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Abstract
There is mounting pressure on the financial services industry to factor in climate extremes and climate
change. As a result, new reporting and regulatory requirements are gradually being enforced on (re)insurers
globally. One key requirement is physical risk assessment, that is, quantifying the financial impacts of
climate change on the frequency and severity of claims due to weather events such as flooding. This is
however a very challenging task for (re)insurers as it requires modelling at the scale of a portfolio and at a
high enough spatial resolution to incorporate local climate change effects.

In this paper, we introduce a data science approach to physical risk assessment of pluvial flooding
for insurance portfolios over Canada and the United States. The underlying flood model is focused on
quantifying the financial impacts of short-term (12-48 hours) precipitation dynamics over the present (2010-
2030) and future climate (2040-2060) using a methodological approach that leverages statistical/machine
learning and regional climate models. The flood model is designed for applications that do not require
street-level precision as is often the case for scenario and trend analyses. It is performed at the full scale of
Canada and the U.S. at 10 to 25 km resolution.

Our models show that climate change and urbanization will typically increase losses over Canada and
the U.S., while impacts are strongly heterogeneous from one state or province to another, or even within
a territory. Portfolio applications highlight the importance for a (re)insurer to differentiate between future
changes in hazard and exposure, as the latter may magnify or attenuate the impacts of climate change on
losses. While the overall methodology can be applied to physical risk assessment of various risks, we also
provide detailed maps and tables of the impacts of climate change on pluvial flooding for use by researchers
and practitioners.

Keywords: flood insurance, pluvial flooding, climate change, physical risk assessment, machine/statistical learning, climate
models

1. Introduction
Flooding is the most significant natural hazard in the United States and Canada (FEMA 2017;
Canada 2022b). With estimated average annual losses of about $20B (USD) in the United States (FSF
2021) and of $3B (CAD) in Canada (PSC 2022), flooding represents a significant threat to many
urban, rural and coastal communities. Availability of insurance or financial assistance, from either
public or private programs, is therefore very important to increase the resilience of these vulnerable
communities (Surminski, Bouwer, and Linnerooth-Bayer 2016; Kousky 2022).
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Access to insurance (or financial assistance) and adaptation strategies however largely differ
for fluvial, pluvial and coastal flooding. For example, basement flooding whose root cause is the
overflow of a river is typically covered by public plans whereas sewer backup is not (FEMA 2005).
It is therefore imperative for actuaries, economists, land planners, policy- and decision-makers to
distinguish the underlying causes of flooding. Fluvial or riverine flooding refers to the overflow of a
river or watercourse; pluvial flooding refers to "heavy rainfall-related flooding that is independent of
an overflowing body of water" (ICLR 2021) which includes flash floods, whereas coastal flooding
refers to flooding of the coastlines due for example to storm surge (one can find similar definitions in
IBC 2015; Mitchell-Wallace et al. 2017; ICLR 2021; FEMA 2023).

Climate change should affect each type of flooding very differently. According to the Intergov-
ernmental Panel on Climate Change (IPCC) 6th Assessment Report (IPCC 2022), there is high
confidence of an increase of heavy precipitation and pluvial flooding in Canada and the U.S. with
the exception of the Northern West Coast of the U.S. that has medium confidence. As for river
flooding, there appears to be a medium confidence of an increase over both the U.S. and Canada.
The complex interactions between temperature rise, snowmelt and heavy short-term precipitation
(over 24-48 hours) dynamics, make it difficult to detect an increasing or decreasing trend in fluvial
flooding in various parts of Canada and the U.S. (Bush and Lemmen 2019), especially over the winter
and spring. This further reinforces the idea of differentiating the types of flooding for financial risk
management.

There is currently pressure on the financial services industry to factor in climate extremes and
climate change in their business decisions. This is because corporations globally are integrating ESG
principles (environmental, social, and corporate governance), and will soon become subject to a
new regulatory environment, thanks in large part to the work of the Task Force on Climate-related
Financial Disclosures (TCFD) (Financial Stability Board 2017). Regulators are gradually requiring
corporations to report the sensitivity of their profitability to various scenarios of climate change
whereas banks and (re)insurers must do similarly by stress-testing their stability as well (e.g., Bank of
England 2019; OSFI 2023).

An important component of such reporting and stress-testing for the property (re)insurance
industry is physical risk assessment (PRA); that is, quantifying the financial impact of climate change
on the frequency and intensity of claims due to e.g., flooding. The ability to distinguish regions
of Canada and the U.S. where climate change might have the most (or least) impact is obviously
critical for PRA. For example, Environment and Climate Change Canada found that temperature
increase in Canada is expected to be steeper than elsewhere, especially in Northern territories (Bush
and Lemmen 2019; IPCC 2022). Evidence for more frequent and more severe atmospheric rivers
is also mounting (Gershunov et al. 2019; Corringham et al. 2019; Rhoades et al. 2020) as British
Columbia and California struggled with record amounts of rain and flooding in 2021 and 2022.
Sound decision-making thus requires modelling of the financial impacts of climate change at the
scale of a (re)insurance portfolio and at a spatial resolution that allows the integration of local climate
change effects.

There are however important limitations to meet these objectives. Large scale high-resolution
flood modeling is (1) extremely costly from both a computational and financial standpoint; (2) they
require inputs that are difficult to acquire for large countries (high-resolution terrain and bathymetry
data) or are non-existent for many cities (sewer system configuration, exact location of inlets and
outlets) and ultimately; (3) they lack the flexibility required by e.g., actuaries and economists to
analyze many customized scenarios (for a review, see Carozza and Boudreault 2021 and references
therein). Computing the impacts of climate change on flooding adds another layer of difficulty
with respect to modelling future temperature and precipitation dynamics. This requires integration
of climate models whose outputs are limited at the global scale because they must be run on large
computer clusters. For financial risk management applications that do not necessarily require accurate
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street-level data, such as analyzing many different scenarios and trends for (re)insurance portfolios
over Canada and/or the U.S., the resolution provided by climate models is appropriate.

In this paper, we introduce a data science approach to physical risk assessment of pluvial flooding
for insurance portfolios over Canada and the U.S. That is, the underlying flood model is focused on
quantifying the financial impacts of short-term (12-48 hours) precipitation dynamics over the present
and future climate (until 2060) using a methodological approach that leverages statistical/machine
learning and climate models. This is done through a top-down modelling chain integrating climate
model outputs at its core. Few papers in actuarial science have integrated climate models for insurance
applications. For example Boudreault et al. 2020 used a top-down modelling approach, and a chain
of climate, hydrological and hydraulic models to represent fluvial flood risk over a small city in
Canada. Jin and Erhardt 2020 used climate model outputs to price temperature index–based insurance
products in California. Here, the analysis is performed for Canada and the U.S. at 10 or 25 km
resolution depending on the application, keeping an appropriate balance between computational
speed and the ability to distinguish regional discrepancies.

To meet such goal, we trained statistical and machine learning methods on historical pluvial
flood occurrences in the United States, and validated their predictive skill over the U.S. (test set)
and Canada (validation set). We then integrated output from a regional climate model to calculate
future flood probabilities for every month and grid cell until 2060. Finally we show various portfolio
applications where we analyze the impacts of changes in hazard and exposure on portfolio losses over
the present (2010-2030) and future (2040-2060). The paper provides a methodological framework
for physical risk assessment that is applicable to various risks, connecting statistical and climate models
to solve a problem that is increasingly important for both actuarial science and actuaries. To the best
of our knowledge, this is the first paper that provides a financial assessment of the impacts of climate
change on pluvial flooding over Canada and the U.S. for insurance purposes.

Overall, we find that Generalized Additive Models have a solid predictive power in- and out-
of-sample to explain pluvial flood episodes compared to linear models and ensemble tree-based
methods. We thus find different levels of pluvial flood risk in most urban areas of Canada and the
U.S. Furthermore, we do not recommend using tree-based methods for projecting the impacts
of future precipitation and urbanization patterns due to their inability to extrapolate beyond the
original training set. There also appears to be wide heterogeneity of climate change impacts across
states and provinces that become significant when analyzing insurance portfolios, highlighting the
importance of climate-informed financial risk management. We also emphasize the importance of
differentiating changes in hazard and exposure since they both interact to attenuate or magnify the
financial impacts of climate change.

