absolute loss function in section C.2 and many robustness

checks including : (i) the treatment effects for Data poor and for Data rich models and by

sub-sample, (ii) an analysis using real-time data and one with a rolling window scheme

and (iii) an external validity check using quarterly US data and monthly canadian data.

3.2 Making Predictions with Machine Learning and Big Data

Machine learning methods are meant to improve our predictive ability especially when the

“true” model is unknown and complex. To illustrate this point, let yt+h be the variable to

be predicted h periods ahead (target) and Zt the NZ-dimensional vector of predictors made

out of Ht, the set of all the inputs available at time t. Let g∗(Zt) be the true model and g(Zt)

a functional (parametric or not) form selected by the practitioner. In addition, denote ĝ(Zt)

and ŷt+h the fitted model and its forecast. The forecast error can be decomposed as

yt+h − ŷt+h = g∗(Zt) − g(Zt)︸          ︷︷          ︸
approximation error

+ g(Zt) − ĝ(Zt)︸         ︷︷         ︸
estimation error

+et+h. (3.1)
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The intrinsic error et+h is not shrinkable, while the estimation error can be reduced by ad-

ding more data. The approximation error is controlled by the functional estimator choice.

While it can be minimized by using flexible functions, it raises the risk of overfitting and

a judicious regularization is needed. This can be embedded in the prediction setup (Hastie

et al., 2009)

min
g∈G
{L̂(yt+h, g(Zt)) + pen(g; τ)}, t = 1, . . . ,T. (3.2)

This setup has four main features :

1. G is the space of possible functions g that combine the data to form the prediction.

In particular, the interest is how much nonlinearities can we allow for in order to

reduce the approximation error in (3.1) ?

2. pen() is the regularization penalty limiting the flexibility of the function g and

hence controlling the overfitting risk. This is quite general and can accommodate

Bridge-type penalties and dimension reduction techniques.

3. τ is the set of hyperparameters including those in the penalty and the approximator

g. The usual problem is to choose the best data-driven method to optimize τ.

4. L̂ is the loss function that defines the optimal forecast. Some ML models feature

an in-sample loss function different from the standard l2 norm.

Most of (supervised) machine learning consists of a combination of those ingredients and

popular methods like linear (penalized) regressions can be obtained as special cases of

(3.2).
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3.2.1 Predictive Modeling

We consider the direct predictive modeling in which the target is projected on the in-

formation set, and the forecast is made directly using the most recent observables. This

is opposed to iterative approach where the model recursion is used to simulate the future

path of the variable. 4 Also, the direct approach is the standard practice in ML applications.

We now define the forecast objective given the variable of interest Yt. If Yt is stationary,

we forecast its level h periods ahead :

y(h)
t+h = yt+h, (3.3)

where yt ≡ lnYt if Yt is strictly positive. If Yt is I(1), then we forecast the average growth

rate over the period [t + 1, t + h] (Stock and Watson, 2002a). We shall therefore define y(h)
t+h

as :

y(h)
t+h = (1/h)ln(Yt+h/Yt). (3.4)

In order to avoid a cumbersome notation, we use yt+h instead of y(h)
t+h in what follows. In

addition, all the predictors in Zt are assumed to be covariance stationary.

3.2.2 Data-Poor versus Data-Rich Environments

Large time series panels are now widely constructed and used for macroeconomic analysis.

The most popular is FRED-MD monthly panel of US variables constructed by McCracken

4. Marcellino et al. (2006) conclude that the direct approach provides slightly better results but does not
dominate uniformly across time and series. See Chevillon (2007) for a survey on multi-step forecasting.
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and Ng (2016a). 5 Unfortunately, the performance of standard econometric models tends

to deteriorate as the dimensionality of data increases. Stock and Watson (2002a) first pro-

posed to solve the problem by replacing the high-dimensional predictor set by common

factors. 6

On other hand, even though the machine learning models do not require big data, they are

useful to perform variable selection and digest large information sets to improve the pre-

diction. Therefore, in addition to treatment effects in terms of characteristics of forecasting

models, we will also interact those with the width of the sample. The data-poor, defined

as H−t , will only contain a finite number of lagged values of the target, while the data-rich

panel, defined as H+
t will also include a large number of exogenous predictors. Formally,

H−t ≡ {yt− j}
py

j=0 and H+
t ≡

[
{yt− j}

py

j=0, {Xt− j}
p f

j=0

]
. (3.5)

The analysis we propose can thus be summarized in the following way. We will consider

two standard models for forecasting.

1. The H−t model is the autoregressive direct (AR) model, which is specified as :

yt+h = c + ρ(L)yt + et+h, t = 1, . . . ,T, (3.6)

where h ≥ 1 is the forecasting horizon. The only hyperparameter in this model is

py, the order of the lag polynomial ρ(L).

2. The H+
t workhorse model is the autoregression augmented with diffusion indices

5. Fortin-Gagnon et al. (2022) have recently proposed similar data for Canada.

6. Another way to approach the dimensionality problem is to use Bayesian methods. Indeed, some of our
Ridge regressions will look like a direct version of a Bayesian VAR with a Litterman (1979) prior. Giannone
et al. (2015) have shown that an hierarchical prior can lead the BVAR to perform as well as a factor model.
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(ARDI) from Stock and Watson (2012) :

yt+h = c + ρ(L)yt + β(L)Ft + et+h, t = 1, . . . ,T (3.7)

Xt = ΛFt + ut (3.8)

where Ft are K consecutive static factors, and ρ(L) and β(L) are lag polynomials

of orders py and p f respectively. The feasible procedure requires an estimate of Ft

that is usually obtained by principal component analysis (PCA).

Then, we will take these models as two types of “patients” and will administer them one

ML treatment or combinations of them. That is, we will upgrade them with one or many

features of ML and evaluate the gains/losses in both environments. From the perspective

of the ML literature, equation (3.8) motivates the use of PCA as a form of feature en-

gineering. Although more sophisticated methods have been used 7, PCA remains popular

(Uddin et al., 2018). As we insist on treating models as symmetrically as possible, we will

use the same feature transformations throughout such that nonlinear models will introduce

nonlinear transformations of lagged target values and of lagged values of the principal

components. Hence, nonlinear models postulate that a sparse set of latent variables impact

the target in a flexible way. 8

7. The autoencoder method of Gu et al. (2020) can be seen as a form of feature engineering, just as the
independent components used in conjunction with SVR in Lu et al. (2009).

8. We omit considering a VAR as an additional option. VAR iterative approach to produce h-step-ahead
predictions is not comparable with the direct forecasting used with ML models.
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3.2.3 Evaluation

The objective of this paper is to disentangle important characteristics of the ML predic-

tion algorithms when forecasting macroeconomic variables. To do so, we design an ex-

periment that consists of a pseudo-out-of-sample (POOS) forecasting horse race between

many models that differ with respect to the four main features above, i.e., nonlinearity, re-

gularization, hyperparameter selection and loss function. To create variation around those

treatments, we will generate forecast errors from different models associated to each fea-

ture.

To test this paper’s hypothesis, suppose the following model for forecasting errors

e2
t,h,v,m = αm + ψt,v,h + vt,h,v,m (3.9a)

αm = α′F1 + ηm (3.9b)

where e2
t,h,v,m are squared prediction errors of model m for variable v and horizon h at time

t. ψt,v,h is a fixed effect term that demeans the dependent variable by “forecasting target”,

that is a combination of t, v and h. αF is a vector of αG, αpen(), ατ and αL̂ terms associated

to each feature. We re-arrange equation (3.9) to obtain

e2
t,h,v,m = α′F1 + ψt,v,h + ut,h,v,m. (3.10)

H0 is now α f = 0 ∀ f ∈ F = [G, pen(), τ, L̂]. In other words, the null is that there is no

predictive accuracy gain with respect to a base model that does not have this particular fea-

ture. 9 By interacting αF with other fixed effects or variables, we can test many hypotheses

9. If we consider two models that differ in one feature and run this regression for a specific (h, v) pair, the
t-test on coefficients amounts to Diebold and Mariano (1995) – conditional on having the proper standard



82

about the heterogeneity of the “ML treatment effect.” To get interpretable coefficients, we

define R2
t,h,v,m ≡ 1 −

e2
t,h,v,m

1
T

∑T
t=1(yv,t+h−ȳv,h)2 and run

R2
t,h,v,m = α̇′F1 + ψ̇t,v,h + u̇t,h,v,m. (3.11)

While (3.10) has the benefit of connecting directly with the specification of a Diebold

and Mariano (1995) test, the transformation of the regressand in (3.11) has two main ad-

vantages justifying its use. First and foremost, it provides standardized coefficients α̇F

interpretable as marginal improvements in OOS-R2’s. In contrast, αF are a unit- and series-

dependant marginal increases in MSE. Second, the R2 approach has the advantage of stan-

dardizing ex-ante the regressand and removing an obvious source of (v, h)-driven heteros-

kedasticity.

While the generality of (3.10) and (3.11) is appealing, when investigating the heterogeneity

of specific partial effects, it will be much more convenient to run specific regressions for

the multiple hypothesis we wish to test. That is, to evaluate a feature f , we run

∀m ∈ M f : R2
t,h,v,m = α̇ f + φ̇t,v,h + u̇t,h,v,m (3.12)

whereM f is defined as the set of models that differs only by the feature under study f . An

analogous evaluation setup has been considered in Carriero et al. (2019).

3.3 Four Features of ML

In this section we detail the forecasting approaches that create variations for each charac-

teristic of the machine learning prediction problem defined in (3.2).

errors.
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3.3.1 Feature 1 : Nonlinearity

Although linearity is popular in practice, if the data generating process (DGP) is com-

plex, using linear g introduces approximation error as shown in (3.1). As a solution, ML

proposes an apparatus of nonlinear functions able to estimate the true DGP, and thus re-

duces the approximation error. We focus on applying the kernel trick and random forests

to our two baseline models to see if the nonlinearities they generate will lead to significant

improvements. 10

Kernel Ridge Regression

A simple way to make predictive regressions (3.6) and (3.7) nonlinear is by considering a

generalized linear model with many expansions based out of original regressors. However,

creating all possible interactions and higher order terms quickly becomes unmanageable.

The kernel trick allows to obtain such nonlinearities without the aforementioned burden.

A Kernel Ridge Regression (KRR) has several implementation advantages. It has a closed-

form solution ruling out convergence problems which are inevitably frequent with gradient

10. A popular approach to model nonlinearity is deep learning. However, since we re-optimize our models
recursively in a POOS, selecting an accurate network architecture by cross-validation is practically infea-
sible. In addition to optimize numerous neural net hyperparameters (such as the number of hidden layers
and neurons, activation function, etc.), our forecasting models also require careful input selection (number
of lags and number of factors in case of data-rich). An alternative is to fix ex-ante a variety of networks as
in Gu et al. (2020), but this would potentially benefit other models that are optimized over time. Still, since
few papers have found similar predictive ability of random forests and neural nets (Gu et al., 2020; Joseph,
2019), we believe that considering random forests and the kernel trick is enough to properly identify the ML
nonlinear treatment. Moreover, it is known that deep learning’s edge (over tree-based methods) is usually
observed in environments that have little to do with our own – i.e., when considering datasets with a very
large number of observations, or non-tabular data (like images or speech sequences). Nevertheless, we have
conducted a robustness analysis with feed-forward neural networks and boosted trees. Similar conclusions
are reached when using those models. The results are presented in Appendix C.9.
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descent. It is also fast to implement since it implies inverting a TxT matrix. To show how

KT is implemented in our benchmark models, suppose a Ridge regression direct forecast

with generic regressors Zt

min
β

T∑
t=1

(yt+h − Ztβ)2 + λ

K∑
k=1

β2
k .

The solution to that problem is β̂ = (Z′Z + λIk)−1Z′y. By the representer theorem of Smola

and Scholkopf (2004), β can also be obtained by solving the dual of the convex optimi-

zation problem above. The dual solution for β is β̂ = Z′(ZZ′ + λIT )−1y. This equivalence

allows to rewrite the conditional expectation in the following way :

Ê(yt+h|Zt) = Ztβ̂ =

t∑
i=1

α̂i〈Zi,Zt〉

where α̂ = (ZZ′ + λIT )−1y is the solution to the dual Ridge Regression problem.

Suppose now we approximate a general nonlinear model g(Zt) with basis functions φ()

yt+h = g(Zt) + εt+h = φ(Zt)′γ + εt+h.

The so-called kernel trick is the fact that there exist a reproducing kernel K() such that

Ê(yt+h|Zt) =

t∑
i=1

âi〈φ(Zi), φ(Zt)〉 =

t∑
i=1

âiK(Zi,Zt).

This means we do not need to specify the numerous basis functions, a well-chosen kernel

implicitly replicates them. This paper will use the standard radial basis function (RBF)

kernel
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Kσ(x, x′) = exp
(
−
‖x − x′‖2

2σ2

)
where σ is a tuning parameter to be chosen by cross-validation. This choice of kernel is

motivated by its good performance in macroeconomic forecasting as reported in Sermpinis

et al. (2014) and Exterkate et al. (2016). The advantage of the kernel trick is that, by using

the corresponding Zt, we can easily make our data-rich or data-poor model nonlinear. For

instance, in the case of the factor model, we can apply it to the regression equation to

implicitly estimate

yt+h = c + g(Zt) + εt+h, (3.13)

Zt =
[
{yt− j}

py

j=0, {Ft− j}
p f

j=0

]
, (3.14)

Xt = ΛFt + ut. (3.15)

In terms of implementation, this means extracting factors via PCA and then getting

Ê(yt+h|Zt) = Kσ(Zt,Z)(Kσ(Zt,Z) + λIT )−1yt. (3.16)

The final set of tuning parameters for such a model is τ = {λ, σ, py, p f , n f }.

Random Forests

Another way to introduce nonlinearity in the estimation of the predictive equation (3.7) is

to use regression trees instead of OLS. The idea is to split sequentially the space of Zt, as

defined in (3.14) into several regions and model the response by the mean of yt+h in each

region. The process continues according to some stopping rule. The details of the recursive

algorithm can be found in Hastie et al. (2009). Then, the tree regression forecast has the
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following form :

f̂ (Z) =

M∑
m=1

cmI(Z∈Rm), (3.17)

where M is the number of terminal nodes, cm are node means and R1, ...,RM represents a

partition of feature space. In the diffusion indices setup, the regression tree would estimate

a nonlinear relationship linking factors and their lags to yt+h. Once the tree structure is

known, it can be related to a linear regression with dummy variables and their interactions.

While the idea of obtaining nonlinearities via decision trees is intuitive and appealing –

especially for its interpretability potential, the resulting prediction is usually plagued by

high variance. The recursive tree fitting process is (i) unstable and (ii) prone to overfit-

ting. The latter can be partially addressed by the use of pruning and related methodologies

(Hastie et al., 2009). Notwithstanding, a much more successful (and hence popular) fix

was proposed in Breiman (2001) : random forests. This consists in growing many trees

on subsamples of observations. Further randomization of underlying trees is obtained by

considering a random subset of regressors for each potential split. 11 The main hyperpara-

meter to be selected is the number of variables to be considered at each split. The forecasts

of the estimated regression trees are then averaged to make one single "ensemble" predic-

tion of the targeted variable.

3.3.2 Feature 2 : Regularization

In this section we will only consider models where dimension reduction is needed, which

are the models with H+
t . The traditional shrinkage method used in macroeconomic fore-

11. Only using a bootstrap sample of observations would be a procedure called Bagging. Selecting ran-
domly regressors has the effect of decorrelating the trees and hence improving variance reduction of avera-
ging them.
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casting is the ARDI model that consists of extracting principal components of Xt and to

use them as data in an ARDL model. Obviously, this is only one out of many ways to

compress the information contained in Xt to run a well-behaved regression of yt+h on it. 12

In order to create identifying variations for pen() treatment, we need to generate multiple

different shrinkage schemes. Some will also blend in selection, some will not. The alter-

native shrinkage methods will all be special cases of the Elastic Net (EN) problem :

min
β

T∑
t=1

(yt+h − Ztβ)2 + λ

K∑
k=1

(
ζ |βk| + (1 − ζ)β2

k

)
(3.18)

where Zt = B(Ht) is a transformation of the original predictive set Xt. ζ ∈ [0, 1] and λ > 0

can either be fixed or found via CV. By using different B operators, we get shrinkage

schemes. Also, by setting ζ to either 1 or 0 we generate LASSO and Ridge Regression

respectively. These possibilities are alternatives to the factor hard-thresholding procedure

that is ARDI.

Each type of shrinkage in this section will be defined by the tuple S = {ζ, B()}. To begin

with the most straightforward dimension, for a given B, we will evaluate the results for

ζ ∈ {0, ζ̂CV , 1}. For instance, if B is the identity mapping, we get in turns the LASSO, EN

and Ridge shrinkage. We now detail different pen() resulting when we vary B() for a fixed

ζ.

1. (Fat Regression) : First, we consider the case B1() = I(). That is, we use the

entirety of the untransformed high-dimensional data set. The results of Giannone

et al. (2021) point in the direction that specifications with a higher ζ should do

better, that is, sparse models do worse than models where every regressor is kept

12. De Mol et al. (2008) compares Lasso, Ridge and ARDI and finds that forecasts are very much alike.
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but shrunk to zero.

2. (Big ARDI) Second, B2() corresponds to first rotating Xt ∈ IRN so that we get N-

dimensional uncorrelated Ft. Contrary to the ARDI approach, we do not select Ft

recursively, we keep them all to preserve the same information span as Xt. Compa-

ring LASSO and Ridge will allow to verify whether sparsity emerges in a rotated

space.

3. (Principal Component Regression) A third possibility is to rotate H+
t rather than

Xt and still keep all the factors. H+
t includes all the relevant preselected lags. If we

were to just drop the Ft using some hard-thresholding rule, this would correspond

to Principal Component Regression (PCR). Note that B3() = B2() only when no

lags are included.

Hence, the tuple S has a total of 9 elements. Since we will be considering both POOS-CV

and K-fold CV for each of these models, this leads to a total of 18 models. 13

To see clearly through all of this, we describe where the benchmark ARDI model stands in

this setup. Since it uses a hard thresholding rule that is based on the eigenvalues ordering, it

cannot be a special case of the Elastic Net problem. While it uses B2, we would need to set

λ = 0 and select Ft a priori with a hard-thresholding rule. The closest approximation in this

EN setup would be to set ζ = 1 and fix the value of λ to match the number of consecutive

factors selected by an information criterion directly in the predictive regression (3.7).

13. Adaptive versions (in the sense of Zou (2006)) of the 9 models were also considered but gave either
similar or deteriorated results with respect to their plain counterparts.
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3.3.3 Feature 3 : Hyperparameter Optimization

The conventional wisdom in macroeconomic forecasting is to use information criteria.

The prime reason for the popularity of CV is that it can be applied to any model, including

those for which the derivation of an information criterion is impossible. 14 It is not obvious

that CV should work better only because it is “out of sample” while AIC and BIC are

”in sample”. All model selection methods are approximations to the OOS prediction error

relying on different assumptions/approximations. 15 Hence, it is nearly impossible a priori

to think of one model selection technique being the most appropriate for macroeconomic

forecasting.

For small samples encountered in macro, the question of which one is optimal in the

forecasting sense is inevitably an empirical one. For instance, Granger and Jeon (2004)

compared AIC and BIC in a generic forecasting exercise. In this paper, we will compare

AIC, BIC and two types of CV for our two baseline models. The two types of CV are

POOS CV and K-fold CV. The first one behaves correctly in the context of time series

data, but may be inefficient by only using the end of the training set. The latter provides a

valid estimation of the prediction MSE only if residual autocorrelation is absent (Bergmeir

et al., 2018). If it were not to be the case, then we should expect K-fold to underperform at

estimating the "true" MSE. However, how a ranking of cross-validation MSEs with respect

14. Abadie and Kasy (2019) show that hyperparemeter tuning by CV performs uniformly well in high-
dimensional context.

15. Asymptotically, these methods have similar behavior. Hansen and Timmermann (2015) show equiva-
lence between test statistics for OOS forecasting performance and in-sample Wald statistics. For instance,
one can show that Leave-one-out CV is asymptotically equivalent to the Takeuchi Information criterion
(TIC, Cleaskens and Hjort 2008). AIC is a special case of TIC under assumption that all models being consi-
dered are at least correctly specified. Thus, under the latter assumption, Leave-one-out CV is asymptotically
equivalent to AIC.
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to a given hyperparameter could be distorted by serial dependence remains unclear.

The contributions of this section are twofold. First, it will shed light on which model

selection method is most appropriate for typical macroeconomic data and models. Second,

we will explore how much of the gains/losses of using ML can be attributed to widespread

use of CV. Since most nonlinear ML models cannot be easily tuned by anything other than

CV, it is hard for the researcher to disentangle between gains coming from the ML method

itself or just the way it is tuned. Hence, it is worth asking the question whether some gains

from ML are simply coming from selecting hyperparameters differently. To investigate

that, a natural first step is to look at our benchmark macro models, AR and ARDI, and see

if using CV selects different models and how it affects forecasting performances.

3.3.4 Feature 4 : Loss Function

All models presented thus far use a quadratic loss function which is natural since the qua-

dratic loss is also used for out-of-sample evaluation. Thus, one may legitimately wonder

if the fate of the SVR is not sealed in advance as it uses an in-sample loss function which

is inconsistent with the out-of-sample performance metric. As we will discuss after the

presentation of the SVR, there are reasons to believe the alternative (and mismatched) loss

function can help. As a matter of fact, SVR has been successfully applied to forecasting

financial and macroeconomic time series. 16 An important question remains unanswered :

are the good results due to kernel-based non-linearities or to the use of an alternative loss

function?

16. See for example, Lu et al. (2009), Choudhury et al. (2014), Patel et al. (2015a), Patel et al. (2015b),
Yeh et al. (2011) and Qu and Zhang (2016) for financial forecasting. See Sermpinis et al. (2014) and Zhang
et al. (2010) macroeconomic forecasting.
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We provide a strategy to isolate the marginal effect of the SVR’s ε̄-insensitive loss function

which consists in, perhaps unsurprisingly by now, estimating different variants of the same

model. To isolate the “treatment effect” of a different in-sample loss function, we consider :

(1) the linear SVR with H−t ; (2) the linear SVR with H+
t ; (3) the RBF Kernel SVR with

H−t ; and (4) the RBF Kernel SVR with H+
t .

What follows is a bird’s-eye overview of the underlying mechanics of the SVR. As it was

the case for the Kernel Ridge regression, the SVR estimator approximates the function

g ∈ G with basis functions, but it chooses a weight vector that will ignore the contribution

of points that are "close" to its fitted values. The ε-SVR is defined by

min
γ

1
2
γ′γ + C

 T∑
t=1

(ξt + ξ∗t )


s.t.


yt+h − γ

′φ(Zt) − c ≤ ε̄ + ξt

γ′φ(Zt) + c − yt+h ≤ ε̄ + ξ∗t

ξt, ξ
∗
t ≥ 0.

Where ξt, ξ
∗
t are slack variables, φ() is the basis function of the feature space implicitly

defined by the kernel, γ are the related weights, c is a constant and T is the size of the

sample used for estimation. C and ε̄ are hyperparameters, the latter defining an insensitivity

tube twice its size around predicted values. In case of the RBF kernel, a scale parameter

σ also has to be cross-validated. Associating Lagrange multipliers λ j, λ
∗
j to the first two

types of constraints and moving to the dual problem, Smola and Scholkopf (2004) show

that the optimal weights are γ =
∑T

j=1(λ j − λ
∗
j)φ(Z j) and the forecasted values are

Ê(yt+h|Zt) = ĉ +

T∑
j=1

(λ j − λ
∗
j)φ(Z j)φ(Z j) = ĉ +

T∑
j=1

(λ j − λ
∗
j)K(Z j,Zt). (3.19)
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By the Karush-Kuhn-Tucker conditions, only points outside the insensitivity tube have

nonzero Lagrange multipliers making them the only points that contribute to the weight

vector γ. It can be shown that the loss function associated with the ε−SVR is

Pε̄(εt+h|t) :=

0 i f |et+h| ≤ ε̄

|et+h| − ε̄ otherwise
.

We can recover the absolute loss as the special case ε̄ = 0 whereas the previous case of

quadratic loss would be P(et+h) := e2
t+h. Note that for our other estimators, the rate of the

penalty increases with the size of the forecasting error, but for ε−SVR the penalty increases

at a constant rate once errors are sufficiently large.

