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RÉSUMÉ

Les techniques d’apprentissage automatique sont devenues au fil du temps de puissants

outils de prévision, particulièrement utiles dans des domaines tels que la macroéconomie et

la finance en raison de leur capacité à améliorer la qualité des prévisions relativement aux

méthodes traditionnelles. L’importance des techniques d’apprentissage automatique dans

ces domaines a été bien documentée dans des recherches antérieures (Goulet Coulombe

et al. 2022, Fraisse and Laporte 2022).

Cette recherche doctorale comprend trois chapitres. Chaque chapitre examine dans quelle

mesure les modèles d’apprentissage automatique combinés à une richesse d’information

peuvent approfondir notre compréhension du rôle du secteur bancaire dans la stabilité

macroéconomique et financière.

Le chapitre 1, « Le crédit bancaire et le cycle économique suivant la perspective des tech-

niques d’apprentissage automatique », utilise une approche d’apprentissage automatique

pour identifier les chocs d’offre de crédit bancaire dans un environnement riche en don-

nées. Dans un premier temps, nous réalisons un exercice de prévision hors échantillon

afin de déterminer le modèle prévisionnel du ratio capital/actif des banquiers. Par la suite,

nous construisons un choc de crédit global comme la moyenne pondérée des erreurs de

prévision hors échantillon spécifiques à chaque banque. En introduisant ce choc dans un

VAR, nous trouvons qu’une variation négative de notre métrique affecte inversement le

volume et les prix du crédit, confirmant qu’elle identifie un choc d’offre de crédit ban-

caire. Ce choc impacte considérablement les variables macro-économiques clés, induisant



xiv

une baisse de la croissance du PIB, de l’inflation et une baisse prononcée du volume des

crédits commerciaux et industriels.

Le chapitre 2, « Une approche d’apprentissage automatique dans les tests de stress des

grandes banques américaines », évalue si les modèles d’apprentissage automatique amélio-

rent l’analyse de risque dans les tests de stress bancaire relativement aux modèles linéaires.

Les résultats mettent en évidence le double avantage des modèles d’apprentissage au-

tomatique. Indirectement, ils affinent la prévision des variables bancaires clés, notam-

ment le revenu net avant provision (PPNR) et les charges nettes (NCO), par rapport aux

modèles linéaires. Directement, les modèles d’apprentissage automatique fournissent une

meilleure image des risques et de la vulnérabilité des banques en période de ralentissement

économique relativement aux modèles linéaires.

Le chapitre 3, « Incertitude bancaire et cycle économique : cas de grandes banques améri-

caines», présente une méthode pionnière d’évaluation de l’incertitude au niveau des ban-

ques. Cette métrique est dérivée d’erreurs de prévision du rendement sur actif (ROA)

d’une banque, obtenues à partir d’un ensemble de modèles d’apprentissage automatique

combinés à des ensembles de données bancaires et macro-économiques. L’incertitude

bancaire est définie comme l’écart type de ces erreurs de prévision. En utilisant un VAR,

il ressort qu’une hausse inattendue de l’incertitude bancaire entraîne un ralentissement

économique et une détérioration des conditions de crédit, beaucoup plus importants que

suite à une hausse similaire des indicateurs d’incertitude macro-économique et financière

traditionnels.

Mots-clés : Technique d’apprentissage automatique; données massives; banque; stabilité

financière; stabilité macro-économique.



INTRODUCTION

La Grande Récession de 2007-2009 a mis en exergue le rôle prépondérant des grandes

banques dans l’amplification de la crise dans le secteur financier et sa propagation à toute

l’économie réelle. Cette crise a renforcé la nécessité d’un plus grand contrôle du sys-

tème bancaire et plus spécifiquement des grandes banques. En effet, au lendemain de la

récession, plusieurs économies développées et émergentes ont rendu obligatoire et systé-

matique des tests de stress bancaire 1. Les tests de stress bancaire sont des exercices qui

visent à vérifier si les banques sélectionnées sont assez capitalisées ou non pour faire face

à des événements macroéconomiques défavorables tout en maintenant le financement de

l’économie. Sur le plan international, la mise en place des accords de Bâle III a consacré

l’introduction de plusieurs coussins en capital que les banques doivent détenir au délà du

minimum de capital réglementaire requis. L’un de ces coussins a été fixé à 2.5% des actifs

pondérés par les risques et est applicable à toutes les banques depuis 2019. Toutes ces

mesures visent à mieux identifier les facteurs de risque macroéconomiques et financiers et

les signes de vulnérabilité du système bancaire. Cela nécessite au préalable d’inclure glob-

alement le secteur financier ou plus spécifiquement le secteur bancaire dans la construction

des modèles macroéconomiques tel que préconisé par Quadrini (2011).

Cette thèse de doctorat qui regroupe trois chapitres, s’inscrit dans cette perspective et vise

1Depuis 2010, l’Autorité bancaire européenne réalise chaque année des tests de stress bancaire
pour les États membres de l’Union européenne. La FED a rendu ces tests obligatoires aux États-Unis et
a supervisé le processus. D’autres pays émergents, comme le Brésil, mènent également des tests de stress
bancaire.
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à apprécier dans quelle mesure, l’exploitation des techniques d’apprentissage automatique

et la prise en compte de la richesse de l’information tant au niveau bancaire que macroé-

conomique peuvent permettre de mieux cerner les nuances de la relation entre le secteur

bancaire et l’économie réelle dans le but de mieux comprendre le rôle du systeme bancaire

dans la stabilité macroéconomique et financière.

Le premier chapitre est intitulé Le crédit bancaire et le cycle économique suivant la per-

spective des techniques d’apprentissage automatique. La crise des subprimes 2007-2009 a

remis en selle la question du lien entre l’offre de crédit bancaire et l’économie dans sa glob-

alité. En effet, le crédit bancaire aux USA a connu une contraction significative. Le taux de

croissance trimestriel du volume du crédit bancaire est passé de 2% avant crise à -0.17 %

durant la récession. Ce resserrement du crédit a constitué l’un des canaux de transmission

de la crise financière à l’économie réelle mettant en lumière le rôle du crédit bancaire dans

la régulation de l’équilibre macroéconomique. Cette question a aussi été analysée dans

plusieurs études empiriques (p.ex., Bernanke et al. 1991, Bassett et al. 2014, Berrospide

and Edge 2010 et Mésonnier and Stevanovic 2017). Cependant, toutes ces études afin

d’identifier le choc d’offre de crédit utilisent soit uniquement les données agrégées, soit des

modèles linéaires basés sur les données bancaires et agrégées limitées. Au cas où le vérita-

ble modèle serait non linéaire ou utiliserait plus d’information que fournie, cette approche

prédominante dans la littérature questionne sur le risque d’omission d’information perti-

nente et de mauvaise spécification du modèle. Ce qui pourrait affecter l’identification de

l’offre de crédit et affecter les analyses subséquentes. Pour réduire sensiblement ce risque,

ce chapitre développe une approche originale d’identification du choc d’offre de crédit qui

allie des informations sur le bilan des banques et des données macroéconomiques massives

aux techniques d’apprentissage automatique. La méthodologie est structurée en deux par-

ties. Dans une première partie, nous conduisons un exercice de prévision hors échantillon
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utilisant différentes techniques d’apprentissage automatique et basé sur un panel des 100

plus grandes Américaines observées de 1986q3 à 2017q4. Ceci nous permet d’approximer

le modèle prédictif du ratio du capital à l’actif du banquier comme celui présentant la plus

faible valeur de l’erreur quadratique moyenne. Ensuite, nous définissons le choc de crédit

agrégé comme la moyenne pondérée des erreurs de prévision spécifiques aux banques.

Dans une deuxième partie, nous incluons le choc de crédit agrégé dans un VAR pour anal-

yser ses effets sur le cycle économique.

Nous trouvons que suite à un choc de crédit agrégé négatif, le volume de crédit bancaire et

l’écart de rendement entre les obligations BAA et les obligations de Trésor, matérialisant le

prix du crédit, évoluent significativement dans des directions opposées. Ce résultat atteste

que le choc de crédit agrégé identifie bien un choc d’offre de crédit bancaire. En outre,

ce choc a des effets macroéconomiques importants. Il enclenche un ralentissement de la

croissance du PIB, engendre l’inflation et conduit à une baisse substantielle du volume du

crédit commercial et industriel. Cependant, le déclin du crédit commercial et industriel est

plus prononcé et persistant que le ralentissement de la croissance du PIB.

Dans le deuxième chapitre intitulé Une approche d’apprentissage automatique dans les

tests de stress des grandes banques américaines, nous évaluons si les techniques d’apprentis

sage automatique améliorent l’analyse des risques durant les tests de stress bancaire rela-

tivement aux modèles linéaires. Le choix des modèles linéaires comme référence se justifie

par leur abondante utilisation dans les tests de stress bancaire (Voir par exemple, Grover

and McCracken 2014, Guerrieri and Welch 2012, Hirtle et al. 2016, Liu et al. 2020).

L’objectif de ce chapitre est d’apprécier si la flexibilité des techniques d’apprentissage

automatique ainsi que leurs capacités à capturer différentes formes de non-linéarité et à

s’accommoder de grandes bases de données, peuvent produire une meilleure caractérisa-

tion des risques et de la vulnérabilité des banques face aux chocs macroéconomiques et
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financiers que les modèles linéaires. La construction des modèles de risque pour les tests

de stress bancaire requiert au préalable de développer des prédictions conditionnelles de

deux variables clés : le revenu net avant provision et les charges nettes 2 sous un scénario

simulé de crise. Liu et al. (2020) soulignent que le développement de ces prévisions con-

ditionnelles a pour fondation la construction des prévisions fiables sur la base des données

observées des deux variables. Ainsi, nous structurons l’analyse en deux étapes. Dans une

première étape, nous utilisons un panel de grandes banques dont l’actif total est supérieur

en tout temps à 3 milliards de dollars, observées de 1986q3 à 2020q4 pour comparer les

modèles basés sur les techniques d’apprentissage automatique aux modèles linéaires tra-

ditionnels (OLS, modèle auto-régressif, marche aléatoire). Le meilleur modèle est celui

qui affiche la plus faible erreur quadratique moyenne hors échantillon.

Les résultats soulignent la supériorité du Random Forest et de Adaptive Lasso pour les

prévisions de la charge nette et du revenu net avant provision respectivement. Ces résul-

tats montrent que les techniques d’apprentissage automatique améliorent indirectement le

test de stress bancaire en permettant une meilleure prévision de ces deux variables ban-

caires. Dans une deuxième étape, nous utilisons Random Forest et Adaptive Lasso, les

deux meilleures techniques automatiques d’apprentissage pour simuler la charge nette et

le revenu net avant provision sous des conditions macroéconomiques défavorables. Cet ex-

ercice permet de simuler sous les mêmes conditions le ratio de fonds propres de catégorie

1 (T1CR), l’un des principaux résultats du test de stress bancaire. T1CR se définit comme

le total des fonds propres divisé par les actifs pondérés en fonction des risques. À l’instar

de Covas et al. (2014), nous utilisons une approche en deux phases pour prédire ensuite

2Le revenu net avant provision est défini comme le ratio de la somme des revenus d’intérêt des
revenus hors intérêt déduit de la somme des dépenses à l’actif trimestriel moyen. La charge nette se définit
comme le ratio de la charge sur les prêts et locations déduite des remboursements sur ces prêts et locations
à l’actif trimestriel moyen.
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la densité de T1CR. Dans une première phase, nous utilisons la méthode de la régression

Quantile Random Forest de Athey et al. (2019) pour estimer les quantiles conditionnels.

Dans la deuxième phase, pour estimer la fonction de densité, nous estimons la distribu-

tion de student asymétrique de Azzalini and Capitanio (2003) qui permet d’approximer

au mieux la fonction quantile estimée en première phase. Pour un souci de comparabilité,

nous répliquons ce processus en utilisant le modèle linéaire à effets fixes pour simuler la

charge nette et le revenu net avant provision et ensuite déduire la distribution de T1CR. Les

résultats révèlent que la distribution de T1CR estimée par les techniques d,apprentissage

automatique présente une asymétrie à gauche plus marquée pour les grandes banques à

effet systémique que dans le cas linéaire. En simulant une détresse semblable à la Grande

Récession, les modèles d’apprentissage automatique approximent mieux la densité de

T1CR que le modèle linéaire. Ces résultats démontrent que les modèles d’apprentissage

automatique permettent d’obtenir la meilleure image des vulnérabilités dans le système

bancaire et du risque inhérent en période de ralentissement économique relativement aux

modèles linéaires qui ont tendance à sous-estimer le risque systémique.

Dans le troisième chapitre intitulé Incertitude bancaire et cycle économique aux USA, nous

introduisons une nouvelle approche de quantification de l’incertitude au niveau des ban-

ques basée sur les erreurs de prévision du rendement bancaire sur les actifs et implémentée

par l’utilisation d’un ensemble de modèles d’apprentissage automatique combinés à des

données bancaires granulaires et à un vaste ensemble de données macroéconomiques. En

effet, le concept d’incertitude économique, défini par Watkins (1922) comme ”l’incapacité

des individus à prévoir les probabilités que des événements se produisent”, est un sujet

important dans la littérature économique depuis les travaux influents de Bloom (2009) .

L’intérêt de ce sujet tire sa source de son lien avec le cycle économique, comme l’attestent

la théorie et les recherches empiriques. Ces recherches empiriques mettent en lumière
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systématiquement une forte augmentation de l’incertitude pendant les récessions. Ces ob-

servations sont valables aussi bien pour une incertitude mesurée par le biais des proxys

(p.ex., Bloom 2009, Baker et al. 2016) que sur la base de modèles à l’instar de Jurado

et al. (2015). Toutefois, l’abondante littérature sur l’incertitude se focalise majoritaire-

ment sur l’incertitude macroéconomique et occulte le rôle du secteur bancaire qui a été une

plaque tournante de la Grande Récession. Ludvigson et al. (2021) montre que l’incertitude

d’origine financière affecte l’activité économique contrairement à l’incertitude macroé-

conomique qui en est une résultante. Cependant, leur mesure d’incerti

tude est globale et non spécifique au secteur bancaire. Très peu d’études se penchent sur

l’analyse de l’incertitude bancaire (par exemple, Soto 2021, Buch et al. 2015). Toute-

fois, ces études se limitent à l’analyse de l’impact de l’incertitude bancaire sur le secteur

bancaire et n’étudient pas ses effets sur le cycle économique ou le secteur financier global.

Ce chapitre a pour but de combler ce déficit dans la littérature. L’analyse se décline en

deux étapes. Premièrement, en utilisant un panel de grandes banques américaines ob-

servées de 1986q3 à 2020q4, nous construisons un ensemble de modèles d’apprentissage

automatique dans l’optique de prévoir le rendement sur les actifs. Ensuite, nous constru-

isons la moyenne des différentes prévisions afin d’obtenir une prévision moyenne. Nous

utilisons cette prévision moyenne et les erreurs de prévision qui en découlent pour constru-

ire la mesure d’incertitude bancaire comme l’écart-type de ces erreurs de prévision. Cette

approche présente plusieurs avantages. Elle capitalise sur divers modèles de données, at-

ténue les risques de dépendance à un modèle, renforçant ainsi la robustesse des prévisions,

et améliorant la précision des modèles individuels même dans le cas d’une instabilité des

prévisions tel que démontré par Stock and Watson (2004). L’étude intègre des prédicteurs

spécifiques aux banques et un vaste ensemble d’indicateurs macroéconomiques au rang

de variables prédictives. Ainsi, cela purge le modèle des variations prévisibles, et garantit
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que la mesure de l’incertitude incarne effectivement une véritable imprévisibilité.

Deuxièmement, nous intégrons la mesure de l’incertitude bancaire dans un VAR afin

d’étudier son impact sur le secteur financier et le cycle économique. Les résultats mon-

trent qu’une hausse de l’incertitude bancaire a d’importantes répercussions. Elle conduit

à un important ralentissement économique et une détérioration des conditions de crédit.

Nous trouvons aussi que les répercussions de notre mesure d’incertitude bancaire sur le

cycle économique et le secteur financier sont nettement plus importantes que celles des

autres mesures standard d’incertitude macroéconomique et de l’incertitude financière de

Ludvigson et al. (2021). Ces résultats confirment la place centrale du secteur bancaire

dans l’économie en prouvant qu’une incertitude bancaire peut générer une récession. En

outre, ces résultats montrent également que l’incertitude financière qui est plus générale

ne permet pas de cerner toutes les nuances du secteur bancaire, d’où l’intérêt d’une mesure

d’incertitude plus spécifique au secteur bancaire.



CHAPTER I

ON BANK CREDIT AND BUSINESS CYCLE FROM A MACHINE LEARNING

PERSPECTIVE



ABSTRACT

This paper proposes identifying the bank’s credit supply shock using a machine learning

approach in a data-rich setup. The analysis consists of two steps. First, we do a pseudo-

out-of-sample forecasting exercise to approximate the bankers’ predictive model of the

capital-to-asset ratio. Then, we define the aggregate credit shock as the weighted average

of bank-specific out-of-sample forecast errors. In the second step, we include the con-

structed shock in a VAR to assess its impact on the business cycle. We find that a one

standard deviation negative aggregate credit shock moves credit volume and prices in the

opposite direction, corroborating that it identifies a bank credit supply shock. Furthermore,

this shock has significant macroeconomic effects. It triggers a slowdown in GDP growth,

inflation, and a substantial commercial and industrial credit volume drop. However, the

decline in commercial and industrial credit is more pronounced and persistent than the

slowdown in GDP growth.

Keywords: Identification, machine learning, credit supply, shock , business cycle.

JEL classification: C53, C55, E32, E44, G01.
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1.1 Introduction

The 2007-09 financial crisis underscored the intricate relationship between the real econ-

omy and the financial sector, which led to the most severe recession since 1929. Adrian

and Shin (2010) highlighted the procyclicality of leverage as a key factor in accumulat-

ing risk. In economic upturns, firms amplify investments by increasing debt, elevating

the leverage effect. Conversely, during downturns, the looming risk reduces this leverage.

This peak exposure contributed to significant losses, especially for institutions holding de-

valued "toxic assets". The subsequent credit crunch intensified the crisis’s impact on the

real economy.

Following the crisis, Quadrini (2011) emphasized the criticality of embedding the finan-

cial sector within macroeconomic models to grasp business cycle nuances. In alignment

with this, we introduce a distinctive microeconomic approach to isolate bank credit supply

shock and gauge its macroeconomic implications. Initially, we use a pseudo-out-of-sample

forecast exercise to mimic a banker’s predictive model of the capital-to-asset ratio, evalu-

ated by its out-of-sample mean square error (MSE)1. Our analysis unequivocally identifies

Gradient Boosting—a nonlinear machine learning technique—as the superior forecast-

ing model for approximating the capital-to-asset ratio. Given its predictive prowess, we

construct the aggregate credit shock from the weighted average of bank-specific forecast

errors related to this model. Our forecasting approach meticulously eradicates potential

endogeneity from bank credit demand or inherent bank risk by integrating an extensive

1The capital-to-asset ratio is the ratio of equity capital to the bank’s total assets. We approximate the
banker’s predictive model of the capital-to-asset ratio by the best forecast model of the capital-to-asset ratio.
This model corresponds to the lowest out-of-sample mean square error (MSE) value. Let yi,t, i = 1, ... n ;
t=1...T be a variable of interest and ŷi,t, i = 1, ... n ; t=1...T its predicted values. MSE = 1

n

∑
i,t(yi,t − ŷi,t)

2

where n is the test set sample size. The test set sample covers the period 2001q2-2017q4.
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macroeconomic database with granular microeconomic insights. Thus, the conceived ag-

gregate credit shock may epitomize an unanticipated variation in bank leverage, intrinsi-

cally tethered to credit supply. A positive fluctuation of this shock signifies a leverage

surge, potentially prompting banks to augment their lending activities. In contrast, a nega-

tive manifestation implies a contractionary impetus, likely inducing a retrenchment in loan

allocations.

To ascertain the macroeconomic repercussions of the aggregate credit shock, we embed it

within a Vector Autoregression (VAR) model. This VAR encompasses two distinct blocks

of variables: one portraying the real economy and the other representing the nuances of

the financial and credit markets. Probing the impulse response functions, we discover that

a negative variation of aggregate credit shock manifests tangible macroeconomic ramifi-

cations. Specifically, it instigates a peak decline in the annual real GDP growth rate of

1%, occurring predominantly two quarters after the shock, with its influence enduring for

an entire fiscal year. Furthermore, the shock wields enduring effects on the growth tra-

jectory of commercial and industrial credit volume. This volume experiences a maximum

contraction of 3.2% annually, notably two quarters after the shock, with this negative tra-

jectory persisting for roughly three years. In a reflexive policy response, the FED lowers

its policy interest rate by a substantive 15 basis points within the same two-quarter horizon

post-shock. Moreover, the yield spread between BAA2 bonds and 10-year Treasury bonds

witnesses an augmentation, peaking at 0.8% annually two quarters hence and sustaining

elevated levels for over two years. Accordingly, this inverse dynamic between credit cost

and volume outlines that the aggregate credit shock fluctuations translate into perturba-

tions in credit supply, thus delineating it as a quintessential supply-side credit shock. We

2A rating classification by Moody’s for medium-quality bonds embodying moderate risk.
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implement various robustness checks to assess the strength of the results. These include

substituting the FED’s interest rate with a six-month Treasury bond yield, accommodating

alternative lag structures of endogenous variables, and contemplating alternative proxies

for economic activity. Across these varied scenarios, our core conclusions remain steadfast

and compelling.

Despite our findings indicating the efficacy of our approach in identifying credit supply

shocks, two pertinent questions arise. Firstly, what would be the outcome if we had con-

structed an aggregate capital ratio instead of bank-specific ratios, as Berrospide and Edge

(2010) suggested? Addressing this, we replace the aggregate credit shock, our baseline

measure by the aggregate capital ratio, within the VAR model. Surprisingly, a negative

variation of this metric has no discernible effect on credit volume, reaffirming the im-

portance of microdata in capturing credit supply shocks. Secondly, does the relationship

between the capital-to-asset ratio and predictors, linear versus nonlinear, influence the

determination of the aggregate credit supply shocks? To explore this, we emulate the Mé-

sonnier and Stevanovic (2013) (MS) methodology, which employs a linear framework.

When juxtaposed against our baseline, there are marked disparities in response functions.

GDP and inflation show heightened responses in the linear (MS) model, whereas credit

reaction is more robust in our baseline. This result underlines the criticality of recogniz-

ing the correct relational dynamics between variables. Misinterpretations could distort the

perceived impact of the measure of credit supply shocks on pivotal macroeconomic and

financial indices. Our agnostic approach appears favored in this context.

Our study offers two pivotal advances to existing literature. Firstly, we bridge microdata

with a large macroeconomic database to derive the measure of bank credit supply shock,

distinguishing our approach from prevalent trends. While most research either leans on

aggregate data, like Berrospide and Edge (2010) and Bernanke et al. (1991) or marries
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microdata with limited macro insights, as seen in works like Bassett et al. (2014) and Amiti

et al. (2017), our method uniquely harnesses all havailable information. While Mésonnier

and Stevanovic (2013) tread a similar path, their linear framework limits the depth of their

analysis. Our second contribution lies in leveraging machine learning for more than mere

forecasting, a trend spotted in studies such as Goulet Coulombe et al. (2022). We employ

these techniques to estimate the optimal capital-to-asset ratio forecast model, enhancing

the structural analysis of the credit supply shock’s broader economic implications.

The rest of the paper is organized as follows. Section 1.2 explains the construction of our

aggregate credit shock. Section 1.3 deals with the data. Section 1.4 presents aggregate

credit shock and compares it to alternative measures. Section 1.5 presents the macroeco-

nomic implication of the aggregate credit shock, and section 1.6 concludes.

1.2 Methodology

This section details our identification strategy and the benefit of the approach.

1.2.1 Identification strategy of bank’s credit supply shock

Our identification strategy involves two steps. First, we estimate competing one-quarter

ahead forecasting models of a bank’s capital-to-asset ratio. Then, we compare models and

derive the best forecasting model. Second, based on this model, we construct the shock.
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1.2.1.1 Estimation of the forecasting models of capital-to-asset ratio

To construct a forecasting model for the capital-to-asset ratio3, we employ both standard

linear forecasting techniques (SL)4 and machine learning techniques (ML)5. Let H rep-

resents the number of competing models. Formally, we present the forecasting model j

(j=1...H) as follows:

Yi,t+1 = gj(Zi,t) + ei,t+1, (1.1)

where Yi,t+1 is the value of the capital-to-asset ratio for bank i at quarter t+1 and Zi,t is the

K×1 vector of predictors. This vector includes lagged dependant variables, bank balance

sheet data, macroeconomic expectations, and the McCracken and Ng (2020) database of

macroeconomic and financial series for ML models. For SL models, Zi,t is refined to a

limited set of variables. Based on the data at quarter t, we postulate that it is sufficient

for bankers to forecast the subsequent quarter’s capital-to-asset ratio. This perspective is

validated by existing literature such as Bassett et al. (2014) and Mésonnier and Stevanovic

(2017). From our estimation, we determine:

Ŷ j
i,t+1 = ĝj(Zi,t); (1.2)

3We adopt the capital-to-asset ratio as our measure of capital due to its intrinsic link with leverage.
The banker constrained by the new requirements of Basle III should predict the capital-to-asset ratio to
ascertain its conformity with the regulation.

4For SL techniques, we use the random walk without drift, autoregressive model, and pooled OLS.

5Under ML techniques, we consider Lasso, Adaptive Lasso, Elastic net, Ridge, Gradient boosting,
Random Forest, and Neural Network Regression (NN).



15

where Ŷ j
i,t+1 symbolizes the forecast of bank i’s capital-to-asset ratio for quarter t+1 using

the forecast model j. The distinctive trait of ML techniques is their capacity to estimate

ĝj , aiming to minimize the out-of-sample Mean Square Error (MSE) while simultaneously

conducting regularization processes. Regularization’s primary merits, steered by hyperpa-

rameter selection, are its ability to curtail data overfitting6 and reduce model complexity.

The latter often leads to forecasts that surpass those produced by traditional techniques due

to practical bias-variance trade-offs. In the following subsection, we provide the method

we chose for optimal hyperparameter choice.

1.2.1.2 Choice of hyperparameters

Hyperparameter selection is foundational to the efficacy of machine learning (ML) tech-

niques. We pinpoint optimal hyperparameters using K-fold cross-validation and ensure

compatibility with our panel data structure by cross-validating across both time series and

cross-sectional dimensions. To elucidate, for a specified model and a given hyperparam-

eter combination, we segment a subsample into k groups, each of roughly equal size.

Adopting group j (1⩽ j ⩽ k) as our validation set, we train the model on the remaining

k − 1 groups. We then generate predictions for the capital-to-asset ratio within group j,

allowing us to compute the associated mean square error (MSEj):

MSEj =
1

N

∑
i,t

(Yi,t+1 − Ŷ j
i,t+1)

2.

6Data overfitting emerges when the function ĝj estimated by the forecasting technique mirrors the
target variable almost flawlessly, erasing in-sample residual variability. This results in a deceptively low
in-sample MSE that may hide subpar out-of-sample prediction performance.
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Here, N denotes the number of banks present in the validation set, while i and t represent

the cross-sectional and temporal dimensions, respectively. Reiterating this exercise for all

k folds, we derive an aggregate forecasting metric for the stipulated hyperparameters:

MSE =
1

N

k∑
1

MSEl.

This procedure is replicated for every conceivable hyperparameter combination. The hy-

perparameters producing the minimal MSE are deemed optimal. We subsequently train

the model on the entire subsample using these optimal hyperparameters. It is paramount

to highlight that the estimation procedure for standard linear (SL) models differs markedly

from their ML counterparts.

1.2.1.3 SL models specificity

Specifically, the SL models we estimate are defined as:

Yi,t+h = α + ρYi,t + ϵi,t+h , (1.3)

Yi,t+h = Yi,t + ϵi,t+h , (1.4)

Yi,t+h = α + ρYi,t + Z ′
i,tβ + ϵi,t+h, (1.5)

where Equation (1.3) denotes the autoregressive model, Equation (1.4) represents the ran-

dom walk without drift, and Equation (1.5) represents the pooled OLS. Unlike ML models,

Zi,t the regressor vector comprises a limited set of variables, including microeconomic pre-
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dictors, macroeconomic expectations, and a limited number of macroeconomic variables.

Parameters α, ρ and β are estimated by OLS. We choose random walk without drift as the

benchmark model to check if it is valuable to forecast the capital-to-asset ratio.

1.2.1.4 Pseudo out-of-sample forecasting exercise

We choose the expanding window estimation technique. Then, we split the data sample

initially into two: the estimation and validation set, which extends from 1986q3 to 2000q1,

and the test set, which covers 2000q2-2017q4. After choosing hyperparameters, we esti-

mate the model in the first subsample and predict the capital-to-asset ratio one quarter

ahead. We run the process iteratively by expanding the estimation and validation set by

one quarter until we have predicted the dependent variable for the last quarter of the test set

sample 2017q4. This methodology is analogously applied when constructing linear stan-

dard forecast models. After model development, we embark on a comparative analysis.

We first evaluate their forecasting performance by computing their relative mean square

error. Let us denote by MSEj the out-of-sample mean square error of model j, MSE the

out-of-sample mean square error of the benchmark model, and RMSEj the relative mean

square error of model j, we can formulate :

RMSEj =
MSEj

MSE
.

The best forecasting model is the one with the lowest RMSE. To be confident that the

superiority of the best model is not due to pure chance, we run the Diebold Mariano test

(DM) between that model and the others individually.
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1.2.1.5 Construction of the shock

Let us denote by Ŷ opt
i,t+1 the prediction of the capital-to-asset ratio one quarter ahead relative

to the best forecasting model. From (1.1) and (1.2), we first derive forecast error, our bank-

specific shock, êi,t+1 for each quarter of the test set sample as:

êi,t+1 = Yi,t+1 − Ŷ opt
i,t+1. (1.6)

A positive value of êi,t+1 means that a bank’s capital-to-asset ratio is higher than pre-

dicted during that quarter. A negative value reflects a bank capital-to-asset ratio lower

than anticipated. Second, we determine a measure of credit supply shock by averaging êi,t

depending on the size of the bank7. Concretely, if we denote by et the aggregate credit

shock at quarter t, we can write:

et =

N ′
t∑

i=1

wi,t−1êi,t , (1.7)

where wi,t−1 is the weight of bank i in t − 1 in relation with the total assets of the N ′
t =

min(Nt−1, Nt) banks present in the sample at t−1 and at t. The weighted average of bank-

specific shock computed in (1.7) is robust to the idiosyncratic movement of some banks.

It also integrates by construction the difference in the size of banks in our sample and their

differential impact on credit supply shock. Since our measure of shock originates from the

out-of-sample exercise, we compute it for the period 2000q2-2017q4, corresponding to the

test set sample. By construction, aggregate credit shock is a shock on the bank’s leverage.

A positive value of et is a positive leverage shock that could bring banks to expand loans.

7Mesonnier and Stevanovic (2013) used this shock aggregation strategy.
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A negative value, on the contrary, constrains the bank’s capacity to invest and grant credit,

resulting in credit restriction. There are many potential drivers of this shock. It could be

driven, for example, by an unanticipated adverse event hitting the bank’s solvency, like

the assets price bubble collapse in the recent Great Recession. It could also come from

surprise government actions affecting banks’ leverage. For instance, The US rescue plan

during the Great Recession resulted in the massive injection of capital into large systemic

banks. As we control for extensive macroeconomic information and bank balance sheet

characteristics and remove the anticipated component, it is reasonable to suggest that the

measure is unrelated to credit demand and risk factors. Romer and Romer (2004) have

used the same strategy to construct the monetary policy shock measure. They removed

endogenous and anticipatory movements from the federal funds rate to derive a measure

of monetary shock.

To enlighten the originality of our identification strategy, we need to clarify how this ap-

proach may improve the identification of bank supply credit shock.