The paper is structured as follows. Section 2 describes the general physical risk assessment
framework and how it is applied in the context of this paper. Section 3 then details the datasets,
statistical and machine learning methods used to build the various pluvial flood models discussed
in the paper. Evaluation of the predictive power of the models over test and validation sets is also
presented in this section. We then show future projections of pluvial flood risk in Section 4 by first
describing the data, methods and validations. We provide maps over Canada and the United States of
the impacts of climate change on pluvial flooding as well as time series for pluvial flood probabilities
for select cities in both countries. We present a portfolio application in Section 5 highlighting how
regional discrepancies and portfolio composition may affect aggregate losses. Section 6 then concludes
with a broad discussion of the paper’s findings. Appendices and the Supplementary Material complete
the core analyses of the paper by providing additional results and validations.

2. Physical risk assessment
Physical climate risk assessment or physical risk assessment (PRA) in the context of this paper is
the qualitative and quantitative analysis of the impacts of climatic events such as floods, tropical
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cyclones, wildfires, etc. For a property and casualty insurance organization (public or private),
PRA requires an understanding of the frequency and intensity of these events, without or with
climate change considerations, and their impact on the claims dynamics. This is typically done
through a decomposition of risk into its main components, that is, hazard, vulnerability and exposure
(Mitchell-Wallace et al. 2017). This section describes general principles of PRA and how we approach
the latter to evaluate portfolio losses from pluvial flooding under the present and future climates.

2.1 Top-down catastrophe modelling
According to the United Nations Office for Disaster Risk Reduction (UNDRR) Sendai Framework
Terminology on Disaster Risk Reduction (UNDRR 2017), hazard, vulnerability and exposure are
defined as (IPCC 2021a uses a similar terminology):

• "Hazard: a process, phenomenon or human activity that may cause loss of life, injury or other
health impacts, property damage, social and economic disruption or environmental degradation;
• Vulnerability: the conditions determined by physical, social, economic and environmental factors

or processes which increase the susceptibility of an individual, a community, assets or systems to
the impacts of hazards;
• Exposure: the situation of people, infrastructure, housing, production capacities and other tangible

human assets located in hazard-prone areas."

Risk is the intersection of hazard, vulnerability and exposure: for a visual depiction of risk as a
function of hazard, vulnerability and exposure, one should look at Figure 1 of UN 2023 or Figure
TS.4 of IPCC 2021b. For example, a property is exposed to flooding if it is located in an area of flood
hazard, whereas it is vulnerable to flooding if there are possible entries where water can enter into a
house (basement windows, doors). Catastrophe modelling is therefore naturally based upon such
decomposition of risk and aims to model each of these three components, providing in the end what
is known as the ground-up loss, that is losses before the application of any insurance or reinsurance.
This is illustrated at the bottom of Figure 1.

The hazard component represents the frequency, intensity, duration, genesis location and foot-
print of an event. The exposure includes the geographical location of the property, its size (e.g.,
square footage, number of floors) and value (e.g., market value, reconstruction costs). Vulnerability
represents the characteristics of a house that magnify or attenuate the impacts of the hazard. In the
context of flooding, that includes whether there is a finished basement or not or a crawlspace, first
floor elevation, height of basement windows, etc. Damage curves typically link the intensity of an
hazard with the vulnerability of a home to yield dollars of losses or percentage of damage.

2.2 Climate models
Hazard modelling of climatic events such as flooding or tropical cyclones is founded on an under-
standing of the interactions between the climate and e.g., the frequency and intensity of a climatic
hazard as illustrated at the top of Figure 1. PRA under future climates adds another layer of mod-
elling as we need to relate greenhouse gas (GHG) emissions and concentration to impacts on e.g.,
temperature and precipitation. A natural approach is therefore the integration of climate models
(general circulation models and regional climate models) into a PRA.

General circulation models (GCMs) are numerical models that simulate the evolution and inter-
actions of most components of the climate system (atmosphere, land, ocean, ice, etc.) using physical
equations and empirical relationships (Chen et al. 2021). They are at the core of climate and climate
change studies and are thus widely used to study global temperature and precipitation (among other
variables) patterns over the present and future (Chen et al. 2021). In many respects regional climate
models (RCMs) are similar to GCMs yet they usually focus on atmospheric phenomena at conti-
nental and regional scales allowing for simulations that use higher spatial and temporal resolutions
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Figure 1. Top-down catastrophe modelling approach with climate on top

and are able to resolve smaller-scale processes (Chen et al. 2021). Climate models are therefore
computationally intensive and are typically run on supercomputers.

Climate models are forced with GHG emissions scenarios that are designed to capture the impacts
of future socioeconomic growth and energy choices. Those emissions scenarios are in turn converted
into radiative forcings (see top of Figure 1). Changes in the radiative forcing represent the extra
heat in the atmosphere due to GHG emissions and are measured in watts per squared-meter. For
example, in the IPCC AR6, the climate scenario SSP2-4.5 represents what is known as the "middle
of the road" (the entire storyline is provided in Fricko et al. 2017) and corresponds to 4.5Wm–2 of
extra energy flux to the atmosphere by 2100. Over available climate models, this emissions scenario
typically leads to an approximate global warming of +2.5 degrees in 2100 compared to pre-industrial.

Typical outputs of climate models include (surface) temperature, precipitation (liquid, convective,
snow, etc.), near surface relative/specific humidity, Eastward/Northward (near surface) winds,
(surface) air pressure, etc. Outputs typically are stored as grids and may take up to terabytes and
petabytes of storage depending on the vertical (in the atmosphere), horizontal (over the surface) and
temporal (hourly, daily) resolution of the data, the variables needed, etc.

Integrating climate models into hazard modelling should also take into consideration the biases in
the outputs that can affect the results at the end of the modelling chain. This is typically approached
using what is called pre-processing or post-processing. Pre-processing implies bias correction prior
to using it into a hazard module. This is done by comparing e.g., the precipitation outputs with
past observations. Post-processing implies comparing a hazard feature simulated from climate model
outputs (for example hazard frequency) with what was observed in the past. If pre-processing does
not succeed in eliminating all biases in the hazard component, then post-processing would also be
needed.
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Reporting and regulatory requirements are often based upon assessing the overall impacts on
the organization of a given temperature increase (say e.g., +2 degrees compared to pre-industrial).
Temperature increase and global warming are endogenous in a climate model and result from
radiative forcings. Integrating climate models into PRA therefore requires using available runs of
climate models along with corresponding climate scenarios.

2.3 Proposed approach
In this paper, we take a data science approach to PRA of pluvial flooding in an insurance portfolio.
The core of the work lies in the hazard modelling of pluvial flooding occurrence (Y) as a function of
a set of atmospheric and socioeconomic variables (X). We first fit and validate the Y |X relationship
using statistical and machine learning for binary responses using past observed data for X and Y.
This is the fitting and validation step. Then climate risk assessment is performed by computing
flood occurrence probabilities using outputs from climate models for X over different time intervals.
This is the projection and simulation step. When computing predictions, one may hold fixed
socioeconomic variables to isolate the effects of climate change from socioeconomic growth or one
may use population projections as well.

This study is not meant to provide a detailed account of the impacts of pluvial flooding at
the street-level. There is inevitably a trade-off between the financial and/or computing resources
necessary and the resolution of the information needed. Here, we focus on the large-scale impacts of
climate change on pluvial flooding in portfolios covering either Canada or the United States. As
such, we do not explicitly model vulnerability while we proxy exposure as the number of people
living or insured in each grid cell. More details about portfolio modelling are provided in Section 5.

3. Occurrence Models
This section describes the pluvial flood occurrence models analyzed throughout the paper. We begin
by outlining the datasets (Section 3.1), the statistical and machine learning methods (Section 3.2),
then we explain how they have been applied to our study (Section 3.3) and finish the section by
assessing the predictive capability of the models in the United States and Canada (Sections 3.4.1 and
3.4.2).

3.1 Data
This section characterizes the historical flood occurrence data (Section 3.1.1) used as the response
variable in the statistical and machine learning models. Then we examine the predictors made from
atmospheric and socioeconomic variables (Sections 3.1.2 and 3.1.3).