As discussed briefly earlier, given that SVR forecasts will eventually be evaluated accor-

ding to a quadratic loss, it is reasonable to ask why this alternative loss function isn’t

trivially suboptimal. Smola et al. (1998) show that the optimal size of ε̄ is a linear function

of the underlying noise, with the exact relationship depending on the nature of the data

generating process. This idea is similar to Gu et al. (2020) using the Huber Loss for as-

set pricing with ML (where outliers seldom happen in-sample) or Colombo and Pelagatti

(2020) successfully using SVR to forecast (notoriously noisy) exchange rates.

To sum up, the Table 3.1 shows a list of all forecasting models and highlights their rela-

tionship with each of four features discussed above.

3.4 Empirical setup

This section presents the data and the design of the pseudo-of-sample experiment used to

generate the treatment effects above.
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Tableau 3.1: List of all forecasting models

Models Feature 1 : selecting Feature 2 : selecting Feature 3 : optimizing Feature 4 : selecting
the function g the regularization hyperparameters τ the loss function

Data-poor models
AR,BIC Linear BIC Quadratic
AR,AIC Linear AIC Quadratic
AR,POOS-CV Linear POOS CV Quadratic
AR,K-fold Linear K-fold CV Quadratic
RRAR,POOS-CV Linear Ridge POOS CV Quadratic
RRAR,K-fold Lineal Ridge K-fold CV Quadratic
RFAR,POOS-CV Nonlinear POOS CV Quadratic
RFAR,K-fold Nonlinear K-fold CV Quadratic
KRRAR,POOS-CV Nonlinear Ridge POOS CV Quadratic
KRRAR,K-fold Nonlinear Ridge K-fold CV Quadratic
SVR-AR,Lin,POOS-CV Linear Ridge POOS CV ε̄-insensitive
SVR-AR,Lin,K-fold Linear Ridge K-fold CV ε̄-insensitive
SVR-AR,RBF,POOS-CV Nonlinear Ridge POOS CV ε̄-insensitive
SVR-AR,RBF,K-fold Nonlinear Ridge K-fold CV ε̄-insensitive

Data-rich models
ARDI,BIC Linear PCA BIC Quadratic
ARDI,AIC Linear PCA AIC Quadratic
ARDI,POOS-CV Linear PCA POOS CV Quadratic
ARDI,K-fold Linear PCA K-fold CV Quadratic
RRARDI,POOS-CV Linear Ridge-PCA POOS CV Quadratic
RRARDI,K-fold Linear Ridge-PCA K-fold CV Quadratic
RFARDI,POOS-CV Nonlinear PCA POOS CV Quadratic
RFARDI,K-fold Nonlinear PCA K-fold CV Quadratic
KRRARDI,POOS-CV Nonlinear Ridge-PCA POOS CV Quadratic
KRRARDI,K-fold Nonlinear Ridge-PCA K-fold CV Quadratic
(B1, ζ = ζ̂),POOS-CV Linear EN POOS CV Quadratic
(B1, ζ = ζ̂),K-fold Linear EN K-fold CV Quadratic
(B1, ζ = 1),POOS-CV Linear Lasso POOS CV Quadratic
(B1, ζ = 1),K-fold Linear Lasso K-fold CV Quadratic
(B1, ζ = 0),POOS-CV Linear Ridge POOS CV Quadratic
(B1, ζ = 0),K-fold Linear Ridge K-fold CV Quadratic
(B2, ζ = ζ̂),POOS-CV Linear EN-PCA POOS CV Quadratic
(B2, ζ = ζ̂),K-fold Linear EN-PCA K-fold CV Quadratic
(B2, ζ = 1),POOS-CV Linear Lasso-PCA POOS CV Quadratic
(B2, ζ = 1),K-fold Linear Lasso-PCA K-fold CV Quadratic
(B2, ζ = 0),POOS-CV Linear Ridge-PCA POOS CV Quadratic
(B2, ζ = 0),K-fold Linear Ridge-PCA K-fold CV Quadratic
(B3, ζ = ζ̂),POOS-CV Linear EN-PCR POOS CV Quadratic
(B3, ζ = ζ̂),K-fold Linear EN-PCR K-fold CV Quadratic
(B3, ζ = 1),POOS-CV Linear Lasso-PCR POOS CV Quadratic
(B3, ζ = 1),K-fold Linear Lasso-PCR K-fold CV Quadratic
(B3, ζ = 0),POOS-CV Linear Ridge-PCR POOS CV Quadratic
(B3, ζ = 0),K-fold Linear Ridge-PCR K-fold CV Quadratic
SVR-ARDI,Lin,POOS-CV Linear Ridge-PCA POOS CV ε̄-insensitive
SVR-ARDI,Lin,K-fold Linear Ridge-PCA K-fold CV ε̄-insensitive
SVR-ARDI,RBF,POOS-CV Nonlinear Ridge-PCA POOS CV ε̄-insensitive
SVR-ARDI,RBF,K-fold Nonlinear Ridge-PCA K-fold CV ε̄-insensitive

Note : PCA stands for Principal Component Analysis, EN for Elastic Net regularizer, PCR for Principal Component Regression, and

RBF for radial basis function (the kernel being used). Finally, B1, B2, B3, and ζ are defined in Section 3.3.2.

3.4.1 Data

We use historical data to evaluate and compare the performance of all the forecasting

models described previously. The dataset is FRED-MD, available at the Federal Reserve
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of St-Louis’s web site. It contains 134 monthly US macroeconomic and financial indicators

observed from 1960M01 to 2017M12. Since many of them are usually very persistent or

not stationary, we follow McCracken and Ng (2016a) in the choice of transformations in

order to achieve stationarity. 17 Even though the universe of time series available at FRED

is huge, we stick to FRED-MD for several reasons. First, we want to have the test set as

long as possible since most of the variables do not start early enough. Second, most of

the timely available series are disaggregated components of the variables in FRED-MD.

Hence, adding them alters the estimation of common factors (Boivin and Ng, 2006), and

induces too much collinearity for Lasso performance (Fan and Lv, 2010). Third, it is the

standard high-dimensional dataset that has been extensively used in the macroeconomic

literature.

3.4.2 Variables of Interest

We focus on predicting five representative macroeconomic indicators of the US economy :

Industrial Production (INDPRO), Unemployment rate (UNRATE), Consumer Price Index

(INF), difference between 10-year Treasury Constant Maturity rate and Federal funds rate

(SPREAD) and housing starts (HOUST). INDPRO, CPI and HOUST are assumed I(1) so

we forecast the average growth rate as in equation (3.4). UNRATE is considered I(1) and

we target the average change as in (3.4) but without logs. SPREAD is I(0) and the target

is as in (3.3). 18

17. Alternative data transformations in the context of ML modeling are used in Goulet Coulombe et al.
(2021a).

18. The US CPI is sometimes modeled as I(2) due to the possible stochastic trend in inflation rate in the
70s and 80s, see (Stock and Watson, 2002a). Since in our test set the the inflation is mostly stationary, we
treat the price index as I(1), as in Medeiros et al. (2019). We have compared the mean squared predictive
errors of best models under I(1) and I(2) alternatives, and found that errors are minimized when predicting
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3.4.3 Pseudo-Out-of-Sample Experiment Design

The pseudo-out-of-sample period is 1980M01 - 2017M12. The forecasting horizons consi-

dered are 1, 3, 9, 12 and 24 months. Hence, there are 456 evaluation periods for each ho-

rizon. All models are estimated recursively with an expanding window as means of erring

on the side of including more data so as to potentially reduce the variance of more flexible

models. 19

Hyperparameter optimization is done with in-sample criteria (AIC and BIC) and two types

of CV (POOS and K-fold). The in-sample selection is standard, we fix the upper bounds

for the set of HPs. For the POOS CV, the validation set consists of last 25% of the in-

sample. In case of K-fold CV, we set k = 5. We re-optimize hyperparameters every two

years. This isn’t uncommon for computationally demanding studies. 20 It is also reasonable

to assume that optimal hyperparameters would not be terribly affected by expanding the

training set with observations that account for 2-3% of the new training set size.

the inflation rate directly.

19. The alternative is that of a rolling window, which could be more robust to issues of model instability.
These are valid concerns and have motivated methods for taking them into account (Pesaran and Timmer-
mann, 2007; Pesaran et al., 2013; Inoue et al., 2017; Boot and Pick, 2020). We compared both approaches
in Section C.6.

20. Sermpinis et al. (2014), for example, split their out-of-sample into four year periods and update both
hyperparameters and model parameter estimates every 4 years. Likewise, Teräsvirta (2006) selected the
number of lagged values to be included in nonlinear autoregressive models once and for all at the start of the
POOS.
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3.4.4 Forecast Evaluation Metrics

Following a standard practice in the forecasting literature, we evaluate the quality of our

point forecasts using the root Mean Square Prediction Error (MSPE). Diebold and Mariano

(1995) (DM) procedure is used to test the predictive accuracy of each model against the

reference (ARDI,BIC). We also implement the Model Confidence Set (MCS), (Hansen

et al., 2011), that selects the subset of best models at a given confidence level. These

metrics measure the overall predictive performance and classify models according to DM

and MCS tests. Regression analysis from Section 3.2.3 is used to estimate the treatment

effect of each ML ingredient.

3.5 Results

For the sake of space, we only present the results regarding the marginal effect of important

features of ML using regressions described in Section 3.2.3. Tables containing the relative

root MSPEs (to AR,BIC model) with DM and MCS outputs, for the whole pseudo-out-of-

sample and NBER recession periods are in the Appendix C.1. Overall, those results show

that using data-rich models and nonlinear g functions improves macroeconomic prediction

and their marginal contribution depends on the state of the economy.

3.5.1 Disentangling ML Treatment Effects

In order to disentangle the marginal effects of ML features we turn to the regression analy-

sis described in Section 3.2.3. In what follows, [X, NL, SH, CV and L] stand for data-rich,

nonlinearity, alternative shrinkage, cross-validation and loss function features respectively.
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Figure 3.1: Distribution of ML Treatment Effects

Note : This figure plots the distribution of α̇(h,v)
F from equation (3.11) done by (h, v) subsets. That is, we are looking at the average

partial effect on the pseudo-OOS R2 from augmenting the model with ML features, keeping everything else fixed. X is making the
switch from data-poor to data-rich. Finally, variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color
block, the horizon increases from h = 1 to h = 24 as we are going down. As an example, we clearly see that the partial effect of X on
the R2 of INF increases drastically with the forecasted horizon h. SEs are HAC. Lines around the bullets are the 95% confidence bands.
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Figure 3.1 shows the distribution of α̇(h,v)
F from equation (3.11) done by (h, v) subsets.

Hence, here we allow for heterogeneous treatment effects according to 25 different tar-

gets. This figure highlights by itself the main findings of this paper. First, ML nonlineari-

ties improve substantially the forecasting accuracy in almost all situations. The effects are

positive and significant for all horizons in case of INDPRO and SPREAD, and for most

of the cases when predicting UNRATE, INF and HOUST. The improvements of the nonli-

nearity treatment reach up to 23% in terms of pseudo-R2. This is in contrast with previous

literature that did not find substantial forecasting power from nonlinear methods, see for

example Stock and Watson (1999). In fact, the ML nonlinearity is highly flexible and well

disciplined by a careful regularization, and thus can solve the general overfitting problem

of standard nonlinear models (Teräsvirta, 2006). This is also in line with the finding in Gu

et al. (2020) that nonlinearities (from ML models) can help predicting financial returns.

Second, alternative regularization means of dimensionality reduction do not improve on

average over the standard factor model, except few cases. Choosing sparse modeling can

decrease the forecast accuracy by up to 20% of the pseudo-R2 which is not negligible.

Interestingly, Gu et al. (2020) also reach similar conclusions that dense outperforms sparse

in the context of applying ML to returns.

Third, the average effect of CV appears not significant. However, as we will see in Section

3.5.1, the averaging in this case hides some interesting and relevant differences between

K-fold and POOS CVs. Fourth, on average, dropping the standard in-sample squared-

loss function for what the SVR proposes is not useful, except in very rare cases. Fifth

and lastly, the marginal benefits of data-rich models (X) seems roughly to increase with

horizons for every variable-horizon pair, except for few cases with spread and housing.

Note that this is almost exactly like the picture we described for NL. Indeed, visually, it

seems like the results for X are a compressed-range version of NL that was translated to
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the right. Seeing NL models as data augmentation via basis expansions, we conclude that

for predicting macroeconomic variables, we need to augment the AR(p) model with more

regressors either created from the lags of the dependent variable itself or coming from

additional data. The possibility of joining these two forces to create a “data-filthy-rich”

model is studied in Section 3.5.1.

The robustness of these findings is studied in the Appendix C. ML treatment effects plots

of very similar shapes are obtained for data-poor models only (Figure C.10), data-rich

models only (Figure C.11) and recessions / expansions periods (figures C.12 and C.13).

Nonlinearity effect is not only present during recession periods, but it is even more impor-

tant during expansions. 21 The only exception is the data-rich feature that has negative and

significant effects for housing starts prediction when we condition on the last 20 years of

the forecasting exercise (Figure C.14). The main findings remain valid when the exercise is

conducted on real-time data vintages as shown in Section C.5 and Figure C.15. Lastly, our

main results are intact when replacing expanding window estimation for a rolling window

approach as discussed in Section C.6 and depicted in Figure C.16.

Figure 3.2 aggregates by h and v in order to clarify whether variable or horizon heteroge-

neity matters most. Two facts detailed earlier are now quite easy to see. For both X and NL,

the average marginal effects roughly increase in h. In addition, it is now clear that all the

variables benefit from both additional information and nonlinearities. Alternative shrin-

kage is least harmful for inflation and housing, and at short horizons. Cross-validation has

negative and sometimes significant impacts, while the SVR loss function is often dama-

ging.

21. This suggests that our models behave relatively similarly over the business cycle and that our analysis
does not suffer from undesirable forecast ranking due to extreme events as pointed out in Lerch et al. (2017).
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Figure 3.2: Distribution of averaged ML Treatment Effects

Note : This figure plots the distribution of α̇(v)
F and α̇(h)

F from equation (3.11) averaged across horizons (left) and targets (right). That is,
we are looking at the average partial effect on the pseudo-OOS R2 from augmenting the model with ML features, keeping everything
else fixed. X is making the switch from data-poor to data-rich. However, in this graph, v−specific heterogeneity and h−specific
heterogeneity have been integrated out in turns. SEs are HAC. Lines around the bullets are the 95% confidence bands.
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Supplementary material contains additional results. Section A shows the results obtained

using the absolute loss. The importance of each feature and the way it behaves according

to the variable/horizon pair is the same. Sections B and C show results for two similar

exercises. The first consider quarterly US data where we forecast the average growth rate of

GDP, consumption, investment and disposable income, and the PCE inflation. The results

are consistent with the findings obtained in the main body of this paper. In the second, we

use a large Canadian monthly dataset and forecast the same target variables for Canada.

Results are qualitatively in line with those on US data, except that NL effect is smaller in

size.

In what follows we break down averages and run specific regressions as in (3.12) to study

how homogeneous are the marginal effects reported above.

Nonlinearities

Figure 3.3 suggests that nonlinearities can be very helpful at forecasting all the five va-

riables in the data-rich environment. The marginal effects of random forests and KRR are

almost never statistically different for data-rich models, except for inflation combined with

data-rich, suggesting that the common NL feature is the driving force. However, this is not

the case for data-poor models where the kernel-type nonlinearity shows significant im-

provements for all variables, while the random forests have positive impact on predicting

INDPRO and inflation, but decrease forecasting accuracy for the rest of the variables.

Figure 3.4 suggests that nonlinearities are in general more useful for longer horizons in

data-rich environment while the KRR can be harmful for a very short horizon. Note again

that both nonlinear models follow the same pattern for data-rich models with RF often

being better (but never statistically different from KRR). For data-poor models, it is KRR
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Figure 3.3: Contribution of Non-Linearities, by variables

Note : This figure compares the two NL models averaged over all horizons. The unit of the x-axis are improvements in OOS R2 over
the basis model. SEs are HAC. Lines around the bullets are the 95% confidence bands.
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Figure 3.4: Contribution of Non-Linearities, by horizons

Note : This figure compares the two NL models averaged over all variables. The unit of the x-axis are improvements in OOS R2 over
the basis model. SEs are HAC. These are the 95% confidence bands.
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that has a (statistically significant) growing advantage as h increases. Seeing NL models

as data augmentation via some basis expansions, we can join the two facts together to

conclude that the need for a complex and “data-filthy-rich” model arises for predicting

macroeconomic variables at longer horizons. Similar conclusions are obtained with neural

networks and boosted trees as shown in figures C.20 and C.21 in Appendix C.9.

Figure C.24 in Appendix C plots the cumulative and 3-year rolling window root MSPE

for linear and nonlinear data-poor and data-rich models, for h = 12, as well as Giaco-

mini and Rossi (2010) fluctuation test for those alternatives. The cumulative root MSPE

clearly shows the positive impact on forecast accuracy of both nonlinearities and data-rich

environment for all series except INF. The rolling window depicts the changing level of

forecast accuracy. For all series except the SPREAD, there is a common cyclical beha-

vior with two relatively similar peaks (1981 and 2008 recessions), as well as a drop in

MSPE during the Great Moderation period. Fluctuation tests confirm the important role of

nonlinear and data-rich models.

For CPI inflation at horizons of 3, 9 and 12 months, random forests perform distincti-

vely well. In both its data-poor and data-rich incarnations, the algorithm is included in

the superior model set of Hansen et al. (2011) and significantly outperforms the AR-BIC

benchmark according to the DM test. This result can help shed some light on long-standing

issues in the inflation forecasting literature. A consensus emerged that nonlinear models

in-sample good performance does not materialize out-of-sample (Marcellino, 2008; Stock

and Watson, 2009). 22 In contrast, we found – as in Medeiros et al. (2019), that random

forests are a particularly potent tool to forecast CPI inflation. One possible explanation

22. Concurrently, simple benchmarks such as a random walk or moving averages emerged as surprisingly
hard to beat (Atkeson and Ohanian, 2001; Stock and Watson, 2009; Kotchoni et al., 2019).
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Figure 3.5: Alternative shrinkage wrt ARDI

Note : This figure compares models of Section 3.3.2 averaged over all variables and horizons. The unit of the x-axis are improvements
in OOS R2 over the basis model. The base models are ARDIs specified with POOS-CV and KF-CV respectively. SEs are HAC. These
are the 95% confidence bands.

is that previous studies suffer from overfitting (Marcellino, 2008) while RF are arguably

completely immune from it (Goulet Coulombe, 2020c), all this while retaining relevant

nonlinearities. In that regard, it is noted that INF is the only target where KRR perfor-

mance does not match that of RF in the data rich environment. In the data-poor case,

roles are reversed. Unlike most other targets, it seems the type of NL being used matters

for inflation. Nonetheless, ML generally appears to be useful for inflation forecasting by

providing better-behaved non-parametric nonlinearities than what was considered by the

older literature.

Regularization

Figure 3.5 shows that the ARDI reduces dimensionality in a way that certainly works well

with economic data : all competing schemes do at most as good on average. It is overall
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safe to say that on average, all shrinkage schemes give similar or lower performance, which

is in line with conclusions from Stock and Watson (2012) and Kim and Swanson (2018),

but contrary to Smeekes and Wijler (2018). No clear superiority for the Bayesian versions

of some of these models was also documented in De Mol et al. (2008). This suggests that

the factor model view of the macroeconomy is quite accurate in the sense that when we

use it as a means of dimensionality reduction, it extracts the most relevant information to

forecast the relevant time series. This is good news. The ARDI is the simplest model to

run and results from the preceding section tells us that adding nonlinearities to an ARDI

can be quite helpful.

Obviously, the deceiving behavior of alternative shrinkage methods does not mean there

are no interesting (h, v) cases where using a different dimensionality reduction has signifi-

cant benefits as discussed in Appendix C.1 and Smeekes and Wijler (2018). Furthermore,

LASSO and Ridge can still be useful to tackle specific time series problems (other than

dimensionality reduction), as shown with time-varying parameters in Goulet Coulombe

(2020b).

Hyperparameter Optimization

Different model selection methods lead to quite different models. Figure C.22 in the Ap-

pendix C shows how many regressors are kept by different selection methods in the case of

ARDI. BIC is in general the lower envelope of each of these graphs. Both cross-validations

favor larger models, especially when combined with Ridge regression. 23 There is a com-

23. POOS CV selection is more volatile and selects bigger models for unemployment rate, spread and
housing. While K-fold also selects models of considerable size, it does so in a more slowly growing fashion.
This is not surprising because K-fold samples from all available data to build the CV criterion : adding new
data points only gradually change the average. POOS CV is a shorter window approach that offers flexibility
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mon upward trend for all model selection methods in case of INDPRO and UNRATE. This

is not the case for inflation where large models have been selected in the 80s and most re-

cently since 2005. In case of HOUST, there is a downward trend since the 2000s which is

consistent with the finding in Figure C.14 that data-poor models do better in last 20 years.

We now turn to the impact on predictions. First, let us note that changes in OOS-R2 are

much smaller in magnitude for CV (as can be seen easily in figures 3.1 and 3.2) than for

other studied ML treatment effects. Nevertheless, Table 3.2 tells many interesting tales.

The models included in the regressions are the standard linear ARs and ARDIs (that is,

excluding the Ridge versions) that have all been tuned using BIC, AIC, POOS CV and CV-

KF. First, we see that overall, only POOS CV is distinctively worse, especially in data-rich

environment, and that AIC and CV-KF are not significantly different from BIC on average.

For data-poor models and during recessions, AIC and CV-KF are being significantly better

than BIC in downturns, while CV-KF seems harmless. The state-dependent effects are not

significant in data-rich environment. Hence, for that class of models, we can safely opt for

either BIC or CV-KF. Assuming some degree of external validity beyond that model class,

we can be reassured that the quasi-necessity of leaving ICs behind when opting for more

complicated ML models is not harmful.

We now consider models that are usually tuned by CV and compare the performance of the

two CVs by horizon and variables. Since we are now pooling multiple models, including

all the alternative shrinkage models, if a clear pattern only attributable to a certain CV

existed, it would most likely appear in Figure 3.6. What we see are two things. First, CV-

KF is at least as good as POOS CV on average for almost all variables and horizons,

against structural hyperparameters change at the cost of greater variance and vulnerability of rapid regime
changes in the data.
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Tableau 3.2: CV comparison

(1) (2) (3) (4) (5)
All Data-rich Data-poor Data-rich Data-poor

CV-KF -0.0380 -0.314 0.237 -0.494 -0.181
(0.800) (0.711) (0.411) (0.759) (0.438)

CV-POOS -1.351 -1.440∗ -1.262∗∗ -1.069 -1.454∗∗∗
(0.800) (0.711) (0.411) (0.759) (0.438)

AIC -0.509 -0.648 -0.370 -0.580 -0.812
(0.800) (0.711) (0.411) (0.759) (0.438)

CV-KF * Recessions 1.473 3.405∗∗
(2.166) (1.251)

CV-POOS * Recessions -3.020 1.562
(2.166) (1.251)

AIC * Recessions -0.550 3.606∗∗
(2.166) (1.251)

Observations 91200 45600 45600 45600 45600

Note : Displayed are α̇ f ’s of equation (3.12). HAC standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 3.6: CV-KF performance relative to CV-POOS, Data poor vs Data rich

Note : This figure compares the two CV methods averaged over all the models using them. The unit of the x-axis are improvements in
OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.
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Figure 3.7: CV-KF performance relative to CV-POOS, Expansion vs Recession

Note : This figure compares the two CV methods averaged over all the models using them. The unit of the x-axis are improvements in
OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.

irrespective of the informational content of the regression. The exceptions are HOUST

in data-rich and INF in data-poor frameworks, and the two-year horizon with large data.

Figure 3.7’s message has the virtue of clarity. POOS CV’s failure is mostly attributable

to its poor record in recessions periods for the first three variables at any horizon. Note

that this is the same subset of variables that benefits from adding in more data (X) and

nonlinearities as discussed in 3.5.1.

By using only recent data, POOS CV will be more robust to gradual structural change but

will perhaps have an Achilles heel in regime switching behavior. If the optimal hyperpa-

rameters are state-dependent, then a switch from expansion to recession at time t can be

quite harmful. K-fold, by taking the average over the whole sample, is less immune to such

problems. Since results in the Appendix C.1 point in the direction that smaller models are

better in expansions and bigger models in recessions, the behavior of CV and how it picks
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the effective complexity of the model can have an effect on overall predictive ability. This

is exactly what we see in Figure 3.7 : POOS CV is having a hard time in recessions with

respect to K-fold.