1.2.2 How our methodological approach could improve the identification of bank
credit supply shock?

We can state the true unknown forecast model of bank capital-to-asset ratio in the popula-

tion as in Equation (1.8) :

Yi,t+1 = g∗() + ϵi,t+1 . (1.8)

Yi,t+1 = g() + ei,t+1 (1.9)
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Yi,t+1 = ĝ() + êi,t+1 . (1.10)

Based on the theory, the literature, and intuition, the econometrician sets the specification

in Equation (1.9) and estimates it in Equation (1.10). From Equations (1.8), (1.9), and

(1.10), we can decompose the forecast error as follows:

Yi,t+h − Ŷi,t+h = g∗()− g()︸ ︷︷ ︸
approximation error

+ g()− ĝ()︸ ︷︷ ︸
estimation error

+ϵt+h (1.11)

Our methodological approach by exploring various flexible forecasting techniques allows

capturing the model (g∗()) whether linear or complex, reducing the approximation error

in (1.8) and better approximating the banker systematic response (g∗()). Furthermore,

considering all potential micro and macro predictors reduces the estimation error in (1.8).

Therefore, our approach leads to better identification of the credit supply shock. Identify-

ing the shock with micro and macro data is the core of two papers close to ours: Mésonnier

and Stevanovic (2017) and Mésonnier and Stevanovic (2013). Mésonnier and Stevanovic

(2017) take advantage of panels of large US BHC to construct a measure of bank credit

supply as the residue of the regression with the capital-to-asset ratio as the dependent

variable. They specify g as a linear function of limited micro and macro predictors, ren-

dering their model too restrictive. If the suitable model is complex, their approach will

not approximate properly (g∗()) and, ultimately, the credit measure. In addition, if the

accurate model is not sparse, their method will entail estimation error and biased credit

shock measure. Although built with a massive macroeconomic database, Mésonnier and

Stevanovic’s (2013) model is restrictive as it assumes a linear form for g(). They construct

the shock similarly to our paper at the micro-level. However, by not exploring other func-

tional forms, their shock could be affected by misspecification and, therefore, needing to
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be correctly specified.

1.3 Data

This paper is based on an update and extension to the panel of the 100 largest Ameri-

can banks holding companies8, initially constructed by Mésonnier and Stevanovic (2013).

Our sample now spans from 1986q3 to 2017q4. As depicted in the top panel of Figure 1.1,

there is a pronounced co-movement between the total assets of all banks and those of the

banks in our sample. This synchronization can likely be attributed to the dominant size

and influence of the banks we consider, which, on average, represent 65% of all banks’ to-

tal assets, with surges reaching up to 70%. Intriguingly, there is a noticeable decline in the

total assets and the proportionate weight of the selected banks in 2006. This anomaly can

be traced back to a landmark regulatory shift in the first quarter of 2006. With the mod-

ification in the law concerning bank holding companies, all subsidiaries boasting assets

above 1 billion USD transitioned to full-fledged bank holding companies. This regulatory

move precipitated an average of 30% contractions in the impacted banks’ cumulative as-

sets during that year. Given our analytical approach, which combines machine learning

techniques tailored for panel data with time series methods, we use two distinct datasets:

bank-specific records and broader aggregate data.

8For detailed bank listings, refer to Appendix D. In the text, we will interchange the terms bank
holding company (BHC) and bank. We focus on BHC instead of commercial banks since the leverage
decision is taken at the headquarters level and affects all subsidiaries.
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1.3.1 Bank specific information

We have extracted specific data from the Consolidated Financial Report of the Chicago

FED (FRY-C9 form) to comprehensively analyze the microeconomic characteristics im-

pacting a bank’s capital-to-asset ratio. Building on the framework of Mésonnier and Ste-

vanovic (2013), we have structured our dataset around several key variables that influence

the capital-to-asset ratio:

One-quarter lagged value of capital-to-asset ratio (capitalratio1) gauges the inertia

inherent in the capital-to-asset ratio.

Bank size (size) defined by the logarithm of the bank’s total assets offers insights into the

bank’s prominence.

Return on Assets (ROA), calculated as the ratio of the bank’s net income to its total

assets, serves as a barometer for the bank’s profitability and indicates the net profit per

monetary unit of total assets.

Net Charge Off (NCO) represents the value derived from the charge-off on allowance

for loans and lease losses minus recoveries, divided by total assets. It acts as a reflection

of the banker’s perception of risk tied to his commitments.

The Real Estate Loan Ratio (REloan) measures the proportion of mortgage loans to

total assets, and the Commercial and Industrial Credit Loan Ratio (CIloan) calculates

the ratio of commercial and industrial credit loan volume to total assets. Supplement-

ing these variables, we have incorporated two dummy variables — merge and status —

sourced from Mésonnier and Stevanovic’s (2013) database and the FRED Chicago web-

site. The merge variable indicates whether a bank undergoes merging in a given quarter,

while status provides insights into any shifts in the bank’s official status. Table 1.1 offers

a detailed breakdown of the descriptive statistics tied to the dependent and the variables
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mentioned above.9 Notably, except for size, all variables display pronounced heterogene-

ity, evident from the ratio of their standard deviations relative to their means.

Figure 1.1 Evolution over time of total assets of banks
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9Appendix C describes the variable computation and highlights the relationship between the capital-
to-asset-ratio and other important accounting items.
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Table 1.1 Summary statistics for some bank specific information

mean sd p25 p50 p75
Capital ratio 8.54 5.87 6.63 7.77 9.15
size 17.18 1.43 16.08 16.92 17.97
NCO 1.17 1.53 0.28 0.67 1.45
CIloan 16.00 8.24 10.90 15.75 20.62
REloan 26.34 13.26 18.22 26.20 33.65
ROA 2.66 3.77 1.15 2.31 3.76
merge 0.03 0.16 0.00 0.00 0.00
status 0.12 0.32 0.00 0.00 0.00

1.3.2 Aggregate data

We consider all the macroeconomic and financial series of the McCracken and Ng (2020)

database. We can classify these 250-time series into five categories, namely: (1) indicators

of economic activity, (2) indicators of inflation, (3) interest rates, (4) indicators related

to the credit and money market, and (5) other financial indicators and asset prices. We

render all these series stationary before any operation according to the procedure described

in the database. We furthermore include as potential predictors of capital ratio two

variables reflecting macroeconomic expectation: (1) expectation of the growth rate of the

real economy and (2) expectation of change in monetary policy. We measure the former by

the average value of GDP growth rate expectations over one year. In contrast, we compute

the latter as the average expected change over a one-year horizon of the interest rate on

Treasury bonds with a three-month maturity. We derive the data on these two expectation

variables from the statistical survey of forecasters conducted by the Federal Reserve of

Philadelphia.
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1.4 Measure of bank’s aggregate credit shock

1.4.1 Performance of different capital-to-asset ratio forecasting models

Slightly more than a third of the models for predicting the bank’s capital-to-asset ratio have

predictive powers superior to the random walk (Table 1.2). The ML predictions’ mean and

median improve the random walk’s predictive power by 3% and 6%, respectively. They

are, in turn, dominated by Gradient Boosting. The latter improves the predictive capacity

of the random walk by 12% and stands out as the best forecasting model. Analysis of the

prediction performance according to the size of the bank10 shows that the Gradient boost-

ing remains the best model for forecasting the capital-to-asset ratio for the smallest and

largest banks (group 1 and group 4). Regarding banks of intermediate size (group 2 and

group 3), no model can better predict the bank’s capital-to-asset ratio than the random walk

and the Gradient Boosting. These two models display the same forecasting performance

for these groups of banks. These facts can be observed in examining Figure 1.2. Indeed,

Gradient Boosting ensures a suitable adjustment of the capital-to-asset ratio for four banks

belonging to the four respective groups. Table 1.3 presents the results of the DM test be-

tween the Gradient Boosting and each of the competing forecast models of capital-to-asset

ratio. The entries in this table confirm Gradient Boosting’s forecast superiority relative to

other models in forecasting capital-to-asset ratios.

10We divide the banks into four groups defined by the three quartiles of the average total assets of a
bank on the test set. The quartiles are Q1=1.72e+07, Q2=4.93e+07, and Q3=1.95e+08; the unit is a thousand
US dollars. The first group comprises banks whose average total assets on the test set are less than Q1. The
second group includes banks whose average total assets are greater than or equal to Q1 and less than Q2; the
third group includes banks whose average total assets are greater than or equal to Q2 and less than Q3. The
last group consists of banks whose average total assets exceed Q3. RMSEi, i=1...4 provides information on
the mean square error of the different models for the banks of group i. Appendix F presents the list of banks
by size.
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Table 1.2 RMSE of different forecasting models
Model RMSE RMSE1 RMSE2 RMSE3 RMSE4

Random walk 1 1 1 0.33 0.26
Model of Mesonnier and Stevanovic(2013) 0.94 0.79 1.03 1.09 1.00
Pooled OLS 3.27 2.95 2.81 3.39 4.08
Lasso 1.00 0.84 1.03 1.12 1.11
Adaptive Lasso 0.94 0.82 1.00 1.09 1.00
Elastic net 1.09 0.84 1.13 1.18 1.28
Ridge 1.33 1.21 1.32 1.30 1.54
PCA 2.45 2.63 2.19 2.12 3.04
Auto regressive model 0.94 0.79 1.00 1.06 1.00
Random Forest 0.97 0.84 1.00 1.03 1.04
Gradient Boosting 0.88 0.71 1.00 1.00 0.92
NN1 1.51 1.32 1.58 1.58 1.81
NN2 1.58 1.50 1.74 1.21 1,69
NN3 1.27 1.03 1.42 1.42 1.50
NN4 1.30 1.05 1.55 1,42 1.54
Forecasts Average 0.97 0.81 1.03 1.06 1.04
Median forecasts 0.94 0.79 1,00 1.03 1.00

Note: The term in bold relates to the best model. The first column provides the MSE of the benchmark
model i.e the random walk without drift normalized to 1. The other columns denotes the RMSE of models
relative to the benchmark. NN1 is the neural network with one layers and 32 neurons. NN2 is the neural
network with two layers containing respectively 32 and 16 layers. NN3 represents the neural network with
three layers having respectively 32, 16 and 8 neurons. Last, NN4 denotes the neural network with four layers
containing repectively 32, 16, 8 and 4 neurons. Average forecasts and Median forecasts denote respectively
the average and median of ML forecasts.
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Figure 1.2 Predicted and factual values of the capital-to-asset ratio for four banks belong-
ing respectively to the four groups
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Table 1.3 Result of DM test
Model Test statistics p-value significance
Random walk -1.28 0.09 *
Model of Mésonnier and Stevanovic (2013) -1.97 0.02 **
Pooled OLS -18.93 0.00 ***
Lasso -3.90 0.00 ***
Adaptive Lasso -2.15 0.01 **
Elastic net -6.97 0.00 ***
Ridge -11.56 0.00 ***
PCA -16.93 0.00 ***
Autoregressive model -1.83 0.03 **
Random Forest -2.29 0.01 **
NN1 -15.47 0.00 ***
NN2 -16.72 0.00 ***
NN3 -10.57 0.00 ***
NN4 -11.18 0.00 ***
Forecasts average -2.93 0.00 ***
Forecasts median -1.69 0.04 **

Note: NN1 is the neural network with one layers and 32 neurons. NN2 is the neural network with two
layers containing respectively 32 and 16 layers. NN3 represents the neural network with three layers having
respectively 32, 16 and 8 neurons. Last, NN4 denotes the neural network with four layers containing repec-
tively 32, 16, 8 and 4 neurons. Average forecasts and Median forecasts denote respectively the average and
median of ML forecasts. * significant to 10%; **significant to 5%; *** significant to 1%.

1.4.2 The cyclical behavior of the aggregate credit shock series

We derive the subsequent series of the aggregate credit shocks based on the best capital-to-

asset ratio forecasting model, the Gradient Boosting. This measure has a nearly zero mean

and a standard deviation of 0.22. Figure 1.3 plots the variation of the measure over time.

The measure has approximately zero mean and a standard deviation of 0.72, which unveils

some variability. The most pronounced adverse shocks materialize in 2006q2 and span

from 2007q2 to 2007q4, immediately preceding the Great Recession. Another notable

downturn occurred in 2008q3, during the recession itself,11 followed by 2010q1. In con-

trast, significant positive shocks were observed in 2004q3, 2008q4, 2009q1 and 2009q2.

The U.S. government’s bailout initiative during the Great Recession, which prioritized the

11Recession periods are demarcated in gray on the Figure.
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recapitalization of systemic banks, may elucidate the pronounced positive shifts in the ag-

gregate credit shock in late 2008 and early 2009. The aggregate shock displays a negative

skewness of -0.17 and a positive and significant kurtosis of 9.43, which suggests more

extreme negative values than positive ones. These substantial adverse shocks, especially

those manifesting just before or during the onset of the Great Recession, underscore the

instrumental role of the bank credit channel in transmitting the repercussions of the sub-

prime financial crisis to the broader economy.

Figure 1.3 Fluctuation of the aggregate credit shock
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1.4.3 Aggregate credit shock and other measures of bank credit supply

We critically assess four prominent credit supply indicators as described in extant litera-

ture. Our foremost indicator is the risk premium on corporate bonds (prime), as elabo-

rated by Gilchrist and Zakrajšek (2012). This metric gauges the appeal of corporate bonds

to investors.12 A surge in the value of prime implies worsening credit conditions, while a

diminishing value indicates a relaxation of financial constraints.

The second indicator, the Net Percentage Tightening (Npt), represents the net percent-

age of banks tightening credit conditions. The FED quarterly survey, which involves a

representative sample of large banks, inquires about changes in their lending standards.

Specifically, banks report any tightening of credit conditions from the preceding quarter.

This metric calculates the difference between the percentages of banks that tightened lend-

ing conditions and those that eased them. An increase in the measure could imply a decline

in credit supply, while a decrease would mean an increase.

The aggregate Capital Ratio is defined as the ratio of aggregate capital to aggregate as-

sets, as characterized by Berrospide and Edge (2010).

Finally, the Mésonnier and Stevanovic (2013) shock ( MS shock) is an adaptation to

forecasting of their methodological approach13. Their original work constructs a shock in-

ferentially by estimating a panel regression model. The model’s dependent variable is the

bank’s capital-to-assets ratio, and the explanatory variables combine microeconomic data

and extensive macroeconomic variables. They aggregate the residuals from this model to

12The risk premium for a bond is derived from linear regression, with the yield spread of a corporate
bond as the dependent variable and the bond’s attributes and the associated firm’s characteristics as explana-
tory variables. The overarching aggregate risk premium is ascertained by computing the quarterly arithmetic
mean of the risk premiums across diverse corporate bonds.

13We provide details on the Mésonnier and Stevanovic (2013) methodology in appendix B.
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create the aggregate shock.

By their constructions, the aggregate capital ratio and MS shock are shocks to the leverage

effect of banks. A positive change of one standard deviation of one of these shocks should

give banks more leeway and encourage them to increase the volume of loans. A negative

variation should have the opposite effect.

Figure 1.4 draws the aggregate credit shock alongside the above indicators. It shows that

the lagged values of capitalratio and the contemporary risk premium values are negatively

correlated14. This same observation emerges from the graphical comparison between the

aggregate capital ratio and Npt. Figure 1.5 illustrates a positive correlation between ag-

gregate credit shock and MS shock and between aggregate credit shock and capital ratio.

Statistics confirm this graphical trend by placing the correlation between aggregate credit

shock and MS shock at 0.77 and then between aggregate credit shock and the aggregate

capital ratio at 0.24.

1.5 Macroeconomic implications

1.5.1 Estimation and identification of the VAR model

We estimate a Vector Autoregression (VAR), which includes seven endogenous variables15.

The real GDP growth rate, denoted as GDP, is derived from the log difference in Real

GDP across successive quarters. The inflation rate, termed Inflation, is computed from

14The aggregate credit shock is contemporanously correlated to all other measures of credit supply.
However, the correlation is strong with MS Schock (0.72) and weak for Npt and aggregate capital ratio.

15For a more in-depth exposition of the VAR modeling, recursive identification method, descriptive
statistics, and visual depictions of the variables discussed, refer to Appendix E. The only shortcoming of this
approach is that VAR is linear, whereas the shock is built upon nonlinear models.
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Figure 1.4 Aggregate credit shock, Risk premium and Npt
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Figure 1.5 Aggregate credit shock, MS shock and aggregate capital ratio
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the log difference in the Consumer Price Index (CPI) between two consecutive quarters.

The FED policy interest rate, represented as TFED, captures the FED’s monetary stance.

The growth rate of credit volume, denoted as Volume of Credit, is obtained from the log

difference in the volume of commercial and industrial loans extended by banks over adja-

cent quarters. The aggregate credit shock, labeled as Shock, captures unforeseen economic

disturbances as previously constructed. The corporate bond risk premium, referenced by

Gilchrist and Zakrajšek (2012) and termed Risk Premium, signifies the additional return

investors demand for holding corporate bonds relative to risk-free assets. Lastly, the yield

gap measures the differential between returns on BAA corporate bonds and 10-year Trea-

sury bonds and indicates credit market conditions and investor sentiment.

We choose one as the optimal lag in estimating the VAR using the BIC criteria. Consistent

with the approaches of Berrospide and Edge (2010), Bassett et al. (2014), and Mésonnier

and Stevanovic (2017), we integrate a set of financial variables into the VAR model, sup-

plementing those related to the economic cycle. At the macroeconomic level, we identify

the bank credit supply shock as a variation equivalent to one standard deviation of Shock

orthogonal to the other variables within the VAR framework. We employ the conventional

recursive method based on the order, as mentioned above, of endogenous variables for this

identification. As part of our approach, we postulate that GDP and Inflation remain unaf-

fected by the immediate impact of Shock. This assumption mirrors the method Berrospide

and Edge (2010) used, which, when extracting a credit supply shock—assumed to reflect

a change in the aggregate capital ratio to banks’ total aggregate assets—also enforced a re-

striction barring macroeconomic variables from responding to the concurrent innovation.

This assumption holds water as the modification of investment and production plans tran-

spires over an extended period, making instantaneous adjustments within a single quar-

ter implausible. Additionally, our restrictions rule out the possibility of TFED reacting
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instantaneously to Shock. This constraint is anchored in the notion that the FED’s mon-

etary policy adheres to a Taylor reaction function16, with response exclusively dedicated

to shifts in inflation and the output gap. Furthermore, even if central banks occasionally

engage in financial stability matters, monetary authorities’ delayed awareness of banking

market trends does not invalidate our restriction. Yield gap and Risk premium undergo

immediate shifts due to oscillations in other market variables within the VAR. The agile

nature of financial markets in reacting to macroeconomic shifts and the frequent availabil-

ity of economic data (often daily) accounts for the swift adjustments in these two financial

metrics. Furthermore, we evaluate uncertainty around the point estimate of the response

function of endogenous variables to shock on aggregate credit by constructing a confident

interval based on the bootstrap method.

1.5.2 Effects of a negative variation of one standard deviation of the aggregate credit
shock

Figure 1.6 below illustrates the macroeconomic variables’ responses to an unexpected neg-

ative variation of one standard deviation to Shock. This fluctuation immediately triggers a

decrease of 0.64 points in Shock, which then increases gradually to return to its long-term

level after four quarters. GDP declines significantly to a maximum of 0.25% quarterly

(i.e., 1% on an annual basis) two quarters after variation of Shock. It remains at a level

below its initial level for a year. Gilchrist and Zakrajšek (2012) also find a rapid response

of a slightly higher amplitude of GDP (0.5% quarterly) to a financial shock to the bond

16A Taylor reaction function, introduced by economist John Taylor in 1993, delineates a monetary
policy rule correlating the central bank’s benchmark interest rate with inflation rates and the output gap:
it = πt + ρ+ θπ(πt − π̂t) + θy(yt − ŷt). Here, it represents the key interest rate at time t, πt stands for the
inflation rate, π̂t is the central bank’s targeted inflation rate, ρ denotes the long-term real interest rate, and yt
and ŷt signify the actual and potential GDP at time t, respectively.
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risk premium identified as a credit shock.

Volume of Credit shrinks one quarter later and reaches its lowest value in the second quar-

ter, i.e., a quarterly decrease of 0.8 %. Unlike GDP, the shock has lasting effects on Volume

of Credit, which remains below its long-term level for about 12 quarters. Mésonnier and

Stevanovic (2017) and Berrospide and Edge (2010) find similar results regarding the mag-

nitude and the persistence of a financial shock on the growth rate of the volume of credit.

Inflation response is negative and short because it only spreads over four quarters. In the

second quarter, Inflation reaches its minimum value following the fluctuation in Shock,

i.e., a maximum quarterly decline of 0.32%. An easing of monetary policy results in a ten

basis point reduction in TFED for two quarters.

Risk premium and Yield gap significantly increase after Shock fluctuation and register

their most significant increases two quarters after (1% maximum). Both indicators remain

above their respective long-term values for more than two years. The dichotomous re-

sponses of credit quantity (Volume of Credit) and credit pricing metrics (Risk premium and

Yield gap) in the wake of Shock perturbation suggest its characterization as a credit supply

shock.
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Figure 1.6 Response functions of macroeconomic variables to a negative variation of one
standard deviation of Shock
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1.5.3 Transmission mechanisms of the aggregate credit shock

In the prior segment, we discerned the pronounced implications of Shock variation across

all VAR components. Now, the focal inquiry shifts to uncover the transmission conduit

of Shock to GDP.17 To unravel this mechanism, we estimate the reduced equation specific

to GDP. The outcomes of this estimation find a place in Table 1.4. A salient observa-

tion from Table 1.4 reveals that the antecedent value of Shock remains inconsequential

17GDP is a predominant variable in the economic cycle. We can, therefore, restrict the question of
the transmission of Shock to this variable.
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in shaping GDP, which emphasizes the non-existence of a direct transmission pathway of

Shock to GDP. Further dissection indicates that Volume of credit adjustment mechanism is

not the medium of Shock transmission, given its negligible influence on GDP. The spot-

light thus shifts to Risk premium, emerging as the solitary variable that bears significant

weight in explicating GDP variations. Consequently, it stands out as the exclusive channel

that ferries the implications of Shock to GDP. Drilling deeper into this finding, a negative

perturbation in Shock incites a reflexive action from banks, manifested as a curtailment in

their engagement with corporate bonds. Given the magnitude and stature of these financial

institutions, such a move invariably reverberates through the financial market’s credit sup-

ply. As the credit reservoir recedes, it ushers in a spike in the risk premium. This surge, in

turn, casts shadows on investment and consumption appetites, culminating in a downtrend

in GDP.

Table 1.4 Estimate of the reduced GDP equation
(1)

GDP_t
GDP_t-1 0.0142

(0.1272)

Inflation_t-1 -0.0372
(0.1655)

TFED_t-1 0.0225
(0.0723)

Volume of credit_t-1 0.0109
(0.0144)

Shock_t-1 0.1852
(0.1744)

Risk premium_t-1 -0.5819∗

(0.3104)

Yield’s gap_t-1 0.1545
(0.3331)

_cons 0.0193
(1.0317)

N 70
R2 0.364
F 3.7270

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



39

1.5.4 Robustness analysis

We evaluate the robustness of the VAR analysis according to three criteria: (1) the succes-

sive use of two lags and three lags in the estimation of the VAR, (2) the use of the growth

rate of the industrial production index as an alternative measure of economic activity re-

placing GDP , (3) the replacement of TFED with the interest rate on 6-month Treasury

bonds of maturity (TB6M).

1.5.4.1 Estimation of the VAR model with additional lags of endogenous variables

Our analysis involves a sequential estimation of the VAR by integrating 2 and 3 lags of

the endogenous variables. As evidenced in Figure 1.7, the response functions arising from

these two specifications are congruent in sign and pattern, with those emanating from the

baseline model anchored on a single lag. Such consistency reinforces the resilience and

robustness of our VAR estimation against alterations in the lag selection for endogenous

variables.

Figure 1.7 Response functions of macroeconomic variables to a negative variation of one
standard deviation of Shock for lags 1, 2 and 3
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1.5.4.2 Estimation of the VAR model with an alternative specification of the variable
providing information on the state of the economic cycle

In our extended analysis, we opt for a substitution in our measure of economic activity.

Specifically, we transition from GDP to another benchmark – the growth rate of the in-

dustrial production index, denoted as IPI. The ensuing response functions, illustrated in

Figure 1.8, indicate that this modification does not perturb the established patterns. Thus,

irrespective of whether we employ GDP or IPI as our economic activity gauge, the ob-

served dynamics remain consistent, further attesting to the robustness of our findings.

Figure 1.8 Response functions of macroeconomic variables to a negative variation of one
standard deviation of the aggregate shock according to two measures of economic activity
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1.5.4.3 Estimation of the VAR model with TB6M as the interest rate reflecting the stance
of monetary policy

The TB6M, akin to TFED, serves as an indicator of monetary policy direction. However,

it is noteworthy that during the Great Depression, the FED made a pivotal move by re-

ducing the benchmark interest rate, TFED, to a zero threshold (as detailed in Appendix

E.2) and maintained it at this nadir for an extended duration. Given this historical context,

evaluating whether such a monumental event skews the response functions is imperative.

To achieve this, we substitute TFED with TB6M in our model. The insights from Figure

1.9 indicate that substituting these monetary indicators does not introduce any distortions

in the response functions. This finding underscores that the system’s dynamics remain

consistent irrespective of whether TFED or TB6M is used as a monetary policy measure.
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Figure 1.9 Response functions of macroeconomic variables to a negative variation of one
standard deviation of Shock according to TB6M and TFED
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We have established the robustness of our VAR estimation to the three criteria quoted

above. However, one question remains: Does the identification method used to extract

credit supply shock matter? This question is the object of the following subsection.
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1.5.5 Does the identification method matter in extracting aggregate credit shock ?

Reassessing the nature and influence of credit supply shocks, we juxtapose our baseline

model with two alternative indicators. The first alternative stems from Mésonnier and Ste-

vanovic’s (2013) model, termed shockMS. At the same time, the second is anchored in

Berrospide and Edge (2010) approach, rooted in the aggregate capital ratio. Upon exam-

ination, Figure 1.10 underscores that all models exhibit responses in the same direction,

but their magnitudes and nuances are discernibly different. Specifically, GDP and Inflation

sensitivities appear more pronounced under the shockMS model compared to the baseline.

In contrast, the Volume of credit showcases heightened reactivity within the baseline when

juxtaposed with shockMS. This empirical observation finds further reinforcement in Table

1.5. The table demonstrates that shockMS accounts for 13% of GDP fluctuations across

horizons 2, 4, and 8, while our baseline model’s Shock elucidates only about 5% on aver-

age. However, this narrative reverses when delving into the Volume of credit. A plausible

explanation for this disparity lies in the inherent methodological distinctions between the

two models. While both models harness similar datasets, they interpret them through dis-

tinct lenses. The shockMS model operates on an implicit linearity assumption between a

bank’s capital-to-asset ratio and its predictors. In contrast, our analysis, harnessing the

capabilities of Gradient Boosting, posits a more intricate nonlinear relationship. Such a

distinction may be pivotal in understanding the varied findings, suggesting that the intrin-

sic nonlinearity of certain relationships plays a crucial role in shaping outcomes.

The response of key macroeconomic indicators to variations in the aggregate capital ra-

tio is notably subdued. As depicted in Figure 1.11, movements in the aggregate capital

ratio seem to be inconsequential to GDP, Inflation, and Volume of credit. This obser-

vation is further substantiated by Table 1.5, which indicates that the aggregate capital
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ratio imparts only a peripheral influence across varying horizons on the oscillations of

macroeconomic markers tethered to real economic activity. Interestingly, the apparent de-

tachment of the aggregate capital ratio from the Volume of credit underscores its inability

to capture the nuances of bank credit supply shocks—such finding ushers in two pivotal

takeaways. Firstly, the indispensability of microeconomic data becomes evident. Without

delving into granular, micro-level datasets, capturing the subtleties and intricacies of bank

supply credit shocks becomes a formidable challenge. Secondly, it outlines the primacy

of the methodological framework. In essence, when engaging in the structural analysis

of macroeconomic implications of banking shocks, an agnostic stance, complemented by

suitable predictors and functional framework, proves paramount.
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Figure 1.10 Response functions of macroeconomic variables to a negative variation of one
standard deviation of the aggregate credit shock (baseline model) and shockMS
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Table 1.5 Decomposition of the variance according to Shock, shockMS and aggregate cap-
ital ratio (in %)

horizon baseline model ShockMS model aggregate capital ratio model
GDP h=2 5.4 13.3 0.8

h=4 5.1 13.0 1.7
h=8 5.0 13.0 1.7

Inflation h=2 12.5 18.3 0.1
h=4 11.8 18.1 0.1
h=8 11.7 17.9 0.1

TFED h=2 4.3 3.6 0.3
h=4 5.5 6.6 1.5
h=8 6.7 10.4 2.8

Volume of credit h=2 1.6 1.2 0.2
h=4 5.4 3.9 0.9
h=8 6.1 6.7 3.3

Risk premium h=2 5.7 12.7 6.1
h=4 4.9 13.2 6.4
h=8 4.5 13.0 5.8

Yield gap h=2 8.4 13.2 8.3
h=4 7.3 13.8 10.4
h=8 6.8 14.3 9.2
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Figure 1.11 Response functions of macroeconomic variables to a negative variation of the
aggregate capital ratio
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1.6 Conclusion

We use an original approach to better define the shock to the bank credit supply identified

as a shock to the leverage effect. This approach allows us to use the financial data related

to bank balance sheets and all the macroeconomic series to build an aggregate credit shock

based on the best forecasting model of the bank capital-to-asset ratio, denoted Shock. By

including Shock in a VAR of variables describing the real economy and those related to

the financial market, we find that a negative variation of one standard deviation of Shock

significantly affects the business cycle. However, the impact on industrial and commercial

credit growth rates is more pronounced and persistent than the GDP growth. The VAR

model that we consider is robust to alternative lags in its estimation, to an alternative

measure of economic activity replacing the GDP growth rate, and to replacing the FED’s

key interest rate with the interest rate on 6-month Treasury bonds. We identify only one

transmission channel for this shock: the risk premium. A negative variation in Shock by

affecting the leverage of large banks diverts them from corporate bonds. The resulting

decline in the supply of credit combined with an increase in the risk premium reduces

investment prospects and affects GDP.

To analyze to which extent the methodological approach can affect the identification of

shock and response functions, we consider two alternative methods for identifying credit

supply shock: the approach of Mésonnier and Stevanovic (2013) and the approach of

Berrospide and Edge (2010). On this last point, the impact of the ratio of aggregate cap-

ital to aggregate assets fluctuation over the economic cycle is insignificant. This result

reminds us of the limits of identifying such a shock based solely on aggregate data. In

addition, using microeconomic and big macroeconomic data while constraining the rela-

tionship between the capital-to-asset ratio and its predictors to be linear does not allow for
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the recovery of its functions of responses in the case of a more complex relationship. The

perfect illustration is the difference observed between the response function of the baseline

model and that of the specification of Mésonnier and Stevanovic (2013). It is, therefore,

essential to use all available information before imposing a way to combine them to iden-

tify a credit supply shock and correctly identify its macroeconomic effects.



CHAPTER II

A MACHINE LEARNING APPROACH IN STRESS TESTING US BANK

HOLDING COMPANIES



ABSTRACT

This paper assesses the utility of machine learning (ML) techniques combined with com-

prehensive macroeconomic and microeconomic datasets in enhancing risk analysis during

stress tests. The analysis unfolds in two stages. I initially benchmark ML’s efficacy in

forecasting two pivotal banking variables, net charge-off (NCO) and pre-provision net

revenue (PPNR), against traditional linear models. Results underscore the superiority of

Random Forest and Adaptive Lasso models in this context. Subsequently, I use these mod-

els to project PPNR and NCO for selected bank holding companies under adverse stress

scenarios. This exercise feeds into the Tier 1 common equity capital (T1CR) densities

simulation. T1CR is the equity capital ratio corrected by some regulatory adjustments to

risk-weighted assets. Crucially, findings reveal a pronounced left skew in the T1CR dis-

tribution for globally systemically important banks vis-à-vis linear models. By mirroring

distress akin to the Great Recession, ML models elucidate intricate macro-financial link-

ages and fortify risk assessment in downturns.

Keywords: Machine learning, Big data, Forecasting, Scenarios, Stress-test.

