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RÉSUMÉ DE LA THÈSE 

 

Ma thèse de doctorat consiste en trois articles scientifiques examinant plusieurs externalités qui 

imposent des impacts sur la performance des fonds de couverture : rendement d'échelle décroissant, 

réseaux sociaux, et limites de l'arbitrage. 

Article 1. Non seulement le talent mais également les économies d’échelle : le cas des fonds 

de couverture 

Nous testons empiriquement un modèle à deux niveaux de rendements d'échelle décroissants avec 

un échantillon de fonds de couverture. Le modèle à deux niveaux suppose que l'alpha brut d'un 

fonds est une fonction décroissante à la fois des économies d’échelle au niveau du fonds et des 

économies d’échelle au niveau du style. Cette dernière est mesurée par la taille totale des pairs 

déployant des stratégies d'investissement de même style. Nous constatons qu'un modèle au niveau 

du fonds sous-estime l'impact de la décroissance des économies d'échelle sur l'alpha brut mensuel 

de 55 points de base. Les résultats indiquent que les gestionnaires des fonds doivent tenir compte 

des contraintes imposées par les économies d'échelle du style lorsqu’ils optimisent la taille de leur 

fonds. Nous constatons aussi que les fonds de couverture n'ont pas investi à leur niveau optimal et 

confirmons que le talent et les capacités à résister à la décroissance des économies d'échelle sont 

deux éléments importants à considérer pour sélectionner les fonds performants. 

Article 2. Influences sociales et caractère unique des stratégies de fonds de couverture 

Différemment des études antérieures, nous examinons l’effet des réseaux sociaux sur la 

performance des fonds en tenant compte de la concurrence entre les différents fonds. Nous 

supposons que si les réseaux sociaux facilitent le regroupement dans les investissements des fonds, 

un fonds « central » aurait une stratégie moins unique, mesurée par l'indice de distinction des 

stratégies de Sun et al. (2012). Ceci entraîne une baisse de la performance lorsque les idées 

d’investissement uniques sont cruciales pour réussir au sein d’un environnement compétitif. Nous 

confirmons cet effet en examinant les réseaux des anciens diplômés et ceux du travail entre les 

fonds concurrents les plus proches. En particulier, les gestionnaires « intelligents » avec plus 
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d’ambition de carrière sont plus vulnérables à cet effet négatif. Nous confirmons également que le 

regroupement d'investissements se manifeste davantage sous les influences sociales. 

Article 3. Les fonds de couverture avec moins de contraintes surperforment-ils ? 

Cette étude examine si les fonds qui sont moins contraints par des limites d'arbitrage surperforment 

leurs pairs qui sont plus contraints à l’aide d’un bêta de mauvaise évaluation. Nous constatons 

qu'un tiers des fonds de notre échantillon de fonds de couverture ont tendance à remettre à plus 

tard l’exploitation des erreurs d'évaluation de titres au niveau du MGMT, tandis qu’au maximum 

3% des fonds corrigent les prix sans délai. Néanmoins, un cinquième des fonds exploitent les 

erreurs au niveau du PERF et seulement 5% diffèrent l'arbitrage. Nous constatons également que 

les fonds de couverture avec les bêtas les plus élevés surperforment ceux avec les bêtas les plus 

faibles de 28 à 63 points de base par mois. Nous estimons aussi que la valeur économique 

provenant de la capacité des fonds à effectuer l’arbitrage dynamique correspond à un alpha de 69 

points de base par mois à long terme. 
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DISSERTATION SUMMARY 

 

My doctoral dissertation consists of three scientific articles examining several externalities that 

impact hedge fund performance: decreasing return to scale, social networks, and limits of arbitrage. 

Paper 1. Not only skill but also scale: Evidence from the hedge fund industry 

This paper empirically tests a two-level model of decreasing returns to scale using a sample of 

hedge funds. The two-level model assumes that a fund’s gross alpha is a decreasing function of 

both the fund scale and the style scale measured by the aggregate size of peers in the hedge fund 

style. We find that a fund-level model underestimates the impact of diseconomies of scale on the 

gross alpha by 55 basis points. The results indicate that managers should consider the constraints 

imposed by the style scale when optimizing their portfolio sizes. We also provide evidence that 

hedge funds did not invest at their optimal amount and confirm that skill and the ability to resist 

decreasing returns to scale are two important components of selecting hedge fund performers. 

 

Paper 2. Social influences and uniqueness of hedge fund strategies 

Unlike previous studies, we explore a mechanism that explains how social networks could be 

detrimental to fund performance due to competition. We postulate that if social networks facilitate 

investment herding, then a central fund would have a less unique strategy, proxied by the strategy 

distinctiveness index of Sun et al. (2012), which leads to lower performance. We consider alumni 

and employment ties between the closest hedge fund competitors and confirm this point of view. 

Particularly, smart managers with career ambitions are more vulnerable to this negative effect. We 

also find that investment herding is encouraged under social influences. 

 

Paper 3. Overcoming short-sale constraints and hedge fund returns 

Our study explores the heterogeneous abilities of hedge funds to arbitrage overpricing and the 

impact of this ability on their performance. We find that on one side, one-third of funds in our 

sample tend to delay arbitrage on management (MGMT) mispricing, whereas no more than 3% of 

funds correct prices right away. On the other side, one-fifth of funds bet against performance 
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(PERF) mispricing, while only 5% delay arbitrage. We also find that funds with the highest 

mispricing betas outperform those with the lowest betas and show that the mispricing beta strongly 

predicts hedge fund performance in the long run. 
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PAPER 1. NOT ONLY SKILL BUT ALSO SCALE: 

EVIDENCE FROM THE HEDGE FUND INDUSTRY 

(International Review of Financial Analysis, Volume 83, 2022) 

 

 

ABSTRACT 

 

This paper empirically tests a two-level model of decreasing returns to scale using 
a sample of hedge funds. The two-level model assumes that a fund's gross alpha is 
a decreasing function of both the fund scale and the style scale measured by the 
aggregate size of peers in the hedge fund style. We find that a fund-level model 
underestimates the impact of diseconomies of scale on the gross alpha by 55 basis 
points. The results indicate that managers should consider the constraints imposed 
by the style scale when optimizing their portfolio sizes. We also provide evidence 
that hedge funds did not invest at their optimal amount and confirm that skill and 
the ability to resist decreasing returns to scale are two important components of 
selecting hedge fund performers. 