Loss Function

In this section, we investigate whether replacing the l2 norm as an in-sample loss function

for the SVR machinery helps in forecasting. We again use as baseline models ARs and

ARDIs trained by the same corresponding CVs. The very nature of this ML feature is

that the model is less sensitive to extreme residuals, thanks to the l1 norm outside of the

ε̄-insensitivity tube. We first compare linear models in Figure 3.8. Clearly, changing the

loss function is generally harmful and that is mostly due to recessions period. However,

in expansions, the linear SVR is better on average than a standard ARDI for UNRATE

and SPREAD, but these small gains are clearly offset (on average) by the huge recession

losses.

The SVR is usually used in its nonlinear form. We hereby compare KRR and SVR-NL to

study whether the loss function effect could reverse when a nonlinear model is considered.

Comparing these models makes sense since they both use the same kernel trick (with an

RBF kernel). Hence, like linear models of Figure 3.8, models in Figure 3.9 only differ

by the use of a different loss function L̂. It turns out conclusions are exactly the same

as for linear models with the negative effects being slightly smaller in nonlinear world.

There are few exceptions : inflation rate and one month ahead horizon during recessions.

Furthermore, figures C.25 and C.26 in Appendix C confirm that these findings are valid

for both the data-rich and the data-poor environments.

By investigating these results more in depth using tables C.1 - C.5, we see an emerging
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Figure 3.8: Linear SVR Relative Performance to ARDI

Note : This graph displays the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in
both recession and expansion periods. The unit of the x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These
are the 95% confidence bands.

pattern. First, SVR sometimes does very good (best model for UNRATE at horizon 3

months) but underperforms for many targets – in its AR or ARDI form. When it does

perform well compared to the benchmark, it is more often than not outshined marginally

by the KRR version. For instance, in Table C.2, linear and nonlinear SVR-Kfold provide

respectively reductions of 17% and 13% in RMSPE over the benchmark for UNRATE at

horizon 9 months. However, analogous KRR and RF similarly do so. Moreover, for targets

for which SVR fails, the two models it is compared to in order to extract αL̂, KRR or the

AR/ARDI, have a more stable (good) record. Hence, on average nonlinear SVR is much

worse than KRR and the linear SVR is also inferior to the plain ARDI. This explains the

clear-cut results reported in this section : if the SVR wins, it is rather for its use of the

kernel trick (nonlinearities) than an alternative in-sample loss function.
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Figure 3.9: Non-Linear SVR Relative to KRR

Note : This graph displays the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in
both recession and expansion periods. The unit of the x-axis are improvements in OOS R2 over the basis model. SEs are HAC. These
are the 95% confidence bands.
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These results point out that an alternative L̂ like the ε̄-insensitive loss function is not the

most salient feature ML has to offer for macroeconomic forecasting. From a practical

point of view, our results indicate that, on average, one can obtain the benefits of SVR

and more by considering the much simpler KRR. This is convenient since obtaining the

KRR forecast is a matter of less than 10 lines of codes implying the most straightforward

form of linear algebra. In contrast, obtaining the SVR solution can be a serious numerical

enterprise.

3.6 When are the ML Nonlinearities Important ?

In this section we aim to explain some of the heterogeneity of ML treatment effects by

interacting them in equation (3.12) with few macroeconomic variables ξt that have been

used to explain main sources of observed nonlinear macroeconomic fluctuations. We focus

on NL feature only given its importance for both macroeconomic prediction and modeling.

The first element in ξt is the Chicago Fed adjusted national financial conditions index

(ANFCI). Adrian et al. (2019) find that lower quantiles of GDP growth are time varying

and are predictable by tighter financial conditions, suggesting that higher order approxima-

tions are needed in general equilibrium models with financial frictions. In addition, Beau-

dry et al. (2018) build on the observation that recessions are preceded by accumulations

of business, consumer and housing capital, while Beaudry et al. (2020) add nonlinearities

in the estimation part of a model with financial frictions and household capital accumula-

tion. Therefore, we add to the list the house price growth (HOUSPRICE), measured by the

S&P/Case-Shiller U.S. National Home Price Index. The goal is to test if financial condi-

tions and capital buildups are associated with the nonlinear ML feature and its superior

predictive performance.
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Uncertainty is also related to nonlinearity in macroeconomic modeling (Bloom, 2009).

Benigno et al. (2013) provide a second-order approximation solution for a model with

time-varying risk that has its own effect on endogenous variables. Gorodnichenko and Ng

(2017) find evidence on volatility factors that are persistent and load on the housing sector,

while Carriero et al. (2018) estimate uncertainty and its effects in a large nonlinear VAR

model. Hence, we include the Macro Uncertainty from Jurado et al. (2015) (MACROUN-

CERT). 24

Then we add measures of sentiments : University of Michigan Consumer Expectations

(UMCSENT) and Purchasing Managers Index (PMI). Angeletos and La’O (2013) and

Benhabib et al. (2015) have suggested that waves of pessimism and optimism play an im-

portant role in generating (nonlinear) macroeconomic fluctuations. In the case of Benhabib

et al. (2015), optimal decisions based on sentiments produce multiple self-fulfilling ratio-

nal expectations equilibria. Consequently, including measures of sentiment in ξt aims to

test if this channel plays a role for nonlinearities in macro forecasting. Standard monetary

VAR series are used as controls : UNRATE, PCE inflation (PCEPI) and one-year treasury

rate (GS1). 25

Interactions are formed with ξt−h to measure its impact when the forecast is made. This is of

interest for practitioners as it indicates which macroeconomic conditions favor nonlinear

ML forecast modeling. Hence, this expands the equation (3.12) to

∀m ∈ MNL : R2
t,h,v,m = α̇NL + γ̇I(m ∈ NL)ξt−h + φ̇t,v,h + u̇t,h,v,m

24. We did not consider the Economic Policy Uncertainty from Baker et al. (2016) as it starts only from
1985.

25. We consider GS1 instead of the federal funds rate because of the long zero lower bound period. Time
series of elements in ξt are plotted in Figure C.23.



115

Tableau 3.3: Heterogeneity of NL treatment effect

(1) (2) (3) (4)
Base All Horizons Data-Rich Last 20 years

NL 8.998∗∗∗ 5.808∗∗∗ 13.48∗∗∗ 19.87∗∗∗
(0.748) (0.528) (1.012) (1.565)

HOUSPRICE -9.668∗∗∗ -4.491∗∗∗ -11.56∗∗∗ -1.219
(1.269) (0.871) (1.715) (1.596)

ANFCI 7.244∗∗∗ 2.625 6.803∗∗ 20.29∗∗∗
(1.881) (1.379) (2.439) (4.891)

MACROUNCERT 17.98∗∗∗ 10.28∗∗∗ 34.87∗∗∗ 9.660∗∗∗
(1.875) (1.414) (2.745) (2.038)

UMCSENT 4.695∗∗ 3.853∗∗ 10.29∗∗∗ -3.625
(1.768) (1.315) (2.294) (1.922)

PMI 0.0787 -1.443 -2.048 -1.919
(1.179) (0.879) (1.643) (1.288)

UNRATE 0.834 2.517∗∗ 5.732∗∗∗ 8.526∗∗∗
(1.353) (0.938) (1.734) (2.199)

GS1 -14.24∗∗∗ -9.500∗∗∗ -17.30∗∗∗ 2.081
(2.288) (1.682) (3.208) (3.390)

PCEPI 5.953∗ 6.814∗∗ -1.142 -6.242
(2.828) (2.180) (4.093) (3.888)

Observations 136800 228000 68400 72300

Note : HAC standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

whereMNL is defined as the set of models that differs only by the use of NL.

The results are presented in Table 3.3. The first column shows regression coefficients for

h = {9, 12, 24}, since nonlinearity has been found more important for longer horizons. The

second column average across all horizons, while the third presents the results for data-

rich models only. The last column shows the heterogeneity of NL treatments during last

20 years.

Results show that macroeconomic uncertainty is a true game changer for ML nonlinearity

as it improves its forecast accuracy by 34% in the case of data-rich models. This means

that if the macro uncertainty goes from -1 standard deviation to +1 standard deviation from

its mean, the expected NL treatment effect (in terms OOS-R2 difference) is 2*34=+68%.
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Tighter financial conditions and a decrease in house prices are also positively correlated

with a higher NL treatment, which supports the findings in Adrian et al. (2019) and Beau-

dry et al. (2020). It is particularly interesting that the effect of ANFCI reaches 20% during

last 20 years, while the impact of uncertainty decreases to less than 10%, emphasizing that

the determinant role of financial conditions in recent US macro history is also reflected in

our results. Waves of consumer optimism positively affect nonlinearities, especially with

data-rich models.

Among control variables, unemployment rate has a positive effect on nonlinearity. As ex-

pected, this suggests that the importance of nonlinearities is a cyclical feature. Lower in-

terest rates also improve NL treatment by as much as 17% in the data-rich setup. Higher

inflation also leads to stronger gains from ML nonlinearities, but mainly at shorter horizons

and for data-poor models, as suggested by comparing specifications (2) and (3).

These results document clear historical situations where NL consistently helps : (i) when

the level of macroeconomic uncertainty is high and (ii) during episodes of tighter financial

conditions and housing bubble bursts. 26 Also, we note that effects are often bigger in the

case of data-rich models. Hence, allowing nonlinear relationship between factors made of

many predictors can capture better the complex relationships that characterize the episodes

above.

These findings suggest that ML captures important macroeconomic nonlinearities, espe-

cially in the context of financial frictions and high macroeconomic uncertainty. They can

also serve as guidance for forecasters that use a portfolio of predictive models : one should

26. Granziera and Sekhposyan (2019) have exploited similar regression setup for model selection and
found that ‘economic’ forecasting models, AR augmented by few macroeconomic indicators, outperform
the time series models during turbulent times (recessions, tight financial conditions and high uncertainty).
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put more weight on nonlinear specifications if economic conditions evolve as described

above.

3.7 Conclusion

In this paper we have studied important features driving the performance of machine lear-

ning techniques in the context of macroeconomic forecasting. We have considered many

ML methods in a substantive POOS setup over 38 years for 5 key variables and 5 hori-

zons. We have classified these models by “features” of machine learning : nonlinearities,

regularization, cross-validation and alternative loss function. The data-rich and data-poor

environments were considered. In order to recover their marginal effects on forecasting

performance, we designed a series of experiments that easily allow to identify the treat-

ment effects of interest.

The first result indicates that nonlinearities are the true game changer for the data-rich en-

vironment, as they improve substantially the forecasting accuracy for all macroeconomic

variables in our exercise and especially when predicting at long horizons. This gives a stark

recommendation for practitioners. It recommends for most variables and horizons what is

in the end a partially nonlinear factor model – that is, factors are still obtained by PCA.

The best of ML (at least of what considered here) can be obtained by simply generating the

data for a standard ARDI model and then feed it into a ML nonlinear function of choice.

The performance of nonlinear models is magnified during periods of high macroecono-

mic uncertainty, financial stress and housing bubble bursts. These findings suggest that

Machine Learning is useful for macroeconomic forecasting by mostly capturing important

nonlinearities that arise in the context of uncertainty and financial frictions. Beyond the

statistical significance, this amelioration is particularly valuable for the conduct of econo-
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mic policies that often require accurate forecasts of important macroeconomic variables.

The second result is that the standard factor model remains the best regularization. Alter-

native regularization schemes are most of the time harmful. Third, if cross-validation has

to be applied to select models’ features, the best practice is the standard K-fold. Finally,

the standard L2 is preferred to the ε̄-insensitive loss function for macroeconomic predic-

tions. We found that most (if not all) the benefits from the use of SVR in fact comes from

the nonlinearities it creates via the kernel trick rather than its use of an alternative loss

function.



CONCLUSION

Cette thèse a examiné différents aspects de la prévision macroéconomique à savoir l’uti-

lisation des variables disponibles, le traitement de l’information disponible et l’utilisation

de modèles ML.

Les trois chapitres montrent que le ML apporte une amélioration de la performance pré-

visionnelle pour plusieurs variables macroéconomiques d’intérêt. Le modèle RDRMA in-

troduit dans le chapitre 1 a les meilleures performances dans le cas des variables réelles

et ce pour tous les horizons prévisionnels considérés. De façon générale, les résultats de

ce chapitre montre que la régularisation peut être combinée à des prévisions d’ensembles

pour en améliorer la performance. Les résultats du chapitre 2 sont dans la même lignée

avec une majorité de cas où le meilleur modèle provient du ML. Les résultats de ce cha-

pitre suggèrent par ailleurs que la non-linéarité est une composante essentielle puisque les

modèles non-linéaires dominent généralement les modèles linéaires. Les résultats du cha-

pitre 3 confirment également la supériorité des modèles ML et montrent clairement que la

non-linéarité est la source principale des gains prévisionnels.

Les résultats du chapitre 3 montrent de plus que l’utilisation de grands ensembles d’in-

formations mène à une meilleure performance et que son interaction avec la non-linéarité

l’améliore davantage. Ce résultat est également présent dans le chapitre 2 où les meilleurs

modèles pour le taux de chômage et les ventes aux détails sont des modèles non-linéaires

qui combinent entre deux et quatre types de transformations de données. Il est intéressant

de noter que l’une des transformations la plus utile est l’extraction des premières com-
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posantes principales des données qui est utilisée depuis le début des années 2000s. Cela

semble suggérer que ce qui fonctionne avec les modèles standards fonctionne également

avec le ML. Les résultats des chapitres 2 et 3 vont dans la même direction à propos des

composantes principales, mais le chapitre 2 montre en plus qu’elles sont encore plus utiles

lorsqu’elles sont combinées avec les moyennes mobiles des données dans le cas de l’em-

ploi, le taux de chômage et les revenus.

Bien que les résultats des trois chapitres montrent que l’utilisation de plus d’information

est bénéfique, la parcimonie reste importante. Les résultats du chapitre 2 montrent en ef-

fet que les modèles les plus performant sont rarement ceux qui combinent le plus grand

nombre de transformations et donc le plus grand nombre de variables. Comme pour les

variables, les transformations doivent être sélectionnées suivant une certaine logique et il

serait malavisé, même avec le ML, d’en inclure le plus possible et de laisser le modèle

gérer l’information.

Cette thèse contribue à la littérature en prévision macroéconomique de trois façons. Elle

montre premièrement que l’on peut se servir intelligemment de composantes du ML pour

améliorer des modèles de prévision existant. Elle expose ensuite la pertinence de considé-

rer d’autres types de transformations des données qui ne sont généralement pas utilisées en

prévision macroéconomique et montre que l’utilité de celles-ci se révèle avec l’utilisation

de modèles ML. Finalement, cette thèse quantifie l’effet des différentes composantes des

modèles ML sur la performance prévisionnelle.



APPENDICE A

MACROECONOMIC FORECAST ACCURACY IN A DATA-RICH ENVIRONMENT



122

A.1 Ratio of Correctly Signed Forecasts

Here, we compare the forecasting methods in terms of their ability to generate forecasts

that are correctly signed. Indeed, a forecasting model that is outperformed in terms of

the MSPE can still have significant predictive power for the sign of the target variable,

see Satchell and Timmermann (1995). This possibility can be assessed by means of the

Timmermann and Pesaran (1992) sign forecast test. The test statistic is given by :

S n =
p̂ − p̂∗√

Var(p̂) − Var( p̂∗)
,

where p̂ is the sample ratio of correctly signed forecasts (RCSF) and p̂∗ is the estimate of

its expectation. This test statistic is not influenced by the distance between the realization

and the forecast, as is the case for MSPE. Under the null hypothesis that the signs of the

forecasts are independent of the signs of the target, we have S n −→ N(0, 1). 1 Tables A.1

- A.4 present the success ratio with the test significance. The highest values are in bold.

Implicitly, the benchmark model here is the random walk without drift.

1. Let q denote the proportion of positive realizations in the actual data and q̂ the proportion of positive
forecasts. Under H0, the estimated theoretical number of correctly signed forecast is p̂∗ = qq̂+(1 − q)

(
1 − q̂

)
.
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Tableau A.1: RCSF for the Industrial Production growth

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD 0.68*** 0.77*** 0.75*** 0.75 0.74 0.54 0.49** 0.29 0.22 0.24
ARI 0.68*** 0.76*** 0.76*** 0.76** 0.76 0.54 0.41* 0.26 0.26 0.25
ARMA(1,1) 0.70*** 0.78*** 0.76*** 0.74 0.74 0.65** 0.48** 0.27 0.22 0.25
ADL 0.70*** 0.77*** 0.75*** 0.74 0.76 0.61* 0.47** 0.31* 0.25 0.26
Factor-Augmented Regressions
ARDI 0.69*** 0.81*** 0.81*** 0.82*** 0.82*** 0.71 0.76** 0.55 0.51 0.42
ARDI-soft 0.70*** 0.81*** 0.81*** 0.84*** 0.82*** 0.75 0.78 0.66 0.64 0.56*
ARDI-hard,1.28 0.72*** 0.82*** 0.79*** 0.81*** 0.84*** 0.72 0.72 0.58 0.51 0.64***
ARDI-hard,1.65 0.71*** 0.81*** 0.79*** 0.82*** 0.84*** 0.71 0.78 0.61 0.56 0.69***
ARDI-tstat,1.96 0.69*** 0.80*** 0.80*** 0.81*** 0.83*** 0.62 0.62 0.53 0.51 0.51**
ARDI-DU 0.72*** 0.81*** 0.80*** 0.82*** 0.83*** 0.73 0.72 0.53 0.47 0.48
3PRF 0.71*** 0.79*** 0.77*** 0.76*** 0.75** 0.67 0.55 0.36 0.31 0.32
Factor-Structure-Based Models
FAVARI 0.74*** 0.82*** 0.80*** 0.82*** 0.82*** 0.73 0.79* 0.59 0.44 0.42
FAVARD 0.74*** 0.83*** 0.81*** 0.82*** 0.83*** 0.78 0.79* 0.61 0.52 0.52
FAVARMA-FMA 0.73*** 0.81*** 0.82*** 0.82*** 0.83*** 0.71 0.78 0.66 0.52 0.52*
FAVARMA-FAR 0.69*** 0.79*** 0.80*** 0.79*** 0.76*** 0.78 0.76 0.64 0.55*** 0.44**
DFM 0.71*** 0.80*** 0.78*** 0.79*** 0.80*** 0.72 0.67 0.41 0.35 0.35
Data-Rich Model Averaging
CSR,1 0.68*** 0.77*** 0.76** 0.76 0.75 0.52* 0.41* 0.24 0.21 0.24
CSR,10 0.73*** 0.82*** 0.81*** 0.81*** 0.82*** 0.72 0.65 0.49 0.4 0.41*
CSR,20 0.75*** 0.83*** 0.80*** 0.83*** 0.83*** 0.76 0.69 0.58 0.55 0.51*
Regularized Data-Rich Model Averaging
T-CSR-soft,10 0.73*** 0.83*** 0.82*** 0.83*** 0.83*** 0.78 0.71 0.64 0.55 0.59***
T-CSR-soft,20 0.72*** 0.81*** 0.80*** 0.80*** 0.82*** 0.79 0.71 0.68 0.62 0.64**
T-CSR-hard,1.65,10 0.74*** 0.82*** 0.81*** 0.83*** 0.85*** 0.76 0.69 0.58 0.58 0.60***
T-CSR-hard,1.65,20 0.73*** 0.82*** 0.80*** 0.80*** 0.82*** 0.74 0.75* 0.66 0.56 0.60*
R-CSR.10 0.72*** 0.82*** 0.81*** 0.82*** 0.82*** 0.72 0.69 0.51 0.45 0.44**
R-CSR,20 0.74*** 0.83*** 0.81*** 0.82*** 0.84*** 0.81 0.71 0.59 0.55 0.54***
Lasso 0.69*** 0.76*** 0.76*** 0.79*** 0.80*** 0.76** 0.66 0.65 0.65 0.61**
Forecasts Combinations
AVRG 0.73*** 0.83*** 0.81*** 0.82*** 0.83*** 0.75 0.73 0.55 0.51 0.46**
Median 0.73*** 0.82*** 0.81*** 0.83*** 0.84*** 0.73 0.73 0.53 0.51 0.48**
T-AVRG 0.73*** 0.82*** 0.81*** 0.82*** 0.84*** 0.73 0.73** 0.53 0.48 0.47**
IP-AVRG,1 0.73*** 0.83*** 0.81*** 0.83*** 0.83*** 0.75 0.73 0.55 0.51 0.48**
IP-AVRG,0.95 0.73*** 0.82*** 0.81*** 0.83*** 0.83*** 0.74 0.72 0.55 0.48 0.45*

Note : This table shows the success ratio with the Timmermann and Pesaran (1992) sign forecast test significance where ∗∗∗, ∗∗, ∗ stand
for 1%, 5% and 10% levels. The highest values are in bold.



124

Tableau A.2: RCSF for Employment growth

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD 0.89*** 0.90*** 0.84*** 0.82*** 0.80*** 0.76*** 0.71*** 0.49*** 0.51** 0.52*
ARI 0.89*** 0.90*** 0.85*** 0.81*** 0.81*** 0.76*** 0.68*** 0.51*** 0.51** 0.52*
ARMA(1,1) 0.89*** 0.88*** 0.83*** 0.81*** 0.79*** 0.79*** 0.64*** 0.52*** 0.51** 0.52*
ADL 0.89*** 0.89*** 0.84*** 0.81*** 0.81*** 0.84*** 0.69*** 0.51*** 0.52*** 0.53**
Factor-Augmented Regressions
ARDI 0.89*** 0.91*** 0.85*** 0.83*** 0.83*** 0.82*** 0.76*** 0.48 0.48 0.60***
ARDI-soft 0.87*** 0.90*** 0.88*** 0.85*** 0.83*** 0.81*** 0.74*** 0.59*** 0.56** 0.65***
ARDI-hard,1.28 0.87*** 0.90*** 0.88*** 0.86*** 0.84*** 0.79*** 0.73*** 0.64*** 0.58** 0.65***
ARDI-hard,1.65 0.87*** 0.90*** 0.88*** 0.87*** 0.84*** 0.80*** 0.75*** 0.59*** 0.55** 0.64***
ARDI-tstat,1.96 0.87*** 0.91*** 0.87*** 0.84*** 0.83*** 0.76*** 0.76*** 0.61*** 0.54* 0.61***
ARDI-DU 0.89*** 0.90*** 0.87*** 0.83*** 0.84*** 0.82*** 0.72*** 0.58*** 0.53 0.65***
3PRF 0.86*** 0.88*** 0.84*** 0.82*** 0.81*** 0.74*** 0.67*** 0.49*** 0.49* 0.52
Factor-Structure-Based Models
FAVARI 0.88*** 0.90*** 0.85*** 0.83*** 0.81*** 0.80*** 0.68*** 0.52*** 0.48 0.51*
FAVARD 0.89*** 0.91*** 0.86*** 0.84*** 0.83*** 0.81*** 0.75*** 0.58*** 0.54** 0.58**
FAVARMA-FMA 0.89*** 0.90*** 0.85*** 0.83*** 0.82*** 0.81*** 0.72*** 0.55*** 0.49* 0.55***
FAVARMA-FAR 0.89*** 0.90*** 0.86*** 0.82*** 0.81*** 0.81*** 0.66*** 0.49*** 0.49** 0.51*
DFM 0.88*** 0.90*** 0.85*** 0.82*** 0.81*** 0.76*** 0.67*** 0.47** 0.48 0.53**
Data-Rich Model Averaging
CSR,1 0.87*** 0.89*** 0.84*** 0.81*** 0.79*** 0.69*** 0.62*** 0.49*** 0.51** 0.52*
CSR,10 0.87*** 0.89*** 0.85*** 0.80*** 0.81*** 0.74*** 0.62*** 0.48*** 0.47 0.54**
CSR,20 0.87*** 0.89*** 0.86*** 0.82*** 0.82*** 0.76*** 0.64*** 0.55*** 0.54** 0.59***
Regularized Data-Rich Model Averaging
T-CSR-soft,10 0.87*** 0.90*** 0.86*** 0.84*** 0.82*** 0.78*** 0.68*** 0.54*** 0.55*** 0.56***
T-CSR-soft,20 0.87*** 0.91*** 0.87*** 0.84*** 0.83*** 0.76*** 0.74*** 0.64*** 0.54 0.59**
T-CSR-hard,1.65,10 0.88*** 0.90*** 0.87*** 0.84*** 0.82*** 0.79*** 0.68*** 0.60*** 0.56*** 0.59***
T-CSR-hard,1.65,20 0.86*** 0.90*** 0.86*** 0.83*** 0.81*** 0.75*** 0.71*** 0.56*** 0.54* 0.56**
R-CSR,10 0.89*** 0.91*** 0.87*** 0.83*** 0.83*** 0.80*** 0.75*** 0.53*** 0.49* 0.56***
R-CSR,20 0.89*** 0.92*** 0.87*** 0.84*** 0.84*** 0.81*** 0.78*** 0.59*** 0.55*** 0.61***
Lasso 0.85*** 0.90*** 0.87*** 0.82*** 0.82*** 0.72** 0.72*** 0.60*** 0.54 0.59**
Forecasts Combinations
AVRG 0.88*** 0.91*** 0.85*** 0.82*** 0.82*** 0.80*** 0.71*** 0.49*** 0.49* 0.55***
Median 0.88*** 0.91*** 0.85*** 0.82*** 0.82*** 0.80*** 0.72*** 0.51*** 0.53** 0.56***
T-AVRG 0.88*** 0.91*** 0.85*** 0.82*** 0.82*** 0.80*** 0.72*** 0.49*** 0.51* 0.55***
IP-AVRG,1 0.88*** 0.91*** 0.85*** 0.83*** 0.83*** 0.80*** 0.72*** 0.51*** 0.54** 0.59***
IP-AVRG,0.95 0.88*** 0.91*** 0.86*** 0.83*** 0.82*** 0.80*** 0.71*** 0.51*** 0.53** 0.56***

