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RÉSUMÉ

Dans le cadre de la science actuarielle Incendie, Accidents et Risques Divers
(I.A.R.D.), le calcul des réserves est primordial pour garantir le remboursement
des engagements futurs d’un assureur envers ses assurés et pour estimer la sol-
vabilité de la compagnie d’assurance. Traditionnellement ce montant est calculé
à travers des méthodes nommées collectives qui agrègent les paiements futurs en
fonction de la date de survenance du sinistre qui a déclenché la réclamation et la
date des paiements. Or, malgré l’avantage de transformer la base données sous une
forme plus simple, les méthodes collectives ont le désavantage de ne pas pouvoir
incorporer de l’information plus pointue sur la réclamation dans la modélisation.
Dans le but d’utiliser le plus d’information possible des bases de données qui de-
viennent de plus en plus riches en information, plusieurs auteurs se sont intéressé
à des méthodes nommées individuelles (ou granulaires). En effet, les modèles indi-
viduels sont ajustés sur des données non agrégées, de sorte que le développement
individuel non observé des réclamations est complété pour chaque réclamation
ouverte du portefeuille.

La présente thèse est une collection de contributions à la littérature des réserves
granulaires sous la forme de trois articles. Le thème principal qui relie ces trois
propositions est l’incorporation de l’information individuelle. Plus précisément,
on propose des modèles originaux pour les différents éléments qui composent le
développement d’une réclamation : la durée de celle-ci, la fréquence des paiements
et leurs coût (ou sévérité). On met en avant des méthodes pour que l’actuaire
puisse utiliser les caractéristiques de réclamations sous forme de variables explica-
tives à chaque élément du développement. De suite, on ajuste les différent modèles
à une base de données riche en information pour pouvoir mesurer la qualité de
l’ajustement des modèles ainsi que de la qualité de l’information utilisée. De plus,
on compare nos propositions avec d’autres modèles collectifs et individuels de la
littérature afin de montrer sur quels aspects ils sur-performent leurs contreparties.

Mots Clés— Réserves individuelles, Modèles de survie, Modèles linéaires géné-
ralisés, Valeurs Extrêmes, Bonus Malus





INTRODUCTION

Un des rôles importants d’un actuaire dans le cadre d’une compagnie d’assurances

Incendie, Accidents et Risques Divers (I.A.R.D.) est le calcul de la réserve. Ce

montant est composé du total des paiements futurs pour les sinistres survenus

avant une date donnée dans le portefeuille d’un assureur. Ainsi, il permet de

garantir le remboursement total des assurés qui ont subit un sinistre pour lequel

tous les paiements n’ont pas encore été faits. Précisément, la nature non observée

de la réserve fait en sorte qu’il est nécessaire d’incorporer des modèles pour sa

prédiction. De plus, cette prédiction doit être rigoureuse parce qu’elle permet

non seulement de protéger les assurés, mais aussi d’estimer la solvabilité de la

compagnie d’assurance à une date donnée.

Plus spécifiquement, lorsqu’un sinistre couvert par une police se produit, une série

d’évènements est déclenchée. Tout d’abord, le sinistre, qui sera ultérieurement

associé à une réclamation ℓ, survient et on peut immédiatement identifier t(o)ℓ , le

délai entre de début de l’année d’accident et la date de survenance de l’accident

(occurrence date). Après, à la suite d’un délai (t(r)ℓ ) qui est souvent très court,

l’assuré déclare le sinistre à l’assureur à une date de déclaration. Ainsi, à partir de

cette date, la réclamation ℓ est présente dans le portefeuille et l’assureur a accès

à des informations sur la nature du sinistre et une série de remboursements (cash

flows) s’ensuit au fur et à mesure du développement de la réclamation. Finalement,

la date de fermeture (settlement date) a lieu, mettant fin au développement de la

réclamation et permettant de définir le délai entre la déclaration et la fermeture

d’une réclamation par t(c)ℓ . On suppose généralement dans la littérature qu’une

ré-ouverture du dossier n’est pas possible.
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À une certaine date d’évaluation, l’actuaire de la compagnie peut classer les récla-

mations présentes dans un portefeuille en fonction du stade atteint par le déve-

loppement de chacune de celles-ci. On commence par distinguer les réclamations

fermées pour lesquelles t(e)ℓ , c’est-à-dire le délai entre la date de déclaration et la

date d’évaluation, est supérieur au délai de fermeture, t(c)ℓ . Par la suite, lorsque la

date de fermeture ne s’est pas encore produite, t(c)ℓ > t
(e)
ℓ , on dit que la réclama-

tion est déclarée mais pas encore fermée, ou Reported But Not Settled (RBNS).

Finalement, il est possible de considérer les réclamations qui sont survenues avant

la date d’évaluation mais dont la date de déclaration ne s’est pas encore produite.

Les données sur ces réclamations dites encourues mais non déclarées, ou Incurred

But Not Reported (IBNR), ne sont pas accessibles puisque l’assureur n’a pas été

informé de leur existence. La Figure 0.1 représente graphiquement un exemple

d’une réclamation ayant atteint chacun de ces trois statuts. Sur celle-ci, la ligne

pointillée et la ligne solide représentent, respectivement, le délai de déclaration

(t
(r)
ℓ ) et le délai de fermeture (t

(c)
ℓ ). De plus, les petits cercles symbolisent les

paiements.

En résumé, le développement d’une réclamation est composé du,

— délai d’occurrence : t(o)ℓ ,

— délai de déclaration : t(r)ℓ ,

— délai d’évaluation : t(e)ℓ ,

— délai de fermeture : t(c)ℓ .

Pour un portefeuille, la réserve est constituée par la somme des paiements futurs

associés à chacun des sinistres dont la date de survenance est antérieure à la date

d’évaluation. Le rôle de l’actuaire est de prédire cette réserve afin de permettre à

la compagnie de mettre de côté ce montant. Après avoir décrit le développement

des réclamations I.A.R.D., il est possible de séparer la réserve totale en fonc-
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Figure 0.1 Développement de trois réclamations

tion du statut des réclamations considérées dans le calcul. Premièrement, on a la

réserve RBNS qui englobe les paiements produits par des réclamations connues

par l’assureur à la date d’évaluation. Pour cette catégorie, l’actuaire a accès à de

l’information partielle constituée de la portion observée du développement, des

informations sur le sinistre, des informations sur l’assuré, etc. Deuxièmement, on

considère la réserve IBNR qui constitue une problématique différente puisqu’au-

cune information n’est disponible sur ces réclamations. De plus, le nombre de

réclamations ayant ce statut est également inconnu.

À cause de leur importance, les réserves ont engendré de nombreuses contribu-

tions dans la littérature scientifique. Traditionnellement, les paiements présents

dans un portefeuille sont agrégés en fonction de deux éléments : l’année de sur-

venance de la réclamation dont ils proviennent et le nombre d’années qui se sont

écoulées entre l’année de survenance et le paiement en question (connu sous le

nom d’année de développement). Ceci permet de créer une structure triangulaire

qui résume les remboursements faits par la compagnie d’assurance. Les modèles

qui travaillent directement sur ces triangles de développement sont connus sous

le nom de méthodes collectives ou modèles au niveau macro (macro-level models).

Par exemple, le populaire modèle Chain Ladder et sa version stochastique (voir
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Mack (1999) et Mack (1993)) sont des membres importants de cette branche de

la littérature. De plus, plusieurs autres propositions ont été faites, par exemple

des applications des modèles linéaires généralisés, ou Generalized Linear Models

(GLM). Puisque dresser un portrait complet de cette branche de la littérature

demanderait de nombreuses pages et éloignerait le lecteur du propos principal de

cette thèse, on recommande de consulter les travaux de Wüthrich & Merz (2008)

et de England & Verrall (2002) pour un survol des méthodes collectives.

La popularité de la structure triangulaire provient du fait qu’elle résume les in-

formations sous un format intuitif. Cela conduit à des méthodes qui peuvent fa-

cilement être diffusées, telles que le modèle Chain Ladder. En effet, les triangles

de développement résument l’évolution du portefeuille et peuvent facilement être

annexés dans les rapports annuels ou les états financiers de la compagnie. De

plus, cette structure compacte permet de mettre en place des méthodes moins

exigeantes en temps et et puissance de calcul. Cependant, il n’est pas possible

d’inclure des informations individuelles puisque les paiements des différentes ré-

clamations sont agrégés en un seul montant. Ainsi, l’accès à des bases de données

plus détaillées au cours des deux plus récentes décennies a déclenché un intérêt

pour une autre branche de la littérature : les modèles granulaires ou modèles au

niveau micro (micro-level models). Ces modèles n’agrègent pas les données et leur

but est plutôt de compléter le développement de chacune des réclamations RBNS

et de simuler l’entièreté du développement de chacune des réclamations IBNR.

De cette façon, il est possible de profiter des informations individuelles puisque

chaque réclamation ouverte est complétée séparément.

Les premières propositions de modèles granulaires ont été faites lors de la dernière

décennie du sièce précédent par Arjas (1989), Norberg (1993), Haastrup & Arjas

(1996) et Norberg (1999). Dans ces propositions, un processus de poisson avec

marqueurs, ou Dependent Marked-Poisson Process (DMPP), a été utilisé pour
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prédire les paiements et les fermetures des réclamations. À l’exception, notable,

de ces quelques exemples, l’intérêt envers cette branche de la littérature ne s’est

vraiment développé que de nombreuses années plus tard. En effet, l’augmentation

phénoménale de la puissance de calcul et l’accès croissant à des bases de données

plus détaillées au cours des vingt dernières années ont contribué à faire croître la

popularité des approches granulaires. En particulier, en 2014, l’article Antonio &

Plat (2014) reprend les premières propositions de modèles DMPP en les adaptant

à une base de données. Il s’agit la, fort probablement, de la première mise en oeuvre

concrète d’un modèle appartenant à cette catégorie. Ce modèle a par la suite été

développé dans l’article Antonio et al. (2015) où une structure Markovienne avec

des états interchangeables permet de prendre en compte le développement passé

d’une réclamation dans la prédictions des évènements futurs.

En parallèle avec le développement des DMPP, d’autres processus semi paramé-

triques ont été considérés comme le processus de Cox. La première mention a eu

lieu en 2009 avec l’article de Zhao et al. (2009) où les auteurs ont traité des ré-

serves IBNR et, plus tard, des copules ont été incorporées pour prendre en compte

la dépendance dans Zhao et al. (2010). Dans le cadre du processus de Cox, il est

important de mentionner Badescu et al. (2016) et Badescu et al. (2019), où

une application a été proposée pour compter le nombre de réclamations IBNR à

la date d’évaluation. Aussi, plus tard, Avanzi et al. (2021) a incorporé un choc

commun au modèle de Cox pour capturer la dépendance entre les réclamations.

Par ailleurs, mentionnons Maciak et al. (2021) où le processus de Hawkes avec des

intensités qui varient au cours du temps a été proposé.

Dans les années plus récentes, l’article Wüthrich (2018) a déclenché un intérêt

pour des méthodes non paramétriques basées sur des techniques issues de l’ap-

prentissage machine, ou machine learning. Dans cette première proposition un

arbre de décision a été adapté pour prédire les flux monétaires des réclamations.
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D’autres modèles basés sur la même technique ont suivit tels que Lopez et al.

(2016), Lopez (2019) et Lopez et al. (2019). En parallèle d’autre suggestions ont

été faites, par exemple avec l’algorithme ExtraTrees par Baudry & Robert (2019)

ou la procédure Gradient Boosting par Duval & Pigeon (2019). En outre, d’autres

auteurs se sont intéressés à l’application de technique de réseau de neurones pour

modéliser les réserves granulaires, par exemple Kuo (2019), Gabrielli (2020) et

Delong et al. (2022). Enfin, on doit aussi mentionner le travail fait par Blier-

Wong et al. (2020) (section 4) qui détaille plusieurs applications d’apprentissage

machine dans le contexte des réserves.

En contraste avec les autres propositions dans la littérature, certaines méthodes

ont plutôt considéré des structures facilement comparables aux méthodes collec-

tives traditionnelles. Par exemple, des articles tels que Pigeon et al. (2013) et Pi-

geon et al. (2014) proposent des applications qui adaptent des notions des modèles

classiques, telles que les facteurs de développement du modèle Chain Ladder, au

contexte des réserves granulaires. De plus, dans les articles Huang et al. (2015a),

Huang et al. (2015b), Huang et al. (2016) et Charpentier & Pigeon (2016), la

structure de temps discrète des modèles agrégés a été adaptée au contexte indivi-

duel dans le but de comparer les approches micro et macro. En effet, les auteurs

ont constaté que les modèles individuels ont un avantage numérique envers ces

contreparties à cause de la perte d’information des modèles collectifs. De plus, les

résultats de l’article de Wang et al. (2021) indiquent que l’ajout d’information

pointue sur les réclamations donne un avantage statistiquement significatif aux

méthodes individuelles.

Cette thèse cherche à faire une contribution scientifique à la modélisation des ré-

serves granulaires en exploitant un des avantages les plus importants de ce type de

modèles : l’accès à l’information individuelle. On cherche à présenter des modèles

originaux dans lesquels les actuaires pourront aisément incorporer des variables
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explicatives qui caractérisent chacune des réclamations. En effet, ces variables

viennent sous plusieurs formes et peuvent poser plusieurs défis à la fois théoriques

et pratiques. D’un point de vue théorique, on décrit des nouveaux outils statis-

tiques adaptés à la modélisation des réserves granulaires et, d’un point de vue

pratique, on cherche à démontrer que l’information individuelle sur laquelle les

modèles reposent est significative et qu’elle permet aux modèles de mieux perfor-

mer par rapport à des modèles plus traditionnels.

Étant donné que le thème principal de cette thèse est l’information individuelle

des réclamations, un aspect important de chaque article est la description détaillée

de l’information à prendre en compte. Une fois la problématique mise en place, on

présente des modèles capables d’incorporer les différents types de données consi-

dérées. Par la suite, on fait une description détaillée des méthodes d’ajustement

et des algorithmes de simulation afin de permettre une application directe des

modèles. De plus, grâce à l’accès à une base de données riche en information, on

est capable de mesurer la qualité des modèles proposés ainsi que la qualité de l’in-

formation. Les analyses numériques sont faites de façon minutieuses en utilisant

des outils statistiques pour mesurer la qualité de l’ajustement et l’importance des

variables explicatives. On complète les analyses avec des comparaisons numériques

avec des modèles collectifs et individuels populaires dans la littérature, en indi-

quant les avantages apportés par nos propositions. Concrètement, cette thèse est

composée de trois projets axés sur l’inclusion des caractéristiques des réclamations

dans le cadre du calcul des réserves.

Dans un premier article déjà publié Yanez & Pigeon (2021), on met en place

une structure hiérarchique qui sépare le développement des réclamations en trois

composantes : la durée, la fréquence et la sévérité. Cette modélisation permet

à l’actuaire d’utiliser des modèles paramétriques qui peuvent facilement intégrer

de l’information individuelle à chacune des étapes. La durée apparaît sous trois
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formes, le délai de survenance (t(o)ℓ ), le délai de déclaration (t(r)ℓ ) et le délai de

fermeture (t(c)ℓ ). Pour cette étape, des modèles classiques de survie peuvent être

utilisés, par exemple la distribution Weibull ou la distribution Log-normale. La

fréquence est calculée sur des intervalles entre la date de déclaration et la date de

fermeture. Ainsi, la modélisation du nombre de paiement(s) par intervalle permet

de prendre en compte une mesure d’exposition qui indique combien de temps

la réclamation est ouverte à l’intérieur de chacun des intervalles. Ceci permet

l’utilisation de modèles de comptage classiques tels que le modèle Poisson (sur-

dispersé) ou le modèle basé sur la distribution binomiale négative. Finalement, on

prend en considération le coût de chaque paiement qui demande de faire appel à

la modélisation de valeurs extrêmes, voir Denuit & Trufin (2017) et Laudagé et

al. (2019).

Les variables explicatives qui décrivent une réclamation peuvent être de nature dif-

férentes : statiques, dynamiques déterministes ou dynamiques non-déterministes.

Les variables statiques ne changent pas avec le temps, contrairement aux autres

types de variables. On peut distinguer les deux types de variables dynamiques

par le fait que les variables dynamiques déterministes peuvent être prédites avec

certitude (par exemple, l’âge d’un assuré) alors que les variables dynamiques non-

déterministes ne le peuvent pas (par exemple, l’évolution d’une blessure). Le pre-

mier article est très adéquat pour incorporer l’information issue de variables sta-

tiques et de variables dynamiques déterministes mais la mise en oeuvre de l’incor-

poration des variables dynamiques non-déterministes a été faite dans un second

projet Yanez et al. (2023). En effet, il existe des variables de ce type qui peuvent

avoir un impact important dans la prédiction des réserves granulaires. La variable

dynamique non-déterministe d’intérêt dans ce projet est le nombre de paiement(s)

observé dans le passé. Ainsi, on utilise la structure en intervalle développée dans

Yanez & Pigeon (2021) pour créer une nouvelle variable explicative nommée score
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de réclamation dynamique qui résume le développement préalablement observé et

se met à jour à la fin de chacun des intervalles. Cette méthode est inspirée du

modèle Bonus-Malus couramment utilisé en tarification, voir Lemaire (1995),

Boucher & Pigeon (2019) et Boucher (2023).

Enfin, on a décidé, dans un troisième projet Yanez & Pigeon (2023), d’étudier

plus en détail la modélisation de la durée et, en particulier, du délai de fermeture.

Dans ce cadre, on a remarqué que dans certaines situations, une réclamation peut

affecter plusieurs couvertures qui peuvent avoir des caractéristiques différentes.

Ce qui fait en sorte que l’incorporation de ces caractéristiques ne peut pas se faire

directement, sauf si on modélise la durée de chaque couverture séparément. Dans

ce cas, une problématique de dépendance se pose puisque les couvertures touchées

partagent la même origine. Afin de considérer cette dépendance, on propose de

modéliser la durée des couvertures en ajoutant un effet aléatoire commun aux

membres de chaque réclamation (connu sous le nom de frailty dans la littérature

de survie). En plus de décrire en détail ce type de modèles, on donne des outils

pour que l’actuaire puisse mesurer cette dépendance dans sa base de données.

Cette thèse est composée de trois chapitres principaux. Le Chapitre 1 décrit le

modèles à trois composantes et les enjeux principaux associés à celui-ci. Dans le

Chapitre 2, la méthode du score de réclamation dynamique pour les paiements

passés est développée. Par la suite, la problématique de la dépendance entre les

couvertures est traitée au Chapitre 3. Finalement, on fait une conclusion sur les

résultats principaux de la thèse ainsi que sur les possibles extensions pour des

projets futurs.





CHAPITRE I

MODÉLISATION PARAMÉTRIQUE DE LA DURÉE, DE LA FRÉQUENCE

ET DE LA SÉVÉRITÉ AU NIVEAU MICRO POUR LES RÉSERVES

GRANULAIRES

1.1 Introduction

Non-life insurance companies must control their solvency in order to protect their

policyholders. Therefore, a provision or, loss reserve, must be established for claims

whose total amount has not been paid or fully paid. Given the importance and

the complexity of this task, several models have been proposed in the actuarial

literature to predict future payments and to evaluate associated risks. Traditio-

nally, these models can be grouped into two categories, collective and individual,

based on the underlying data set. Although collective models have been studied

by researchers for a long time and are commonly used by practitioners, individual

models have caught the eye of researchers in the more recent years, and are rarely

put into practice despite their many advantages. In this paper we aim to provide

a parametric framework that can use micro-level information, which in turn may

shed light on the advantage of using this information.

Let us begin by looking at the typical development of two claims, as illustrated

in Figure 1.1. When accident ℓ occurs, we can identify the delay between the

beginning of the accident year and the exact occurrence date (t
(o)
ℓ ). After an
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additional delay (t
(r)
ℓ ), claim ℓ is declared. For several situations (fire, damage

to a car, etc.), this second delay may be short, but for other situations (bodily

injury, civil liability), a longer period can separate the occurrence and reporting

of a claim. Subsequently, one or more payments may be made (illustrated by

dots in the figure) before closing the file after a final delay (t(c)ℓ ). At an valuation

date, claims can be separated into several categories according to the information

available. For the remainder of this paper, the main categories are as follows :

— if the valuation date is between the date of the accident and the reporting

date, the loss is considered not reported (Incurred But Not Reported or,

IBNR), meaning the actuary has no information about the claim ; and

— if the valuation date is between the reporting date and the closing date of

the case, the loss is considered reported but not closed (Reported But Not

Settled or, RBNS) meaning the actuary has only partial information about

the claim.

Figure 1.1 Development of two claims

In the literature, most stochastic collective models for loss reserving are presented

in the widely used run-off triangles framework. This representation summarizes

claim payments by aggregating them based on the accident and development year.

In recent decades, intuitive and popular methods such as the stochastic Chain
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Ladder model (Mack (1999) and Mack (1993)) have been developed. Particularly,

Wüthrich & Merz (2008) and England & Verrall (2002) made a compilation of

the most widely used models within this collective structure. However, one of the

shortcomings of these methods is that the underlying data used to summarize

payments are based on the development of many different claims in spite of their

individual characteristics, making it very difficult to use micro-level information

in the modeling process.

In contrast to this class of models, individual models do not require aggregating

payments from different claims ; instead each claim is analysed separately. Several

of the recently proposed approaches are based on techniques from the field of

statistical learning. For examples, Wüthrich (2018), Lopez et al. (2016); Lopez

(2019); Lopez et al. (2019); Lopez et al. (2019) suggested using regression trees

to predict the number of outstanding claim payments. Another implementation

for predicting loss reserves was suggested in Baudry & Robert (2019), using an

algorithm called ExtraTrees. Duval & Pigeon (2019) recommend using a Gradient

Boosting procedure to predict both the IBNR and RBNS reserves. The examples

allow the use of micro-level information for their predictions.

In parallel, some authors have put forth parametric models. For example, Haas-

trup & Arjas (1996) proposed a Position Dependent Marked-Poisson Process

(PDMPP) to predict claim payments continuously. In 2014, Antonio & Plat (2014)

presented a similar but more elaborated model, and the authors successfully ap-

plied it to a real data set. Although Haastrup & Arjas (1996) suggested the

possibility of using micro-level information in their model, Antonio & Plat (2014)

only considered individual covariates for payments severity. Antonio et al. (2015)

suggested an individual multi-state approach and applied it to a real data set.

They also mention that micro-level information other that the occurrence and

development period can be incorporated in their model. Furthermore, Zhao et al.
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(2009) developed a semi-parametric model for individual claims, and Zhao et al.

(2010) incorporated copulae to predict IBNR claims. In contrast, some authors

have considered a discrete framework for claim development. For example, Pigeon

et al. (2013) and Pigeon et al. (2014) considered individual development factors.

Verrall et al. (2010) and, later Huang et al. (2015b), examined modeling claim

counts and claim amounts separately, deriving a frequency-severity type structure.

In this paper, we propose an individual parametric model that fully takes ad-

vantage of micro-level information to predict outstanding claim payments. In

retrospect, we drew inspiration from the two-component framework (frequency-

severity), which is often used in ratemaking for Property & Causalty insurance.