JEL classification: C53, C55, E44, G17, G18, G32.
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2.1 Introduction

In the aftermath of the 2007-2009 financial crisis, the Federal Reserve (FED) introduced an

enhanced supervision framework for large banks and complex financial institutions, which

became a pivotal element of the Dodd-Frank Wall Street Reform and Consumer Protection

Act.1 As part of this framework, the FED conducts an annual stress test, which evaluates

how distressed macroeconomic and financial conditions may impact the regulatory capital

of bank holding companies (BHCs). This assessment aims to determine whether BHCs,

with total consolidated assets of at least 10 billion USD, have enough capital to absorb

losses during challenging situations while still providing loans to households and busi-

nesses.

This paper focuses on the top-down approach to stress tests, which comprises two stages.

In the first stage, the FED constructs forecasting models for pre-provision net revenue

(PPNR)2 and net charge-offs (NCO)3, two crucial variables that influence the dynamics of

a bank’s equity capital. In the second stage, these models are used to simulate PPNR and

NCO under stressful economic scenarios over a given stress test horizon. The ultimate

goal of this exercise is to compute the Tier 1 common equity capital (T1CR) for each

selected BHC during the same period. T1CR, the ratio of common equity Tier 1 capital

1The Dodd-Frank Act, a critical regulatory measure for the American financial system since the
mid-1930s, was implemented in July 2010 by President Obama to address the crisis and mitigate future
upheavals.

2PPNR is the sum of a bank’s interest and non-interest income, less interest and non-interest ex-
penses scaled by the bank’s average quarterly assets.

3NCO represents banks’ charges for loan and lease losses, adjusted for recoveries and scaled by the
bank’s average quarterly assets.
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(CET1)4 to risk-weighted assets is the final output of the stress test. To assess the capital

positions of the selected BHCs, the FED compares T1CR to a threshold defined by the

Basel III committee throughout the stress test horizon.

I aim to go beyond the traditional point forecasting of T1CR. Specifically, I seek to investi-

gate whether integrating machine learning techniques (ML) with comprehensive macroe-

conomic and microeconomic data sets can improve risk analysis in stress tests by offering

a more accurate estimation of the T1CR distribution compared to standard linear mod-

els. This investigation is of significant policy interest as it examines potential avenues for

improving the models used in stress tests, ultimately contributing to more robust risk as-

sessment methodologies. Building robust models that accurately predict PPNR and NCO

under hypothetical macroeconomic scenarios is essential to capture the risk in stress tests.

The accurate prediction of these variables is crucial for constructing a reliable estimation

of the T1CR distribution, allowing risk analysis. Liu et al. (2020) underscore the impor-

tance of the initial step of this process, which involves creating reliable forecasting models

for PPNR and NCO using observed macroeconomic and financial variables. These mod-

els are the foundation for subsequent analysis and decision-making within the stress test

framework. In light of this, I structure the analysis into two main steps.

In the first step, I investigate to what extent ML and big data can improve the accuracy

of PPNR and NCO forecasts compared to standard linear models such as the fixed effect

linear model, autoregressive model, random walk model, and pooled OLS model. Previous

research, including the work of Goulet Coulombe et al. (2022), has emphasized the ability

of ML to capture nonlinearities, making it a valuable tool in macroeconomic forecasting.

4CET1 is the equity capital corrected by regulatory adjustments. It is the core capital and the highest
quality capital immediately available to absorb unexpected shocks.
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In the same vein, exploring whether ML techniques can outperform traditional forecasting

methods when applied to bank-level variables is essential. In addition, selecting the proper

set of predictors enables a more accurate assessment of the financial health of banks and

the risks they might encounter.

For this investigation, I use a panel of 100 large American BHCs observed from the third

quarter of 1986 to the fourth quarter of 2019. I construct various out-of-sample forecasting

models, encompassing both linear and ML approaches. The set of predictors aligns with

those used by the FED in their stress tests. Given its standard usage by the FED in pro-

jecting PPNR and NCO components, I choose the fixed effect linear model as the bench-

mark for forecasting. Following this, I compute each model’s relative out-of-sample mean

square error (RMSE), a measure obtained by dividing a particular model’s out-of-sample

mean square error by that of the fixed effect linear model. The comparison of RMSE values

allows the identification of the model offering the most accurate forecasts, indicated by the

lowest RMSE. This comparative analysis underscores the added value of machine learning

methodologies within this context. In addition, I challenge the significance of expanding

the macroeconomic database and integrating BHC balance sheet characteristics beyond the

variables used in the FED stress scenarios when forecasting PPNR and NCO. To this end,

I sequentially construct ML forecasting models for PPNR and NCO, gradually expand-

ing the set of predictors to include a larger macroeconomic database and subsequently

combining this extensive macrodata with a wide range of microdata. Using the RMSE

criteria, I compare the performance of ML models that incorporate this expanded macroe-

conomic database against models that strictly rely on the predictors defined in the FED

stress scenarios. Moreover, I juxtapose ML models that use extensive macroeconomic and

microeconomic data against models that rely solely on enlarged macroeconomic informa-

tion. This multi-faceted comparison provides valuable insights into whether expanding the
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pool of predictors results in a noticeable relative improvement in the forecast accuracy of

ML models compared to the top-performing linear model.

In the second step, I use the best-performing ML forecast models for NCO and PPNR

to generate conditional predictions under severely adverse scenarios defined by the FED.

From these predictions, I compute point forecasts of T1CR and simulate T1CR distribution

for each selected BHC throughout the stress test horizon. Therefore, using ML modeling, I

can effectively characterize the banking sector’s vulnerability and assess capital adequacy

risks. For comparison purposes, I replicate the same analysis using a fixed effect linear

model as the forecasting model for NCO and PPNR. In addition, by assessing the density

forecast accuracy of both the ML model and the fixed effect linear model during the Great

Recession and comparing the distribution of T1CR for globally systematically important

banks, I may gain a deeper understanding of their respective abilities to capture and predict

risks in a challenging economic environment. This approach provides valuable insights

into the potential impact of adverse scenarios on the financial stability of individual BHCs

and the banking system as a whole.

The main contribution of this paper is to showcase the value of integrating ML modeling

into the risk analysis of stress tests, both indirectly and directly. Indirectly, the paper ex-

plores various models and demonstrates that ML models improve the forecast accuracy

of crucial banking variables. It also sheds light on the importance of expanding macroe-

conomic information in improving NCO and PPNR forecast accuracy over some time

horizons. This improvement in accuracy can have significant implications for assessing

and managing risk in the banking sector. Directly, the paper highlights that ML modeling

also leads to an improved density forecast of T1CR under stressful conditions compared

to linear models. Many prior studies do not consider ML modeling in predicting NCO and

PPNR (see, for example, Liu et al. 2020, Guerrieri and Welch 2012, Hirtle et al. 2016).
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Indeed, while some studies have applied machine learning techniques to forecast PPNR

and NCO, such as the works by Barth et al. (2019) and Kapinos and Mitnik (2016), they

do not consider the broader implications for risk analysis and financial stability.

The rest of the paper is organized as follows. Section 2.2 provides a brief overview of the

FED stress test framework. Section 2.3 presents the methodology. Section 2.4 contains

the description of the data. Section 2.5 delivers results. Section 2.6 concludes.

2.2 An overview of the FED stress test framework

Before the financial crisis, stress tests were typically discretionary and limited to specific

institutions.5 In the wake of the Great Recession, monetary authorities in developed and

emerging countries established rules that made stress tests mandatory for large banks and

complex financial institutions.6 The primary goal of these stress tests is to mitigate the

impact of potential economic downturns on the financial system and the real economy.

Since 2011, the FED in the USA has been conducting annual stress tests on large banks

and financial institutions, following a provision of the Dodd-Frank Wall Street Reform

and Consumer Protection Act. The main objective of this exercise is to ensure that these

institutions maintain sufficient capital to withstand severely adverse economic conditions

without disrupting the economy’s financing. The FED uses two complementary tools for

its stress tests: the Dodd-Frank Act Stress Test (DFAST) and the Comprehensive Capital

Analysis and Review (CCAR). These tools assess the capital position of BHCs with assets

5See Lederman (1990) and Hirtle and Lehnert (2015), for examples, of the sectorial stress test in
the USA before the Great Recession.

6Since 2010, the European Bank Authority has conducted yearly stress tests for European Union
member states. The FED made these tests mandatory in the USA and oversaw the process. Other emerging
countries, such as Brazil, also conduct regular stress tests.
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exceeding ten billion USD. They project critical revenue and loss variables under three

scenarios: severely adverse, adverse, and baseline. The severely adverse and adverse sce-

narios represent hypothetical distressed macroeconomic and financial conditions designed

to measure the solidity and resilience of large BHCs. On the other hand, the baseline sce-

narios rely on unconditional forecasts of scenario variables over a specific time horizon.

DFAST and CCAR are closely aligned, employing identical scenario variables, models,

and methodologies to produce comparable outcomes.

However, the computation of regulatory capital differs between the two approaches. DFAST

uses planned capital distributions, such as dividend payments and common stock repur-

chases, as defined by the FED, while CCAR uses the bank’s planned capital distribution.

To pass a stress test, a participating bank should have its projected tier 1 common equity

capital ratio (T1CR)7 remaining greater than or equal to 4.5% throughout the nine-quarter

forecast horizon. Figure 2.1 illustrates the evolution of the aggregate T1CR over time,

defined as the aggregate common equity tier 1 capital to the aggregate risk-weighted as-

set. The graph indicates that during the Great Recession, the aggregate T1CR declined,

reaching a minimum level close to the regulatory requirement of 4.5%. However, there

was a reversal in the trend after the turmoil, with the T1CR steeply increasing and show-

ing moderate stability in 2018. This observation suggests a continuous improvement in

banks’ capital position since the crisis, with the 4.5% T1CR constraint remaining far from

binding. Apart from the T1CR, Basel III sets the minimum total regulatory capital ratio8

7T1CR is the ratio of common equity tier 1 capital to risk-weighted assets. Mapping book equity
capital into common equity tier 1 requires subtracting regulatory adjustments, which include goodwill and
other intangibles, deferred tax assets, cash flow from hedge reserves, and gains on sales related to securiti-
zation transactions.

8The total regulatory capital ratio is the sum of core equity tier 1 and tier 2 capital to the risk-
weighted asset. Tier 2 capital is the second layer of capital, comprising revaluation reserves, hybrid instru-
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at 8%.

Figure 2.1 Aggregate T1CR
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2.3 Econometric approach

This section describes how I build the forecast models of two banking measures, i.e.,

PPNR and the NCO, and use them in the stress test.

2.3.1 Forecasting methodology

2.3.1.1 Machine learning techniques

I apply the machine learning techniques to the following models:

Yi,t+h = ĝ(Zi,t) + ei,t+h , (2.1)

where h represents the forecast horizon ranging from one to nine quarters, in line with

the range used by the FED in stress test exercises on BHCs. Yi,t+h denotes the value of

either PPNR or NCO of BHC i at quarter t + h, ei,t+h represents the forecast error and

Zi,t is a K × 1 regressor vector. The h-step ahead forecast of variable Yi,t+h for BHC i

given the information available at t is given by Ŷi,t+h=ĝ(Zi,t). I opt for a direct forecast

approach for h=2 to 9, as it has been shown in various studies that it is more robust to

misspecification compared to iterated forecasts (Chevillon and Hendry 2005,Marcellino

et al. 2006, Schorfheide 2005). Given a lack of confidence in a particular model, I explore

several models to find the most suitable. I estimate ĝ using three specifications combining

parametric and nonparametric machine learning techniques. The parametric techniques

I consider include "Lasso" regression, "Adaptive Lasso" regression, "Ridge" regression,

"Elastic Net" regression, Principal Component Analysis (PCA). For nonparametric tech-

niques, I include Gradient Boosting, Random Forest and Neural Network. Appendix A
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provides comprehensive details on these parametric and nonparametric machine learning

techniques.

In the first specification, Zi,t includes only lagged dependent variables, some bank-specific

predictors, and the macroeconomic series used by the FED in their stress tests. The sec-

ond specification expands Zi,t to include lagged dependent variables, microeconomic pre-

dictors from the first specification, and all macroeconomic and financial series from the

FRED database. The last specification incorporates additional BHC balance sheet charac-

teristics and the predictors from the previous specification. The primary objective of all

machine learning techniques is to estimate ĝ, which minimizes the out-of-sample Mean

Squared Error (MSE) while simultaneously applying regularization procedures. Regular-

ization serves a dual purpose. Firstly, it prevents the overfitting of the data, where the

estimated function ĝ fits the variable of interest too closely, leading to poor out-of-sample

prediction performance. Secondly, it reduces the model complexity and often results in

better forecast performance than traditional techniques through bias-variance trade-offs.

The choice of appropriate hyperparameters is crucial in regularization procedures. These

hyperparameters include penalization coefficients in "Lasso," "Elastic Net," and "Ridge"

regressions, as well as the number of trees and variables selected randomly at each step

for Random Forest.

I determine the optimal hyperparameters through K-fold cross-validation. Since the sam-

ple is a panel dataset, I perform cross-validation across time series and cross-sectional

dimensions. Specifically, I divide the subsample into k groups of approximately equal

size for a given model and a combination of hyperparameters. Group j where (1⩽ j ⩽ k)

is treated as the validation set, and I estimate the model on the remaining k − 1 groups.

Then, I predict the variable of interest PPNR or NCO for group j. The Mean Squared
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Error (MSEj) is computed as:

MSEj =
1

N

∑
i,t

(Yi,t+1 − Ŷ j
i,t+1)

2,

where N represents the number of banks in the validation set, i denotes the cross-sectional

dimension, and t represents the time dimension. This process is repeated k times, treating

each of the remaining k − 1 groups as a validation sample. Finally, I compute the average

forecasting performance for a given set of hyperparameters as follows:

MSE =
1

N

k∑
1

MSEl,

where l ranges from 1 to k. I repeat this process for all potential combinations of hyperpa-

rameters and select the ones that yield the lowest MSE, thus deriving the estimation model.

2.3.1.2 Estimation of standard linear forecasting models

In addition to machine learning models, I also consider several standard linear forecast

models: the autoregressive model, the random walk model without drift, pooled OLS

model, and the fixed effect linear model. They can be defined as follows:

Yi,t+h = α + ρYi,t + ϵi,t+h , (2.2)

Yi,t+h = Yi,t + ϵi,t+h , (2.3)

Yi,t+h = α + ρYi,t + Z ′
i,tβ + ϵi,t+h, (2.4)
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Yi,t+h = αi + ρYi,t + Z ′
i,tβ + ϵi,t+h. (2.5)

In these equations, Zi,t represents the regressor vector of the first specification. Parameters

α, ρ, and β are estimated using OLS, while αi represents the bank fixed effect. Equation

(2.5) is estimated using the Least Squares Dummy Variable (LSDV) estimator. It is worth

noting that the estimation of equation (2.5) can be biased in the presence of lagged depen-

dent variables, as discussed in Galvao Jr (2011). However, this bias diminishes in a long

panel dataset like ours. Although I define the fixed effect linear model as the benchmark,

the other linear models also serve as natural benchmarks. These linear models are widely

used in the literature on bank stress tests, as highlighted in studies such as Covas et al.

(2014), Hirtle et al. (2016), and Liu et al. (2020). By comparing the machine learning

models to these linear models, I can assess the performance and contribution of ML mod-

els in the context of bank stress tests.

2.3.1.3 Pseudo out-of-sample forecasting exercise

I use the expanding window estimation technique for the forecasting exercise. Initially,

I divide the data sample into two parts, i.e., the estimation and validation sample, which

spans from 1986q3 to 2000q1, and the test set, which covers the period from 2000q2 to

2019q4. After selecting the hyperparameters, I estimate the model using the entire first

subsample for each machine learning (ML) method concerning all three specifications.

The goal is to forecast the dependent variable Yi,t+h, h quarters ahead. I iteratively run

the process by expanding the estimation and validation sample by one quarter until I have

predicted the dependent variable for the final quarter of the test set, 2019q4. I follow a

similar procedure to build linear standard forecast models (SL) but estimate them based

only on the first specification. Once I construct various forecast models, I need to evaluate
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their forecast accuracy.

Let M denotes the number of competing forecast models, h represents the forecast horizon

(h=1...9), and j indicates the specification ranging from 1 to 3. To evaluate the forecast

model K (K=1...M) at the forecast horizon h within specification j, I calculate its relative

out-of-sample mean square error (RMSEK
j (h)), which is defined as :

RMSEK
j (h) =

∑N
i=1

∑Tmax

t=Tmin
(Yi,t+h − Ŷ K

i,t+h(j))
2∑N

i=1

∑Tmax

t=Tmin
(Yi,t+h − Ŷ B

i,t+h)
2

.

Here, N , Tmin, and Tmax represent the number of banks, the start date, and the end date

of the test set sample, respectively. Yi,t+h denotes the value of the variable of interest for

bank i at quarter t+ h while Ŷ K
i,t+h(j) represent predicted value of Yi,t+h h quarters ahead

relative to model K and given information at quarter t. Ŷ B
i,t+h represents the predicted

value of Yi,t+h h quarters ahead relative to the benchmark model and given information at

quarter t. The numerator represents the out-of-sample mean square error (MSEK
j (h)) for

model K at horizon h within specification j. At the same time, the denominator refers to

the same quantity as the numerator but relative to the benchmark model.

I identify the best model within each specification and for a given forecast horizon by fol-

lowing a two-step process.9 First, I determine the best ML and SL model10. Second, I

compare the best SL model with the best ML model. The model with the lowest RMSE is

the superior model. I use the Diebold-Mariano test, adapted for panel data, to rank them

9The best model given the forecast horizon has the lowest RMSE. Here, I proceed in two steps to
gauge the eventual superiority of ML models over SL models.

10An ML model K is the best ML forecast model for specification j relative to a forecast horizon h
if for any ML model L estimated in the specification and different from M RMSEK

j (h) ⩽ RMSEL
j (h).

Similarly, SL model N is the best SL forecasting model if for any other SL model P different from N,
RMSEN

j (h) ⩽ RMSEP
j (h).
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formally. Diebold and Mariano (2002) provide the test (the Diebold Mariano test) adapted

for panel data, allowing the models to be ranked. In my case, I use this test to compare

the forecast errors of the best SL and ML models.11 Besides determining the best forecast

model, this comparison exercise helps assess the relevance of ML techniques in forecast-

ing banking variables by comparing the best ML and SL models under specification 1.

Indeed, given that both models use the same limited information set, any difference in

forecasting performance can be attributed to the forecasting technique itself. Last, I com-

pare ML models across different specifications to assess the contribution of expanding

macro and microdata. Specifically, I compare out-of-sample RMSE of ML models across

specifications.

2.3.2 Stress test methodology

This section describes the methodological approach of the stress test. First, it outlines how

I map the predictions of PPNR and NCO under severely adverse scenarios to the prediction

of T1CR. Then, I present a formal framework of the stress test exercise.

2.3.2.1 Mapping PPNR and NCO predictions into the T1CR

The stress test is a conditional forecast exercise. Therefore, I use the best PPNR and

NCO forecasting models to predict the two banking variables under the severely adverse

scenarios defined by the FED. PPNR and provision on loan losses affect the regulatory

capital through their direct action on book equity capital. Since, practically, banks adjust

their provisions to respond to the variation in charge-off on loan and lease losses, I assume,

11Detailed information about the Diebold-Mariano test can be found in Appendix F.
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as Covas et al. (2014), that provision is equal to net charge-off. Moreover, I keep Covas

et al. (2014) assumption on the evolution of the book equity capital amount that can be

expressed as follow:

Ki,t = Ki,t−1 + (1− τ)× [PPNRi,t × Asseti −NCOi,t × Asseti]

− Equity payouti .
(2.6)

Ki,t is the dollar amount of book equity capital of BHC i at quarter t. τ is the marginal

tax rate set at 21%, its value in 2018q4, the quarter before the stress test horizon 2019q1-

2020q1. PPNRi,t and NCOi,t are, respectively, the PPNR and NCO of BHC i at quarter

t. The principle behind the stress test is to ensure that large BHCs maintain their capacity

to intermediate even when faced with adverse shocks. To translate this principle, I follow

the approach of Covas et al. (2014) and assume that the total assets of BHC i at quarter t

denoted as (Asseti,t), remain constant throughout the stress horizon and equal to its value

in 2018q4 (Asseti). I also assume, as Covas et al. (2014), that the aggregate equity payout

of BHC i, which includes dividends paid on common and preferred stocks and the re-

purchase of Treasury shares, remains constant. I set its value to its corresponding value in

2018q4. By assuming a constant equity payout, I consider the costliness for a bank to raise

new equity during a severe recession. The prediction of the common equity tier 1 capital,

which is the main focus of the stress test, is determined by the aforementioned predicted

book equity capital, the predicted regulatory adjustments denoted as RADJUSTi,t, and

the predicted risk-weighted assets denoted as RWAi,t. For the same reasons mentioned

earlier, I assume that RADJUSTi,t and RWAi,t are constants throughout the stress test

horizon and are respectively equal to their values in 2018q4 denoted by RADJUSTi and
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RWAi. Formally, the common equity tier 1 capital (T1CR) can be calculated as follows :

T1CRi,t =
Ki,t −RADJUSTi

RWAi

.

2.3.2.2 Density forecast of T1CR

I study the entire distribution of T1CR instead of focusing only on its mean as usual in

the literature. Predicting the distribution of T1CR helps to compute the probability of

violating the minimum requirements, one central indicator in stress tests.12 Therefore,

this approach provides a more detailed picture of the banks’ vulnerability and risk in an

unfavorable macroeconomic environment than the one relying solely on point estimates.

Like Covas et al. (2014), I use a two-step approach to forecast the density of T1CR under

distressed economic conditions.

In the first step, I use Athey et al. (2019) Quantile Random Forest method to infer condi-

tional quantiles. I adopt a recursive window-expanding estimation technique commonly

used in forecasting exercises to perform this estimation. The Quantile Random Forest

approach is a nonparametric method that mitigates the issues of misspecification bias. It

leverages the splitting tree rules of Random Forest and adapts them to capture quantile

heterogeneity effectively. The conditional quantile is chosen to minimize the weighted

12See, for example, Covas et al. (2014).
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absolute values of errors as stated below:

q̂τ (yit+1/xi,t) = argminβ(xi,t)

{
N∑
i=1

T∑
t=1

[
(τ(yi,t+1 − β(xi,t))1(yi,t+1 ⩾ β(xi,t))

+ (1− τ)(β(xi,t)− yi,t+1)1(yi,t+1 < β(xi,t))

]}
.

N and T denote the data’s cross-sectional and time series dimensions. yi,t is the variable

of interest, and xi,t is the vector of the forcing variables, the same that the FED uses in

its severely adverse scenario. 1(.) denotes an indicator function, τ is the percentile, and

q̂τ (yit+1/xi,t) represents the τ percent quantile. I forecast the 1, 5, 50, and 95 percent

conditional quantiles through the stress horizon.

In the second step, to recover the density function, I fit a skewed t-distribution of Azzalini

and Capitanio (2003) with the constrain of matching it to the estimated quantile function:

f(y;µ;σ;α; ν) =
2

σ
t
(y − µ

σ
;σ
)
T

(
α
y − µ

σ

√√√√ ν + 1

ν + (
y − µ

σ
)2
; ν + 1

)
. (2.7)

t(.) denotes the PDF of the Student-t distribution, and T(.) is its corresponding CDF.

The four parameters µ, σ, α, and ν pin down the distribution’s location, scale, shape, and

fatness, respectively. The intuition is to perturb a standard symmetric t-distribution PDF

by its CDF, adding an asymmetry through the slant parameter α. For example, if α = 0

and ν < ∞, f reduces to standard symmetric t-distribution. The case in which α = 0

and ν = ∞ results in a standard normal distribution, while the case in which α ̸= 0 and

ν =∞ leads to a skewed normal distribution. α ̸= 0 and ν <∞ corresponds to a skewed

t distribution. This class of distributions offers greater flexibility compared to the stan-

dard t-distribution, which has only two parameters. It allows for different shapes and can
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accommodate both symmetric and asymmetric environments. Due to this flexibility, this

family of density functions has been extensively used in the growth and risk literature to

examine the asymmetric effects of financial conditions on growth rates. Notable works

such as Adrian et al. (2019) and Plagborg-Møller et al. (2020) have considered this class

of functions. In the banking stress test, I use this class of functions to account for poten-

tial asymmetry in the distribution of T1CR under disastrous macroeconomic conditions.

Covas et al. (2014) previously highlighted the heavy left tail of the density forecast for

aggregate T1CR at the end of the stress period, indicating evidence against the symmetry

of the T1CR distribution during turmoil.

To fit the t-skewed distribution, I adopt the framework developed by Adrian et al. (2019).

For each quarter of the stress horizon and for each stressed bank, I estimate the four pa-

rameters µi,t+1, σi,t+1, αi,t+1, and νi,t+1. The estimation is performed by minimizing the

squared distance between the estimated conditional quantiles and the quantiles of the t-

distribution. Formally, I can state the following optimization problem :

{µi,t+1, σi,t+1, αi,t+1, νi,t+1} = argminµ,σ,α,ν

∑
τ

[
q̂τ (yit+1/xi,t)

− F−1(τ ;µ, σ, α, ν)

]2
;

(2.8)

where τ = 1, 5, 50, 95 are the percentiles, and F is the CDF of the t-skewed distribution

defined in (2.7).

2.4 Data

I use a panel of 100 BHCs, each with total assets consistently exceeding three billion USD,

to implement the methodology. The panel data spans from 1986q3 to 2019q4, covering
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significant events such as the implementation of Basel I, II, and III regulations, the 1990

recession, and the recent subprime crisis (see Appendix D for BHCs list). As a result

of mergers, acquisitions, and bank failures, the panel is unbalanced—only 20% of BHCs

operate throughout the period. In line with the Federal Reserve’s stress-testing practices,

I focus on BHCs instead of commercial banks. Unlike the FED, which only considers

banks with total assets exceeding 10 billion USD, I include a larger number of banks in

my sample. Extending sample aims to enhance forecast accuracy by constructing a more

extensive dataset with broader temporal and cross-sectional dimensions.

Figure 2.2 illustrates key data insights. The top left panel shows strong co-movement

between the total assets of all BHCs and the sampled BHCs, indicating an accurate rep-

resentation of the broader BHC population in the sample. Moreover, the top right panel

reveals that the sampled BHCs’ total assets constitute over 55% of all BHCs’ total assets,

peaking at 70%. These figures underscore the representativeness of the sample. However,

it is important to note a contraction in the total assets of the sampled BHCs relative to

all BHCs starting in 2006. This reduction can be ascribed to a regulatory change requir-

ing BHC subsidiaries with total assets over 1 billion USD to become autonomous. This

change led to the disappearance of several BHCs from our sample, thereby reducing the

total assets of the sampled BHCs.

In the analysis, I focus on two key variables: (1) Net Charge-Off (NCO), defined as the

annualized charge-off for loan and lease losses, minus recoveries for these losses, scaled

by a quarterly average of total assets; and (2) Pre-Provision Net Revenue (PPNR), defined

as the annualized sum of net interest and non-interest income divided by the quarterly av-
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erage of total assets. These computations draw upon data from the FR Y-9C form of the

Consolidated Financial Statements for BHCs, sourced from the Chicago Federal Reserve.

Cyclical trends for average PPNR and NCO are evident in the bottom panel of Figure 2.2.

Average PPNR decreases during recessions while NCO increases, and vice versa, during

recoveries. These inverse trends, significant within the context of stress test literature,

suggest that stressful macroeconomic conditions can erode a bank’s capital position, po-

tentially impeding the effective functioning of the BHC. The goal of stress testing is to

assess the impact of such weakened capital positions.

I use two types of predictors—bank-specific and macroeconomic—across three differ-

ent specifications to forecast PPNR and NCO accurately. The bank-specific predictors

are balance sheet variables drawn from the FR Y-9C form. The macroeconomic predic-

tors, consisting of macroeconomic and financial variables, are sourced from the FRED

QD database. These data are transformed into stationary series following the procedures

specified in the FRED database. I use the entire series from the FRED QD database as

macroeconomic predictors in the second and third specifications, aiming to capture a broad

spectrum of potential influences on the variables of interest. However, for the first speci-

fication, I intentionally limit the macroeconomic predictors to those defined as FED stress

scenario variables (as outlined in Table 2.1) to precisely assess the effect of these stress in-

dicators and ML modeling in improving PPNR and NCO forecast accuracy. Additionally,

to ensure that the sample closely mirrors the banks likely to be of interest in real-world

stress tests, I refine it to include only the 13 BHCs that were part of the 2017, 2018, and

2019 stress tests (as listed in Table 2.2). These BHCs represent 92% of the total assets of

all BHCs in the sample, emphasizing large banks’ relevance in stress testing scenarios.
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Figure 2.2 A brief overview of some data
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Note: (1) The hatched bands represent recessions.
(2) The average PPNR and NCO are computed as the aggregate PPNR and NCO ratio to total quarterly
average assets.

Table 2.1 List of FED stress test scenarios macroeconomic variables

FRED mnemonic Variable name Scale Variable definition
GPC1 GDP percentage change US real GDP growth
UNRATE UNRATE level US unemployment rate
CPIAUCSL Inflation rate percentage change U.S CPI inflation
TB3MS TB3MS level U.S. 3-month Treasury rate
GS5 GS5 level U.S. 5-year Treasury yield
GS10 GS10 level U.S. 10-year Treasury yield
MORTGAGE30US Mortgagerate level U.S. mortgage rate
SP 500 SP500 percentage change U.S. stock market index growth

USSTHPI USSTHPI percentage change U.S. House Price Index growth(all transac-
tions)

VXOCLSx VXOCLSx level VIX implied volatility index
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Table 2.2 Subsample of BHC included in 2017, 2018 and 2019 stress test

Bank holding companes Total Asset in 2018q4a Weight in 2018q4b

Bank of America Corporation 2.36e+09 21.40
Bancwest corporation 20695678 0.19
BBVA USA Bancshares Inc 90947174 0.83
Citigroup INC 1.92e+09 17.41
Comerica Inc 70906003 0.64
Fifth Third Bancorp 1.46e+08 1.33
JP Morgan chase and company 2.62e+09 23.82
Keycorp 1.40e+08 1.27
Huttington Bancshares Inc 1.09e+08 0.99
Northern trust corporation 1.32e+08 1.20
PNC Financial Services INC 3.82e+08 3.47
State street corporation 2.45e+08 2.22
Wells Fargo et Company 1.89e+09 17.22
All 1.03e+10 91.99

Note: Total consolidated assets (in thousand dollars).
Weight represents the ratio of bank’s total asset to all sampled BHC total asset in 2018q4.

2.5 Results

This section discusses the results of the empirical analysis. I start with some forecasting

exercises based on observed data, then check the results’ robustness and determine the

main drivers of PPNR and NCO. The last subsection is devoted to the empirical stress test.

2.5.1 Forecasting Exercise

2.5.1.1 Out-of-sample performance of NCO’s predictions models

Tables 2.3, 2.4, and 2.5 present the out-of-sample relative mean square error (RMSE) of

NCO forecasting models in specifications (1), (2), and (3). As Table 2.3 suggests, most

machine learning (ML) models outperform the benchmark model in NCO forecasting,

as indicated by RMSE values lower than one across various horizons. Specifically, the

Diebold-Mariano test (DM) highlights that the Random Forest model significantly sur-
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passes the pooled OLS - the most effective standard linear (SL) model - across the nine

forecast horizons in the specification (1) at a 1% significance level. These findings indi-

cate that the Random Forest model offers superior forecasting across all horizons in the

specification (1). This superior performance suggests the existence of nonlinearity in the

bank’s loss model, which linear models may fail to capture adequately. The implication

is that ML models like Random Forest, capable of handling complex, nonlinear relation-

ships, may yield more accurate and robust forecasting in economic scenarios like stress

testing.