3.1.1 Flood occurrence
Historical flood occurrence is derived from the Storm Events Database (SED) from the National
Oceanic and Atmospheric Administration (NOAA) (NOAA 2021). The dataset contains significant
weather events from 1951 and onward in the United States (no similar dataset is available for Canada
and this is discussed in Section 3.4.2). Information comes from multiple sources, that is, 911 call
centers, media, and local authorities (such as law enforcement). For each event, there are many
variables available, that is, the date and time of the beginning and end of the event, the location of
the event, type of event and for flooding events, the cause of such flooding. For the purpose of this
research, we focused on flooding events induced by heavy rain between 2007 and 2020 because
latitude/longitude location data was not available prior to 2007.

We then converted the storm events location data into monthly grid cells over the United States,
so there is at most one event per grid cell-month. We chose a monthly observation frequency to
capture seasonality while keeping the overall size of the dataset manageable. We fixed the grid
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cell resolution to 0.1◦ × 0.1◦ to match precipitation data (Section 3.1.2). Such spatial resolution is
approximately equivalent to 10 km ×10 km over the area of study (but as we approach the North
Pole, the grid cell area expressed in km2 decreases). Therefore, historical flood occurrence data (and
covariates as well) is represented over 168 grids (1 per month over 14 years) of 143,922 cells each.

3.1.2 Atmospheric variables
Precipitation is obviously a key driver of pluvial flooding and data is extracted from the Multi-Source
Weighted-Ensemble Precipitation (MSWEP), a comprehensive dataset that combines rain gauges,
satellites and reanalyses from various sources (Beck et al. 2019). The 3-hourly data is available globally
at a spatial resolution of 0.1◦ × 0.1◦ from 1979 and onward but we extracted data from 2007 to 2020
to match the flood occurrence data. We built precipitation covariates by computing the monthly
maximum of 6-, 9-, 12-, 24- and 48-hourly precipitation.

Temperature is an important driver of evapotranspiration that also captures seasonal features of
flooding. Temperature data comes from the CPC Global Daily Temperature data from the NOAA
(National Oceanic and Atmospheric Administration et al. 2021) and the dataset contains global
gridded daily minimum and maximum temperatures at a resolution of 0.5◦ × 0.5◦ from 1979 to
the present. Because temperature resolution is lower than precipitation, we downscaled the data to
0.1◦ × 0.1◦ assuming constant average daily temperature within each block of 5x5 grid cells. This is
a reasonable assumption given that spatial variations of temperature are typically much smaller than
precipitation. We built temperature covariates by recording the monthly average of daily minimum
and maximum temperature per grid cell.

In Northern or alpine climates rapid snowmelt and rain-on-snow events caused by e.g., heavy
rain (and rapid increases in temperature) are drivers of flooding. Therefore, we add snow cover data
in the analysis from the Canadian Centre for Climate Services available over North America at a
resolution of 24 km x 24 km (Ross and Bruce 2010). Snow cover data has been reprojected with
bilinear interpolation to the 0.1◦ × 0.1◦ grid that we use for the analysis. Every month, we recorded
the daily maximum snow cover.

There are many common climate types in the U.S. and Canada, and we aimed to distinguish
pluvial flooding dynamics based upon such climates using the Köppen-Geiger (KG) climate classifica-
tion. There are 30 climates spread over 5 main climate groups (tropical, dry, temperate, continental,
polar). KG climate classification is available as a static variable on a 0.1◦ × 0.1◦ global grid (Peel,
Finlayson, and McMahon 2007). Climate classification is not meant to be dynamic but rather to
distinguish geographical areas based on weather patterns. Therefore, we assume it remains constant
during the study period.

3.1.3 Socioeconomic variables
Land use is an important driver of flooding determining how rainfall runs off from the surface.
Urbanization has led to an increase in flooding in the past (Feng, Zhang, and Bourke 2021) by
limiting infiltration and increasing surface runoff. We utilize the land use data from the Commission
for Environmental Cooperation (CEC 2015), which was derived from Landsat satellites data in 2015
at a resolution of 30m x 30m.

Land use is sorted into 19 classes. For each 0.1◦×0.1◦ grid cell there are over 100,000 observations
of land use. We have therefore computed the proportion of each land use type for each of the 19
classes assuming it did not change significantly over the 14 years of the study. For parsimony, we
grouped 11 types of land use together, leaving us with 8 categories overall: forest, scrub, grassland,
wetland, cropland, dry land, urban area and water.

As floods are only reported when there is population and because we lack appropriate projections
of land use for the future, we have also included population data into the analysis. We used the U.S.
Census Grid population data available for the years 2000 and 2010 from the Socioeconomic Data and
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Applications Center (SEDAC) hosted at Columbia University (Seirup and Yetman 2006; CIESIN
2017). The 30 arc-second (about 1 km) grid of the U.S. Census was then aggregated at a 0.1◦ × 0.1◦
resolution. A linear interpolation was used to deduce population for 2007 to 2009 and it was assumed
fixed as of 2010 between 2011 and 2020 because 2020 population data was not available at the time
of study. Note that gridded population data is approximately equivalent to population density since
the grid cell size remains constant at 0.1◦ × 0.1◦.

3.2 Methods
Flood occurrence is a classification problem and as such, we have used the Generalized Linear Model
(GLM) (namely, the logistic regression), the Generalized Additive Model (GAM) and Random
Forests (RF). We focused on the latter methods because the resulting models are flexible allowing
for non-linearities (GAM, RF) and interactions (RF), while being interpretable. More details about
GLM, GAM and RF methods can be found in Chapters 4, 7 and 8 of Gareth James et al. 2021.

The historical occurrence data described in Section 3.1.1 has more than 2.4M observations of
which, 0.27% are ones (pluvial flood observed in a given month and grid cell) and the rest are zeroes
(no pluvial flood observed in a given month and grid cell). As such, the dataset is imbalanced and
we focus on avoiding problems related to the overestimation of the probability of no flood (false
negatives).

There are few solutions to deal with data imbalance (Ganganwar 2012). It is possible to oversample
ones or undersample zeroes. Given the size of the dataset, undersampling zeroes was a better option
than oversampling ones, which reduces its size and accelerates computations. In other words, we
randomly (over months and grid cells) eliminated zeroes from the dataset to match a given proportion
of either 90% or 50%. We tested two proportions to determine whether the outcomes are sensitive
to such choice. Whenever undersampling was used, predicted flood occurrence probabilities were
adjusted following Saerens, Latinne, and Decaestecker 2002 to match observed probabilities.

3.3 Models
The response variable is flood occurrence in the United States, measured over grid cell-months. We
assume that given a set of covariates, flood occurrence is independent (over grid cells of 0.1◦ × 0.1◦
and months) and as such, this classification problem can be treated as a very typical one. The set of
covariates are (as described in Section 3.1): 5 precipitation variables (6-hourly, 9-hourly, 12-hourly,
24-hourly, 48-hourly), temperature, snow cover, climate classification, 8 proportions of land use,
and population density.

To eliminate the adverse effects of multicollinearity, we also built a smaller set of covariates.
Indeed, we found high correlation in the precipitation variables (by construction, one being often
included in the other) and only kept the 24-hour precipitation since higher frequency precipitation
is not available in the climate model projections described in Section 4.1. Moreover, we found high
correlation between monthly temperature and snow cover, and the latter has been excluded since
temperature is also readily available in climate models whereas snow cover is not. We also found high
correlation between the proportion of urban extent (one of the land use covariates) and population
density and decided to keep the latter since it is readily available in future population projections. We
also combined forest and grassland proportions into one for similar reasons. Overall, the smaller set
of covariates comprises of: 24-hour precipitation, average daily temperature, climate classification,
5 proportions of land use (combining forest and grassland, dropping water and urban extent) and
population density.

Given the imbalance dataset problem and correlation between many of these covariates (especially
between the precipitation variables), we analyze each of the following using either the GLM, GAM
and RF, resulting in 15 models overall:

• All covariates, no undersampling;
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• All covariates, undersampling with 90% of zeroes;
• All covariates, undersampling with 50% of zeroes;
• Smaller set of covariates, undersampling with 90% of zeroes;
• Smaller set of covariates, undersampling with 90% of zeroes, with logged population density.