In this pricing context, general linear models or, GLM, are often used along with

micro-level information (contract), to predict each component (for more informa-

tion, see Ohlsson et al. (2010)). Moreover, an exposure measure is considered

for the frequency, usually in the form of the duration of the insurance contracts.

However other forms of exposure may be considered (kilometers driven Ayuso et

al. (2019), etc.) In a loss reserving context, we considered a similar frequency-

severity GLM framework for outstanding claims using micro-level information.

We also establish an exposure measure based on the duration of each claim. Ho-

wever, unlike the contracts in ratemaking models, where the exposure measure

is known beforehand, the duration of open claims is unknown at the valuation

date. Therefore, an additional model needed to be fitted for this new component.

We propose using parametric survival models that use micro-level information for

this step, mainly to maintain a fully parametric structure similar to the one used

for the aforementioned components, which in turn allows for a similar analysis

of the significance of covariates in the fitting process across all steps. Note that

in contrast with the studies by Verrall et al. (2010) and Huang et al. (2015b),

which also contain a frequency-severity type of structure, we seek to model single
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payments instead of the total cost of claims.

Comparatively to the existing literature for parametric individual loss reserving,

our model diverges from methods previously suggested, such as models that use

development factors, as in Pigeon et al. (2013) and Pigeon et al. (2014), or

models that use Poisson Processes, as in Antonio & Plat (2014) and Zhao et al.

(2009). Indeed, instead of making use of a Poisson Process to model the delays

between payments and closure of claims simultaneously, we suggest a more hierar-

chical structure in which we model first the duration of the claim, through survival

models, and then the frequency, through discrete time parametric modeling for

claim payment counts. To the best of our knowledge this is the first individual

parametric loss reserving model that suggests modeling these two type of events

separately, which in turn allows us to introduce the possibility of modeling pay-

ment counts discretely instead of continuously. This new structure offers flexibility

in the choice of the distributions for the both the duration and the frequency, all

while offering a straightforward way of introducing micro-level information from

claims. Furthermore, modeling the cost of single payments have already been stu-

died by Antonio & Plat (2014), who recommend Burr, Lognormal and generalized

linear models, and Denuit & Trufin (2017) who favored a mixture of Gamma and

Pareto distribution. However, we make a contribution in the modeling of this com-

ponent as well by suggesting a new model based on splices, drawing inspiration

from Laudagé et al. (2019).

In a nutshell, we propose, in this paper

— a new 3-component framework for outstanding claim payments, where

the unknown exposure is based on the duration and where micro-level

information can be included at all levels (duration-frequency-severity) ;
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— a model structure that allows for a comparison with both collective ap-

proaches based on run-off triangles (e.g., Mack’s model), and with other

individual approaches proposed in the literature (e.g., individual model

proposed in Antonio & Plat (2014)).

In this paper we aim to implement the use of claims covariate information in the

prediction of loss reserves. However, we must consider the different kinds of cova-

riates that are available to us. Taylor et al. (2008) use this information for their

individual loss reserve model and, consider three types of covariates : static (such

as the region), time dynamic (such as the age of the beneficiary), and, unpredic-

table dynamic (such as the health condition of the beneficiary). Static covariates,

do not change as time passes, however dynamic covariates will. Furthermore, even

though both dynamic types are affected by time, only time dynamic covariates

can be predicted with certainty, which in turn makes unpredictable dynamic co-

variates delicate to work with. An additional model is required in order to predict

these uncertain values after the valuation date. In this paper, we will consider

only static and time-dependent dynamic covariates because the additional model

required for unpredictable dynamic covariates could be very specific, depending

on which variable we are looking at.

This paper is be structured as follows. In Section 1.2, we look at the general

framework of the three-component model. In Section 1.3, we discuss the simulation

procedure of the IBNR and RBNS reserves. In Section 1.4, we describe the data set

used, followed by the numerical results of both our model and other comparative

models. Finally, Section 1.5 contains concluding remarks and mentions further

topics that could be explored based on this work.
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1.2 Statistical model

In this section, we define both the individual and collective perspectives of a given

portfolio, because we want our model to be interpreted from both perspectives.

On the one hand, in a micro-level structure, let L = L(O) ∪ L(C), represent a set

containing L reported claims in a portfolio, where L(O) and L(C) are the subsets

containing open (RBNS) and closed claims, respectively. Let L∗ be the set contai-

ning incurred but not reported (IBNR) claims, which is, obviously, unavailable at

the valuation date.

On the other hand, in a macro-level structure, let i and j be, respectively, the

occurrence and the development periods in a run-off triangle, or loss triangle.

Also, let Yi,j be the total paid amount between time i − 1 + j and i + j from

claims occurring during period i, where i = 1, . . . , I and j = 0, . . . , (I − 1). For

example, Figure 1.2 illustrates an incremental loss triangle with five occurrence

and development periods.

Figure 1.2 Incremental loss development triangle

Let us suppose that the insurance company has additional details about the acci-

dent, the insured, etc. and, wants to use them in the modeling process. Further-

more, let us suppose that all the covariates become available as soon as the claim
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is reported. The information regarding one observed claim ℓ can be summarized

by g categorical and/or continuous covariates,

cℓ = [cℓ,1, cℓ,2, . . . , cℓ,g] , for ℓ ∈ L.

Having defined these variables, we can now consider the three components of

the model in detail. We present the duration component in Subsection 1.2.1, the

frequency component in Subsection 1.2.2, and the severity component in Subsec-

tion 1.2.3. To better illustrate how each of these components could be obtained

from a real data set, we provide examples in Appendix 1.6.

1.2.1 Duration component

The duration component can be defined as the delay between the beginning of

the occurrence period and the closure of a given claim. Thus, for a claim ℓ, the

component is constructed from the three following parts :

— T
(o)
ℓ the occurrence delay, i.e. the time elapsed between the beginning of

the occurrence year and the exact occurrence date ;

— T
(r)
ℓ the declaration delay, i.e. the time elapsed between the exact occur-

rence date and the reporting date ; and

— T
(c)
ℓ the closure delay, i.e. the time elapsed between the reporting date and

the closure date.

Because the claims we consider at are either open, closed or non-reported, Fi-

gure 1.3 represents how the delays are observed at the valuation date for claims

having the same occurrence period at these three stages of development in a loss

triangle.
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Figure 1.3 Observed delays for claims at valuation date in a loss triangle

Recall t(o)ℓ is the delay from the beginning of the occurrence period. We have

covariate information about open claims, and we also know the full extent of the

occurrence and declaration delays. Furthermore, for ℓ ∈ L(O), we only have partial

information about the closure delay, in the form of a right-censored observation,

t
(e)
ℓ , the delay between the reporting date and the valuation date. These values

coupled with the observed values of closed claims (which are similar except that

the closure delay is not a censored observation) constitute the full extent of the

training data set. Moreover, not reported claims are undisclosed to the insurer at

the valuation date and therefore cannot be included in the training set.

In this paper, we suppose that no claim can reopen after it has been closed for the

first time. However, this model can include reopening events by simply adding a

variable, the delay between the closure date and a later reopening date. Given the

assumption, only open and not reported claims need a reserve to be calculated.

Furthermore, the predictions for the future payments of open and not reported

claims constitute the full extent of the RBNS and the IBNR reserves respecti-

vely. In fact, the prediction of claims at these two stages of development bring

about different challenges in the modeling process of the different delays and are

explained separately.
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To begin, we need to find a model for the closure delay of open claims,

(
T

(c)
ℓ |cℓ

)
, for ℓ ∈ L(O). (1.1)

However, at the valuation date these delays have been partially observed. There-

fore, we need to find the conditional distribution,

(
T

(c)
ℓ |T (c)

ℓ > t
(e)
ℓ , cℓ

)
, for ℓ ∈ L(O). (1.2)

Nevertheless, depending on the chosen distribution, and the number of covariates,

making simulations from the conditional distribution (1.2) can be simplified by

simulating from (1.1), and then using an acceptance-rejection method to keep

only the delays greater than t
(e)
ℓ . For this reason, in this subsection we focus on

modeling (1.1), and in Section 1.3, we further explain the simulation procedure of

the conditional delays.

We suggest using parametric survival models for this step. Chapter 1 of the book

by Lawless (2011) contains some of the distributions that can be considered,

among them the Weibull, Log-Logistic, Lognormal and Gamma distributions. Re-

call that the training set contains non-censored and right-censored observations of

the closure delay. For a parametric survival distribution, the likelihood function

for the closure delay is

Λ(RBNS) (ΘT (c)) =
∏

ℓ∈L(C)

{
f(

T
(c)
ℓ |cℓ

) ((t(c)ℓ |cℓ
)
;ΘT (c)

)}
×

∏
ℓ∈L(O)

{
S(

T
(c)
ℓ |cℓ

) ((t(e)ℓ |cℓ
)
;ΘT (c)

)}
, (1.3)
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where, f() and S(), are the probability density function (pdf) and the survival

function of the closure delay for reported claims, respectively and, ΘT (c) is the

parameter vector.

IBNR claims are more complex to predict because the insurer does not have

any information about them. They only know that some probably have occurred,

and they will be reported at some point after the valuation date. Therefore, the

number of IBNR claims is also unknown and, must be predicted. In Section 1.3,

we suggest a procedure to predict how many not reported claims have occurred at

each period i, however this particular model is better explained after defining the

duration component for this type of claim. Thus, in this subsection, we suppose

that iℓ, the occurrence period of claim ℓ, is known. Moreover, this section concerns

the different time measures of the model, i.e. we focus on modeling the delays of

a single not reported claim ℓ∗ ∈ L∗, while supposing that the occurrence period

is known.

Unlike open reported claims, we need to predict all three delays, instead of just

completing the closure delay. Admittedly, as mentioned in the introduction of this

paper, one of the advantages of micro-level models is that we can use individual

information better than macro-level models. This is very much true for RBNS

claims however its less so for IBNR claims. In spite of lack of micro-level infor-

mation available when modeling non reported claims, individual models, unlike

collective models, have the advantage of being able to predict IBNR and RBNS

reserves separately, allowing the insurer to have insight about the weight of not

reported claims in the portfolio.

The first delay we need to model is the occurrence delay, T (o)
ℓ , using ℓ ∈ L. The

key aspect of this delay is that its observation period is (0, 1], i.e. a year. Moreover,

because we are modeling unreported claims, micro-level information is unknown
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and thus, we suggest fitting models based on seasonal effects, for example. Ne-

vertheless, this time measure varies greatly depending on the data set, and many

models can be considered. Examples of distributions that can be examined are

the multinomial distribution, assigning a probability of a claim occurring within

a certain time-window (e.g. each month of a year) or, the empirical distribution.

The other delay that needs to be modeled is the reporting delay, T (r)
ℓ , for which

many observations generally occur within only a few days after the occurrence

date. In order to take into account this large number of short time observations

and those that take more time, Antonio & Plat (2014) suggest using a mixture

of a Weibull distribution with D degenerate components, where each component

d, represents the number of days that have passed since the occurrence date,

d = 0, 1, . . . , D − 1 days. Furthermore, contrarily to the observed closure delay,

the reporting delay does not contain censored observations, but the delays are

truncated by the valuation date. Thus, the likelihood of the reporting delay can

be written as

Λ(IBNR)
(
Θ∗

T (r)

)
=
∏
ℓ∈L

f ∗
T

(r)
ℓ

(
t
(r)
ℓ ;Θ∗

T (r)

)
F ∗
T

(r)
ℓ

(
I − iℓ + 1− t

(o)
ℓ ;Θ∗

T (r)

) ,
where, f ∗() and F ∗() are the pdf and the cumulative distribution function of the

reporting delay for not reported claims, respectively and, Θ∗
T (r) is the parameter

vector. Having modeled the reporting and the occurrence delay, let U (r)
ℓ be the

delay between the beginning of the occurrence period and the report date, thus,

U
(r)
ℓ = T

(o)
ℓ + T

(r)
ℓ .

By definition, the report date of an IBNR claim must happen after the valuation
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date. Moreover, for claim ℓ ∈ L∗, we can obtain the delay between the beginning

of the occurrence year and the valuation date, I − iℓ + 1. Thus,

U
(r)
ℓ > I − iℓ + 1, for ℓ ∈ L∗.

This in turn means that we need to find the distribution of
(
U

(r)
ℓ |U (r)

ℓ > I − i+ 1
)
,

for i = 1, . . . , I. We suggest obtaining these distributions numerically through a

simulation of both T
(o)
ℓ and T (r)

ℓ . More details are given in Section 1.3.

The final delay that needs to be addressed is the closure delay, T (c)
ℓ , where the

same parametric distributions can be used in a similar manner to the the one

suggested in Subsection 1.2.1, with the only difference being that most of the

explanatory variables are missing, thus the likelihood to model the closure delay

of IBNR in the training set is defined as :

Λ(IBNR)
(
Θ∗

T (c)

)
=
∏

ℓ∈L(C)

{
f ∗(

T
(c)
ℓ |iℓ

) ((t(c)ℓ |iℓ
)
;Θ∗

T (c)

)}
×

∏
ℓ∈L(O)

{
S∗(

T
(c)
ℓ |iℓ

) ((t(e)ℓ |iℓ
)
;Θ∗

T (c)

)}
, (1.4)

where, f ∗() and S∗(), are the pdf and the survival function of the closure delay

for not reported claims, respectively and, Θ∗
T (c) is the parameter vector.

1.2.2 The frequency component

Payments are time-framed by the reporting and closure dates because they can

happen only between these two events (closure delay). In this subsection we aim

to define a partition of this timeline in order to count the number of payments

within each of the sub-intervals. We build this partition with two main goals in
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mind : (1) allow the structure of a run-off triangle to be easily reconstructed from

our model, and (2) capture variations in individual development as a function of

the time elapsed since the reporting date of each claim.

Let Q = {0, 1, . . . , I} be a partition of the time interval between the beginning

of the period in which the claim is reported and the maximum development time

in a run-off triangle. This first division allows us to easily draw parallels between

our results and those obtained using a collective approach based on a triangular

structure.

We define a second partition of the same time interval which, this time, will not

be constrained by the regularity of the construction of the run-off triangle, i.e. the

fact that a loss triangle is generally divided into development periods of one year.

We aim to capture the individual development of the frequency of claims from the

report date until its closure, and to identify, precisely, what stage of development

each time division is in. This type of division is reminiscent of that used in the

position dependent marked-Poisson process model proposed by Antonio and Plat

Antonio & Plat (2014).

Thus, let us begin by noting that the observation period of claim ℓ, starting from

the reporting date, is [0, τℓ], where τℓ = max
{
t
(c)
ℓ , t

(e)
ℓ

}
. Let τ be the longest pos-

sible observation period, such that τ = maxℓ∈L {τℓ}. Let δ = {δ0, δ1, . . . , δK−1, δK}

a partition of the interval [0, τ ], where δ0 = 0 and δK = τ . Then let Pℓ ={
0, δ + u

(r)
ℓ , I

}
. We assume that τ < I − u

(r)
ℓ , ∀ℓ, but it is easy to adapt this

definition if this inequality is not satisfied. Finally, we define the common refine-

ment of Q and Pℓ, which consists of all the points of Q and Pℓ :

Dℓ = Q∨ Pℓ = {Dℓ,0, Dℓ,1, . . . , Dℓ,Mℓ
},
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where Dℓ,0 = 0 and Mℓ is the number of sub-intervals of Dℓ.

The exposure corresponding to the kth sub-interval of Dℓ is

Eℓ,k =


Dℓ,k −Dℓ,k−1, k ∈ {k : k > 0, Dℓ,k < τℓ + u

(r)
ℓ }

τℓ + u
(r)
ℓ −Dℓ,k−1, k ∈ {k : Dℓ,k−1 < τℓ + u

(r)
ℓ ≤ Dℓ,k}

0, elsewhere.

(1.5)

Let Nℓ,k be a random variable which counts the number of payments for the claim

ℓ during the kth sub-interval. For ℓ ∈ L, the distribution of each Nℓ,k, is given by

(Nℓ,k|cℓ,Dℓ, Eℓ,k) ∼ Dist(n)
(
Eℓ,k · µ(n)

ℓ,k

(
β(n)

)
, ·
)
, if Eℓ,k > 0, and (1.6)

(Nℓ,k|Dℓ, Eℓ,k) ∼ Dist∗(n)
(
Eℓ,k · µ∗(n)

ℓ,k

(
β∗(n)

)
, ·
)
, if Eℓ,k > 0, (1.7)

with j = 0, . . . , I−1 and k = 1, . . . ,Mℓ. Dist(n) and Dist∗(n) are the distributions

of the number of payments from reported and unreported claims, respectively.

Also, µ(n)
ℓ,k

(
β(n)

)
and µ

∗(n)
ℓ,k

(
β∗(n)

)
are the mean parameters for one exposure

unit, while, β(n) and β∗(n) are the parameter vectors used to predict the mean.

We explicitly mention j in our construction to ease comparison with collective

approaches. If obtaining results in the form of a loss triangles is not needed, it is

possible to simplify the model and to keep only the second partition.

Finally, having defined both the exposure and the number of payments for each

claim ℓ at each kth sub-interval, we can now depict these values visually for two

claims in Figure 1.4. As in Figure 1.3 the reporting and closure delays are repre-

sented by a dotted and solid lines respectively, while dots represent payments.
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Figure 1.4 Observed exposures (Eℓ,k) and observed payments (Nℓ,k), based on

vectors Dℓ for two claims

1.2.3 The severity component

With the final component we seek to predict the cost of single payment. Let Dist(x)

and Dist∗(x) be the distributions of the cost of single payments from reported and

not reported claims respectively. Let Xℓ,k,m be the cost of the mth payment from

claim ℓ occurring during the kth sub-interval of Dℓ. We have, for ℓ ∈ L,

(Xℓ,k,m|cℓ,Dℓ) ∼ Dist(x), for m = 1, . . . , Nℓ,k, and (1.8)

(Xℓ,k,m|Dℓ) ∼ Dist∗(x), for m = 1, . . . , Nℓ,k. (1.9)

Although it is possible to consider generalized linear models, where the distribu-

tion is continuous on R+, modeling the severity of payments may require a more

complex approach. This is due to the fact that payments may be highly diverse

and, a model that can accommodate both large and small payments could be

preferable. Antonio & Plat (2014), for example, suggest using models such as the
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Burr and the Lognormal distributions. Alternatively, one may consider a mixture

of distributions, for example Denuit & Trufin (2017) suggest a discrete mixture

of a Gamma and a Pareto distribution.

Finally, a splicing model can also be considered, of which some of the best known

are the threshold models. Laudagé et al. (2019) advocate using this method in

the context of claim severity for rate making and this model can be accommo-

dated to model claim payments instead. This so-called Threshold severity model

can better accommodate large payments by fitting the tail and the body of the

distributions separately through a splicing point u, called a threshold. For a given

payment, (Xℓ,k,m|cℓ,Dℓ), let h(Xℓ,k,m) (xℓ,k,m;ΘX(h)) and g(Xℓ,k,m) (xℓ,k,m;ΘX(g)) be

the probability density functions of the bulk and the tail, respectively, with pa-

rameter vectors ΘX(h) and ΘX(g) . Let H(Xℓ,k,m) and G(Xℓ,k,m) be the respective

cumulative distribution functions. The probability of exceeding the splicing point

is given by q(Xℓ,k,m) (ΘX(q)), where ΘX(q) is the parameter vector. Thus, the pdf

of (Xℓ,k,m|cℓ,Dℓ) with parameter vector ΘX = (ΘX(h) ,ΘX(g) ,ΘX(q)) is given by

f(Xℓ,k,m) (xℓ,k,m;ΘX) =

0, for xℓ,k,m ≤ 0(
1− q(Xℓ,k,m) (ΘX(q))

) h(Xℓ,k,m) (xℓ,k,m;ΘX(h))

H(Xℓ,k,m) (u;ΘX(h))
, for 0 < xℓ,k,m ≤ u

q(Xℓ,k,m) (ΘX(q)) g(Xℓ,k,m) (xℓ,k,m;ΘX(g)) , for xℓ,k,m > u,

for m = 1, . . . , Nℓ,k.
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1.3 Loss reserves

In this section we illustrate how to simulate both the IBNR and the RBNS reserves

after fitting the three-component model defined in Section 1.2. For payments that

happen after the valuation date, for (i+ j > I), we have

Yi,j = Y
(RBNS)
i,j + Y

(IBNR)
i,j

=
∑

ℓ∈{ℓ|ℓ∈L(O),iℓ=i}

∑
k∈{k:j<Dℓ,k≤j+1}

Nℓ,k∑
m=1

Xℓ,k,m

+
∑

ℓ∈{ℓ|ℓ∈L∗,iℓ=i}

∑
k∈{k:j<Dℓ,k≤j+1}

Nℓ,k∑
m=1

Xℓ,k,m.

We recall that iℓ is the occurrence period of claim ℓ. Then, we calculate the total

reserve :

R = R(RBNS) +R(IBNR)

=
∑
i+j>I

Y
(RBNS)
i,j +

∑
i+j>I

Y
(IBNR)
i,j .

We can now describe the simulation procedure for both parts of the total reserve.

1.3.1 IBNR reserve

Before we give the complete simulation procedure, we must predict the number

of IBNR claims in the portfolio. Our approach is based on the work of Pigeon et

al. (2013) and on the distribution of U (r)
ℓ as defined in Subsection 1.2.1. Let Li,

the total number of claims occurring during period i, follow a Poisson distribution
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with occurrence measure θωi, where ωi is the total exposure registered for period i,

for i = 1, . . . , I. Because we only observe reported claims, the Poisson distribution

should be thinned in the following way

Li ∼ Poisson
(
θωiPr

[
U

(r)
ℓ ≤ I − i+ 1

])
.

Thus, L∗
i , the number of IBNR claim(s) from occurrence period i follows a Poisson

distribution with occurrence measure given by

θωiPr
[
U

(r)
ℓ > I − i+ 1

]
. (1.10)

We can now proceed to the simulation procedure of an IBNR reserve.

— Step 1 : Obtain L̃∗ =
∑

i L̃
∗
i ,where L̃∗

i is the simulated value of L∗
i for

each occurrence period (see Equation (1.10)).

— Step 2 : For ℓ = 1, . . . , L̃∗, go through each of the following sub-steps.

— Step 2a : Obtain Ũ (r)
ℓ , the simulated value of

(
U

(r)
ℓ |U (r)

ℓ > I − iℓ + 1
)
,

the delay between the beginning of the occurrence period and the exact

reporting date, where

Pr
[
U

(r)
ℓ ≤ u|U (r)

ℓ > I − iℓ + 1
]
=

Pr
[
I − iℓ + 1 < U

(r)
ℓ ≤ u

]
1− Pr

[
U

(r)
ℓ ≤ I − iℓ + 1

] .
— Step 2b : Obtain T̃

(c)
ℓ , the simulated value of

(
T

(c)
ℓ |iℓ

)
, the closure

delay (see Equation (1.4)), where(
T

(c)
ℓ |iℓ

)
∼ Dist∗(t

(c)).