Tables 2.4 and 2.6 illustrate how incorporating a broader macroeconomic database instead

of limited macro data can impact model rankings and predictive accuracy. As Table 2.4

indicates, Random Forest outperforms most SL models across most horizons, except for

horizons 3 and 8. Despite Gradient Boosting emerging as the best model in Horizon 4, the

Diebold-Mariano (DM) test does not establish its superiority over Random Forest. Table

6 reveals that excluding horizons 3 and 8, Random Forest – when paired with a compre-

hensive macroeconomic database – improves the RMSE of Pooled OLS by an average of

49%. This finding contrasts with an average improvement of 39% when Random Forest

uses limited macroeconomic data. These results emphasize the advantages of extend-

ing macroeconomic data beyond the Federal Reserve’s stress test scenario: it bolsters the

forecasting performance of leading ML models in predicting NCO by approximately 10%

across seven of the nine forecast horizons. Interestingly, Table 2.5 and Table 2.6 suggest

that the inclusion of more bank-specific data does not enhance the predictive accuracy of

Random Forest or other ML models. On the contrary, it tends to deteriorate the perfor-

mance of top ML models relative to the most efficient SL model. This result implies that
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additional bank-specific data may not offer predictive value beyond what the macroeco-

nomic data and initial bank characteristics already provide.

Table 2.3 Out-of-sample RMSE of NCO’s forecast models in specification (1) (all banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.62 0.68 0.64 0.71 0.59 0.66 0.66 0.71 0.60
Autoregressive model 2.05 1.93 2.08 3.20 2.05 1.04 1.17 3.08 1.27
Random walk 2.39 1.64 1.61 3.19 1.61 1.03 1.03 1.53 1.21
Lasso 1.51 0.69 0.64 0.68 0.57 0.64 0.65 0.69 0.60
Adaptive Lasso 0.61 0.60 0.65 0.68 0.58 0.66 0.67 0.68 0.62
Ridge 0.59 0.62 0.53 0.97 0.65 0.59 0.53 0.70 0.68
Elastic net 0.64 0.61 0.63 0.68 0.57 0.67 0.65 0.69 0.60
Principal component 2.50 1.71 1.63 3.23 0.58 1.17 1.21 0.62 0.58
NN1 3.39 1.09 0.72 1.58 0.72 0.72 0.72 1.26 0.78
NN2 6.45 1.11 0.67 1.16 0.64 0.70 0.64 0.93 0.76
NN3 4.14 1.17 0.69 1.29 0.65 0.80 0.61 0.91 0.81
Gradient boosting 0.97 0.93 0.71 0.52 0.55 0.43 0.38 0.67 0.45
Random Forest 0.39 ∗∗∗ 0.45∗∗∗ 0.51∗∗∗ 0.45∗∗∗ 0.35∗∗∗ 0.31∗∗∗ 0.36∗∗∗ 0.36∗∗∗ 0.39∗∗∗

Note: Machine learning and standard linear models include the same variables FED uses in the bank’s stress
test. (2) The first line represents the benchmark model’s mean square error (MSE) normalized to 1, while
the other lines present the relative MSE of different forecast models. (3) The figures in bold relate to the
best forecast model. No star: best linear models outperform the best machine learning model or have the
same performance as it for the DM test, *: best machine learning model outperforms best standard linear
model for the DM test at 10% level, **: 5% level; ***: 1% level. NN1 designates the neural network with
one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.
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Table 2.4 Out-of-sample RMSE of NCO’s forecast models in specification (2) (all banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.62 0.68 0.64 0.71 0.59 0.66 0.66 0.71 0.60
Autoregressive model 2.05 1.93 2.08 3.20 2.05 1.04 1.17 3.08 1.27
Random walk 2.39 1.64 1.61 3.19 1.61 1.03 1.03 1.53 1.21
Lasso 1.88 3.60 0.97 0.58 1.12 1.59 0.76 0.49 0.67
Adaptive Lasso 2.17 1.28 0.83 0.52 1.17 4.73 0.63 0.54 0.60
Ridge 1.23 2.08 0.80 1.23 1.35 1.50 0.56 0.55 0.66
Elastic net 1.73 3.57 0.78 0.58 1.13 1.69 0.71 0.48 0.66
Principal component 1.13 1.02 0.79 1.39 0.89 0.69 0.67 0.85 0.82
NN1 3.48 1.71 1.74 7.16 1.64 0.87 0.94 1.85 0.98
NN2 3.92 1.96 2.05 8.68 1.91 1.02 1.21 2.38 1.20
NN3 5.08 2.54 2.57 10.55 2.43 1.29 1.38 2.70 1.43
Gradient boosting 0.42 1.05 0.90 0.39∗∗∗ 0.28 0.21 0.28 0.39∗∗∗ 0.40
Random Forest 0.28∗∗∗ 0.39∗∗∗ 0.64 0.45 0.22∗∗∗ 0.17∗∗∗ 0.27∗∗∗ 0.40 0.28∗∗∗

Note: (1) Machine learning models are estimated with an extensive macroeconomic database.(2) The first
line represents the benchmark model’s mean square error (MSE) normalized to 1, while the other lines
present the relative MSE of different forecast models. (3) The figures in bold relate to the best forecast
model. (4) No star: Best linear models outperform the best machine learning model or have the same
performance as it for the DM test *: Best machine learning model outperforms best standard linear model
for the DM test at 10% level; **: 5% level; ***: 1% level. NN1 designates the neural network with one
hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.
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Table 2.5 Out-of-sample RMSE of NCO’s forecast models in specification (3) (all banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.62 0.68 0.64 0.71 0.59 0.66 0.66 0.71 0.60
Autoregressive model 2.05 1.93 2.08 3.20 2.05 1.04 1.17 3.08 1.27
Random walk 2.39 1.64 1.61 3.19 1.61 1.03 1.03 1.53 1.21
Lasso 1.69 2.83 0.86 0.84 1.16 1.17 0.80 0.67 0.80
Adaptive Lasso 2.09 7.99 0.84 0.71 1.20 0.94 0.66 0.67 0.69
Ridge 1.42 1.05 0.76 1.61 1.38 1.51 0.57 0.76 0.66
Elastic net 1.55 2.79 0.84 0.90 1.17 1.25 0.74 0.70 0.76
Principal component 1.16 1.10 0.98 2.06 1.07 0.79 0.83 1.04 0.87
NN1 5.20 2.57 2.63 10.84 2.50 1.33 1.42 2.78 1.47
NN2 4.05 1.99 2.04 8.45 1.94 1.04 1.12 2.14 1.17
NN3 5.20 2.59 2.63 10.84 2.50 1.33 2.78 0.91 1.49
Gradient boosting 0.45∗∗ 0.61 0.75 1.13 0.68 0.48 0.55 0.84 0.81
Random Forest 0.47 0.47∗∗ 0.69 1.26 0.65 0.41∗∗∗ 0.54∗∗∗ 0.80 0.62

Note: (1) Machine learning models include an extensive macroeconomic database and enriched BHC char-
acteristics. (2) The first line represents the benchmark model’s mean square error (MSE) normalized to 1,
while the other lines present the relative MSE of different forecast models.(3) The figures in bold relate to
the best forecast model. (4) no star: Best linear models outperform the best machine learning model or have
the same performance as it for the DM test *: Best machine learning model outperforms best standard linear
model for the DM test at 10% level; **: significance at 5%; ***: significance at 1%. NN1 designates the
neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers
containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16,
and 8 neurons, respectively.

Table 2.6 Percentage variation of best ML relative to best SL model forecast accuracy of
NCO under the three specifications (all banks)

Measure h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

PC1(h) -37.10 -33.82 -20.31 -36.62 -40.68 -53.03 -45.45 -49.30 -35.00
PC2(h) -54.84 -42.65 0.00 -45.07 -62.71 -74.24 -59.09 -45.07 -53.33
PC3(h) -27.42 -30.88 7.81 0.00 10.17 -37.88 -18.18 -5.63 0.00

Note: (1) PCj(h), j=1,2,3 denotes the percent variation of best ML relative to best SL forecast accuracy for
different forecast horizons h and for specification j. A negative value means that using the best ML reduces
the RMSE of the best SL of PCj , improving its forecast accuracy. A positive value on contrary denotes a
deterioration of forecast accuracy in case of using best ML model insted of best SL model.
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2.5.1.2 Out-of-sample performance of PPNR’s predictions models

Table 2.7, 2.8, 2.9, and 2.10 display the out-of-sample RMSE of models across specifica-

tions (1), (2), and (3), as well as the percentage variation of the best ML RMSE compared

to the best SL RMSE for each specification. Table 2.7 indicates that the Adaptive Lasso,

a linear ML model, demonstrates superior forecasting performance for PPNR across hori-

zons 1 to 8, exhibiting the lowest RMSE. Its forecasting performance surpasses the leading

SL models (Pooled OLS or Autoregressive) at a 1% significance level. However, in hori-

zon 9, although the Adaptive Lasso’s RMSE remains lower than that of the top-performing

SL model, the performance difference is not statistically significant. Other ML models,

excluding Principal Component, show potential for superior performance, with RMSE val-

ues under one across most forecast horizons. Nevertheless, these models still lag behind

the best SL model across all horizons.

Table 2.8 underscores that by broadening the macroeconomic database beyond the Federal

Reserve scenario, three machine learning models stand out across all nine forecast hori-

zons: Adaptive Lasso, Random Forest, and Gradient Boosting. Consistently, Table 2.10

indicates that including additional macroeconomic information only boosts the accuracy

of the top-performing ML model for the more distant horizons (5, 6, and 7). In these

instances, the improvement in RMSE of the best ML model over the top SL models is

more pronounced than in the first specification. Contrastingly, Table 2.9 and Table 2.10

reveal that integrating more bank balance sheet data can negatively impact forecast accu-

racy, leading to an increase in the Adaptive Lasso’s RMSE along with other ML models,

in comparison to specification (2). Moreover, under specification (3), the top SL model

surpasses the best ML model in specific forecast horizons. These results underline the im-
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portance of judicious variables and information source selection for each forecast horizon.

While adding macroeconomic data can improve the performance of leading ML models

in specific horizons, incorporating excessive bank-specific data can prove counterproduc-

tive.

Table 2.7 Out-of-sample RMSE of PPNR’s forecast models under specification (1) (all
banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.53 0.50 0.51 0.53 0.51 0.53 0.55 0.63 0.60
Autoregressive model 4.24 1.61 1.31 1.58 0.72 0.53 0.53 0.63 0.40
Random walk 4.53 2.79 2.63 3.28 2.22 1.92 2.00 2.24 1.79
Lasso 0.47 0.45 0.47 0.47 0.47 0.46 0.47 0.54 0.50
Adaptive Lasso 0.35∗∗∗ 0.34∗∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.43∗∗∗ 0.40∗∗∗ 0.38
Ridge 1.00 0.70 0.67 0.78 0.65 0.61 0.61 0.71 0.66
Elastic net 0.53 0.48 0.51 0.47 0.53 0.52 0.54 0.62 0.60
Principal component 4.47 2.75 2.47 2.67 1.99 1.69 1.76 1.83 1.60
NN1 1.12 0.75 0.71 0.72 0.71 0.73 0.74 0.79 0.87
NN2 1.24 0.80 0.78 0.75 0.72 0.67 0.54 0.90 0.73
NN3 1.47 0.77 0.80 0.78 0.74 0.62 0.71 0.92 0.56
Gradient boosting 0.82 0.41 0.39 0.58 0.53 0.80 0.51 0.63 0.49
Random Forest 0.53 0.45 0.47 0.58 0.46 0.43 0.49 0.54 0.44

Note: (1) Machine learning and standard linear models include the same variables FED uses in the bank’s
stress test. (2) The first line represents the benchmark model’s mean square error (MSE) normalized to 1,
while the other lines present the relative MSE of different forecast models. (3) The figures in bold relate to
the best forecast model. No star: best linear models outperform the best machine learning model or have the
same performance as it for the DM test, *: best machine learning model outperforms best standard linear
model for the DM test at 10% level, **: 5% level; ***: 1% level. NN1 designates the neural network with
one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.
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Table 2.8 Out-of-sample RMSE of PPNR’s forecast models under specification (2) (all
banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.53 0.50 0.51 0.53 0.51 0.53 0.55 0.63 0.60
Autoregressive model 4.24 1.61 1.31 1.58 0.72 0.53 0.53 0.63 0.40
Random walk 4.53 2.79 2.63 3.28 2.22 1.92 2.00 2.24 1.79
Lasso 0.53 0.45 0.76 0.50 0.40 0.41 0.44 0.45 0.41
Adaptive Lasso 0.41∗∗∗ 0.39 1.84 0.39∗∗∗ 0.33∗∗∗ 0.34∗∗∗ 0.68 0.42∗∗∗ 0.44
Ridge 1.02 0.70 1.00 0.78 0.70 0.63 0.62 0.70 0.65
Elastic net 0.59 0.66 1.41 0.50 0.43 0.52 0.67 0.60 0.42
Principal component 1.24 0.77 0.71 0.78 0.61 0.54 0.59 0.42 0.53
NN1 1.53 0.91 0.76 0.83 0.68 0.56 0.58 0.69 0.58
NN2 1.41 0.86 0.83 0.78 0.69 0.54 0.56 0.64 0.56
NN3 1.18 0.95 0.82 0.89 0.71 0.52 0.57 0.71 0.55
Gradient boosting 0.65 0.34∗∗∗ 0.41∗∗∗ 0.53 0.40 0.48 0.51 0.53 0.44
Random Forest 0.59 0.39 0.43 0.64 0.42 0.34 0.39∗∗∗ 0.46 0.35∗∗∗

Note: (1) Machine learning models are estimated with an extensive macroeconomic database. (2) The first
line represents the benchmark model’s mean square error (MSE) normalized to 1, while the other lines
present the relative MSE of different forecast models. (3) The figures in bold relate to the best forecast
model. (4) No star: Best linear models outperform the best machine learning model or have the same
performance as it for the DM test *: Best machine learning model outperforms best standard linear model
for the DM test at 10% level; **: 5% level; ***: 1% level. NN1 designates the neural network with one
hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.
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Table 2.9 Out-of-sample RMSE of PPNR’s forecast models under specification (3) (all
banks)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.53 0.50 0.51 0.53 0.51 0.53 0.55 0.63 0.60
Autoregressive model 4.24 1.61 1.31 1.58 0.72 0.53 0.53 0.63 0.40
Random walk 4.53 2.79 2.63 3.28 2.22 1.92 2.00 2.24 1.79
Lasso 0.53 0.55 0.82 0.50 0.43 0.45 0.66 0.51∗∗∗ 0.45
Adaptive Lasso 0.47∗∗∗ 0.45∗∗∗ 1.88 0.39∗∗∗ 0.39∗∗∗ 0.43∗∗∗ 0.98 0.53 0.53
Ridge 1.03 0.80 1.10 0.78 0.74 0.70 0.70 0.80 0.80
Elastic net 0.59 0.75 1.45 0.50 0.44 0.64 0.78 0.69 0.46
Principal component 1.24 0.89 0.80 0.92 0.67 0.60 0.59 0.63 0.55
NN1 1.53 0.90 0.78 0.83 0.70 0.60 0.71 0.85 0.60
NN2 1.41 0.88 0.80 0.78 0.72 0.58 0.72 0.90 0.58
NN3 1.18 0.97 0.84 0.89 0.74 0.55 0.75 0.95 0.57
Gradient boosting 0.82 0.52 0.51 0.67 0.57 0.55 0.62 0.72 0.58
Random Forest 0.65 0.55 0.61 0.92 0.61 0.61 0.64 0.77 0.61

Note : (1) Machine learning models include an extensive macroeconomic database and enriched BHC char-
acteristics. (2) The first line represents the benchmark model’s mean square error (MSE) normalized to 1,
while the other lines present the relative MSE of different forecast models. (3) The figures in bold relate
to the best forecast model. (4) No star: Best linear models outperform the best machine learning model or
have the same performance as it for the DM test *: Best machine learning model outperforms best standard
linear model for the DM test at 10% level; **: significance at 5%; ***: significance at 1%. NN1 designates
the neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden
layers containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having
32, 16, and 8 neurons, respectively.

Table 2.10 Percentage variation of the best ML relative to the best SL model forecast
accuracy of PPNR under the three specifications (all banks)

Measure h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

PC1(h) -33.96 -32.00 -23.53 -26.41 -21.57 -24.53 -18.87 -36.51 -5.00
PC2(h) -22.64 -32.00 -19.61 -26.41 -35.29 -35.85 -26.41 -33.33 -12.50
PC3(h) -11.32 -10.00 0.00 -26.41 -23.53 -18.87 11.32 -20.63 12.50

Note : PCj(h), j=1,2,3 denotes the percent variation of best ML relative to best SL forecast accuracy for
different forecast horizons h and for specification j. A negative value means that using the best ML reduces
the RMSE of the best SL of PCj , improving its forecast accuracy. A positive value on contrary denotes a
deterioration of forecast accuracy in case of using best ML model.



81

2.5.1.3 Robustness analysis

This subsection evaluates the robustness of the top-performing model selection by focus-

ing solely on the sub-sample of large BHCs selected for the empirical stress test.

Forecasting NCO on the sub-sample of large BHC selected for the empirical stress test

Tables 2.11, 2.12, and 2.13 delineate the out-of-sample forecasting performance of var-

ious models across the three specifications. On the other hand, Table 2.14 illustrates the

percentage variation in RMSE between the top ML model and the most efficient SL model

across these specifications. The Random Forest consistently emerges as the best forecast-

ing model across all three specifications, significantly outperforming the Pooled OLS - the

leading SL model - in nearly all forecast horizons. Interestingly, Table 2.14 reveals a more

pronounced forecasting performance of the Random Forest relative to the best SL model

when forecasting net charge-offs (NCO) for larger banks. For instance, in specification

(1), when applied solely to the largest banks, Random Forest improves the RMSE of top

SL model by an average of 48.74% , compared to a 39% improvement when applied to

the entire sample. Similar patterns are observable in other specifications. One potential

explanation could be the relatively poorer performance of the best SL model in forecasting

NCO for larger BHCs. Furthermore, the average RMSE of the Random Forest model in

specification (2) trails behind the best SL model’s RMSE by 57.84% across some hori-

zons. These findings imply that expanding macroeconomic information can enhance the

forecasting accuracy of the top ML model for specific forecast horizons. As mentioned
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previously, when considering the whole sample, broadening the BHC characteristics does

not necessarily improve the performance of the best ML model, which underscores the

need for a more targeted selection of predictors.

Table 2.11 Out-of-sample relative mean square error of NCO’s forecast models under
specification (1) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.69 0.80 0.75 0.77 0.75 0.79 0.78 0.82 0.72
Autoregressive model 2.02 3.21 3.76 3.40 4.63 1.88 2.41 4.19 3.08
Random walk 2.38 1.81 1.97 1.91 1.68 1.04 0.99 1.58 2.58
Lasso 0.72 0.80 0.73 0.77 0.67 0.75 0.77 0.78 0.72
Adaptive Lasso 0.69 0.79 0.76 0.73 0.67 0.79 0.79 0.77 0.76
Ridge 0.62 0.71 0.55 0.91 0.73 0.66 0.57 0.74 0.82
Elastic net 0.72 0.71 0.72 0.73 0.67 0.76 0.75 0.78 0.72
Principal component 2.70 1.87 1.61 1.64 0.67 1.10 1.07 0.67 0.67
NN1 3.39 1.60 0.86 1.55 0.84 0.94 0.84 1.31 0.93
NN2 6.45 1.54 0.76 1.05 0.72 0.87 0.72 0.89 0.94
NN3 4.14 1.73 0.80 1.18 0.75 1.01 0.70 0.95 1.04
Gradient boosting 1.26 1.54 0.93 0.55 0.84 0.59 0.45 0.94 0.72
Random Forest 0.25 ∗∗∗ 0.49∗∗∗ 0.59∗∗∗ 0.30∗∗∗ 0.31∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.49∗∗∗ 0.54∗∗∗

Note : (1) Machine learning models and standard linear models include the same variables that FED uses
in the bank’s stress test. (2) The first line represents the mean square error (MSE) of the benchmark model
normalized to 1, while the other lines present the relative MSE of different forecast models. (3) The figures
in bold relate to the best forecast model. No star : best linear models outperform the best machine learning
model or have the same performance as it for DM test, *: best machine learning model outperforms best
standard linear model for the DM test at 10% level , **: 5% level ; ***: 1% level. NN1 designates the
neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers
containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16,
and 8 neurons, respectively.
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Table 2.12 Out-of-sample relative mean square error of NCO’s forecast models under
specification (2) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.69 0.80 0.75 0.77 0.75 0.79 0.78 0.82 0.72
Autoregressive model 2.02 3.21 3.76 3.40 4.63 1.88 2.41 4.19 3.08
Random walk 2.38 1.81 1.97 1.91 1.68 1.04 0.99 1.58 2.58
Lasso 2.77 6.36 1.52 0.59 1.81 2.45 1.02 0.54 1.00
Adaptive Lasso 3.33 2.16 1.25 0.50 1.92 7.70 0.83 0.63 0.88
Ridge 1.00 1.50 0.90 0.70 1.20 2.00 0.70 0.62 0.90
Elastic net 2.60 6.34 1.18 0.59 1.81 2.62 0.92 0.54 0.37
Principal component 1.31 1.33 1.06 1.64 1.04 0.78 0.75 0.74 0.94
NN1 3.50 2.00 1.10 1.00 1.30 1.10 0.70 1.00 0.97
NN2 7.00 1.70 1.00 0.90 1.20 1.20 0.74 0.75 0.99
NN3 5.14 1.90 1.30 0.95 1.00 1.40 0.77 0.77 1.10
Gradient boosting 0.54 1.97 1.62 0.44 0.31 0.25 0.31 0.46 0.53
Random Forest 0.20 ∗∗∗ 0.54∗∗∗ 1.13 0.32∗∗∗ 0.17∗∗∗ 0.12∗∗∗ 0.30∗∗∗ 0.39∗∗∗ 0.27∗∗∗

Note : (1) Machine learning models are estimated with extensive macroeconomic database.(2) The first line
represents the mean square error (MSE) of the benchmark model normalized to 1, while the other lines
present the relative MSE of different forecast models. (3) The figures in bold relate to the best forecast
model. (4) No star : Best linear models outperform the best machine learning model or have the same
performance as it for the DM test *: Best machine learning model outperforms best standard linear model
for the DM test test at 10% level ; **: 5% level ; ***: 1% level.NN1 designates the neural network with
one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.



84

Table 2.13 Out-of-sample relative mean square error of NCO’s forecast models under
specification (3) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.69 0.80 0.75 0.77 0.75 0.79 0.78 0.82 0.72
Autoregressive model 2.02 3.21 3.76 3.40 4.63 1.88 2.41 4.19 3.08
Random walk 2.38 1.81 1.97 1.91 1.68 1.04 0.99 1.58 2.58
Lasso 2.51 4.80 1.21 0.82 1.65 1.65 0.92 0.76 1.01
Adaptive Lasso 3.21 3.00 1.24 0.59 1.71 6.70 0.74 0.75 0.63
Ridge 0.98 1.70 0.89 0.69 1.10 1.50 0.60 0.70 0.70
Elastic net 2.36 7.31 1.18 0.86 1.67 1.78 0.79 0.80 0.94
Principal component 1.46 1.23 1.14 2.18 1.11 0.78 0.84 0.95 0.92
NN1 3.00 2.10 1.12 1.30 1.30 1.20 0.60 1.40 0.97
NN2 6.00 1.50 1.02 1.10 1.20 1.10 0.70 0.90 0.99
NN3 4.50 1.75 1.40 1.20 1.10 1.40 0.75 0.80 1.10
Gradient boosting 0.44 0.77 0.94 0.73 0.63 0.41 0.46 0.56 0.89
Random Forest 0.24 ∗∗∗ 0.49∗∗∗ 0.70 0.44∗∗∗ 0.53∗∗∗ 0.32∗∗∗ 0.50 0.52∗∗∗ 0.56∗∗∗

Note : (1) Machine learning models include extensive macroeconomic database and enriched BHC charac-
teristics .(2) The first line represents the mean square error (MSE) of the benchmark model normalized to 1,
while the other lines present the relative MSE of different forecast models.(3) The figures in bold relate to
the best forecast model. (4) no star : Best linear models outperform the best machine learning model or have
the same performance as it for the DM test *: Best machine learning model outperforms best standard linear
model for the DM test test at 10% level; **: significance at 5% ; ***: significance at 1%.NN1 designates
the neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden
layers containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having
32, 16, and 8 neurons, respectively.
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Table 2.14 Percentage variation of best ML relative to best SL model forecast accuracy of
NCO under the three specifications (only banks selected for the empirical stress test)

Measure h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

PC1(h) -63.77 -38.75 -21.33 -61.04 -58.67 -68.35 -61.54 -40.24 -25.00
PC2(h) -71.01 -32.50 20.00 -58.44 -77.33 -84.81 -61.54 -52.44 -62.50
PC3(h) -65.22 -38.75 -6.67 -42.86 -29.33 -59.49 -41.02 -36.58 -22.22

Note : PCj(h), j=1,2,3 denotes the percent variation of best ML relative to best SL forecast accuracy for
different forecast horizons h and for specification j. A negative value means that using the best ML reduces
the RMSE of the best SL of PCj , improving its forecast accuracy. A positive value on contrary denotes a
deterioration of forecast accuracy in case of using best ML model insted of best SL model.

Forecasting PPNR on the sub-sample of large BHC selected for the empirical stress test

As shown by the results from Table 2.15, the best forecast model of PPNR for the large

banks throughout most of the horizons in the specification (1) is the Adaptive Lasso. The

usefulness of additional macroeconomic information is limited to very few forecast hori-

zons, in which relative improvement of the ML best model compared to the SL best model

is higher than in the first specification (see Tables 2.16 and 2.18). Lastly, as revealed in

Tables 2.17 and 2.18, the supplementary bank-specific data do not lead to forecast amelio-

ration of PPNR relative to the previous specifications.
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Table 2.15 Out-of-sample relative mean square error of PPNR’s forecast models under
specification (1) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.37 0.39 1.02 0.40 0.37 0.38 0.39 0.47 0.45
Autoregressive model 3.79 2.61 2.44 3.20 1.95 1.59 0.61 1.94 1.55
Random walk 4.05 2.98 2.79 4.00 2.47 2.10 2.21 2.80 2.16
Lasso 0.32 0.34 0.33 0.37 0.33 0.34 0.35 0.40 0.39
Adaptive Lasso 0.26∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.31∗∗∗ 0.29 0.31 0.31∗∗ 0.32∗∗∗ 0.31∗∗∗
Ridge 0.74 0.55 0.50 0.60 0.48 0.45 0.45 0.53 0.51
Elastic net 0.37 0.36 0.37 0.37 0.39 0.38 0.40 0.47 0.46
Principal component 4.16 2.98 2.75 3.46 2.21 1.87 1.97 2.35 1.88
NN1 0.89 0.61 0.60 0.51 0.47 0.73 0.63 0.61 0.70
NN2 1.05 0.41 0.65 0.51 0.50 0.45 0.50 0.70 0.63
NN3 1.74 1.70 0.70 0.70 0.55 0.70 0.71 0.80 0.50
Gradient boosting 0.53 0.27 0.27 0.43 0.35 0.54 0.36 0.46 0.35
Random Forest 0.31 0.29 0.31 0.40 0.19∗∗∗ 0.29∗∗∗ 0.35 0.40 0.34

Note : (1) Machine learning models and standard linear models include the same variables that FED uses
in the bank’s stress test. (2) The first line represents the mean square error (MSE) of the benchmark model
normalized to 1, while the other lines present the relative MSE of different forecast models. (3) The figures
in bold relate to the best forecast model. No star : best linear models outperform the best machine learning
model or have the same performance as it for DM test, *: best machine learning model outperforms best
standard linear model for the DM test at 10% level , **: 5% level ; ***: 1% level. NN1 designates the
neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers
containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16,
and 8 neurons, respectively.
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Table 2.16 Out-of-sample relative mean square error of PPNR’s forecast models under
specification (2) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.37 0.39 1.02 0.40 0.37 0.38 0.39 0.47 0.45
Autoregressive model 3.79 2.61 2.44 3.20 1.95 1.59 0.61 1.94 1.55
Random walk 4.05 2.98 2.79 4.00 2.47 2.10 2.21 2.80 2.16
Lasso 0.39 0.30 0.63 0.37 0.29 0.30 0.32 0.36 0.34
Adaptive Lasso 0.31∗∗ 0.26∗∗∗ 1.77 0.28∗∗∗ 0.24∗∗∗ 0.27 0.57 0.34∗∗∗ 0.44
Ridge 0.77 0.55 0.50 0.58 0.45 0.45 0.47 0.50 0.65
Elastic net 0.41 0.43 1.23 0.38 0.42 0.43 0.48 0.51 0.51
Principal component 1.16 0.50 0.81 1.00 0.95 0.61 1.97 0.39 0.60
NN1 0.92 0.61 0.80 0.47 0.40 0.63 0.65 0.57 0.55
NN2 1.20 0.41 0.75 0.45 0.43 0.35 0.55 0.70 0.60
NN3 1.85 1.70 0.90 0.60 0.50 0.60 0.72 0.74 0.53
Gradient boosting 0.46 0.33 0.29∗∗∗ 0.36 0.42 0.33 0.35 0.36 0.32
Random Forest 0.36 0.26∗∗∗ 0.31 0.43 0.36 0.23∗∗∗ 0.28∗∗∗ 0.35 0.28∗∗∗

Note : (1) Machine learning models are estimated with extensive macroeconomic database.(2) The first line
represents the mean square error (MSE) of the benchmark model normalized to 1, while the other lines
present the relative MSE of different forecast models. (3) The figures in bold relate to the best forecast
model. (4) No star : Best linear models outperform the best machine learning model or have the same
performance as it for the DM test *: Best machine learning model outperforms best standard linear model
for the DM test test at 10% level ; **: 5% level ; ***: 1% level. NN1 designates the neural network with
one hidden layer that has 32 neurons. NN2 is the neural network with two hidden layers containing 32 and
16 neurons, respectively. NN3 is a neural network with three hidden layers having 32, 16, and 8 neurons,
respectively.
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Table 2.17 Out-of-sample relative mean square error of PPNR’s forecast models under
specification (3) (only banks selected for the empirical stress test)

Model h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Benchmark model 1 1 1 1 1 1 1 1 1
Pooled OLS 0.37 0.39 1.02 0.40 0.37 0.38 0.39 0.47 0.45
Autoregressive model 3.79 2.61 2.44 3.20 1.95 1.59 0.61 1.94 1.55
Random walk 4.05 2.98 2.79 4.00 2.47 2.10 2.21 2.80 2.16
Lasso 0.35 0.35 0.69 0.37 0.36 0.30∗∗∗ 0.46 0.39∗∗∗ 0.36∗∗∗
Adaptive Lasso 0.30∗∗∗ 0.30∗∗∗ 1.75 0.29∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.77 0.41 0.50
Ridge 0.75 0.59 0.50 0.55 0.45 0.48 0.57 0.55 0.70
Elastic net 0.39 0.43 1.19 0.37 0.29 0.39 0.48 0.50 0.36∗∗∗
Principal component 1.16 0.91 0.87 1.09 0.72 0.70 0.64 0.76 0.60
NN1 0.90 0.70 0.81 0.50 0.50 0.65 0.70 0.70 0.55
NN2 1.10 0.55 0.75 0.60 0.40 0.37 0.59 0.75 0.60
NN3 1.80 1.60 0.90 0.65 0.60 0.62 0.72 0.79 0.53
Gradient boosting 0.84 0.37 0.31∗∗∗ 0.43 0.32 0.32 0.36 0.43 0.37
Random Forest 0.47 0.39 0.49 0.77 0.47 0.43 0.52 0.70 0.55

Note : (1) Machine learning models include extensive macroeconomic database and enriched BHC charac-
teristics .(2) The first line represents the mean square error (MSE) of the benchmark model normalized to 1,
while the other lines present the relative MSE of different forecast models.(3) The figures in bold relate to
the best forecast model. (4) no star : Best linear models outperform the best machine learning model or have
the same performance as it for the DM test *: Best machine learning model outperforms best standard linear
model for the DM test test at 10% level; **: significance at 5% ; ***: significance at 1%. NN1 designates
the neural network with one hidden layer that has 32 neurons. NN2 is the neural network with two hidden
layers containing 32 and 16 neurons, respectively. NN3 is a neural network with three hidden layers having
32, 16, and 8 neurons, respectively.
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Table 2.18 Percentage variation of best ML relative to best SL model forecast accuracy of
PPNR under the three specifications (only banks selected for the empirical stress test)

Measure h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

PC1(h) -29.73 -33.33 -71.57 -22.50 -48.65 -23.68 -20.51 -31.91 -31.11
PC2(h) -16.21 -33.33 -71.57 -30.00 -35.14 -39.47 -28.20 -27.66 -37.78
PC3(h) -18.92 -23.08 -69.61 -27.50 -32.43 -21.05 -7.69 -17.02 -20.00

Note : PCj(h), j=1,2,3 denotes the percent variation of best ML relative to best SL forecast accuracy for
different forecast horizons h and for specification j. A negative value means that using the best ML reduces
the RMSE of the best SL of PCj , improving its forecast accuracy. A positive value on contrary denotes a
deterioration of forecast accuracy in case of using best ML model insted of best SL model.