 

 

 

 

JEL classification: G11; G23; J24 

Keywords: Hedge funds; Decreasing returns to scale; Performance; Skill 
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1. Introduction 

Managerial skill drives performance in active asset management. In 2013, North American 

hedge funds realized an annual net return of 16.55% and a 5-year annualized net return of 16.98%. 

In 2017, U.S. hedge funds achieved 12 consecutive months of positive performance.1 This superior 

performance is likely an outcome of hedge fund managers’ skills in developing trading strategies. 

Pástor, Stambaugh, and Taylor (2015) point out, however, that fund performance depends not only 

on the fund manager’s skill but also on various constraints, such as decreasing returns to scale 

(DRTS). In other words, the hedge fund performance could be a mixed effect of hedge fund skill 

and DRTS. DRTS are a result of the constraints imposed by the scale (Berk and Green, 2004; 

Pástor et al., 2015; Perold and Salomon, 1991; Harvey and Liu, 2017; Phillips, Pukthuanthong, 

and Rau, 2018; and Zhu, 2018).2 For example, large funds are more likely to face price pressures 

that erode their performance and several constraints when building their optimal portfolio. 3 

Consequently, portfolio managers need to cap their funds to take advantage of investment 

opportunities. They also need to fit their fund size to their investment strategies and to the market 

where they operate.4 Thus, as noted by Pástor, Stambaugh, and Taylor (2015, p.24), “if scale 

impacts performance, skill and scale interact.”  

The purpose of this study is to answer the following questions: Do hedge funds face DRTS? 

How did the changes in hedge funds size affect the evolution of fund performance? How DRTS 

 
1 Data are from Preqin Global Hedge Fund Report (2014, 2018). Preqin is one of the biggest global alternative 

assets data and solutions providers. 
2 In this paper, we primarily interested in scale effects and not in competition effects. See, for example, Wahal 

and Wang (2011) that examine competition among mutual funds.   
3 For example, some strategies could highly weight a small-cap stock. When fund size is too large, the asset 

allocation to the small-cap stock (the weight of the small-cap stock (x) the fund size) is very likely to exceed the 
market capitalization of this stock. Consequently, large funds are forced to hold a sub-optimal portfolio or to forego 
these specific strategies. 

4 Fung and Hsieh (1997) note that “niche” hedge funds would be more suitable when operating in illiquid markets, 
rather than large hedge funds. 
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interact with skill to measure fund performance?   

In this study, we consider a comprehensive sample of 4,960 U.S. hedge funds from the 

Lipper TASS database (TASS) between January 1994 and December 2018. Using a fund-level and 

style-level model, we find that the hedge fund's capacity depends on the manager’s skill as well as 

the style scale. We also find that if an increasing amount of capital is invested in a particular hedge 

fund style, the return and the potential profits extracted from this strategy (the maximal value 

added) decrease. In other words, if style size imposes a constraint, fund’s return and profits 

decrease even when the manager optimizes his(her) fund size. We test a fund-level model of DRTS 

and find that when an average hedge fund doubles its size (corresponding to an increase of 250 

million dollars in the managed assets), its monthly gross alpha decreases by 9.90 bps, with a t-

statistic of −3.49. Based on a two-level model, we find a similar level of coefficient estimate on 

the fund scale. For instance, an increase of 250 million dollars in the fund size decreases the gross 

alpha by 8.43 bps per month, with a t-statistic of −2.84. When an average fund’s style scale doubles 

(corresponding to an increase of 90 billion dollars in the style size), its alpha reduces by 54 bps, 

with a t-statistic of −2.23.  

We estimate skill for each fund and each month from 1994 to 2018. The average fund 

would have realized a gross alpha of 0.95% per month in the absence of DRTS. Over the period, 

about 70% of hedge funds had the skill to beat the market, but only one-half of hedge funds realized 

positive alphas in the presence of a diseconomy of scale. By analyzing the interaction of skill and 

scale in determining fund performance, we find that scale accounts for a large portion of hedge 

fund performance during the financial crisis, while the post-crisis performance of hedge funds 

declines due to skill.   
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Further, we find that hedge funds did not invest at their optimal level. About 30.69% 

(34.31%) of the funds in our sample are excessively (moderately) overfunded, and 35% are 

underfunded. About 36.33% (63.67%) of the funds destroyed (added) value. The average hedge 

fund added an economically and statistically significant value of $300,000 per month. Among the 

funds adding value, a larger fraction (34.17% of all funds) is underfunded, with an average size of 

$124 million versus the optimal size of $215 million. The underfunded funds added, on average, 

a value of $820,000 per month with an average skill of 1.67%. If they reached the optimal size, 

they could realize a value of $1,380,000 per month. We explain the underfunding of good 

performers by strict regulations regarding limited access to hedge funds and the prudent use of 

capacity by hedge funds.      