— Step 2c : Based on Ũ
(r)
ℓ , T̃ (c)

ℓ and δ, calculate P̃ℓ and D̃ℓ = Q ∨ P̃ℓ =

{0, D̃ℓ,1, . . . , D̃ℓ,M̃ℓ
}.
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— Step 2d : Calculate

Ẽℓ,k =


D̃ℓ,k − D̃ℓ,k−1, k ∈ {k : k > 0, D̃ℓ,k < T̃

(c)
ℓ + Ũ

(r)
ℓ }

T̃
(c)
ℓ + Ũ

(r)
ℓ − D̃ℓ,k−1, k ∈ {k : D̃ℓ,k−1 < T̃

(c)
ℓ + Ũ

(r)
ℓ ≤ D̃ℓ,k}

0, elsewhere,

for k = 1, . . . , M̃ℓ.

— Step 2e : Obtain Ñℓ,k, a simulated value of
(
Nℓ,k|D̃ℓ, Ẽℓ,k

)
, using Equa-

tion (1.7), for k = 1, . . . , M̃ℓ.

— Step 2f : Obtain X̃ℓ,k,m, a simulated value of
(
Xℓ,k|D̃ℓ

)
, using Equa-

tion (1.9), for m = 1, . . . , Ñℓ,k and k = 1, . . . , M̃ℓ.

— Step 3 : Calculate the simulated IBNR reserve :

R̃(IBNR) =
∑
i+j>I

Ỹ
(IBNR)
i,j =

∑
i+j>I

∑
ℓ∈L̃∗

i

∑
k∈{k:j<D̃ℓ,k≤j+1}

Ñℓ,k∑
m=1

X̃ℓ,k,m,

where L̃∗
i is the set containing all the simulated IBNR claims occurring at

period i.

1.3.2 RBNS reserve

Let L(O) be the total number of open claims in the portfolio. We describe the

simulation procedure for the RBNS reserve below.

— Step 1 : Set ℓ = 1, the first open claim in L(O).

— Step 1a : Obtain T̃
(c)
ℓ , the simulated value of

(
T

(c)
ℓ |cℓ

)
, the closure

delay of open claim ℓ (see Equation (1.3)), where,(
T

(c)
ℓ |cℓ

)
∼ Dist(t

(c)).

— Step 1b : If T̃ (c)
ℓ > t

(e)
ℓ , set ℓ = ℓ+ 1, the next open claim.
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— Step 1c :

— If ℓ ≤ L(O), go to Step 1a.

— If ℓ = L(O) + 1, go to Step 2.

— Step 2 : Based on u
(r)
ℓ , T̃ (c)

ℓ and δ, calculate Pℓ and D̃ℓ = Q ∨ Pℓ =

{0, D̃ℓ,1, . . . , D̃ℓ,M̃ℓ
}, for ℓ = 1, . . . , L(O).

— Step 3 : Calculate

Ẽℓ,k =



D̃ℓ,k − t
(e)
ℓ − u

(r)
ℓ , k ∈ K1

D̃ℓ,k − D̃ℓ,k−1, k ∈ K2

T̃
(c)
ℓ + u

(r)
ℓ − D̃ℓ,k−1, k ∈ K3

T̃
(c)
ℓ − t

(e)
ℓ , k ∈ K4

0, elsewhere,

for k = 1, . . . , M̃ℓ and ℓ = 1, . . . , L(O), where,

K1 = {k : D̃ℓ,k−1 < t
(e)
ℓ + u

(r)
ℓ ≤ D̃ℓ,k, D̃ℓ,k < T̃

(c)
ℓ + u

(r)
ℓ },

K2 = {k : t
(e)
ℓ + u

(r)
ℓ ≤ D̃ℓ,k−1, D̃ℓ,k < T̃

(c)
ℓ + u

(r)
ℓ },

K3 = {k : t
(e)
ℓ + u

(r)
ℓ ≤ D̃ℓ,k−1, D̃ℓ,k−1 < T̃

(c)
ℓ + u

(r)
ℓ ≤ D̃ℓ,k},

K4 = {k : D̃ℓ,k−1 < t
(e)
ℓ + u

(r)
ℓ , T̃

(c)
ℓ + u

(r)
ℓ ≤ D̃ℓ,k}.

— Step 4 : Obtain Ñℓ,k, a simulated value of
(
Nℓ,k|cℓ, D̃ℓ, Ẽℓ,k

)
, using Equa-

tion (1.6), for k = 1, . . . , M̃ℓ and ℓ = 1, . . . , L(O).

— Step 5 : Obtain X̃ℓ,k,m, a simulated value of
(
Xℓ,k|cℓ, D̃ℓ

)
, using Equa-

tion (1.8), for m = 1, . . . , Ñℓ,k, k = 1, . . . , M̃ℓ and ℓ = 1, . . . , L(O).

— Step 6 : Calculate the simulated RBNS reserve :

R̃(RBNS) =
∑
i+j>I

Ỹ
(RBNS)
i,j =

∑
i+j>I

∑
ℓ∈L(O)

i

∑
k∈{k:j<D̃ℓ,k≤j+1}

Ñℓ,k∑
m=1

X̃ℓ,k,m,

where L(O)
i be the set containing all the open RBNS claims occurring at

period i.
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1.4 Numerical Analysis

In this section we provide a detailed analysis based on a real data set from a

Canadian Property & Causalty insurance company. With this example, we want to

(1) illustrate the use of our new 3-component framework, (2) perform a comparison

with collective approaches, and (3) perform a comparison with another individual

approach. We describe our data set in Subsection 1.4.1, we adjust our model, as

well as various collective models in Subsection 1.4.2, we perform a goodness of fit

analysis in Subsection 1.4.5, and finally, we obtain the results for the outstanding

loss reserves in Subsection 1.4.6.

1.4.1 Data set

The data set we worked on contains transactional information for 57, 593 claims

occurring between January 1, 2011 and, December 31, 2015. The insurer recorded

each important event (payment, case estimates, closure date, etc.), along with

micro-level information until December 31, 2017. For our numerical analysis, we

set the valuation date to December 31, 2015, where there were 48, 855 closed

claims, 7, 872 open claims and, 866 not reported claims.

Some payments from the data set were not considered based on macro and micro

level hypothesis. First, we did not consider the payments that happen after the end

of the final development period in a loss triangle, i.e. (J = I − 1), for each claim.

In order words we did not calculate a reserve for payments that happen after time

t = iℓ + (I − 1), ∀ℓ. This hypothesis is often used for collective approaches based

on run-off triangles. Second, we also did not consider any payment after the first

closure date of every claim, making the data set consistent with the no reopening

hypothesis explained in Section 1.2. Moreover, these hypotheses were assumed for

our individual model and the comparative collective models, in order to have a
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fair comparison between the results obtained.

For the 57, 593 claims, we only consider payments for the Accident Benefits (AB)

coverages, i.e. no-fault benefits for accident where the insured or a third party

were hurt or killed in a car accident. Furthermore, we have micro-level information

regarding each claim, which was used in the three-component model, in the form

of categorical static covariates. Table 1.1 contains a summary of these variables,

and Figures 1.5- 1.9 contain the percentages of each group among all claims.

Among them, the initial reserve represents the first prediction of the total future

cash-flows for each claim at the reporting date.

Tableau 1.1: Categorical variables description

Variable Label Number of levels

Gender Gender of the injured/killed 3

Region Geographical region 3

Type of loss Kind of AB claim 5

Vehicle age Age of the vehicle 6

Injured age Age of the injured/killed 7

Reporting delay Delay calculated in days 7

Initial Reserve Reserve at report date 5

All the covariates are static, and some considerations must be explained. First,

regarding the type of loss, in some situations a single accident may cause different

kinds of losses, therefore, some claims are dependant because they originate from

the same casualty, even though most of the covariates could be different. The

dependence of related claims introduces an interesting, yet complex, additional

problem within the framework we developed in this paper, which will be better

explored in a future project. Consequently, for this analysis we assumed inde-

pendence between claims. In addition, for some claims, some covariates could
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Figure 1.5 Gender Figure 1.6 Region

Figure 1.7 Vehicle age Figure 1.8 Injured age

Figure 1.9 Reporting delay Figure 1.10 Initial Reserve

Figure 1.11 Type of loss
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be missing (NA). We decided to keep these observations as additional categories

because the number of claims with at least one unknown value is significant.

Besides the individual micro-level information for each claim, the data set also

contains the exact occurrence and reporting dates, as well as the exact date and the

cost of each payment up until December 31, 2017. However, at this date there are

still 1, 135 open claims and thus, some data is missing (e.g. the total paid amount

after this date). In order to provide a full comparison between our model and

collective triangle-based approaches, we decided to complete the missing values

with a Chain Ladder model that uses the latest information available. With these

predicted values we can have an estimation of the total payments in 2018 and

2019, allowing us to have the full development triangle for the portfolio. Table 1.2

contains the development triangle based on the above mentioned hypothesis. The

total observed reserves amount is $188, 520, 892.

Tableau 1.2: Full development triangle of the observed total cost

0 1 2 3 4

1 17, 749, 045 25, 449, 306 19, 499, 061 12, 186, 259 8, 914, 255

2 15, 050, 987 27, 422, 359 19, 162, 367 18, 114, 766 8,353,106

3 16, 322, 509 33, 692, 522 23, 145, 859 18,673,999 12,541,295

4 19, 451, 913 34, 563, 968 28,254,849 12,360,982 12,180,220

5 20, 899, 092 41,120,193 26,399,552 15,939,656 12,697,041

The training set consists of all the 56, 727 closed and open claims information up

to the valuation date. Based on this information, we fit various collective models

(see Subsection 1.4.2), our 3-component model (see Subsection 1.4.3), and the

individual model based on a Poisson process suggested by Antonio & Plat (2014)

(see Subsection 1.4.4).



36

1.4.2 Fitting the collective models

We consider four collective models based on the run-off triangle illustrated in

Table 1.2. We consider two classes of approaches : stochastic Chain Ladder mo-

del, or Mack’s model (see Mack (1999) and Mack (1993)), and Generalized Linear

Model, or GLM, for reserves. For the first, we obtain the predictive distribution

through a bootstrap procedure proposed by England & Verrall (2002) and based

on the quasi-Poisson distribution (Model Ia) and the Gamma distribution (Model

Ib). For the second, we use occurrence and the development periods as covariates.

We considered the quasi-Poisson distribution (Model IIa) and the Gamma dis-

tribution (Model IIb) for these models as well. Since these four models are well

known in the literature, we do not detail the estimation procedure further and we

present the results in Subsection 1.4.6.

1.4.3 Fitting the three-component model

We adjust the 3-component model introduced in Section 1.2 (Model III). Regar-

ding the closure delay, we test the Gamma, log-logistic and Weibull distributions

and, based on the AIC and the BIC, we chose the Weibull distribution. Thus,

(
T

(c)
ℓ |cℓ

)
∼ Weibull

(
λ, γℓ

(
β(t

(c))
))

, for ℓ ∈ L,

where, λ is the shape parameter, and γℓ (·) is the scale parameter. Also, β(t
(c)) is

the parameter vector used to predict the scale parameter.

Next, we fit the frequency component (testing the Poisson, Negative Binomial

type I, and Negative Binomial type II distributions), considering the following
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piece-wise development of claims :

δ = {0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5} ,

where the Negative Binomial type II was chosen, again based on the AIC and the

BIC. Thus,

(Nℓ,k|cℓ,Dℓ, Eℓ,k) ∼ Neg Bin
(
Eℓ,k · µ(n)

ℓ,k

(
β(n)

)
, σ
)
, if Eℓ,k > 0, for ℓ ∈ L,

where µ(n)
ℓ,k (·) and σ are such that,

E [Nℓ,k|cℓ,Dℓ, Eℓ,k] = Eℓ,k · µ(n)
ℓ,k

(
β(n)

)
,

Var [Nℓ,k|cℓ,Dℓ, Eℓ,k] = Eℓ,k · µ(n)
ℓ,k

(
β(n)

)
+ σ

(
Eℓ,k · µ(n)

ℓ,k

(
β(n)

))2
.

Subsequently, the severity component is fitted with a splice model similar to the

one suggested by Laudagé et al. (2019). Regarding the choice of the threshold,

we used a 5-fold cross validation procedure to find the value of u that minimizes

the mean square error between the predicted and the observed values of the out-

of-sample sum of all payments. Regarding the choice of the distributions, we used

a logit model to predict the probability of exceeding the threshold, and we chose

the Gamma distribution for both the bulk and the value that exceeds the thre-

shold. It is worth noting that in order to fit the bulk model H(Xℓ,k,m), which is a

right-truncated parametric model, we used the gamlss.tr package of the statistical

software R ; for more information about this package we recommend the book by

Stasinopoulus et al. (2017). Also, Laudagé et al. (2019) mentioned using GLM

for the tail distribution G(Xℓ,k,m) is generally problematic because extreme values

are rare. However in our particular problematic the data set is much larger be-

cause we are modeling payments instead of total losses, therefore we believe the
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data set of payments over the threshold is large enough to circumvent the pro-

blem found by Laudagé et al. (2019). For reference, there are only 56, 727 claims

in our training set, from which 315, 527 payments originate. Furthermore, with

the optimal threshold, u = 5, 433, the subset of the training set containing the

payments exceeding the threshold contains 5, 987 observations.

Finally, regarding the IBNR claims, the occurrence delay is fitted with a multino-

mial distribution with 12 outcomes (one for each month of the year). Afterwards,

the reporting delay is fitted with the mixture model suggested by Antonio & Plat

(2014), using 8 degenerate components, i.e. D = 7. Then, based on 100, 000 simu-

lations of both T (o)
ℓ and T (r)

ℓ , the distribution of U (r)
ℓ is obtained. Subsequently, the

model of L∗
i , the number of IBNR claims for each occurrence year (i = 1, . . . , 5)

is fitted. It is worth noting that our data set did not contain the yearly registered

exposures, thus we wrote ωi = 1, for i = 1, . . . , 5. Afterwards, the closure delay,

the frequency and, the severity are fitted with the same distributions used for

the RBNS claims, though no information from vectors cℓ was used in the fitting

process.

In order to highlight the significance of micro-level information, Table 1.3 contains

the estimated values of the parameters for covariates introduced in Table 1.1, and

the p-value of their respective t-tests. We can observe, based on these tests, that

most categories are significant in the fitting process. This in turn shows that this

underlying information has an impact on the prediction of reserves. Therefore,

individual models that can handle this kind of data could be attractive to insurers

that have access to it.
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1.4.4 Fitting an individual model based on a Poisson Process

We have also adjusted the model suggested by Antonio & Plat (2014) (Model IV)

in order to provide a more complete analysis and not to rely solely on collective

approaches, which are by definition much simpler. We choose to keep as many

similarities as possible to have more fair comparison between the models, while

making minor adjustments to fit this model. Specifically, we used the the same

time intervals (from δ) to delimit the intervals of the events Poisson Process which

includes payments, closure and closure with payment. Finally, we used the severity

component’s distribution for the cost of single payments. However, in Antonio &

Plat (2014) no methodology is indicated to include covariate information in the

events Poisson Process, therefore micro-level information was not included for this

step.

Table 1.4 contains the fitted (from events before the valuation date) and Table 1.5

contains the observed (from events after the valuation date) intensity of the Pois-

son process for each type of event, noted as hp for payments, hsep for closure, or

settlement with payments, and hse for settlement without payment. We notice

that hp is higher for the observed values compared to the fitted ones across all

time intervals. Thus, the fitted hp is does not represent accurately the intensity of

the number of payments that will occur after the valuation date, and will likely

result in an underestimation of the number of payments. This difference can be

explained by a discrepancy between the claims considered from the training set

(which contains closed and open claims) and the test set (which contains only

open and unreported claims). This problem is further emphasised in Table 1.6,

where the predicted number of payments after the valuation for this model was

obtained by multiplying the total observed exposure by intervals to the fitted

intensity of payments and closures with payments. Table 1.6 also contains the
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predicted value of the chosen frequency component model (Section 1.4.3), and the

predictions based on Section 1.2.2, using two simple models (Poisson and Nega-

tive Binomial) that only consider δ as a covariate. For the latter three models,

the exposure is also considered known. We notice that although all predictions are

lower than the observed value considering covariate information considerably re-

duces the gap between the predicted and observed values, further indicating that,

for this particular data set, considering covariate information is vital for better

addressing the discrepancy between the training and the test data sets.

Tableau 1.4: Fitted intensity of the event Poisson process

(0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1] (1, 1.5]

ĥse 2.05 1.33 0.90 0.86 0.89

ĥp 8.44 13.38 13.02 12.11 12.72

ĥsep 0.49 0.76 0.25 0.20 0.26

(1.5, 2] (2, 2.5] (2.5, 3] (3, 4] (4, 5]

ĥse 0.68 0.63 0.63 0.53 0.54

ĥp 13.17 12.79 12.73 12.60 14.98

ĥsep 0.28 0.26 0.25 0.23 0.40

1.4.5 Goodness of fit analysis

The structure of our approach makes it possible to analyze the impact of micro-

level covariates. We compare each of the components of our model (duration, fre-

quency and severity) using micro-level information, with the corresponding model

at the macro level, i.e., with a model that only uses the occurrence year (i) and

the development year (j) as covariates. For the frequency component and for the

severity component, we also compare a model using only the individual time in-

tervals (δ) as covariates. The main objective is to weight the information provided
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Tableau 1.5: Observed intensity of the event Poisson process

(0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1] (1, 1.5]

hse 2.04 1.26 0.80 0.80 0.78

hp 11.12 15.38 15.50 14.08 14.08

hsep 0.70 0.66 0.22 0.16 0.27

(1.5, 2] (2, 2.5] (2.5, 3] (3, 4] (4, 5]

hse 0.69 0.71 0.66 0.47 0.48

hp 14.43 14.71 15.18 16.97 22.12

hsep 0.26 0.27 0.26 0.35 0.38

Tableau 1.6: Predicted and observed number of payments after the valuation

date

Model Covariates Exposure Exp. number of payments

Poisson Process δ known 76, 236

simple Poisson δ known 77, 425

simple Neg. Bin. δ known 78, 455

Neg. Bin. δ and c known 84, 306

Observed value 88, 405

by the individual time frame provided by δ and the individual characteristics of

each claim separately.

Table 1.7 contains the AIC and BIC criteria of all three kinds of models for their

respective component. We can clearly observe that just by considering the indivi-

dual time frame for the frequency and severity models, we obtain better results in

terms of both criteria. We also notice that introducing individual claim informa-

tion improves the performance of all models. Furthermore, we performed likelihood

ratio tests between restricted and unrestricted models across all components. Yet
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again, through these tests we want to determine whether including micro-level

information, in the form of time intervals or characteristics of claims, is preferable

than omitting them in the modelling process. Table 1.8 contains the results of the

aforementioned Likelihood ratio tests, where we can reject the restricted models

with an error of at most 0.01 %. Thus, we draw the same conclusion that was

drawn from Table 1.7, i.e. that micro-level information improves the goodness of

fit of models from each component.

Tableau 1.7: AIC and BIC criteria for models with different covariates across

all components

Macro only Time intervals only All micro

AIC

Duration 608, 652 591, 831

Frequency 524, 531 521, 567 515, 104

Severity 4, 756, 217 4, 752, 714 4, 737, 359

BIC

Duration 608, 705 592, 144

Frequency 524, 630 521, 716 515, 581

Severity 5, 387, 217 5, 383, 684 5, 368, 159

Tableau 1.8: Likelihood Ratio (L.R.) test for models with different covariates

across all components

restricted covariates unrestricted covariates L.R. p-value

Duration i all covariates 9502 < 0.01

Frequency
i and j i, j and δ 2974 < 0.01

i, j and δ all covariates 6528 < 0.01

Severity
i and j i, j and δ 3829 < 0.01

i, j and δ all covariates 15, 229 < 0.01

The structure of our model also allows us to perform a residual analysis based
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on cells like in a run-off triangle. We drew inspiration from the residual analysis

performed by Avanzi, et al. (2020) for their suggested collective model. Thus, we

calculate residuals as ratios of observed values to the fitted values of cumulative

triangles, and then we obtained heat maps based on these residuals. For our indi-

vidual model, it is worth noting that the fitted cumulative exposure was obtained

through simulation of the duration component while the fitted cumulative number

of payments and the fitted cumulative cost were directly obtained from the ex-

pected value of each observation. Figure 1.12 contains the heat maps for all three

components, while Figure 1.13 contains the heat map for the collective Gamma

model. Comparatively, the severity component provides better results than the

Gamma model for the first three development years, and overall seems to provide

a better fit in spite of the worst results observed at the last two development years.

Regarding the heat map of the duration component, accident years 2 and 5 have

worst values than years 1, 3, 4 and 5 but, overall no extreme value is observed.

As for the heat map of the frequency component, residuals are more variable than

for the other components but overall the fitted values are close the observed ones.

Again, taking inspiration from Avanzi, et al. (2020), we also plot residuals in terms

of accident years, development years and calendar years. This time residuals are

calculated as difference between the sum of the observed values and the sum

of fitted values for all cells in that year, divided by the sum of fitted values.

Figures 1.14, 1.15 and 1.16 plot the residuals of each component. Residuals are

close to 0 for all components and all type of years indicating that the goodness-

of-fit is overall reasonable.
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Figure 1.12 Heat maps of ratios of observed cumulative values to fitted cu-

mulative values for the three component model (in order, from up to down, the

exposure, the number of payments and the cost)
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Figure 1.13 Heat maps of ratios of observed values to fitted values for the gamma

collective model

Figure 1.14 Plot of residuals of the cumulative exposure by accident, develop-

ment and calendar year
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Figure 1.15 Plot of residuals of the cumulative number of payments by accident,

development and calendar year

Figure 1.16 Plot of residuals of the cumulative cost by accident, development

and calendar year
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1.4.6 Outstanding reserve discussion

After the models were fitted, we proceeded to simulate the distribution of the

loss reserves. For the 3-component model, this was accomplished by performing

10, 000 times the simulation procedure suggested in Section 1.3. As for the col-

lective models and the Poisson Process model, more details about the simulation

procedures are given by England & Verrall (2002), Wüthrich & Merz (2008) and

Antonio & Plat (2014). For all the fitted models we obtained the distribution of

the loss reserves up to the latest available date (December 31, 2017). These results

are depicted in Figure 1.17 and summarized in Table 1.9. Then, we obtained these

results including the missing data (from January 1, 2018 to December 31, 2019).

These results are depicted in Figure 1.18 and summarized in Table 1.10.