2.5.2 Empirical stress test

In this subsection, I use results about forecasting to undertake a pseudo-stress test under

severely adverse scenarios. The jump-off date for the conditional forecast is 2018q4, and

the stress test period evaluation spans from 2019q1 to 2021q1. The bank’s specific forcing

variables are assumed to hold constant values equal to their pre-stress levels (2018q4) over

the stress horizon. In turn, macroeconomic forcing variables follow the trajectories defined

by the FED in its severely adverse scenarios (Table 2.19).

Table 2.19 Severely adverse scenarios in 2019q1-2021q1

Date GDP UNRATE Inflation rate TB3MS GS5 GS10 Mortgagerate SP500 USSTHPI VXOCLS

2018q4 1.31 3.83 1.29 2.32 2.88 3.03 4.78 -22.95 -0.18 43.1
2019q1 -5.0 4.7 1.2 0.3 0.3 0.8 3.9 -36.6 -3.0 44.4
2019q2 -9.4 6.3 1.6 0.2 0.5 0.9 4.2 -19.4 -3.1 43.1
2019q3 -7.2 7.5 1.7 0.1 0.6 1.0 4.4 -9.8 -3.7 39.2
2019q4 -5.0 8.4 1.8 0.1 0.6 1.1 4.5 -3.5 -4.4 34.9
2020q1 -3.8 9.2 1.9 0.1 0.7 1.2 4.3 4.6 -4.6 30.5
2020q2 -1.5 9.7 1.8 0.1 0.7 1.2 4.2 6.9 -4.2 27.3
2020q3 -0.3 10.0 2.0 0.1 0.7 1.2 4.1 7.1 -4.4 25.3
2020q4 2.9 9.9 2.0 0.1 0.7 1.2 3.9 8.5 -2.6 23.5
2021q1 3.6 9.7 2.1 0.1 0.9 1.5 3.9 5.4 -0.7 22.5
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2.5.2.1 Predicting capital adequacy measure under hypothetical severely adverse scenarios

In this section, I run the stress test using two distinct models. The first model (Best ML),

which acts as the baseline, employs the Adaptive Lasso and Random Forest - the top

ML forecasting models - to construct conditional predictions of PPNR and NCO. Subse-

quently, these predictions are used to derive T1CR. The second model (FE-LM) relies on

a linear framework - specifically, a fixed-effect linear model - to forecast both banking

variables (PPNR and NCO), and, subsequently, T1CR. Table 2.20 presents the minimum

predicted T1CR values throughout the stress test horizon for both models and, for compar-

ison, includes the minimum historical T1CR values during the Great Recession (G.R). The

" All " row reflects aggregate T1CR, calculated as the ratio of aggregate common equity

capital to aggregate risk-weighted assets.

All the banks in the two frameworks meet the minimum T1CR threshold of 4.5%, thus

passing the stress test. However, during the last global financial crisis, two banks - Bancwest

Corporation and PNC Financial Services INC - would have fallen below this threshold, in-

dicating a potential failure in the stress test. While the mandatory rule for minimum T1CR

requirement was not in effect during the crisis, these results highlight the relatively low

capitalization of banks prior to the Great Recession. For example, the average T1CR be-

fore the crisis was 7.13, nearly half its average value just one quarter before the stress test

period. Post-crisis, Basel III reforms have required banks to improve their capital posi-

tions.13 One such reform, the capital conservation buffer, has been enforceable since 2019

13These reforms raised the minimum requirement for different regulatory capital and introduced
other capital buffers, improving the capital position of banks.
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and aims to add an extra layer of resilience to the banking system in the face of unex-

pected and significant losses. The minimum capital buffer was set at 2.5% of total risk

assets on top of the common equity tier 1 capital (CET1), raising the minimum T1CR for

large BHCs subject to a stress test to 7%. Since BHCs subject to stress tests are large

banks, many also meet the 7% minimum T1CR requirement for both methods throughout

the stress test horizon. The aggregate T1CR reaches a minimum of 7.70% for the Best

ML and 8.22% for the FE-LM model, comfortably above the 7% treshold. However, the

impact of severely adverse conditions is not uniform across all banks for both models. For

instance, Northern Trust Corporation is less affected by the simulated crisis scenarios than

Bank of America Corporation for the Best ML model. Conversely, JP Morgan Chase and

Company experiences a more pronounced impact from the simulated adverse economic

conditions than Well Fargo in the FE-LM model. Business model differences could ex-

plain the crisis’s disparate effects on these banks.
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Table 2.20 Predicted T1CR and historical values

Bank min T1CR on the stress horizon T1CR2018q4 min T1CR for G.R T1CR2007q3

Best ML FE-LM
Bank of America Corporation 7.44 8.28 13.66 6.17 6.63
Bancwest Corporation 6.53 4.50 11.01 3.95 4.62
BBVA USA Bancshares INC 5.90 7.83 12.05 7.81 8.56
Citigroup INC 7.36 10.44 14.83 6.10 7.13
Comerica INC 7.85 6.61 10.25 6.70 6.96
Fifth Third Bancorp 7.77 8.97 11.25 5.82 6.57
JP Morgan Chase and Company 7.61 6.01 13.67 7.25 7.42
Keycorp 6.05 5.05 10.56 5.94 6.43
Huntington Bancshares INC 8.70 4.55 10.63 6.22 7.24
Northern Trust Corporation 13.48 10.44 14.50 8.57 9.46
PNC Financial Services INC 7.61 8.37 12.01 4.47 6.28
State Street Corporation 17.30 12.39 17.55 9.06 11.61
Well Fargo 7.62 9.01 13.48 6.29 7.68
All 7.70 8.22 13.51 6.64 7.13

2.5.2.2 The Analysis of banks’ vulnerabilities : Best ML versus FE-LM modeling

In the following analysis, I will delve deeper into the T1CR distribution by also focusing on

the range of possibilities that it represents for each bank. Table 2.21 details the probability

of each bank violating specific T1CR thresholds in 2021q1, according to both models. The

"All" row represents the probability of the aggregate T1CR falling below-given thresholds

for both models, effectively capturing the average risk of violation for all banks. As the

results indicate, there is, on average, no risk of the banks not meeting the 4.5% minimum

T1CR threshold according to both models. However, this average needs to capture the

nuances across different banks and models. For example, the Best ML model indicates a

9% chance of Bank of America violating the 4.5% minimum requirement, while it shows

a 0% chance of such a violation for State Street Corporation. Similarly, Citigroup INC

has a 7% risk of not meeting the rule according to the Best ML model, but this risk drops

to zero with the FE-LM model. When considering the 7% minimum requirement, the

picture changes somewhat. Only a few banks are predicted to have no chance of violating
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this threshold. Nevertheless, the overall probability of violating the 7% requirement is

estimated at 2% for both models. This result aligns with the findings of Covas et al.

(2014), who estimated a 2.5% chance of breaking an 8% T1CR minimum requirement for

both the fixed effect quantile and fixed effect linear models. This analysis suggests that

at the 4.5% threshold, most banks have a negligible risk of failing to meet the minimum

T1CR rule according to both models. However, at 7%, there is a generally higher risk of

banks not meeting the requirement.
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Table 2.21 Probability of violating different tresholds in 2021q1

Bank minimum T1CR requirement: 4.5% minimum T1CR requirement: 7%

Best ML FE-LM Best ML FE-LM
Bank of America Corporation 0.09 0.00 0.45 0.01
Bancwest Corporation 0.00 0.51 0.23 0.93
BBVA USA Bancshares INC 0.01 0.07 0.46 0.39
Citigroup INC 0.07 0.00 0.44 0.00
Comerica INC 0.06 0.00 0.39 0.38
Fifth Third Bancorp 0.07 0.00 0.40 0.00
JP Morgan Chase and Company 0.04 0.00 0.32 0.38
Keycorp 0.00 0.25 0.44 0.92
Huntington Bancshares INC 0.00 0.57 0.01 0.97
Northern Trust Corporation 0.00 0.00 0.00 0.00
PNC Financial Services INC 0.08 0.00 0.47 0.09
State Street Corporation 0.00 0.00 0.00 0.00
Well Fargo 0.08 0.00 0.39 0.00
All 0.00 0.00 0.02 0.02

Note : The probability to violate the given treshold is the probability of having T1CR strictly below that
value.

Table 2.22 provides a more in-depth look at the two models’ conditional distribution of

T1CR at the end of the stress test horizon. The probability density function (PDF) of

T1CR is left-skewed, indicating an asymmetric distribution. This pattern is consistent

with some studies (such as Covas et al. 2014; Hirtle et al. 2016) that find a left-skewed

T1CR PDF under crisis scenarios. A closer examination reveals that for almost all global

systemically important banks (G-SIBs)14, the left tail of the T1CR distribution is more

substantial for the Best ML model than the FE-LM model. This fact is visually evident in

Figure 2.3, which plots the probability densities of T1CR for the four G-SIBs. Covas et al.

(2014) found a similar phenomenon, where the left tail of the T1CR at the end of their

14A global systemically important bank is a financial institution whose failure increases systemic risk
and may trigger a financial crisis. The following banks in our sample figure out in the list for the year 2019
of the globally systemically banks established annually by the Financial Stability Board in coordination with
the Basel committee: Bank of America Corporation, Citigroup INC, JP Morgan Chase and Company, State
Street Corporation, and Well Fargo. Bank of America Corporation, Citigroup INC, JP Morgan Chase and
Company, and Well Fargo are the larger banks in our sample, weighing 80% of the sampled bank’s total
assets.
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stress-test period (2013q4) was denser for their nonlinear baseline model than for the fixed

effect linear model for most banks. One plausible explanation for this could be a heavier

right tail in the conditional distribution of NCO under the Best ML model compared to

the FE-LM model, as shown in Figure 2.4. When looking at PPNR, another component of

T1CR, Figure 2.5, does not depict a distinct difference between the left tail distributions for

the two models. These findings suggest that the linear framework may underestimate the

risk of significant losses for G-SIBs during economic downturns compared to a framework

combining nonlinear models for loss predictions and linear models for revenue predictions.

Consequently, linear models might paint a more optimistic picture of banking stability and

minimize the perceived systemic risk during economic downturns.
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Table 2.22 Predicted conditional percentiles of T1CR in the stress test horizon in 2021q1

Bank 1st percentile 5thpercentile Median 95th percentile

Best ML FE-LM Best ML FE-LM Best ML FE-LM Best ML FE-LM
Bank of America Corporation -0.34 6.73 7.40 7.63 8.55 8.95 10.02 10.36
Bancwest Corporation 6.24 1.05 6.72 2.87 7.43 4.58 8.47 7.31
BBVA USA Bancshares INC 4.43 -0.34 6.09 7.05 6.79 8.38 9.16 9.99
Citigroup INC -0.40 9.30 7.40 9.79 8.47 10.98 9.89 12.27
Comerica INC -0.70 4.95 7.35 6.09 8.32 7.04 9.80 8.23
Fifth Third Bancorp -0.34 7.05 7.38 7.85 8.39 9.04 9.99 10.36
JP Morgan Chase and Company -0.50 4.95 7.46 6.16 8.58 7.17 10.36 9.06
Keycorp 4.47 2.18 6.03 3.80 6.79 6.10 9.39 7.61
Huntington Bancshares INC 6.75 1.49 7.63 3.02 8.79 4.52 10.33 6.84
Northern Trust Corporation 11.10 9.30 12.03 9.79 13.60 10.98 15.34 12.26
PNC Financial Services INC -0.40 4.41 7.39 7.42 8.39 8.68 9.96 10.33
State Street Corporation 12.43 9.06 14.02 11.59 17.44 12.96 20.02 15.53
Well Fargo -0.60 7.54 7.46 8.08 8.56 9.29 10.30 10.64
All 6.74 6.74 7.29 7.40 8.87 9.42 12.25 12.40
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Figure 2.3 Probability Densities of T1CR for the largest G-SIBs bank in 2021q1
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Note : These figures show the estimated conditional skewed t PDF at the end of the stress test period for the
four largest banks of the sample.

2.5.2.3 Predicting capital shortfalls under distressed macroeconomic and financial condi-
tions

To ascertain the capital gap for a given threshold, I quantify the discrepancy between the

average predicted capital and the indispensable minimum capital required to prevent the

breach of the specified criteria. I establish the aggregate capital shortfall by compiling
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Figure 2.4 Probability Densities of NCO for the largest G-SIBs banks in 2021q11

0 5 10 15

0.
00

0.
10

0.
20

0.
30

Bank of America

x

de
ns

ity

0 5 10 15

Best ML

FE−LM

0 5 10 15

0.
00

0.
10

0.
20

Citigroup Inc

x

de
ns

ity

Best ML

FE−LM

0 5 10 15

0.
00

0.
10

0.
20

0.
30

JP Morgan Chase

x

de
ns

ity

Best ML

FE−LM

0 5 10 15

0.
00

0.
10

0.
20

Well Fargo

x

de
ns

ity

Best ML

FE−LM



99

Figure 2.5 Probability Densities of PPNR for the largest G-SIBs banks in 2021q1
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the capital gaps across all banks. This calculation is illustrated in Table 2.23. At the end

of the stress assessment period, with a minimum capital requirement set at 4.5%, there is

no aggregate accumulated capital gap. However, the aggregate capital shortfall reached 1

billion USD during the Great Recession. Raising the threshold to 7% significantly inflates

the aggregate cumulative capital shortfall to 2 billion USD under the Best ML model and

a staggering 28 billion USD under the FE-LM model. In stark contrast, the capital gap

surged to 85 billion USD under the same 7% threshold during the Great Recession. These

results underscore the enhanced stability of the financial system post-Great Recession.

This improvement is attributable, in part, to more rigorous regulations and increased fre-

quency of financial oversight exercises. Thus, this analysis offers a robust argument for

the efficacy of regulatory reform in mitigating financial system vulnerabilities.
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Table 2.23 The cumulated capital gap at the end of the Great Recessionc(2009q2) and the
stress test period (2021q1) (billion of USD dollars)

Bank
Stress test horizon Great Recession

4.5% T1CR requirement 7% T1CR requirement 4.5% T1CR requirement 7% T1CR requirement

Best ML FE-LM Best ML FE-LM
Bank of America Corporation 0.00 0.00 0.00 0.00 0.00 22.30
Bancwest Corporation 0.00 0.00 0.06 0.90 1.02 11.50
BBVA USA Bancshares INC 0.00 0.00 0.95 0.00 0.00 0.00
Citigroup INC 0.00 0.00 0.00 0.00 0.00 17.90
Comerica INC 0.00 0.00 0.00 0.26 0.00 0.65
Fifth Third Bancorp 0.00 0.00 0.00 0.00 0.00 4.46
JP Morgan Chase and Company 0.00 0.00 0.00 15.20 0.00 0.00
Keycorp 0.00 0.00 1.52 4.66 0.00 3.29
Huntington Bancshares INC 0.00 0.00 0.00 7.40 0.00 0.66
Northern Trust Corporation 0.00 0.00 0.00 0.00 0.00 0.00
PNC Financial Services INC 0.00 0.00 0.00 0.00 0.03 9.63
State Street Corporation 0.00 0.00 0.00 0.00 0.00 0.00
Well Fargo 0.00 0.00 0.00 0.00 0.00 15.30
All 0.00 0.00 2.53 28.42 1.05 85.69

Note : During the Great Recession, T1CR requirements were not set. We use these thresholds to evaluate
the capital gap prevailing at that period if the conditions were applicable.

2.5.2.4 Comparing predicted T1CR PDF accuracy between Best ML and FE-LM models
during the Great Recession

I use two evaluation methods to compare the two models: interval forecast evaluation and

direct density forecast evaluation. In particular, I concentrate on one quarter-ahead fore-

cast.

Interval forecast evaluation

Evaluating interval forecasts to rank predicted densities is a common approach in the lit-

erature (see Gneiting and Raftery 2007, Goulet Coulombe et al. 2022). I use three criteria:

empirical coverage rate, average interval length, and average interval score.

Empirical Coverage Rate: This measures how often the actual value of T1CR falls within
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the predicted interval, calculated as (1−α)100%, where α signifies the significance level.

The predictive quantiles at level α
2

and 1 − α
2

denote the lower and upper limits of the in-

terval, labeled as l and u, respectively. I set α at 0.1 for my evaluation. A higher (or lower)

coverage rate than 90% implies that the predicted interval is overly wide (or narrow). The

most accurate model maintains an empirical coverage rate closest to 90%.

Average Interval Length: This is the difference between the upper and lower limits of the

interval. I ascertain the average length across all forecasted intervals.

Average Interval Score: Introduced by Gneiting and Raftery (2007), this criterion gauges

the quality of interval forecasts, tracing its roots back to ?. The interval score, denoted as

Sint
α (l, u, x), where x is a realized value of T1CR, is calculated as follows:

Sint
α (l, u, x) = (u− l) + 2

α
(l − x)1x < l + 2

α
(x− u)1x > u. (2.9)

Here, 1(.) represents the indicator function. According to this metric, the superior model

yields the smallest score value. Intuitively, the interval score encourages a narrower in-

terval forecast, rewarding precision and accuracy. This intuition can be traced to Engle

(1982), who advocated for dynamic interval forecasts surrounding point predictions. He

argued that these intervals should contract during stable periods and expand during turbu-

lent times due to the inherent stability leading to more accurate forecasts. The score also

penalizes forecasters for missing the interval, with the severity of the penalty varying with

α.

When comparing models, the Best ML approach more accurately approximates the T1CR

density during the 2007-2009 financial crisis in terms of empirical coverage rate and aver-
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age interval score, as illustrated in Table 2.24. However, it is worth noting that the FE-LM

model exhibits a shorter average interval length than the Best ML model. This observation

implies that, on average, the FE-LM model predicts a more narrowly distributed left tail

of the T1CR density during the Great Recession compared to the Best ML model. Thus,

while both models have their strengths, the Best ML model’s superior performance in both

empirical coverage rate and average interval score suggests it is generally more effective

in modeling and predicting T1CR density during financial crises. However, the thinner left

tail produced by the FE-LM model can be advantageous under certain circumstances and

should be noticed.

Table 2.24 Comparison of one step ahead 90% interval forecasts between ML and linear
modeling)

Model Empirical coverage rate(%) Average interval lenght Average interval score

Best ML modeling 80.95 3.34 7.59
FE-LM modeling 50.00 2.20 9.37

Direct density forecast evaluation

Guided by Goulet Coulombe et al. (2022) methodology, I employ a scoring method to

gauge the accuracy of density forecasts. The score is given as:

Si,t+1 = −log(f̂(yi,t+1/Xi,t)). (2.10)

In this equation, f̂(yt+1) represents the predicted conditional density, evaluated at the re-

alized value yi,t+1. The indices i and t are the cross-sectional and time dimensions of the

panel, respectively, while Xi,t is the set of information available at quarter t. The model

with the lowest average score is considered the most accurate, as a lower score signals
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a higher mass closer to the realized value. Table 2.24 reveals the average score for each

selected bank during the 2007-2009 financial crisis, showing the Best ML modeling with

a lower average score than the FE-LM modeling. To assess the comparative ranks of the

two models, I employ the Diebold-Mariano test (DM test), modifying the definition of the

loss differential as follows:

di,t = SML
i,t − SLIN

i,t ; (2.11)

where SML
i,t and SLIN

i,t denote the scores for the Best ML and FE-LM modeling for bank

i at quarter t, respectively. Following Iacopini et al. (2023) interpretation, di,t serves the

same function as in the original DM test. I test the null hypothesis of equal forecast

accuracy H0 : E(di, t)=0 against the alternative hypothesis H1 : E(di,t)<0, favoring the

Best ML model. I perform this test by regressing di,t on a constant, where a zero constant

corresponds to H0, and a negative constant signifies the superiority of the Best ML model

over FE-LM modeling for predicting T1CR density during the Great Recession. Table

2.25 displays a significantly negative constant at the 1% significance level, suggesting that

the Best ML model is superior to the FE-LM model in approximating T1CR density during

the 2007-2009 financial crisis.
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Table 2.25 Score for selected stressed BHC throughout the 2007-2009 financial crisis

Bank holding companes Score for ML modeling (SML) Score for linear modeling (SL) Difference (SML-SL)
Bank of America Corporation 2.17 77.84 -75.67
Bancwest corporation 1.47 8.21 -6.74
BBVA USA Bancshares Inc 1.18 39.94 -38.76
Citigroup INC 3.40 52.15 -48.75
Comerica Inc 3.37 127.73 -124.36
Fifth Third Bancorp 1.96 38.00 -36.04
JP Morgan chase and company 1.58 29.99 -28.41
Keycorp 2.20 8.23 -6.03
Huttington Bancshares Inc 1.99 7.19 -5.20
Northern trust corporation 1.86 2.19 -0.33
PNC Financial Services INC 1.50 27.25 -25.76
State street corporation 2.47 2.65 -0.18
Wells Fargo et Company 1.23 26.18 -24.95
All 2.03 37.04 -35.01∗∗∗

Note : *** indicates that the ML modeling is better than the Linear modeling in predicting T1CR densities
at 1% significant level.

2.6 Conclusion

This paper thoroughly explores the benefits of integrating machine learning (ML) method-

ologies with comprehensive macroeconomic and bank-specific data, intending to optimize

risk analysis during stress tests. The research unfolds in two sequential stages, yielding

substantive findings contributing to our risk analysis understanding.

In the first stage, I establish the superior efficacy of Random Forest, a nonparametric and

nonlinear ML technique, over Pooled OLS and other ML models in predicting Net Charge-

Offs (NCO) across nine forecast horizons. This finding resonates with Covas et al. (2014)’s

emphasis on the nonlinear relationship between bank losses and predictors and further

elaborates on the utility of Random Forest in enhancing the Relative Mean Squared Error

(RMSE) of linear models in NCO forecasting for stress tests. Nonetheless, the predictive

power of NCO forecasting was further improved, by approximately 17%, across six of

nine forecast horizons when I expanded the macroeconomic database. Conversely, sup-
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plementing bank balance sheet information has no beneficial impact and, in some cases,

impedes the predictive capabilities of Random Forest. Regarding Pre-Provision Net Rev-

enue (PPNR), my findings lean towards Adaptive Lasso, a linear ML model that outper-

forms standard linear models across all forecast horizons. The linear relationship between

PPNR and predictors persists, yet the regularization imparted by Adaptive Lasso triggers

a notable improvement over linear models. While using a larger macroeconomic database

enhances the best ML models’ performance on horizons 5, 6, and 7, additional bank bal-

ance sheet information had a detrimental effect on the performance of ML models.

A critical revelation of the paper lies in analyzing the Tier 1 Capital Ratio (T1CR) distribu-

tion in the second stage. The left tail of the T1CR distribution is considerably heavier when

ML models are employed compared to linear models, especially for globally systemically

important banks. Moreover, ML models offer a superior approximation of T1CR density,

particularly under strained macro-financial conditions. These findings underline the risk

of over-optimism and systemic risk underestimation when exclusively relying on linear

models. Thus, ML models, with their ability to incorporate nonlinearity and complexity,

provide a more holistic perspective on the interconnectedness of the banking sector and

potential systemic risks.

This paper underpins the benefits of ML models in enhancing stress test risk analysis

and asserts the significance of an extensive macroeconomic database for NCO and PPNR

forecasts. Nonetheless, the study does not delve into the direct influence of additional

predictors on the accuracy of T1CR density forecast, paving the way for future research to

pinpoint additional predictors for NCO and PPNR models and assess their implications for

T1CR forecasts. This avenue of investigation can deepen our understanding of the direct

effects of these predictors on the efficacy of stress test methodologies.



CHAPTER III

BANK-LEVEL UNCERTAINTY AND THE BUSINESS CYCLE: EVIDENCE

FROM LARGE US BANK HOLDING COMPANIES



ABSTRACT

This paper introduces a novel method to quantify bank-level uncertainty from forecast

errors of a bank’s return on asset (ROA) derived from an ensemble of machine learning

models combined with granular bank data and an extensive macroeconomic dataset. From

various ROA forecasts, I compute the optimal forecast errors from the average prediction

across models. Then, I define the bank-level uncertainty measure as the standard devia-

tion of these forecast errors. Using Vector Autoregression (VAR) analysis, the paper shows

that this measure significantly influences both business cycles and credit markets. Unantic-

ipated spikes in bank-level uncertainty lead to notable economic downturns and worsened

credit conditions, exceeding the predictive power of conventional macroeconomic and fi-

nancial uncertainty metrics. These findings advocate for targeted regulatory action in the

banking sector to enhance financial stability.

Keywords: Big data, Bank, Uncertainty, Fluctuation, Business cycle.

JEL classification: D81, C55, E32, E44, G14.
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3.1 Introduction

The concept of economic uncertainty , defined by Watkins (1922) as "people’s inability to

forecast the likelihood of events happening," has been a prominent topic in economic lit-

erature since the influential work of Bloom (2009). The interest in this subject stems from

its connection to the business cycle, as supported by both theory and empirical evidence.

In a general equilibrium setting, an increase in uncertainty may depress investment, con-

sumption, and GDP through the real option effect1, the precautionary saving effect, or an

increase in financial frictions2. In addition, empirical research consistently demonstrates a

sharp increase in uncertainty during recessions. This evidence holds whether uncertainty is

measured using free model measures (e.g., Bloom 2009, Baker et al. 2016) or model-based

measures as in Jurado et al. (2015) (referred to as JLN).

While there is a wealth of literature focusing on macroeconomic uncertainty originating

in the real sector of the economy, overshadowing the potential role of the financial in-

dustry as a driver, Ludvigson et al. (2021) differentiate between financial uncertainty and

macroeconomic uncertainty, showing that the former acts as an impulse for economic ac-

tivity. Nevertheless, measuring uncertainty within the financial industry, particularly at the

bank level, and examining its impact on the business cycle remain relatively new and un-

derstudied research areas. Few studies focus on bank-level uncertainty (see, for example,

Soto 2021 and Buch et al. 2015). However, these studies limit their scope to the banking

sector and do not investigate the business cycle effect of bank-level uncertainty.

1Bloom (2009) simulates the impact of uncertainty on investment and employment under the hy-
pothesis of fixed cost. He shows that the rise in uncertainty increases the real option value of inaction, leading
most production units to temporarily freeze hiring, resulting in a drop in employment and investment.

2Valencia (2017) presents a model in which commercial banks insure themselves in the face of
increasing uncertainty by contracting loan supply.
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This paper pioneers a multi-faceted approach to quantify bank-level uncertainty, capitaliz-

ing on granular data from large banking institutions and a comprehensive macroeconomic

dataset. The central research question probes the endogeneity of bank-level uncertainty,

investigating whether it operates solely as an internal financial sector dynamic or wields

broader economic ramifications. The analysis is particularly pertinent to regulatory policy

considerations, elucidating a potential alternative conduit via which systemic instability

can reverberate through the real economy. Since financial crises often manifest within the

banking sector before cascading into broader markets, the bank-level uncertainty metric

might serve as an anticipatory indicator of economic instability, outperforming existing

generic measures.

I operationalize the construction of the bank-level uncertainty using a panel dataset encom-

passing 104 large Bank Holding Companies (BHCs) with total assets exceeding 3 billion

USD from 1986q3 to 2020q4. I compute the metric as the cross-sectional standard devia-

tion of the unpredictable component of return on assets (ROA).3 In developing a predictive

framework for ROA, the paper leverages an ensemble of both nonlinear and linear machine

learning models, taking the average of their one-quarter-ahead forecasts. This ensemble

approach has several merits. It capitalizes on diverse data patterns, mitigates the risks of

model dependency, thereby fortifying forecast robustness, and improves individual model

accuracy even in the face of forecast instability (Fraisse and Laporte 2022). The study

incorporates bank-specific covariates and an expansive set of macroeconomic indicators

for the predictor variables. This comprehensive data inclusion serves dual purposes. First,

it purges the model of predictable variations, and second, it ensures that the uncertainty

measure effectively embodies genuine unpredictability. Given that this metric relies on

3This choice of the profit variable aligns with Jurado et al. (2015), who construct firm-level uncer-
tainty based on the conditional volatility of unforecastable profit components.
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out-of-sample forecasting, its calculation begins from 2000q2, which marks the initiation

of the test set and extends through 2020q4.

This paper advances the literature in two key ways. First, I demonstrate that bank-level

uncertainty is a byproduct of economic downturns and a significant driver of business and

financial cycles, extending its influence beyond the scope examined in existing studies

like Ludvigson et al. (2021). Second, I innovate methodologically by employing ma-

chine learning techniques alongside granular bank and macroeconomic data to construct

a more robust measure of bank-level uncertainty. This approach addresses limitations in

traditional linear frameworks and leverages the predictive power of machine learning, as

validated by studies like Goulet Coulombe et al. (2022) and Stock and Watson (2004).

The rest of the paper is organized as follows. Section 3.2 presents the econometric frame-

work under which I construct the measure. Section 3.3 contains the description of the data.

Section 3.4 provides an estimation of the bank-level uncertainty. Section 3.5 discusses the

impact of the uncertainty measure on the business cycle and financial sector, and section

3.6 concludes.

3.2 Econometric Framework

I now turn to describe the construction of the uncertainty measure. The econometric frame-

work involves two steps. The first step consists of constructing various machine learning

forecasting models, whereas in the second step, I present the derivation of the bank-level

uncertainty.



112

3.2.1 Forecasting exercise

3.2.1.1 Estimating machine learning models

Let us write the model as follows:

Yi,t+1 = ĝ(Zi,t) + ei,t+1 , (3.1)

where Yi,t+1 denotes the value of the return to the asset (ROA) of BHC i at quarter t + 1,

ei,t+1 represents the forecast error and Zi,t is a K×1 regressor vector. Zi,t comprises lagged

dependent variable, microeconomic predictors, and all macroeconomic and financial series

of the FRED database. The one step ahead forecast of variable Yi,t+1 for BHC i given the

information available at t is given by Ŷi,t+1=ĝ(Zi,t) . I estimate ĝ considering different

parametric and nonparametric machine learning techniques.4 The specificity of all of the

machine learning techniques is to estimate ĝ, which minimizes the out-of-sample mean

square error (MSE)5 while simultaneously carrying out regularization procedures.6 The

4As parametric techniques, I consider "Lasso" regression, "Adaptive Lasso" regression, "Ridge"
regression, "Elastic Net" regression, and Principal component analysis. I include Gradient boosting, Random
Forest, and Neural Networks for nonparametric techniques. I provide complete details on parametric and
nonparametric machine learning techniques in this paper in appendix A.

5The MSE of a model is defined by:

MSE =
1

N

∑
i,t

(Yi,t+1 − Ŷi,t+1)
2;

where N denotes the number of banks present in the test set, i the cross-sectional dimension and t the time
dimension.