Note : This table shows the success ratio with the Timmermann and Pesaran (1992) sign forecast test significance where ∗∗∗, ∗∗, ∗ stand
for 1%, 5% and 10% levels. The highest values are in bold.
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Tableau A.3: RCSF for the CPI Inflation acceleration

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD 0.62*** 0.71*** 0.74*** 0.75*** 0.72*** 0.60** 0.69*** 0.76*** 0.69*** 0.64**
ARI 0.62*** 0.65*** 0.67*** 0.69*** 0.68*** 0.60** 0.64** 0.75*** 0.73*** 0.60*
ARMA(1,1) 0.67*** 0.71*** 0.71*** 0.71*** 0.72*** 0.60** 0.72*** 0.75*** 0.73*** 0.65**
ADL 0.63*** 0.69*** 0.74*** 0.75*** 0.73*** 0.60* 0.66*** 0.76*** 0.73*** 0.66***
Factor-Augmented Regressions
ARDI 0.63*** 0.70*** 0.74*** 0.74*** 0.74*** 0.64** 0.67*** 0.74*** 0.71*** 0.66***
ARDI-soft 0.62*** 0.70*** 0.73*** 0.74*** 0.72*** 0.64** 0.68*** 0.73*** 0.72*** 0.69***
ARDI-hard,1.28 0.60*** 0.69*** 0.73*** 0.75*** 0.74*** 0.62** 0.67*** 0.75*** 0.75*** 0.69***
ARDI-hard,1.65 0.63*** 0.71*** 0.73*** 0.75*** 0.74*** 0.65*** 0.71*** 0.73*** 0.76*** 0.73***
ARDI-tstat,1.96 0.62*** 0.71*** 0.73*** 0.73*** 0.75*** 0.65*** 0.72*** 0.79*** 0.72*** 0.73***
ARDI-DU 0.63*** 0.73*** 0.73*** 0.75*** 0.75*** 0.62** 0.71*** 0.73*** 0.71*** 0.67***
3PRF 0.57*** 0.63*** 0.66*** 0.66*** 0.66*** 0.55 0.68*** 0.69*** 0.74*** 0.64**
Factor-Structure-Based Models
FAVARI 0.56** 0.60*** 0.56*** 0.54* 0.54 0.67*** 0.59 0.53 0.53 0.58
FAVARD 0.55* 0.62*** 0.62*** 0.60*** 0.57*** 0.66** 0.59 0.56 0.61** 0.64**
FAVARMA-FMA 0.57*** 0.62*** 0.59*** 0.57*** 0.57*** 0.66*** 0.62** 0.61** 0.59 0.61**
FAVARMA-FAR 0.5 0.40*** 0.38*** 0.35*** 0.36*** 0.58 0.38*** 0.40* 0.42 0.48
DFM 0.63*** 0.71*** 0.71*** 0.71*** 0.68*** 0.64*** 0.74*** 0.78*** 0.67*** 0.61**
Data-Rich Model Averaging
CSR,1 0.58*** 0.63*** 0.64*** 0.65*** 0.64*** 0.59** 0.64*** 0.64** 0.68*** 0.58
CSR,10 0.63*** 0.65*** 0.68*** 0.68*** 0.67*** 0.67*** 0.69*** 0.69*** 0.72*** 0.64**
CSR,20 0.62*** 0.65*** 0.68*** 0.69*** 0.68*** 0.67*** 0.68*** 0.71*** 0.71*** 0.64**
Regularized Data-Rich Model Averaging
T-CSR-soft,10 0.64*** 0.67*** 0.72*** 0.69*** 0.70*** 0.66*** 0.69*** 0.74*** 0.74*** 0.68***
T-CSR-soft,20 0.64*** 0.65*** 0.68*** 0.69*** 0.68*** 0.69*** 0.73*** 0.73*** 0.73*** 0.66***
T-CSR-hard,1.65,10 0.63*** 0.67*** 0.67*** 0.71*** 0.71*** 0.66*** 0.72*** 0.69*** 0.72*** 0.68***
T-CSR-hard,1.65,20 0.63*** 0.65*** 0.68*** 0.71*** 0.70*** 0.68*** 0.66*** 0.74*** 0.78*** 0.71***
R-CSR,10 0.64*** 0.71*** 0.74*** 0.75*** 0.75*** 0.65** 0.74*** 0.78*** 0.74*** 0.69***
R-CSR,20 0.66*** 0.69*** 0.73*** 0.76*** 0.74*** 0.67*** 0.69*** 0.75*** 0.74*** 0.69***
Lasso 0.65*** 0.64*** 0.72*** 0.70*** 0.69*** 0.66*** 0.72*** 0.75*** 0.75*** 0.67***
Forecasts Combinations
AVRG 0.64*** 0.71*** 0.74*** 0.74*** 0.74*** 0.69*** 0.71*** 0.80*** 0.76*** 0.71***
Median 0.66*** 0.70*** 0.72*** 0.75*** 0.75*** 0.72*** 0.72*** 0.74*** 0.75*** 0.71***
T-AVRG 0.65*** 0.71*** 0.72*** 0.75*** 0.73*** 0.71*** 0.69*** 0.75*** 0.76*** 0.69***
IP-AVRG,1 0.65*** 0.71*** 0.74*** 0.75*** 0.75*** 0.69*** 0.69*** 0.79*** 0.74*** 0.71***
IP-AVRG,0.95 0.64*** 0.71*** 0.74*** 0.74*** 0.74*** 0.69*** 0.69*** 0.80*** 0.72*** 0.68***

Note : This table shows the success ratio with the Timmermann and Pesaran (1992) sign forecast test significance where ∗∗∗, ∗∗, ∗ stand
for 1%, 5% and 10% levels. The highest values are in bold.
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Tableau A.4: RCSF for the SP500 returns

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=6 h=9 h=12 h=1 h=3 h=6 h=9 h=12
Standard Time Series Models
ARD 0.59* 0.63 0.64 0.64** 0.64*** 0.54 0.39 0.24** 0.15 0.14**
ARI 0.59* 0.64** 0.64 0.64** 0.63*** 0.54 0.41 0.21*** 0.14** 0.13***
ARMA(1,1) 0.60** 0.63 0.63 0.63** 0.63*** 0.52 0.41 0.21** 0.11*** 0.13***
ADL 0.59** 0.62*** 0.66*** 0.63 0.64 0.69*** 0.46 0.41 0.26** 0.31
Factor-Augmented Regressions
ARDI 0.62*** 0.64*** 0.67*** 0.67*** 0.69*** 0.65*** 0.55 0.46 0.42 0.4
ARDI-soft 0.61*** 0.63*** 0.67*** 0.68*** 0.66** 0.62** 0.52 0.45 0.38 0.33
ARDI-hard,1.28 0.60*** 0.66*** 0.67*** 0.67*** 0.68*** 0.65*** 0.58 0.48 0.4 0.36
ARDI-hard,1.65 0.61*** 0.64*** 0.65*** 0.65*** 0.67** 0.62** 0.55 0.46 0.38 0.35
ARDI-tstat,1.96 0.61*** 0.65*** 0.66*** 0.67*** 0.67** 0.64** 0.62** 0.44 0.4 0.39
ARDI-DU 0.60*** 0.65*** 0.67*** 0.67*** 0.70*** 0.61** 0.54 0.46 0.4 0.44
3PRF 0.61*** 0.66*** 0.69*** 0.68*** 0.65 0.59* 0.56 0.48 0.45 0.36
Factor-Structure-Based Models
FAVARI 0.63*** 0.66*** 0.69*** 0.71*** 0.70*** 0.64** 0.59 0.54 0.52 0.47
FAVARD 0.62*** 0.64*** 0.69*** 0.71*** 0.70*** 0.61** 0.58 0.54 0.56 0.47
FAVARMA-FMA 0.63*** 0.66*** 0.69*** 0.70*** 0.68*** 0.66*** 0.6 0.55 0.51 0.42
FAVARMA-FAR 0.60*** 0.62*** 0.67*** 0.67*** 0.67*** 0.60** 0.47 0.52 0.51 0.48
DFM 0.60** 0.64*** 0.68*** 0.68*** 0.67 0.61** 0.51 0.41 0.33** 0.32
Data-Rich Model Averaging
CSR,1 0.61** 0.63* 0.65 0.65 0.65*** 0.56 0.41 0.29 0.16** 0.16**
CSR,10 0.62*** 0.66*** 0.68*** 0.67*** 0.68** 0.67*** 0.55 0.42 0.38 0.35
CSR,20 0.61*** 0.64*** 0.68*** 0.66*** 0.65 0.62** 0.52 0.47 0.36 0.35
Regularized Data-Rich Model Averaging
T-CSR-soft,10 0.59*** 0.64*** 0.67*** 0.69*** 0.66** 0.61** 0.56 0.44 0.4 0.35
T-CSR-soft,20 0.57** 0.62*** 0.65*** 0.64*** 0.65** 0.64** 0.61* 0.52* 0.44 0.46
T-CSR-hard,1.65,10 0.63*** 0.65*** 0.66*** 0.67*** 0.65 0.62** 0.54 0.46 0.41 0.33
T-CSR-hard,1.65,20 0.63*** 0.62*** 0.62*** 0.63** 0.61 0.64*** 0.53 0.42 0.41 0.33
R-CSR,10 0.63*** 0.66*** 0.68*** 0.69*** 0.69*** 0.67*** 0.56 0.46 0.4 0.38
R-CSR,20 0.62*** 0.64*** 0.67*** 0.68*** 0.66* 0.65*** 0.55 0.47 0.4 0.35
Lasso 0.54 0.61*** 0.61*** 0.60** 0.6 0.54 0.6 0.55 0.52 0.49
Forecasts Combinations
AVRG 0.63*** 0.67*** 0.68*** 0.70*** 0.67 0.67*** 0.55 0.45 0.4 0.35
Median 0.62*** 0.66*** 0.67*** 0.68*** 0.68* 0.66*** 0.55 0.46 0.38 0.36
T-AVRG 0.62*** 0.66*** 0.68*** 0.67*** 0.67 0.68*** 0.56 0.45 0.38 0.35
IP-AVRG,1 0.63*** 0.67*** 0.68*** 0.69*** 0.67* 0.69*** 0.55 0.45 0.38 0.35
IP-AVRG,0.95 0.63*** 0.67*** 0.68*** 0.68*** 0.68* 0.69*** 0.54 0.45 0.36 0.35
Random walks
RW with drift 0.58 0.60** 0.63 0.63*** 0.62*** 0.48 0.29** 0.19** 0.07*** 0.08***

Note : This table shows the success ratio with the Timmermann and Pesaran (1992) sign forecast test significance where ∗∗∗, ∗∗, ∗ stand
for 1%, 5% and 10% levels. The highest values are in bold.



APPENDICE B

MACROECONOMIC DATA TRANSFORMATIONS MATTER



128



129

B.1 Additional Results on Marginal Contribution of Data Pre-processing

Figure B.1: Distribution of Average Marginal Treatment Effects of Factors in Levels
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(a) Direct Approach (ŷdirect
t+h )
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(b) Path Average Approach (ŷpath-avg
t+h )

Note : This figure plots the distribution of α(h,v)
f from equation (3.12) done by (h, v) subsets. It shows the average partial effect on the

pseudo-R2 from augmenting the model with factors in levels featuring, keeping everything else fixed. SEs are HAC. These are the
95% confidence bands.
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Figure B.2: Distribution of Average Marginal Treatment Effects of Volatility
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(a) Direct Approach (ŷdirect
t+h )
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(b) Path Average Approach (ŷpath-avg
t+h )

Note : This figure plots the distribution of α(h,v)
f from equation (3.12) done by (h, v) subsets. It shows the average partial effect on the

pseudo-R2 from augmenting the model with X2 and corresponding factors featuring, keeping everything else fixed. SEs are HAC.
These are the 95% confidence bands.
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Figure B.3: Distribution of Marginal Treatment Effects of Dynamic Factors vs MAF
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(a) Direct Approach (ŷdirect
t+h )
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(b) Path Average Approach (ŷpath-avg
t+h )

Note : This figure plots the distribution of α(h,v)
f from equation (3.12) done by (h, v) subsets. It shows the average partial effect on the

pseudo-R2 from considering dynamic factors versus MAF, keeping everything else fixed. SEs are HAC. These are the 95% confidence
bands.
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Figure B.4: Distribution of Marginal Treatment Effects of Dynamic Factors vs Static Fac-
tors
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(a) Direct Approach (ŷdirect
t+h )
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(b) Path Average Approach (ŷpath-avg
t+h )

Note : This figure plots the distribution of α(h,v)
f from equation (3.12) done by (h, v) subsets. It shows the average partial effect on the

pseudo-R2 from considering dynamic factors versus static factors, keeping everything else fixed. SEs are HAC. These are the 95%
confidence bands.
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B.2 Stability of Predictive Performance

In order to examine the stability of forecast accuracy, we consider the fluctuation test of

Giacomini and Rossi (2010). Figure B.5 shows the results for a few selected cases. Fol-

lowing the simulation results in Giacomini and Rossi (2010), the moving average of the

standardized difference of MSEs is produced with a 136-month window, which corres-

ponds to 30% of the out-of-sample size.

The top panels compares the predictive performance of the path average versus direct ap-

proach, in combination with Adaptive Lasso and Random Forests models using different

data transformation combinations. The bottom panels compare the performance of nonli-

near methods using data transformations against the standard factor model, all estimated

using ŷdirect
t+h as the target.

There is a fair amount of instability. The path average approach becomes preferable to

the direct approach after 2007 when combined with Random Forest and for real activity

variables. In the case of M2 growth and CPI and PPI inflation rates, combining h simple

growth rate problems does better during the first half of the pseudo-out-of-sample, but the

situation completely inverses in the second part.

When looking at the bottom panel, it is worth noting that in the case of INDPRO with RF,

the data combinations including the MARX transformation dominates the benchmark and

the alternatives most of the time, but takes off even more significantly and substantially

since the Great Recession. A similar pattern is observed with unemployment rate, while in

the case of employment the improvements are not significant since 2010.
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Figure B.5: Giacomini-Rossi Fluctuation Test
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Note : The figure shows the Giacomini-Rossi fluctuation tests. The top panel uses the ŷdirect
t+h version of each model as benchmark while

the bottom panel uses the factor model as a benchmark. The horizontal lines depict the 10% critical values. A model is significantly
better than the benchmark if the test statistic is above the upper critical value line. Colors represent selected data transformations
included with each nonlinear forecasting model : F,F-X, F-MARX,F-X-MARX,F-X-MARX-Level, F-X-Level, F-MAF,F-X-MAF.
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C.1 Detailed Overall Predictive Performance

Tables C.1 - C.5 summarize the overall predictive performance in terms of root MSPE

relative to the reference model AR,BIC. The analysis is done for the full out-of-sample as

well as for NBER recessions (i.e., when the target belongs to a recession episode). This

address two questions : is ML already useful for macroeconomic forecasting and when? 1

In case of industrial production, Table C.1 shows that principal component regressions B2

and B3 with Ridge and Lasso penalty respectively are the best at short-run horizons of 1

and 3 months. The kernel ridge ARDI with POOS CV is best for h = 9, while its autore-

gressive counterpart with K-fold minimizes the MSPE at the one-year horizon. Random

forest ARDI, the alternative nonlinear approximator, outperforms the reference model by

11% for h = 24. During recessions, the ARDI with CV is the best for 1, 3 and 9 months

ahead, while the nonlinear SVR-ARDI minimizes the MSPE at the one-year horizon. The

ridge regression ARDI is the best for h = 24. Ameliorations with respect to AR,BIC are

much larger during economic downturns, and the MCS selects fewer models.

Results for the unemployment rate, Table C.2, highlight the performance of nonlinear

models especially for longer horizons. Improvements with respect to the AR,BIC model

are bigger for both full OOS and recessions. MCSs are narrower than in case of INDPRO.

A similar pattern is observed during NBER recessions. Table C.3 summarizes results for

the Spread. Nonlinear models are generally the best, combined with data-rich predictors’

set.

1. The knowledge of the models that have performed best historically during recessions is of interest
for practitioners. If the probability of recession is high enough at a given period, our results can provide an
ex-ante guidance on which model is likely to perform best in such circumstances.
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For inflation, Table C.4 shows that the kernel ridge autoregressive model with K-fold CV

is the best for 3, 9 and 12 months ahead, while the nonlinear SVR-ARDI optimized with

K-fold CV reduces the MSPE by more than 20% at two-year horizon. Random forest

models are very resilient, as in Medeiros et al. (2019), but generally outperformed by

KRR form of nonlinearity. During recessions, the fat regression models (B1) are the best at

short horizons, while the ridge regression ARDI with K-fold dominates for h = 9, 12, 24.

Housing starts, in Table C.5, are best predicted with nonlinear data-rich models for almost

all horizons.

The importance of ML modeling goes beyond the statistical significance. Having reliable

predictions is also important for the conduct of economic policies. For instance, standard

monetary policy needs accurate forecasts of inflation rates at longer horizons. Table C.4

shows that in terms of standard deviation, when forecasting inflation one year ahead, the

best nonlinear model improves the forecast precision by 32 basis points over the bench-

mark.
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Tableau C.1: Industrial Production : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.0765 0.0515 0.0451 0.0428 0.0344 0.127 0.1014 0.0973 0.0898 0.0571
AR,AIC 0.991* 1.000 0.999 1.000 1.000 0.987* 1.000 1.000 1.000 1.000
AR,POOS-CV 0.999 1.021*** 0.985* 1.001 1.032* 1.01 1.023*** 0.988* 1.000 1.076**
AR,K-fold 0.991* 1.000 0.987* 1.000 1.033* 0.987* 1.000 0.992* 1.000 1.078**
RRAR,POOS-CV 1.003 1.041** 0.989 0.993* 1.002 1.039** 1.083** 0.991 0.993 1.016**
RRAR,K-fold 0.988** 1.000 0.991 1.001 1.027 0.992 1.007** 0.995 1.001** 1.074**
RFAR,POOS-CV 0.995 1.045 0.985 0.955 0.991 1.009 1.073 0.902*** 0.890** 0.983
RFAR,K-fold 0.995 1.020 0.960 0.930** 0.983 0.999 1.013 0.894*** 0.887*** 0.970*
KRR-AR,POOS-CV 1.023 1.09 0.980 0.944 0.982 1.117 1.166* 0.896** 0.853*** 0.903***
KRR,AR,K-fold 0.947*** 0.937** 0.936 0.910* 0.959 0.922** 0.902** 0.835*** 0.799*** 0.864***
SVR-AR,Lin,POOS-CV 1.134*** 1.226*** 1.114*** 1.132*** 0.952* 1.186** 1.285*** 1.079** 1.034*** 0.893***
SVR-AR,Lin,K-fold 1.069* 1.159** 1.055** 1.042*** 1.016*** 1.268*** 1.319*** 1.067*** 1.035*** 1.013***
SVR-AR,RBF,POOS-CV 0.999 1.061*** 1.020 1.048 0.980 1.062* 1.082*** 0.876*** 0.941*** 0.930***
SVR-AR,RBF,K-fold 0.978* 1.004 1.080* 1.193** 1.017*** 0.992 1.009 0.989 1.016*** 1.012***
Data-rich (H+

t ) models
ARDI,BIC 0.946* 0.991 1.037 1.004 0.968 0.801*** 0.807*** 0.887** 0.833*** 0.784***
ARDI,AIC 0.959* 0.968 1.017 0.998 0.943 0.840*** 0.803*** 0.844** 0.798** 0.768***
ARDI,POOS-CV 0.994 1.015 0.984 0.968 0.966 0.896*** 0.698*** 0.773*** 0.777*** 0.812***
ARDI,K-fold 0.940* 0.977 1.013 0.982 0.912* 0.787*** 0.812*** 0.841** 0.808** 0.762***
RRARDI,POOS-CV 0.994 1.032 0.987 0.973 0.948 0.908** 0.725*** 0.793*** 0.778*** 0.861**
RRARDI,K-fold 0.943** 0.977 0.986 0.990 0.921 0.847** 0.718*** 0.794*** 0.796*** 0.702***
RFARDI,POOS-CV 0.948** 0.991 0.951 0.919* 0.899** 0.865** 0.802*** 0.837*** 0.782*** 0.819***
RFARDI,K-fold 0.953** 1.016 0.957 0.924* 0.890** 0.889*** 0.864* 0.846*** 0.803*** 0.767***
KRR-ARDI,POOS-CV 1.038 1.016 0.921* 0.934 0.959 1.152* 1.021 0.847*** 0.814*** 0.886**
KRR,ARDI,K-fold 0.971 0.983 0.923* 0.914* 0.959 1.006 0.983 0.827*** 0.793*** 0.848***
(B1, α = α̂),POOS-CV 1.014 1.001 1.023 0.996 0.946 1.067 0.956 0.979 0.916** 0.855***
(B1, α = α̂),K-fold 0.957** 0.952 1.029 1.046 1.051 0.908** 0.856*** 0.874** 0.816*** 0.890*
(B1, α = 1),POOS-CV 0.971* 1.013 1.067* 1.020 0.955 0.991 0.889 1.01 0.935* 0.880**
(B1, α = 1),K-fold 0.957** 0.952 1.029 1.046 1.051 0.908** 0.856*** 0.874** 0.816*** 0.890*
(B1, α = 0),POOS-CV 1.047 1.112** 1.021 1.051 0.969 1.134* 1.182** 0.997 1.005 0.821***
(B1, α = 0),K-fold 1.025 1.056* 1.065 1.082 1.052 1.032 0.974 0.923 0.929 0.847***
(B2, α = α̂),POOS-CV 1.061 0.968 0.975 0.999 0.923** 1.237 0.810*** 0.889*** 0.904** 0.869**
(B2, α = α̂),K-fold 1.098 0.949 0.993 0.974 0.970 1.332 0.801*** 0.896** 0.851*** 0.756***
(B2, α = 1),POOS-CV 0.973 1.045 1.012 1.023 0.920** 1.034 1.033 0.997 0.957 0.839***
(B2, α = 1),K-fold 0.956** 1.022 1.032 1.025 0.990 0.961 0.935 0.959 0.913** 0.809***
(B2, α = 0),POOS-CV 0.933*** 0.955 0.972 0.937 0.913** 0.902** 0.781*** 0.904** 0.840*** 0.807***
(B2, α = 0),K-fold 0.937** 0.927** 0.961 0.927 0.959 0.871*** 0.787*** 0.858*** 0.775*** 0.776***
(B3, α = α̂),POOS-CV 0.980 0.994 1.016 1.05 0.952 1.032 0.95 0.957 0.97 0.861***
(B3, α = α̂),K-fold 0.973** 0.946** 1.042 0.948 0.997 1.016 0.916** 0.938 0.825*** 0.827***
(B3, α = 1),POOS-CV 0.969* 1.053 1.053 1.080* 0.956 0.972 0.946 1.002 1.014 0.906**
(B3, α = 1),K-fold 0.946*** 0.913** 0.994 0.976 1.01 0.924** 0.829*** 0.888* 0.803*** 0.822***
(B3, α = 0),POOS-CV 0.976 1.049 1.04 1.063 0.973 1.034 1.061 0.997 0.932* 0.846***
(B3, α = 0),K-fold 0.981 1.01 1.03 1.011 0.985 1.002 0.997 0.95 0.826*** 0.787***
SVR-ARDI,Lin,POOS-CV 0.989 1.165** 1.216** 1.193** 1.034 0.915* 0.900** 1.006 0.862** 0.778***
SVR-ARDI,Lin,K-fold 1.109** 1.367*** 1.024 1.038 1.028 1.129 1.133 0.776*** 0.808*** 0.726***
SVR-ARDI,RBF,POOS-CV 0.968* 0.986 1.100* 0.960 0.936* 0.958 0.900* 0.873** 0.760*** 0.820***
SVR-ARDI,RBF,K-fold 0.951* 0.946 0.993 0.952 1.001 0.860** 0.793*** 0.806*** 0.777*** 0.791***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.2: Unemployment rate : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 1.9578 1.1905 1.0169 1.0058 0.869 2.5318 2.0826 1.8823 1.7276 1.0562
AR,AIC 0.991 0.984 0.988 0.993*** 1.000 0.958 0.960** 0.984* 1.000 1.000
AR,POOS-CV 0.988 0.999 1.002 0.995 0.987 0.978 0.980** 0.996 0.998 1.04
AR,K-fold 0.994 0.984 0.989 0.986*** 0.991 0.956* 0.960** 0.998 1.000 1.038
RRAR,POOS-CV 0.989 1.000 1.002 0.990* 0.972** 0.984 0.988* 0.997 0.991* 1.001
RRAR,K-fold 0.988 0.982* 0.983* 0.989** 0.999 0.963 0.971* 0.992 0.995 1.033
RFAR,POOS-CV 0.983 0.995 0.968 1.000 1.002 0.989 1.003 0.929** 0.951** 0.994
RFAR,K-fold 0.98 0.985 0.979 1.006 0.99 0.985 0.972 0.896*** 0.943* 0.983
KRR-AR,POOS-CV 0.99 1.04 0.882*** 0.889*** 0.876*** 1.04 1.116 0.843*** 0.883*** 0.904**
KRR,AR,K-fold 0.940*** 0.910*** 0.878*** 0.869*** 0.852*** 0.847*** 0.838*** 0.788*** 0.798*** 0.908**
SVR-AR,Lin,POOS-CV 1.028 1.133** 1.130*** 1.108*** 1.174*** 1.065* 1.274*** 1.137*** 1.094*** 1.185***
SVR-AR,Lin,K-fold 0.993 1.061** 1.068*** 1.045*** 1.013*** 1.062** 1.108*** 1.032** 1.011 1.018***
SVR-AR,RBF,POOS-CV 1.019 1.094* 1.029 1.076** 1.01 1.097** 1.247** 1.047* 1.034*** 1.112*
SVR-AR,RBF,K-fold 0.997 1.011 1.078** 1.053* 0.993 1.026 1.009 1.058 1.023 0.985
Data-rich (H+