3.4 Validation
We first fit the 15 flood occurrence models (described in Section 3.3) over the United States with
70% of data and assess the predictive capability using a test set made of the remaining 30% (Section
3.4.1). The test set has been generated by randomly selecting 30% of data over grid cells and months
of the original dataset. Fitting is then performed in R using: the lm function (GLM) from the base
package; the bam function (GAM) from the mgcv package (Wood 2017) and, the ranger function
(RF) from the ranger package (Wright, Wager, and Probst 2020). The GAM was fitted with cubic
regression splines for non-factorial variables.

A model fitted over the United States (with Canadian KG climates available in the U.S.) is then
used to predict pluvial flooding in Canada. The model quality over Canada is investigated in two
different manners (Section 3.4.2). First, by using flood claims data from a major Canadian insurance
company, yielding a purely out-of-sample predictive analysis. Second, we perform a qualitative
assessment of the model over major flood events in Canada.

3.4.1 United States
We compute the areas under the receiver operating characteristic (ROC) and precision-recall (PR)
curves with the test set in the United States. The results are shown in Table 1 noting that "u/s" stands
for undersampling. For more details about the ROC, precision and recall metrics, the reader should
refer to Chapter 4 of Gareth James et al. 2021.

Table 1. Area under the ROC (Panel A) and PR (Panel B) curves with the test set over the United States for all 15 models
considered

Panel A: ROC curve Panel B: PR curve
Models GLM GAM RF GLM GAM RF

All, no u/s 0.8890 0.9076 0.9224 0.0587 0.0762 0.1091
All, 90% u/s 0.8992 0.9084 0.9254 0.0587 0.0742 0.0923
All, 50% u/s 0.9017 0.9085 0.9216 0.0566 0.0701 0.0766

Smaller, 90% u/s 0.8894 0.8987 0.9273 0.0499 0.0653 0.0957
Smaller, 90% u/s, log pop 0.8969 0.9038 0.9272 0.0564 0.0676 0.0957

We find that models perform very well in the test set with an area under the ROC curve in the
range of 0.89-0.93, with a slight advantage to random forests. As for the area under the PR curve,
values range from 0.05 to 0.11, which is above the baseline for a non-informative model (0.005,
computed with historical occurrences). The GAM model performs better than the GLM while RF
again shows the best predictive capability in the test set. Overall across models considered, RF yields
the largest area under both the ROC and PR curves.

It also appears from Table 1 there is no clear advantage from a predictive standpoint to undersample
zeroes. When using all covariates, undersampling with a target 50% or 90% of zeroes provided a very
similar area under the ROC curve for the GLM, GAM and RF. The latter result is different though
for the PR curve, where undersampling slightly worsens predictive capability for the GAM, and
more significantly for the RF. That being said, the more parsimonious models with undersampling
still yielded very comparable performance to cases without undersampling. When computation times
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matter, undersampling the dataset and using less covariates therefore yield very similar predictive
performance (in a shorter amount of time and memory).

Panel A : Empirical 

 

Panel B : Random forests 

 

Figure 2. Flood probabilities over the United States: empirical (Panel A, top) vs predicted (Panel B, bottom) using the random
forests model (undersampling with 90% of zeroes, smallest set of covariates, logged population). Similar plots for GLM and
GAM available in the SM. Color scale is the same for all plots to allow comparison between models.

We compare in Figure 2 the predicted probabilities from the RF model with historical flood
probabilities. That is, Panel A of Figure 2 computes the empirical flood probability per grid cell,
calculated as the number of months with flood occurrence over the total number of months. A
white cell means no occurrence has been observed. Panel B of Figure 2 computes the average (over
months and years between 2007 and 2020) predicted flood probabilities over the United States for
one random forests model (undersampling with 90% of zeroes, smallest set of covariates, logged
population).

We see that pluvial flood occurrence is concentrated in urban areas and that the model does very
well in characterizing the spatial characteristics of pluvial flood, which is important to distinguish
where climate change might have a greater impact. In the case illustrated here, the RF appropriately
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captures areas of low risk (white on top vs yellow in the bottom) and pluvial flood probabilities in
urban areas are at very similar levels and locations in both panels.

The Supplementary Material (SM) includes 15 plots, one per model (GLM, GAM, RF) and one
per set of covariates (5), plus the empirical probability. They show that adding the logged population
density was important for GLM and GAM since it appears that predictions were too sensitive to
slight changes in population otherwise.

3.4.2 Canada
We would like to perform a validation exercise of the 15 models but over Canada. There are
however no formal datasets in Canada that records flood events (or other weather events) at a level
of granularity that we can find in the NOAA SED (with latitude and longitude of location). The
Canadian Disaster Database (Canada 2022a), maintained by Public Safety Canada, has approximately
the same level of information as the EM-DAT dataset (Guha-Sapir, Below, and Hoyois 2022). The
Flood List website (Davies, Behrend, and Hill 2021) also provides information about flooding globally,
but in all three cases, location information is much too vague to be able to formally validate the flood
models.

We thus perform a quantitative and a qualitative validation of the models over Canada. The
quantitative assessment was based on a sample (non-random and non-divulged in this article) of
data from Co-operators, a Canadian insurance company part of the top six P&C insurers in Canada.
Data specific to clients was not used for this analysis, only aggregate information about a flood event.
Such assessment is feasible since the predictors presented in Section 3.1 are available globally or over
North America, with the exception of population which covers the U.S. only. In this case, we used
the Gridded Population of the World (GPW) v4.11 also available from the SEDAC (CIESIN 2018).

We have also recalibrated the 15 models over the U.S. but only over regions whose Canadian
KG climates are available in the U.S. (therefore excluding areas whose climate would not contribute
much in predicting flood dynamics in Canada such as Southern U.S. states). As such, we show
ROC and PR metrics with the claims data available from 2012 to 2020. The qualitative assessment
compares time series of predicted flood probabilities between 2007 and 2020 with major historical
flood events that took place over Toronto (2013, 2018) and Calgary (2013, 2019).

Table 2. Area under the ROC (Panel A) and PR (Panel B) curves with flood claims from a Canadian insurer (2012-2020) for all
15 models considered

Panel A: ROC curve Panel B: PR curve
Models GLM GAM RF GLM GAM RF

All, no u/s 0.8136 0.7812 0.7994 0.0153 0.0258 0.0301
All, 90% u/s 0.8065 0.7816 0.8158 0.0102 0.0236 0.0339
All, 50% u/s 0.7867 0.7811 0.8147 0.0077 0.0226 0.0267

Smaller, 90% u/s 0.7740 0.7874 0.8276 0.0094 0.0243 0.0274
Smaller, 90% u/s, log pop 0.9009 0.8219 0.8281 0.0152 0.0164 0.0269

Table 2 shows the area under the ROC and PR curves for the 15 models applied in Canada. In
bold face we highlight the method with the highest metric in each line. We now see a different
picture, as is usually the case when performing out-of-sample prediction exercises. The areas under
the ROC curves now range within 0.77-0.90 which is lower than what we obtained over the United
States. That being said, the performance is very good especially for the models with the smallest
set of covariates and logged population, with metrics in the range of 0.83-0.90. It is particularly
surprising to observe a value of 0.9 with the fifth model under the GLM; it appears that simpler
specifications are performing well out-of-sample in Canada and that logged population captures the
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fact that urbanization beyond some level should not have the same impact on pluvial flood probability.
We therefore have a solid case for the fifth set of models (smaller set of covariates, undersampling
with 90% of zeroes, with logged population density) which has the highest scores while being the
fastest to fit (because of fewer covariates and smaller sample size due to undersampling). As for the
areas under the PR curves, it shows that the random forests models have a slight advantage over the
GAM.

Figure 3. Validation of pluvial flood models with predicted flood probabilities in Toronto over July and August (top row),
and Calgary over June (bottom row) between 2012 and 2020. Models with the smallest set of covariates, 90% of zeroes and
logged population density were used.

We continue this section with a qualitative assessment of the models using selected flood events
in Canada. We have plotted in Figure 3 the predicted pluvial flood probability over the months of
July and August in Toronto (top row). We observe major peaks in probabilities in July and August
2013 as well as in August 2018 which coincide with major flooding events in downtown Toronto.
The 2013 floods in Toronto were among the most expensive for the insurance industry in Canada.