6The right choice of hyperparameters is at the core of regularization procedures. These include, for
example, the penalization coefficients in the "Lasso," Elastic Net," "Ridge" regressions, and the number of
trees and the number of variables selected randomly at each step for Random Forest.
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regularization has a dual objective. First, it can avoid over-training the data.7 Second,

it reduces the complexity of the model and often ensures a forecast performance higher

than traditional forecast techniques by the channel of bias-variance arbitrage. The choice

of the correct hyperparameters is the core of the ML techniques. I determine the optimal

hyperparameters by the K-fold cross-validation. Since the sample is a panel, I cross-

validate along time series and cross-section dimensions. Specifically, I divide a subsample

of estimation and validation samples into k groups of approximately equal size for a given

model and a combination of hyperparameters. I consider group j (1⩽ j ⩽ k) as the

validation set, and I estimate the model on the remaining k-1 groups. Then, I predict the

return to the asset in group j and compute its mean square error (MSEj). I redo the exact

exercise k times by treating each of the remaining k-1 groups as a validation sample. In

the end, I compute an average forecasting performance for the given hyperparameters as

MSE =
1

N

k∑
1

MSEl

I repeat the same exercise for all potential combinations of hyperparameters. I choose the

hyperparameters yielding the lowest value of MSE. Thus, I estimate the model with the

optimal hyperparameters in the entire subsample.

3.2.1.2 Constructing individual and average forecasts

In the first step, I build individual forecasts for each technique by applying the expanding

window technique. Therefore, I split the data sample initially into two. The first subsample

7Over-training of the data leads the function ĝ estimated by the forecasting technique to approach
the variable of interest almost perfectly and eliminate the residual variability in-sample. This phenomenon
results in a generally low mean square error in-sample, which masks poor prediction performance out of the
sample.
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comprises the estimation and validation sample and extends from 1986q3 to 2000q1, and

the second subsample, the test set, covers 2000q2-2020q4. I use the model estimated

in the first subsample to forecast Yi,t+1, one quarter ahead. I run the process iteratively

by expanding the first subsample by one quarter until I have predicted ROA for the last

quarter of the test set sample 2020q4. I build the average forecast as the mean of individual

forecasts. Concretely, let us denote by Ŷ j
i,t+1, the forecast of ROA relative to model j, B

the number of ML models. The average forecast of ROA, Ŷ avg
i,t+1, is defined as

Ŷ avg
i,t+h =

∑B
j=1 Ŷ

j
i,t+1

B
. (3.2)

I employ this methodology to capture the predictive power of multiple models, thereby

improving the robustness and reliability of the forecasts.

3.2.2 Building a time varying bank-level uncertainty

3.2.2.1 Derivation of the measure

Building on Equation (3.2), I calculate a measure of uncertainty, denoted as Ut, for each

quarter t in the test set. This measure is formulated as follows:

Ut =

√√√√ 1

Nt+1

Nt+1∑
i=1

[
Yi,t+1 − Ŷ avg

i,t+1

]2
, (3.3)

where i refers to individual banks and Nt+1 represents the total number of banks in oper-

ation during quarter t+1. To express the previous Equation in terms of forecast errors, let

ϵ̂i,t+1 denotes the forecast error for bank i in quarter t+1 relative to the average forecast.
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Using this notation, Equation (3.3) can be rewritten as :

Ut =

√√√√ 1

Nt+1

Nt+1∑
i=1

ϵ̂2i,t+1 . (3.4)

It is evident from this formulation that Ut is the cross-sectional conditional standard devi-

ation of the forecast errors relative to the average forecast. As in JLN, this measure gauges

the volatility of the unpredictable Return on Assets (ROA) components. The estimate of

the bank-level uncertainty is calculated using out-of-sample forecasts, specifically for the

period 2001q2-2020q4. A higher value of Ut is expected to correspond to the period of

higher bank-level uncertainty as it translates to more bankers’ difficulty in predicting ROA.

On the contrary, the measure’s lower value should reflect a calm period. Characterizing

the volatility through the dispersion of firm profit is at the cornerstone of a large body

of literature focusing on micro-based uncertainty (See, for example, Bloom et al. 2018,

JLN, Buch et al. 2015). These papers show that these measures capture uncertainty and

are perfectly countercyclical. Accordingly, according to this literature, I choose ROA as

a variable whose dispersion of unpredictable components could reflect the fluctuation of

uncertainty.

3.2.2.2 Decomposition of the time varying bank-level uncertainty

Let us consider the true but unknown forecast model of ROA for the population as repre-

sented by Equation (3.5):

Yi,t+1 = g∗(Zi,t) + ϵi,t+1 . (3.5)
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Here, g∗ is the true forecasting model of ROA for one quarter ahead based on the available

information at time t. Zi,t represents the vector of predictors, while ϵi,t+1 denotes the true,

unknown forecast error. Informed by theory, prior literature, and intuitive reasoning, I

specify the forecasting model g as shown in Equation (3.6), and estimate it through ĝ in

Equation (3.7) :

Yi,t+1 = g(Zi,t) + ei,t+1 (3.6)

Yi,t+1 = ĝ(Zi,t) + ϵ̂i,t+1 , (3.7)

Let Ŷi,t+1 represents the estimated forecast model of ROA, which implies Ŷi,t+1= ĝ(Zi,t).

Building upon Equations (3.5), (3.6), and (3.7), the estimated forecast error ϵ̂i,t can be

decomposed as follows:

ϵ̂i,t = Yi,t+h − Ŷi,t+h = g∗()− g()︸ ︷︷ ︸
approximation error

+ g()− ĝ()︸ ︷︷ ︸
estimation error

+ϵi,t+1

This decomposition reveals two types of errors: (1) the approximation error and (2) the

estimation error. The approximation error measures the divergence between the true spec-

ification (g∗()) and the econometrician-defined specification g(). The estimation error

arises from omitted variable bias. Averaging various machine learning (ML) forecasts

mitigates the approximation error by capturing different data features, such as linearity

and nonlinearity, as demonstrated by Stock and Watson (2004). As a consequence, this

technique contributes to reducing the approximation error. Furthermore, using a compre-

hensive dataset that includes macroeconomic and microeconomic predictors minimizes the

estimation error, contributing to a more accurate measure of uncertainty based on ROA’s
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unforecastable component. This approach fills a gap in the existing literature. For in-

stance, JLN control for estimation error but ignores nonlinearities. Similarly, the work of

Buch et al. (2015) is potentially subject to approximation and estimation errors due to its

limited predictor set and linear model.

3.3 Data

I use a panel dataset of 100 Bank Holding Companies (BHCs)8 observed quarterly, each

with total assets exceeding three billion USD, to operationalize the proposed methodol-

ogy. Mésonnier and Stevanovic (2017) initially curated this panel dataset, which spans

from the third quarter of 1986 to the fourth quarter of 2011. I further extend this cov-

erage up to the fourth quarter of 2020 to incorporate more recent periods of economic

uncertainty. The extended sample period encapsulates significant macroeconomic events

characterized by heightened uncertainty. These events include but are not limited to the

recession of 1990, the subprime mortgage crisis, and the economic downturn triggered by

the COVID-19 pandemic. It is essential to mention that the panel is unbalanced due to

the inherent dynamics of the banking industry—such as mergers, acquisitions, and bank

failures. Specifically, only 20% of the BHCs in the sample are operational throughout the

entire period under study.

I model ROA, which is defined as the annualized ratio of net bank income to total assets.

It is one of the bank’s widely used indicators of profitability. It provides information on

the bank gains or losses a unity asset generates. I compute the dependent variable from the

information enclosed in the FR Y-9C form of the Consolidated Financial Statements for

BHC delivered quarterly by the Chicago FED. Table 3.1 presents the summary statistics for

8The complete list of BHCs is available in Appendix D
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the bank’s variables and shows that ROA is quite volatile as its mean accounts for 70.64%

of its standard deviation. As bank-specific predictors, I consider several variables. The

lagged value of ROA is used to capture dynamic effects. Size is represented by the natural

logarithm of the bank’s total assets and serves as a proxy for its overall size. Capital

Ratio, computed as the bank’s equity capital relative to its total assets, indicates the bank’s

capital adequacy. NCO, the ratio of net charge-offs on loans and leases to total assets,

quantifies loan risk. Cost gauged through the ratio of total non-interest expenses to total

assets captures the bank’s efficiency. The model also includes CILoan, defined as the

ratio of such loans to total assets, which measures a bank’s exposure to consumer and

investment loans. RELoan quantifies a bank’s real estate loan exposure and is similarly

defined as the ratio of real estate loans to total assets. Lastly, Diversification, defined as

the ratio of total non-interest income to total income, serves as a measure to capture the

extent of a bank’s diversified activities.

Further examining Table 3.1, I find salient insights into large banking institutions’ risk

exposure and business models. Notably, banks exhibit a higher average exposure to real

estate loans, constituting 26.71% of total assets, relative to consumer and investment loans,

which account for 15.83%. In addition to asset allocation, the data underscore significant

heterogeneity in the banks’ operating models. Some institutions focus predominantly on

interest-generating activities, while others diversify their income streams. Nonetheless,

traditional lending activities remain the dominant source of income for most banks, con-

tributing an average of 74.58% to total earnings. Turning to the size of the banks, the

relatively low standard deviation compared to the mean in the size variable signifies uni-

formity among the large banks in our sample. This observation is noteworthy, as the study

focuses on large banking institutions, and such uniformity corroborates the analytical fo-

cus on this specific segment. Finally, it is essential to note that the predictor variables
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employed in this study are sourced from the Consolidated Financial Statements for Bank

Holding Companies released by the Federal Reserve Bank of Chicago.

Table 3.1 Summary Statistics for Bank variables

mean sd min p50 max
ROA 2.55 3.61 -26.11 2.28 77.47
Size 17.19 1.44 14.93 16.93 21.94
Capital Ratio 8.62 5.70 -0.35 7.85 80.92
NCO 1.12 1.49 -1.23 0.64 18.50
Cost 9.30 9.01 0.32 8.08 175.35
CILoan 15.83 8.21 0.00 15.58 51.54
RELoan 26.71 13.50 0.00 26.34 83.96
Diversification 25.42 14.98 0.00 21.72 99.44

3.4 Measures of Uncertainty

3.4.1 Estimates of bank-level uncertainty

Figure 3.1 illustrates the series of bank-level uncertainty (Ut) and notably underscores its

countercyclical nature. A significant negative correlation is apparent between Ut and GDP

growth (∆lnGDPt),9 as evidenced by an estimated correlation coefficient of -0.57. Uncer-

tainty markedly increases during recessions and slowly dissipates as the turbulence wanes.

This empirical observation aligns with findings from prior research on uncertainty, such as

those by JLN, Buch et al. (2015), and Bloom (2009). I adopt the criteria Bloom (2009) es-

tablished to delineate periods of heightened uncertainty. According to this criteria, periods

of heightened uncertainty are those where the measure of uncertainty exceeds the mean

of the time series plus 1.65 times its standard deviation. By this measure, two periods of

9I compute GDP growth rate as a four-quarter moving average of the quarterly growth rate, follow-
ing JLN’s approach.
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intensified uncertainty emerge, corresponding chronologically to the Great Recession and

the COVID-19 Recession. Remarkably, the uncertainty measure’s pinnacle coincides with

the Great Recession.

Figure 3.1 The bank-level uncertainty (Ut)
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Notes: The vertical grey lines delimit the US NBER recession periods. The horizontal red line represents
the sample mean of the measure of uncertainty plus 1.65 times its standard deviation.

Figure 3.2 delves into the relationship between bank-level uncertainty and shifts in finan-

cial and credit markets. It juxtaposes bank-level uncertainty with three pivotal indica-

tors of financial market well-being: the National Financial Condition Index (NFCI), the

spread of Moody’s seasoned BAA bond yield over the 10-year Treasury constant maturity

yield (BAA10YM ), and the excess bond premium (EBP ). The NFCI , a product of the

Chicago FED, provides a weekly snapshot of financial conditions spanning money mar-
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kets, debt, equity markets, and the banking sector. Elevated NFCI values signify wors-

ening financial health, whereas diminished values indicate amelioration. From a quarterly

perspective, I average the weekly NFCI values over three months. As for BAA10YM ,

an increased spread suggests strained credit market conditions, whereas a narrow spread

signals a more buoyant credit environment. Furthermore, Gilchrist and Zakrajšek (2012)

introduced the excess bond premium (EBP ) to quantify the risk premium on corporate

bonds. An upsurge in EBP values signifies a heightened risk premium, marking a dip

in bond allure and a tightening of credit conditions. Conversely, diminishing EBP val-

ues indicate a relaxation in credit market conditions. Figure 3.2 underscores a concerted

movement across the four metrics. As uncertainty escalates at the bank level, all three

indicators mirror a concurrent financial and credit market health decline.
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Figure 3.2 Bank-level uncertainty (Ut), NFCI , BAA10YM and EBP
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Table 3.2 delves deeper and showcases the outcomes of a two-sided Granger causality test

between bank-level uncertainty and each financial condition metric. Notably, the table es-

tablishes that bank-level uncertainty (Ut) granger-causes BAA10YM , EBP , and NFCI

at a 1% significance level, but not vice versa. These results shed light on the potential in-

terplay between bank-level uncertainty and broader financial nuances, echoing the findings

of Gilchrist et al. (2014) regarding idiosyncratic uncertainty. Specifically, Gilchrist et al.

(2014) posit that idiosyncratic uncertainty shocks instigate financial friction, sway credit

supply, and engender countercyclical credit spreads. These findings intimate that fluctu-

ations in bank-level uncertainty might be instrumental in decoding the fluid dynamics of

financial markets.
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Table 3.2 Granger causality test between the bank level uncertainty and the measures of
financial condition

Granger test hypothesis H0 Statistics p value
Ut does not granger cause BAA10YM 9.40 0.00∗∗∗

BAA10YM does not granger cause Ut 0.68 0.69

Ut does not granger cause EBP 5.91 0.00∗∗∗

EBP does not granger cause Ut 0.66 0.71

Ut does not granger cause NFCI 9.01 0.00∗∗∗

NFCI does not granger cause Ut 1.56 0.16

Note : * : p value of the granger test<0.1; ** : p values of the test <0.05; ***: pvalue of the test<0.01.

3.4.2 Descriptive Analysis of the bank-level uncertainty and the alternative measures

In assessing the nuances of bank-level uncertainty, I contrast it with three alternative

dispersion-based measures in Table 3.3. These measures, for simplicity, are denoted as

U
(1)
t , U (2)

t and U
(3)
t . Each of these measures offers a unique perspective on the multifaceted

nature of uncertainty within the banking sector, grounded in their distinct computational

methodologies:

U
(1)
t : This measure is computed as the quarterly cross-sectional standard deviation of the

return on assets (ROA). Its conceptual foundation aligns with the firm-level uncertainty

explored by Bloom (2009). Notably, it does not distinguish between the forecastable and

non-forecastable components of a bank’s profit, offering a broad-brush perspective on un-

certainty.

U
(2)
t : Drawing inspiration from Buch et al. (2015), this measure is derived as the cross-

sectional standard deviation of the forecast errors of ROA. The forecasting model that

underpins this measure is minimalist and encompasses only bank and time-fixed effects

as predictors. This measure offers a constrained view of uncertainty, focusing solely on
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deviations from expected ROA based on these limited parameters.

U
(3)
t : This measure mirrors U

(2)
t in its foundational definition. However, it embraces a

broader analytical scope by integrating additional predictors.10

By juxtaposing Ut with these alternative measures, I aim to unravel the relative significance

of various predictors in constructing bank-level uncertainty. This comparative analysis il-

luminates how each measure encapsulates distinct dimensions of uncertainty inherent in

the banking sector.

A primary observation from Table 3.3 is the pronounced skewness and kurtosis of Ut

compared to its counterparts. These statistics indicate that Ut is characterized by extreme

values, potentially implying that this measure is adept at capturing episodes of heightened

bank-level uncertainty. Such episodes are crucial for understanding systemic risks in the

banking sector. The first-order autocorrelation coefficient of Ut stands at 0.77, correspond-

ing to the slope of its AR1 model. Notably, this coefficient significantly surpasses those

of the alternative proxies. As a result, the estimated half-life11 of innovations to Ut spans

roughly three-quarters, a duration that considerably outlasts the corresponding half-lives

of alternative measures. This longer persistence indicates that Ut provides a more stable

and enduring reflection of bank-level uncertainty, a vital feature for long-term risk assess-

ment. Moreover, the correlation between bank-level uncertainty and economic activity is

quite robust. For instance, the contemporaneous correlation with GDP growth, denoted

by (corr(ut, ∆lnGDPt)) is -0.55. In contrast, the correlations for U (1)
t , U (2)

t , and U
(3)
t are

-0.16, -0.28, and -0.10. These findings underscore Ut’s enhanced sensitivity to macroe-

10The considered macroeconomic variables include the GDP growth rate, CPI inflation, and the
Federal funds rate, collectively characterizing the business cycle.

11Let us consider a stationary AR1 times series defined by yt = ryt−1 + ϵt. The half-life of the
series is approximated by −Ln(2)

Ln(r) .
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conomic dynamics, likely attributed to its integration of a comprehensive macroeconomic

dataset and distinction of non-forecastable components.

Furthermore, Table 3.3 delineates cross-correlations between Ut and GDP growth. A peak

cross-correlation of -0.49 with GDP growth emerges at a lead of t+1, while a lag of t-1

yields a maximum cross-correlation of -0.51. This pattern intimates a potential interaction

between bank-level uncertainty and the business cycle; Ut could presage economic activ-

ity by a quarter and respond to business cycle shifts in the succeeding quarter. The table’s

concluding rows present the Granger causality test’s null hypothesis and statistics, eval-

uating the causal interplay between uncertainty measures and GDP growth. The results

indicate that Ut, U
(1)
t and U

(2)
t have predictive power for future GDP growth, significant

at the 5% and 10% levels, respectively. These empirical observations bolster the hypoth-

esis that bank-level uncertainty influences economic activity. However, a more profound,

structurally-oriented inquiry is warranted to establish this causal relationship. Such an

exploration could render compelling evidence to substantiate or refute this preliminary

insight.

Table 3.3 Summary statistics of uncertainty’s measures in quarterly frequency

Statistics Uncertainty measured using :

U
(1)
t U

(2)
t U

(3)
t The bank level uncertainty ( Ut)

Mean, sd 1.18, 0.34 0.87, 0.41 2.19, 2.07 0.20, 0.15
Skewness, Kurtosis 0.40, 0.03 0.81, 0.13 2.35, 5.75 2.22, 6.17
AR1, Half Life 0.35, 0.67 0.19, 0.42 0.37, 0.69 0.77, 3.00
corr(Ut,∆lnGDPt) -0.16 -0.28 -0.10 -0.57
corr(Ut,∆lnGDPt+4), corr(Ut,∆lnGDPt−4) 0.00, -0.17 -0.03, -0.19 0.09, -0.40 0.02, -0.27
maxk>0corr(Ut,∆lnGDPt+k) -0.13 -0.22 0.09 -0.49

At lag k= 1 1 4 1
maxk<0corr(Ut,∆lnGDPt+k) -0.20 -0.31 -0.40 -0.51

At lag k= -1 -1 -4 -1
G.T : Uncertainty measure does not granger cause ∆lnGDPt 1.86∗ 2.02∗ 1.06 2.44∗∗

G.T : ∆lnGDPt does not granger cause the uncertainty measure 0.65 0.22 4.09∗∗∗ 0.78

Note : G.T designates the granger causality test. * : p value of the test<0.1; ** : p values of the test <0.05;
***: pvalue of the test<0.01 .
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3.4.3 Bank-level uncertainty, financial uncertainty and macroeconomic uncertainty

I juxtapose the bank-level uncertainty measure with Ludvigson et al. (2021)’s financial

uncertainty measure and three established macroeconomic uncertainty metrics: the JLN

uncertainty, the VIX volatility index, and Baker et al. (2016)’s economic policy uncer-

tainty.

JLN uncertainty : This influential measure of macroeconomic uncertainty, introduced by

JLN, derives from the average volatilities of non-forecastable components across various

macroeconomic and financial series. Using a data-rich approach, JLN construct predictive

models for each series, extracting their

non-forecastable facets.

Ludvigson et al. (2021) financial uncertainty: Adopting a methodology akin to JLN,

Ludvigson et al. (2021) hone in exclusively on financial series to construct their measure

of financial uncertainty.

VIX Volatility Index: Serving as a barometer for US stock market volatility, the VIX

index was championed by Bloom (2009) as a surrogate for macroeconomic uncertainty in

his seminal work on the nexus between uncertainty and the business cycle.

Baker et al. (2016) Economic Policy Uncertainty: This measure quantifies policy uncer-

tainty through a frequency analysis of specific keywords such as "economic" or "economy"

paired with "uncertain" or "uncertainty" within leading US newspapers.

Empirical analysis reveals a robust and positive association between bank-level uncer-

tainty and multiple financial and macroeconomic uncertainty indices. However, a notable

exception is observed in the case of economic policy uncertainty. Specifically, correlation

coefficients predominantly range between 0.56 and 0.62, emphasizing the strength of these

relationships. In contrast, the correlation coefficient between bank-level and economic
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policy uncertainty is more tempered, registering an estimated 0.22. Figure 3.3 visually

represents these measures and highlights their pronounced countercyclical behavior. Dur-

ing contractionary phases of the economy, all five indices manifest an upward trajectory

indicative of escalating uncertainty. Conversely, during stages of economic resurgence,

these indices show a discernible decline, signaling mitigation in uncertainty levels. Such

empirical patterns bolster the prevailing academic hypothesis: economic downturns in-

variably correlate with amplified uncertainty across diverse metrics.
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Figure 3.3 Bank-level uncertainty , JLN uncertainty, VIX Stock market volatility, Eco-
nomic policy uncertainty of Baker et al. (2016) and Financial uncertainty of Ludvigson et
al. (2021)
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3.5 VAR analysis

This section comprehensively analyzes the interaction between bank-level uncertainty and

the business cycle. Additionally, it compares the macro-financial effects of the bank-level

uncertainty shock with those of other uncertainty measures.

3.5.1 Bank-level uncertainty and macroeconomic and financial dynamic

I use a Structural Vector Autoregression (SVAR) framework to investigate the interrelation

between bank-level uncertainty and macroeconomic and financial indicators fluctuations.

The foundational structure of the baseline VAR influenced by JLN incorporates a set of

12 variables. Including a comprehensive variable set aims to counteract potential omitted

variable bias—a concern raised by Carriero et al. (2018). The variables included in the

baseline VAR model are as follows: (1) GDP growth rate ( GDP ), (2) unemployment

rate (UNRATE), (3) real consumption growth rate (CONSUMPTION), (4) CPI inflation

(INFLATION), (5) growth rate of orders (ORDERS), (6) real wage growth rate (WAGE),

(7) hours of work (HOURS), (8) Federal funds rate (FEDFUNDS), (9) spread between

BAA bond’s yield and the 10-year maturity treasury bond yield (BAA10YM), (10) growth

rate of M2 money stock (M2REAL), (11) bank-level uncertainty (Ut), and (12) financial

uncertainty of Ludvigson et al. (2021) (UF
t ). I estimate the VAR using one lag based on

information criteria. The data used in the paper spans from 2000q2 to 2020q4.

I use the Cholesky decomposition to derive the impulse response functions of the above

variables to an innovation in bank-level uncertainty, subsequently described as a "shock."

The decomposition respects the previously detailed variable ordering. Notably, by plac-

ing UtF as the concluding variable in this sequence, I postulate that any events occurring
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within the banking sector during a quarter directly influence the broader financial industry,

subsequently affecting the financial uncertainty metric. The incorporation of the financial

uncertainty metric is deliberate. It illuminates the intricate dynamics between this and

bank-level uncertainty, shedding light on the ripple effects of banking-sector frictions on

the comprehensive financial system and the macroeconomy. Adhering to the analytical

techniques of Bloom (2009) and JLN, the shock’s intensity, on bank-level uncertainty, is

calibrated at a value fourfold its standard deviation, allowing for streamlined comparative

analysis. For a more focused and lucid depiction, Figure 3.4 singularly portrays the reac-

tions of GDP and BAA10YM . Figure 3.4 elucidates the substantial macroeconomic and

financial repercussions from a positive shock to bank-level uncertainty. In the aftermath of

the shock, BAA10YM - a barometer of credit market conditions—registers a pronounced

surge, sustaining this heightened level for ten quarters. Concurrently, GDP growth un-

dergoes a contraction, shrinking by 2% on a quarterly basis. This downturn manifests

two-quarters post-shock and persists beneath its long-term trajectory for roughly eight

quarters. Such findings underscore that a surge in bank-level uncertainty precipitates an

escalation in the external financial premium. This surge is evident from the amplified

BAA10YM value, which indicates a steeper financing cost in capital markets and exerts a

drag on GDP growth.
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Figure 3.4 IRFs of GDP and BAA10YM to a positive shock on the bank level uncertainty
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Note : The dots charts represent IRF lower and upper bounds and are constructed at 90% confidence level.

3.5.2 Comparing the bank level uncertainty to alternative dispersion based measures
of uncertainty

The methodology presented in this paper, upon scrutiny, demands rigorous reconsidera-

tion. In pursuit of a more robust analysis, I replace the bank-level uncertainty, represented

as Ut, with three alternative measures previously defined and derived from the dispersion

of ROA or its delineated components: U
(1)
t , U (2)

t and U
(3)
t . The compelling results are

showcased in Figure 3.5, which depicts the Impulse Response Functions (IRFs) of GDP

and BAA10YM to these alternative measures. Figure 3.5 drives home an undeniable truth:

the reactions of GDP and BAA10YM to perturbations in U
(1)
t , U (2)

t and U
(3)
t are demonstra-
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bly muted compared to their responses to the original bank-level uncertainty shock. This

pattern persists unwaveringly across all forecast horizons at a 90% confidence interval.

Even more telling is that despite harnessing the same bank-level uncertainty construc-

tion method that once evoked significant reactions for GDP and BAA10YM, the responses

wane into near insignificance when limited to a truncated set of macroeconomic predic-

tors. These results suggest and resoundingly affirm the vital need for comprehensive data

integration. Furthermore, they emphasize the importance of precisely discerning between

the non-forecastable and forecastable elements of ROA when architecting bank-level un-

certainty.
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Figure 3.5 IRFs of GDP and BAA10YM to a positive shock on alternative dispersion based
measures of uncertainty U

(1)
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t
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3.5.3 Comparing the bank level uncertainty to macroeconomic uncertainty measures

I replace the bank-level uncertainty with three measures of macroeconomic uncertainty

sequentially: JLN, the VIX volatility index, and the economic policy uncertainty of Baker

et al. (2016). Figure 3.6 plots the IRFs of GDP and BAA10YM to shocks on the bank-

level uncertainty and the different macroeconomic uncertainty measures. According to

this figure, the macroeconomic uncertainty measures impact much less the GDP and the

BAA10YM than the bank-level uncertainty. The response function of GDP needs to be

more neatly significant. These findings echo Ludvigson et al. (2021), who show that finan-

cial uncertainty is an impulse of economic activity, whereas macroeconomic uncertainty

is an endogenous response to the business cycle.

Table 3.4 displays the decomposition of GDP and BAA10YM variance relative to the

bank-level and macroeconomic uncertainty measures. This analytical framework corrob-

orates our earlier observations and accentuates the divergence between the two types of

uncertainty. Specifically, the results suggest that macroeconomic uncertainty measures are

not pivotal determinants of future volatility in the credit market, in stark contrast to bank-

level uncertainty. These findings also point to the necessity of differentiating between

various forms of uncertainty when investigating their impact on economic cycles.
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Figure 3.6 IRFs of GDP growth rate ( GDP ) and BAA10YM to a positive shock on the
bank level uncertainty and on different measures of macroeconomic uncertainty
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Table 3.4 Decomposition of variance of GDP and BAA10YM to bank-level uncertainty
and macroeconomic proxies of uncertainty

Fraction of variance in GDP (percent)

Explained by : Bank level uncertainty JLN uncertainty VIX volatility index Economic policy uncertainty

h=1 0.00 0.00 0.00 0.00
h=2 14.12 13.04 8.32 3.81
h=4 20.84 14.59 8.24 3.83
h=6 23.28 15.57 8.56 3.85
h=8 23.92 15.16 8.88 3.86
h=10 10.00 14.44 9.00 3.83
∞ 24.03 14.60 9.04 3.67
Fraction of variation in BAA10YM (percent)

Explained by : Bank level uncertainty JLN uncertainty VIX volatility index Economic policy uncertainty

h=1 0.00 0.00 0.00 0.00
h=2 17.59 3.08 0.61 1.31
h=4 24.76 7.16 3.60 2.16
h=6 27.04 8.50 4.98 2.38
h=8 27.62 8.76 5.69 2.46
h=10 27.58 8.58 6.18 2.48
∞ 27.12 8.70 7.54 2.48

3.5.4 Comparing the bank-level uncertainty to financial uncertainty measure of Lud-
vigson et al. (2021)

Given that both bank-level uncertainty and the financial uncertainty measure proposed by

Ludvigson et al. (2021) target the financial sector, a salient research question naturally

arises: to what extent do these two measures differ in their influence on business cycle

fluctuations? Addressing this query is more than just academic. It has practical impli-

cations for whether it is essential to consider a sector-specific measure of uncertainty for

the banking industry. Therefore, the analysis comprises two dimensions. First, I assess the

prospective impact of both uncertainty measures on key macro-financial variables, thereby

projecting their potential role in shaping future economic conditions. Subsequently, I con-

duct an empirical analysis to scrutinize the historical influence exerted by these measures

on the business cycle fluctuation.
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3.5.4.1 How different are the bank level and financial uncertainty in affecting future fi-
nancial and business cycle fluctuations?

Figure 3.7 delineates the Impulse Response Functions (IRFs) of GDP and BAA10YM fol-

lowing bank-level and broader financial uncertainty measure shocks. According to this

figure, the GDP response to fluctuations in these two types of uncertainty is virtually iden-

tical. However, the response of BAA10YM is markedly more pronounced when influ-

enced by bank-level uncertainty. Table 3.5 offers further insight and presents the forecast

variance decomposition of GDP and BAA10YM for bank-level and financial uncertainty.

These results corroborate our earlier observations. While both types of uncertainty explain

a comparable proportion of future fluctuations in GDP, bank-level uncertainty exerts ap-

proximately twice the influence on BAA10YM fluctuations, as does financial uncertainty.

This finding lends credence to the argument that credit market dynamics are more acutely

affected by perturbations specific to the banking sector than the broader financial sector.
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Figure 3.7 IRFs of GDP and BAA10YM to a positive shock on the bank level uncertainty
and financial uncertainty of Ludvigson et al. (2021)
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Table 3.5 Decomposition of variance of GDP and BAA10YM to bank level uncertainty and
financial uncertainty(%)

Fraction of variance in GDP (percent)

Explained by : Bank level uncertainty Financial uncertainty

h=1 0.00 0.00
h=2 14.12 40.53
h=4 20.84 31.22
h=6 23.28 28.13
h=8 23.92 27.56
h=10 23.84 27.41
∞ 24.03 26.39
Fraction of variation in BAA10YM (percent)

Explained by : Bank level uncertainty Financial uncertainty

h=1 0.00 0.00
h=2 17.59 15.36
h=4 24.76 15.15
h=6 27.04 14.43
h=8 27.62 14.54
h=10 27.58 14.97
∞ 27.12 16.55

3.5.4.2 How important is the bank-level uncertainty for historic fluctuation of the business
cycle?

Historical decomposition is the standard tool used in the literature to ascertain the relative

importance of structural shocks during historical episodes. Within a VAR framework, the

historical decomposition at date t provides the cumulative effect of each structural shock

on every endogenous variable up to that point in time. Kilian and Lee (2014) propose two

formats to present the information conveyed by the historical decomposition. The first

format expresses the historical decomposition as counterfactuals. In contrast, the second

determines the contribution of each structural shock to the cumulative change of a specific

variable of interest between two specific points in time. This paper considers the first

approach.

In an n-variables Vector Autoregression (VAR) model, let ykt denote the value of the kth
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variable at time t, where 1 ⩽ k ⩽ n. Additionally, let ŷ(j)kt (1 ⩽ j ⩽ n) represent the

cumulative contribution of shock j to the variable ykt. Following the work of Kilian and

Lee (2014), counterfactuals are defined as:

ykt − ŷ
(j)
kt .

This counterfactual estimate reveals how the variable of interest, k, might have evolved if

all realizations of shock j up to time t had been nullified. If a counterfactual falls below

the observed value ykt, then the shock j has positively influenced the value of the variable

of interest. Conversely, if a counterfactual is above ykt, it indicates that the shock has

negatively impacted the value of the variable of interest. Fig. 3.8 portrays the historical

bank-level and financial uncertainty counterfactuals. Notably, it indicates that bank-level

uncertainty played a substantial role in the onset and magnitude of the Great Recession.