Tableau 1.9: Results of the total reserve predictions until December 31, 2017

Mean SD 95% VaR 99% VaR

Mack ODP (Ia) 145,814,301 13,959,646 170,304,205 181,728,307

Mack Gamma (Ib) 146,025,032 13,919,184 169,926,224 180,890,690

GLM Gamma (IIb) 143,604,545 7,969,902 156,696,768 162,534,340

GLM ODP (IIa) 145,171,862 6,565,836 156,112,224 161,073,565

3-component RBNS 145,459,940 3,636,952 151,546,231 154,130,897

3-component IBNR 4,160,285 488,219 5,000,940 5,386,198

3-component (III) 149,620,225 3,678,054 155,830,382 158,291,786

Poisson Process RBNS 119,191,395 2,327,020 123,048,173 124,184,053

Poisson Process IBNR 3,022,166 228,903 3,416,934 3,554,742

Poisson Process (IV) 122,213,562 2,337,626 126,108,740 127,207,580

Observed 147,703,974
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Figure 1.17 Total reserve distributions until December 31, 2017

Figure 1.18 Total reserve distributions until December 31, 2019
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Tableau 1.10: Results of the total reserve predictions until December 31, 2019

Mean SD 95% VaR 99% VaR

Mack ODP (Ia) 191,065,473 20,320,106 226,475,099 243,132,282

Mack Gamma (Ib) 190,766,649 20,350,205 226,012,897 244,050,402

GLM Gamma (IIb) 187,544,147 8,768,697 202,128,221 208,508,242

GLM ODP (IIa) 189,778,665 7,523,786 202,619,428 207,853,996

3-component RBNS 189,110,346 5,159,041 197,909,943 201,649,986

3-component IBNR 5,875,177 805,072 7,246,948 7,958,991

3-component (III) 194,985,523 5,233,211 203,929,434 207,493,721

Poisson Process RBNS 142,021,892 3,042,431 146,761,201 148,838,470

Poisson Process IBNR 4,949,629 599,795 5,993,530 6,507,927

Poisson Process (IV) 146,971,521 3,107,811 152,038,504 154,025,239

Observed* 188,520,892

*includes predicted values
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Let us analyze the obtained results. For the results until December 31, 2017, we

can observe that the 95 % and the 99 % Values-at-Risk of all models is higher

than the observed value, except for the Poisson Process micro-level model. The

underestimation was foreseen in Section 1.4.4, where we noticed discrepancy bet-

ween the observed and fitted payment intensities of the model. The rest of the

models provide acceptable results, however the three-component model has the

lowest standard-deviation and the lowest 95 % and 99 % Values-at-Risk across all

models. This in turn suggests that it outperforms its counterparts by providing

a narrower distribution all while providing the insurer with a loss reserve that

covers the observed outstanding payments.

Finally, for the loss reserves until December 31, 2019, the results are narrower.

Even though the three-component model still has the lowest standard-deviation

among all models, the 95 % and the 99 % Values-at-Risk of the Gamma and

the Over-dispersed Poisson have similar results. However, despite how close the

Values-st-Risk are, the three-component model has the additional benefit of provi-

ding insurers with the loss reserve distribution of individual claims. Additionally,

we can yet again notice that the Poisson Process micro-level model provides un-

derestimated results, and thus is outclassed by our model for this particular data

set.

Claims in a portfolio have different risk levels, which can be more easily identified

by using their available information. Our 3-component model has the advantage

of using this data in the form of explanatory variables to predict outstanding pay-

ments for each claim individually, instead of predicting the total reserve directly,

as it is done for collective models. Moreover, through the simulation procedure

described in Section 1.3 it is possible to estimate the distribution of each indivi-

dual claim at the end of each development year. It is worth noting, however, that

this type of analysis is not geared towards obtaining individual reserves with high
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accuracy, but rather to identify potentially riskier claims.

As an example, we chose four claims from our data set with different characteristics

and through 100, 000 simulations we estimated the distribution of the cumulative

payments. These values are summarized in Table 1.11.

Tableau 1.11: Outstanding cumulative payments of four claims at the end of

each development year (j)

Claim j Mean SD 75% VaR 95% VaR 99% VaR Observed

1

2 23,108 33,863 32,512 91,900 155,409 53,676

3 35,415 51,086 49,737 138,745 232,676 93,288

4 42,023 62,375 57,621 168,511 288,355 n/a

2

2 78,346 96,769 112,934 272,974 432,691 34,184

3 141,807 161,049 204,967 459,337 720,945 365,183

4 194,478 217,788 285,711 631,308 959,678 n/a

3

1 6,949 9,411 9,320 25,817 44,102 42,580

2 10,108 15,819 12,295 41,674 75,956 68,713

3 11,466 20,401 12,677 48,744 101,116 n/a

4 11,964 22,567 12,713 50,763 113,601 n/a

4

1 6,527 9,375 8,458 25,076 44,293 7,317

2 9,668 15,556 11,457 41,169 74,348 13,181

3 11,051 20,003 11,876 48,416 99,160 n/a

4 11,534 21,979 11,916 50,452 111,078 n/a

We can see that all the observed values are situated under the 99 % VaR, thus the

predictions provide high enough values to meet the required loss reserves under

this risk measure. Further, claim 1 and 2 represent higher risks than claim 3 and

4 because the mean, standard deviations, and VaRs have larger values. Therefore,
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the chosen covariates have an important impact on the prediction of outstanding

payments, because the distribution of cumulative outstanding payments changes

based on these values. Also, we see how an individual model that uses individual

information, such as the one presented in this paper, can provide the insurer with

some insight regarding the risk associated with claims. This information could be

useful in the pricing process or to enable better reinsurance choices, for example.

1.5 Conclusion

Compared with macro-level models, micro-level models are capable of handling

individual covariate information much easily. However, in spite of all their short-

comings, collective type models are still very popular in the industry due to their

simplicity and easy to understand structure. In this paper, we suggested a model

that can be interpreted in both a macro and micro level structure, while also being

able to handle individual claim information. Furthermore, we derived frequency-

severity structure with exposure, which is fairly similar to the one used by Property

& Causalty actuaries for price-making predictions, making it even more accessible

to the general public. We also put forth a fully parametric approach and proposed

some models that can be considered across all components in our real data set

analysis.

We managed to show that covariate information is significant in the fitting process

across all components and, we even showed that utilizing this information allows

insurers to make a more precise prediction of the total reserve compared with

conventional models. This indicates that utilizing micro-level information can im-

prove loss reserve predictions, thus making our model appealing to insurers that

have access to precise information regarding their claims.

Moreover, this three-component structure opens the door for further research to-
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pics, albeit at the cost of interpretability. One may consider the dependence bet-

ween the frequency and severity as the outstanding claim develops or, even for-

going the piece-wise development triangle structure entirely to predict the total

number of payments of each claim directly using more complex offset methods for

the exposure, such as splines.

1.6 Appendix : Database examples

Table 1.12 contains the occurrence
(
T

(o)
ℓ

)
, the reporting

(
T

(r)
ℓ

)
, and the closure(

T
(c)
ℓ

)
delays. Notice that, for open claims, the closure delay

(
T

(c)
ℓ

)
is censored by

the valuation date
(
T

(e)
ℓ

)
. We also have covariate information about the claims,

such as the region.

Tableau 1.12: Example of a duration training set

ℓ i . . . Region T
(o)
ℓ T

(r)
ℓ T

(e)
ℓ T

(c)
ℓ Status

1 3 . . . Atlantic 10/365 20/365 - 800/365 Closed

2 4 . . . Ontario 200/365 35/365 - 365/365 Closed

3 5 . . . West 100/365 30/365 235/365 - Open

Table 1.13 contains the number of payments (Nℓ,k) based on the development

year (j) and the time interval vector (δ= {0, 1, 2, 3, 4, 5}). It also contains their

respective exposures Eℓ,k and the same covariate information from Table 1.12.

Note that we can use the intervals from δ as additional categorical covariates.

Table 1.14 contains the cost of single payments (Xℓ,k,m) and their respective cova-

riate information. Here again, intervals from δ can be used as additional covariates.
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Tableau 1.13: Example of a frequency training set (with δ= {0, 1, 2, 3, 4, 5})

ℓ j δ k i Gender . . . T
(o)
ℓ T

(r)
ℓ Nℓ,k Eℓ,k

1 0 (0, 1] 1 3 Female . . . 10/365 20/365 1 335/365

1 1 (0, 1] 2 3 Female . . . 10/365 20/365 1 35/365

1 1 (1, 2] 3 3 Female . . . 10/365 20/365 2 330/365

1 2 (1, 2] 4 3 Female . . . 10/365 20/365 0 35/365

1 2 (2, 3] 5 3 Female . . . 10/365 20/365 0 65/365

2 0 (0, 1] 1 4 Male . . . 200/365 35/365 0 130/365

2 1 (0, 1] 2 4 Male . . . 200/365 35/365 2 235/365

3 0 (0, 1] 1 5 Female . . . 100/365 30/365 1 235/365

Tableau 1.14: Example of a severity training set (with δ= {0, 1, 2, 3, 4, 5})

ℓ j δ k m i Gender . . . T
(r)
ℓ Xℓ,k,m

1 0 (0, 1] 1 1 3 Female . . . 20/365 $100

1 1 (0, 1] 2 1 3 Female . . . 20/365 $200

1 1 (1, 2] 3 1 3 Female . . . 20/365 $550

1 1 (1, 2] 3 2 3 Female . . . 20/365 $900

2 1 (0, 1] 2 1 4 Male . . . 35/365 $200

2 1 (0, 1] 2 2 4 Male . . . 35/365 $300

3 0 (0, 1] 1 1 5 Female . . . 30/365 $100





CHAPITRE II

MODÉLISATION DE LA FRÉQUENCE DES PAIEMENTS DES RÉSERVES

EN FONCTION D’UN SCORE DYNAMIQUE DE SINISTRE

2.1 Introduction

To accurately predict the cost of future liabilities for open claims, practitioners and

researchers have suggested several models over the years. Over time, these models

have changed a lot due to a significant increase in computing capacity and the

quantity (and quality) of available data. While, in the past, models were always

part of a collective framework, i.e., built for a data set aggregated by occurrence

and development period (run-off triangle), today we see a wide selection of models

based on the granularity of the underlying data set, ranging from raw data (micro-

level) to aggregated data (macro-level). The actuarial literature on the subject has

grown considerably in recent years, and we do not wish to do a detailed review

here to avoid unnecessarily lengthening this paper. A review of the literature

associated with some of the most essential and well-known models, such as the

Chain-Ladder model (Mack (1999, 1993)), can be found in Wüthrich & Merz

(2008) and England & Verrall (2002). As for individual approaches, let us mention,

among others, the literature review in Blier-Wong et al. (2020) (section 4) and

Taylor (2019). The rapid development of research in the field, partially explained

by the increasing use of machine learning techniques, makes any literature review
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incomplete on the day of its publication.

In this paper, we made a proposition in line with parametric and semi-parametric

models. More specifically, we base our models on Position Dependent Marked-

Poisson Process (PDMPP) to predict the exact time of each of the events of a

claim, such as payments and settlements. One of the first papers using this type

of model was Haastrup & Arjas (1996) and was expanded, in 2014, by a more

practical implementation proposed by Antonio & Plat (2014), in which a more

evidence-based methodology was suggested for both IBNR and RBNS reserves

using a data set from an insurance company. Antonio et al. (2015) further deve-

loped this model type by including a multi-state approach that allowed the model

to transition from one state to another as the claim evolved. Other processes that

have been considered for the loss reserving literature include the Cox process ( in

Avanzi et al. (2021)) for which dependence was considered through common shock

variables and the Hawkes process with time-varying intensities ( see Maciak et al.

(2021)). In contrast to these propositions, other models have been suggested. For

example, let us mention Zhao et al. (2009), who have developed a semi-parametric

model for IBNR claims and later incorporated copulae into the model. Moreover,

Yanez & Pigeon (2021) introduced a more hierarchical structure, where the deve-

lopment of claims was divided into three components : duration of claims, payment

frequency, and severity. Then in 2022, another hierarchical approach was sugges-

ted in Okine et al. (2022), which included the dependency between payments

and settlement date. Finally, other authors have focused on the implementation

of continuous Chain-Ladder methods to micro-level reserving (see Hiabu et al.

(2016a), Hiabu et al. (2016b) and Hiabu (2017)).

Because of their granular structure, micro-level models can include more claim

information in the modeling process than their aggregated counterparts. This in-

formation takes the form of covariates of three types (see Taylor et al. (2008)) :
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static, time dynamic, and unpredictable time dynamic. Although time dynamic

covariates change as time passes, while static covariates remain fixed, both can be

predicted with certainty at any point in time. In contrast, unpredictable time dy-

namic covariates are, as the name suggests, unpredictable. Thus, both static and

time dynamic covariates can often be included in models more straightforwardly

than unpredictable time dynamic covariates. Despite the uncertainty associated

with the latter type of covariates, useful claim information can be extracted from

them. Specifically, when modeling RBNS claims, these covariates are abundant

because a portion of the claim development has already been observed. Further-

more, a few models that can handle this information have been implemented,

namely Antonio et al. (2015), which considered including interchangeable states

based on payment counts, and Pigeon et al. (2014), which made use of incurred

losses. This paper proposes a new method that can handle an unpredictable time

dynamic covariate in a discrete-time interval framework.

For each open claim in the portfolio, we suggest using observed payments to

improve the prediction of future payments. Past payments are summarized using

a score system updated at the end of a given discrete time interval with the newly

available information. One could implement our discrete-time scoring model into

any individual model that can predict payment counts at discrete intervals and

allows for including covariates. This latter element is important because the claim

score will be considered a covariate. In particular, the frequency component in

Yanez & Pigeon (2021) has both characteristics making it a candidate for the

inclusion of this more intricate type of covariate.

Calculating a score based on previous observations is not new to the actuarial

literature. The model in this paper draws inspiration from the bonus-malus scoring

system (BMS) developed for claim counts. This method was developed in Boucher

& Inoussa (2014), where the authors summarized previous claim counts into
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a single numerical claim score. This model was further developed in Boucher

& Pigeon (2019), where the claim score included linear effects. More recently,

Verschuren (2021) proposed a version of the model that incorporates the claim

development of different product lines into the score system. Finally, in Boucher

(2023), a more compact and straightforward scoring system called a Kappa-N

model was implemented. In this work, we take inspiration from all these sources

to introduce a similar dynamic claim score system into the micro-level reserving

literature.

The method we suggest offers a solution to including past claim information in the

modeling process, fully taking advantage of a discrete interval structure. Moreover,

we suggest distinguishing between different types of payments in the modeling

process. This distinction is particularly relevant in loss reserving because payments

occur for various reasons, such as medical bills and legal fees, and their distribution

could vary. We illustrate this fact in our numerical analysis. To summarize, this

paper has the following objectives :

— to implement a dynamic claim scoring system into a discrete interval pay-

ment loss reserve model and to weight the impact of such covariates in the

fitting process ;

— to develop a model that considers different types of payments and analyzes

their distribution ;

— to outperform models that only use static and time-dynamic covariates.

This paper is structured as follows. In Section 2.2, we look at the general frame-

work of the model. Section 2.2.6 discusses the estimation procedure followed by

Section 2.3, where we describe the simulation procedure of payment counts. Sec-

tion 2.4 describes the data set used, followed by the numerical results of our model

and other comparative models. Finally, Section 2.5 contains concluding remarks
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and mentions other topics that could be explored based on our findings.

2.2 Statistical framework

In this section, we specify the statistical framework of our approach. We define

the notation we use throughout the paper and present the construction of the

dynamic claim score.

2.2.1 Introductory notation

We show the typical development of a P&C claim in Figure 2.1. First, accident i

occurs, and we identify t
(o)
i , the occurrence delay, i.e., the delay between the be-

ginning of the accident year and the exact accident date. An additional delay

between the accident date and the reporting date is denoted by t
(r)
i . After the

accident has been reported, several payments may be made – illustrated by dots

in Figure 2.1 – before the claim is closed after a final delay t
(c)
i . At the valuation

date, claims can be split into two categories depending on their development. If

the claim has not yet been reported, we consider it Incurred But Not Reported,

or IBNR, and if it has been reported, we consider it Reported But Not Settled,

or RBNS. Furthermore, for RBNS claims, we can compute t(e)i , the delay between

the reporting date and the valuation date.

In a loss-reserving context, we first must distinguish the status of each of the claims

in the portfolio. Let I = I(C) ∪ I(O) be the set containing the claims available at

the valuation date, where I(C) and I(O) are the subsets containing, respectively,

the closed and the open (RBNS) claims. Let I∗ be the set containing unreported

claims (IBNR), which are unknown at the valuation date.

For each claim, i ∈ I, the observation period, i.e., the period between the reporting
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Figure 2.1 Development of two claims

date and the closure date (if the claim is closed) or the valuation date (if the

claim is open), is denoted by (0; τi], where τi = min{t(c)i , t
(e)
i }. Afterwards, the

observation period, (0; τi], i ∈ I, can be divided into time intervals based on

vector d = [d0, d1, . . . , dK ], where dk < dk+1, d0 = 0 and dK > maxi{τi}. For the

sake of simplicity, we can consider an annual framework, i.e., d = [0, 1, 2, . . . ], but

one could also consider a monthly or seasonal division. We suggest basing this

decision on the company’s expertise or a cross-validation technique.

Furthermore, let Ni,k be the number of payments for claim i, i ∈ I, taking place

over the interval (dk, dk+1], and we define Ni = [Ni,0, Ni,1, . . . , Ni,K−1]. To each

Ni,k, we associate an exposure measure indicating how long claim i has been open

over interval (dk, dk+1]. Thus, let Ei,k be the exposure measure of the claim i over

the interval (dk, dk+1] :

Ei,k = max{min{τi, dk+1} − dk, 0},

and Ei = [Ei,0, Ei,1, . . . , Ei,K−1].
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At the reporting date, micro-level information from a claim becomes available in

the form of a vector Xi = [Xi,1, Xi,2, . . . , Xi,g] of size g containing available static

covariates, such as the region where the accident occurred. Note that this vector

is not available for unreported claims (IBNR).

We can also identify a vector Zi,k = [Zi,k,1, Zi,k,2, . . . , Zi,k,h] of size h containing

time dynamic covariates available at each interval (dk, dk+1]. In particular, this

vector contains at least one covariate indicating the interval k with which Ni,k is

associated. Thus, this vector exists for reported claimsand those that have not yet

been reported (IBNR). For the latter, we define Z∗
i,k = [dk].

2.2.2 A priori distribution of the number of payments

RBNS claims

For open claims, i ∈ I(O), we aim to predict the number of payments Ni,k, over the

unobserved intervals after the valuation date t(e)i . We use the a priori information

available at the reporting date (vectors Xi and Zi,k), as well as the exposure Ei,k

before t
(e)
i . Commonly used approaches in a non-life insurance context can be

considered, such as generalized linear models (GLM). The expected value of Ni,k,

conditionally to Xi, Zi,k and Ei,k, is given by

µi,k = E [Ni,k|Xi,Zi,k, Ei,k] = (Ei,k) g
−1 (Xiβ

′ + Zi,kθ
′) ,

where g−1() is the inverse of the link function, and β and θ are, respectively, the

parameter vectors of static and time dynamic covariates.
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IBNR claims

For claims that have occurred but have not been reported, i ∈ I∗, we again aim to

predict the number of payments Ni,k ; however, given that the report date occurs

after the valuation date, predictions must be made for all the intervals. Instead

of having access to the information contained in the vectors Xi and Zi,k, we only

have the information contained in Z∗
i,k. Thus, the expected value of Ni,k, knowing

Z∗
i,k and Ei,k, is given by,

µ∗
i,k = E

[
Ni,k|Z∗

i,k, Ei,k

]
= (Ei,k) g

−1
(
Z∗

i,k(θ
∗)′
)
,

where g−1() is defined as previously, and θ∗ is the parameter vector based on time

intervals (dk, dk+1].

2.2.3 A posteriori distribution of the number of payments

We suggested a method to model frequency payments at different intervals based

on information from vectors Xi and Zi,k, that respectively include static and time

dynamic covariates. We can now focus on using information from time dynamics

through various measures. Let ϵi,k and ηi,k be, respectively, the cumulative number

of payments and exposure of claim i over the interval (d0, dk] :

ϵi,k =
k−1∑
j=0

Ei,j, ηi,k =
k−1∑
j=0

Ni,j.

We include the previously observed frequency in the mean parameter of claim i

over interval (dk, dk+1] in the following way :
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µi,k = E [Ni,k|Xi,Zi,k,Hi,k] = (Ei,k) g
−1

(
Xiβ

′ + Zi,kθ
′ + γ1

(
ηi,k
ϵi,k

))
,

where Hi,k is the known development of claim i at time dk, and γ1 is the parameter

associated with the new component.

Then, we want to adjust the expected value of the frequency by incorporating a

covariate that identifies payment-free periods to distinguish between claims that

have been open for a longer or shorter period. Thus, as a claim develops, the

frequency of payment-free periods may increase or reduce the expected value. This

approach is inspired by the Kappa-N structure suggested by Boucher (2023). Let

κi,k represent the total payment-free exposure observed over interval (d0, dk], such

that,

κi,k =
k−1∑
j=0

Ei,j1 (Ni,j = 0) ,

where 1() is the indicator function.

We can rewrite the mean parameter by incorporating both elements into a single
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claim score :

µi,k = E [Ni,k|Xi,Zi,k,Hi,k]

= (Ei,k) g
−1

(
Xiβ

′ + Zi,kθ
′ + γ0(−κi,k) + γ1

(
ηi,k
ϵi,k

))
= (Ei,k) g

−1

(
Xiβ

′ + Zi,kθ
′ + γ0

(
−κi,k +

γ1
γ0

(
ηi,k
ϵi,k

)))

= (Ei,k) g
−1

Xiβ
′ + Zi,kθ

′ + γ0

(
−κi,k + ψ

(
ηi,k
ϵi,k

))
claim score ℓi,k


= (Ei,k) g

−1 (Xiβ
′ + Zi,kθ

′ + γ0ℓi,k) ,

where k > 0 and ψ is defined as the jump-parameter.

This structure summarizes past claim experience into a single claim score that will

be updated at the end of each interval. Then, the mean parameter can identify

claims with a higher chance of producing payments and riskier claims. Notice that

κi,k is multiplied by −1 to accommodate better the negative impact of no-payment

periods on the claim score.

Note that the mean parameter is unbounded. This situation can be an issue be-

cause upper mean parameter values can become excessively large as we include

past frequency in our calculations, and outliers are not uncommon. Indeed, pay-

ment counts vary depending on how data is collected in loss reserving. Admi-

nistrative reasons could cause a particular Cash flow to be divided into various

payments. This situation may introduce more outliers. An actuary may regroup

certain payments to consider this problem and, later, accommodate possible out-

liers in terms of severity through extreme value models such as Laudagé et al.

(2019). However, outliers could still be present in the data set after regrouping

payments. One may even consider situations with insufficient information to jus-
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tify restructuring the data set.

A solution to this problem is the inclusion of a maximum value for the claim score

( this method is consistent with the Bonus-Malus literature see Boucher (2023)).

The decreasing part of the measure, based on κi,k, is bounded by the maximal

duration of a claim and is less prone to excessively impacting the prediction of the

mean. Thus, including a minimal value for the mean parameter is less suitable.

Finally, when we look into new claims, no history has been previously observed,

and we cannot include the dynamic claim score measure. Thus, by setting the

initial value of the claim score to 0, all predictions of the mean parameter are based

only on the other covariates available at the report date. We suggest obtaining a

claim score such that :

ℓi,k =


min

{(
−κi,k + ψ

(
ηi,k
ϵi,k

))
, ℓmax

}
, for k = 1, 2, . . .

0, for k = 0.
(2.1)

One should note that the claim score for claim i is updated at the end of each

interval k based on information up to the previous interval k − 1. As such, it

is possible to identify which claims are more likely to produce payments derived

from past information summarized by the value of the claim score at any given

time. We could also expand upon the definition of the claim score by letting νi,k

be the sum of the previously observed frequencies such that :

νi,k =
k−1∑
j=0

Ni,j

Ei,j

,

and we can then reformulate the value of the risk measure :
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ℓi,k =

min {(−κi,k + ψνi,k) , ℓmax} , for k = 1, 2, . . .