Figure 3 also shows a similar plot for Calgary in June of very year of the sample (bottom row).
We can distinguish significant peaks over June 2013 and June 2019. Although heavy rain triggered
flooding in Calgary in June 2013, heavy snow accumulation upstream in the prior months magnified
the intensity of the event, which might explain why the maximum observed in 2019 is higher than
in 2013, because of the longer term snow melt processes. Calgary also saw floods in June 2019 due
to thunderstorms pouring in largely abnormal amounts of rain.

Moreover, in the three subplots of Figure 3, we observe that the GAM typically generates
the largest range of flood probabilities, indicating the model is the most responsive to changes in
precipitation patterns. Finally, on the basis of the quantitative and qualitative validations, we are
comfortable in saying the pluvial flood model fitted in the United States provides strong predictions
in Canada.

We conclude this section by providing a map of pluvial flood probabilities over Canada. Figure
4 shows the predicted pluvial flood probabilities (averaged over years and months between 2007
and 2020) from the random forests model (Panel A, top) and the GLM (Panel B, bottom) using
undersampling with 90% of zeroes, the smallest set of covariates and logged population. Pluvial
flooding is therefore also concentrated in urban areas as was the case for the United States. This is
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Panel A : Random forests 

 

Panel B : GLM 

 

Figure 4. Predicted flood probabilities over Canada for the random forests model (Panel A, top) and GLM (Panel B, bottom)
using undersampling with 90% of zeroes, the smallest set of covariates and logged population. Note that we cannot show
historical flood probabilities to protect the confidentiality of the data. Similar plots for GAM are available in the SM. Color
scale is the same for all plots to allow comparison between models.
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especially true in the Greater Vancouver area, Southern Quebec and Ontario (including, Montreal
and Toronto), as well as many urban areas of New Brunswick and Nova Scotia. Note that we cannot
show historical claims patterns in Canada to protect the confidentiality of the clients. Moreover, we
have more blank cells in Canada because more cells have no population (or too few) and because
Northern Canadian climates could not be found in the U.S.

4. Future projections
In this section, we analyze pluvial flood probabilities predicted for the future. We first discuss the
datasets used to build covariates (Section 4.1), then how the statistical and machine learning methods
have been applied with such covariates (Section 4.2). We conclude this section by analyzing the
impacts of climate change and urbanization on pluvial flooding over the United States, Canada and
for selected cities of both countries (Sections 4.3 and 4.4).

4.1 Data
4.1.1 Climate models outputs
We used climate model simulations from the Canadian Regional Climate Model version 5 (CRCM5)
(Šeparović et al. 2013; Martynov et al. 2013) available from the Coordinated Regional Climate
Downscaling experiment (CORDEX) - North America (NA) ensemble (World Climate Research
Programme, WCRP). The six CRCM5 runs used are: CCCma-CanESM2, MPI-ESM-LR, MPI-
ESM-MR, UQAM-GEMatm-Can-ESMsea, UQAM-GEMatm-MPI-ESMsea and UQAM-GEMatm-
MPILRsea. The domain covers Canada and the U.S. at a spatial resolution of 0.22◦ (about 25 km) from
1850 to 2100. Contrarily to GCMs, RCMs better capture local dynamics than statistical downscaling
(Maraun and Widmann 2018). The CRCM5 is also well known to simulate precipitation extremes,
which is an important feature to model pluvial flooding (Martynov et al. 2013; Martel, Mailhot, and
Brissette 2020).

We extracted data from 2007 to 2060 to match the initial date of the NOAA SED with an
approximate 40-year future time horizon. Projections beyond 2060 are highly uncertain and heavily
depend on climate policies enacted today. All runs were forced with the RCP 8.5 scenario starting
from 2006 (and historical emissions before 2006) which assumes that emissions continue until 2100.
Our analysis is focused on short term projections (2010-2030, centered on 2020) and medium-term
projections (2040-2060, centered on 2050). Until 2060 the concentration scenarios do not differ
much but RCP 8.5 still represents a pessimistic scenario.

Daily precipitation in the CRCM is expressed in kgs–1m–2 and temperature in degrees Kelvin.
We multiplied precipitation by 86,400 to convert precipitation into mm/24hr and subtracted 273.15
to convert temperature into degrees Celsius.

4.1.2 Socioeconomic projections
Population projections for the future are also available from the SEDAC (Jones and O’Neill 2020).
These projections are typically consistent with GHG emissions scenarios used in climate models.
As such, we used two population projections, that are derived from the Shared Socioeconomic
Pathways (SSP) scenarios from the IPCC (IPCC 2022). We applied the SSP2 and SSP5 scenarios
which are respectively labelled as "Middle of the Road" and "Fossil-fueled Development" (O’Neill
et al. 2014; Fricko et al. 2017; IPCC 2022). Both of these population projections are available on a
0.125◦ × 0.125◦ grid and were reprojected to match the grids of the climate models.

4.2 Methods
Because hourly precipitation is not available in the CRCM5 runs we analyzed, not all 15 models
from Section 3.3 will be used for climate change risk assessment. Due to the unavailability of some
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variables, the predictive capability of the models, and computation times, we used the smaller set of
covariates along with a targeted 90% of zeroes for each of the GLM, GAM and RF. Covariates thus
comprise: 24-hour precipitation, temperature, climate classification, 5 proportions of land use and
population density.

The first step is updating our covariates using the climate model. For each of the six runs of
the CRCM5 over 2006 until 2060, we extract 24-hour precipitation and compute the average daily
temperature. Afterwards, we record the maximum daily precipitation over the month and compute
the average monthly temperature. The static variables such as Köppen-Geiger climate classifications
and proportions of land use were held fixed until 2060 because no future projections were available.
As for population density, we used two different assumptions: SSP2 population projections until 2060
or fixed as of 2020 (SSP5 was also considered but results were not materially different over the time
horizon considered). The latter thus fixes land use and urban extent and allows us to focus strictly
on changes in future atmospheric conditions whereas the former allows for interactions between
increased urbanization and possibly more heavy rain.

The second step is computing flood probabilities with the updated covariates. For each month
(12), year (54) and run (6) of the CRCM5, we computed flood probabilities using outputs of the
CRCM5 as simulated covariates. We call these simulated probabilities of flooding and they are
available over the present and future climates. We interpret climate simulations over the present
climate as alternate and plausible trajectories of the climate.

To mitigate the need to apply some kind of post-processing (see Section 2.2) on flood probabilities,
our analyses focuses on differences between two time periods (rather then looking at raw probabilities),
therefore assuming that any bias found in the CRCM5 over the historical period is likely to be of a
similar order in future projections. Appendix 1 provides an analysis of the CRCM5 over 2007-2020
and we find that such bias is very small in most areas.

4.3 Maps
The first step of our analysis is to compare flood probabilities between two time periods: 2010-2030
(centered on 2020) and 2040-2060 (centered on 2050), which are 30 years apart. We therefore
average simulated probabilities across months, years and runs of each time period. Figure 5 shows
the difference in pluvial flood probability between 2040-2060 and 2010-2030 for the United States
for the GLM (Panel A, top), GAM (Panel B, middle) and RF (Panel C, bottom). Figure 6 is similar to
Figure 5 but for Canada. Both plots therefore highlight the combined impacts of climate change
and future urbanization on the pluvial flooding hazard.

Whereas all three models agree that the West Coast of the U.S. and Canada will be the most
affected by changes in flood probabilities, there are however large discrepancies between predictions
of the GAM/GLM and the random forests. The GAM/GLM families of models yield increases of
pluvial flooding elsewhere in the U.S. and Canada, concentrated in urban areas of Eastern U.S.
and Southern Quebec and Ontario, whereas the random forests method shows close to no changes
elsewhere. In fact, the random forests show the smallest increases over the West Coast.

One should be very careful with the results from the random forests because it is well known that
RF and tree-based methods are unable to extrapolate beyond the range of the training set (Hengl
et al. 2018). This becomes a major issue for climate change risk assessments because atmospheric
variables such as precipitation and temperature patterns in the future may very well be much different
from their equivalent in the past.