Our paper makes several contributions to the literature. First, we provide robust evidence 

for DRTS in hedge funds. Previous studies focus mainly on mutual funds and report mixed results 

(e.g., Pástor, Stambaugh, and Taylor, 2015; Harvey and Liu, 2017; Phillips, Pukthuanthong, and 

Rau, 2018; and Zhu, 2018), while very few studies consider the case of hedge funds. Specifically, 

Rzakhanov and Jetley (2019) focus on a subcategory of hedge fund style (merger and arbitrage 

strategy) and find that fund size has no impact on alpha, while Teo (2012) focuses on fund-level 

scale constraints using a comprehensive sample of hedge funds. In this study, we find, however, 

that the hedge fund style scale is the more dominant factor than the fund scale. In addition, our 

empirical tests consider the critical issues in estimating DRTS caused by omitted skill, a finite 

sample, and the time trend of the unobserved variable.5 Further, compared to mutual funds studies, 

we find more significant fund-level scale effects among hedge funds than mutual funds, a much 

 
5 We also eliminate the concern that the mechanic relation between net returns and fund size could drive a negative 

relation, which is not DRTS of interest (see Section 4.3).   
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smaller proportion of hedge funds are overfunded, and hedge funds destroy value due to a lack of 

skill rather than DRTS.6   

Second, we extend the literature by providing evidence for the style-level DRTS in hedge 

funds. Previous studies on mutual funds also examine the nature of returns to scale at the industry-

level (Pástor and Stambaugh, 2012; Pástor et al., 2015; and Harvey and Liu, 2017). Compared to 

mutual funds, hedge funds engage in various strategies using different investment instruments (e.g., 

leverage, derivatives, short-selling, and trading in a broader range of markets). Different hedge 

fund styles could also have different capacity limits. We complement these studies by testing the 

nature of returns to scale at the style-level, as proxied by the aggregate size of competitors who 

employ similar strategies.7 Our rationale is that hedge fund’s returns are decreasing as the style 

size increases. We also re-examine DRTS with a fund-level model and find that the fund-level 

model largely underestimates the impact of DRTS on the gross alpha by 55 bps per month on 

average. When AUM in a specific investment style grows, hedge funds in this style realize lower 

rates of return given the more severe price pressure, which is caused by more trades chasing the 

same opportunities among competitors.  

Third, we advance the estimation method for scale-performance relationship, by tackling 

the endogeneity caused by the time trend of skill which the fixed effect (FE) model fails to capture. 

The FE model assumes that fund skill is heterogeneous across funds but constant over the lifetime 

of each fund. This assumption is challenged because the skill of funds could vary over time 

 
6 For instance, considering the same estimator (FE-RD2), an increase of $100 million in hedge fund size decreases 

alpha by 4.87 bps per month, compared with the result of Zhu (2018) of 0.485 bps for mutual funds. We find only 65% 
(30%) of hedge funds are (excessively) overfunded. Zhu (2018) finds that 82% (57%) of mutual funds are (excessively) 
overfunded. We find skill partially explains why some hedge funds destroyed value. Zhu (2018) finds that DRTS is 
the main reason for mutual funds destroying value. 

7 Our style scale equals the total AUM of the fund’s peers in the same style, not including the fund itself. This 
eliminates concerns of whether style-level decreasing returns implies fund-level decreasing returns if a single fund 
represents a large fraction of the style and avoids multicollinearity problems in the multiple regression. Moreover, the 
coefficients on fund scale and style scale in the multiple regression represent the independent effects of two levels. 
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(Phillips et al., 2018). In the presence of the time trend of skill, the estimated scale effect falsely 

captures the correlation between the time trend of skill and the scale variable when using the FE 

model. To tackle this problem, we develop an RT-RD2 estimator under a random trend (RT) model, 

which allows a fund-specific time trend of skill. In the simulation exercise, we prove that the 

estimator developed under the FE model is biased at both fund-level and style-level if returns have 

a time trend, while our RT-RD2 unbiasedly estimates the two-level coefficients no matter whether 

there is a time trend of skill or not. We also confirm this bias in our empirical tests with the hedge 

fund sample.8 

Fourth, we complement Harvey and Liu (2017) in examining the heterogeneity of the 

ability to resist DRTS among hedge fund managers. We confirm that this ability and skill are two 

important components to select hedge fund performers. For example, when one fund is better at 

managing the price pressure by trading with a large volume, it can outperform peers with the same 

level of skill. Moreover, we find small funds are more able to manage the constraints imposed by 

scale. Further, Yin (2016) examine the optimal size of hedge funds to maximize managers’ 

compensation. We also complement this study by examining the optimal size of hedge funds under 

the context of DRTS. 

The remainder of the paper is organized as follows. Section 2 discusses the hypothesis of 

two-level decreasing return to scale; Section 3 presents the method of our empirical tests and show 

the robustness of our estimator. Section 4 presents sample, data issues, and estimation of gross 

alphas; Section 5 presents the empirical results; Section 6 presents robustness tests; Section 7 

 
8 If there is no time trend, both FE-RD2 and RT-RD2 should have estimates at a similar level. However, two 

estimators have different estimates in Table 3. Moreover, by estimating the growth rate of skill, we confirm the 
presence of time trend. We find that 30% (52%) of hedge funds have significantly increasing (decreasing) skill. On 
average, hedge fund skill is decreasing at 0.07367% per year. 
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concludes.  

2. Background and hypotheses 

Pástor et al. (2015) investigate the nature of returns to scale in active mutual fund 

management at both the fund-level and industry-level. They note that the fund-level DRTS reflect 

the impact of liquidity constraints and price pressures within the fund. They also note that both 

levels of decreasing returns are motivated by liquidity constraints and that the aggregate size is 

more important in determining fund performance than the individual size, particularly for an 

industry where individual funds apply homogeneous strategies. The more funds follow the same 

strategy, and the fewer investment opportunities become available. However, hedge funds compete 

more rigorously within style groups. Hedge funds invest in markets, sectors, and asset classes and 

employ investment instruments—leverage, derivatives, and short selling, among others—that are 

distinct across hedge fund styles. Also, style-chasing by investors erodes fund performance. 

Getmansky (2012) finds that when a hedge fund strategy performs well, investors favorably 

position this strategy by increasing their fund inflows. Consequently, they increase the probability 

of liquidation of hedge funds in this strategy. To test whether these style-chasing flows impose 

constraints on fund performance, we propose a style-level scale measure. Our rationale is that 

hedge fund returns decrease at the style-level, which negatively affects fund performance when 

the style size increases.  