t ) models
ARDI,BIC 0.937** 0.893** 0.938 0.939 0.875*** 0.690*** 0.715*** 0.798*** 0.782*** 0.783***
ARDI,AIC 0.933** 0.878*** 0.928 0.953 0.893** 0.720*** 0.719*** 0.798*** 0.799*** 0.787***
ARDI,POOS-CV 0.924*** 0.913* 0.957 0.925* 0.856*** 0.686*** 0.676*** 0.840** 0.737*** 0.777***
ARDI,K-fold 0.935** 0.895** 0.929 0.93 0.915** 0.696*** 0.697*** 0.801*** 0.807*** 0.787***
RRARDI,POOS-CV 0.924*** 0.896* 0.968 0.946 0.870*** 0.711*** 0.635*** 0.849** 0.768*** 0.767***
RRARDI,K-fold 0.940** 0.899** 0.946 0.931* 0.908** 0.755** 0.681*** 0.803*** 0.790*** 0.753***
RFARDI,POOS-CV 0.934*** 0.945 0.857*** 0.842*** 0.763*** 0.724*** 0.769*** 0.718*** 0.734*** 0.722***
RFARDI,K-fold 0.932*** 0.897*** 0.873** 0.854*** 0.785*** 0.749*** 0.742*** 0.731*** 0.720*** 0.710***
KRR-ARDI,POOS-CV 0.959* 0.961 0.839*** 0.813*** 0.804*** 1.01 1.017 0.748*** 0.732*** 0.828***
KRR,ARDI,K-fold 0.938*** 0.907** 0.827*** 0.817*** 0.795*** 0.925 0.933 0.785*** 0.729*** 0.814***
(B1.α = α̂),POOS-CV 0.979 0.945 0.976 0.953 0.913*** 1.049 0.899* 0.933 0.910* 0.871***
(B1.α = α̂),K-fold 0.971 0.925** 0.867*** 0.919* 0.925* 0.787*** 0.848*** 0.840*** 0.839*** 0.829**
(B1.α = 1),POOS-CV 0.947*** 0.937* 0.962 0.922** 0.889*** 0.857** 0.789*** 0.888** 0.860*** 0.915*
(B1.α = 1),K-fold 0.971 0.925** 0.867*** 0.919* 0.925* 0.787*** 0.848*** 0.840*** 0.839*** 0.829**
(B1.α = 0),POOS-CV 1.238** 1.319** 1.021 1.07 1.01 1.393* 1.476* 0.979 0.972 0.764***
(B1.α = 0),K-fold 1.246** 0.994 1.062* 1.077* 1.018 1.322 0.963 0.991 0.933 0.802***
(B2, α = α̂),POOS-CV 0.907*** 0.918** 0.926* 0.936* 0.911** 0.756*** 0.767*** 0.869** 0.832*** 0.808***
(B2, α = α̂),K-fold 0.917*** 0.900*** 0.915* 0.931 0.974 0.728*** 0.777*** 0.829*** 0.738*** 0.713***
(B2, α = 1),POOS-CV 0.914*** 0.955 1.057 1.011 0.883*** 0.810*** 0.830*** 1.029 0.952 0.795***
(B2, α = 1),K-fold 0.97 0.901** 0.991 0.983 0.918** 0.837** 0.754*** 0.903 0.833*** 0.753***
(B2, α = 0),POOS-CV 0.908*** 0.893*** 0.991 0.922* 0.889*** 0.781** 0.769*** 0.915 0.786*** 0.788***
(B2, α = 0),K-fold 0.949** 0.898*** 0.908** 0.906** 0.967 0.875 0.777*** 0.817*** 0.756*** 0.741***
(B3, α = α̂),POOS-CV 0.949** 0.888*** 0.952 0.943 0.874*** 0.933 0.843*** 0.886** 0.829*** 0.827***
(B3, α = α̂),K-fold 0.937** 0.910*** 0.882** 0.923* 0.921** 0.836* 0.831*** 0.868*** 0.839*** 0.795***
(B3, α = 1),POOS-CV 0.929*** 0.921** 0.958 0.983 0.884*** 0.812** 0.771*** 0.864** 0.851** 0.845***
(B3, α = 1),K-fold 0.968 0.941* 0.861*** 0.907* 0.943 0.808** 0.806*** 0.832*** 0.873** 0.736***
(B3, α = 0),POOS-CV 0.948** 0.974 0.994 1.066 0.946* 0.979 1.03 0.956 0.877** 0.799***
(B3, α = 0),K-fold 0.969 0.918*** 0.983 0.998 0.945* 0.963 0.901* 0.957 0.912* 0.730***
SVR-ARDI,Lin,POOS-CV 0.960* 1.041 1.072 0.929 1.028 0.872 0.858* 0.941 0.809*** 0.779***
SVR-ARDI,Lin,K-fold 0.959* 0.873*** 0.838*** 0.926 0.946 0.801** 0.791*** 0.756*** 0.800** 0.872*
SVR-ARDI,RBF,POOS-CV 0.966 0.995 1.016 0.957 0.872*** 0.938 0.859* 0.937 0.786*** 0.777**
SVR-ARDI,RBF,K-fold 0.943** 0.958 0.871** 0.911* 0.930* 0.769*** 0.796*** 0.770*** 0.763*** 0.787***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.3: Term spread : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 6.4792 12.8246 16.3575 20.0828 22.2091 13.3702 23.16 23.5697 31.597 23.0842
AR,AIC 1.002* 0.998 1.053* 1.034** 1.041** 1.002 1.001 1.034 0.993 0.972
AR,POOS-CV 1.055* 1.139* 1.000 0.969 1.040** 1.041 1.017 0.895* 0.857* 0.972
AR,K-fold 1.001 1.000 1.003 0.979 1.038* 1.002 0.998 0.911 0.890* 0.983
RRAR,POOS-CV 1.055** 1.142* 1.004 0.998 1.016 1.036 1.014 0.899 0.966 0.945**
RRAR,K-fold 1.044* 0.992 1.027 0.96 1.015 1.024 0.982 0.959 0.795** 0.957*
RFAR,POOS-CV 0.997 0.886 1.125*** 1.019 1.107** 0.906 0.816 1.039 0.747** 1.077**
RFAR,K-fold 0.991 0.941 1.136*** 1.011 1.084** 0.909 0.823 1.023 0.764* 1.038
KRR-AR,POOS-CV 1.223** 0.881 0.949 0.888** 0.945* 1.083 0.702 0.788*** 0.758*** 0.948
KRR,AR,K-fold 1.141 0.983 1.098** 0.999 1.048 0.999 0.737 0.833* 0.663** 0.924
SVR-AR,Lin,POOS-CV 1.158** 1.326*** 1.071* 1.045 1.045 1.111* 1.072 0.894* 0.828* 0.967
SVR-AR,Lin,K-fold 1.191** 1.056 1.018 0.963 0.993 1.061 1.009 0.886** 0.845** 0.916***
SVR-AR,RBF,POOS-CV 1.006 1.039 1.050* 0.951 0.969 0.964 0.902 0.876* 0.761** 0.864***
SVR-AR,RBF,K-fold 0.985 0.911 1.038 0.946 0.933** 0.990 0.737 0.851** 0.747* 0.968
Data-rich (H+

t ) models
ARDI,BIC 0.953 0.971 0.979 0.93 0.892*** 0.921 0.9 0.790*** 0.633*** 1.049
ARDI,AIC 0.970 0.956 1.019 0.944 0.917** 0.929 0.867 0.814*** 0.647*** 1.076
ARDI,POOS-CV 0.954 1.015 1.067 0.991 0.915** 0.912 0.92 0.958 0.769** 1.087
ARDI,K-fold 0.991 1.026 1.001 0.928 0.939 0.958 0.967 0.812*** 0.662*** 1.041
RRARDI,POOS-CV 0.936 0.994 1.078 0.991 0.964 0.896 0.850 0.952 0.784** 1.092
RRARDI,K-fold 1.015 0.992 1.018 0.934 0.981 0.978 0.899 0.881* 0.635*** 1.163*
RFARDI,POOS-CV 0.988 0.830* 0.957 0.873** 0.921** 0.804 0.691 0.785*** 0.606*** 0.985
RFARDI,K-fold 1.010 0.883 0.997 0.909 0.935** 0.808 0.778 0.827** 0.626*** 0.97
KRR-ARDI,POOS-CV 1.355** 0.898 0.993 0.856** 0.884*** 0.861 0.682* 0.772*** 0.621** 0.905*
KRR,ARDI,K-fold 1.382*** 0.96 0.974 0.827** 0.862*** 0.858 0.684* 0.754*** 0.569*** 0.912*
(B1, α = α̂),POOS-CV 1.114 1.06 1.126*** 1.021 0.866*** 1.009 0.981 1.02 0.701** 1.012
(B1, α = α̂),K-fold 1.089 1.149** 1.199** 1.106* 0.969 1.001 1.041 0.885 0.767** 0.941
(B1, α = 1),POOS-CV 1.125* 1.115 1.172*** 1.072 0.844*** 1.071 1.006 1.033 0.833 0.96
(B1, α = 1),K-fold 1.089 1.149** 1.199** 1.106* 0.969 1.001 1.041 0.885 0.767** 0.941
(B1, α = 0),POOS-CV 1.173** 1.312** 1.176*** 1.088 0.978 1.089 1.065 0.981 0.799 0.966
(B1, α = 0),K-fold 1.163* 1.059 1.069 0.929 0.921** 1.041 0.869 0.810** 0.729** 0.880*
(B2, α = α̂),POOS-CV 1.025 0.993 1.101** 1.028 0.897*** 0.918 0.908 1.02 0.651*** 0.989
(B2, α = α̂),K-fold 0.976 0.954 1.098* 1.059 0.935* 0.931 0.875 0.938 0.779* 0.952
(B2, α = 1),POOS-CV 1.062 0.968 1.125** 1.049 0.926*** 0.897 0.855 1.058 0.79 1.001
(B2, α = 1),K-fold 0.980 0.938 1.130** 1.01 0.950* 0.948 0.858 0.976 0.679** 1.001
(B2, α = 0),POOS-CV 1.118* 1.082 1.097** 1.008 0.901*** 1.004 0.919 1.008 0.669*** 1.016
(B2, α = 0),K-fold 1.102 0.988 1.047 1.041 0.919** 0.985 0.909 0.870* 0.757* 0.986
(B3, α = α̂),POOS-CV 0.971 0.964 1.089** 1.076 0.933* 0.887 0.837 0.908 0.783* 0.904**
(B3, α = α̂),K-fold 0.968 0.944 1.009 0.999 0.898*** 0.895 0.872 0.883** 0.744** 0.907***
(B3, α = 1),POOS-CV 1.006 1.066 1.059* 1.039 0.896*** 0.894 1.131 0.974 0.764* 0.987
(B3, α = 1),K-fold 0.994 0.924 1.037 0.96 0.975 0.934 0.852 0.834** 0.712** 1.01
(B3, α = 0),POOS-CV 1.181* 0.961 1.104** 1.056 0.937** 1.215 0.901 1.013 0.825 0.919*
(B3, α = 0),K-fold 0.999 0.953 1.036 0.94 0.97 0.897 0.845 0.923 0.735** 0.925**
SVR-ARDI,Lin,POOS-CV 1.062 0.967 1.164** 1.113* 1.065 1.016 0.762* 1.117 0.714** 1.097
SVR-ARDI,Lin,K-fold 0.990 0.98 1.011 0.922 0.909** 0.935 0.885 0.825** 0.667** 0.994
SVR-ARDI,RBF,POOS-CV 0.972 0.937 1.069 1.039 1.068 0.875 0.741 0.796*** 0.707*** 1.204*
SVR-ARDI,RBF,K-fold 1.018 0.938 1.123 0.914* 0.882*** 0.931 0.781 0.858** 0.778** 0.858**

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.4: CPI Inflation : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.0312 0.0257 0.0194 0.0187 0.0188 0.0556 0.0484 0.032 0.0277 0.0221
AR,AIC 0.969*** 0.984 0.976* 0.988 0.995 1.000 0.970** 0.999 0.992 1.005
AR,POOS-CV 0.966** 0.988 0.997 0.992 1.009 0.961** 0.981 0.995 0.978 1.003
AR,K-fold 0.972** 0.976** 0.975* 0.988 0.987 1.002 0.965*** 0.998 0.992 1.005
RRAR,POOS-CV 0.969** 0.984 0.99 0.993 1.006 0.961** 0.982 0.995 0.963* 0.998
RRAR,K-fold 0.964*** 0.979** 0.970* 0.980* 0.989 0.989 0.973** 0.996 0.992 0.997
RFAR,POOS-CV 0.983 0.944* 0.909* 0.930 1.022 1.018 0.998 1.063 1.047 0.998
RFAR,K-fold 0.975 0.927** 0.909* 0.956 0.998 1.032 0.972 1.065 1.103 1.019
KRR-AR,POOS-CV 0.972 0.905** 0.872** 0.872** 0.907** 1.023 0.930** 0.927 0.91 0.852*
KRR,AR,K-fold 0.931*** 0.888*** 0.836** 0.827*** 0.942 0.965 0.920** 0.92 0.915 0.975
SVR-AR,Lin,POOS-CV 1.119** 1.291** 1.210*** 1.438*** 1.417*** 1.116 1.196** 1.204** 1.055 1.613***
SVR-AR,Lin,K-fold 1.239*** 1.369** 1.518*** 1.606*** 1.411*** 1.159* 1.326* 1.459** 1.501* 1.016
SVR-AR,RBF,POOS-CV 0.988 1.004 1.086* 1.068** 1.127** 0.999 1.004 0.969 1.091** 1.501***
SVR-AR,RBF,K-fold 0.99 1.025 1.025 1.003 1.370*** 0.965 0.979 0.996 0.896** 1.553**
Data-rich (H+

t ) models
ARDI,BIC 0.96 0.973 1.024 0.895* 0.880* 0.919* 0.906* 0.779* 0.755** 0.713**
ARDI,AIC 0.954 0.990 1.034 0.895 0.884 0.925 0.898 0.778* 0.736** 0.676**
ARDI,POOS-CV 0.950 0.984 1.017 0.910 0.916 0.916* 0.913* 0.832** 0.781*** 0.669**
ARDI,K-fold 0.941* 0.990 1.028 0.873* 0.858* 0.891** 0.900 0.784* 0.709*** 0.635**
RRARDI,POOS-CV 0.943* 0.975 1.001 0.917 0.914 0.905* 0.912* 0.828** 0.780*** 0.666**
RRARDI,K-fold 0.943** 0.983 1.022 0.875* 0.882 0.927* 0.901 0.744** 0.664*** 0.613**
RFARDI,POOS-CV 0.947** 0.908*** 0.853** 0.914* 0.979 0.976 0.939** 0.988 1.051 0.964
RFARDI,K-fold 0.936*** 0.907*** 0.854** 0.868** 0.909* 0.962 0.933** 0.979 0.93 1.003
KRR-ARDI,POOS-CV 1.006 1.043 0.959 0.972 1.067 1.046 1.093 0.952 0.948 0.946
KRR,ARDI,K-fold 0.985 0.999 0.983 0.977 0.938 0.998 0.99 1.023 1.022 0.986
(B1, α = α̂),POOS-CV 0.918** 0.916* 0.976 0.96 1.026 0.803*** 0.900* 0.8 0.848 0.974
(B1, α = α̂),K-fold 0.908** 0.921* 1.012 1.056 1.092* 0.823** 0.873* 0.774 0.836 1.069
(B1, α = 1),POOS-CV 0.960 0.908** 1.11 1.03 1.076 0.813** 0.889* 0.794 0.825 0.989
(B1, α = 1),K-fold 0.908** 0.921* 1.012 1.056 1.092* 0.823** 0.873* 0.774 0.836 1.069
(B1, α = 0),POOS-CV 0.971 1.035 1.114* 1.048 1.263** 0.848** 0.906 0.935 0.881 0.99
(B1, α = 0),K-fold 0.945* 1.057 1.246** 1.289** 1.260*** 0.850*** 0.939 0.954 0.944 1.095
(B2, α = α̂),POOS-CV 0.923** 0.956** 0.940 0.934 0.945 0.871* 0.959 0.803* 0.802* 0.822*
(B2, α = α̂),K-fold 0.921** 0.963* 0.995 0.956 1.037 0.868* 0.957* 0.817* 0.778** 0.861
(B2, α = 1),POOS-CV 0.942 0.959 1.158* 1.174** 1.151** 0.877 0.927 0.799 0.907 1.087
(B2, α = 1),K-fold 0.922** 0.970 1.066 0.995 1.168* 0.879 0.929 0.853 0.816* 1.009
(B2, α = 0),POOS-CV 0.921** 0.940 1.079 0.959 1.071 0.857* 0.881 1.129 0.883 0.851
(B2, α = 0),K-fold 0.919** 0.929* 0.997 1.011 1.212** 0.865* 0.883 0.825 0.961 0.853
(B3, α = α̂),POOS-CV 0.935* 0.941*** 0.961 0.849** 0.901* 0.889* 0.947** 0.791** 0.785** 0.808**
(B3, α = α̂),K-fold 0.938* 0.952** 0.937 0.915 0.952 0.891* 0.958* 0.801* 0.784** 0.91
(B3, α = 1),POOS-CV 0.933* 0.960 1.076 1.000 1.017 0.856* 0.917* 0.755* 0.769** 0.86
(B3, α = 1),K-fold 0.943 0.978 1.006 0.894 1.002 0.889 0.946 0.805 0.806* 0.879
(B3, α = 0),POOS-CV 0.946* 0.939** 0.896* 0.871** 1.022 0.894* 0.931** 0.865 0.875 0.896
(B3, α = 0),K-fold 0.921*** 0.975 0.926 0.920 1.106 0.877*** 0.936 0.839 0.892 1.147
SVR-ARDI,Lin,POOS-CV 1.148*** 1.202* 1.251*** 1.209*** 1.219** 1.068 1.053 0.969 0.969 0.943
SVR-ARDI,Lin,K-fold 1.115*** 1.390** 1.197** 1.114 1.177* 1.058 1.295* 0.944 0.954 1.036
SVR-ARDI,RBF,POOS-CV 0.963 1.031 1.002 0.962 0.951 0.922 0.915 0.848 0.861 0.996
SVR-ARDI,RBF,K-fold 0.951** 1.002 0.997 0.945 0.797*** 0.927* 0.964 0.816** 0.826** 0.659**

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.5: Housing starts : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=3 h=9 h=12 h=24 h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.9040 0.4142 0.2499 0.2198 0.1671 1.2526 0.6658 0.4897 0.4158 0.2954
AR,AIC 0.998 1.019 1.000 1.000 1.000 1.01 0.965* 1.000 1.000 1.000
AR,POOS-CV 1.001 1.012 1.019* 1.01 1.036** 1.015 0.936** 1.011* 1.013 1.057**
AR,K-fold 0.993 1.017 1.001 1.000 1.02 1.01 0.951** 1.000 1.000 1.036
RRAR,POOS-CV 1.007 1.007 1.008 1.009 1.031** 1.027* 0.939** 1.001 1.013 1.050**
RRAR,K-fold 0.999 1.014 0.998 0.998 1.024* 1.013 0.941** 1.000** 0.999 1.042**
RFAR,POOS-CV 1.030*** 1.026* 1.028* 1.045** 1.018 1.023 0.941* 0.992 1.048* 1.013
RFAR,K-fold 1.017* 1.022 1.007 1.031** 1.008 1.02 0.942* 0.990 1.026 1.01
KRR-AR,POOS-CV 0.995 0.999 0.969* 1.044* 1.037* 0.990 0.972 0.971 1.050** 0.993
KRR,AR,K-fold 0.977* 0.975 0.957** 0.989 1.001 0.985 0.976 1.01 1.006 1.004
SVR-AR,Lin,POOS-CV 1.032*** 0.997 1.044*** 1.064*** 1.223** 1.024* 0.962* 0.986* 0.984 0.957***
SVR-AR,Lin,K-fold 1.036*** 1.031 1.002 1.006 1.002 1.013 0.976 1.002 1.009 1.004
SVR-AR,RBF,POOS-CV 1.008 1.047** 1.023 1.035*** 1.060*** 1.014 0.981 0.947*** 1.015 1.017
SVR-AR,RBF,K-fold 1.009 1.011 1.012** 1.020*** 1.034** 1.021* 0.969* 1.010*** 1.017** 1.001
Data-rich (H+

t ) models
ARDI,BIC 0.973* 0.989 1.031 1.051 1.05 0.946 1.139 1.048 0.988 0.944
ARDI,AIC 0.992 0.995 1.018 1.06 1.078 1.000 1.113 1.025 1.025 0.96
ARDI,POOS-CV 1.01 1.007 1.080 1.027 0.998 1.023 1.128 1.054 1.015 1.021
ARDI,K-fold 0.992 0.984 1.026 1.061 1.094 1.011 1.093 1.027 1.027 0.958
RRARDI,POOS-CV 0.998 1.007 1.043 0.996 1.082 1.008 1.119 1.041 0.991 1.022
RRARDI,K-fold 0.998 0.988 1.051 1.064 1.089 1.017 1.118 1.033 0.998 0.941
RFARDI,POOS-CV 0.997 0.944** 0.930** 0.920* 0.899** 0.982 0.971 0.965 0.957 0.972
RFARDI,K-fold 0.994 0.962 0.939* 0.914* 0.838*** 0.993 0.985 0.986 0.943 0.902*
KRR-ARDI,POOS-CV 0.980 0.943*** 0.915** 0.942** 0.884*** 0.941* 0.952* 0.949 0.964** 0.986
KRR,ARDI,K-fold 0.982** 0.949** 0.928 0.933 0.889** 0.973 0.973 1.003 1.022 0.994
(B1.α = α̂),POOS-CV 1.006 1.000 1.063 1.016 0.895** 1.023 1.099 0.985 1.026 1.022
(B1.α = α̂),K-fold 1.040* 1.095** 1.250** 1.335** 1.151* 1.096* 1.152** 1.021 1.127 0.890
(B1.α = 1),POOS-CV 1.032** 1.039 1.155 1.045 0.949 1.013 1.063 0.961 1.025 1.062
(B1.α = 1),K-fold 1.040* 1.095** 1.250** 1.335** 1.151* 1.096* 1.152** 1.021 1.127 0.890
(B1.α = 0),POOS-CV 0.982 0.977 1.084 1.337** 0.959 0.999 1.017 1.014 1.152** 0.964
(B1.α = 0),K-fold 0.982 1.006 1.137* 1.158** 1.007 0.994 1.03 1.017 1.067 0.809**
(B2.α = α̂),POOS-CV 1.044 0.992 0.975 0.988 0.969 1.177 1.126* 1.034 0.989 0.972
(B2.α = α̂),K-fold 0.988 1.003 1.069 1.193** 1.069 1.11 1.188* 1.085 1.133* 0.917
(B2.α = 1),POOS-CV 1.001 1.000 0.967 1.02 0.940* 0.961 1.047 0.943 0.985 1.006
(B2.α = 1),K-fold 0.989 1.095 1.245** 1.203* 1.093 1.007 1.322*** 1.1 0.919 0.848**
(B2.α = 0),POOS-CV 1.091* 0.949 0.987 0.971 0.939 1.255 1.027 0.992 0.956 0.994
(B2.α = 0),K-fold 1.066 1.068 1.19 1.044 1.064 1.248 1.332** 1.057 0.896*** 0.917
(B3, α = α̂),POOS-CV 1.009 0.951* 0.935 0.99 0.891** 1.028 1.019 0.958 0.963 0.987
(B3, α = α̂),K-fold 0.998 0.977 1.007 1.055 1.044 1.019 1.115 1.017 0.979 0.882*
(B3, α = 1),POOS-CV 0.997 0.975 1.024 0.996 0.928* 0.976 1.001 1.021 0.940 1.001
(B3, α = 1),K-fold 1.013 1.040 1.071 1.106 1.145 1.042 1.219* 1.036 0.992 1.009
(B3, α = 0),POOS-CV 1.022* 0.951* 0.962 0.944 0.932* 1.022 0.981 0.930 0.915** 1.001
(B3, α = 0),K-fold 1.030** 1.003 1.005 1.011 1.029 0.986 1.114 0.998 0.955 0.934
SVR-ARDI,Lin,POOS-CV 0.998 1.078* 1.154* 1.137* 1.142 1.047 1.111 0.989 1.009 1.111
SVR-ARDI,Lin,K-fold 0.992 0.971 1.017 1.038 1.11 1.007 1.021 0.988 0.937 0.959
SVR-ARDI,RBF,POOS-CV 0.991 1.004 1.010 1.044 1.034 0.987 1.095 0.981 0.969 1.096
SVR-ARDI,RBF,K-fold 1.003 0.998 1.045 1.078 1.162* 1.022 1.081 1.03 0.984 1.026

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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C.2 Results with Absolute Loss

In this section we present results for a different out-of-sample loss function that is of-

ten used in the literature : the absolute loss. Following Koenker and Machado (1999),

we generate the pseudo-R1 in order to perform regressions (3.11) and (3.12) : R1
t,h,v,m ≡

1 − |et,h,v,m |
1
T

∑T
t=1 |yv,t+h−ȳv,h |

. Hence, the figure included in this section are exact replication of those

included in the main text except that the target variable of all the regressions has been

changed.