0, for k = 0.
(2.2)

=


min

{
k−1∑
j=0

(
−Ei,j1 (Ni,j = 0) + ψ

(
Ni,j

Ei,j

))
, ℓmax

}
, for k = 1, 2, . . .

0, for k = 0.

Then we can obtain a recursive structure reminiscent of the Bonus-Malus structure

used for claim count modeling :

ℓi,k =


min

{(
ℓi,k−1 − Ei,j1 (Ni,j = 0) + ψ

(
Ni,j

Ei,j

))
, ℓmax

}
, for k = 1, 2, . . .

0, for k = 0.

(2.3)

In particular, model (2.3) has the added advantage of being able to compute the

value of any risk score ℓi,k just by knowing the value of the previous risk score ℓi,k−1

and the information from the current interval (dk−1, dk]. Hence, unlike previous

propositions (2.1 and 2.2), all information observed over the period (d0, dk−1] is

not mandatory to compute ℓi,k.

For the remaining part of this paper, we label these three propositions as models

(M1), (M2) and (M3), respectively, for models based on claim score definitions

(2.1), (2.2) and (2.3). Further considerations will be addressed in the next section

using (M1) as an example ; however, similar results can be obtained for models

(M2) and (M3).
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2.2.4 Payment categories and IBNR specifications for claim-score modelling

Payments can be divided into several categories, e.g., payments related to medical

costs or administrative costs. Suppose there are A different categories of payments.

Also, we want to incorporate past payment count information in the fitting process

from different payment categories as the claims develop using a claim score. For

a given payment category, we propose using a dynamic claim score model with

two parameters
(
ψ(a), ℓ

(a)
max

)
where the level of risk associated with the category

a, a = 1, . . . , A, at the beginning of the interval (dk, dk+1] is given by

ℓ
(a)
i,k =


min

{(
−κ(a)i,k + ψ(a)

(
η
(a)
i,k

ϵi,k

))
, ℓ(a)max

}
, for k = 1, 2, . . .

0, for k = 0,

where ψ(a) is the jump-parameter for category a, ℓ(a)max is the maximum claim score

for category a, and

ϵi,k =
k−1∑
j=0

Ei,j, η
(a)
i,k =

k−1∑
j=0

N
(a)
i,j , κ

(a)
i,k =

k−1∑
j=0

Ei,j1

(
N

(a)
i,j−1 = 0

)
.

Information from the claim scores of each category can then be incorporated into

the process. Let ℓi,k =
[
ℓ
(1)
i,k , ℓ

(2)
i,k , . . . , ℓ

(A)
i,k

]
be the vector containing the risk levels

associated with the different categories of payments. Then, for RBNS claims, we

can obtain the expected value of the number of payments from category a,

µ
(a)
i,k = E

[
N

(a)
i,k |Xi,Zi,k, Ei,k, ℓi,k

]
= (Ei,k) g

−1
(
X′

iβ
(a) + Z′

i,kθ
(a) + γ(a)ℓ

(a)
i,k

)
,
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and we obtain the expected value of the number of payments from category a for

IBNR claims :

µ
∗(a)
i,k = E

[
N

(a)
i,k |Z

∗
i,k, Ei,k, ℓ

∗
i,k

]
= (Ei,k) g

−1
(
Z∗′

i,kθ
∗(a) + γ∗(a)ℓ

∗(a)
i,k

)
.

We include the same restriction that we used in the RBNS claims by setting ℓ∗(a)max

as the maximal claim score and by including its respective jump-parameter ψ∗(a).

Notice that because the information from these types of claims is unknown, we

can only include covariate vector Z∗
i,k, in addition to the claim scores ℓ∗(a)i,k .

It is worth mentioning that unlike RBNS claims, where a portion of the develop-

ment is observed, which can then be computed into the claim scores up to the

valuation date, the IBNR claims are fully simulated from the occurrence date, up

to the closure date. Thus, no observed past information can be used to compute

the claim score of a given IBNR claim. In this sense, the dynamic claim score is

more relevant for RBNS claims because actual observed information is included

to predict future intervals.

2.2.5 Distribution of duration of claims

With pricing models, where BMS models are commonly used to predict claim

counts, the duration of contracts is known beforehand. However, when we seek to

predict outstanding payment counts in a loss reserve context, the entire duration

of open or unreported claims is unknown. Thus an additional model is required

to predict this value to obtain the exposure values after the valuation date. This

problem was fully addressed in Yanez & Pigeon (2021), where, for claim i, the

duration was divided into three parts modeled by three random variables :

— T
(o)
i for the occurrence delay ;
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— T
(r)
i for the reporting delay ; and

— T
(c)
i for the closure delay.

For RBNS claims, the report and occurrence date are known, and the information

contained in the covariate vectors Xi and Zi,k is also accessible. Hence, it is only

necessary to model the closure delay with the added advantage of having access

to micro-level information. In Yanez & Pigeon (2021), various distributions are

considered from the survival literature, such as the Weibull and the Gamma dis-

tribution. It is worth noting that the training set used contains right-censored

observations because of the valuation date. For more details, refer to the paper

mentioned above.

For IBNR claims, however, it is necessary to model all three parts of the du-

ration, and no individual information is available. In Yanez & Pigeon (2021),

the occurrence delay is addressed with methods that consider seasonal effects.

The reporting delay is based on the paper by Antonio & Plat (2014), where a

mixture of a Weibull distribution with degenerate components was considered to

accommodate the observations that only take a few days to complete. The closure

delay was addressed similarly to the RBNS claims without considering individual

information. Again, refer to Yanez & Pigeon (2021) for more details.

2.2.6 Parameter estimation

The a priori distribution parameters β(a), θ(a), and γ(a) for each type of payment

a = 1, . . . , A are estimated by maximizing the likelihood function given by

Λ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p(
N

(a)
i,k |Xi,Zi,k,Ei,k,ℓi,k

) (n(a)
i,k |xi, zi,k, ei,k, ℓi,k

)
,
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where p() is the probability mass function of the number of claim payments over

each interval given covariates, dynamic claim score, and exposure. We suggest

estimating jump-parameter ψ(a) and the maximal values of claim scores ℓ(a)max by

looking for the values that generate the best likelihood or the best predictions,

based on an out-of-sample analysis.

Because we distinguish between IBNR and RBNS reserves, it is also important

to comment on the parameter estimation procedure for IBNR claims. One can

follow the same procedure already described. However, instead of using micro-level

covariate vectors, i.e., Xi and Zi), we only have access to the covariate vector Z∗
i,k.

Thus, the likelihood function is given by

Λ∗ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p∗(
N

(a)
i,k |Z∗

i,k,Ei,k,ℓ
∗
i,k

) (n(a)
i,k |z

∗
i,k, ei,k, ℓ

∗
i,k

)
,

where p∗() is the probability mass function. The procedure for estimating jump-

parameters, ψ∗(a), and the maximum values of claim scores ℓ∗(a)max remains similar.

2.3 Simulation procedure

As stated previously, loss reserves are split into two types : IBNR and RBNS.

We have established different modeling procedures for both reserves and in this

section, we must establish the two different simulation procedures. We consider

model (M1) for these algorithms ; however, similar algorithms can be constructed

for models (M2) and (M3) by adapting the calculation of step 5c (2.5) for IBNR

claims and steps 3(a and b) (2.6 and 2.7) for RBNS claims. An example when

considering ψ = 2 is given by Figure 2.2.
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Figure 2.2 Dynamic claim score development (with ψ = 2)

2.3.1 IBNR simulation procedure

The exact number of IBNR claims and their information are unknown at the

valuation date. Before we define the simulation procedure for the number of pay-

ments, we must perform a few steps. As indicated in Subsection 2.2.5, for these

claims, all three delays must be simulated : the occurrence delay, t(o)i , the reporting

delay, t(r)i , and the closure delay, t(c)i (see Figure 2.1). In this particular context,

we consider u(r)i = t
(o)
i + t

(r)
i , the delay between the beginning of the accident year

and the report date of claim i. Moreover, because of the unobserved nature of

IBNR claims, we must also simulate how many have occurred per accident year.

Several propositions have been put forward to predict this value. For instance, in

Zhao et al. (2009), a semi-parametric methodology was suggested, whereas, in

Antonio & Plat (2014), an approach based on a Poisson process was considered.

In this paper, we will accommodate the thinned-Poisson model by Pigeon et al.

(2014) to our simulation procedure, although the aforementioned models can also

be considered.

Let m = 1, . . . ,M be the accident year of a given claim, where M is the total

number of years considered. We select an approach inspired by the work of Pigeon
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et al. (2014) and assign a distribution to I∗m, the number of IBNR claims for each

m accident year. By letting mi be the accident year of claim i, we have :

I∗m ∼ Poisson
(
θωmPr

[
U

(r)
i ≤M −mi + 1|mi = m

])
, (2.4)

where θωm is the occurrence measure, for which ωm is the total exposure registered

for period m. The occurrence measure is thinned by Pr
[
U

(r)
i ≤M −mi + 1

]
. This

value represents the probability that the report date occurs before the valuation

date. In order to obtain this value, we consider the distribution of the sum of the

occurrence delay T
(o)
i , that is, the delay between the beginning of the accident

date and the exact accident date, and the report delay T (r)
i , the delay between the

accident date and the report date. The distributions suggested for these two delays

are briefly detailed in section 2.2.5. We can now define the simulation procedure

for IBNR payments as follows :

— Step 1 : Obtain Ĩ∗ =
∑

m Ĩ
∗
m ,where Ĩ∗m is the simulated value of I∗m for

each occurrence period m (see Equation (2.4)).

— Step 2 : Obtain Ũ
(r)
i , the simulated value of

(
U

(r)
i |U (r)

i > M −mi + 1
)
,

the delay between the beginning of the occurrence period and the exact

reporting date of each simulated IBNR claim, where,

Pr
[
U

(r)
i ≤ u|U (r)

i > M −mi + 1
]
=

Pr
[
M −mi + 1 < U

(r)
i ≤ u

]
1− Pr

[
U

(r)
i ≤M −mi + 1

] ,
for i = 1, . . . , Ĩ∗.

— Step 3 : Obtain T̃
(c)
i , the simulated value of

(
T

(c)
i |mi

)
, the closure delay

of claim i, for i = 1, . . . , Ĩ∗.

— Step 4 : Calculate
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Ẽi,k =


di,k+1 − di,k, if di,k+1 ≤ T̃

(c)
i

T̃
(c)
i − di,k, if di,k+1 > T̃

(c)
i

0, elsewhere,

for k = 0, . . . , K − 1 and i = 1, . . . , Ĩ∗.

— Step 5 : For i = 1, . . . , Ĩ∗, go through each of the following sub-steps.

— Step 5a : Set k = 0, the first time interval for which the exposure

of claim i is positive and obtain its risk level by setting ℓ̃
∗(a)
i,0 = 0 for

a = 1, . . . , A.

— Step 5b : Obtain Ñ (a)
i,k , a simulated value of

(
N

(a)
i,k |Z∗

i,k, Ẽi,k, ℓ̃
∗
i,k

)
, for

a = 1, . . . , A.

— Step 5c : Calculate the next risk level,

ℓ̃
∗(a)
i,k+1 = min

{
−

k∑
j=1

Ẽi,j1

(
Ñ

(a)
i,j = 0

)
+ ψ∗(a)

∑k
j=1 Ñ

(a)
i,j∑k

m=1 Ẽi,j

, ℓ∗(a)max

}
(2.5)

for a = 1, . . . , A.

— Step 5d :

— If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the

exposure of claim i is positive. Then return to Step 5b.

— If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

RBNS simulation procedure

With RBNS claims, we have micro-level information in the form of vectors Xi

and Zi,k. Because we are dealing with open claims, a portion of the development

has already been observed. We can use the observed risk level contained in ℓi,k

to simulate the unobserved portion of the development. Furthermore, unlike with
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IBNR claims, the exact number of open claims, I(O), is known beforehand. With

these considerations can now describe the simulation procedure,

— Step 1a : Set i = 1, the first open claim.

— Step 1b : Obtain T̃ (c)
i , the simulated value of

(
T

(c)
i |Xi

)
, the closure delay

of open claim i,

— Step 1c : If T̃ (c)
i > t

(e)
i , set i = i+ 1, the next open claim.

— Step 1.d :

— If i ≤ I(O), go to Step 1.b.

— If i = I(O) + 1, continue.

— Step 2 : Calculate the exposures after the valuation date,

Ẽi,k =



di,k+1 − t
(e)
i , k ∈ {k : di,k ≤ t

(e)
i , di,k+1 ≤ T̃

(c)
i }

T̃
(c)
i − t

(e)
i , k ∈ {k : di,k ≤ t

(e)
i , di,k+1 > T̃

(c)
i }

di,k+1 − di,k, k ∈ {k : di,k > t
(e)
i , di,k+1 ≤ T̃

(c)
i }

T̃
(c)
i − di,k, k ∈ {k : di,k > t

(e)
i , di,k+1 > T̃

(c)
i }

0, elsewhere,

for k = 0, . . . , K − 1 and i ∈ I(O).

— Step 3 : For each i ∈ I(O), go through each of the following sub-steps.

— Step 3a : Set k = {k : di,k ≤ t
(e)
i < di,k+1}, the first time interval

that takes place after the evaluation date and obtain its risk level by

calculating, if di,k < t
(e)
i ,

ℓ̃
(a)
i,k = min

{
−

k∑
j=1

Ei,j1

(
N

(a)
i,j = 0

)
+ ψ(a)

∑k
j=1N

(a)
i,j∑k

j=1Ei,j

, ℓ(a)max

}
, (2.6)

while, setting, if di,k = t
(e)
i ,
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ℓ̃
(a)
i,k = ℓ

(a)
i,k ,

for a = 1, . . . , A. Note that if a portion of the interval has been observed,

i.e., when di,k < t
(e)
i , we use the first portion, (di,k, t

(e)
i ], to update the

risk level of the remainder of the interval. However, if no portion of

the interval has been observed, i.e., when di,k = t
(e)
i , then the latest

information available occurs at the previous time interval (di,k−1, di,k],

and the risk level is updated based on this information instead.

— Step 3b : Obtain Ñ
(a)
i,k , a simulated value of

(
N

(a)
i,k |Xi,Zi,k, Ẽi,k, ℓ̃i,k

)
,

for a = 1, . . . , A.

— Step 3c : Calculate the next risk level,

ℓ̃
(a)
i,k+1 = min

{
−

k∑
j=1

Ẽi,j1

(
Ñ

(a)
i,j = 0

)
+ ψ(a)

∑k
j=1 Ñ

(a)
i,j∑k

j=1 Ẽi,j

, ℓ(a)max

}
(2.7)

for a = 1, . . . , A.

— Step 3d :

— If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the

exposure of claim i is positive. Then return to Step 3b.

— If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

2.4 Numerical results

2.4.1 Data Set

We consider a data set from a Canadian insurance company for our numerical

analysis. The data set contains information from 57,593 claims about Accident

Benefits (AB) coverage, i.e., no-fault benefits for accidents where the driver, or
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a third party, was injured or killed in a car accident. Micro-level information is

incorporated in the modeling process as categorical static covariates, summarized

in Table 2.1. However, some of the covariates contain missing values (NA). We can

keep these observations in the process by creating a "missing value" category for

each of the covariates. We decided not to remove observations with one or more

missing values, as this would have deprived us of much information.

The claims considered in our analysis have occurrence dates from 2011 to 2015,

and we have information regarding their development until December 31, 2017. In

order to evaluate the performance of our model, we chose to set the valuation date

to December 31, 2015, splitting the data set into a training and an evaluation set.

Payments before the valuation date are used to fit the models, while payments

until December 2017 are used for validation.At the valuation date, there were

48,855 closed claims, 7,872 open claims, and 866 unreported claims in our portfolio.

Tableau 2.1: Description of covariates

Covariate Label Number of levels

Gender Gender of the injured/killed 3

Region Geographical region 3

Type of loss Kind of AB claim 5

Vehicle age Age of the vehicle 6

Injured age Age of the injured/killed 7

Reporting delay Delay calculated in days 7

Initial reserve Reserve at report date 5

Diving more deeply into the number of payments from the data set, which is the

focus of this paper, we group payments into three categories :

1. Medical : all medical payments ;
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2. Disability : recurrent payments such as Disability Income and Caregiver

Disability Income ; and

3. Expenses : all other types of expenses.

We chose these groups based on the nature of the payments, as previously des-

cribed, and their empirical distribution. In Table 2.2, we present some descriptive

statistics of the claim frequency for each category in the training set, such as the

Value-at-Risk, or VaR.

Tableau 2.2: Claim frequency descriptive statistics for each category

Mean Std. dev. 95% VaR 99% VaR

Medical 3.44 9.86 13.70 41.00

Disability 1.01 5.79 4.00 27.00

Expense 1.11 3.60 7.00 17.00

All 5.57 16.81 24.00 74.00

Finally, we make some simplifying assumptions about the possible dependency

in the data set. First, in some situations, a casualty may trigger coverages from

different claims, and we acknowledge that this situation can cause dependency

between these claims. However, we will not address this situation in this study

because the proposition made in this paper is more geared towards tackling the

problem of including past information from the claims themselves rather than in-

formation from other dependent claims. Consequently, we assumed independence

between those claims. Second, we do not consider the possible dependency between

different types of payments from the same claim. This is a more complex issue

that requires complete analysis and allows for innovative methods. We postpone

this analysis to a future work where we can better deal with this point.
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2.4.2 Fitting the models

This subsection describes the models we considered in our numerical analysisand

the choices made regarding estimating parameters and distributions. Each step’s

choices and thought process are based on Section 2.2.6. As previously stated, two

models are required : one for IBNR claims and one for RBNS claims. We tho-

roughly describe the procedure for RBNS claims and make some remarks concer-

ning the procedure for IBNR claims.

First, we consider a time division vector with an even yearly division between each

period : d = {0, 1, 2, 3, 4, 5}. We chose this division because it is the easiest to

interpret since many time divisions in the reserving literature are done year-wise,

such as the development periods in a loss triangle. Although, as mentioned before,

this model does allow for other time divisions. Second, we select the Poisson and

Negative Binomial distributions for our frequency models.

The Negative Binomial (type II) can be described by its mean and variance :

(
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

)
∼ Neg Bin II

(
µ
(a)
i,k , σ

)
, if Ei,k > 0, for i ∈ I,

where µ(a)
i,k and σ are such that,

E
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k ,

Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k (σ + 1).

Note that there is another version of the Negative Binomial distribution (type I)



83

that will not be considered in this numerical analysis 1

Finally, for our numerical analysis, we estimate parameters β(a), θ(a), θ∗(a), ψ(a),

ψ∗(a), ℓ(a)max, and ℓ
∗(a)
max by maximizing the likelihood function for each distribution

(Poisson and Negative Binomial), each type of payment (medical, disability and,

expenses) and each method to obtain a claim score (M1, M2 and M3). A good-

ness of fit analysis is performed for the models considered in the next section.

2.4.3 Goodness-of-fit analysis

In order to streamline the impact of a claim score in the modeling process, we

begin by selecting the best method for computing the claim score among methods

M1, M2, and M3. This selection was achieved by comparing the Akaike informa-

tion criterion (AIC) and the Bayesian (or Schwarz) information criterion (BIC)

between these models. Table 2.3 and Table 2.4 contain these results, respectively,

for RBNS and IBNR claims.Furthermore, in order to take into account the extra

information added by using previous observations, the AIC and BIC are corrected

by artificially increasing the number of parameters in the formulae. The increase

is based on the maximal number of payments observed in a period, so each pay-

ment count observed in the data set is considered a covariate category. Thus, the

number of parameters was increased for medical, disability, and expense payments

by 208, 107, and 59. In these tables, we notice that models M1 have consistently

the lowest value for both criteria. Henceforth, since this particular data set model

M1 seems to be the most appropriate, future numerical analysis will be done

only for this particular model (estimated values of the parameters are available in

Appendix 2.6).

1. For this distribution the variance is Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k +

(
µ
(a)
i,k

)2
σ.
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Tableau 2.3: Likelihood Information Criteria for RBNS models M1,M2 and

M3

AIC BIC

Dist. Payment M1 M2 M3 M1 M2 M3

NB

Medical 232,720 232,857 232,752 233,085 233,222 233,117

Disability 81,099 81,379 81,233 81,464 81,745 81,597

Expenses 122,865 122,920 122,888 123,230 123,285 123,252

POI

Medical 331,810 332,793 332,342 332,165 333,148 332,698

Disability 203,585 205,819 204,226 203,940 206,174 204,581

Expenses 160,369 160,608 160,505 160,725 160,963 160,861

Our main goal in this subsection is to assess the performance of including the claim

score ℓi,k into frequency models in terms of goodness-of-fit. Hence, we suggest

comparing the AIC and BIC of two versions of our models. The first version

will include ℓi,k as a covariate, and the second version will not.We compare the

results for RBNS, IBNR, and a covariate-free model). We present these results in

Table 2.5, Table 2.6 and Table 2.7. As shown in these tables, including the claim

scores provides better BIC and AIC across all models and all types of payments.

With the same goal in mind, we perform a likelihood ratio test between the models

that use it and those that do not. We present the results in Table 2.8, where the

claim score for the covariate-free model is given by ℓ⊗i,k. Given low p-values, we can

confidently reject all restricted models, i.e., models that do not include a claim

score.

Then, we perform t-tests specifically for the parameter of the dynamic claim score,

γ(a), for each RBNS model. The results are in Table 2.9. Again, with very low p-

values, we can determine that the claim score is significant as a covariate.
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Tableau 2.4: Likelihood Information Criteria for IBNR models M1,M2 and M3

AIC BIC

Dist. Payment M1 M2 M3 M1 M2 M3

NB

Medical 238,606 238,774 238,613 238,707 238,875 238,713

Disability 82,481 82,951 82,698 82,581 83,056 82,798

Expenses 130,755 131,289 130,954 130,855 131,390 131,054

POI

Medical 348,062 349,250 348,669 348,153 349,341 348,760

Disability 217,424 221,672 219,138 217,515 221,764 219,229

Expenses 185,596 187,235 186,242 185,687 187,326 186,333

Having assessed the increase in terms of goodness of fit, through the AIC, the

BIC, the likelihood ratio test, and the Student t-test, we can also observe how

changes in the dynamic claim score affect the mean of payment counts by plotting

its relativity, i.e.,

exp
(
γ(a)ℓ

)
, for − 5 < ℓ ≤ ℓ(a)max,

for the suggested distributions. Where the claim score is bounded by its maximal

value (ℓ(a)max), and the value given by the maximal number of consecutive payment-

free periods (i.e., κi,6 = 5, leading to ℓi,6 = −5) . Figures 2.3, 2.4 and 2.5 depict

these results for RBNS payments. We notice that the dynamic claim scoreimpacts

the mean parameter, particularly in the extremes. For instance, the lowest increase

of the mean parameter for a claim that has reached its maximum score compara-

tively to a claim with no history, i.e., having a score equal to zero, is 3.44 times as

high (by considering the Negative Binomial for expense payments). In contrast,

the highest comparative increase is 12.79 times as high (by considering the Poisson

for disability payments).
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Figure 2.3 Relativity of the dynamic risk score to the mean of medical RBNS

payments

Figure 2.4 Relativity of the dynamic risk score to the mean of disability RBNS

payments
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Tableau 2.5: AIC and BIC of RBNS models with and without the claim score

AIC BIC

Model Payment type with without with without

NB

Medical 233,136 236,794 235,397 237,149

Disability 81,313 84,576 82,653 84,931

Expenses 122,981 123,964 123,875 124,320

POI

Medical 332,226 358,342 334,477 358,688

Disability 203,799 240,730 205,129 241,077

Expenses 160,485 164,481 161,370 164,828

2.4.4 Simulation analysis

We continue our numerical analysis by simulating the number of outstanding pay-

ments for each claim. By repeating algorithms described in Section 2.3 10 000 times

we obtain predicted values for the frequency of payments for all our models. We

summarize our IBNR, RBNS, and total reserves results in Tables 2.10 and 2.11.