Moreover, to consider the concern that style-level decreasing returns to scale implies fund-

level DRTS, the style size takes a sum of the peers in style and excludes the fund itself. In this 

way, the two-level scale measures are as independent as possible, avoiding the multicollinearity 

problem when a fund accounts for a large fraction of the total AUM in a given style. Our non-
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mutually exclusive hypotheses are as follows: The first one concerns fund-level DRTS: as the size 

of an active hedge fund increases, the fund's performance declines. The second hypothesis is style-

level DRTS: as the size of the active hedge fund style increases, the hedge fund's performance 

declines. 

The two-level DRTS is described as αi = ai − β1qi − β2qs , where qi  is the fund scale 

measured as the amount of the fund AUM, qs is the style scale measured as the total AUM of the 

remaining funds in the style s, qs = ∑ qjj∈s,j≠i , ai is the fund’s skill, αi is the fund’s gross alpha, 

and the scale coefficients β1(β2) > 0. The model suggests that when the fund (style) size increases 

by $1, the gross alpha decreases by β1(β2).  

The two-level model has different implications from a fund-level model. To see the 

differences, we solve the optimization problem of the value-added (Berk and van Binsbergen 

(2015); Zhu (2018)). The value-added is the fund AUM times the gross alpha, Vi = qiαi. The 

optimal fund size is the amount of fund AUM at which the fund maximizes its value-added, qi∗  =

argmaxqiV(qi), where V(qi) =  qi(ai − β1qi − β2qs). By finding the first-order condition, qi∗  =

 
1

2β1
(ai − β2qs). Also, we get the gross alpha at the optimal size and the maximum value-added, 

αi
∗ =

1

2
(ai − β2qs) and Vi∗ =

1

4β1
(ai − β2qs)

2, given that ∂qs
∂qi
 =  

∂∑ qjj∈s,j≠i

∂qi
 = 0. 

Below we explain the underlying rationale of the two-level hypothesis. The optimal size, 

qi
∗, reflects the capacity of the hedge fund, which is determined by not only the skill but also the 

style scale. Compared with the fund-level model’s solution, qi∗  =
ai

2β1
, the two-level model tells us 

that managers must consider the constraints imposed by the style size to secure their capacity. 

More elusive investment opportunities explain these constraints — as more money chases the 
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opportunities, price moves faster (Pástor et al., 2015). If there is an increasing amount of capital 

investing in the style, the fund should consider decreasing its size to realize the optimal value-

added, Vi∗ . The optimal value is the maximum the fund can extract from the strategy and is 

achieved based on the rationality of capital decision-makers. Note that the value of Vi∗ depends on 

the style scale, which suggests that when the style scale increases, the return and the value-added 

of the fund decrease (even though the manager optimizes the fund size).9 

3. Method 

Previous empirical studies on DRTS have considered an FE model, in which skill is 

assumed to be heterogeneous across funds but constant over the lifetime of each fund (Pástor et 

al., 2015 and Zhu, 2018). However, the FE model is less evident as the skill of funds could 

potentially vary over time. Some funds could improve their skill, e.g., through knowledge 

spillovers in the economy, while others could fail to maintain their skill level. For example, fund 

location could explain the differences in the evolution of fund skill. Christoffersen and Sarkissian 

(2009) find that mutual funds located in financial centers are more likely to improve their skill 

than peers located in small towns. Pástor et al. (2015) also show a negative time trend in 

performance over a typical mutual fund’s lifetime. For hedge funds, the constant skill assumption 

is even more questionable than for mutual funds given a higher degree of competition. Figure 1 

 
9 An alternative scale measure is the logarithm of the AUM, as used by Zhu (2018).We must be aware that the 

model implies different assumptions by choosing a different scale measure. Using the AUM, we assume each dollar 
has an equal effect on the return; using the logarithm of the AUM, each percent of changes in the AUM has an equal 
effect on the return. Whether the AUM or its logarithm is more appropriate depends on the question of whether hedge 
funds choose fees to reflect their skill. Take the fund-level model as an example, αi = ai − βxi,  xi is a fund scale 
measure. The fund AUM measure gives the optimal size (qi

*) at 2ai/β (Berk and van Binsbergen (2015)). The gross 
alpha (αi

*) is equal to one half of the fund’s skill (ai/2). In equilibrium, management fees are equal to the gross alpha 
(making the net alpha zero), so fund fees reflect manager skill. On the other hand, the logarithm of fund AUM measure 
gives the optimal fund size qi∗  at eai/β−1 . The optimal gross alpha is equal to β, which is irrelevant to skill and 
homogeneous across funds. In equilibrium, all funds charge fees at the same level. In our main analyses, we use the 
AUM as scale measures. We also report the results with the log AUM in the Appendix D. 
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shows the dynamics of U.S. hedge funds in terms of AUM and the number of funds during the 

period 1994-2018.10 The changes in the number of funds show a high rate of attrition in all the 

styles. Funds that fail to maintain and enhance their skill are dropped. Hence, we suppose that 

hedge fund returns to scale follow a random trend (RT) model as Eq (1), which allows each fund 

to have a fund-specific time trend of skill and a fund-specific intercept:  

   rit = ai0 + gihit + βxi, t-1 + εit               (1) 

Where rit is the gross alpha of fund i in month t; xi, t-1 is the one-month lagged fund scale; hit is 

the age of the fund in years; ai0 and gi are two unobserved individual effects, representing the level 

of skill at the inception of the fund and a yearly growth rate of skill, respectively, εit is unexpected 

return, with E(εit | xi,t-1) = 0.  

3.1. Endogeneity of the FE model   

If the unobserved effect changes over time, FE models fail because of a violation of strict 

exogeneity. In their studies, Heckman and Hotz (1989), Polachek & Kim (1994), and Friedberg 

(1998) have indeed recognized the potential endogeneity caused by the time trend of unobserved 

individual effect in an FE model.11 Phillips et al. (2018) argue that the potential time trend of skill 

could cause a biased estimate of scale effect under the FE model since skill is correlated with scale. 