The main message here is that results obtained using the squared loss are very consistent

with what one would obtain using the absolute loss. For instance, we clearly see by com-

paring figures C.2 and 3.2 that more data and nonlinearities usefulness increase linearly in

h. CV is flat around the 0 line. Alternative shrinkage and loss function both are negative

and follow a boomerang shape (not as bad for short and very long horizons, but quite bad

in between).

The pertinence of nonlinearities and the impertinence of alternative shrinkage follow very

similar behavior to what is obtained in the main body of this paper. However, for nonli-

nearities, the data-poor advantages are not robust to the choice of MSPE vs MAPE. Fortu-

nately, besides that, the figures are all very much alike.

Results for the alternative in-sample loss function also seem to be independent of the

proposed choices of out-of-sample loss function. Only for hyperparameters selection we

do get slightly different results : CV-KF is now sometimes worse than BIC in a statistically

significant way. However, the negative effect is again much stronger for POOS CV. CV-KF

still outperforms any other model selection criteria on recessions.
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Figure C.1: Distribution of ML Treatment Effects, Absolute Loss

Note : This figure plots the distribution of α̇(h,v)
F from equation (3.11) done by (h, v) subsets. That is, we are looking at the average

partial effect on the pseudo-OOS R1 from augmenting the model with ML features, keeping everything else fixed. X is making the
switch from data-poor to data-rich. Finally, variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color
block, the horizon increases from h = 1 to h = 24 as we are going down. As an example, we clearly see that the partial effect of X on
the R1 of INF increases drastically with the forecasted horizon h. SEs are HAC. These are the 95% confidence bands.

Tableau C.6: CV comparison

(1) (2) (3) (4) (5)
All Data-rich Data-poor Data-rich Data-poor

CV-KF 0.0114 -0.0233 0.0461 -0.221 -0.109
(0.375) (0.340) (0.181) (0.364) (0.193)

CV-POOS -0.765∗ -0.762∗ -0.768∗∗∗ -0.700 -0.859∗∗∗
(0.375) (0.340) (0.181) (0.364) (0.193)

AIC -0.396 -0.516 -0.275 -0.507 -0.522∗∗
(0.375) (0.340) (0.181) (0.364) (0.193)

CV-KF * Recessions 1.609 1.264∗
(1.037) (0.552)

CV-POOS * Recessions -0.506 0.747
(1.037) (0.552)

AIC * Recessions -0.0760 2.007∗∗∗
(1.037) (0.552)

Observations 91200 45600 45600 45600 45600
Note : Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure C.2: Distribution of average ML Treatment Effects, Absolute Loss

Note : This figure plots the distribution of α̇(v)
F and α̇(h)

F from equation (3.11) done by h and v subsets. That is, we are looking at the
average partial effect on the pseudo-OOS R1 from augmenting the model with ML features, keeping everything else fixed. X is making
the switch from data-poor to data-rich. However, in this graph, v−specific heterogeneity and h−specific heterogeneity have been
integrated out in turns. SEs are HAC. These are the 95% confidence bands.
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Figure C.3: Contribution of Non-Linearities, by variables, Absolute Loss

Note : This compares the two NL models averaged over all horizons. The unit of the x-axis are improvements in OOS R1 over the
basis model. SEs are HAC. These are the 95% confidence bands.
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Figure C.4: Contribution of Non-Linearities, by horizons, Absolute Loss

Note : This compares the two NL models averaged over all variables. The unit of the x-axis are improvements in OOS R1 over the
basis model. SEs are HAC. These are the 95% confidence bands.

Figure C.5: Alternative shrinkage wrt ARDI, Absolute Loss

Note : This compares models of Section 3.3.2 averaged over all variables and horizons. The unit of the x-axis are improvements in
OOS R1 over the basis model. The base models are ARDIs specified with POOS-CV and KF-CV respectively. SEs are HAC. These
are the 95% confidence bands.
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Figure C.6: CV-KF performance relative to CV-POOS, Data poor vs rich, Absolute Loss

Note : This compares the two CVs procedure averaged over all the models that use them. The unit of the x-axis are improvements in
OOS R1 over the basis model. SEs are HAC. These are the 95% confidence bands.
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Figure C.7: CV-KF performance relative to CV-POOS, Exp. vs Rec., Absolute Loss

Note : This compares the two CVs procedure averaged over all the models that use them. The unit of the x-axis are improvements in
OOS R1 over the basis model. SEs are HAC. These are the 95% confidence bands.
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Figure C.8: Linear SVR Relative Performance to ARDI, Absolute Loss

Note : This graph display the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in both
the data-poor and data-rich environments. The unit of the x-axis are improvements in OOS R1 over the basis model. SEs are HAC.
These are the 95% confidence bands.
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Figure C.9: Non-Linear SVR Relative Performance to KRR

Note : This graph display the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in both
recession and expansion periods. The unit of the x-axis are improvements in OOS R1 over the basis model. SEs are HAC. These are
the 95% confidence bands.
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C.3 Treatment Effects : Data poor vs Data rich

Figure C.10: Distribution of ML Treatment Effects, Data poor

Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets. The subsample under consideration here is

data-poor models. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are INDPRO, UNRATE,
SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are
HAC. These are the 95% confidence bands.
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Figure C.11: Distribution of ML Treatment Effects, Data rich

Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets. The subsample under consideration here is

data-rich models. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are INDPRO, UNRATE,
SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are
HAC. These are the 95% confidence bands.
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C.4 Treatment Effects by subsample

Figure C.12: Distribution of ML Treatment Effects, Recessions

Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets. The subsample under consideration here are

recessions. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are INDPRO, UNRATE, SPREAD,
INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC.
These are the 95% confidence bands.
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Figure C.13: Distribution of ML Treatment Effects, Expansions

Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets. The subsample under consideration here are

expansions. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are INDPRO, UNRATE, SPREAD,
INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC.
These are the 95% confidence bands.

Figure C.14: Distribution of ML Treatment Effects, last 20 years

Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets. The subsample under consideration here are

the last 20 years. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are INDPRO, UNRATE,
SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are
HAC. These are the 95% confidence bands.
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C.5 Real-Time Data Analysis

We now turn to a real-time forecasting exercise using the vintages of FRED-MD avai-

lable from 1998M08 to 2017M12 as an additional robustness check. For some series the

publication lag can be larger than one month, and for those cases we replace missing ob-

servations at the forecasting origin date using the factor structure of all the series available

in each vintage (EM algorithm as in Stock and Watson (2002a)).

Due to our longest forecasting horizon (h = 24) we end up forecasting observations from

2001M9 to 2017M12. The results presented here should thus be compared to those for

the last 20 years as depicted in Figure C.14. We compute the forecasting errors using the

first release of the data but the results are robust to using the final release. The results

are presented in Figure C.15. By comparing with results in Figure C.14 we can see that

all treatment effects are comparable. For instance, the effect of nonlinearity is similar for

INDPRO, UNRATE and INF but weaker for HOUST.
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Figure C.15: Distribution of ML Treatment Effects, real-time data
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Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets using real-time data vintages. The

subsample under consideration here is 2001M09 - 2017M12. The unit of the x-axis are improvements in OOS R2 over the basis model.
Variables are INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1 to
h = 24 as we are going down. SEs are HAC. These are the 95% confidence bands.
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C.6 Rolling Window Analysis

We have performed the same analysis as described in Section 3.4 but this time with the

rolling window approach. The size of the window is 240 and pseudo-out-of-sample per-

iod is the same as before. Figure C.16 resumes the main results. The pseudo-R2s from

both expanding and rolling window specifications are pooled when estimating the equa-

tion 3.11. An additional dummy variable is added for the type of the window (the bottom

line labelled W). Treatment effects are similar to those depicted in Figure 3.2 except for

the hyperparameter tuning feature. Indeed, using cross validation techniques positively im-

pact the predictive performance when rolling window is used. Interestingly, the expanding

window approach seems more appropriate for real activity targets, but not for inflation

forecasting. This is reasonable given large swings in inflation before it stabilizes since the

90s.
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Figure C.16: Distribution of ML Treatment Effects, rolling vs expanding
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Note : This figure plots the distribution of α̇(h,v)
F from equation 3.11 done by (h, v) subsets using pooled forecast errors from both

expanding and rolling window approaches. The unit of the x-axis are improvements in OOS R2 over the basis model. Variables are
INDPRO, UNRATE, SPREAD, INF and HOUST. Within a specific color block, the horizon increases from h = 1 to h = 24 as we are
going down. SEs are HAC. These are the 95% confidence bands.
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C.7 Results with Quarterly Data

In this section we present results for quarterly frequency using the dataset FRED-QD,

publicly available at the Federal Reserve of St-Louis’s web site. This is the quarterly com-

panion to FRED-MD monthly dataset used in the main part of paper. It contains 248 US

macroeconomic and financial aggregates observed from 1960Q1 to 2018Q4. The series

transformations to induce stationarity are the same as in Stock and Watson (2012). The

variables of interest are : real GDP, real personal consumption expenditures (CONS), real

gross private investment (INV), real disposable personal income (INC) and the PCE defla-

tor. All the targets are expressed in average growth rate over h periods as in equation (3.4).

Forecasting horizons are 1, 2, 3, 4 and 8 quarters.

The main message here is that results obtained using the quarterly data and predicting GDP

components are consistent with those on monthly variables. Tables C.7 - C.11 summarize

the overall predictive ability in terms of RMPSE relative to the reference AR,BIC model.

GDP and consumption growths are best predicted at short run by the standard Stock and

Watson (2002b) ARDI,BIC model, while random forests dominate at longer horizons.

Nonlinear models perform well for most horizons when predicting the disposable income

growth. Finally, kernel ridge regressions (both data-poor and data-rich) are the best options

to predict the PCE inflation.

Among ML treatments, shrinkage is the most important, followed by loss function and

nonlinearity. As in the monthly application, CV is the least relevant, while the data-rich

component remains very important. From figures C.17 and C.18, we see that : (i) the rich-

ness of predictors’ set is very helpful for most of the targets ; (ii) nonlinearity treatment

has positive and significant effects for investment, income and PCE deflator, while it is not

significant for GDP and CONS; (iii) the impertinence of alternative shrinkage follow very



161

similar behavior to what is obtained in the main body of this paper ; (iv) CV has in gene-

ral negative but small and often insignificant effect ; (v) SVR loss function decreases the

predictive performance as in the monthly case, especially for income growth and inflation.
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Tableau C.7: GDP : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=2 h=3 h=4 h=8 h=1 h=2 h=3 h=4 h=8
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.0752 0.0656 0.0619 0.0593 0.0521 0,1199 0,1347 0,1261 0,1285 0,1022
AR,AIC 1.004 0.994 0.999 1.000 1.000 1,034 0,995 1 1 1
AR,POOS-CV 0.984** 0.994 0.994 1.000 1.017 0.991 0,994 0,993 1 1,033
AR,K-fold 0.998 1.003 0.999 1,001 1.000 1,026 1,01 0,997 1,001 1
RRAR,POOS-CV 0.992 1.002 1.000 1,005 1.005 1,014 1 1,005 0,997 1,014
RRAR,K-fold 1.013 1.007 1.006 1,012 1.000 1.092* 1.010* 1.020*** 1,02 0.999***
RFAR,POOS-CV 1.185*** 1.104*** 1.165*** 1.129*** 1.061** 1.241** 1.077* 1.116** 1.070** 0.925***
RFAR,K-fold 1.082** 1.124*** 1.105** 1.121*** 1.064** 1.124* 1,085 1,021 1.089** 0,989
KRR-AR,POOS-CV 1,049 1,044 1,011 1.065* 0.993 1.103** 0,954 0.913* 0.943* 0.873***
KRR,AR,K-fold 1,044 1.033 1.051** 1,013 0.995 1.172*** 1,01 1,036 0,974 0.963***
SVR-AR,Lin,POOS-CV 1.161** 1.136** 1.129** 1.143** 1.045 1.233*** 1.106** 1.152*** 1.061** 1,071
SVR-AR,Lin,K-fold 1.082** 1.092** 1.054* 1.051** 0.986 1.222*** 1.110** 1.088** 1.054** 0.964***
SVR-AR,RBF,POOS-CV 1,015 1.036* 1.026 1,051 1.095** 1.038** 1,01 1.037* 0,991 1,016
SVR-AR,RBF,K-fold 1.043** 1.032* 1.029* 1,018 1.011* 1.157*** 1.032** 1.041** 0,986 1,002
Data-rich (H+

t ) models
ARDI,BIC 0.884 0.811** 0.824** 0.817** 1.002 0.829 0.649*** 0.732** 0.704*** 0.714***
ARDI,AIC 0.905 0.833* 0.844* 0.832* 0.989 0.931 0.652*** 0.741** 0.721*** 0.687***
ARDI,POOS-CV 0.913 0.861* 0.878 0.885 0.918 0.936 0.689** 0.742** 0.719*** 0.735***
ARDI,K-fold 0.978 0.881 0.871 0.815* 1.070 1,078 0.709** 0.767** 0.681*** 0.595***
RRARDI,POOS-CV 0.938 0.853* 0.846* 0.924 0.949 1,034 0.717*** 0.742** 0.740*** 0.770***
RRARDI,K-fold 0.906 0.839* 0.842* 0.810* 1.021 0.924 0.720** 0.755** 0.690*** 0.587***
RFARDI,POOS-CV 0.938 0.929 0.876* 0.866* 0.887* 0,989 0.866* 0.810** 0.761*** 0.739***
RFARDI,K-fold 0.941 0.908* 0.868* 0.856* 0.862** 1,022 0.843** 0.813* 0.742*** 0.692***
KRR-ARDI,POOS-CV 1,055 1.048 1.074** 1,049 1.011 1.135* 0,97 0,979 0.923* 0.921*
KRR,ARDI,K-fold 1,005 1,038 1,065 1,074 0.957 1 0,969 0,947 0,95 0.822***
(B1, α = α̂),POOS-CV 1.061* 1.057 1.039 1.077** 1.026 1.118** 0,977 1,057 0,981 0.931**
(B1, α = α̂),K-fold 1,015 0.964 1.016 1.079** 1.010 1,041 0,955 0,98 0,972 0.907***
(B1, α = 1),POOS-CV 1.076** 1.104* 1.008 1.065* 1.006 1.179*** 1,007 1,003 0,954 0.937*
(B1, α = 1),K-fold 0.994 1.018 1,033 1.079* 0.971 0.989 0,989 1,013 0.947* 0.890***
(B1, α = 0),POOS-CV 1.082* 1.064 1.148*** 1.145* 0.992 1.242*** 1,083 1.156*** 1,033 0,979
(B1, α = 0),K-fold 1.191** 1.079* 1,052 1.070* 0.968 1.091** 0,974 0,999 1,011 0.928*
(B2, α = α̂),POOS-CV 1,043 1.022 1.021 1,032 1.015 1.083* 1,01 1,007 0,907 0.900**
(B2, α = α̂),K-fold 0.991 1.007 0.994 0.980 1.126 1,077 1,002 0,947 0.747*** 0.612***
(B2, α = 1),POOS-CV 1.110** 1.072* 1.007 0.991 0.918 1.217** 1.090* 0,998 0,924 0.782***
(B2, α = 1),K-fold 1,039 1.027 1.003 0.961 1.069 1.136** 1,029 0,957 0.777*** 0.563***
(B2, α = 0),POOS-CV 1.000 1.000 1.001 0,989 0.978 1,106 0,959 0,976 0.852** 0.772***
(B2, α = 0),K-fold 0.986 0.980 0.980 1,001 1,132 1,073 0,958 0,968 0.819** 0.750***
(B3, α = α̂),POOS-CV 1,047 1,055 1.049* 1,052 1.003 1,046 1,027 1.043* 1,037 0.930***
(B3, α = α̂),K-fold 1,038 0.975 1.004 1,021 0.991 1,056 0,98 0,988 0.918*** 0.839***
(B3, α = 1),POOS-CV 1.055* 1.133** 1.044 1.107** 0.995 1,058 1.116* 1,033 1,067 0.895**
(B3, α = 1),K-fold 1,045 1.020 1.009 1,021 0.982 1,078 0,994 1,011 0.942* 0.854***
(B3, α = 0),POOS-CV 1.142** 1.153* 0.979 1.217* 0.992 1.124** 1,046 0,976 1,162 0,973
(B3, α = 0),K-fold 1.225* 1.105 0.994 1,139 1.068* 1.197** 1,021 0,987 1,098 0,979
SVR-ARDI,Lin,POOS-CV 1.014 1.088 1.130* 0.966 1.073 0,972 0,984 1,016 0.806*** 0.933*
SVR-ARDI,Lin,K-fold 1,027 1.112 1,064 1,084 1.237** 0.982 0,998 0,876 0,957 0.863***
SVR-ARDI,RBF,POOS-CV 1,033 1.015 0.924 1,013 1.034 1,201 1,001 0.779** 0.871* 0.861**
SVR-ARDI,RBF,K-fold 0.896 0.887 0.930 0,973 1,089 0.930 0.781** 0.807* 0.823** 0.813***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.8: Consumption : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=2 h=3 h=4 h=8 h=1 h=2 h=3 h=4 h=8
Data-poor (H−t ) models
AR,BIC (RMSPE) 0,0604 0.0485 0,0451 0,0476 0.0480 0,0927 0,0848 0,0851 0,0947 0,0881
AR,AIC 0.982** 0.993 1,001 0.979** 1.000 0.961*** 0,993 1,004 0.978* 1
AR,POOS-CV 0.961** 0.986** 0.998 0.974** 0.997 0.920* 0,995 0,999 0.971** 0,998
AR,K-fold 0.987* 1.025 1,015 0.975** 1.035 0.977*** 1,026 1,014 0.974** 1,062
RRAR,POOS-CV 0.944** 0.988* 1 0.968** 0.998 0.878** 0,989 1 0.971* 0,99
RRAR,K-fold 0.973** 1.013 1.015** 1 1.011* 0,947 1,013 1.017* 1.015** 1,014
RFAR,POOS-CV 0,989 1.036 1,02 1,01 1.065** 0,977 0,987 0.929* 0,965 1,035
RFAR,K-fold 1,015 1.008 1.044* 1.052* 1.067** 0,951 0,897 0,959 1,002 0,979
KRR-AR,POOS-CV 0,986 0.995 1.072* 1.064** 1.010 0,994 0,946 0,953 0,973 0,951
KRR,AR,K-fold 1,012 0.980 1,031 1,003 0.994 1,017 0,924 0,943 0,95 0.946**
SVR-AR,Lin,POOS-CV 1,013 1.339*** 1.304*** 1.166*** 1.012 0,868 1.225* 1.350*** 1.150*** 0.935*
SVR-AR,Lin,K-fold 1,085 1.176** 1.222*** 1.117*** 1.020* 1,101 1.234* 1.251*** 1.133*** 0,989
SVR-AR,RBF,POOS-CV 1.081* 1.098** 1.120*** 1.052** 1.005 1,06 1,07 1,003 0.937*** 0.934*
SVR-AR,RBF,K-fold 0,973 1.026 1.064*** 0.956** 1.083** 0.881* 1 1.054* 0.959** 1.109**
Data-rich (H+