If this specific uncertainty had been absent, GDP growth would have exceeded its actual

level during the crisis.

In contrast, while financial uncertainty contributed to the economic downturn, its ef-

fect was significantly less pronounced than bank-level uncertainty. Furthermore, it is

worth noting that between 2013 and 2016, bank-level uncertainty positively affected GDP

growth. During this period, the counterfactuals for GDP growth stemming from finan-

cial shocks showed no appreciable deviation from the observed values. These insights

emphasize the nuanced impact of bank-level versus financial uncertainty on economic

fluctuations over time. Moreover, considering banks’ pivotal role in the economic land-

scape—particularly during the Great Recession—these findings advocate a more focused

examination of bank-level uncertainty. This is imperative, as a generalized financial uncer-

tainty measure may not capture the unique attributes and influence of the banking sector.
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Figure 3.8 Historical conterfactuals of the bank-level uncertainty and financial uncertainty
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3.6 Robustness analysis

I evaluate the robustness of the results based on three criteria: (1) varying the VAR spec-

ification, (2) considering alternative measures of financial condition, and (3) considering

alternative definitions for bank-level uncertainty. Through these three criteria, I aim to en-

sure the reliability and stability of results and draw robust conclusions from the analysis.

3.6.1 Macroeconomic and financial dynamics of bank-level shock : Alternatives VAR
specifications

In the literature, the SVAR framework, particularly the Cholesky decomposition, is widely

used to analyze the dynamic behavior of GDP and BAA10YM in response to uncertainty

shocks. However, consensus has not yet been reached on the appropriate composition of

the VAR model and the convenient ordering of uncertainty measures. In an influential

paper, JLN uses an 11-variable VAR model (VAR-11) and places the uncertainty measure

as the last variable. In contrast, Bloom (2009) adopts an 8-variables VAR model (VAR-8)

and positions the VIX volatility index, its measure of uncertainty, as the second variable.

Similarly, Baker et al. (2016) employ a 5-variables VAR model (VAR-5) and place the

measure of uncertainty, economic policy uncertainty, as the first variable.

To check the robustness of findings to VAR specification, I replicate the identification

of shocks to bank-level uncertainty (Ut) using the VAR-5, VAR-8, and VAR-11 frame-

works. I replace in each specification the uncertainty measure by Ut. The VAR-11 model

comprises the following variables: (1) GDP, (2) UNRATE, (3) CONSUMPTION, (4) IN-

FLATION, (5) ORDERS, (6) WAGE, (7) HOURS, (8) FEDFUNDS, (9) BAA10YM, (10)

M2REAL, (11) Ut.

The VAR-8 model consists of the following variables: (1) BAA10YM, (2) Ut, (3) FED-
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FUNDS, (4) WAGE, (5) INFLATION, (6) HOURS, (7) UNRATE, and (8) GDP.

On the other hand, the VAR-5 model includes (1) Ut, (2) BAA10YM, (3) FEDFUNDS, (4)

UNRATE, and (5) GDP.

Fig 3.9 plots the IRFs of GDP and BAA10YM to Ut identified by Cholesky decomposi-

tion successively in the baseline specification, VAR-11 of JLN, VAR-8 of Bloom (2009)

and VAR-5 of Baker et al. (2016). Based on Fig 3.9, the impact of bank-level uncer-

tainty shock on GDP and BAA10YM is consistent across different specifications. The

response of GDP and BAA10YM to the shock is similar and has the same sign, indicating

significant economic and financial consequences. These results suggest that the bank-level

uncertainty shock has a substantial macroeconomic and financial effect, regardless of the

ordering of the uncertainty measure and the VAR specification.
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Figure 3.9 IRFs of GDP growth rate ( GDP) and BAA10YM to a positive shock on the
bank level uncertainty identified in different VAR specifications
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3.6.2 Macroeconomic and financial dynamics of bank-level uncertainty : Alternatives
measures of financial condition

I have replaced BAA10YM with two widely used measures for characterizing financial

health: the National Financial Conditions Index (NFCI) and the excedent bond premium

(EBP). The purpose is to assess the consistency and robustness of the results when em-

ploying different measures of financial health. Fig. 3.10 compares the IRFs based on the

baseline specification with the IRFs obtained sequentially by replacing BAA10YM with

NFCI and EBP, respectively. The findings reveal that GDP exhibits significant reac-

tions to a bank-level uncertainty shock when NFCI and EBP are used as replacements for

BAA10YM. The direction of the responses remains consistent with the baseline specifica-

tion. However, the magnitudes of these reactions are lower than the baseline specification.

Furthermore, following a positive shock on the bank-level uncertainty, NFCI and EBP sig-

nificantly increase, similar to BAA10YM. Therefore, findings are robust to the measure of

financial health used.
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Figure 3.10 Comparing baseline IRFs with sequentially NFCI and EBP replacing
BAA10YM
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3.6.3 Macroeconomic and financial dynamics of bank-level shock: using an alterna-
tive measure of the dispersion of ROA non-forecastable component

To evaluate the impact of the standard deviation versus variance as measures of disper-

sion for the non-forecastable component of ROA, I replace the standard deviation with

variance as an alternative measure and plot the two IRFs in Fig 3.11. This figure shows

that the responses of GDP and BAA10YM are similar in both specifications, indicating the

robustness of the approach.
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Figure 3.11 Comparing baseline VAR to VAR based on alternative measure of dispersion
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3.7 Conclusion

This paper presents a pioneering methodology for constructing a bank-level uncertainty

measure employing a data-rich environment and machine learning techniques. The study

unfolds in two primary phases. First, I develop an optimal forecast for the bank’s return

on assets (ROA) by averaging forecasts across various machine learning forecasting mod-

els. Second, this optimal forecast is the foundation for the uncertainty measure, defined

as the standard deviation of the ROA’s non-forecastable component. Implementing this

bank-level uncertainty measure in a Vector Autoregression (VAR) framework reveals its

significant implications for financial markets and the business cycle. A positive shock to

this uncertainty measure triggers a pronounced decline in GDP and exacerbates credit mar-

ket conditions. Compared to alternative dispersion-based measures, the indicator stands

out in its unique impact on GDP and credit market conditions.

This finding underscores the value of incorporating broader macroeconomic informa-

tion and distinguishing between forecastable and non-forecastable components when con-

structing uncertainty measures. Furthermore, results highlight the different effects on the

business cycle and the financial sector between, on the one hand, the bank-level uncer-

tainty and the macroeconomic uncertainty and, on the other hand, between the bank-level

uncertainty and financial uncertainty. These results suggest that the bank-level uncertainty

differs from the macroeconomic and financial uncertainty.

These findings are crucial for financial stability, as they highlight that uncertainty originat-

ing in the banking sector can lead to recessions and financial market turmoil. Therefore,

policymakers and regulators should monitor developments in the banking sector closely

and consider more targeted indicators, as broader financial uncertainty measures may not

adequately capture the nuances specific to banks. Future studies could extend this work
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by investigating the applicability of bank-level uncertainty measures in different economic

contexts and their interplay with other types of uncertainty.



CONCLUSION

The Great Recession of 2007-2009 highlighted the pivotal role of the financial sector in

general and the banking sector in particular in maintaining macroeconomic stability, em-

phasizing its intricate connection with the broader economy. Macroeconomic stability is

characterized by an economy that consistently tracks its potential growth, exhibiting steady

economic growth and low inflation. Recognizing the importance of this macro-financial

relationship, Quadrini (2011) recommends integrating the financial sector into macroeco-

nomic models. Machine learning techniques, known for their adaptability and aptitude

for detecting complex non-linearities and managing large datasets, offer promise for con-

structing these models. Their effectiveness is evident in studies such as Goulet Coulombe

et al. 2022 and Fraisse and Laporte 2022.

This thesis aims to assess the effectiveness of machine learning (ML) techniques when

combined with granular bank-level data and macroeconomic insights to enhance our un-

derstanding of the macro-financial relationship.

In Chapter 1, we employ machine learning techniques within a comprehensive data frame-

work to pinpoint a bank credit supply shock. Our metric — derived from averaging the

forecast errors of a predictive model for the bank’s capital-to-asset ratio — effectively cap-

tures the supply dynamics of bank credit. Indeed, an unfavorable metric fluctuation moves

the credit price and volume in the opposite direction, showing that our shock fluctuation

translates into supply shock. Intriguingly, a negative shift in this measure results in a pro-

nounced GDP downturn, reduced inflation, and a marked decrease in the volume of bank
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credit. It is worth highlighting that the impact of this shock is more sustained and distinct

on bank credit than GDP. Comparing our measure to alternative measures of bank credit

supply highlights the importance of using more information and finding a suitable model

to identify the bank credit supply shock. This evidence backs our agnostic approach.

In Chapter 2, we assess if machine learning techniques can improve the bank’s stress test

risk analysis. Furthermore, we investigate the role that using more micro and macro infor-

mation as usual could play in ameliorating the forecast accuracy of key banking variables

and, therefore, affecting the stress test. We show that machine learning techniques can

improve the stress test indirectly and directly. Indirectly, ML techniques relative to lin-

ear models enhance the predictive accuracy of two banking variables: pre-provision net

revenue (PPNR) and net charge-off (NCO). Moreover, combining ML models with ex-

tensive macroeconomic information further improves the forecast accuracy of PPNR and

NCO. Directly, machine learning techniques provide a closer approximation of risk under

adverse macroeconomic conditions compared to linear models. As a result, these mod-

els offer a more accurate representation of bank vulnerabilities and potential risks during

economic downturns.

In Chapter 3, we construct a novel measure of bank-level uncertainty using machine learn-

ing techniques combined with granular bank data and big macroeconomic data. Our mea-

sure derived as the standard deviation of the non-forecastable component of the bank’s

return on asset (ROA) follows Jurado et al. (2015), who link uncertainty to difficulty in

predicting. We include the measure in a VAR, finding that a positive fluctuation triggers

GDP growth slowdown and credit deterioration more critically than with standard macroe-

conomic and financial measures of uncertainty. This finding highlights the difference be-

tween bank-level uncertainty and macroeconomic uncertainty. Furthermore, it recalls that

financial uncertainty does not capture all idiosyncratic bank development. It is, therefore,
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essential, given the bank’s role in the financial system and the economy, to consider more

precisely a measure of uncertainty tailored to the bank sector.

This thesis has three significant contributions. First, ML techniques combined with com-

prehensive data can improve the structural analysis of the economic impact of the bank

credit shock by allowing its effective identification. This issue is essential for macroeco-

nomics as wrong identification of the bank credit supply may mislead the real impact of

such shock for the broader economy. Second, this thesis shows that ML techniques can

enhance risk analysis in a stress test relative to linear models. This issue is essential for fi-

nancial stability since a wrong picture of risk leads to inaccurate estimation of the systemic

risk and corollary to inadequate policy decisions. Third, this thesis suggests using flexible

tools of ML techniques and big data to help build a more robust measure of bank-level

uncertainty.
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APPENDIX

Appendix A. Description of different machine learning techniques

In this appendix, we provide detailed description of machine learning techniques, we em-

ploy in this thesis.

Appendix A.1 Penalized linear regression methods

I have considered the main penalized linear regression methods, which encompass the

"lasso" regression and its variant, the "adaptive lasso" regression, as well as the "elastic

net" regression and the "ridge" regression.

Model

These methods are based on the linear assumption, where the relationship between vari-

ables can be represented as g(Zi,t, θ)=Z ′
i,tθ.

The objective function is defined as follows:

Q(θ; .) = L(θ; .) + Φ(θ; .) . (A.1)

where L(θ; .) represents the mean square error (MSE), and Φ(θ; .) is the penalty term that

varies across different methods. Generally, the penalty function takes the following form :

Φ(θ, λ, α,Ψ) = λ
NT

[α
∑K

j=1Ψj|θj|+ (1− α)
∑K

j=1Ψ
2
jθ

2
j ] . (A.2)
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Here, K denotes the number of potential predictors, while λ and α are hyperparameters.

Ψj (j=1...K) represents the weights assigned to the predictors. Additionally, N stands for

the number of banks, and T represents the number of quarters in the estimation sample.

The optimization problem can be formulated as:

θ̂ = argminθ(L(θ; .) + Φ(θ; .)) , (A.3)

where θ̂ denotes the estimate of the vector of parameters θ obtained using the selected

method.

Several cases arise:

α = 1, Ψj = 1, K=1,...p corresponds to the "lasso" regression. The "lasso" regression uses

the L1 norm12 to penalize the coefficients. For the high values of λ , the "lasso" regression

sets certain coefficients to zero. It simultaneously estimates the forecasting model and

selects relevant predictors. To determine the optimal value of λ, multiple forecasting mod-

els are estimated using different values of λ from a grid, and the optimal value is chosen

through cross-validation13.

α = 0, Ψj = 1, K=1,...p corresponds to the "ridge" regression. The "ridge" regression

12Let θ = (θ1, ..., θp) a vector, ∥θ∥L1=
∑K

j=1|θj |

13It is the standard approach to calculating the performance of a forecasting model, which consists of
: (1) dividing the sample randomly into k groups of approximately equal size, (2) considering group 1 as the
validation sample and estimating the forecast model on the remaining k-1 groups, (3) calculating the mean
squared error of the forecast model on this validation sample (without harming the generality, it can be noted
CV1), (4) redoing the same exercise k times by treating each of the remaining k-1 groups as a validation
sample, (5) computing the performance of the forecasting model by determining the mean of CVi i = 1, ...

k. By noting this performance by CV, we can write CV=
CV 1 + CV 2 + ...+ CV k

k
.
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employs the L2 norm14 to penalize the coefficients. Unlike the L1 penalty, the L2 penalty

shrinks some coefficients towards zero but does not set them exactly to zero. Therefore,

the "ridge" regression does not perform predictor selection. Similar to the "lasso" regres-

sion, the optimal value of λ is determined by minimizing the model mean squared error

(MSE) on a validation set.

α ∈ (0, 1), Ψj = 1, j=1,...K corresponds to the "elastic net" regression. The "elastic

net" regression combines the L1 and L2 norms to penalize the coefficients. The hyper-

parameter α determines the relative weight between the two norms. Grids of values are

constructed for both α and λ, and multiple models are built for all possible combinations.

The optimal combination is selected through cross-validation.

α = 1, Ψj j=1...K varying as a function of j, corresponds to the "adaptive lasso" regres-

sion. In the "adaptive lasso" regression, the weights Ψj of the predictors are determined

from the data. Zou (2006) suggests a two-step approach to determine these weights.In the

first step, a weight allocation technique is employed to assign weights to different vari-

ables. Zou (2006) suggests regressing the variable of interest on the potential predictors

using OLS (or any other estimation method such as "ridge" regression). The estimated

coefficient for variable j, denoted as θ̂jOLS , along with a chosen parameter γ>0 is used to

define the weight attached to variable zjt as Ψj =
1

|θ̂jOLS|γ
. The value of γ is determined

through cross-validation.

In the second step, the weights Ψj obtained in the first step are used in the "lasso" regres-

sion. The optimal value of λ is also determined using cross-validation.

To solve the optimization problem for the different estimation techniques, I employ the

14Let θ = (θ1, ..., θp) a vector, ∥θ∥L2=
∑p

j=1 θ
2
j
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coordinated rapid descent algorithm, which is outlined below.

Algorithm

The coordinated rapid descent algorithm was first proposed by Fu (1998) for estimating

the "lasso" regression. Subsequently, it has been employed in various empirical studies,

including Shevade and Keerthi (2003). In a study by Friedman et al. (2007), it was demon-

strated that this algorithm is as efficient as the "Least Angle Regression" algorithm (LARS)

developed by Efron et al. (2004). LARS is widely used in the literature for estimating the

"lasso" regression.

Now, let’s establish the framework of a linear regression model. In this model, N de-

notes the sample size, where yi i=1...N represents the variable of interest and xij i=1...N,

1 ⩽ j ⩽ K represents the K potential predictors. For simplicity, let’s assume that the pre-

dictors are centered and standardized, meaning that
∑N

i=1 xij=0 et 1
N

∑N
i=1 x

2
ij=1, j=1...K

. The "elastic net" regression solves the following problem:

min(β0,β)∈RK+1Rλ(β0, β) = min(β0,β)∈RK+1 [ 1
2N

∑N
i=1(yi − β0 − x′

iβ)
2 + λΦα(β)] ,(A.4)

where

Φα(β) =
∑K

j=1[
1
2
(1− α)β2

j + α|βj|] . (A.5)

Here, λ and α are the two hyperparameters of the "elastic net" regression. The hyperpa-

rameter α controls a trade-off between "lasso" regression (α =1 ) and the "ridge" regression

(α =0 ), both of which are special cases of the "elastic net" regression.

Without loss of generality, let xi,j , j=1...K represent a prédictor. The conjectures β̃0 and β̃l

for l#jserve as the initial values in the coordinated descent algorithm. In the second step,

the objective function is optimized solely with respect to βj , requiring the computation of
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the gradient at β = β̃. This procedure updates β̃j , 1 ⩽ j ⩽ p. Two cases arise:

First case: β̃j > 0

∂Rλ

∂βj

| β = β̃ = − 1
N

∑N
i=1 xij(yi − β0 − x′

iβ) + λ(1− α)βj + λα . (A.6)

Second case: β̃j < 0

∂Rλ

∂βj

| β = β̃ = − 1
N

∑N
i=1 xij(yi − β0 − x′

iβ) + λ(1− α)βj − λα . (A.7)

The optimization of Rλ with respect to βj implies that ∂Rλ

∂βj
| β̃ = 0.

After simplification, I get:
β̃j =

1
N

∑N
i=1(yi−ỹi

(j))−λα

1+λ(1−α)
si 1

N

∑N
i=1(yi − ỹi

(j)) > 0 et | 1
N

∑N
i=1(yi − ỹi

(j))| > λα ;

β̃j =
1
N

∑N
i=1(yi−ỹi

(j))+λα

1+λ(1−α)
si 1

N

∑N
i=1(yi − ỹi

(j)) < 0 et | 1
N

∑N
i=1(yi − ỹi

(j))| > λα ;

β̃j = 0 si | 1
N

∑N
i=1(yi − ỹi

(j))| ⩽ λα .

y
(j)
i = β̃0 +

∑
l ̸=j xilβ̃l is the predicted value of the variable of interest excluding the

contribution of the variable xij . If I set Z= 1
N

∑N
i=1(yi − ỹi

(j)) and γ = λα, then the

expression can be simplified as follows:
β̃j = Z−γ

1+λ(1−α)
si Z > 0 et |Z| > γ ;

β̃j = Z+γ
1+λ(1−α)

si Z < 0 et |Z| > γ ;

β̃j = 0 si |Z| ⩽ γ .

Formally, the algorithm is broken down into three stages:

Step 1:
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Conjecture estimates β̃j , 0 ⩽ j ⩽ K.

Step 2:

Update β̃j , 1 ⩽ j ⩽ p by the formulas listed above.

Step 3:

Repeat step 2 until convergence.

Friedman et al. (2007) demonstrated that the estimates β̃j converge to the estimates of

penalized linear regression, irrespective of the initial conjectures. To facilitate the estima-

tion of these regressions, various computer routines have been developed, particularly in

R and STATA. In R, Friedman et al. (2010) created routines that are available in the "glm-

net" package. These routines provide the capability to estimate these regressions using

the coordinated descent algorithm. Similarly, in STATA, Ahrens et al. (2019) developed

routines for estimating these regressions. These STATA routines offer the functionality to

apply the coordinated descent algorithm for estimation.

Appendix A.2 Principal component regression method

The principal component regression is a data machine learning technique that can be ap-

plied to linear models. However, it differs from previous approaches in not involving

variable selection or coefficient reduction. This method is structured in two stages. In the

first stage, given that Zi,t represents a vector composed of K potential predictors, M linear

combinations of the Zi,t vectors are constructed to explain the most significant part of the

data’s variance. These linear combinations are known as principal components. In the

second stage, these principal component combinations replace the p potential regressors,

and the forecast model is estimated using ordinary least squares ("OLS"). The principle

of the method is to summarize the information contained in the potential regressors by a
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reduced number of principal components, which substitute the initial predictors and effec-

tively reduce the problem’s dimensionality.

Model

The linear model Yi,t+h = Z ′
i,tθ + ϵi,t+h can be expressed in matrix form as:

Y = Zθ + ε , (A.8)

which can be further written as :

Y = (ZΩM)θM + ε′ . (A.9)

where ΩM is a matrix of type K ×M consisting of columns ω1, ω2, ...ωM , which represent

the weight vectors assigned to the predictors in the construction of M principal compo-

nents. The matrix ZΩM is an NT× M matrix composed of the M principal components.

θM is an M× 1 vector that contains M parameters to be estimated instead of K. The model

in equation (31) represents the reduced version of the initial model obtained through prin-

cipal component analysis. The hyperparameter in this method is denoted as M, which

represents the number of principal components. Similar to the previous methods, a grid

of potential values for M is constructed. Different models corresponding to different po-

tential values of the hyperparameter are then estimated using the training sample. The

optimal value of M is determined through cross-validation on the estimation sample. The

principal component regression method selects the weights, ωj (1 ≤ j ≤ M ), recursively.

The jth linear combination solves the following optimization problem:

wj = argmaxwV ariance(Zw) s.c w′
jwj = 1, cov(Zwj, Zwl) = 0 for l ̸= j .(A.10)
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Appendix A.3 Methods based on decision trees

The previous methods assume that the relationship between the predictors and parameters,

denoted as g(Zi,t, θ), can be approximated by a linear function. However, this linearity

assumption may be too restrictive in cases where there is an evident nonlinearity between

the variable of interest and the predictors and/or parameters. Furthermore, linear models

ignore any interactions between predictors. To this end, intending to find the best model

for forecasting PPNR or NCO, it is also necessary to consider the nonlinearity hypothesis.

Tree regression is indeed a widely used nonlinear machine learning technique that offers

the advantage of capturing potential interactions between predictors. This method consists

of: (1) stratifying, segmenting the space of predictors into a number of simple regions,

(2) calculating the mean of the variable of interest for the observations of the estimation

sample belonging to each region, (3) classify each observation of the validation sample in

one of the regions, (4) predict the variable of interest for an observation of the validation

sample by the mean calculated in (2) of his region. The subdivision of the predictor space

into regions, guided by the mean squared error minimization criterion, results in the ap-

pearance of a tree-like structure. This is why the term "tree regression" is used to describe

this method.

By way of illustration, I present an example of Tibshirani et al. (2013). The purpose of

the exercise is to predict the log of baseball players’ salaries based on two characteristics:

(1) the number of years competing in the big leagues and (2) the number of successes in

the league. the previous year. The tree regression in this example is summarized by the

following subdivision of the predictor space:

1) if "number of years of competition in the big leagues" <4.5 then log (salary) = 5.11;

2) if "number of years of competition in the big leagues"> 4.5 and "number of successes
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of the previous year" <117.5 then log (salary) = 6.00;

3) if "number of years of competition in the big leagues"> 4.5 and "number of successes

of the previous year"> 117.5 then log (salary) = 6.74.

In the provided example, the predictor space is divided into three simple regions, and the

projected salaries on a logarithmic scale are assigned based on the region. It’s important

to note that in real-world applications, the subdivisions of the predictor space can be more

complex and involve multiple conditions or thresholds. One of the advantages of tree

regression is its interpretability. The resulting tree structure allows straightforward inter-

pretation and understanding of the relationship between predictors and the target variable.

Each region represents a specific combination of predictor values and provides a precise

prediction. However, tree regression can suffer from high variability, negatively impact-

ing prediction performance on the validation sample. Two commonly used methods in

the literature that address this issue and reduce variance are random forest and "boosting"

regression.

A.3.1 Random Forest

The random forest consists of (1) estimating several regressions of decorrelated trees on

samples modified by "bootstrap"15, (2) constructing the prediction of the variable of inter-

est, and (3) computing the prediction’s average on the different trees. Averaging predic-

tions allows for reducing and stabilizing the forecast’s variance, unlike the simple regres-

sion of trees. To proceed to the decorrelation of the trees, a number m of predictors drawn

15The "bootstrap" is a statistical technique that consists of constructing several samples from an
initial one by random selection with or without replacement to estimate the moment of an estimator or to
improve its precision.



170

randomly from among K potential predictors (m <K) are used at each tree subdivision.

This exercise prevents the case of a very predominant predictor from being found at the

first subdivision of all the trees. It thus creates a correlation between them, as is the case

in the "bagging" method, which is similar in every way to the technique studied with the

only difference that m = K.

Model

Suppose that I construct B trees on the bootstrap estimation sample. Suppose further that

the subdivision of each tree randomly uses m predictors with m <K.

The regression on a tree j, (j = 1 .... B) supposes a model of the form fj(Zi,t, θ) =∑nj

k=1 θk.1(Zi,t∈Rk) where R1, R2, ....Rnj
are the regions of tree j; Zi,t is the vector com-

prising the characteristics of the banks, the dichotomous variables and the macroeconomic

variables. θ is the vector of the parameters to be estimated.

The random forest thus assumes the following model:

g(Zi,t, θ) =
1

B

B∑
j=1

fj(Zi,t, θ) . (A.11)

B represents the number of trees constructed, and m is the number of predictors drawn

randomly among K potential predictors and used for the subdivision of trees. They are the

two hyperparameters of this method. The question of determining optimal hyperparameter

values is central to the success of any machine learning technique, and this method is no

exception. For this purpose, I construct two grids of values for these two parameters, and

the optimal values of B and m are those that minimize the criterion "out of bag error"

(OOB) 16 provided by the estimation of the model.

16It is shown that the construction of each tree uses on average two-thirds of the observations. The
remaining third can be used as a validation sample. For each observation i, about B / 3 trees was not built
with this observation; the latter is used to construct predictions outside the estimation sample, which the
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The regression of the tree j (j = 1 ... B) is solved thanks to the following problem:

argminR,θ

∑N
i=1

∑T
t=1(Yi,t+1 − g(Zi,t, θ))

2 . (A.12)

Indeed, the subdivision of the tree and the parameters are chosen to minimize the mean

square error while ensuring a decorrelation of the trees.

Algorithm

If we know the objective of tree regression, which is to determine for a tree j the regions

R1, R2, ..., Rnj
in a way to minimize the RMSE, we have not yet specified the procedure

for achieving this objective. The most common procedure in the literature was highlighted

by Breiman (2001). This top-down approach, better known as "recursive binary splitting,"

consists of looking for the optimal subdivision at each step. In more detail, it starts at the

top of the tree, where all observations belong to the same region.

In the first step, I consider all of the predictors Z1, Z2, ..., Zp and all of the possible values

of the subdivision points for each predictor. Then, for any predictor Zj and any subdivision

point s, I define the subdivision of the following predictor space:R1(j,s)= {Z/Zj < s} and

R2(j,s)={Z/Zj ⩾ s}. I select the values j and s for which the subdivision allow for the

minimization of the equation:

∑
i: Zij∈R1(j,s)

(yi − ŷR1)
2 +

∑
i: Zij∈R2(j,s)

(yi − ŷR2)
2

where yi,t is the variable of interest, ŷR1 is the mean of the variable of interest and for

the observations of the estimation sample belonging to R1(j,s) and ŷR2 . After this step, I

mean will synthesize. "OOB" is then the mean square error resulting from these forecasts.
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have two regions. I continue the process of subdivision of each of these regions always

to minimize the above equation until the stopping point dictated by a previously defined

criterion.17. Since the minimization of the mean squared error relates to the estimation

sample, the risk of over-training the data is real. Breiman (1984) recommends pruning op-

timal tree branches for this purpose. It is a trade-off similar to the cases of penalized linear

regressions made between the model’s fit to the data and its complexity. The tree regres-

sion algorithm of Breiman (1984) synthesized below is taken from James et al. (2013).

Step 1:

Use the binary splitting described above to build an optimal large tree T0 based on the

estimation sample. The criterion for stopping the subdivision of the tree is the imposition

of a minimum number of observations in each region.

Step 2:

For each potential value of α that is the coefficient penalizing the complexity of the tree,

construct a subtree T⊂ T0 such that:

NT∑
m=1

∑
xi∈Rm

(yi − ŷRm)
2 + αNT ,

has the lowest possible value. NT is the number of terminal nodes of subtree T and, α is

a coefficient that makes it possible to ensure the trade-off between the model’s suitability

to the data and its complexity. The higher α is, the less terminal the subtree has. ŷRm

is the average of the variable of interest yi for the observations of the estimation sample

belonging to the region Rm.

Step 3:

17The criterion defined in general is the imposition on the regions R1, R2, ..., Rnj
to each contain a

minimum number of observations.
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Use cross-validation on the estimation sample to determine the optimal value of α that

minimizes RMSE.

Step 4:

Go back to step 2 to build the subtree corresponding to the optimal value of α. This opti-

mal subtree is used for forecasting.

Since the random forest is obtained from the regression of trees, the algorithm is also

deduced from it. This algorithm is structured in three stages:

Stage 1:

Build a number B of samples from the bootstrap estimation sample and estimate the tree

regression on each sample according to the above algorithm by randomly selecting from

each subdivision m predictors among K (m <K).

Stage 2:

Build theŷij forecasts for 1 ⩽ j ⩽ B obtained from the different tree regressions.

Stage 3:

Construct the forecast obtained by the random forest as ŷi = 1
B

∑B
j=1 ŷj

A.3.2 Boosting regression

The boosting regression approach is similar to the previous method, which involves con-

structing multiple trees. However, there is a fundamental difference. While the random

decision tree drill method relies on regressing noncorrelated trees using independent ’boot-

strap’ samples, boosting regression constructs trees sequentially. Each tree is built using
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information from the preceding trees. The underlying principle of this technique is slow

and progressive learning. In each iteration, a decision tree is estimated by replacing the

variable of interest with the residuals from the model. This new tree is then added to the

prediction from the previous iteration, updating both the prediction and the residuals. The

process is governed by a regularization parameter denoted as λ. This incremental learn-

ing approach gradually improves prediction performance at each iteration and continues

until the final tree is constructed. In the literature, there are several variants of boosting

regression. The most widely used variant is known as ’gradient boosting,’ introduced by

Friedman (2001).

Model

Let B be the number of trees built sequentially according to a regularization parameter λ,

each tree having d subdivisions. At iteration j, where 1 ⩽ j B, let fj(Zi,t, θ) denote the

prediction obtained:

g(Zi,t, θ) = λ
B∑
j=1

fj(Zi,t, θ). (A.13)

To determine the optimal combination of these hyperparameters, I construct value grids for

each parameter and employ cross-validation. This process helps identify the best hyperpa-

rameter settings. Optimization is performed for each tree regression, and the final predictor

is obtained by combining the predictions from all iterations using Equation B.13.

Algorithm

Let yi be the variable of interest, f̂(x) the prediction of y, x the vector of predictors, and ri

the residue of the regression. The algorithm comes in three steps.

Step 1:

I set f̂(x)=0 and consequently ri = yi for any observation i belonging to the estimation
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sample.

Step 2:

Let B be the number of trees to build, d the number of subdivisions of each tree, λ the

regularization parameter, and m the fraction of the estimation sample chosen at random.

For j = 1,2, ... B repeat:

• Build a regression tree whose dependent variable is ri and has d subdivisions (d + 1

terminal nodes) on the estimation sample and extract the prediction from it f̂ j(x).

• Update f̂(x) by the formula: f̂(x)← f̂(x)+λ f̂ j(x).

• Update ri by the formula : ri← ri - λf̂ j(xi).

Step 3:

The forecast model is given by f̂(x) =λ
∑B

j=1 f̂
j(x).

Appendix A.4 Neural network method

The neural network method is the last nonlinear technique studied. It is by far the most

complex and powerful technique for machine learning. Its complexity is due to its hyper

parametrization, making it not very transparent and difficult to interpret. Its power comes

from its ability to approximate most nonlinear functions (see Hornik (1989), Cybenko

(1989)).

Model

I opted for the neural network method with forward tuning, which is widely used in the

literature. This technique consists of an input layer composed of the initial predictors- one
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or more hidden layers that interact and transform the predictors nonlinearly and an output

layer that aggregates the hidden layers into a final result, the prediction.