Below we show that an estimator of scale effect developed under the FE model is biased in the 

presence of the time trend.  

Suppose that fund returns to scale follow Eq (1), with a nonzero gi , and consider an 

 
10 The hedge fund sample is described in detail in Section 4.1. 
11 For example, Friedberg (1998) examines the effect of divorce laws on divorce rates using state-level panel data. 

Without imposing state-specific trends, she finds no effect of divorce laws on divorce rates. If trends are considered, 
she finds that the effect becomes important and statistically significant (Wooldridge (2010)). 
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estimator of scale effect used by Zhu (2018), FE-RD2, which is developed under the FE model 

(see Appendix A). Recursively forward demeaning the variables of Eq (1), we have: 

ri̅t = gih̅it + βx̅i, t-1 + ε̅it               (2) 

Applying FE-RD2 to Eq (2) and taking the expectation of the estimator, we obtain: 

E[β̂FE-RD2] = β + [( 
1
N
∑ x̅'izi

N

i=1

)(∑ z'izi

N

i=1
)
-1

(∑ z'ix̅i

N

i=1
)]

-1

 

                            ∙ (
1
N
∑ x̅'izi

N

i=1

)(∑ z'izi

N

i=1
)
-1

(∑ z'igih̅i

N

i=1
)           (3) 

      

When fund scale also has a time trend, i.e., Corr(xi, t-1, h̅it) ≠ 0, which is likely true, the second term 

of Eq (3) is not equal to zero.12 The FE-RD2 estimator is not an unbiased estimator of β. 

3.2. An RT-RD2 estimator for scale effect   

We follow Wooldridge's (2010) approach to develop an unbiased estimator of scale effect 

under the RT model.13 Defining w𝑖,𝑡  ≡ (
1
hit
) and 𝐚𝒊  ≡ (

ai0
gi
), Eq (1) is rewritten as: 

𝐫i= 𝐖′𝐢𝐚𝐢 + 𝛃'xi + 𝛆i               (1.1) 

 
12 FE-RD2 is a 2SLS estimator, with fund scale as the instrumental variable, zi. Notice that the forward-demeaned 

variable of age, h̅it, is still a time trend variable. If Corr (xi, t-1, h̅it) ≠ 0, then ∑ z'igih̅i
N
i=1 ≠ 0 and E[β̂FE-RD2] ≠ β. 

13 Heckman and Hotz (1989) and Polachek and Kim (1994) suggest a method of differencing away the intercept 
and applying FE-OLS to estimate effect of interest. However, this approach is problematic in our study. In a first 
difference of (1), ∆rit = gi + β'∆xi, t-1 + ∆εit, ∆xi,t−1 is correlated with ∆εit, as Corr(∆xi,t−1, ∆εit) = Corr (xi, t-1 − xi, t-2,  
 εit − εi, t-1) = Corr(xi, t-1,− εi, t-1) ≠ 0. 
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where 𝐫i = ( 

ri,2
ri,3
⋮
ri,Ti

), 𝐱i = (

xi,1
xi,2
⋮

xi,Ti−1

), 𝐖i= 

(

 

w′i,2
w′i,3
⋮

w′i,Ti)

 =

(

  

1 hi,2
1 hi,3
⋮ ⋮
1 hi,Ti)

 , and 𝛆i = ( 

εi,2
εi,3
⋮
εi,Ti

). 

Multiplying all variables by 𝐌i  ≡  𝐈𝑇𝑖−1 −𝐖i(𝐖′i𝐖i)
−𝟏𝐖′i, 𝐚𝒊 is eliminated since 𝐌i𝐖′𝐢  =  𝟎, 

and we have Eq (4): 

𝐌i𝐫i  = β'𝐌ixi  + 𝐌i𝛆i               (4) 

                                          Or:       �̈�𝒊   =   β′�̈�i  +   �̈�i 

where �̈�i  =  𝐌i𝐫i, �̈�i  = 𝐌ixi, and �̈�i  =  𝐌i𝛆i.  

𝐌i𝐫i, 𝐌i𝐱𝒊 and 𝐌i𝛆i are the residuals of a projection of 𝐫i, 𝐱𝒊 and 𝛆𝒊 on 𝐖i. The potential 

time trend in the variables is eliminated by this procedure.      

Examining the strict exogeneity condition for Eq (4), we have E(ẍi, t-1ε̈it) = 0  but 

E(ẍitε̈it) ≠ 0 . Indeed, E(ẍitε̈it)  = E[(xit-β̂ixhi,t+1)(εit-β̂iεhit)]  = E[(xit-β̂ixhi,t+1)εit]  = E[xitεit] ≠0 , 

where β̂ix = Wi(W'iWi)
-1W'ixi , β̂iε = Wi(W'iWi)

-1W'iεi = 0 , and E[hi,t+1εit] = 0 . An OLS 

estimator of Eq (4) seems to suffer the Stambaugh bias.  

To eliminate this bias, we apply Zhu’s (2018) RD2 estimator to Eq (4). Recursively 

forward demeaning the variables and implementing the 2SLS procedure to Eq (5): 

r̅̈i  =  β'x̅̈i  +  ε̅̈i            (5) 

In the first-stage regression, we include an intercept and use the fund scale xi,t−1  as the 

instrumental variable (IV). xi,t−1 is qualified as a valid IV because it is correlated with x̅̈i,t−1 but 

uncorrelated with ε̅̈i, t. Furthermore, xi,t−1 contains full information about scale in the past so as to 
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guarantee better goodness of fit in the first stage than ẍi,t−1 or its backward-demeaned form as the 

IV. We call the RD2 estimator under the RT model RT-RD2. Our RT-RD2 estimator considers 

time-varying unobserved skill and is free of the omitted variable bias and Stambaugh bias (See 

discussions of both biases in Appendix A). It is written as: 

                      β̂RT-RD2 = [(∑ x̅̈'izi
N
i=1 )(∑ z'izi

N
i=1 )-1(∑ z'ix̅̈i

N
i=1 )]

-1
 

                                                    ∙(∑ x̅̈'izi
N
i=1 )(∑ z'izi

N
i=1 )-1(∑ z'ir̅̈i

N
i=1 )      (6) 

where �̈�i̅  =  

(

 
 
 

r̅̈i,2

r̅̈i,3
⋮
r̅̈i,Ti)

 
 

, �̅̈�i  =  

(

 
 
x̅̈i,1
x̅̈i,2
⋮

x̅̈i,Ti−1)

 
 

 and 𝐳𝑖  =  ( 

1 xi,1
1 xi,2
⋮ ⋮
1 xi,Ti−1

).  