These tables contain results for models that use the dynamic claim score and those

that do not.

Regarding the exposure, we see it is very well adjusted to the observed value of

the RBNS claims : both the mean and the values-at-risk are close. Furthermore,

when considering the total reserve, we include the IBNR claims, which reduces

the accuracy of the exposure predictions, where 99% VaR is slightly under the

observed value. We can infer that the model is less accurate when handling IBNR

claims. The lack of information from IBNR claims regarding covariates and history

can explain these results.

Next, we focus on frequency models. For these results, we want to compare the
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Tableau 2.6: AIC and BIC of IBNR models with and without the claim score

AIC BIC

Model Payment type with without with without

NB

Medical 239,022 243,361 241,019 243,453

Disability 82,695 86,557 83,770 86,648

Expenses 130,871 132,828 131,500 132,920

POI

Medical 348,478 380,520 350,465 380,602

Disability 217,638 263,932 218,704 264,014

Expenses 185,712 193,395 186,332 193,477

results between frequency models that include the dynamic claim score to ones

that do not. This analysis is done for the total number of payments and each

type of payment. We will begin by looking at the results from medical payments,

which represent most of the total. For these payments, including the claim score

significantly brings the 95% and 99% VaR and mean values closer to the observed

value, indicating a significant improvement. Next, in terms of RBNS disability

payments, the inclusion of the claim score in the Negative Binomial model al-

lows for the 95% and 99% VaR to be over the observed value.This result only

occurs when the claim score is included. However, we do not see this improve-

ment when considering the Poisson distribution. Finally, regarding the expense

payments, both models without and with claim scores provide 95% and 99% VaR

over the observed value ; however, the latter models tend to be more conservative

with higher results mean and VaR. Overall, all types of payments are not impac-

ted similarly, but their combined value is greatly improved when the claim score

is included ; without it, the Values-at-Risk considerably fall below the observed

value.

After analyzing the frequency models, we can compare the best-performing model
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Tableau 2.7: AIC and BIC of no covariate models with and without the claim

score

AIC BIC

Model Payment type with without with without

NB

Medical 240,854 244,112 242,778 244,130

Disability 82,759 86,962 83,861 86,980

Expenses 131,286 133,477 131,842 133,496

POI

Medical 356,122 381,063 358,037 381,073

Disability 217,913 269,424 218,907 269,433

Expenses 186,470 194,055 187,017 194,064

(the one that uses the Negative Binomial distribution) to other models in the lite-

rature. However, because most models directly predict the total cost of payments

rather than payment counts, we choose to compare this value instead. Thus, we

must add a severity model to our dynamic score frequency model. We test popular

Gamma, log-Normal, and inverse-normal distributions. We find that fitting each

payment type separately and including the claim score as a covariate is satisfac-

tory, and the Gamma distribution was chosen for this numerical analysis. As for

the comparative distributions, we chose two collective generalized linear models

based on the quasi-Poisson distribution and the Gamma distribution (for more

details, see Wüthrich & Merz (2008)). We also consider the individual model

by Yanez & Pigeon (2021), which serves as a comparative baseline for including

dynamic claim scores. Thus, regarding information used by the models, the GLM

models only use the accident year and the development year from a loss triangle.

The 3-component model incorporates covariate information from the claims (see

Table 2.1), while the Dynamic Score model uses the same information as the 3-

component model in addition to a dynamic claim score. Table 2.12 contains the
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Tableau 2.8: Likelihood Ratio (L. R.) test RBNS and IBNR models with and

without the dynamic claim score

Model
Payment Restricted Unrestricted

L.R. p-value
Type Covariates Covariates

NB

Medical Xi,Zi,k Xi,Zi,k, ℓi,k 4075 < 0.01

Disability Xi,Zi,k Xi,Zi,k, ℓi,k 4085 < 0.01

Expenses Xi,Zi,k Xi,Zi,k, ℓi,k 26,534 < 0.01

POI

Medical Xi,Zi,k Xi,Zi,k, ℓi,k 1100 < 0.01

Disability Xi,Zi,k Xi,Zi,k, ℓi,k 945 < 0.01

Expenses Xi,Zi,k Xi,Zi,k, ℓi,k 4113 < 0.01

NB

Medical Z∗
i,k Z∗

i,k, ℓ
∗
i,k 4757 < 0.01

Disability Z∗
i,k Z∗

i,k, ℓ
∗
i,k 4232 < 0.01

Expenses Z∗
i,k Z∗

i,k, ℓ
∗
i,k 32,459 < 0.01

POI

Medical Z∗
i,k Z∗

i,k, ℓ
∗
i,k 2075 < 0.01

Disability Z∗
i,k Z∗

i,k, ℓ
∗
i,k 1593 < 0.01

Expenses Z∗
i,k Z∗

i,k, ℓ
∗
i,k 7801 < 0.01

results of 10, 000 simulations of each described model, and Figure 2.6 displays the

results.

Lets discuss the results from Table 2.12 and Figure 2.6. All the models yield sa-

tisfactory results regarding the 95 % and the 99 % VaRs as the values are higher

than the observed value. The two collective models (Gamma and over-dispersed

Poisson) have a mean lower than the observed value, but their standard devia-

tion is higher than the individual models. Furthermore, the latter approaches are

preferable because the 95 % and the 99 % Values-at-Risk of individual models

are lower than the collective models but higher than the observed value. As for
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Figure 2.5 Relativity of the dynamic risk score to the mean of expense RBNS

payments

Figure 2.6 Total reserves for selected models
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Tableau 2.9: Student’s t-test for parameter γ(a) for RBNS models with the

dynamic claim score

Dist. Negative Binomial Poisson

Payment Medical Disability Expenses Medical Disability Expenses

t-value 77.03 62.88 33.74 167.86 156.24 63.74

p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

the comparison between both individual approaches, we notice that the mean of

the total reserve is lower for the dynamic score model ; however, through a higher

standard deviation, the 95 % and the 99 % VaRs become lower than the model

that does not make use of the claim score. This further increases the model’s

utility by providing values higher than the observed reserve but lower than the

other predictions. Again, this shows an overall numerical preference for the model

in this paper over the one suggested in Yanez & Pigeon (2021). Thus, for our

data set, including more detailed information improves the reserve predictions.

First, consider an individual approach (3-component model) rather than a collec-

tive approach (GLM models). Then, by also incorporating past payment counts

information through the Dynamic Claim score model.

2.5 Conclusion

This paper introduced an innovative dynamic claim score to the loss reserve lite-

rature. This score allows for including past individual claim development in the

fitting process of outstanding payment counts. We could feed this score informa-

tion at the end of each interval through an interval-based approach and use this

updated information for the next interval. We applied this new method to the mo-

del by Yanez & Pigeon (2021) because of the discrete nature of its payment count
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modeling and the ease of covariate implementation it allows. However, any model

that can predict payment counts at different time development states may incor-

porate the claim score introduced in this paper. Furthermore, we expanded the

scope of payment count modeling by proposing a structure considering different

payment types.

We applied the above-mentioned model to a data set in our numerical analysis.

We showed that including a dynamic claim score improves the performance of

traditional count models (such as the Poisson and Negative Binomial models)

regarding goodness-of-fit. Then, we compared the predictions of outstanding pay-

ment counts between models that use this new score and models that do not, and

we obtained an overall improvement of the predictions. Finally, we showed that

our new approach yields better results than collective and individual models in

the literature.

As mentioned before, we introduced claim scores to the micro-level loss reserving

literature in this paper. Thus, given the pioneering nature of our work, it can

branch out into many extensions for various contexts. In particular, we supposed

that the claims of the portfolio are independent. However, a casualty may trigger

different claims and thus be dependent due to their shared origin. This complex

subject should be considered and will be studied in a future project. Another

correlation problem that was not addressed is the dependence between the num-

ber of payments and their cost. Here claim scores could prove useful if they are

computed for both the frequency and the severity of payments.
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Tableau 2.10: Simulation results for RBNS outstanding payment counts from

models with and without claim scores

Claim Dist. Payment Mean Std dev 95% VaR 99% VaR Obs.

Score WEI Exposure 5893 52 5979 6015 5889

with

NB

Medical 48,941 837 50,309 50,938 51,565

Disability 21,087 813 22,419 23,028 20,601

Expenses 22,905 425 23,599 23,902 16,653

Total 92,932 1452 95,299 96,303 88,819

POI

Medical 50,749 686 51,888 52,384 51,565

Disability 16,727 434 17,430 17,713 20,601

Expenses 20,607 283 21,075 21,259 16,653

Total 88,084 1126 89,945 90,669 88,819

without

NB

Medical 38,426 588 39,384 39,801 51,565

Disability 18,519 626 19,563 20,018 20,601

Expenses 20,820 359 21,405 21,688 16,653

Total 77,765 1088 79,554 80,344 88,819

POI

Medical 42,420 441 43,141 43,444 51,565

Disability 17,464 243 17,862 18,028 20,601

Expenses 18,277 229 18,657 18,805 16,653

Total 78,161 797 79,487 79,970 88,819
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Tableau 2.11: Simulation results for the total outstanding payment counts from

models with and without claim scores

Claim Dist. Payment Mean Std dev 95% VaR 99% VaR Obs.

Score WEI Exposure 6275 57 6369 6409 6454

with

NB

Medical 51,922 870 53,360 53,973 54,986

Disability 21,885 825 23,248 23,843 21,620

Expenses 24,054 440 24,780 25,085 18,080

Total 97,861 1501 100,308 101,291 94,686

POI

Medical 53,473 706 54,641 55,137 54,986

Disability 17,360 437 18,066 18,354 21,620

Expenses 21,570 291 22,051 22,236 18,080

Total 92,403 1157 94,314 95,067 94,686

without

NB

Medical 41,480 629 42,501 42,951 54,986

Disability 19,529 648 20,612 21,102 21,620

Expenses 22,031 375 22,647 22,928 18,080

Total 83,039 1157 84,940 85,735 94,686

POI

Medical 45,353 479 46,143 46,481 54,986

Disability 18,237 250 18,645 18,816 21,620

Expenses 19,296 241 19,695 19,855 18,080

Total 82,886 852 84,288 84,843 94,686
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Tableau 2.12: Results of the total reserve predictions

Mean Std. dev. 95% VaR 99% VaR

GLM Gamma 143,604,545 7,969,902 156,696,768 162,534,340

GLM ODP 145,171,862 6,565,836 156,112,224 161,073,565

3 Component RBNS 145,459,940 3,636,952 151,546,231 154,130,897

3 Component 149,620,225 3,678,054 155,830,382 158,291,786

Claim Score RBNS 137,509,168 4,785,344 145,451,829 148,969,071

Claim Score total 142,852,107 4,842,791 150,950,931 154,342,708

Obs. RBNS 141,830,856

Obs. total 147,308,364
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CHAPITRE III

ANALYSE DE LA DÉPENDANCE DU TEMPS DE TRAITEMENT DES

RÉCLAMATIONS : UNE PERSPECTIVE BASÉE SUR DES EFFETS

ALÉATOIRES FRAILTY

3.1 Introduction

Access to more in-depth information regarding claims has recently sparked an

interest in micro-level models for loss reserving. Traditionally, models were stu-

died through the lenses of a macro-level structure, aggregating claims according

to their accident and development years. This structure provides a more compact

data set that one can handle with less computationally intensive methods such as

the well-known Chain Ladder model (see Mack (1999) and Mack (1993)) ; ho-

wever, it renders distinctions between individual claims impossible (see Wüthrich

& Merz (2008) and England & Verrall (2002) for a comprehensive compendium

of these models). In contrast, micro-level models forgo the traditional triangular

structure associated with macro-level models by separating claims from one ano-

ther rather than aggregating them. The aim is to predict the full development of

each outstanding claim. This development comprises various events : the occur-

rence of an accident covered by a policy, the reporting of the claim by the client

to the insurance company, a series of cash flows, and finally, the settlement of the

claim. As such, models that use data in this granular form require various conside-
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rations for the events that comprise the full development of a given claim. Despite

the added complexity due to multiple elements to be considered when working on

micro-level data, the structure allows for the usage of individual information in

the modeling process, which, when considered, has proven to improve the quality

of models that predict the overall development of claims (see Wang et al. (2021)

and Yanez & Pigeon (2021)). In contrast, macro-level models cannot use this

information due to the aggregated nature of the collected data.

Many suggestions have been put forward in the micro-level reserving literature.

The very first models were introduced by Arjas (1989), Norberg (1993), Haastrup

& Arjas (1996), and Norberg (1999). These propositions focused on using a

dependent Marked-Poisson Process (DMPP) to predict future claim events such

as closures or payments. Interest in this model type was revitalized years later

by Antonio & Plat (2014), where a more practical application of a DMPP was

considered. Other propositions focused on expanding the concept of development

factors from the Chain Ladder model (see Mack (1999) and Mack (1993)) into

individual development factors to propose an original micro-level model in Pigeon

et al. (2013) and Pigeon et al. (2014). In addition, semi-parametric methods using

a Cox proportional hazards model have been suggested in Zhao et al. (2009), Zhao

et al. (2010), Badescu et al. (2016), and Badescu et al. (2019) for micro-level

incurred but not reported claims (IBNR) claims. Several authors have recently

focused on machine learning methods in various forms. For instance, regression

tree methods have been proposed by Wüthrich (2018), Lopez et al. (2016), Lopez

(2019), and Lopez et al. (2019). Neural networks are another example, as seen

in Kuo (2019), Gabrielli (2020), and Delong et al. (2022). For a more in-depth

review of the machine learning methods in the micro-level loss reserving literature,

we recommend the work done by Blier-Wong et al. (2020).

An essential part of the modeling process of micro-level reserves is the prediction
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of the processing time for outstanding claims, that is, the delay between the

occurrence of a claim and its settlement. It is within this time frame that the

reporting date and the cash flows that constitute the loss reserve are observed.

As an essential component, the study of this time frame has been tackled with

different techniques. Notably, in the context of IBNR claims, the reporting delay

(the first portion of the processing time) has been studied in Verrall & Wüthrich

(2016), where a three-layer approach was considered. In Antonio & Plat (2014),

a Weibull distribution with degenerate components was considered. As for the

settlement date predictions, Pigeon et al. (2013) suggested a discrete framework

by using a mixture of a Geometric distribution with degenerate components to

count for how many periods a claim is open. Similarly, Denuit & Lu (2021)

put forward the Wishart-Gamma distribution. Other models include settlements

as terminal events in the context of count processes (as in Haastrup & Arjas

(1996)).

Due to the increasing popularity of micro-level modeling, suggestions with data-

driven specifications have been addressed. The one of interest in the context of this

paper is dependency, which can be studied between the various parts that consti-

tute a micro-level model. For instance, some authors have used past information of

a given claim to address their future development. In Antonio et al. (2015), their

multi-state structure allowed for factors to be updated to their current state based

on past information. With a similar objective in mind, in Yanez et al. (2023),

a dynamic claim score that summarizes past information was incorporated into

the modeling process. Other authors have focused on the inclusion of dependency

between the settlement date and payments (see Okine et al. (2022) and Denuit

& Lu (2021)). In contrast to these propositions, in Avanzi et al. (2021), claim

counts from distinct lines of business are modeled through dependent Cox pro-

cesses where the dependency structure is constructed through multivariate shot
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noise intensity processes.

The inspiration for this paper arises from a practical problem that actuaries may

encounter when dealing with detailed data sets. An accident may often affect va-

rious coverages of a client’s insurance policy, which may have their development

structure or covariates. For example, suppose the insurer covers the medical fees

of two individuals injured in a given accident. It is tricky to incorporate specific in-

formation from these individuals (such as their age or the type of injury) to predict

the development of the claim that encompasses them because two distinct data

sets are available. As such, modeling coverages rather than claims to smoothly in-

corporate coverage-specific information may be rich in predicting power. However,

in doing so, the issue of dependency arises.

In this context, we focus on one of the main variables that drive the cost of claims,

the processing time. In particular, the time-to-event nature of this variable allows

us to study it through the lens of the abundant literature on survival models.

Among the various propositions, the Cox proportional hazards model (the Cox

model, see Cox (1972)) and the models that derive from it stand out as viable

options to predict processing time. Specifically, their definition through hazard

rates allows for streamlined incorporation and analysis of covariate information.

Indeed, a core element of our motivation relies on the quality of individual coverage

information, mainly the information that diverges between coverages of the same

claim. If it is not statistically significant, one could have a solid incentive to omit

it and merge all coverages into a single cash flow.

Another advantage of the Cox model is the well-documented implementation of

random effects to incorporate unobserved heterogeneity among observations, also

known as Frailty effects. In our case, by identifying claims as clusters of coverages

and linking them through a common Frailty, we can address the within-claim
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coverage dependence of a portfolio. Furthermore, given the widespread and diverse

uses of Cox models, several extensions, versions, and numerical applications have

been added over the years (see Balan et al. (2020) for an extensive review).

For instance, the hazard rate of the model has been redefined using M-splines

(see Rondeau et al. (2012)). It has been restructured as a fully parametric model

through the Weibull distribution (see Byar (1982)). As for the Frailty, the Gamma

distribution is usually considered, as significant results can be obtained in closed

forms. Other options, such as the Lognormal distribution, are also available (Balan

et al. (2020)).

This paper provides an original solution to including coverage-specific covariates

in the modeling process of micro-level reserves. Among the various elements that

constitute the development of claims (such as payment counts), we direct our

attention to the processing time, as it plays a crucial role in the calculation of

loss reserves (see Yanez & Pigeon (2021)). Furthermore, by focusing on predic-

ting a terminal event (such as the settlement of a claim), we can draw from the

literature well-supported models such as the Cox proportional hazard model and

the Weibull-Cox model. These models allow for the inclusion of Frailty random

effects, which, when shared by members of the same cluster, provide a practi-

cal solution to incorporating within-claim dependence. We sustain the viability

and advantages provided by the methods we cover by assessing the quality of the

coverage-specific information and by measuring the correlation between members

of the same cluster.

Our contribution is meticulously explained and justified through four main sec-

tions. In the first one, we justify the motivation of this paper by giving various

statistical measures of intra-claim correlation. Then, in the second section, we

review key definitions of the Cox propositional hazard model from the survival

literature to provide a statistical framework for the processing time of coverages.
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Next, in the third section, we extensively review the inference and simulation

procedures developed over the years to incorporate Frailty random effects into

the baseline models described in the first section. Then, in the fourth section,

we provide a numerical application of our propositions and goodness-of-fit ana-

lyses. Finally, in the last section, we conclude and provide some extensions to our

models.

3.2 Preliminary numerical analysis

This paper’s primary motivation is to capture the dependency between the pro-

cessing times of coverages originating from the same claim. Although seemingly

intuitive, at least in the data set used for this work, we must show evidence of

this correlation. As such, before we develop the statistical framework of the mo-

dels to be considered, we dedicated this first section to a preliminary numerical

analysis. It is done twofold, first by describing the data set and its variables, then

by computing and analyzing correlation measures.

3.2.1 Data set description

In our data set, 43,951 Accident Benefits claims (AB) cover no-fault benefits for

accidents where the driver, or a third party, was injured or killed in a car acci-

dent. Also, whenever the insurer must pay for a claim involving multiple parties,

cash flows stemming from each individual are distinguished. We treat each cash

flow as distinct coverages from the same claim. Thus, given that a claim may

contain more than one coverage, the portfolio has a more significant number of

coverages (57,593), all originating from accidents between 2011 and 2015. Fur-

thermore, the development of each coverage is available until December 31, 2017.

Then, by setting December 31, 2015, as the valuation date, we can observe that
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48,855 coverages get settled, while 7,872 coverages remain open, and 866 cove-

rages are considered unavailable because they are unreported. The development

up to the valuation date of the combined 56,727 coverages that are either settled

or open at the valuation date will serve as our training set. In contrast, we will

use the remaining development (from December 31, 2015, to December 31, 2017)

of the open claims to test our models.

Our data set benefits from individual information regarding the accident that

resulted in a claim. This information becomes available in the form of categorical

covariates. We only consider static covariates in our numerical analysis. Moreover,

to use as much of the available data as possible, we add a "not available" category

to each covariate rather than removing observations that contain missing covariate

values. Table 3.1 summarises descriptive statistics for all covariates.

Tableau 3.1: Description of covariates

Covariate Label Number of levels

Gender Gender of the injured/killed 3

Region Geographical region 3

Type of loss Kind of AB claim 5

Vehicle age Age of the vehicle 6

Injured age Age of the injured/killed 7

Reporting delay Delay calculated in days 7

Initial reserve Reserve at report date 5

In the context of our data set, coverages are divided among the parties involved in

a covered accident. Indeed, recall that particular covariate information regarding

each individual is considered in the fitting process (such as the age of the per-

son), and it is because of this consideration that claims are divided into various

coverages. Thus, given our particular coverage division, there is no unique way to
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identify, for example, the "first" from the "second" coverage of each claim in the

portfolio. Other circumstances which are not covered in this numerical example,

such as clusters involving Accident Benefit (AB) and Bodily Injury (BI) cove-

rages, would have a discernible way to identify the first (AB) from the second

(BI) coverage. Nonetheless, to compute rank correlation statistics, we look for a

way to label the coverages of claims through a uniform definition to designate, for

example, a "first" and a "second" coverage. A seemingly natural choice to define

these labels involves ordering them according to their reporting delay, given that

we aim to predict processing time. However, among claims with two or more cove-

rages, 76 % contain one or more matching reporting delays (most claim coverages

are reported simultaneously), making the reporting delay unsuitable for distingui-

shing coverages. We looked into other possible features among Table 3.1, where

we settled on the initial reserve (covariate Initial Reserve) as a labeling feature so

that coverages are designated by their apparent severity. The coverage with the

higher value is labeled as the first coverage of a claim, the second highest as the

second coverage, and so on. Whenever two or more values are identical, they are

randomly ordered. In addition, to add another perspective to our analysis, we also

considered ordering coverages by the parties’ birth dates, from youngest to oldest.

Although less intuitive than the Initial Reserve, it is the only other covariate that

does not have a considerable number of matching values.