t ) models
ARDI,BIC 0.897* 0.879 0.903 0.938 1.017 0.782* 0.729** 0.782** 0.829** 0.809***
ARDI,AIC 0.916 0.939 0,983 0,988 1.094 0,857 0.752* 0.800* 0.830* 0.761***
ARDI,POOS-CV 1,007 1.002 1,06 1,069 0.967 1,071 0,948 1,05 1,02 0.860*
ARDI,K-fold 1,092 0.948 0.967 0.959 1,116 1,31 0.768* 0.764** 0.819** 0.769***
RRARDI,POOS-CV 1,009 1.005 1,018 1,018 1.049 1,151 0,965 1,023 0,976 0.802**
RRARDI,K-fold 1,083 0.924 0.977 0,995 1.071 1,339 0.752** 0,889 0,853 0.682***
RFARDI,POOS-CV 0,976 0.946 0.969 0.928 0.982 0,895 0.853* 0.840** 0.781*** 0.808***
RFARDI,K-fold 0.937* 0.961 0.979 0.913 0.957 0.872** 0.785** 0.810** 0.775** 0.757***
KRR-ARDI,POOS-CV 1.138** 1.112* 1.181** 1.141*** 1.021 1,123 1,059 1,117 1,028 0,919
KRR,ARDI,K-fold 1,054 1.058 1.118** 1,065 0.994 1,035 0,909 0,972 0,955 0.849**
(B1, α = α̂),POOS-CV 1.153*** 1.213*** 1.168** 1.107** 1.038 1,134 1.238** 1.191* 1,009 0,926
(B1, α = α̂),K-fold 1,069 1.193*** 1.186*** 1.120** 1.079* 1,103 1,155 1.212*** 1.151*** 0.901*
(B1, α = 1),POOS-CV 1.118** 1.215*** 1.184** 1.153*** 1.054 1,135 1,178 1.194* 1,086 0,954
(B1, α = 1),K-fold 1,056 1.166*** 1.122** 1.079** 1.016 1,048 1,151 1,078 1.117*** 0.878**
(B1, α = 0),POOS-CV 1.158*** 1.281*** 1.300*** 1.171** 1.062** 1,119 1,163 1,172 1,049 1,012
(B1, α = 0),K-fold 1.453*** 1.219** 1.288* 1.103** 1.039 1,325 0,947 1,069 1.072** 0,966
(B2, α = α̂),POOS-CV 1.092* 1.107* 1.140* 1.105* 1.082 0,98 1,143 1,14 0,997 0.826**
(B2, α = α̂),K-fold 1,036 1.088** 1.167** 1,082 1,129 1.080** 1.139** 1,119 0.814** 0.628***
(B2, α = 1),POOS-CV 1.158** 1.136* 1.194** 1.187*** 1.027 1,051 1,188 1.223** 1,005 0.839**
(B2, α = 1),K-fold 1,057 1.179*** 1.113* 1,072 1,153 1,107 1.263*** 1,056 0.872* 0.672***
(B2, α = 0),POOS-CV 1.054* 1.081* 1.194** 1,049 1.079 1.084* 1,1 1,056 0,883 0.865**
(B2, α = 0),K-fold 1.072* 1.088 1.133* 1,083 1.255* 1.133** 1,135 1,13 0.853* 0.791***
(B3, α = α̂),POOS-CV 1,061 1.128** 1.165** 1,055 1.052** 1,05 1.164* 1.183** 1,027 1,003
(B3, α = α̂),K-fold 1.128** 1.057 1.149** 1.125*** 1.005 1,091 1,049 1.093* 1,023 0.764***
(B3, α = 1),POOS-CV 1.096* 1.174** 1.186** 1.138** 1.079*** 1,095 1.202* 1.192* 1,05 1,006
(B3, α = 1),K-fold 1,065 1.106** 1.153** 1.188*** 1.129* 1,052 1,107 1,149 1,04 0.825**
(B3, α = 0),POOS-CV 1,063 1.100* 1.118*** 1.168** 1.015 1,012 1,14 1.144** 1.166* 1,001
(B3, α = 0),K-fold 1.441** 1.188* 1.144*** 1.152* 1.049* 1.584** 1,085 1.122*** 1,104 0,986
SVR-ARDI,Lin,POOS-CV 1,046 1.201* 1,108 1,064 1.106* 0,989 1,119 1,069 1,004 1,007
SVR-ARDI,Lin,K-fold 1,105 1.010 1.265** 1,038 1,088 1,285 1,032 1,093 0,925 0.776***
SVR-ARDI,RBF,POOS-CV 1,053 1.021 1,118 1.080* 1,441 1,077 1,043 1,069 0,999 1,754
SVR-ARDI,RBF,K-fold 0,986 0.987 1,058 0.981 1.016 0,932 0,873 0.755** 0.830* 0.679***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.9: Investment : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=2 h=3 h=4 h=8 h=1 h=2 h=3 h=4 h=8
Data-poor (H−t ) models
AR,BIC (RMSPE) 0,4078 0,3385 0,2986 0,277 0,2036 0,7551 0,6866 0,5725 0,5482 0,3834
AR,AIC 1.015* 1.011* 1.007* 1 0,996 1.023** 1.015** 1.010* 1 0,991
AR,POOS-CV 0.995* 1,004 1.007** 1,004 1,007 1 1.008* 1.006** 1,008 1,03
AR,K-fold 1,007 1,004 1,009 1 1,021 1,002 1.018** 1.024*** 1,017 1.040*
RRAR,POOS-CV 1,004 1,001 1.013*** 1.007** 1,001 1,01 1,002 1.016*** 1.007* 1,006
RRAR,K-fold 1.015** 1.013* 1.008* 1 1,002 1.026*** 1,012 1.016*** 1.013*** 0,998
RFAR,POOS-CV 1,055 1,013 0,979 0,985 1,046 1,024 0.905** 0.880*** 0,978 1,022
RFAR,K-fold 1,036 1,016 1,019 1 0,977 0,992 0,942 1,007 0,934 0,957
KRR-AR,POOS-CV 1,036 1 0.979 1,001 0,953 1.079* 0,937 0,989 1,003 0.947**
KRR,AR,K-fold 0,996 1,008 0.961* 1 0.969** 1,022 0,987 0,975 1,015 0.965***
SVR-AR,Lin,POOS-CV 1,033 1.097** 1.096*** 1.050* 1.116** 1,035 1,061 1.041** 1 0,98
SVR-AR,Lin,K-fold 1.033* 1.033* 1.026** 1.016* 1,019 1.063** 1,021 1.028* 0,998 1,004
SVR-AR,RBF,POOS-CV 1.038*** 1,13 1.062*** 1.047** 1.094*** 1.050** 1,145 1.069** 1.008** 1,006
SVR-AR,RBF,K-fold 1,03 1,026 1.039** 1,01 0,986 1.066* 1,018 1.040** 0,994 0,995
Data-rich (H+

t ) models
ARDI,BIC 0.749*** 0.774** 0.862* 0.827** 0.911* 0.603*** 0.665*** 0.851 0.827*** 0,949
ARDI,AIC 0.757*** 0.894* 0.933 0.831* 0,948 0.601*** 0,847 0,936 0.773** 0.849**
ARDI,POOS-CV 0.745*** 0.801** 0.918 0,913 0,979 0.623*** 0.736** 0.939 0.809*** 0,924
ARDI,K-fold 0.765*** 0.905 0.944 0.854 1,009 0.584*** 0,837 0,993 0.784** 0.811***
RRARDI,POOS-CV 0.776*** 0.858** 0.916 0,984 0,976 0.626*** 0,831 0.937 0,945 0,969
RRARDI,K-fold 0.742*** 0.866* 0.912 0.925 0,985 0.603*** 0.810* 0.931 0,923 0.828***
RFARDI,POOS-CV 0.907** 0.910** 0.884** 0.833** 0.814** 0.917* 0,898 0.885 0.790*** 0.750***
RFARDI,K-fold 0,951 0.927* 0.875** 0.830** 0.806** 0,966 0,92 0,922 0.830** 0.735***
KRR-ARDI,POOS-CV 0,989 0.945 0.966 0,942 0.919* 1,01 0,95 1,028 0,959 0,933
KRR,ARDI,K-fold 0,978 0.952 0,995 0.937* 0.930* 0,974 0.932* 1,049 0,983 0,987
(B1, α = α̂),POOS-CV 1,036 0,976 1,014 1,007 0,939 0.884** 0.916*** 1,006 0.925* 0,965
(B1, α = α̂),K-fold 1,046 0,967 0.939 0.915* 1,012 1.076* 0,964 0,951 0.894*** 0,993
(B1, α = 1),POOS-CV 1,023 0,991 0,989 0,941 0,966 0.889* 0,954 0,974 0.902* 0,973
(B1, α = 1),K-fold 0,953 0.914* 0.918* 0.887** 1,018 0.905* 0.941** 0,959 0.899*** 0,953
(B1, α = 0),POOS-CV 1,019 0,997 1.110** 1,045 1,013 0,973 0,997 1.078*** 1.071* 1,008
(B1, α = 0),K-fold 1.117** 0,98 0.977 0,971 0,93 1,012 0.931** 0.897 0,914 0,912
(B2, α = α̂),POOS-CV 0,996 0,973 1,01 1,016 0.915 1,038 0,974 1,047 0,989 0.848**
(B2, α = α̂),K-fold 0,974 0,975 0,958 1,005 0,956 1,026 0,965 0,94 0.886** 0.662**
(B2, α = 1),POOS-CV 0,988 0,961 1,076 1,069 1,003 1,008 0.959* 1.150** 1,067 0.874***
(B2, α = 1),K-fold 0,974 0,965 0,967 1,014 0.794** 0,997 0,973 0,975 0.854* 0.615***
(B2, α = 0),POOS-CV 1,033 0,975 1,048 1,057 0.904* 1,056 0,991 1,102 1,031 0.871**
(B2, α = 0),K-fold 1,023 0,923 0,966 0,996 0,966 1,025 0.892** 0,993 0,946 0,894
(B3, α = α̂),POOS-CV 0,961 0,982 1,006 0,988 0.920** 0.901* 0,991 1,058 0,996 0.929***
(B3, α = α̂),K-fold 0.948* 0,976 0.921 0.884** 0,941 0.928* 0.967* 0.913 0.845** 0.888***
(B3, α = 1),POOS-CV 0,946 0,985 0.957 0,977 0.939* 0,916 0,993 1,037 0,975 0.941**
(B3, α = 1),K-fold 0,956 0,966 0.891** 0.894** 0,954 0,937 0,973 0.894** 0.881*** 0.880***
(B3, α = 0),POOS-CV 1.110* 1.036* 1,027 1,027 1 1,011 0,97 1,004 1,011 1,001
(B3, α = 0),K-fold 1,151 0,989 0,982 1,136 1,023 0,99 0,965 0,974 1,089 0,968
SVR-ARDI,Lin,POOS-CV 0,975 0,995 1,077 1,013 1,013 1,042 0,974 1,086 0,986 0,938
SVR-ARDI,Lin,K-fold 0.758*** 0.805** 0.908 1,094 1,098 0.623*** 0.739*** 0.808* 0,975 0,964
SVR-ARDI,RBF,POOS-CV 0.791*** 0.909 0.969 0,956 0,948 0.711*** 0,856 0.876 0,934 0.904**
SVR-ARDI,RBF,K-fold 0.804*** 0.836* 0.913 0,962 0,979 0.737*** 0.728** 0.852 0,965 0.812**

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.10: Income : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=2 h=3 h=4 h=8 h=1 h=2 h=3 h=4 h=8
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.1011 0.0669 0.0581 0.0528 0,0417 0,1336 0,088 0,0803 0,0772 0,0683
AR,AIC 0.995 0.991 0.998 1.000 1 1 0.969* 1 1 1
AR,POOS-CV 0.985* 0.996 1.002 0.999 0.991 0.938** 0.980** 0.992* 0,998 0,993
AR,K-fold 0.987 0.992 0.994 0.998 1,002 0.947** 0.963** 0.969** 1 0,999
RRAR,POOS-CV 0.987 0.996 1.002 1.006*** 0,995 0.939** 0.976** 0,994 1.006*** 0.991**
RRAR,K-fold 0.988 0.991 1.000 1.003* 1 0.945** 0.972*** 1 1.008*** 0.999**
RFAR,POOS-CV 1.028 1.068** 1.075** 1,016 1,008 1,072 1.103* 0.939* 0,975 0,975
RFAR,K-fold 1.132*** 1.024 1.056* 1,01 1,036 1.124** 0,976 0,989 0,985 0,957
KRR-AR,POOS-CV 0.990 1.000 1,033 1.070** 0.967 0.923** 0.905** 0,959 0,979 0.908*
KRR,AR,K-fold 0.988 0.991 1.004 1.049* 1,037 0.964 0.897*** 0,956 0,978 0.913**
SVR-AR,Lin,POOS-CV 1.000 1,056 1.009 1,881 1.165** 0,976 0,954 0,97 0,993 1,111
SVR-AR,Lin,K-fold 0.993 0.995 0.996 0.988 0.962*** 0,976 0,996 1,015 1.016** 0.965***
SVR-AR,RBF,POOS-CV 0.975 1,049 1,022 1.066* 0.969 0.939** 0,959 0,973 1,01 0.928***
SVR-AR,RBF,K-fold 1.012* 0.996 1.009 1,012 1.018* 1,01 1 1.026* 1.036*** 1.029**
Data-rich (H+

t ) models
ARDI,BIC 1.059 0.981 0.913** 0.939 0.963 1,257 0.773** 0.726*** 0.777*** 0.769***
ARDI,AIC 1.016 0.940 0.911* 0.966 0.992 1,05 0.611*** 0.757** 0,886 0.721***
ARDI,POOS-CV 1.040 0.975 0.945 0.933 1,128 1,149 0.757** 0.753*** 0.757*** 0.770**
ARDI,K-fold 1,065 0.946 0.953 0.974 1,028 1,175 0.664** 0.796** 0,898 0.689***
RRARDI,POOS-CV 1.038 1.007 0.971 0.917 1,058 1,12 0.796* 0,869 0.767*** 0.743***
RRARDI,K-fold 1,06 0.973 0.925 0.919 0.999 1,197 0,82 0.830* 0,871 0.627***
RFARDI,POOS-CV 0.954* 0.932** 0.936* 0.919* 0.910* 0.916 0.807*** 0.822** 0.762*** 0.678***
RFARDI,K-fold 0.977 0.957 0.929** 0.925** 0.886* 0.931 0.821** 0.802** 0.795*** 0.675***
KRR-ARDI,POOS-CV 1,026 1.069*** 1,025 1.090* 0,985 0.948 0,991 0.936** 0,954 0.894**
KRR,ARDI,K-fold 0.969 1,012 1,075 1.084* 0,991 0.947 0.925** 0,942 0.929* 0.849***
(B1, α = α̂),POOS-CV 1.010 1.045* 0.997 1,016 1,015 0.948*** 0,993 1,018 1,034 0.922*
(B1, α = α̂),K-fold 1.008 1,02 1.031 1,025 1,055 0,988 1,063 0.882*** 0,972 0,903
(B1, α = 1),POOS-CV 1.010 1.105** 1.070* 1.035* 1,016 0,998 0,963 0,985 1.067** 0.914**
(B1, α = 1),K-fold 1,017 1.020 1,014 1,015 1,091 1,036 1,066 0,974 0,958 0.895*
(B1, α = 0),POOS-CV 1.030* 1,034 1.050** 1.075*** 1,014 0.942*** 1,021 1,034 1,031 1.120*
(B1, α = 0),K-fold 1.023* 0.996 1.032 1.010 0.953 0.972* 0.921* 0.904*** 0,964 0,936
(B2, α = α̂),POOS-CV 1.001 0.976 0.989 1,027 0.972 0,994 0.874** 0,998 1.043** 0.772**
(B2, α = α̂),K-fold 1.020 0.979 0.975 0.988 1.220** 1.054* 0,934 0,931 0,897 0.790**
(B2, α = 1),POOS-CV 0.992 0.988 0.991 1.005 0.947 0,978 1,003 0,991 1,002 0.877***
(B2, α = 1),K-fold 1.080* 0.971 0.958 0.966 1.262** 1.253* 0.872** 0.848** 0.838** 0.691**
(B2, α = 0),POOS-CV 1.022 0.978 0.958 0.993 0.964 1,061 0.844*** 0,924 0,931 0.722***
(B2, α = 0),K-fold 1,028 1.000 0.990 0.997 1,158 1,051 0,955 0,983 0,921 0.830**
(B3, α = α̂),POOS-CV 1.009 1.010 1,013 1,032 1,015 0.953* 0,993 1.047** 1,027 0.935**
(B3, α = α̂),K-fold 0.990 0.995 0.997 1,024 1.085* 0,962 0,924 0,969 1.051* 0.882***
(B3, α = 1),POOS-CV 0.995 1.005 1.006 1,035 1.040** 0,978 0,984 1.056** 1,047 0.991*
(B3, α = 1),K-fold 1.003 1.006 1.005 0.999 1.171*** 1,001 0.931* 0,999 1,002 0.862***
(B3, α = 0),POOS-CV 0.985 0.987 0.986 1,04 0.984 0.941** 0,954 0,987 1,145 0.959**
(B3, α = 0),K-fold 0.993 1,132 1.000 1,078 1.166** 0.947** 0.906** 0,991 1,134 1,001
SVR-ARDI,Lin,POOS-CV 1,06 1,081 1.005 0.982 1,082 0.958 1,019 0,906 0.863* 0.888**
SVR-ARDI,Lin,K-fold 1.170* 0.968 1,042 0.984 1,144 1.512* 0,852 0.821* 0.736** 0,988
SVR-ARDI,RBF,POOS-CV 1.147** 1,097 0.975 0.972 1,025 1.311* 1,069 0,97 0,992 0,931
SVR-ARDI,RBF,K-fold 1.008 1,117 0.985 0.998 1,191 0.943 1,286 0.827** 0.843** 0.770***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.11: PCE Deflator : Relative Root MSPE

Full Out-of-Sample NBER Recessions Periods
Models h=1 h=2 h=3 h=4 h=8 h=1 h=2 h=3 h=4 h=8
Data-poor (H−t ) models
AR,BIC (RMSPE) 0.0442 0,0421 0,0395 0.0387 0.0418 0.0798 0,0827 0,078 0,069 0,0644
AR,AIC 1.000 0,999 0.992** 0.991** 0.976* 1.033* 1,018 0,997 1 0.976*
AR,POOS-CV 0.991 0.969** 0.990* 0.968** 0.968** 1,025 0,976 0,998 0.984** 0.974*
AR,K-fold 0.992 0.984 0,998 0.984** 0.988 1,032 1,007 0,997 0,993 0,989
RRAR,POOS-CV 0.974** 0.953** 0.964** 0.967* 0.958** 1.019* 0,965 0,968 0,981 0.938***
RRAR,K-fold 1.000 0.983 0.988*** 0.992* 0.976* 1,025 1,005 0.994** 0,993 0.955**
RFAR,POOS-CV 0.981 0.917** 0.917* 0.936 1,053 1,059 0,937 0,94 1,022 0,896
RFAR,K-fold 0.969 0.921** 0.923* 0.917* 1,025 1.030 0,936 0,947 1,013 0.795**
KRR-AR,POOS-CV 1.042 0.894** 0.867* 0.891 0.903* 1,178 0.873* 0,817 0.760** 0.775**
KRR,AR,K-fold 0.997 0.908 0.860* 0.870* 1,009 1.021 0.855 0.770* 0.768** 0.783**
SVR-AR,Lin,POOS-CV 1.011 1.198*** 1.075* 1.488** 1.410*** 1,04 1.084** 1,001 1,202 1.300*
SVR-AR,Lin,K-fold 1.563*** 1.950*** 1.914*** 1.805*** 1.662*** 1.329* 1.622*** 1.293** 1,116 0,948
SVR-AR,RBF,POOS-CV 0.990 1,007 1,04 1.058 1.188** 1,009 0,933 1,017 1,114 1,002
SVR-AR,RBF,K-fold 1.083** 1.040** 1,059 1.222** 1.189** 1.019** 0,992 0.931*** 1,032 0,865
Data-rich (H+

t ) models
ARDI,BIC 1.016 0.978 0.994 0.990 0.986 1,048 0.949 0,939 0.714** 0.731**
ARDI,AIC 1.043 1,027 1,052 1.050 1,068 1,104 0,99 0,924 0.844 0.806**
ARDI,POOS-CV 1.091 1,055 1,084 1.013 0.918 1.221** 1,113 1,015 0.751* 0.686**
ARDI,K-fold 1.037 1,027 1.092* 1.069 1,047 1,107 1,007 0,926 0,853 0.816**
RRARDI,POOS-CV 1.010 1.041 1.037 1.000 0.990 1,058 1,063 0,977 0.720** 0.639**
RRARDI,K-fold 0.988 1,014 1.117* 1.073 1,167 1,023 0,972 0,976 0,857 0.681***
RFARDI,POOS-CV 0.963 0.900** 0.895* 0.914 1,088 1,032 0,944 0,906 0,956 0.786***
RFARDI,K-fold 0.970 0.904** 0.931 0.946 1.040 1,046 0,932 0,924 1,026 0.786***
KRR-ARDI,POOS-CV 1.017 0.914 0.924 0.958 0.948 0.996 0.850* 0.783* 0.835* 0,902
KRR,ARDI,K-fold 0.988 0.925 0.893* 0.904* 0.835** 1,045 0.858 0.842* 0.822** 0.668**
(B1, α = α̂),POOS-CV 1.133** 1.200*** 1.195** 1.310*** 1.267** 0.967 1,018 0.778* 1,005 0.833**
(B1, α = α̂),K-fold 1.123** 1.221*** 1.187* 1.316*** 1.179* 1,029 0.871 0.749** 0,905 0.766***
(B1, α = 1),POOS-CV 1.251*** 1.276*** 1.208** 1.221** 1.403*** 1,137 1,01 0.828 0,973 1,015
(B1, α = 1),K-fold 1.368*** 1.340*** 1.412*** 1.409*** 1.270** 1.280** 0,91 0,957 0,903 0.726**
(B1, α = 0),POOS-CV 1.488** 1.562** 1.269* 1.396** 1.431*** 1.153* 0,961 0,979 0.793 1,307
(B1, α = 0),K-fold 1.540** 1.493** 1.489** 1.429** 1.317** 1.125* 0.815 0.706* 0.738 1,074
(B2, α = α̂),POOS-CV 1.131*** 1.249** 1.152** 1.193** 1,111 1,051 1,268 0.903* 0.843** 0.637**
(B2, α = α̂),K-fold 1.111** 1,266 1.103* 1.142* 1,079 1,115 1,387 0,925 0.823* 0,749
(B2, α = 1),POOS-CV 1.075** 1.078** 1.095* 1.233** 1.259** 1,026 0,974 0.912** 0,884 0.606**
(B2, α = 1),K-fold 1.078* 1,315 1.098* 1.130* 1,172 1,11 1,449 0,933 0.798** 0.679*
(B2, α = 0),POOS-CV 1.316** 1.332** 1.418*** 1.393*** 1.169* 1,373 1.345* 1,298 0,948 0.629***
(B2, α = 0),K-fold 1.358** 1.291** 1.388** 1.313** 1,13 1,487 1,263 1,339 1,016 0.597***
(B3, α = α̂),POOS-CV 1.033* 1,009 1.063* 1.092** 1,102 1,016 0.945* 0,972 0.885* 0.854**
(B3, α = α̂),K-fold 1.009 1,033 1.094*** 1,056 1,101 1.000 1,001 0.946* 0.936* 0.790***
(B3, α = 1),POOS-CV 1.010 1.042* 1.086** 1.101** 1,12 0.955* 0.953* 0,993 0,923 0.824**
(B3, α = 1),K-fold 0.995 1,032 1.048** 1.042 1.209** 0.965** 1,007 0,997 0,947 0.907*
(B3, α = 0),POOS-CV 1.084** 1.001 1,017 1.016 1.117* 1.067* 0.910 0,904 0,917 0,885
(B3, α = 0),K-fold 1.071* 1.198* 1,12 1.133* 1.127* 1.085* 1,149 0,979 0,948 0,923
SVR-ARDI,Lin,POOS-CV 1.086* 1.271*** 1.292*** 1.228** 1.220** 1.009 1,13 1,081 0,945 0,97
SVR-ARDI,Lin,K-fold 1.136* 1.161* 1.351* 1.301** 1.169* 1.228* 0.881 1,173 1,145 1,026
SVR-ARDI,RBF,POOS-CV 1.236 1,019 1,017 0.958 0.991 1,47 0,968 0,939 0.768*** 0.798**
SVR-ARDI,RBF,K-fold 1.054 1,062 1,063 1.236*** 1,075 1,096 1,048 0,909 0,985 0,891

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Figure C.17: Distribution of ML Treatment Effects, Quarterly Data

Note : This figure plots the distribution of α̇(h,v)
F from equation (3.11) done by (h, v) subsets. That is, we are looking at the average

partial effect on the pseudo-OOS R2 from augmenting the model with ML features, keeping everything else fixed. X is making the
switch from data-poor to data-rich. Finally, variables are GDP, CONS, INV, INC and PCE. Within a specific color block, the horizon
increases from h = 1 to h = 8 as we are going down. SEs are HAC. These are the 95% confidence bands.
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Figure C.18: Distribution of averaged ML Treatment Effects, Quarterly Data

Note : This figure plots the distribution of α̇(v)
F and α̇(h)

F from equation (3.11) done by h and v subsets. That is, we are looking at the
average partial effect on the pseudo-OOS R2 from augmenting the model with ML features, keeping everything else fixed. X is making
the switch from data-poor to data-rich. However, in this graph, v−specific heterogeneity and h−specific heterogeneity have been
integrated out in turns. SEs are HAC. These are the 95% confidence bands.
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C.8 Results with Canadian data

In this section we present results obtained with Canadian data from Fortin-Gagnon et al.

(2022). It is a monthly dataset of 139 macroeconomic and financial variables, with catego-

ries similar to those from McCracken and Ng (2016a), except that it contains much more

international trade indicators to take into account the openness of Canadian economy. Data

starts on 1981M01 and ends on 2017M12. The out-of-sample starts on 2000M01. The va-

riables of interest are the same as in US application : industrial growth, unemployment rate

change, term spread, CPI inflation and housing starts growth. Forecasting horizons are 1,

3, 9, 12 and 24 months. We do not compute results for recession periods separately since

Canada has experienced only one downturn in the evaluation period.