3.3. Simulation exercise   

We conduct a simulation exercise to show biased estimates under the FE model in the 

presence of the time trend and the performance of RT-RD2. One thousand simulated samples are 

constructed over 100 months for 300 funds. All funds start at $ 250 in million and at the age of 0. 

Benchmark-adjusted returns are generated from an RT model with the two-level scale, as Eq (7): 

rit = ai0 + gihit + β1qi, t-1 + β2qs, t-1 + εit               (7) 

where qs, t-1 is style scale measured as the total AUM of the remaining funds. Fund scale, qit, is 

measured as the fund AUM, generated from Eq (8), in which we use the logarithm difference to 

guarantee the positive values of qit in simulations:14 

 
14 Pástor et al. (2015) and Zhu’s (2018) size models assume the monthly change in fund size is a function of 

returns. Pástor et al. (2015) use a simple percentage of changes (qit qi, t-1⁄ − 1) in fund size (see Eq (A2)). For certain  
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log(qit)− log(qi,t-1) = c + γrit + vit      (8) 

Consistent with the estimates from our sample, we choose the following values for the 

model parameters: the initial skill of funds, ai0, follows a normal distribution N(0.0121, 0.02712); 

gi follows a normal distribution N(− 0.0007367, 0.00392); std(ε) = 0.0057, β1 and β2 take four 

different values: −10−6 × [0, 0; 5, 0; 3, 0.05; 5, 0.1]. The first assumes scale effect is zero at both 

levels. The second assumes DRTS at the fund level but no effect at the style level. The third set of 

β parameters is close to our estimates (See Section 5.3). The other parameters c = 0.0107, std(v) = 

0.1504. From Eq (8), we estimate γ as 0.5418. Thus, three values for γ, 0.5, 0.8, and 1.2, are 

considered in the simulations.15  

With each sample, we estimate β1 and β2 using FE-RD2 and RT-RD2 estimators and report 

four performance metrics in Table 1: bias, standard deviation, root mean square error (RMSE) of 

the estimators, and the fraction of rejecting the null (β = 0) at the 5% confidence level.16 The four 

performance measures are calculated across 1000 simulated samples.   

In Table 1, we observe a significant bias in the FE-RD2 estimator of both β1 and β
2
. This 

bias becomes more significant when the coefficient of scale is greater. For example, when γ = 0.5 

 
extreme scenarios, simulated sizes could become negative when using simple percentage. Zhu (2018) uses the 
logarithm difference of fund size as in Eq (A3), which represents a continuously compound rate of changes. Positive 
simulated sizes can be guaranteed. We do not include the benchmark return as it does not influence the estimation of 
γ nor the generated fund sizes. As the gross alphas of hedge funds are estimated from Fung and Hsieh (2004)’s 
multifactor model (See Section 4.4), it is strictly orthogonal to the benchmark return of the fund. The mean of ρBit 
enters c and its variance enters the innovation term, vit. 

15The initial skill and time trend of skill of individual hedge funds are estimated from Eq (15). We calculate the 
mean and standard deviation of ai0 and gi across funds to obtain the simulation parameters. std(ε) is estimated from 
FE-OLS estimator of Eq (7), assuming constant g across funds. The parameters of size model are estimated from Eq 
(8). 

16 Bias is equal to β̅̂ – β, β̅̂ = 1
n
∑ β̂i

n
i=1 , β̂i is the estimate from the ith sample, n = 1,000. The standard deviation (sd) 

of β̂ is equal to √1
n
∑ (β̂i − β̅̂)

2n
i=1 . The RMSE is equal to √bias2+ sd2. 
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and [β1, β2] = [‒3, ‒0.05] ×10−6, the bias is as large as 2.21×10-6 and ‒1.70×10-8 for β̂1 and β̂2, 

respectively. Even with a high standard deviation, FE-RD2 rejects the null in 64-94% of cases 

when the null β1 = 0  is true and in over 98% of cases when the null β2 = 0 is true. However, 

when the null β1 = 0 is false, in only 45-82% of simulations, the null is rejected because of biases. 

On the other side, we observe RT-RD2 is free of biases (less than 0.01×10-6 for β̂1 and less than 

0.02×10-8 for β̂2). Regarding estimation uncertainty, RT-RD2 yields more precise estimates with 

much smaller standard deviations than FE-RD2. The RD procedure seems to increase estimation 

uncertainty when Stambaugh bias is less significant, i.e., when γ is smaller. We observe a higher 

standard deviation for smaller value of γ across all simulation scenarios. Combining the bias and 

standard deviation, RT-RD2 offers a much smaller RMSE consistently across all simulation 

scenarios. For example, when γ = 0.5 and [β1, β2] = [-3, -0.05] ×10-6, the RMSE of RT-RD2 is 

only one-fifth of that of FE-RD2 for β̂1 and one-tenth for β̂2. Regarding the power of test, RT-RD2 

has approximately the right size. It rejects a true null in 6-7% of cases for β̂1 and 0-6% of cases for 

β̂2. RT-RD2 possesses adequate power to reject the null when the null is false. When the null β1 =

0 is false, its power to reject is 76-100%. When the null β2 = 0 is false, its power increases to 

100%. We repeat the simulation exercise with returns generated from an FE model. The results are 

reported in Appendix B (Table A1). We find that RT-RD2 is an unbiased estimator with acceptable 

test power no matter whether returns have time trend or not. 17 

 
17 RT-RD2 is still an unbiased estimator when returns have no time trend. To summarize the results in Table A1, 

RT-RD2 unbiasedly estimates the scale effect (less than 0.01×10−6 for β̂1 and less than 0.02×10−8 for β̂2). The fraction 
of rejecting a true null is less than 5% of simulations. The power to reject a false null is 87-100% for β̂1 and 100% for 
β̂2.   
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4. Data 

In this section, we describe the sample of hedge funds, style classification, estimating gross 

returns, treatments of some conventional hedge fund data biases, estimating gross alpha, and the 

alternative performance measures and benchmarks used in the robustness tests.  