4.4 Select cities
The inability of the RF to extrapolate beyond the original training set becomes obvious when we
look at time series of simulated probabilities of flooding from 2006 to 2060 for select cities in the
United States and Canada. Figure 7 shows the average (taken over months, grid cells of the city and
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Panel A : GLM 

 

Panel B : GAM 

 

Panel C : Random forests 

 

Figure 5. Difference in simulated pluvial flood probability between 2040-2060 and 2010-2030 computed with the GLM (Panel
A, top), GAM (Panel B, middle) and RF (Panel C, bottom) models over the United States. Color scale is the same for all plots
to allow comparison between models.
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Panel A : GLM 

 

Panel B : GAM 

 

Panel C : Random forests 

 

Figure 6. Difference in simulated pluvial flood probability between 2040-2060 and 2010-2030 computed with the GLM (Panel
A, top), GAM (Panel B, middle) and RF (Panel C, bottom) models over Canada. Color scale is the same for all plots to allow
comparison between models.
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the six runs of the CRCM) annual simulated pluvial flooding probability over New York, Houston,
Chicago and Denver with the GAM (Panel A, top) and RF (Panel B, bottom) respectively. First of all
we observe an increasing trend of different slopes with the GAM and nearly no trend with the RF.
Even though we averaged results over the six runs, there is still substantial interannual variability,
well illustrated with the GAM but not much with the RF.

In Figure 7, we also isolated the effects of climate change from increased urbanization with
the continuous and dotted lines. That is, the dotted line represents a scenario where population
remains fixed after 2020, whereas the continuous line represents a scenario where population increases
according to the SSP2 scenario. In the latter scenario, the population of New York, Chicago and
Denver will continuously increase in the future, whereas Houston should see a population decrease
from 2020 to 2030 and an increase thereafter. Although the increasing trend in flood probability
seems primarily driven by changing patterns in temperature and precipitation, urbanization also
plays an important role on flood hazard.

Finally, Figure 8 shows a similar plot for Montreal, Toronto and Vancouver with steep increases
and impact of urbanization. The SM includes plots for the GLM over the same select U.S. cities, and
two plots, for three Canadian cities with the GLM and RF.

5. Portfolio applications
We present in this section portfolio applications of the pluvial flood occurrence model under various
hazard and exposure scenarios. This section has three objectives: (1) to demonstrate how the overall
methodology could be used for PRA; (2) to differentiate the impacts of changes in hazard and
exposure and their interaction on portfolio losses, and; (3) to illustrate spatial heterogeneity of future
climate and population projections.

5.1 Methodology
The occurrence model applied to the CRCM5 and SSP2 population projection yields simulated flood
probabilities for each grid cell, month and year between 2006 and 2060. We can therefore easily use
these probabilities to simulate monthly flood occurrences over the future. But an important piece
remains, linking flood occurrence to impact in terms of losses.

With hazard information available at a resolution of 10-25 km, we will not aim to analyze impacts
at the street level, and as such, exact location of each building is not necessary for this exercise. For
similar reasons, we will also ignore the vulnerability of each building, and rather assume that each
flooded property suffers a fixed or random loss amount. Aggregating exposure value, or the number
of households insured per grid cell at a resolution similar than the climate model is straightforward
for an insurer. But for this paper, we will rather build generic insurance portfolios based upon the
population data described in Sections 3.1 and 4.1.

It remains to determine the number of homeowners that are flooded when there is flood occur-
rence in a given grid cell. One can fix that number as a given percentage but we instead modelled
that as a beta distributed random variable with fixed mean and a fixed upper percentile. As such this
adds randomness as to how extreme precipitation may locally affect a community.

The specific methodology is as follows. We have split the time horizon until 2060 into two time
periods: present climate (2010-2030), centered around 2020 and future climate, centered around
2050 (2040-2060). A 30-year time horizon is reasonable for an insurer for strategic decision-making
and solvency analyses and also avoids a considerable amount of uncertainty tied to climate up to 2100
which is heavily dependent upon current climate policies. Each model run (6) and year (20) within
each time period is assumed to be independent and identically distributed. This yields 120 climate
simulations under the present climate, and also an extra 120 climate simulations under the future
climate.
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Panel A : GAM 

 

Panel B : Random forests 

 

Figure 7. Annual simulated pluvial flood probability from 2006 to 2060 over New York, Houston, Chicago and Denver with
the GAM (Panel A, top) and RF (Panel B, bottom). GLM available in the SM.
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Figure 8. Annual simulated pluvial flooding probability from 2006 to 2060 over Montreal, Toronto and Vancouver with the
GAM model. Similar plots for GLM and RF are available in the SM.

For the present climate, we draw 10,000 random numbers, effectively randomly selecting a
climate from the 120 available. For the selected climate, we compute simulated flood probabilities for
each grid cell and month over Canada and the United States. We then draw Bernoulli random variates
according to these probabilities over each grid cell assuming that flood occurrences conditional upon
the climate is spatially independent. If there is a flood in a given grid cell, we then randomly draw
from a beta distribution with mean 2% and 99-th percentile equal to 20%. And for each household
affected by a flood, we assume losses of $25,000. The value of $25,000 is somewhat the average
damage given a pluvial flood per property whereas 2% aims to replicate industry losses. If one is
interested in understanding the relative impacts of climate change, these values do not make a material
difference.

The previous steps have then been repeated over the future climate as well. In both cases, we
worked with the GAM and the smaller set of covariates fitted with a targeted 90% of zeroes. GLM
yields similar results whereas the RF has been excluded for reasons explained in Section 4.

5.2 Results
To meet the objectives above, we build three different scenarios for changes in the hazard and
exposure. The baseline scenario represents our best estimate of the current loss distribution. It
is based upon present-day hazard (2020) and exposure (2020). The second scenario assesses the
sensitivity of the insurer’s current exposure (2020) to changes in hazard (2050), including future
projections for temperature, precipitation and urbanization. It represents what would be typically
asked for reporting and regulating purposes to assess the impacts of future pluvial flood hazard. In this
case, the insurer’s portfolio is held fixed in the future, as if the insurer would not underwrite additional
risks. Finally, the third scenario includes changes in both the hazard (2050) and exposure (2050) and
depicts a situation where a company underwrites in a similar manner and fixes its future market
share instead. Such a scenario also highlights possible interactions between hazard and exposure
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where population could increase or decrease in riskier or safer areas. In all cases, we fixed the market
share to 100% of the corresponding geographic region, which therefore proxies industry losses.

Table 3 shows the results of the latter three scenarios for four portfolios, fully underwritten in
Quebec, Ontario, Canada or over the U.S. Note that $ amounts have not been adjusted for inflation
and reflect losses as of 2020. All risk measures were computed with 10,000 simulations whereas the
mean and standard deviations were validated with closed-form expressions that are straightforward to
derive. We show in Appendix 2 the equivalent of Table 3 but for each of the 10 Canadian provinces,
and the 10 most populous U.S. states.

Table 3. Portfolio loss statistics for four portfolios and three scenarios for changes in hazard and exposure (in millions of
2020 dollars). Relative difference in % shown between parentheses (compared to the baseline scenario).

Hazard Exposure Average Std. dev. 90th perc. 95th perc. 99th perc.

2020 2020 471 653 1154 1707 3291
Quebec 2050 2020 692 (47%) 767 (18%) 1601 (39%) 2234 (31%) 3872 (18%)

2050 2050 913 (94%) 995 (53%) 2067 (79%) 2947 (73%) 5070 (54%)

2020 2020 693 827 1613 2291 4281
Ontario 2050 2020 1029 (49%) 987 (19%) 2243 (39%) 3059 (34%) 4827 (13%)

2050 2050 1285 (85%) 1175 (42%) 2713 (68%) 3701 (62%) 5842 (36%)

2020 2020 1834 1260 3518 4327 6230
Canada 2050 2020 2605 (42%) 1462 (16%) 4562 (30%) 5467 (26%) 7583 (22%)

2050 2050 3240 (77%) 1717 (36%) 5469 (55%) 6600 (53%) 9219 (48%)

2020 2020 18840 5666 26660 28948 33057
USA 2050 2020 24499 (30%) 6625 (17%) 32551 (22%) 35165 (21%) 42551 (29%)

2050 2050 29775 (58%) 8261 (46%) 40112 (50%) 43508 (50%) 52036 (57%)

With the four portfolios illustrated in Table 3, we see that even in the aggregate, changes in
hazard can be very different across regions. Under the second scenario (hazard of 2050 but exposure
of 2020), losses are expected to increase by nearly 50% in both Quebec and Ontario, whereas the
increase is lower Canada-wide (about +40%) or in the United States (+30%). Expressed differently,
such increases represent 0.88% to 1.36% per year on an annual basis (annually compounded). Across
states and provinces, Appendix 2 shows more homogeneity across Canadian provinces (increases
of about 40-50% with the exception of BC and PEI) than in the U.S., where increases range from
15-50%.