We summarize the composition of claims in the portfolio in terms of their size

(or the number of coverages) in Table 3.2. We notice that 77.54 % of claims have

only one coverage in development, and among the 22.46 % other claims, their size

varies (they can contain up to ten coverages). Furthermore, regarding the origin

of coverages, 40.76 % are part of cluster size two or greater claims. These values

indicate that, although most claims in the portfolio have only one coverage, a

significant number of coverages belong to claims with multiple observations, and
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a potential issue in terms of dependence should be considered.

Tableau 3.2: Claim cluster size in terms of coverage count

Cluster size 1 2 3 4 5 6 7-10

# of Claims 33, 626 7, 360 1, 525 582 186 57 28

% in Portfolio 77.54% 16.97% 3.52% 1.34% 0.43% 0.13% 0.06%

Weight 59.27% 25.94% 8.06% 4.10% 1.64% 0.60% 0.39%

3.2.2 Correlation analysis

In this sub-section, we perform a non-parametric within-cluster correlation ana-

lysis. To measure this correlation, we compute two well-known rank correlation

statistics : Spearman’s rank correlation coefficient (also known as Spearman’s ρ)

and Kendall’s rank correlation coefficient (also known as Kendall’s τ). In the

context of this paper, there are two issues when we apply these methods. First,

there are claims with more than two coverages ; therefore, these tools only pro-

vide a preliminary 2-dimensional dependence analysis. The second issue is that

data is censored by the valuation date. Fortunately, this is a common situation

when working with survival data, and methods have been suggested to incor-

porate censoring into calculating correlation rank statistics. On the one hand,

the proposition by Eden et al. (2022) uses Dabrowska’s non-parametric method

(Dabrowska (1988)) to compute the marginal and the joint survival probability

estimates, which then can be used to calculate estimates for the Spearman’s ρ

statistics. On the other hand, Akritas et al. (1996) put forward an extension of

the Theil-Sen (Thiel (1950) and Sen (1968)) non-parametric regression model,

called the Akritas-Theil-Sen (ATS) regression, to accommodate censored data.

The authors perform a process referred to as inverting the Kendall’s τ statistic to

obtain the slope of the Theil-Sen regression. It allows for estimating Kendall’s τ
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statistic and the ATS line in the context of censored data.

The NADA and the survSpearman R packages implement, respectively, the

papers by Akritas et al. (1996) and Eden et al. (2022). Moreover, we applied

these packages to obtain Table 3.3 results for pairs of coverages based on their

position in each claim. Since there are only twenty-eight claims with at least

seven coverages, we focus our correlation analysis on claims for which there are

at least 30 observations, i.e., claims that have at most six observed coverages.

We notice that both indicators are higher than 0, hinting at a possible positive

correlation between the variables of each pair. In contrast, no value is lower than

0, indicating that a negative correlation is unlikely. Furthermore, we also perform

a statistical test to verify the significativity of the ATS model, which also tests

whether Kendall’s τ correlation coefficient is significantly different from zero (as

stipulated in Helsel (2012)). Most values fall below the 1 % error probability,

with only the correlation between the first and sixth coverages having a p-value

higher than 5 %. Thus, overall the indicators point towards a positive correlation

between coverages. Likewise, we are able to draw similar conclusions from the

rank statistics and p-values which are calculated from the version of the data set

which orders coverages according to the parties’ birth dates rather than the initial

reserve values.

We can also interpret these numerical results through Figures 3.3- 3.17 (available

in Appendix 3.6). Here, we see a clearly defined line when comparing the ranked

(or ordered) values of two coverages from claims that have at most five coverages,

i.e., Figures 3.3, 3.4, 3.5, 3.6, 3.8, 3.9, 3.10, 3.12, 3.13 and 3.15. Indeed, with more

claims used for these illustrations, we can discern the plot patterns that point

towards a positive correlation between coverages. Moreover, recall that the ATS

regression significance tests in Table 3.3 also indicate the same results since p-

values are lower than 1 %. As for figures for less frequently observed claims, i.e.,
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Tableau 3.3: Spearman’s ρ and Kendall’s τ rank statistics

—By Initial Reserve— —-By Birth Date—-

Pair τ p-value ρ τ p-value ρ

(1,2) 0.45 < 0.001 0.62 0.42 < 0.001 0.62

(1,3) 0.38 < 0.001 0.53 0.36 < 0.001 0.54

(1,4) 0.38 < 0.001 0.59 0.36 < 0.001 0.54

(1,5) 0.35 < 0.001 0.5 0.31 < 0.001 0.53

(1,6) 0.38 0.002 0.14 0.23 0.054 0.55

(2,3) 0.47 < 0.001 0.63 0.43 < 0.001 0.64

(2,4) 0.46 < 0.001 0.62 0.42 < 0.001 0.65

(2,5) 0.37 < 0.001 0.53 0.31 < 0.001 0.56

(2,6) 0.36 0.003 0.22 0.26 0.03 0.51

(3,4) 0.59 < 0.001 0.73 0.56 < 0.001 0.76

(3,5) 0.45 < 0.001 0.57 0.41 < 0.001 0.63

(3,6) 0.49 < 0.001 0.14 0.29 0.017 0.74

(4,5) 0.49 < 0.001 0.66 0.44 < 0.001 0.66

(4,6) 0.35 0.005 0.17 0.2 0.094 0.56

(5,6) 0.4 0.001 0.37 0.23 0.056 0.54

Figures 3.7, 3.11, 3.14, 3.16 and 3.17, it is possible to identify a positive correlation

between coverages, especially for observations below the 200 day mark. However,

results are less conclusive given the fewer observations for longer settlement de-

lays. Again, these illustrations mirror the results of Table 3.3, where a positive

correlation can be determined for most of these combinations, albeit with a higher

error probability.

Given that we are dealing with clusters larger than two, bivariate correlation

measures are not the best-suited tools to asses overall within-cluster correlation.

However, they are still valuable items for preliminary data analysis. In the follo-
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wing sections, we will define the models we considered, followed by a thorough

goodness-of-fit analysis to assess the within-cluster coverage correlation further.

3.3 Statistical Framework

Suppose that a claim affects different coverages. For instance, in the context of

an accident benefits claim, an insurer may be liable to pay for the medical bills

of multiple people involved in an accident. To include detailed information about

each injured person in the modeling process, cash flows issue from each person

involved may be treated as different claim coverages. We could also consider a

property damage claim that involves multiple cars, each with its characteristics.

Again, to incorporate information related to each vehicle, the insurer may consider

cash flows related to each car separately as distinct claim coverages. Let Ti,j be the

delay between the occurrence of a claim i and the settlement of its jth coverage,

j = 1, . . . , Ji and i = 1, . . . , I. Thus, the jth coverage of claim i can be identified

by the pair (i, j).

Let I = I(C) ∪ I(O) be the set containing pairs (i, j) available in the portfolio at

the valuation date, where I(C) and I(O) are the subsets containing, respectively,

closed and open coverages. Moreover, let I(U) be the set containing the unreported

coverages. Thus, the two sets that require predictions are I(O), which includes the

reported but not settled (RBNS) coverages, and I(U) which contains the incurred

but not reported (IBNR) coverages.

We can consider claim i as a cluster of Ji distinct coverages that share the same

origin. In terms of observed values, for a given claim i, all its Ji coverages are

framed by τi, the delay between the occurrence of claim i and the valuation date.

Thus, τi denotes the censoring value of all coverages of claim i that are still open

at the valuation date. Let J (O)
i and J (C)

i be the sets containing, respectively, open
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and closed coverages for claim i. As such,

J (O)
i = {j|ti,j > τi} J (C)

i = {j|ti,j ≤ τi}

for j = 1, . . . , Ji, and

I(O) =
I⋃

i=1

{
(i, j)|j ∈ J (O)

i

}
I(C) =

I⋃
i=1

{
(i, j)|j ∈ J (C)

i

}
.

Let us briefly describe the development of coverages in the context of this paper.

Ti,j can be calculated as the sum of the delay between the occurrence date and

the reporting date T (r)
i,j and the delay between the occurrence date and the closure

date T (c)
i,j :

Ti,j = T
(r)
i,j + T

(c)
i,j , for (i, j) ∈ I

A visual representation of the various delays is available in Figure 3.1, where three

coverages are depicted (closed, open, and unreported), and the first two coverages

derive from the same claim.

When a coverage is reported, information about it becomes available and can

be summarized as a vector of covariates. These variables come in three different

types. First, there are static covariates which do not change over time, e.g., the

region where the event occurred. Hence, let

X′
i,j = [Xi,j,1, . . . , Xi,j,k]
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Figure 3.1 Development of three coverages

be the vector that contains the k static covariates from the jth coverage of claim

i. We can also identify deterministic time covariates, which change over time,

although in a predictable way, e.g., the age of the person injured in an accident.

Let,

Z′
i,j(s) = [Zi,j,1(s), . . . , Zi,j,h(s)]

be the vector that contains the h deterministic time covariates from the jth cove-

rage of claim i at time s. In addition, we can also consider the set of vectors that

contain the values of these deterministic time covariates from time 0 to s as,

Z∗
i,j(s) = {Zi,j(u)|0 < u ≤ s} .

Finally, we can consider stochastic time covariates, which evolve similarly to their

deterministic counterparts. However, this evolution is not deterministic and cannot
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be predicted with certainty. Thus, an additional stochastic model is required to

predict their unobserved values. For this reason, although handy information can

be gathered from these types of covariates, the extra considerations needed to

incorporate them are outside this project’s scope. They will be the subject of a

dedicated project.

Their status puts forward a different challenge regarding the predictions of unre-

ported claims. Their covariate information is unavailable at the valuation date,

and how many are currently in the portfolio is unknown. In this paper, we will

focus on RBNS claims, given that the main focus of this work regards the de-

pendence of observed open coverages from the same claim. The IBNR claims are

better dealt with in future separate work.

Having established the basic notation used in this paper, we can continue defining

the models we will consider.

3.3.1 The Cox proportional hazards model

The first model we define is the well-known Cox proportional hazards model, often

abbreviated simply to the Cox model (Cox (1972)). It will serve as a baseline

for more complex models we will define later. This model is considered semi-

parametric because it introduces a non-parametric aspect as an arbitrary baseline

hazard function alongside the covariate vectors. The model’s hazard rate is defined

as :

λi,j
(
t|Xi,j,Z

∗
i,j(t)

)
= λ0(t)exp

(
X′

i,jβ
(x) + Z′

i,j(t)β
(z)
)
,

where λ0(t) is the baseline hazard rate, β(x) and β(z) are, respectively, the pa-

rameter vectors for static covariates and deterministic time covariates for (i, j).
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Then, we can obtain the survival function :

Si,j

(
t|Xi,j,Z

∗
i,j(t)

)
= Pr

(
Ti,j > t|Xi,j,Z

∗
i,j(t)

)
= exp {−Λi,j(t)} ,

where Λi,j(t) =
∫ t

0
λ0(u)exp

(
X′

i,jβ
(x) + Z′

i,j(u)β
(z)
)
du.

In the specific case where no deterministic time covariates are observed, they may

not be available in the data set. The survival function in this scenario becomes :

Si,j (t|Xi,j) = S0(t)
exp(X′

i,jβ
(x)),

where S0(t) = exp
{
−
∫ t

0
λ0(u)du

}
. We can now address the estimation of β and

the cumulative baseline hazard function defined by Λ0(t) =
∫ t

0
λ0(u)du. The β

parameter can be obtained by analyzing the so-called "partial likelihood." Under

independent censoring, the partial likelihood is,

L
(
β(x),β(z)

)
=

I∏
i=1

Ji∏
j=1

 exp
(
X′

i,jβ
(x) + Z′

i,j(ti,j)β
(z)
)

∑
(i,j)∈R(ti,j)

exp
(
X′

i,jβ
(x) + Z′

i,j(ti,j)β
(z)
)
1(ti,j<τi)

,

(3.1)

where 1() is the indicator function. Also, R(t) are the coverages that have not

been settled and are still open (uncensored) just before time t. That is the set of

coverages that have a duration greater than t :

R(t) = {(i, j)|ti,j > t} .
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Furthermore, in additionally to the estimation of the β parameter, it is possible

to derive an estimation of the cumulative baseline hazard function through the

Breslow estimator (see Breslow (1972)) such that,

Λ̂0(t|Xi,j,Z
∗
i,j) =

I∑
i=1

Ji∑
j=1

1 (ti,j < τi)1 (ti,j < t)∑
(i,j)∈R(ti,j)

exp
(
X′

i,jβ
(x) + Z′

i,j(ti,j)β
(z)
) , (3.2)

where Λi,j(t) =
∫ t

0
λ0(u)du.

3.3.2 The Weibull-Cox proportional hazards model

In parallel to the classical semi-parametric version of the Cox model, a fully para-

metric alternative was suggested in Byar (1982). In this version, referred to as the

Weibull-Cox model, the hazard rate is also proportional but identified through a

Weibull distribution. This distinction allows us to easily infer essential measures

in a closed form, such as the mean or the variance. Furthermore, the fully pa-

rametric nature of the model will enable us to compare it to other parametric

models through measures based on the likelihood, such as the Akaike Information

Criterion. One may also perform coverage processing time simulation procedures

based on the Weibull distribution, which handily provides the distribution of its

future unobserved development. These features are very welcome in the context of

loss reserving, given that our primary concern is the future development of claims.

Let the hazard rate of the model be

λi,j
(
t|Xi,j,Z

∗
i,j(t)

)
= ναtα−1exp

(
X′

i,jβ
(x) + Z′

i,j(t)β
(z)
)

= λ0(t)exp
(
X′

i,jβ
(x) + Z′

i,j(t)β
(z)
)
,
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where, λ0(t) = ναtα−1 is the baseline hazard rate. Furthermore, β(x) and β(z) are

the vector parameters for static and time deterministic covariates, respectively.

Furthermore, by letting T0 be the baseline processing time, we can identify ν and

α as the scale parameter and the shape parameter of T0. Thus,

T0 ∼ Weibull (α, ν) ,(
Ti,j|Xi,j,Z

∗
i,j(t)

)
∼ Weibull

(
α, ν · exp

(
X′

i,jβ
(x) + Z′

i,j(t)β
(z)
))

,

for (i, j) ∈ I. It follows that if only static covariates are considered, the survival

and density functions of Ti,j become

Si,j (t|Xi,j) = exp
{
−νtαexp

(
X′

i,jβ
(x)
)}

, and

fi,j (t|Xi,j) = ναtα−1exp
(
X′

i,jβ
(x)
)

exp
{
−νtαexp

(
X′

i,jβ
(x)
)}

.

Moreover, given that we are dealing with a fully parametric model, it is possible

to determine the likelihood function directly,

L
(
α, ν,β(x)

)
=
∏
i


 ∏

j∈J (O)
i

Si,j (τi|Xi,j)


 ∏

j∈J (C)
i

fi,j (ti,j|Xi,j)


 . (3.3)

As such, one may obtain the parameter’s estimates α̂, ν̂ and β̂
(x)

by finding the

values that maximize the likelihood.

Having established our baseline models, we can now focus on including intra-claim

dependence through random effects.
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3.4 Frailty

3.4.1 Frailty for dependent coverages

The Frailty W is a non-negative random effect with a given distribution. The

idea is to include a multiplicative element to the hazard rate, indicating that

the coverage is more "frail" (or likely to be closed early in loss reserving). It is

often assumed that E[W ] = 1 and that W is a non-negative random variable

to facilitate the interpretation of the results. From this concept, we can derive a

Shared Frailty model that can be used to include dependence between clusters of

coverages through common random effects. Let the hazard function, conditional

on the frailty term Wi of a shared Gamma frailty model for the closure delay of

the jth individual involved in the ith accident, be

λi,j
(
t|Xi,j,Z

∗
i,j(t),Wi

)
= λ0(t)Wiexp(X′

i,jβ
(x) + Z′

i,j(t)β
(z)). (3.4)

By considering claim i as a cluster of coverages, we can identify that the coverages

within it share frailty Wi. We consider that coverages from distinct claims are

independent, as are coverages of cluster i conditionally to knowing Wi. Based

on these assumptions, it is possible to derive the conditional survival function of

coverage (i, j),

Si,j

(
t|Xi,j,Z

∗
i,j(t),Wi

)
= Pr

(
Ti,j > t|Xi,j,Z

∗
i,j(t),Wi

)
= exp (−WiΛi,j(t)) ,

where Λi,j(t) =
∫ t

0
λ0(u)exp(X′

i,jβ
(x)+Z′

i,j(t)β
(z))du is the cumulative hazard rate

form time 0 to time t.

Now, considering that the Frailty Wi is unobserved, it is possible to focus on the
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marginal distribution, based on the mean of the survival function, that is,

Si,j

(
t|Xi,j,Z

∗
i,j(t)

)
= E

[
Si,j

(
t|Xi,j,Z

∗
i,j(t),Wi

)]
= E [exp (−WiΛi,j(t))] . (3.5)

Having defined the hazard rate, the cumulative hazard rate, and the survival

function with an intra-claim Frailty random effect, we can now use the observed

development of claims to predict the Frailty of each cluster of coverages.

3.4.2 Estimation of the Frailty based on claim history

We can summarize this information by defining the historical data of claim i from

its occurrence up to the valuation date as Hi(τi). Conditionally to this information,

the posterior Frailty estimated value for claim i can be obtained as follows

E [Wi|Hi(τi)] = −L′
Wi|Hi(τi)

(0),

where LWi|Hi(τi) is the Laplace transform of frailty Wi, conditionally to Hi(τi).

Thus, since Wi is a non-negative random variable, we can write

LWi|Hi(τi)(c) = E [exp(−cWi)|Hi(τi)]

=

∫ ∞

0

exp(−cw)fWi|Hi(τi)(w)dw,

where fWi|Hi(τi)(w) is the probability density function of the frailty conditionally

to Hi(τi). Recalling that, conditionally to Frailty Wi, all the coverages’ processing

times Ti,j are independent, we can use Bayes’ theorem to obtain,
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fWi|Hi
(w) =

P (Hi(τi)|Wi)fWi
(w)∫∞

0
P (Hi(τi)|Wi)fWi

(v)dv

=
fWi

(w)
(∏

j∈J (O)
i

S(i,j)|Wi=w(τi)
)(∏

j∈J (C)
i

f(i,j)|Wi=w(ti,j)
)

∫∞
0
fWi

(v)
(∏

j∈J (O)
i

S(i,j)|Wi=v(τi)
)(∏

j∈J (C)
i

f(i,j)|Wi=v(ti,j)
)
dv

=
fWi

(w)
(∏

j∈J (O)
i

e−wΛi,j(τi)
)(∏

j∈J (C)
i

wλi,j(ti,j)e
−wΛi,j(ti,j)

)
∫∞
0
fWi

(v)
(∏

j∈J (O)
i

e−vΛi,j(τi)
)(∏

j∈J (C)
i

vλi,j(ti,j)e−vΛi,j(ti,j)
)
dv

=
fWi

(w)exp
(
−w

(∑
j∈J (O)

i
Λi,j(τi) +

∑
j∈J (C)

i
Λi,j(ti,j)

))
wN

(C)
i∫∞

0
fWi

(v)exp
(
−v
(∑

j∈J (O)
i

Λi,j(τi) +
∑

j∈J (C)
i

Λi,j(ti,j)
))

vN
(C)
i dv

=
fWi

(w)exp
(
−w

(∑
j∈J (O)

i
Λi,j(τi) +

∑
j∈J (C)

i
Λi,j(ti,j)

))
wN

(C)
i∫∞

0
fWi

(v)exp
(
−v
(∑

j∈J (O)
i

Λi,j(τi) +
∑

j∈J (C)
i

Λi,j(ti,j)
))

vN
(C)
i dv

=
fWi

(w)exp (−wΛi,•)w
N

(C)
i∫∞

0
fWi

(v)exp (−vΛi,•) vN
(C)
i dv

=
fWi

(w)exp (−wΛi,•)w
N

(C)
i

E

[
W

N
(C)
i

i exp (−Λi,•Wi)

]
=
fWi

(w)exp (−wΛi,•)w
N

(C)
i

L(N
(C)
i )

Wi
(Λi,•)

,

where Λi,• =
∑

j∈J (O)
i

Λi,j(τi) +
∑

j∈J (C)
i

Λi,j(ti,j), and the number of closed cove-

rages from claim i at the valuation date is written as N (C)
i =

∑
j∈J (C)

i
1. It follows

that,



128

LWi|Hi(τi)(c) = E[exp(−cWi)|Hi(τi)]

=

∫ ∞

0

exp(−cw)fWi|Hi(τi)(w)dw

=

∫ ∞

0

exp(−cw)fWi
(w)exp (−wΛi,•)w

N
(C)
i

L(N
(C)
i )

Wi
(Λi,•)

dw

=

∫∞
0
fWi

(w)exp (−w (c+ Λi,•))w
N

(C)
i dw

L(N
(C)
i )

Wi
(Λi,•)

=

E

[
W

N
(C)
i

i exp (− (c+ Λi,•)Wi)

]
L(N

(C)
i )

Wi
(Λi,•)

=
L(N

(C)
i )

Wi
(c+ Λi,•)

L(N
(C)
i )

Wi
(Λi,•)

.

Then, we can write

E [Wi|Hi(τi)] = −L′
Wi|Hi(τi)

(0)

= −

∂
∂c

(
L(N

(C)
i )

Wi
(c+ Λi,•)

∣∣∣∣
0

L(N
(C)
i )

Wi
(Λi,•)

=
L(N

(C)
i +1)

Wi
(Λi,•)

L(N
(C)
i )

Wi
(Λi,•)

, (3.6)

where L(k)
Wi

denotes the kth derivative of the Laplace transform of the frailty of

claim i.

In a more practical application, some distributions are more accessible regarding
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tractability. In particular, the Gamma distribution has been extensively studied

as a frailty distribution. By considering,

Wi ∼ Gamma
(
1

θ
,
1

θ

)
, E[Wi] = 1 and V ar[Wi] = θ,

we can obtain the expected value of Wi given its history by using its Laplace

transform

LWi
(c) =

(
1/θ

(1/θ) + c

)1/θ

. (3.7)

Thus, by using the result in Equation 3.6 with this specific Laplace transform we

have,

E [Wi|Hi(τi)] =
L(N

(C)
i +1)

Wi
(Λi,•)

L(N
(C)
i )

Wi
(Λi,•)

=

∂N
(C)
i

+1

∂cN
(C)
i

+1

((
1/θ

(1/θ)+c

)1/θ∣∣∣∣
Λi,•

∂N
(C)
i

∂cN
(C)
i

((
1/θ

(1/θ)+c

)1/θ∣∣∣∣
Λi,•

=

∂N
(C)
i

+1

∂cN
(C)
i

+1

((
1
θ
+ c
)−1/θ

∣∣∣
Λi,•

∂N
(C)
i

∂cN
(C)
i

((
1
θ
+ c
)−1/θ

∣∣∣
Λi,•

=

(
1
θ
+ Λi,•

)−1/θ−N
(C)
i −1∏N

(C)
i

k=1 (−1/θ − k)(
1
θ
+ Λi,•

)−1/θ−N
(C)
i
∏N

(C)
i −1

k=1 (−1/θ − k)

=
1
θ
+N

(C)
i

1
θ
+ Λi,•

. (3.8)
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Note that when a Gamma Frailty is considered, the density function fWi|Hi(τi)(w)

can be obtained in a closed form :

fWi|Hi(τi)(w) ∝ fWi
(w)exp (−wΛi,•)w

N
(C)
i

∝ (1/θ)(1/θ)

Γ(1/θ)
w

(1/θ)−1
i exp (−wi/θ) exp (−wΛi,•)w

N
(C)
i

∝ w
(1/θ)+N

(C)
i −1

i exp (−wi(1/θ + Λi,•)) .