4.1. Sample and style classification 

We construct the sample by collecting U.S. hedge funds from the Lipper/TASS database. 

We keep funds reporting monthly net-of-return in U.S. dollars (USD) with an AUM of at least $5 

million. TASS includes data on defunct funds starting from 1994. Our sample period ranges from 

January 1994 to December 2018. The initial sample covers 4,960 U.S. hedge funds: 614 live funds 

and 4,346 graveyard funds, as of December 2018. TASS classifies hedge funds into 11 strategy 

categories: convertible arbitrage, dedicated short bias, emerging markets, equity market neutral, 

event-driven, fixed income arbitrage, global macro, long-short equity, options strategy, multi-

strategy, and other strategies.  

Our style-level DRTS hypothesis implies that individual funds in the same style apply 

homogeneous strategies. However, the classification of hedge fund styles varies from one database 

to another. In their study, Agarwal et al. (2009) consider a hedge fund sample from multiple 

databases. Based on the fact that there are only a few distinct style factors in hedge fund returns 

(Fung and Hsieh, 1997), they classify funds into four broad strategies. Funds classified in a style 

group are assumed to have similar factor exposures and employ similar strategies. Therefore, in 

our main analysis, we adopt the method of Agarwal et al. (2009), classifying hedge funds into 

Directional traders, Security selection, Relative value, Multiprocess, and Other strategies. This 

classification helps adapt our style-level analysis to different hedge fund databases. In Section 6.4, 
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we test the robustness of our results to the choice of hedge funds classification.    

Specifically, we classify Dedicated Short Bias, Emerging Market, and Global Macro into 

Directional traders. These hedge funds bet on the direction of price changes in different markets. 

For example, Global Macro hedge funds invest in instruments that have prices that fluctuate with 

changes in economies and capital flows around the globe. Relative Value funds invest in 

opportunities from relative price changes between financial assets. We classify Convertible 

Arbitrage, Equity Market Neutral, and Fixed-income Arbitrage into this style. Security Selection 

includes Long/Short Equity funds, which take long and short positions in undervalued and 

overvalued securities in primary equity and equity derivatives markets. Event-Driven and Multi-

Strategy are classified into Multiprocess. They invest in opportunities created by corporate events 

(e.g., risk arbitrage on mergers and acquisitions or investing in distressed securities. Finally, we 

join Options Strategy and other strategies into a group named Other.  

4.2. Data biases 

Research has shown that hedge fund data suffer survivorship, backfilling, and smoothed 

return biases. A sample including live funds and graveyard funds minimizes the survivorship bias 

(Titman and Tiu, 2011; Bali, Brown, and Caglayan, 2012; Agarwal and Naik, 2004; among others). 

Backfilling bias refers to the artificially inflated performance of fund managers who selectively do 

not report past underperformed returns. To mitigate the bias, we delete the returns before the listing 

date of the fund (Yin, 2016; Shi, 2017).18 To have a sufficient number of observations to run 

regressions, we keep funds with more than 24 months of returns. This reduces the number of funds 

 
18 An alternative method is to delete returns of the first 24 months for each fund (Jagannathan, Malakhov, and 

Novikov, 2010; Titman and Tiu, 2011; Fung and Hsieh, 2000; Bali et al., 2012; among others). As a robustness check, 
we consider this alternative method and results remain qualitatively unchanged. 
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in our sample to 3,323 funds. Backfilling has a minor influence on the reported AUM. We consider 

the initial sample of 4,960 funds to calculate the style-level scale. 

Further, we identify some funds which have missing values of AUM. For a given fund, 

when missing values occur in some months, we recursively estimate the fund’s AUM, as qi,tE , using 

the following method: 

qit
E = 1

2
{qi,t-1×(1+NRi, t)+qi,t+1/(1+NRi,t+1)}     (9) 

where qi,t−1 and qi,t+1 are the values of AUM in the previous and the next month, NRit is the net 

return. If the previous or the next AUM is not available, we use qi,t+1/(1+NRi,t+1) or qi,t-1×(1+NRit). 

The funds without a value of AUM are dropped. The estimated values of AUM are only used to 

calculate the style-level scale. We omit these observations in the performance-scale regressions.  

Smoothed returns bias upward the Sharpe ratios and information ratios and could affect the 

estimation of alpha as well. Following the study of Titman and Tiu (2011), we consider Getmansky, 

Lo, and Makarov’s (2004) method to adjust this bias. A smoothing coefficient 𝜃 of each fund is 

estimated in an MA(2) process as Eq (10) using maximum likelihood estimation via the 

“innovations algorithm” of Brockwell and Davis (1991): 

 GRt
o = 𝜇 + 𝜃0𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 (10) 

with the constraints, 1 = 𝜃0+𝜃1+𝜃2, and 0 < 𝜃𝑘<1, k = 0, 1, 2. GRt
o denotes the observed returns. 

The actual returns, GRt, are estimated by (11). 
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 GRt = �̂� + 𝜖�̂� (11) 

The average 𝜃0,  𝜃1, and 𝜃2 across the 3,233 funds is 0.80, 0.14, and 0.07, respectively. The 

estimated GRt are winsorized at 1% level. The grand mean of the estimated “actual” gross returns 

remains at the level of 0.85% per month across the 3,233 funds. 