We find benefits to diversification but still, country-wide effects of climate change on pluvial
flood are expected to be more significant in Canada (relatively speaking) than in the U.S. According
to ECCC (Bush and Lemmen 2019), the average temperature increase in Canada is expected to be
greater than in the U.S., which in theory would mean that the air over Canada could hold more
humidity that would in turn result in more intense rainfall, all other things being equal.

In the third scenario, both the hazard and exposure change in the future. There are however
non-trivial interactions between changes in hazard and exposure depending on where population
will live. Indeed, if for example current and future population move to areas with increasing hazard,
then portfolio losses will increase at a faster pace than population growth. Table 3 shows that the
third scenario yields losses much greater than the second scenario with significant heterogeneity. For
example the Quebec portfolio losses nearly double while the U.S.-wide portfolio losses increase by
about 60%. Expressed on an annual basis, the compounding effects of increasing hazard and exposure
mean that losses should increase by a rate of 1.6% to 2.2% annually. Across states and provinces,
Appendix 2 shows variations between 40-95% over Canadian provinces and the top 10 U.S. states,
which is very significant.
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It should therefore not be a surprise to observe a significant trend in future losses, where adding
inflation of about 3% (which is slightly above the historical inflation over the last 40 years, but still
below the inflation observed in 2022-2023), could yield a compound annual rate of increase in losses
of over 5% (all else being equal, namely adaptation). Note that according to the Parliamentary Budget
Officer in Canada, claims to the Disaster Financial Assistance Arrangements due to flooding have
quadrupled over the last 40 years (Office of the Parliamentary Budget Officer 2016), and therefore,
such figures are clearly not unrealistic.

Figure 9. Probability density functions of portfolio losses for each portfolio and scenario

We conclude this section by analyzing the (kernel-smoothed) loss distributions in each of the
three scenarios for the four portfolios. We clearly see in Figure 9 rightward shifts as we move from the
baseline scenario (hazard of 2020, exposure of 2020) to the third scenario (hazard of 2050, exposure
of 2050). The Quebec and Ontario portfolios are right-skewed and heavy-tailed, even more so than
the Canadian and U.S. portfolios. Judging by the upper percentiles, there does not appear to be
a thickening of the right-tail under the third scenario, but this is based upon 10,000 simulations
founded on 120 different climates, which could limit the potential to capture extreme losses.

This portfolio application shows the value for (re)insurance companies to invest in better un-
derwriting practices and/or work with communities to attenuate the financial impacts of climate
change on flooding. It also highlights the importance of quantitative PRA to support such strategic
decision-making at the organization level.

6. Discussion and conclusion
As reporting and regulatory requirements evolve, actuaries will increasingly need to factor in climate
change into various business functions such as underwriting, reserving and strategic decision-making.
Climate risks are not new to actuaries, but climate change might force the actuarial profession to
not only look for answers in past data, but also look forward in the future using climate models.
Integrating climate models into actuarial assessments is certainly new to the profession and this
paper has showed that PRA can certainly be viewed as a data science problem. This is an important
outcome given the talent pool that insurers typically recruit from.

One objective of the paper was to assess how pluvial flood risk may affect an insurance portfolio
in the future. Using historical data on pluvial flood occurrences, we applied statistical and machine
learning methods to better understand the relationship between these flood occurrences and atmo-
spheric and socioeconomic variables (fitting and validation step). Using climate model outputs as
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simulations of atmospheric variables over the present and future, we then computed pluvial flood
probabilities over Canada and the United States until 2060 (projection and simulation step). Finally,
with a simple portfolio model founded on one flood occurrence model, we evaluated how changes
in hazard and exposure may impact different insurance portfolios. The overall approach depicted in
the paper is meant for large-scale applications that do not necessarily require street-level information,
as is often the case for scenario and trend analyses. There is obviously a trade-off between speed,
cost and precision for all applications, and the methodology described here is no exception.

We found that standard statistical and machine learning methods such as GLM, GAM and RF are
very good at predicting pluvial flood occurrence over the United States and that such fit also yields
solid predictive skill out-of-sample over Canada. We used six runs of the CRCM5 regional climate
model available in the CORDEX-NA ensemble to compute flood probabilities over the United
States and Canada. We found strongly heterogeneous impacts of climate change over urban areas
in Canada and the United States. Results are consistent whether we use GLM or GAM to explain
the link between atmospheric variables and flood occurrences, but random forests are clearly not
recommended for climate change risk assessments due to their inability to make reliable predictions
outside of their training domain. Predicted flood probabilities from the RF for future climates go
against the mounting evidence that climate change will increase heavy rain episodes and pluvial
flooding (IPCC 2022; Bush and Lemmen 2019).

Long-term PRA yields many uncertainties that stem from the natural variability of climate,
the complexity of natural hazards and also the unpredictable future climate policies and resulting
GHG emissions. To assess the size and impact of such uncertainties, one approach is to evaluate the
sensitivity of the results to different emissions scenarios (RCPs and SSPs) and different classes of
models (higher resolution GCMs from the CMIP6 ensemble used in the AR6 of the IPCC). This is
left for future research. And given a sample made of 168 grids of 143,922 cells or 2.4M observations, it
would be interesting to evaluate deep learning methods and their ability to extrapolate out-of-sample
over Canada and over future climates. This is also left for future research.
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Appendix 1. Bias analysis
To determine if the CRCM5 generates important biases in flood probabilities, one can compare
simulated flood probabilities (with predictors computed from the CRCM5) with predicted flood
probabilities (with predictors computed from observations). We have done such an exercise with the
GLM, GAM and RF models over the common time period of 2007-2020.

Table 4 provides the distribution (over grid cells) of that difference in probabilities across the
United States and Canada, and over the three models. We observe that about 1% of grid cells yield
negative differences, meaning about 99% of grid cells are overestimated with the CRCM5. However,
the size of the overestimation remains manageable, since for the random forests, 99% of the area
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Table 4. Quantiles of the difference between simulated (from the CRCM) and historical flood probabilities using the GLM,
GAM and RF models over the United States and Canada

GLM GAM RF
Quantiles USA CAN USA CAN USA CAN

0.1% -0.4132% -1.2933% -0.2331% -0.2821% -1.7778% -0.0838%
1% -0.0114% -0.1713% -0.0186% -0.1026% -0.2936% -0.0055%

10% 0.0638% 0.0085% 0.0476% 0.0024% 0.0710% 0.0515%
25% 0.1557% 0.0224% 0.1244% 0.0210% 0.1673% 0.0769%
50% 0.4723% 0.0835% 0.3460% 0.0805% 0.3426% 0.1450%
75% 1.1368% 0.2168% 0.7756% 0.2277% 0.7077% 0.2973%
90% 1.9030% 0.4640% 1.5379% 0.4448% 1.1056% 0.5470%
99% 3.8756% 1.6976% 5.0825% 2.0039% 2.0511% 1.3404%

99.9% 6.1483% 6.1560% 11.8372% 6.0690% 3.0322% 2.4598%

in the U.S. yields errors smaller than 2% (1.3% in Canada). The random forest method appears to
yield smaller errors, which is consistent with its predictive capability in the test and validation sets
(Sections 3.4.1 and 3.4.2). Note that there are few NAs (white cells, close to no population) in the
U.S. and significantly more in Canada, which could explain why errors appear smaller in Canada.

We would like to determine where errors are the smallest or the largest over Canada and the
U.S. As such, Figure 10 shows the difference between the simulated flood occurrence probability
(from the CRCM5) and predicted flood occurrence probability (from observations), for each grid
cell, averaged over months, for the United States (Panel A, top) and Canada (Panel B, bottom) for the
random forests. Similar plots for the GLM and GAM are provided in the Supplementary Material.
We see that errors are in general small almost everywhere, being the largest in the greater New
York and Vancouver areas. In the U.S. for example, errors are still within 1% in most key areas, that
is the entire West Coast, Southern and North Eastern U.S., and within 0.3% elsewhere, namely
Central U.S. In Canada, errors are the largest in South Western BC, and Southern Ontario and
Quebec, in addition to New Brunswick and Nova Scotia. Overall in both countries, errors are larger
in urbanized areas because their flood probabilities are larger as well.