Synapses link the layers together. Each layer is made up of a group of neurons18.The neu-

rons of the first layer directly receive the signals of the initial predictors via the synapses

and transform them nonlinearly using a function called the activation function. The sig-

nals thus constructed at the level of each neuron of the first hidden layer are transmitted

to neurons of the second layer, which transform them nonlinearly by the same activation

function. This process continues until the final aggregation of the signals is built at the

level of the neurons of the last layer which provides the prediction.

Suppose that K is the number of potential predictors and k is the number of hidden layers.

Suppose for this purpose that n1 is the number of neurons for the first hidden layer, n2,

the number of neurons for the second hidden layer, ...nk, the number of neurons for the

kth hidden layer. Let us denote by x
(1)
1 , x(1)

2 , ...x
(1)
n1 the signals constructed at the level of

neurons of the first hidden layer. Analogously, x(j)
1 , x(j)

2 , ...x
(j)
nj represent the signals con-

structed at the level of the neurons of the hidden layer j (1⩽ j ⩽ k). f being the activation

function, I can write:

x
(1)
i =f(θ(1)i,0 +

∑p
h=1 θ

(1)
i,hzh), 1 ⩽ i ⩽ n1. In general, the signal constructed at the level

of the neuron i of the hidden layer j can be written: x(j)
i =f(θ(j)i,0 +

∑nj−1

h=1 θ
(j)
i,hx

(j−1)
h ) (1 ⩽

i ⩽ nj , 1 ⩽ j ⩽ k). The choice of the activation function f is an essential prerequisite

in implementing this technique. For this purpose, I have chosen one of the most popular

forms in the literature: the rectified linear function, denoted LR. It is defined by:

18These are the points where the signals from the variables transformed at the lower layer are con-
structed.
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LR(x) =

 x si x ⩾ 0 ,

0 si x < 0 .

This function is practical because it is less expensive in terms of the running time of the

computer. So, the signal built at the level of each neuron of the last layer k can be written:

x
(k)
i = LR(θ

(k)
i,0 +

nk−1∑
h=1

θ
(k)
i,hx

(k−1)
h ) i = 1, ...nk , (A.14)

and the forecast model that is obtained by aggregating the signals produced by the neurons

of the last layer is written:

g(Zi,t, θ) = θ0 +

nk∑
i=1

θix
(k)
i . (A.15)

Without a hidden layer, this model is reduced to the linear model.

The estimation of the parameters of the forecast model involves solving the following

problem:

argminθR(θ) =
N∑
i=1

T∑
t=1

(Yi,t+1 − g(Zi,t, θ))
2 . (A.16)

The objective function R(θ) is RMSE. nj (1 ⩽ j ⩽ k). The hyper parametrization of the

model and the multitude of potential architectures make it extremely difficult to find the

optimal values of these hyperparameters by cross-validation. I follow the methodology

developed by Gu et al. (2020), which consists of considering a finite number of potential

architectures and determining the number of neurons per hidden layer following the geo-

metric pyramid rule ( see Masters (1993)). For this purpose, I build three forecast models

I can denote by NN1, NN2, and NN3. NN1 has a hidden layer that has 32 neurons. NN2
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has two hidden layers with 32 and 16 neurons, respectively. NN3 has three hidden layers

with 32, 16, and 8 neurons, respectively.

Appendix B. Method of Mésonnier and Stevanovic (2013)

This method, which is also a dimension reduction technique, was developed by Mesonnier

and Stevanovic (2013) in an inferential approach. We will adapt it to the forecast, which

will not fundamentally affect the methodology. First of all, it consists of constructing

the dynamic factors, which are components justifying a large part of the co-movement of

macroeconomic predictors. In the second step, innovations of the factors are extracted and

substituted for the potential macroeconomic predictors. The forecast model obtained is

then estimated by "OLS." In contrast to principal components, dynamic factors are gener-

ated by an autoregressive structure.

Model

The linear model CapitalRatioi,t+1 = Z ′
i,tθ + ϵi,t+1 is transformed by the method into :

CapitalRatioi,t+1 = Y ′
i,tθx + η′i,tθq + εi,t . (B.1)

Zi,t is the vector grouping together all the predictors made up in this case of (1) a limited

number of microeconomic variables, (2) dichotomous variables and, (3) macroeconomic

variables. Yi,t is a subvector of Zi,t consisting only of microeconomic predictors, dichoto-

mous variables and macroeconomic expectations. ηi,t is a vector made up of q innovations

with dynamic factors. θx et θk are the vectors of parameters to be estimated.

The number of dynamic factors q is the hyperparameter of this technique. The determina-

tion of the optimal value of q is detailed later in this text.
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Optimization problem

Let us denote by Xt the subvector of Zi,t consisting only of macroeconomic predictors

with the exception of macroeconomic expectations. If we admit that these predictors have

a dynamic factor structure, then we can write:

Xt = λ(L)ft + ut = λ0ft + λ1ft−1 + ...+ λsft−s + ut ; (B.2)

ut = D(L)ut−1 + vYt ; (B.3)

ft = Θ(L)ft−1 + ηt . (B.4)

ft is the vector with q common dynamic factors. λ(L) is a polynomial of lagged operator

L19 of order s with matrix coefficients λi (0 ⩽ i ⩽ s). ut is the vector made up of

idiosyncratic shocks associated with the time series. D (L) is a polynomial of lagged

operator L of order q* (q * ⩾ 0) and whose coefficients are diagonal matrices. Θ(L) is

a polynomial of order p (p ⩾ 1) of lagged operator L. ηt is the vector consisting of q

innovations with dynamic factors. vYt is a vector made up of white noise.

This representation admits for a given time series, the autocorrelation of the idiosyncratic

shock while excluding a correlation of idiosyncrastic shocks between two time series.

By multiplying both sides of equality (8) by A(L) = I −D(L)L 20, and using equation (9)

we get the following expression:

A(L)Xt = A(L)λ(L)ft + vYt . (B.5)

19A lagged operator noted L is a function which transforms a time series yt into a series Lj(yt) =
yt−j , j being a non-zero natural integer.

20Equation (9) implies that (I −D(L)L)ut = vYt .
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If we define X̃t = A(L)Xt et Λ(L) = A(L)λ(L) then we can rewrite the equation (11) :

X̃t = Λ(L)ft + vYt = Λ0ft + Λ1ft−1 + ...+ Λmft−m + vYt . (B.6)

Λ(L) is a polynomial of lagged operator L of degree m ⩽ q∗s which has matrix coeffi-

cients Λi (0⩽ i ⩽ m).

By defining Ft = (f ′
t , f

′
t−1, ..., f

′
t−s)

′ and Γ = (Λ0,Λ1, ...,Λm) and further assuming that

m⩽ p, the dynamic factor model can be written

X̃t = ΓFt + vYt ; (B.7)

Ft = ΦFFt−1 + ϵFt . (B.8)

This writing is the static form of the dynamic factor model. Ft is the vector consisting of

R static factors and ϵFt the vector comprising the shocks to the static factors. Note that ϵFt

= G ϵft where G is a matrix of type R× q which creates a correspondence between shocks

to fixed factors and shocks or innovations to dynamic factors.

The optimization problem successively consists of: (1) estimating Ft and Γ by the princi-

pal components method, (2) estimating ΦF in a VAR model of order 1, (3) construct the

vector ϵt = X̃it − Γ′
iΦFFt−1 and (4) finally construct the q principal components of this

vector which constitute the innovations with dynamic factors. The extraction of innova-

tions from dynamic factors first requires the estimation of static factors. The econometer

must first determine the number of static factors. Let T be the number of observation

periods, N the number of time series, Rmax the maximum number of factors defined by

economics; Bai and Ng (2002) propose the following criterion to determine the number

of static factors R: R = argmin R=1,....,Rmax log (V (R)) + R N+T
NT

ln NT
N+T

where V (R) =

(NT )−1
∑T

t=1(A(L)Xt − ΓFt)
′(A(L)Xt − ΓFt). V (R) represents the variance explained
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by idiosyncratic shocks.

Intuition

The first log term (V (R)) decreases as the number of factors increases, because an ad-

ditional factor increases the variance explained by the factors and thereby decreases the

variance explained by idiosyncratic shocks. The reduction of this term indicates a greater

correspondence between the movements of the factors and the data. The second term R
N+T
NT

ln NT
N+T

which is increasing with R translates the penalization of the addition of an

additional factor. newline The criterion of Bai and Ng (2002) therefore makes it possible

to best summarize the data by a reasonable number of factors.

The number of static factors being determined, the next step consists in implementing an

algorithm based on the iterative principal components method following the approach of

Stock and Watson (2005) to estimate the static factors.

Algorithm

The algorithm proceeds in four steps:

Step 1:

We initialize A(L) by estimating the autoregressive model of order q∗ footnote The order

of the autoregressive model is determined by the economist. where Xit (component of

rank i of vector Xt, 1 ⩽ i ⩽ K) is the dependent variable.

step 2:

Estimate by the principal components method Γ and Ft according to the following pro-

gram:

minFt,ΓSSR = sumT
t=1(A(L)Xt − ΓFt)

′(A(L)Xt − ΓFt) .

Let Vect be the vector made up of R eigenvectors21 corresponding to the largest eigenval-

21Let A be a square matrix of order n, a scalar λ is an eigenvalue of A if there is a non-zero vector x
of Rn such that Ax = λx. x is an eigenvector associated with the eigenvalue λ.
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ues of the matrix X̃ ′X̃ where X̃ = (X̃1t, X̃2t, ..., X̃Kt) is the matrix made up of the K time

series transformed by A(L)22. Ft =
√
TV ect.

Step 3:

Estimate A (L) Xt = ΓFt + vXt using Ft obtained in step 2 to update A (L).

Step 4:

Iterate steps 2 and 3 until Ft converges. Using the normalization F ′
tFt/T = IR we obtain

at the convergence Γ′ = F ′
txt/T

The economist at this stage must first determine the number of dynamic factors and equiv-

alently the number of innovations with dynamic factors.

Bai and Ng (2007) propose a procedure for determining the number of dynamic factors.

The starting point of this procedure is the relation ϵFt = Gϵft where ϵft is the constituted

vector from innovations to dynamic factors and ϵFt the vector comprising innovations to

static factors. G is a correspondence matrix between innovations with dynamic factors and

innovations with static factors. This relation suggests that the variance-covariance matrix

of ϵFt is Σ=GΣϵft
G’ where Σϵft

is the variance-covariance matrix of the vector compris-

ing q innovations with common dynamic factors or macroeconomic shocks. The common

macroeconomic shocks by definition being uncorrelated, the matrix Σϵft
has full rank q

which makes Σ a square matrix of order R and rank q . The procedure can be summarized

in three steps:

Step 1:

Estimate the VAR in Ft, Ft = ΦFFt−1 + ϵFt and deduce the vector of residuals ϵFt .

Step 2:

Classify the R eigenvalues of the estimated variance-covariance matrix of the vector epsilonFt ,

Σ = T−1
∑T

t=1 ϵFtϵ
′
Ft

in descending order ρ1 ⩾ ρ2 ⩾ ... ⩾ ρR

22X̃it = A(L)Xit
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Step 3:

Define D1(r)=
√

ρ2r+1∑R
i=1 ρ

2
i

et D2(r)=
√∑R

i=r+1 ρ
2
i∑R

i=1 ρ
2
i

. Based on these two quantities, Bai and Ng

(2007) propose to estimate the number of dynamic factors or common macroeconomic

shocks by

q =min r∈ {r | D1(r) <
1

T 1/2−δ } where q =min r∈ {r | D2(r) <
1

T 1/2−δ }. δ is a number

between 0 and 1/2. In the simulations, Bai and Ng (2007) choose the value delta = 1/4

which seems to give them reasonable results.

Intuition

This criterion is based on the principle according to which a variance-covariance matrix

in this case the matrix Σ semi-definite positive23 of order R and of rank q, has q non zro

eigenvalues among the R eigenvalues; the R-q other eigenvalues all being zero. The eigen-

values of this matrix being positive due to the fact that it is positive semi definite. By

classifying them in decreasing order, D1(r) = D2(r) = 0 for r ⩾ q and for r<q, D1(r) and

D2(r) are strictly positive. In most empirical studies, including ours, T is a large number

which makes 1
T 1/2−δ tend towards 0. Therefore, the number of common macroeconomic

shocks q appears as the minimum defined above. The number of common macroeconomic

shocks being known, the last point is their estimation. This last point comes in two stages.

Step 1 :

We construct the vector ϵt = X̃it − Γ′
iΦFFt−1 . Γi et Ft were obtained when estimating

the static factors. ΦF was obtained in step 1 above.

Step 2 :

ϵft is estimated as the q first principal components of ϵt.

23A square matrix A of order nxn is semi-definite positive if for any non-zero vector x of Rn x’Ax
⩾ 0.
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Appendix C. Variables computation

Table 1: Variables computation
Variable name Variable label Source

Capital ratio Ratio of capital to total assets (BHCK3210/BHCK2170)*100

Size Bank size log(BHCK2170)

ROA Return on assets (BHCK4340/BHCK2170)*100

NetChargeoffRatio Net allocation to provisions ((BHCK4635-BHCK4605)/BHCK2170)*100

MortgageLoanRatio Real estate loan volume (BHCK1410/BHCK2170)*100

CIloanRatio Volume of commercial and industrial credit (BHCK1766/BHCK2170)*100

Other database variables excluded from the above transformations are normalized by di-

viding their values by the corresponding values of the variable BHCK2170. We then

harmonize the variables on the same scale and thus avoid the effects of levels. Table 2

highlights the links between equity capital and, therefore, CapitalRatio and the other

essential bank variables. It is noteworthy to reveal that NetChargeoffRatio and ROA

approximate the provisions for loan losses and the pre-tax net income, impacting the dy-

namic of CapitalRatio.

Table 2 : Relationship between the Capital ratio and other accounting items
Net interest income+ non interest income- non interest expense= pre provision net revenue (PPNR)

PPNR + other revenue – provisions – available for sale (AFS)/held to maturity (HTM) securities losses – held for sale

(HFS)/fair value option (FVO) loan losses – trading and counterparty losses = pre tax net income

Pre tax net income – taxes – income attributable to minority interest – change in the valuation allowance = after tax net

income

After tax net income – net distributions to common and preferred shareholders and other net reductions to shareholder’s

equity + other comprehensive income = change in equity capital

Change in equity capital – change in adjustments and deductions from regulatory capital + other additions to regulatory

capital = change in regulatory capital
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Appendix D. List of selected BHC

No ID Name minimum asset maximum asset Observations Start date End date

1 1020603 Continental Bank corporation 2,16e+07 3,34e+07 32 1986q3 1994q2

2 1021075 Republic New york corporation 1.71e+07 5.99e+07 53 1986q3 1999q3

3 1021758 Natwest Holdinds INC 1.12+07 3.37+07 39 1986q3 1996q1

4 1022362 Lasalle National Corporation 3431221 2.90e+07 38 1989q4 1999q1

5 1023060 Meridian Bancorp. INC. 6511743 1.53e+07 39 1986q3 1996q1

6 1023314 Citicorp Holding INC 1.54e+07 2.89+07 39 1990q1 1999q3

7 1023453 Suntrust bank of georgia INC 9459810 2.89e+07 40 1990q1 1999q4

8 1023538 First Interstate Bancorp 4.89e+07 5.91e+07 39 1986q3 1996q1

9 1024058 First Security Corporation 4887095 2.33e+07 68 1986q3 2003q2

10 1025309 Bank of Hawaii Corporation 5053417 1.81e+07 134 1986q3 2019q4

11 1025608 Bancwest Corporation 3346544 9.62e+07 134 1986q3 2019q4

12 1025701 U.S Bancorp 9007465 3.40e+07 44 1986q3 1997q2

13 1026016 BankAmerica corporation 9.28e+07 2.65e+08 48 1986q3 1998q2

14 1027095 Wells Fargo et Company 4.27e+07 1.09e+08 49 1986q3 1998q3

15 1028739 Bank one Arizona Corp 1,01e+07 1,58e+07 46 1986q3 1997q4

16 1028953 West one Bancorp 3264714 9244503 37 1986q3 1995q3

17 1033470 Bank of New York Company 1.84e+07 1.26e+08 84 1986q3 2007q2

18 1033872 Summit Bancorp 5765299 3.97e+07 58 1986q3 2007q2

19 1033993 First Fidelity incorporated 1.43e+07 3.35e+07 38 1986q3 1997q4

20 1034888 Chemical New Jersey Holding 3256963 6217134 33 1986q3 1995q3

21 1035166 Bancorp Nj 3703851 4915584 6 1986q3 1987q4

22 1037115 JP Morgan et company INC 7.47e+07 2.99e+08 57 1986q3 2000q3

23 1039502 JP Morgan chase and company 5.60e+07 2.76e+09 134 1986q3 2019q4

24 1040795 Chase Manhattan Corporation 9.00e+07 1.21e+08 38 1986q3 1995q4

25 1042351 Citicorp 1.86e+08 9.71e+08 76 1986q3 2005q2
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No ID Name minimum asset maximum asset Observations Start date End date

26 1049341 Commerce Bancshares 4917787 2.61e+07 134 1986q3 2019q4

27 1068025 Keycorp 8633737 1.47e+08 134 1986q3 2019q4

28 1068191 Huntington Bancshares INC 7016598 1.09e+08 134 1986q3 2019q4

29 1068294 Bank One corporation 1.87e+07 3.27e+08 72 1986q3 2004q2

30 1068762 Mellon Financial Corporation 2.87e+07 5.10e+07 83 1986q3 2007q2

31 1069125 National City Corporation 1.31e+07 1.55e+08 89 1986q3 2008q3

32 1069778 PNC Financial Services INC 2.09e+07 4.10e+08 134 1986q3 2019q4

33 1070251 Star Bank Corporation 3989648 1.73e+07 49 1986q3 1998q3

34 1070345 Fifth Third Bancorp 3207136 1.71e+08 134 1986q3 2019q4

35 1071968 First Virginia Banks INC 3670960 1.13e+07 68 1986q3 2003q2

36 1072107 Signet Banking Corporation 9214776 1.30e+07 45 1986q3 1997q3

37 1072237 Crestar Financial Corporation 8703206 2.78e+07 54 1986q3 1999q4

38 1072291 First Union corporation of Virginia 5377889 2.03e+07 44 1986q3 1995q3

39 1072554 South Carolina NC 4522295 7424140 37 1986q3 1995q3

40 1073551 Wachovia Corporation 2.10e+07 8.12e+08 89 1986q3 2008q3

41 1073757 Bank of America Corporation 2.46e+07 2.43e+09 134 1986q3 2019q4

42 1074660 Allfirst Financial INC 5016877 1.89e+07 67 1986q3 2003q1

43 1074875 Central Fidelity Banks INC 3701715 1.08e+07 45 1986q3 1997q3

44 1075126 Riggs National Corporation 4426221 7637650 75 1986q3 2005q1

45 1076776 Barnett Banks INC 1,64e+07 4.65e+07 46 1986q3 1997q4

46 1078332 Regional Financial Corporation 3941334 4.99e+07 72 1986q3 2004q2

47 1078426 First american corporation 5322423 2.22e+07 53 1986q3 1999q3

48 1078529 BBVA USA Bancshares INC 3494388 9.38e+07 134 1986q3 2019q4

49 1078604 Amsouth Bancorporation 5549050 5.43e+07 81 1986q3 2006q3

50 1078921 Hibernia Corporation 4113161 2.32e+07 77 1986q3 2005q3
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No ID Name minimum asset maximum asset Observations Start date End date

51 1079441 Southtrust Corporation 4746757 5.39e+07 73 1986q3 2004q3

52 1079638 Bank South Corporation 3142295 7684650 38 1986q3 1995q4

53 1080148 Suntrust Banks of Tenessee INC 5047345 9114637 41 1986q3 1999q4

54 1080371 Louisiana Bank One Corporation 3421048 9507297 49 1986q3 1998q3

55 1093586 Boatmen Bancshares INC 9228286 4.12e+07 42 1986q3 1996q4

56 1094211 Mercantile Bancorporation 6287766 3.60e+07 52 1986q3 1999q2

57 1094640 First Horizon National corporation 5352901 4.37e+07 134 1986q3 2019q4

58 1102367 Cullen-Frost Bankers INC 3042869 3.41e+07 134 1986q3 2019q4

59 1111435 State street Corporation 6172269 2.95e+08 134 1986q3 2019q4

60 1112076 Bankboston corporation 3.05+07 7.76e+07 53 1986q3 1999q3

61 1113514 Fleetboston financial corporation 1.07e+07 2.12e+08 71 1986q3 2004q1

62 1116300 Corestates Financial Corp 1.23e+07 4.85e+07 47 1986q3 1998q1

63 1119794 US Bancorp 1.70e+07 4.64e+08 134 1986q3 2019q4

64 1120754 Wells Fargo 1.96e+07 1.95e+09 134 1986q3 2019q4

65 1130892 Premier Bancorp INC 3760037 5511975 37 1986q3 1995q3

66 1131787 Suntrust Banks INC 1.99e+07 2.28e+08 134 1986q3 2019q4

67 1136157 Wachovia Corporation 1.75e+07 7.56e+07 60 1986q3 2001q3

68 1140743 Midatlantic corporation 1.33e+07 2.43e+07 36 1986q3 1995q3

69 1199479 Bank One Corp 6589462 3.87e+07 53 1986q3 1999q3

70 1199488 Bank One Wiscosin Corp 3846284 8755366 34 1986q3 1996q3

71 1199497 MI LLC 5037646 6.08e+07 85 1986q3 2007q3

72 1199611 Northern Trust Corporation 7824700 1.39e+08 134 1986q3 2019q4

73 1199648 First of America Bank Corporation 5578498 2.46e+07 46 1986q3 1997q4

74 1199705 Old Kent Financial Corporation 5400488 2.45e+07 59 1986q3 2001q1

75 1199714 Michigan National Corporation 7826412 1.20e+07 59 1986q3 2001q1

76 1199778 First chicago NBD corp 1.91e+07 1.22e+08 49 1986q3 1998q3

77 1199844 Comerica INC 9336328 7.44e+07 134 1986q3 2019q4

78 1200432 Bank One Indiana corp 4284241 9400736 37 1986q3 1998q3

79 1201028 First Chicago Corporation 3.91e+07 7.57e+07 37 1986q3 1995q3

80 1255415 Harris financial corp 9880000 1.32e+08 134 1986q3 2019q4
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No ID Name minimum asset maximum asset Observations Start date End date

81 1246216 Franklin resources INC 5900311 1.66e+07 53 2001q2 2014q2

82 1248612 First fidelity bancorporation 2.82e+07 3.62e+07 32 1988q1 1995q4

83 1250932 Bank One Ohio Corporation 1.50e+07 2.83e+07 32 1988q1 1997q4

84 1378434 Unionbancal corp 4091351 1.73e+08 134 1986q3 2019q4

85 1416774 NationsBank Texas Bancorp INC 3.04e+07 6.24e+07 33 1990q1 1998q1

86 1473562 Banc One Texas Corporation 1.28e+07 3.13e+07 43 1990q1 2000q3

87 1871159 MBNA corporation 5146165 6.30e+07 60 1991q1 2005q4

88 1888193 Wilmington Trust Corp 3969244 1.26e+07 79 1991q3 2011q1

89 1951350 Citigroup INC 6.69e+08 2.36e+09 85 1998q4 2019q4

90 2081124 Greenpoint financial corp 6955179 2.7e+07 43 1994q1 2004q3

91 2389941 TCF financial corp 7429623 2.46e+07 91 1997q2 2019q4

92 2477754 Investor Bancorp MHC 3172821 2.71e+07 84 1997q1 2019q4

93 2744894 First Bancorp 4017352 2.06e+07 85 1998q4 2019q4

94 2801546 W. Holding company INC 3374588 1.80e+07 42 1999q4 2010q1

95 2816906 Taunus corp 1.48e+08 7.6e+08 57 1999q2 2011q4

96 2847115 Santander Bancorp 5396415 9288663 65 2000q2 2016q2

97 2894230 Discount Bancorp INC 4610604 9983916 80 2000q1 2019q4

98 2945824 Metlife INC 2.52e+08 8.46e+08 47 2001q1 2012q3

99 2945824 BBVA PR Holding corp 4724153 7045588 48 2000q4 2012q3

100 3005332 FNB corp 4062977 3.46e+07 75 2001q2 2019q4

Total assets are expressed in thousands of US dollars.

Appendix E. VAR model

E.1 VAR method

Let yt be a vector which includes K time series (K ⩾ 2) observed over T periods. Let p

be a non-zero natural number. A structural VAR of order p is a set of K linear regression

equations (equation 15)

B0yt = B1yt−1 + ....+Bpyt−p + ωt . (E.1)
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The matrices Bi i = 0, ... p have the dimension K x K. p is the maximum lag fixed by the

economist. ωt is the vector with K structural shocks. The variance-covariance matrix of

the vector ωt is

E (ωtω
′
t) = IK (the variance of structural shocks is normalized to 1). The structural shocks

corresponding to the K equations are uncorrelated by definition. We also make the hy-

pothesis that the shocks of the structural form are white noise24.

The matrix B0 translates the contemporary relation between the time series while the ma-

trices Bi

1 ⩽ i ⩽ p, translate the relation between each time series, its lagged values and lagged

of other time series. An estimate of these equations by ordinary least squares (OLS) is

affected by an endogeneity bias caused by the contemporary relationship between the time

series. This problem is solved by writing the VAR in reduced form.

So, by multiplying equation (15) by B−1
0 we get equation (16).

yt = B−1
0 B1yt−1 + ....+B−1

0 Bpyt−p +B−1
0 ωt . (E.2)

Equation (16) can be rewritten in the form of equation (17) which is the reduced form of

the VAR

yt = A1yt−1 + ....+ Apyt−p + µt . (E.3)

where Ai = B−1
0 Bi 1⩽ i ⩽ p et µt = B−1

0 ωt. µt is the vector of reduced form shocks

which, unlike structural shocks, can be correlated. The estimate of the coefficients of the

VAR in reduced form by OLS is convergent because E(y′t−iut)=0 (1⩽ i ⩽ p). Beyond the

estimation of the VAR in reduced form, the interest of the use of this model in empirical

24A time series ϵt is white noise if E (ϵt) = 0 for all t and cov (ϵt, ϵti) = 0 for all i.
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work lies in the construction of the response functions of the variables contained in the

vector yt to the K structural shocks, that is to say a total of K2 response functions. For this

purpose, if yt is stationary25 then yt can be written as a weighted average of the shocks in

reduced form µt. So,

yt =
∞∑
i=0

Φiµt−i , (E.4)

knowing that Φi is a square matrix of order K × K obtained from the matrices Ai 1 ⩽

i ⩽ p and which summarizes the impact of shocks in reduced form over the different

macroeconomic series at horizon i. A typical element of the Φi matrix is Φ
(j,k)
i = ∂yjt+i

∂µkt

(1 ⩽ j ⩽ K and 1 ⩽ k ⩽ K). Φ
(j,k)
i represents the effect of the deviation of one unit

of the kth shock of the vector mut on the jth macroeconomic series of the vector yt at

horizon i.

Using equations (18) and (19) we get:

yt =
∞∑
i=0

ΦiB
−1
0 ωt−i =

∞∑
i=0

Θiωt−i . (E.5)

So, Θi = ΦiB
−1
0 is a square matrix of order K times K which represents the impact

of structural shocks on time series at horizon i. A typical element of the matrix Θi is

Θ
(j,k)
i =∂yjt+i

∂ωkt
(1 ⩽ j ⩽ K et 1 ⩽ k ⩽ K ). Θ(j,k)

i represents the effect of the deviation of

one unit of the k-th shock of the vector omegat on the j-th macroeconomic series of the

vector yt at the horizon i.

To deduce the response function of the time series to structural shocks from the estimates

25yt is stationary if E (yt) = µ for all t (the unconditional expectation is constant) and cov (yt, ytk)
= γk (the covariance between two points of a series depends only on the step k which separates these two
points). In general, in empirical work, variables which are not stationary are made stationary.
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of the reduced form, it suffices to recover the matrix B−1
0 which reflects the cyclical impact

of structural shocks on time series. By reusing the relationship µt=B−1
0 ωt , we obtain

E(µtµ
′
t) = Σµ = B−1

0 B−1′

0 . The matrix Σµ due to its symmetry26 has K (K + 1) / 2

elements while B−1
0 B−1′

0 consists of K2 elements. The deduction of B−1
0 requires the

imposition of K (K-1) / 2 restrictions to B−1
0 called short-term restrictions27.

The method of identifying shocks (or restriction) commonly used in the literature is the

recursive method. According to this method, no restriction is imposed on the first column

of the matrix B−1
0 , an exclusion restriction28 is imposed on the first element of the second

column, ... K-1 exclusion restrictions are imposed on the first K-1 elements of the Kth

column of B−1
0 . The identification is based on the economic facts that the first shock has a

contemporary impact on all variables in yt, the second shock has no contemporary impact

on the first variable in yt, ... the Kth structural shock has no contemporary impact on the

K-1 first variables in yt. Without harming the generality, the application of the recursive

method of identification to the case where K = 3 allows to obtain the following matrix

B−1
0 =


b11 0 0

b21 b22 0

b31 b23 b33

dssssssz

26It is a variance covariance matrix which by definition is symmetric

27The identification of structural shocks can also be done through other restrictions such as the long
term restriction which is used when the variables are not stationary. It consists in imposing restrictions on
the long-term impact matrix of structural shocks which induce restrictions on the matrix B−1

0 . Short-term
restrictions are widely used in empirical studies.

28An exclusion restriction is a constraint that we impose on an element of the matrix B−1
0 to be equal

to 0.
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E.2 Variables included in VAR

mean standard deviation minimum maximum

GDP 0.49 0.60 -2.19 1.81

Inflation 0.53 0.56 -2.29 1.54

TFED 1.71 1.98 0.07 6.52

Volume of credit 4.36 4.89 -8.80 17.20

Aggregate credit shock 0.17 0.76 -3.14 2.80

Risk premium 0.12 0.74 -0.80 3.04

Yield gap 2.69 0.75 1.62 5.59
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Appendix F. Details on Diebold Mariano test

Suppose I denote by e
(k)
i,t and e

(l)
i,t the forecast errors 29 of the two models to compare, by

H, the loss function associated with the forecast30. I can formulate the test as follows:

H0 : E(H(e
(k)
i,t )) = E(H(e

(l)
i,t ))

H1 : E(H(e
(k)
i,t )) < E(H(e

(l)
i,t ))

H1 : E(H(e
(k)
i,t )) > E(H(e

(l)
i,t ))

I test the hypothesis of equality of performance between the two models against one of the

following two alternatives: (1) the predictive performance of model K is higher than that

of model L, (2) the predictive performance of model K is lower than that of model L.

The test statistic is

d̄ =
1

NT

∑
i,t

H(e
(k)
i,t )−H(e

(l)
i,t ) .

By setting di,t = H(e
(k)
i,t )−H(e

(l)
i,t ), the statistics can be simplified as:

d̄ =
1

NT

∑
i,t

di,t

29The forecast error of a model is the difference between the value of Yi,t+h of the dependent vari-
able and its predicted value. Diebold and Mariano’s test (2002) is effective even if the means of these forecast
errors are non-zero, non-gaussian, and autocorrelated, and the two series of forecast errors are contempora-
neously correlated.

30The Diebold Mariano test admits several possible loss functions, including the quadratic loss func-
tion that I have chosen. If ei,t represents a forecast error, H the quadratic loss function, then H (ei,t) = e2i,t.
The loss function is a measure of the performance of the forecasting model. The performance of a model is
all the better as the average loss is low.
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Diebold and Mariano (2002) show that if series di,t is stationary31, then for large value of

T and under H0,
√
T (d̄ − µ) → N(0, σ) where µ and σ are respectively the expectation

and the standard deviation of d̄32. Diebold and Mariano (2002) calculate σ by integrating

the autocovariance of series di,t, which depends on the forecast horizon.

31A time series is stationary if it has a constant expectation and an autocovariance that depends only
on the number of periods and not on the origin.

32The standard deviation of di,t depends on the number of non-null autocovariance terms linked to
the forecast horizon h.
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