Thus, we can determine that, by letting Wi ∼ Gamma(1/θ, 1/θ), for (i, j) ∈ I,

the a posteriori distribution of each frailty given the observations its cluster also

follows a Gamma distribution, that is

(Wi|Hi(τi)) ∼ Gamma
(
θ−1 +N

(C)
i , θ−1 + Λi,•

)
, (3.9)

for (i, j) ∈ I. Note that we can obtain the same result from Equation 3.8 by

computing the expected value of (Wi|Hi(τi)) based on its distribution. Finally,

we can find an estimation of the marginal survival distribution by considering

c = Λi,j(t) in Equation 3.7, such that

Si,j

(
t|Xi,j,Z

∗
i,j(t)

)
= E

[
Si,j

(
t|Xi,j,Z

∗
i,j(t),Wi

)]
= E [exp (−WiΛi,j(t))]

= LWi
(Λi,j(t))

=

(
1/θ

(1/θ) + Λi,j(t))

)1/θ

.

=
1

(1 + θΛi,j(t))1/θ
. (3.10)
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3.4.3 Parameter estimation

So far, we have described a frailty model that is composed of three elements that

require estimations :

— the baseline hazard rate, λ0(t),

— the covariate vectors, β(x) and β(z), and

— the set of parameters of the frailty distribution, Θ. Typically, Θ contains

only one parameter θ and it is often set such that : E[Wi] = 1 and

V ar[Wi] = θi.

The first element to consider is the λ0(t) distribution. In Section 3.3.1, we in-

troduced the Cox model, which does not specify a particular distribution for its

hazard rate, and for this reason, it is referred to as semi-parametric. However, it

is also possible to consider parametric distributions such as a Weibull model or a

spline-based estimator instead.

Assuming that the values of each claim’s frailty are known, it is possible to deter-

mine the conditional likelihood function,

L
(
λ0,β

(x),β(z)|W
)
=
∏
i


 ∏

j∈J (O)
i

exp (−WiΛi,j(τi))

×

 ∏
j∈J (C)

i

Wiλi,j(ti,j)exp (−WiΛi,j(ti,j))


 , (3.11)

where W = [W1, . . . ,WI ] the vector containing the frailties of each cluster within

the claim portfolio of size I. In the fully parametric case, λ0(t) requires a limited

number of parameters to be considered. Because of this, assuming values of vector

W are known, a maximum likelihood approach could be considered. However,
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when considering a semi-parametric Cox model, the baseline function can be esti-

mated through the partial likelihood described in Section 3.3.1. As such, one can

find an estimate of β(x) and β(z) by maximizing their values in,

ℓ
(
β(x),β(z)|W

)
=

I∑
i=1

Ji∑
j=1

1 (ti,j < τi)×−log

 ∑
(i,j)∈R(ti,j)

Wiexp
(
X′

i,jβ
(x) + Z′

i,j(ti,j)β
(z)
)

+ X′
i,jβ

(x) + Z′
i,j(ti,j)β

(z)
]

(3.12)

along with the estimated value of the baseline hazard rate through the Breslow

estimator,

Λ̂0

(
t|β(x),β(z),W

)
=

I∑
i=1

Ji∑
j=1

1 (ti,j < τi)1 (ti,j < t)∑
(i,j)∈R(ti,j)

Wiexp
(
X′

i,jβ
(x) + Z′

i,j(ti,j)β
(z)
) ,

(3.13)

where, Λ̂0(t) =
∫ t

0
λ̂0(u)du.

The previously described estimators are incomplete because vector W is unknown

and is considered a random variable with θ as the variance parameter of its dis-

tribution. Thus, more complex approaches are required for the estimation to be

made. Luckily several authors have made various suggestions to deal with this

problem, along with several packages that allow for their practical applications.

The Expectation-Maximization (EM) algorithm was suggested by Nielsen et al.

(1992) and Klein (1992) in the context of semi-parametric Gamma frailty models.

The idea alternates between the "E" and the "M" steps until convergence. The
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steps are :

Step 1 : Set to 1 the value of Wi for all frailties (i.e. θ̂ = 1). Then, assuming

Wi = 1, ∀i = 1, . . . , I, the estimations of the baseline hazard rate Λ̂0(t) and

covariate parameters as β̂
(x)

and β̂
(z)

are done by either finding the values that

maximize the log-likelihood (see Equation 3.11), for the parametric case, or by

finding the values that maximize Equation 3.12 and 3.13 in the semi-parametric

case.

Step 2 : Compute E [Wi|Hi(τi)] using the values in step 1. This value can be obtai-

ned by calculating derivatives of the Laplace transform of the frailty distribution

(see 3.6). Then calculate E
[
log
(
L
(
λ0,β

(x),β(z)|W
))]

.

Step 3 : Find the values of Λ̂0(t), β̂
(x)

, β̂
(z)

and θ̂ that maximize E [Wi|Hi(τi)].

Step 4 : Repeat steps 2 and 3 until convergence.

This algorithm has been implemented in the frailtyEM package from R (see

Balan et al. (2019)). A similar application of the EM algorithm by Vaida &

Xu (2000) is available in the R package phmm, which uses a Monte-Carlo EM

algorithm. In contrast to the EM algorithm, penalized-likelihood methods have

been suggested. For instance, in Therneau et al. (2003), a penalized likelihood

function was developed for the semi-parametric case, such that,

γ
(
β(x),β(z), θ|W

)
= ℓ

(
β(x),β(z)|W

)
− g(W, θ),

where ℓ
(
β(x),β(z)|W

)
is the cox partial likelihood and g(W, θ) is a penalty func-

tion that restricts the values of θ. In particular, the authors suggested
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g(W, θ) = −1/θ
∑
i

(Wi − exp(Wi))

as the penalty function when a Gamma distribution is considered. Yet again,

computational tools have been developed with penalized methods such as the

one suggested by Therneau et al. (2003). The package survival in R provides an

algorithm using a penalized likelihood for semi-parametric Gamma and log-normal

frailty distributions. Moreover, for penalized likelihood methods, we recommend

the frailtypack R package, which provides an even broader and more flexible

algorithm for parametric and semi-parametric frailty models.

On a final note, by letting Wi ∼ Gamma(1/θ, 1/θ), for (i, j) ∈ I, and by conside-

ring the Weibull-Cox model, we can obtain a fully parametric marginal likelihood

function,
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L
(
λ0,β

(x),β(z), θ
)
= E

[
L
(
λ0,β

(x),β(z), θ|W
)]

=
∏
i

E [WN
(C)
i

i exp (−WiΛi,•)

] ∏
j∈J (C)

i

λi,j(ti,j)


=
∏
i

∫ ∞

0

w
N

(C)
i

i exp (−wiΛi,•) fWi
(wi)dwi

∏
j∈J (C)

i

λi,j(ti,j)


=
∏
i

(∫ ∞

0

w
N

(C)
i

i exp (−wiΛi,•)w
θ−1−1
i exp (−wi/θ) dwi ×

θ−θ−1

Γ (θ−1)

∏
j∈J (C)

i

λi,j(ti,j)


=
∏
i

 Γ
(
θ−1 +N

(C)
i

)
θ−θ−1

Γ (θ−1) (θ−1 + Λi,•)θ
−1+N

(C)
i

· 1 ·
∏

j∈J (C)
i

λi,j(ti,j)

 ,

where,

Λi,• =
∑

j∈J (O)
i

νταi exp
(
X′

i,jβ
(x)
)
+
∑

j∈J (C)
i

νtαi,jexp
(
X′

i,jβ
(x)
)
,

λi,j(ti,j) = ναtα−1
i,j exp

(
X′

i,jβ
(x)
)
.

We will now fit frailty models in the context of micro-level loss reserving using a

data set from a Canadian insurance company hoping to consider the intra-claim

dependence of the portfolio.
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3.5 Numerical results

3.5.1 Fitting the Models

We consider various approaches for our numerical analysis based only on static

covariate vectors X′
i,j (note that predictable time covariates are transformed into

categorical variables in our numerical analysis). We begin by fitting simple models

that do not consider dependence. The first one is the Cox model, which was des-

cribed in Section 3.3.1, where we obtain estimated values for covariate parameters

through the partial likelihood function 3.1, while the Brelow estimator 3.2 is used

to find the cumulative hazard rate.

In addition to the classical Cox model, we consider other methods to determine the

baseline hazard rate, such as cubic M-splines, which are, according to Rondeau

et al. (2012), particularly useful because they allow for flexible shapes while

reducing the number of parameters. Furthermore, we perform the estimation of

the parameters through the maximization of the penalized log-likelihood suggested

by Rondeau et al. (2003) and available through the R package frailtypack. In

addition, we also consider the Weibull-Cox model highlighted in Section 3.3.2. We

estimate parameters by maximizing the likelihood function 3.3. Then, to further

evaluate the performance of our fully parametric propositions, we also fit two other

well-known models in the literature, the Log-logistic and the Log-Normal. Let,

(
Ti,j|X′

i,j

)
∼ Weibull

(
α(Wei), ν

(Wei)
i,j

(
β(x)

))
,(

Ti,j|X′
i,j

)
∼ Log-Logistic

(
α(Loglog), ν

(Loglog)
i,j

(
β(x)

))
, and(

Ti,j|X′
i,j

)
∼ Log-Normal

(
µi,j

(
β(x)

)
, σ2
)
,

for (i, j) ∈ I. Where α(Wei) and α(Loglog) are the shape parameters of, respectively,
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the Weibull and the Log-logistic distributions, and, similarly, ν(Wei) and ν(Loglog)

are the scale parameters of these distributions. Finally, for the Log-Normal dis-

tribution, µi,j and σ2 represent the mean and scale parameters of log
(
Ti,j|X′

i,j

)
which follows a Normal distribution.

Finally, we can include dependence through Gamma Frailty random effects for

the coverages of the same claim. We apply them to Cox models : the classical

semi-parametric version, which considers Cubic M-splines, and the Weibull-Cox

model. For the last two mentioned models, the same package (frailtypack) is im-

plemented, and the penalized log-likelihood method is used for their counterparts

(see Rondeau et al. (2003)). In contrast, the classical version is fitted with the

survival R package.

3.5.2 Goodness-of-fit

This section describes the goodness of fit analysis for models depicted in Sec-

tion 3.5.1. Let us begin by examining the significance of static covariates used

across all models. We present estimated values for all parameters in Table 3.9 and

t-tests in Table 3.6. The latter table shows that the covariates are statistically

significant overall. Indeed, for the type of loss, the gender of the injured, and the

region, all categories are significant with an error probability lower than 1%. The

(1, 000− 5, 000] category of the initial reserve and the (18− 25] category of inju-

red/vehicle age are non-significant for some distributions when considering a 5%

error. It means that these intervals could be grouped with the baseline category.

Nonetheless, since some distributions benefit from this division, we decide to keep

the divisions as they are for all models for comparison purposes. The only other

notable elements in terms of significance are the (30−90] interval for the reporting

delay in the Log-logistic and the log-normal model and the (6 − 10] interval for
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the vehicle age (in years) in the Cox model and its M-spline version.

Furthermore, given that we consider Frailty effects following a Gamma distribu-

tion, these models require an estimation for θ, which is the frailty distribution’s

variance. Moreover, it is possible to perform a unilateral Wald test to verify whe-

ther θ is significantly different from 0. Results are presented in Table 3.4, where

we can confidently reject the null hypothesis.

Tableau 3.4: Wald tests for the variance of the Frailty (random effect)

θ̂ Std. err. z p-value

Base 0.76 - - -

M-Spline 0.65 0.01 46.50 < 0.01

Weibull 0.61 0.01 46.50 < 0.01

Then we perform a comparison between all estimated models. Recall that the

Weibull-Cox (with and without Frailty), the Log-Logistic, and the Lognormal

models are fully parametric, and this particular feature allows us to compute the

log-likelihood. Thus, we can consider the Schwarz Information Criterion (BIC) and

the Akaike information criterion (AIC) as comparison measures. These values are

available in Table 3.5, where we can identify the Weibull-Cox model with Frailty as

the best model for this criteria. For the comparison of semi-parametric M-spline

models, we choose an approximation of the Likelihood Cross-Validation (LCV)

criterion suggested by O’Sullivan (1988) and later incorporated by Rondeau et

al. (2012). The results are available in Table 3.6 where the model with a Frailty

random effect is picked over its counterpart. Finally, we perform likelihood ratio

tests between the Weibull-Cox model (using the log-likelihood) and the classical

Cox model (with the partial-log-likelihood). More specifically, a comparison in

terms of likelihood is made between the versions that include a Frailty effect and

the ones that do not. For both cases, we have a clear indication that the model
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with Frailty is preferable (see Table 3.7).

Tableau 3.5: AIC and BIC criteria for the parametric models

Weibull Log-Logistic Log-Normal Weibull (Frailty)

AIC 552, 167 551, 355 553, 450 547, 407

BIC 552, 442 551, 630 553, 724 547, 691

Tableau 3.6: Likelihood Cross-Validation (LCV) criterion for the M-spline mo-

dels

M-splines M-splines (Frailty)

LCV 524, 069 527, 597

Tableau 3.7: Likelihood Ratio tests for Cox and Weibull-Cox models

Likelihood
Test Statistic p-value

Without Frailty With Frailty

Base Cox −438, 554 −436, 658 4, 140 < 0.01

Weibull-Cox −276, 053 −273, 672 4, 762 < 0.01

3.5.3 Simulation analysis

We begin our numerical simulation analysis by gathering the coverages from clus-

ter size two or greater claims. As such, let I∗(C) and I∗(O) be, respectively, the

sets of the closed and open claims in question, defined as

I∗(C) =
{
(i, j)|Ji ≥ 2, (i, j) ∈ I(O)

}
and I∗(O) =

{
(i, j)|Ji ≥ 2, (i, j) ∈ I(O)

}
.

We analyzed this particular set of observations because we want to focus on co-

verages for which the issue of dependence is most relevant. Then, we proceed to
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determine the distribution of the total outstanding exposure. Let E∗(O) be the

sum of delays between the valuation and the settlement dates for (i, j) ∈ I∗(O),

that is,

E∗(O) =
∑

(i,j)∈I∗(O)

Ti,j − τi. (3.14)

We compare four parametric distributions : the Log-logistic, Lognormal, and Wei-

bull (with and without Frailty) models. We obtain these distributions by perfor-

ming 10, 000 simulations per model of all operational times of the coverages and

then computing the total exposure. In particular, for the Weibull-Cox model with

Frailty, we first simulate the Frailty of each cluster using a Gamma distribution

(see 3.9). Next, for each claim, each coverage’s processing time is simulated condi-

tionally to the value of the Frailty that was simulated in the current iteration. We

present the main results in Table 3.8 and Figure 3.2.

Tableau 3.8: Results of the predictions for the total outstanding exposure(
E∗(O)

)
Mean Std. err. 75% VaR 95% VaR 99% VaR Obs.

Weibull 1532 24.80 1549 1568 1576 1678

Frailty Weibull 1679 27.27 1697 1725 1744 1678

Loglogistic 1814 34.62 1839 1873 1887 1678

Lognormal 1855 29.87 1875 1902 1916 1678

We notice that the log-logistic and Lognormal models overestimate the exposure

value. Indeed, when we look at Figure 3.2, the two distributions in question are

represented on the right side of the Figure. Here, the densities do not include

the observed value (the black dotted vertical line) within their range of possible

values. Then, in contrast, the Weibull model seems to underestimate the exposure.
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Figure 3.2 Distributions of the outstanding exposure.

We draw this conclusion by looking at its 99 % Value-at-Risk (VaR), which is

lower than the observed exposure. Again, the density does not seem to include

the observed value. It can also be observed graphically in Figure 3.2, where the

dotted vertical line is clearly outside the distribution range. Finally, the Weibull

model with Frailty provides the best results as its mean is close to the observed

value while being lower than the 99 % and 95 % VaRs. Again, the performance

of this fourth model can be seen graphically in Figure 3.2. Here, unlike the other

models, the density seems to include the observed value within the range of its

possible values.
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3.5.4 Conclusion

In this paper, a survival analysis was performed for the processing time of claim

coverages. Our work was motivated by the relevance of coverage-specific covariate

information, which cannot be included in the modeling process if the processing

time of the claim from which the coverages originate is directly modeled. This

choice led us to consider Frailty random effects to consider that coverages of a

given claim are likely to be dependent, as they share the same origin. As a base-

line, we provided core definitions of classical proportional hazard models adapted

to a micro-level reserve setting, such as the Weibull-Cox and Cox models. We

chose these models as the inclusion of Frailty effects has been extensively studied

in the survival literature, particularly when considering a Gamma distribution.

We referenced and adapted relevant publications to showcase important theore-

tical definitions and results. In addition, we covered various methods and their

numerical applications to fit the Frailty models we considered.

To complete our analysis, we performed a numerical application of the models we

presented. An essential element we covered were numerical justifications for the

modeling of coverages and the existence of within-cluster dependence. It was ta-

ckled on two fronts. First, we provided several tests and statistics that indicated

the coverages of the same cluster are dependent, be it through non-parametric

methods such as correlation rank statistics (Spearman’s ρ and Kendall’s τ) or

through confirming the significance of the Frailty components with tests such as

the likelihood ratio test. Second, we showed that coverage-specific information,

such as the age of the injured person, was significant in terms of likelihood, thus

motivating the division of claims into coverages. Our numerical analysis also fo-

cused on the statistical advantage of including a Frailty random effect in the

benchmark models. We confirmed that models that included Frailty provided bet-
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ter results regarding the goodness of fit than their counterparts. These results

were provided by the AIC and BIC criteria in the parametric case and the LCV

in the semi-parametric case (among other tests).

Our findings suggest that a survival perspective in micro-level loss reserving pro-

vides an efficient and well-supported solution to portfolio coverage dependence.

Admittedly, the main focus of this paper was the processing time of coverages.

Despite its great importance, it is not the only variable required to predict a loss

reserve in a micro-level setting. In effect, a model for the number of payments

and their severity are also required in conjunction with the predictions of the

settlement dates. As such, a natural extension to this model would be to incor-

porate Frailty effects into these variables, for instance, through Cox processes for

claim payment modeling. It is worth noting that such models have been extensi-

vely studied in micro-level reserving literature for unreported claims (Zhao et al.

(2009), Zhao et al. (2010), Badescu et al. (2016)), confirming its usefulness in this

context. However, coverage-based predictions have yet to be considerably resear-

ched, and thus extensions in terms of severity and frequency could be considered

for both the IBNR and the RBNS coverages.

3.6 Appendix
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Figure 3.3 1st to 2nd coverages Figure 3.4 1st to 3rd coverages

Figure 3.5 1st to 4th coverages Figure 3.6 1st to 5th coverages

Figure 3.7 1st to 6th coverages Figure 3.8 2nd to 3rd coverages
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Figure 3.9 2nd to 4th coverages Figure 3.10 2nd to 5th coverages

Figure 3.11 2nd to 6th coverages Figure 3.12 3rd to 4th coverages

Figure 3.13 3rd to 5th coverages Figure 3.14 3rd to 6th coverages
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Figure 3.15 4rd to 5th coverages Figure 3.16 4rd to 6th coverages

Figure 3.17 5rd to 6th coverages
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CONCLUSION

Dans cette thèse on a présenté des contributions portant sur les micro-réserves en

assurance I.A.R.D. Cette branche de recherche se concentre sur la modélisation des

réserves au niveau micro, c’est-à-dire sur le développement individuel de chaque

réclamation. Dans ce contexte, il est nécessaire de mettre en place des modèles

capables de prédire et de simuler le coût de chaque réclamation après la date

d’évaluation. Pour ce faire, on a proposé une méthode hiérarchique dans laquelle le

développement d’une réclamation est divisé en trois éléments principaux : la durée,

la fréquence et la sévérité. Pour la durée, on a d’abord établi la problématique

principale de cette variable en considérant le délai de survenance, le délai de

déclaration et le délai de fermeture. Plus concrètement, dans le Chapitre 1 de

cette thèse, on a présenté des méthodes paramétriques basées sur la littérature

des modèles de survie, ainsi établissant une structure de base. Par la suite, cette

variable a été reprise dans le Chapitre 3 au cours duquel la problématique de la

dépendance entre les couvertures a été couverte par l’utilisation d’effets aléatoires

associés à chacune de celles-ci au sein d’une réclamation. Pour la fréquence des

paiements, on a utilisé la durée comme mesure d’exposition afin de mettre en place

des modèles de comptage dépendant de cette mesure. De façon plus précise, on

a considéré au Chapitre 2 des méthodes de type Bonus-Malus, souvent utilisées

dans un contexte de tarification, afin d’inclure le passé d’une réclamation dans

la modélisation. Finalement, au niveau de la sévérité on a proposé des méthodes

basées sur la littérature des évènements extrêmes afin de mieux prendre en compte

le caractère volatil des paiements individuels.

La structure hiérarchique nous a permis d’incorporer de l’information individuelle
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à chaque étape de l’ajustement. En effet, la motivation principale de ce projet est

justement l’inclusion de ce type de données. Dans le cadre du Chapitre 1, on a

étudié les variables explicatives statiques et temporelles déterministes alors que

le nombre de paiements passés, qui n’est pas déterministe, a été étudié dans le

Chapitre 2. D’autre part, au Chapitre 3, une analyse par couverture, plutôt que

par réclamation, a permis de plus facilement inclure des variables explicatives qui

diffèrent entre les couvertures d’une même réclamation. Afin de justifier l’utilisa-

tion de modèles capables d’incorporer ces données, plusieurs analyses minutieuses

ont été faites. D’une part, des mesures de la qualité de l’ajustement, telles que

les critères AIC et BIC, ont démontré la significativité statistique des variables

explicatives individuelles étudiées. D’autre part, lors de la comparaison entre les

résultats simulés par les modèles et les valeurs observées, on a aussi démontré

que les modèles qui prenaient en compte ces variables performaient mieux que les

modèles qui omettaient cette information.

Par ailleurs, la structure à trois composantes mise en avant dans cette thèse ouvre

la porte à des extensions afin de capturer d’autres aspects du développement

des réclamations. Par exemple, on pourrait adapter les modèles proposés afin de

prendre en compte des variables explicatives plus complexes telles que l’état de

santé de la personne ou l’importance des moyens médicaux mis en place pour

aider une victime d’accident. En effet, la nature non déterministe de ces variables

implique des considérations particulières afin de pouvoir bonifier les modèles. En

outre, il pourrait être possible de considérer la dépendance entres les composantes

elles-mêmes, par exemple entre la sévérité et le nombre des paiements, en plus

des structures de dépendances étudiées dans la cadre des Chapitre 2 et 3. En-

fin, on peut mentionner que les méthodes paramétriques et semi-paramétriques

présentées dans cette thèse pourraient être modifiées afin d’inclure des éléments

d’apprentissage statistique.
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