Appendix 2. Portfolio applications
This section presents the equivalent of Table 3 for the 10 Canadian provinces (Table 5) and the 10
most populous U.S. states (Table 6).

References
Bank of England. 2019. The 2021 biennial exploratory scenario on the financial risks from climate change.

Beck, Hylke E., Eric F. Wood, Ming Pan, Colby K. Fisher, Diego G. Miralles, Albert I. J. M. van Dijk, Tim R. McVicar, and
Robert F. Adler. 2019. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment.
Bulletin of the American Meteorological Society 100, no. 3 (March): 473–500. ISSN: 0003-0007, 1520-0477, accessed July 29,
2021. https://doi.org/10.1175/BAMS-D-17-0138.1. https://journals.ametsoc.org/view/journals/bams/100/3/bams-d-
17-0138.1.xml.

Boudreault, Mathieu, Patrick Grenier, Mathieu Pigeon, Jean-Mathieu Potvin, and Richard Turcotte. 2020. Pricing flood
insurance with a hierarchical physics-based model. North American Actuarial Journal 24 (2): 251–274.

Bush, E., and D.S. Lemmen. 2019. Canada’s Changing Climate Report. Technical report. Government of Canada.

Canada, Public Safety. 2022a. Canadian disaster database. https://www.publicsaf ety.gc.ca/cnt/rsrcs/cndn-dsstr-dtbs/index-
en.aspx.

. 2022b. Floods, August. https://www.publicsaf ety.gc.ca/cnt/mrgnc-mngmnt/ntrl-hzrds/f ld-en.aspx.



Cambridge Default Journal 25

Panel A : USA 

 

Panel B : Canada 

 

Figure 10. Difference between simulated (from the CRCM) and predicted (from observations) flood probabilities using the
RF model over the United States (Panel A, top) and Canada (Panel B, bottom) and over 2007-2020. Similar plots for GLM and
GAM available in the SM.
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Table 5. Portfolio loss statistics for Canadian provinces and three scenarios for changes in hazard and exposure (in millions
of 2020 dollars). Relative difference in % shown between parentheses (compared to the baseline scenario).

Hazard Exposure Average Std. dev. 90th perc. 95th perc. 99th perc.

2020 2020 26 41 64 96 199
NB 2050 2020 38 (46%) 48 (18%) 89 (39%) 127 (33%) 237 (19%)

2050 2050 43 (68%) 47 (14%) 97 (53%) 134 (40%) 223 (12%)

2020 2020 3 12 7 17 60
PEI 2050 2020 5 (59%) 16 (24%) 13 (78%) 26 (54%) 73 (23%)

2050 2050 6 (88%) 17 (33%) 17 (125%) 31 (83%) 79 (33%)

2020 2020 43 84 94 163 456
NS 2050 2020 61 (42%) 97 (15%) 135 (43%) 216 (32%) 525 (15%)

2050 2050 68 (59%) 93 (11%) 144 (52%) 218 (33%) 507 (11%)

2020 2020 11 26 24 46 136
NL 2050 2020 16 (47%) 30 (17%) 35 (49%) 61 (32%) 156 (15%)

2050 2050 19 (74%) 33 (27%) 42 (79%) 72 (57%) 170 (26%)

2020 2020 26 41 64 96 199
MB 2050 2020 38 (46%) 48 (18%) 89 (39%) 127 (33%) 237 (19%)

2050 2050 46 (78%) 49 (21%) 103 (61%) 142 (48%) 236 (18%)

2020 2020 21 52 48 92 289
SK 2050 2020 31 (48%) 62 (18%) 75 (54%) 127 (38%) 316 (9%)

2050 2050 38 (80%) 67 (28%) 94 (95%) 162 (75%) 341 (18%)

2020 2020 141 273 354 581 1340
AB 2050 2020 199 (41%) 316 (16%) 493 (39%) 768 (32%) 1576 (18%)

2050 2050 246 (75%) 352 (29%) 617 (75%) 905 (56%) 1734 (29%)

2020 2020 389 610 998 1498 2979
BC 2050 2020 477 (23%) 648 (6%) 1143 (15%) 1737 (16%) 3376 (13%)

2050 2050 573 (47%) 656 (8%) 1292 (30%) 1853 (24%) 3431 (15%)

2020 2020 471 653 1154 1707 3291
QC 2050 2020 692 (47%) 767 (18%) 1601 (39%) 2234 (31%) 3872 (18%)

2050 2050 913 (94%) 995 (53%) 2067 (79%) 2947 (73%) 5070 (54%)

2020 2020 693 827 1613 2291 4281
ON 2050 2020 1029 (49%) 987 (19%) 2243 (39%) 3059 (34%) 4827 (13%)

2050 2050 1285 (85%) 1175 (42%) 2713 (68%) 3701 (62%) 5842 (36%)
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Table 6. Portfolio loss statistics for the 10 most populous U.S. states and three scenarios for changes in hazard and exposure
(in millions of 2020 dollars). Relative difference in % shown between parentheses (compared to the baseline scenario).

Hazard Exposure Average Std. dev. 90th perc. 95th perc. 99th perc.

2020 2020 2530 1968 5175 6469 9577
CA 2050 2020 3329 (32%) 2162 (10%) 6200 (20%) 7541 (17%) 10491 (10%)

2050 2050 4116 (63%) 2858 (45%) 7873 (52%) 9709 (50%) 13664 (43%)

2020 2020 3208 1556 5261 6130 7825
TX 2050 2020 3886 (21%) 1703 (9%) 6140 (17%) 7004 (14%) 8870 (13%)

2050 2050 4639 (45%) 2035 (31%) 7271 (38%) 8359 (36%) 10502 (34%)

2020 2020 2003 1185 3581 4263 5717
FL 2050 2020 2297 (15%) 1232 (4%) 3920 (9%) 4567 (7%) 6069 (6%)

2050 2050 2845 (42%) 1614 (36%) 4927 (38%) 5868 (38%) 8122 (42%)

2020 2020 1815 2155 4178 5992 10896
NY 2050 2020 2142 (18%) 2240 (4%) 4616 (10%) 6514 (9%) 11306 (4%)

2050 2050 2619 (44%) 2682 (24%) 5719 (37%) 7852 (31%) 13367 (23%)

2020 2020 1110 677 1998 2428 3362
PA 2050 2020 1435 (29%) 740 (9%) 2422 (21%) 2894 (19%) 3877 (15%)

2050 2050 1718 (55%) 930 (37%) 2952 (48%) 3545 (46%) 4911 (46%)

2020 2020 1017 943 2138 2873 4615
IL 2050 2020 1341 (32%) 1064 (13%) 2673 (25%) 3404 (19%) 5119 (11%)

2050 2050 1637 (61%) 1427 (51%) 3356 (57%) 4369 (52%) 6833 (48%)

2020 2020 801 519 1470 1816 2555
OH 2050 2020 1098 (37%) 592 (14%) 1879 (28%) 2242 (23%) 2997 (17%)

2050 2050 1319 (65%) 726 (40%) 2287 (56%) 2724 (50%) 3680 (44%)

2020 2020 1066 728 1994 2454 3609
GA 2050 2020 1314 (23%) 792 (9%) 2396 (20%) 2904 (18%) 4254 (18%)

2050 2050 1557 (46%) 971 (33%) 2881 (45%) 3521 (43%) 5281 (46%)

2020 2020 915 534 1657 1954 2569
NC 2050 2020 1236 (35%) 616 (15%) 2062 (24%) 2402 (23%) 3112 (21%)

2050 2050 1417 (55%) 672 (26%) 2312 (40%) 2689 (38%) 3392 (32%)

2020 2020 405 439 917 1251 2015
MI 2050 2020 596 (47%) 523 (19%) 1240 (35%) 1624 (30%) 2487 (23%)

2050 2050 753 (86%) 714 (63%) 1618 (76%) 2145 (71%) 3371 (67%)
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