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1 Supplementary material
1.1 Full Integer Programming Model
The hairpins insertion that are composed of only one strand are constrained by
Eq. 1, which was modified to only consider base pairs in level 1. The insertion of
interior loops and bulges must first ensure that strands are placed in acceptable
positions (Eq. 2) and that the motif must fill at least 2 unpaired positions,
ensuring information is added to the system (Eq. 3).

∀(x,k,l)∈Seq11
:

Cx,1
k,l ≤

∑
(u,v)∈B

k−1≤u≤k∧
l≤v≤l+1

(D1
u,v) +

∑
(x̃,k̃,l̃)∈Seq21

l̃=k−1

C x̃,1

k̃,l̃
+

∑
(x̃,k̃,l̃)∈Seq22

k̃=l+1

C x̃,2

k̃,l̃
(1)

∀(u, v) ∈ B, ∀x ∈ Mot2 :

− n(1−D1
u,v) ≤∑

(x,k,l)∈Seq21
l<u∨v<k

Cx,1
k,l −

∑
(x,k,l)∈Seq22
l<u∨v<k

Cx,2
k,l ≤ n(1−D1

u,v) (2)

∀(x, k, l) ∈ Seq21 ,∀(x, k̃, l̃) |

k̃ > l ∧ 2 ·
∑

(u,v)∈B
k≤u≤l∧k̃≤v≤l̃

1 +
∑

(u,v)∈B
k≤u≤l⊕k̃≤v≤l̃

1 ≥ l − k + l̃ − k̃ + 1 ∈ Seq22 :

Cx,1
k,l + Cx,2

k̃,l̃
≤ 1 (3)

The k-way junctions admissibility of insertion is decided in Eq. 4, ensuring
that each strand can be reached without crossing the base pairs in the first level.
This is equivalent to Eq. 2 for the interior loops.
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∀j ≥ 3, ∀(u, v) ∈ B : −n(1−D1
u,v) ≤

(j − 1) ·
∑

(x,k,l)∈Seqj1
u≤k≤l≤v

Cx,1
k,l −

∑
1<i≤j

(x,k,l)∈Seqji
u≤k≤l≤v

Cx,i
k,l ≤ n(1−D1

u,v) (4)

An important feature of RNA structure is that their sequence is ordered,
from the 5′ to the 3′ end, and that it is not symmetric. In a motif, an order is
defined over the strands following that direction. The model constrains where
a strand in a motif can be placed given the insertion of the previous (Eq. 5) or
next (Eq. 6) strand of the same motif. An important consideration is that at
the end there must exist a mutually exclusive decomposition of the strands such
that each inserted motif is complete, even if many copies are found (Eq. 7).

∀ 1 < i ≤ j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seqji−1

l̃<k−5

Cx,i−1

k̃,l̃
(5)

∀ 1 ≤ i < j, ∀(x, k, l) ∈ Seqji : Cx,i
k,l ≤

∑
(x,k̃,l̃)∈Seqji+1

l+5<k̃

Cx,i+1

k̃,l̃
(6)

∀ j > 1, ∀x ∈ Motj , ∀1 < i ≤ j : ∑
(x,k,l)∈Seqj1

Cx,1
k,l −

∑
(x,k̃,l̃)∈Seqji

Cx,i

k̃,l̃
= 0 (7)

1.2 Predicting canonical interactions in motifs

(a) PPV (b) STY

Figure S1: Predicting canonical and Wobble interactions in motifs. For α
values of 0.05, 0.1, 0.15 that more than half of the canonical and Wobble base pairs in
the motifs are correctly predicted, and 40% of them are generally captured.
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1.3 Predicting non-canonical interactions in motifs

(a) PPV (b) STY

Figure S2: Prediction accuracy of non-canonical base pairs in motifs. True
positives are the non-canonical base pairs at positions where one motif is inserted in
the sequence. They are composing at most 15% of the interactions in the inserted
motifs, and are hard to predict.

Figure S3: Non-canonical in-
teractions distribution of the
number of non-canonical interac-
tions that are observed at motifs
inserted locations. On the y-axis
the number in the real structure,
on the x-axis how many are anno-
tated in the inserted motif.
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1.4 RNAMoIP on alignments
Due to the nature of the sequence alignment, we relax the procedure to insert
motifs as follows. RNAMoIP predicts the structure of 1 sequence that can be
enhanced with an alignment. All columns that are gaps in the sequence of in-
terest are discarded. Therefore, for a motif component Cx,1

k,l the position k, l
are the same in the structure for which we are doing the prediction, and the
alignment.

We first identify for each sequence, without gaps, positions where each motifs
can fit. For each of these, we count in the alignment the fraction of other
sequences that are at most at a Hamming distance of 1. If that ratio is above
50% we consider that the motif can be inserted at these positions. Formally, we
define a function

found in(Cx,1
k,l ) → [0, 1]

such that: found in(Cx,1
k,l ) returns the fraction of subsequences in the alignment

between positions k, l that are at most at Hamming distance one from the motif
Cx,1. Then we can have the normalizing function:

sim(Cx,1
k,l ) =


1 if the motif matches exactly the sequence in k,l

0 if found in(Cx,1
k,l ) < 0.5

found in(Cx,1
k,l ) else

.
Finally the updated objective function when an alignment is provided be-

comes:

max α
∑

x∈Motj

 (|x|) 2 ×
∑

(x,k,l)∈Seqj1

Cx,1
k,l sim(Cx,1

k,l )



+ 10(1− α)×
∑

(u,v)∈B

m∑
q=1

Dq
u,v p(u, v) βq (8)

Motif length

Motif inserted at position (k, l)

Base pair (u, v)

Probability of the base pair (u, v)

Weight of level q

Weight of motif due to alignment
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Figure S4: Alignment-free secondary structure prediction accuracy. Result
of the alignment’s dataset without using the alignment informations.

(a) PPV (b) STY

Figure S5: Alignment-free secondary structure prediction accuracy. Result
of the alignment’s dataset without using the alignment informations.

(a) PPV (b) STY

Figure S6: Alignment-based secondary structure prediction accuracy. Result
of the alignment’s dataset with the help of the alignment informations.
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1.5 Complete tool analysis

Figure S7: Tools comparison of F1 scores. Include two versions of SPOT-RNA.
As in Fig 6 SPOT-RNA is evaluated on the subset of sequences not in its training set.
We also show the results on the entire dataset, highlight the overfitting if not careful
in the separation of test and train set.

1.6 Computation time benchmark
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Figure S8: Execution Time-based on nucleotide count of the sequence at
α = 0.1. A maximum of 104s was allowed, and 14 sequences didn’t return a solution
in that time.
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