The results with Canadian data are overall similar to those in the paper. The main diffe-

rence is a smaller NL treatment effect. That can be potentially explained through lenses

of the analysis in Section 3.6. The pseudo-out-of-sample covers 2000-2017 period du-

ring which Canadian financial system did not experience a dramatic nonfinancial cycle as

in the US., and the housing bubble did not burst. The main reason for this discrepancy

being more concentrated and strictly regulated (since the 80s) Canadian financial system

(Bordo et al., 2015). Hence, the nonlinearities associated to financial frictions found in the

US case were probably less important and nonlinear methods did not have a significant

effect on predicting real activity series on average. However, NL treatment is very impor-

tant for inflation and housing. Shrinkage is still not a good idea for industrial production

and unemployment rate, but can be very helpful other variables at some specific horizons.

Cross-validation does not have a big impact and the SVR loss function is still harmful.
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Tableau C.12: Industrial Production (Canada) : Relative Root MSPE

Full Out-of-Sample
Models h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC (RMSPE) 0,1223 0,0752 0,056 0,0522 0,0391
AR,AIC 1,011 1.016** 1.061** 1.045** 1,04
AR,POOS-CV 1,01 1,009 1,019 1.018* 1.010**
AR,K-fold 1,01 1.029* 1.064** 1.043** 1.066**
RRAR,POOS-CV 1 1.014** 1,005 1.051** 1,018
RRAR,K-fold 0.992 1,016 1.053** 1.036* 1.072**
RFAR,POOS-CV 1,009 1.052* 1,04 1,012 1.052***
RFAR,K-fold 1,009 1,01 1,05 1,025 1.042**
KRR-AR,POOS-CV 1,02 1,024 1,028 0,981 0.924*
KRR,AR,K-fold 1.049* 0.943 1 0,995 0.961***
Data-rich (H+

t ) models
ARDI,BIC 0.993 0.954** 0.917 0.862 0.796*
ARDI,AIC 0.979 0.927*** 0.894 0.874* 0,868
ARDI,POOS-CV 0,994 0.947** 0.860* 0.800** 0.794*
ARDI,K-fold 0.972* 0.922*** 0,914 0.878* 0,884
RRARDI,POOS-CV 0.966** 0.948** 0.864* 0.816** 0.800*
RRARDI,K-fold 0.981 0.919*** 0.855** 0.821** 0,925
RFARDI,POOS-CV 0.969* 0,969 0.912* 0,94 0,973
RFARDI,K-fold 0.969* 0,973 0,94 0.892* 0,988
KRR-ARDI,POOS-CV 1,034 0,991 0,95 0.896** 0.833**
KRR,ARDI,K-fold 0.978 0,969 0,923 0.903* 0.809**
(B1, α = α̂),POOS-CV 0.986 1,083 1,034 0,995 0,947
(B1, α = α̂),K-fold 0.966* 1,002 0,986 0,971 1,004
(B1, α = 1),POOS-CV 0.977 1.108* 1,077 1,025 1,001
(B1, α = 1),K-fold 0.962* 0,974 0,951 1,006 1,109
(B1, α = 0),POOS-CV 1.071* 1,092 1.616** 1,019 0,985
(B1, α = 0),K-fold 1,053 1,055 1.062* 1.125** 1.414***
(B2, α = α̂),POOS-CV 0.981 0,985 0,967 1,002 1,067
(B2, α = α̂),K-fold 0.974 0,974 0,981 1,002 1.139*
(B2, α = 1),POOS-CV 0.980 1,018 1,056 1,023 1.129**
(B2, α = 1),K-fold 0.979 0,988 1,085 1,08 1.154**
(B2, α = 0),POOS-CV 0.988 0,966 0,944 0,925 0,919
(B2, α = 0),K-fold 0.982 0.955 0,963 0,969 1,05
(B3, α = α̂),POOS-CV 1,001 0,986 1,034 0,976 1,012
(B3, α = α̂),K-fold 0.985 0,964 0,973 1,034 1.085*
SVR-AR,Lin,POOS-CV 0.990 1.099** 0.914 1,021 1.071**
SVR-AR,Lin,K-fold 0.980 1,058 1,041 1,018 1.015***
SVR-AR,RBF,POOS-CV 1,033 1.078** 1.054* 1.065* 1.113***
SVR-AR,RBF,K-fold 1,011 1,019 1.080** 1,025 1.023***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.13: Unemployment rate (Canada) : Relative Root MSPE

Full Out-of-Sample
Models h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1,7684 1,1016 0,7791 0,7129 0.5147
AR,AIC 1 1,007 1 1,007 1.009
AR,POOS-CV 1,002 1,001 1.014* 1,005 1.017
AR,K-fold 0,992 0.990** 1 0,998 1.009
RRAR,POOS-CV 1,002 1,015 1,015 1,008 1.010
RRAR,K-fold 0,997 1 0.995** 1,004 1.006
RFAR,POOS-CV 1,01 0,999 1.101*** 1.166*** 1.105**
RFAR,K-fold 0.983 0,976 1.080** 1.157*** 1,033
KRR-AR,POOS-CV 1.050* 1,015 1,043 0.923* 0.921
KRR,AR,K-fold 0.983 0.935** 1,045 1,05 1.004
Data-rich (H+

t ) models
ARDI,BIC 0,981 0,956 1,004 1,028 1,211
ARDI,AIC 0,999 1,006 1,003 0.911 1,248
ARDI,POOS-CV 0,995 0.939** 0,923 0.914 0.915
ARDI,K-fold 0,992 0,985 1,005 0.914 1,203
RRARDI,POOS-CV 1,01 0.929*** 0.824* 0.897 0.903
RRARDI,K-fold 1,018 0,951 0,905 0.895 1,193
RFARDI,POOS-CV 0,99 0.933*** 1,03 0,955 0.986
RFARDI,K-fold 0,998 0.961* 1,003 1,007 0.983
KRR-ARDI,POOS-CV 0,982 1,018 0,914 0,971 1.076*
KRR,ARDI,K-fold 0.970* 0,973 0,984 0,992 0.952
(B1, α = α̂),POOS-CV 0.958** 0.951* 0.931* 0.944 1.192**
(B1, α = α̂),K-fold 0.978 1,015 0,969 0,961 1.194**
(B1, α = 1),POOS-CV 0.951*** 0.958* 0.947* 0.870** 1.213**
(B1, α = 1),K-fold 0.956*** 0,997 1,038 1,1 1.388***
(B1, α = 0),POOS-CV 1,003 1,045 1.234** 1.224*** 1,026
(B1, α = 0),K-fold 1,017 1,06 1,09 1.143** 1.388***
(B2, α = α̂),POOS-CV 0.956*** 0.930** 1,023 1,047 1.147**
(B2, α = α̂),K-fold 0.949** 0.942** 0,975 1,021 1.479**
(B2, α = 1),POOS-CV 0.978* 0,984 1,009 1,042 1.206**
(B2, α = 1),K-fold 0.969** 0,982 1,026 1.101** 1.578***
(B2, α = 0),POOS-CV 0.965*** 0.927*** 0.932* 0.948 1.190*
(B2, α = 0),K-fold 0.943** 0.898*** 0,924 0,951 1.171*
(B3, α = α̂),POOS-CV 0,981 0,951 0.912* 0,957 0.951**
(B3, α = α̂),K-fold 0,987 0.933** 0,977 0,988 1.336**
SVR-AR,Lin,POOS-CV 1.046* 1.134* 1,025 1.058* 1.096*
SVR-AR,Lin,K-fold 1,014 1,027 1,051 1,022 0.991
SVR-AR,RBF,POOS-CV 1,028 1,032 1,045 0,99 1,109
SVR-AR,RBF,K-fold 0.978*** 1.026* 1,022 1,002 0.999

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.14: Term spread (Canada) : Relative Root MSPE

Full Out-of-Sample
Models h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 2,9452 5,505 9.5989 10.8377 11,3336
AR,AIC 1 1 1.000 1.000 1
AR,POOS-CV 1,002 1,013 1.052** 1.022 0.971***
AR,K-fold 1 1 1.000 1.000 0.998*
RRAR,POOS-CV 1,002 1,017 1.002 0.995 0.971***
RRAR,K-fold 1.020*** 1.016** 1.005 1.004 1,002
RFAR,POOS-CV 1.168*** 1.229*** 1.185** 1.124 1.133**
RFAR,K-fold 1.182*** 1.204*** 1.177* 1.213*** 1.173*
KRR-AR,POOS-CV 2.605*** 1.345** 1.149** 1.122*** 1.237**
KRR,AR,K-fold 1.555** 1.416*** 1.188*** 1.153*** 1.021*
Data-rich (H+

t ) models
ARDI,BIC 0,995 1,015 1.166** 1.176** 1.331***
ARDI,AIC 0,995 1,065 1.175** 1.236** 1.329***
ARDI,POOS-CV 1,002 0.900** 1.184* 1.118 1.299***
ARDI,K-fold 0,995 1,058 1.207** 1.246** 1.380***
RRARDI,POOS-CV 1,004 0.902** 1.049 1.081 1.552***
RRARDI,K-fold 1.054* 1,084 1.142** 1.307** 1.359***
RFARDI,POOS-CV 1.377** 1.261** 1.230*** 1.199** 1.267***
RFARDI,K-fold 1.364** 1.201** 1.204** 1.222*** 1.338***
KRR-ARDI,POOS-CV 2.575*** 1.567*** 1.087 1.055 1.071*
KRR,ARDI,K-fold 2.668*** 1.602*** 1.101* 1.065 1.085*
(B1, α = α̂),POOS-CV 1.638*** 1.361*** 1.125** 1.070 1,046
(B1, α = α̂),K-fold 1.302*** 1.312*** 1.146** 1.208** 1.170***
(B1, α = 1),POOS-CV 1.840*** 1.429*** 1.169** 1.162*** 1,03
(B1, α = 1),K-fold 1.303*** 1.570*** 1.235*** 1.203** 1.091*
(B1, α = 0),POOS-CV 1.403*** 1.327*** 1.504*** 1.144* 1.117***
(B1, α = 0),K-fold 1.452*** 1.249*** 1.068 1.132* 1.359***
(B2, α = α̂),POOS-CV 0.552*** 1,042 1.039 1.155** 1.391**
(B2, α = α̂),K-fold 0.518*** 0.970 1.035 1.230*** 1.342**
(B2, α = 1),POOS-CV 0.787*** 1,07 1.043 1.162** 1.366*
(B2, α = 1),K-fold 0.775*** 0.918* 1.026 1.396*** 1.292***
(B2, α = 0),POOS-CV 1.136** 1.248** 1.024 1.076 1.470**
(B2, α = 0),K-fold 1.128** 1.214** 1.050 1.101 1.332***
(B3, α = α̂),POOS-CV 0.548*** 1.010 1.006 1.042 1.091**
(B3, α = α̂),K-fold 0.548*** 1.008 1.115* 1.157** 1.264**
SVR-AR,Lin,POOS-CV 1.153** 1.329** 1.099* 1.011 0.958*
SVR-AR,Lin,K-fold 1,011 1.031** 1.007 1.064** 1.009**
SVR-AR,RBF,POOS-CV 1,005 1,03 1.141** 1.011 0.966
SVR-AR,RBF,K-fold 1.054*** 1.060** 1.067** 1.018 1.124***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Tableau C.15: CPI Inflation (Canada) : Relative Root MSPE

Full Out-of-Sample
Models h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 0,0446 0.0286 0,015 0,012 0,0088
AR,AIC 1 1.000 1 1 1
AR,POOS-CV 1,014 1.000 1 1 1,001
AR,K-fold 1 1.000 1 1 1
RRAR,POOS-CV 0,998 1.011 0.993*** 0.992*** 0,999
RRAR,K-fold 0.996* 0.998 0.995** 0.993** 0.990***
RFAR,POOS-CV 0,999 0.968* 0.985 1,036 1,06
RFAR,K-fold 0,997 0.963** 0,988 1,046 1,057
KRR-AR,POOS-CV 0.935** 1.012 0,967 0.907* 0.929
KRR,AR,K-fold 0.966* 1.020 0,978 0.946 0.922
Data-rich (H+

t ) models
ARDI,BIC 1,016 1.013 1,018 1,028 1,025
ARDI,AIC 0,994 0.974 1,015 1,01 1,104
ARDI,POOS-CV 0.973 0.992 1,006 1,022 1.165*
ARDI,K-fold 0.983 1.016 1,043 1,119 1,114
RRARDI,POOS-CV 0.983 1.002 0.978 1,061 1,123
RRARDI,K-fold 0.980** 1.025 1,012 0.989 1,017
RFARDI,POOS-CV 0,996 0.975 0.957 1,048 1,075
RFARDI,K-fold 0.967** 1.004 0.946* 0.970 1,115
KRR-ARDI,POOS-CV 0.961* 0.989 0.951 0.894** 0.847**
KRR,ARDI,K-fold 0.970 1.009 0.917* 0.875** 0,954
(B1, α = α̂),POOS-CV 0,996 1,042 0,983 0.938 0.813**
(B1, α = α̂),K-fold 1,008 1,033 1,006 0.950 0.788**
(B1, α = 1),POOS-CV 1,008 1,05 1,042 1,032 0.820**
(B1, α = 1),K-fold 1,024 1.063* 1.096* 1,001 0.798**
(B1, α = 0),POOS-CV 0.982 1,038 1,016 1.258** 1,043
(B1, α = 0),K-fold 1,006 1.007 1,029 1,032 0,99
(B2, α = α̂),POOS-CV 0.973 1,022 0.926* 0.925 0.732***
(B2, α = α̂),K-fold 0.977 1.001 0.929* 0.914 0.823*
(B2, α = 1),POOS-CV 0.983 1,032 0.925 0,994 0.797**
(B2, α = 1),K-fold 0.985 1,028 1,031 0,994 0.858
(B2, α = 0),POOS-CV 0.973 1.001 1,047 1,02 0.785***
(B2, α = 0),K-fold 0.974 0.984 0.912* 0.899 0.784**
(B3, α = α̂),POOS-CV 0.959* 0.998 1,005 0.975 0.838*
(B3, α = α̂),K-fold 0.965* 1.001 0.885*** 0.976 0.867*
SVR-AR,Lin,POOS-CV 1.041* 1.149*** 1.550*** 1.859*** 1.501***
SVR-AR,Lin,K-fold 1,043 1.202*** 1.149*** 1.311*** 1.345***
SVR-AR,RBF,POOS-CV 1.041* 1.085** 1.355*** 1.313*** 1.681***
SVR-AR,RBF,K-fold 1.031** 1.025 1.093*** 1.054* 1.100***

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.



174

Tableau C.16: Housing starts (Canada) : Relative Root MSPE

Full Out-of-Sample
Models h=1 h=3 h=9 h=12 h=24
Data-poor (H−t ) models
AR,BIC 1.2750 0.5373 0.2413 0.1863 0.1074
AR,AIC 1.000 0.996 0.992 0.943 1.000
AR,POOS-CV 1.001 0.991 0.983 0.988* 1.008
AR,K-fold 1.000 0.996* 0.981* 0.979 0.998
RRAR,POOS-CV 1.001 0.992* 0.994 1,012 1.003
RRAR,K-fold 1.002 0.999 0.950* 0.963 0.996
RFAR,POOS-CV 1.017 1.054*** 1.034* 1,009 1.105***
RFAR,K-fold 1.045*** 1.077*** 1,019 1,005 1.102***
KRR-AR,POOS-CV 1.408*** 1.146*** 1.123*** 1.131*** 1.130***
KRR,AR,K-fold 1.310*** 1.095*** 1.066*** 1.097*** 1.196***
Data-rich (H+

t ) models
ARDI,BIC 1.001 0.998 0.985 0.985 1.206***
ARDI,AIC 1.019 1.007 0.969 0.990 1.284***
ARDI,POOS-CV 1,032 1.021 0.952 0.956 1.145**
ARDI,K-fold 1.013 0.991 0.978 0.986 1.322***
RRARDI,POOS-CV 1.022 0.969 0.954 0.951 1.140***
RRARDI,K-fold 0.997 1.014 0.969 1,061 1.446***
RFARDI,POOS-CV 1.029** 1.007 0.969 0.985 1.173***
RFARDI,K-fold 1.061*** 1.049* 0.983 1.003 1.167***
KRR-ARDI,POOS-CV 1.357*** 1.119*** 1.111*** 1.116*** 1.028**
KRR,ARDI,K-fold 1.308*** 1.072*** 1.073*** 1.103*** 1.076*
(B1, α = α̂),POOS-CV 1.136*** 1.140*** 1,023 1.049* 1.042**
(B1, α = α̂),K-fold 1.135*** 1.143*** 1.399*** 1.333*** 1.448***
(B1, α = 1),POOS-CV 1.101*** 1.116*** 1.042 1.059* 1.015
(B1, α = 1),K-fold 1.100*** 1.080* 1.562** 1.615*** 1.542***
(B1, α = 0),POOS-CV 1.295*** 1.328*** 1.040 1.131** 1.077**
(B1, α = 0),K-fold 1.164*** 1.158*** 1.185** 1.354*** 1.318***
(B2, α = α̂),POOS-CV 1.276*** 1.082** 1,05 1.065** 0.947*
(B2, α = α̂),K-fold 1.238*** 1.132*** 1.279*** 1.188*** 1.281***
(B2, α = 1),POOS-CV 1.250*** 1.107*** 1.064** 1,037 0.965*
(B2, α = 1),K-fold 1.256*** 1.101*** 1.501** 1.483*** 1.353***
(B2, α = 0),POOS-CV 1.230*** 1.055** 1.005 1.083*** 1.305***
(B2, α = 0),K-fold 1.131*** 1.103*** 1.185** 1.286*** 1.204**
(B3, α = α̂),POOS-CV 1.282*** 1.093*** 1.033 1.082** 1.078**
(B3, α = α̂),K-fold 1.230*** 1.086*** 1.210** 1.209*** 1.181**
SVR-AR,Lin,POOS-CV 1.008 1.029 1.024 1.055*** 1.031***
SVR-AR,Lin,K-fold 1.003 0.999 1.031** 1,008 1.010
SVR-AR,RBF,POOS-CV 0.999 1.024 1,036 1,035 1.041***
SVR-AR,RBF,K-fold 1.016*** 1.013** 0.978 1,005 1.007

Note : The numbers represent the relative, with respect to AR,BIC model, root MSPE. Values below 1 implies improvement over the
benchmark. Models retained in model confidence set are in bold, the minimum values are underlined, while ∗∗∗. ∗∗. ∗ stand for 1%. 5%
and 10% significance of Diebold-Mariano test.
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Figure C.19: Distribution of ML Treatment Effects, Canadian Data

Note : This figure plots the distribution of α̇(h,v)
F from equation (3.11) done by (h, v) subsets. That is, we are looking at the average

partial effect on the pseudo-OOS R2 from augmenting the model with ML features, keeping everything else fixed. X is making the
switch from data-poor to data-rich. Finally, variables are INDPRO, UNRATE, SPREAD, INF and HOUS. Within a specific color
block, the horizon increases from h = 1 to h = 24 as we are going down. SEs are HAC. These are the 95% confidence bands.



176

C.9 Nonlinearites Matter – A Robustness Check

Here, we trade random forests for Boosted Trees and KRR for Neural Networks. First,

we briefly introduce the newest addition to our nonlinear arsenal. Second, we demonstrate

that very similar conclusions to that of Section 3.5.1 are reached using those. This further

backs our claim that nonlinearities matter, whichever way they were obtained.

C.9.1 Data-Poor

Boosted Trees AR (BTAR). This algorithm provides an alternative means of approxima-

ting nonlinear functions by additively combining regression trees in a sequential fashion.

Let η ∈ [0, 1] be the learning rate and ŷ(n)
t+h and e(n)

t+h := yt−h − ηŷ(n)
t+h be the step n predicted

value and pseudo-residuals, respectively. Then, the step n + 1 prediction is obtained as

ŷ(n+1)
t+h = y(n)

t+h + ρn+1 f (Zt, cn+1)

where (cn+1, ρn+1) := argmin
ρ,c

∑T
t=1

(
e(n)

t+h − ρn+1 f (Zt, cn+1)
)2

and cn+1 :=
(
cn+1,m

)M
m=1 are the

parameters of a regression tree. In other words, it recursively fits trees on pseudo-residuals.

The maximum depth of each tree is set to 10 and all features are considered at each split.

We select the number of steps and η ∈ [0, 1] with Bayesian optimization. We impose

py = 12.

Neural Network AR (NNAR). We opted for fully connected feed-forward neural net-

works. The value of the input vector [Zit]
N0
i=1 is represented by a layer of input neurons,

each taking on the value of a different element in the vector. Each neuron j of the first

hidden layer takes on a value h(n)
jt which is determined by applying a potentially nonlinear

transformation to a weighted sum of the input value. The same is true of each subsequent
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hidden layer until we have reached the output layer which contains a single neuron whose

value is the h period ahead forecast of the model. Formally, our neural network models

have the following form :

h(n)
jt =

 f (1)
(∑N0

i=1 w(1)
ji Zit + w(1)

j0

)
n = 1

f (n)
(∑Nk

i=1 w(n)
ji h(n−1)

it + w(n)
j0

)
n > 1

ŷt+h =

NNh∑
i=1

w(y)
i h(Nh)

jt + w(y)
0 .

We restrict our attention to two fixed architectures : the first one uses a single hidden layer

of 32 neurons ((Nh,N1) = (1, 32)) and the second one uses two hidden layers of 32 and 16

neurons, respectively ((Nh,N1,N2) = (2, 32, 16)). In all cases, we use rectified linear units

(ReLU) as the activation functions, i.e.

f (n)(z) = max{0, z},∀n = 1, ...,Nh.

The training is carried out by batch gradient descent using the Adam algorithm. This al-

gorithm is initialized with a learning rate of 0.01 and we use an early stopping rule 2. And,

in an effort to mitigate the effects of overfitting and the impact of random initialization

of weights, we train 5 neural networks with the same architecture and use their average

output as our prediction value. In essence, those neural networks are simplified versions

of the neural networks used in Gu et al. (2020) where we got rid of the hyperparameter

optimization and use 5 base learners instead of 10. For this algorithm, the input is a set of

py = 12 lagged values of the target variable. We do not make use of cross-validation, but

we do estimate model weights recursively.

2. If improvements in the performance metric doesn’t exceed a tolerance threshold for 5 consecutive
epochs, we stop the training.
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Figure C.20: Contribution of Non-Linearities, by variables

Note : This figure compares the two alternative NL models averaged over all horizons. The unit of the x-axis are improvements in
OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.

C.9.2 Data-Rich

Boosted Trees ARDI (BTARDI). We consider a vanilla Boosted Trees where the maxi-

mum depth of each tree is set to 10 and all features are considered at each split. We select

the number of steps and η ∈ [0, 1] with Bayesian optimization. We impose py = 12,

p f = 12 and K = 8.

Neural Network ARDI (NNARDI). We opted for fully connected feed-forward neural

network with the same architecture as the data-poor version, but we now use (py, p f ,K) =

(12, 10, 12) for the inputs.
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Figure C.21: Contribution of Non-Linearities, by horizons

Note : This figure compares the two alternative NL models averaged over all variables. The unit of the x-axis are improvements in
OOS R2 over the basis model. SEs are HAC. These are the 95% confidence bands.
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C.9.3 Results

In line with what reported in Section 3.5.1, we find that NL’s treatment effect is magnified

for horizons 9, 12 and 24. Additionally, it is found that both algorithms give very homo-

geneous improvements in the data-rich environment, another finding detailed in the main

text. Results for the data-poor environment are more scattered, as they were before. Tar-

gets benefiting most from NL in the data-rich environment are INF and HOUST, which is

analogous to earlier findings. However, it was found that the real activity targets benefited

more from NL in our main text configuration, which is the sole noticeable difference with

results reported here.

C.10 Supplementary figures
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Figure C.22: Number of Regressors Selected
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Note : This figure shows the number of regressors in linear ARDI models. Results averaged across horizons.
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Figure C.23: Variables explaining the heterogeneity of NL treatment effects
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Figure C.24: Stability of Forecasting Accuracy
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Note : This figure shows the 3-year rolling window root MSPE, the cumulative root MSPE and Giacomini and Rossi (2010)
fluctuation tests for linear and nonlinear data-poor and data-rich models, at 12-month horizon.
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Figure C.25: Linear SVR Relative Performance to ARDI

Note : This graph display the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in
comparing the data-poor and data-rich environments for linear models. The unit of the x-axis are improvements in OOS R2 over the
basis model. SEs are HAC. These are the 95% confidence bands.
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Figure C.26: Linear SVR Relative Performance to ARDI

Note : This graph display the marginal (un)improvements by variables and horizons to opt for the SVR in-sample loss function in
comparing the data-poor and data-rich environments for nonlinear models. The unit of the x-axis are improvements in OOS R2 over
the basis model. SEs are HAC. These are the 95% confidence bands.
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