4.3. Gross returns 

Over 98% of U.S. hedge funds in the Lipper-TASS Database report net returns. However, 

given the particularity of hedge fund compensation structures, we cannot correctly infer the DRTS 

by using net returns. Specifically, the presence of a high-water mark provision for hedge funds 

may mechanically lead to DRTS. Let us consider a hedge fund with an exceptional run. Due to 

performance chasing by investors, the fund also attracts lots of inflows during this run. However, 

when the watermark is reached, there could be a large drop in net return because of the manager's 

incentive fees. In this case, we could conclude that there is a significant DRTS as a large inflow 

leads to lower future performance. Nevertheless, this is not the kind of DRTS we are interested in. 

To alleviate this problem, we need to consider gross returns.  

For a fund that sets the high watermark provision, we estimate the gross returns of hedge 

funds based on Eq (12) and (13), assuming all fees are paid monthly. We are aware that they could 

be paid annually, semi-annually, or quarterly, depending on the fund. 

qi,t-1× (1 + NRit) + Inflowit = qit       (12) 

qi,t-1× (1+GRit)(1 −m%) + Inflowit − qi,t-1GRit×Inc% × I(CGRit > max
∀v<t

(CGRiv) ) = qit       (13) 

where GRit is the gross return and NRit is the net return, m% is the management fees, Inc% is the 
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incentive fees, Inflowit is the amount of net inflows invested at the end of month, a negative value 

represents a net withdrawal of capitals by investors. The incentive fees (qi,t-1GRit×Inc%) are paid 

if and only if cumulative gross return at the end of the month, CGRit = ∏ (1+GRiv
t
v=1 ), is greater 

than the maximum of the cumulative gross returns in the past. I(.) is a dummy variable equal to 1 

when the watermark is reached, and 0 otherwise. If a fund does not set a high-water mark, we 

assume that incentive fees are paid if and only if the gross return is positive (GRit > 0).  

With Eq (12) and (13), we can recursively resolve the gross return (GR) and Inflow given 

the AUM, the net return, management fees, incentive fees, and high watermark variable provided 

by TASS.19 The grand mean of estimated gross returns is 0.88% per month across the 3,233 funds 

in our final sample. Compared with the grand mean of net return of 0.74% per month, it will 

suggest that the total sum of management fees and incentive fees is equal to 0.14% per month on 

average. 

4.4. Gross alpha 

Benchmark adjustment for hedge fund returns is challenging. There is not yet a unanimous 

consensus on the choice of hedge fund benchmark. The used factor models vary from one study to 

another. For example, Titman and Tiu (2011) use the Fung and Hsieh (2004) seven-factor model 

and stepwise regressions to identify risk factors. Bali, Brown, and Caglayan (2012) use three-factor 

model specifications, a four-factor model of Fama and French (1993) and Carhart (1997), a six-

factor model from Fama and French (1993), Carhart (1997), and Fung and Hsieh's (2004) two 

factors: changes in ten-year yield (∆10Y) and changes in credit spread (∆𝐶𝑟𝑒𝑑𝑆𝑝𝑟), and a nine-

 
19 The algorithm for estimating the gross returns is available to interested readers upon request. 
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factor model from Fama and French (1993), Carhart (1997), and Fung and Hsieh’s (2001, 2004) 

five factors: ∆10Y, ∆𝐶𝑟𝑒𝑑𝑆𝑝𝑟, bond trend-following factor (PTFSBD), currency trend-following 

factor (PTFSFX), and commodity trend-following factor (PTFSCOM). Shi (2017) use five 

alternative measures : raw returns, market-adjusted returns, Fama and French's (1993) three-factor 

model, Fama and French's(1993) and Carhart's (1997) four-factor model, and Pástor and 

Stambaugh's (2003) four-factor model augmented by a liquidity factor. Yin (2016) defines 

performance as style-adjusted return, which is equal to the fund’s return minus the average return 

of all funds in the same style. Alternatively, performance can be measured as a return relative to a 

hedge fund index return (i.e., an index provided by Hedge Fund Research (HFR)). Style or HFR 

index-adjusted return provides valuable insight into the managers' talent if investors make capital 

investment decisions among the hedge funds in the same style. However, a conclusion based on 

such a measure is less interesting for investors whose choices are among a wider range of asset 

management vehicles other than hedge funds. Moreover, investors are comforted when a hedge 

fund realizes significantly positive performance against the markets (Jagannathan, Malakhov, and 

Novikov (2010)). In our main analysis, we use the Fung and Hsieh (2004) seven-factor model 

(FH7) to estimate alpha. To test the robustness of our results, we also consider the Fama and French 

(1993) three-factor model (FF3), the Fama and French (1993) and Carhart (1997) four-factor 

model (FFC4), and the five-factor model augmented by Pástor and Stambaugh (2003) with 

liquidity factor (FFCPS5).20  Further, we consider alternative performance measures, namely, 

information ratio, Sharpe ratio, and manipulation-proof performance measure (MPPM) of 

 
20 At a minimal level, we consider the Fama-French three factors to adjust hedge fund returns. DRTS hypothesis 

implies that the performance of active management declines as more assets chase the same investment opportunities. 
A single market factor adjustment seems indeed insufficient. For example, assume that a manager allocates a fraction 
of his (her) portfolio to the market portfolio and the other fraction to the size factor. Using a single factor model such 
as CAPM, we would find a positive alpha that comes from the size factor. This alpha would not decrease as his (her) 
fund size increases, since the size factor returns would not be affected by his (her) fund size. 
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Ingersoll, Spiegel, Goetzmann, and Welch (2007).    

The time-varying feature of hedge funds’ risk characteristics is widely accepted in hedge 

fund research. Fung, Hsieh, Naik, and Ramadorai (2008) confirm hedge fund factor loadings 

change over time. To reflect this dynamic, Titman and Tiu (2011) estimate the risk exposure 

parameters of hedge funds by using a 24-month rolling window; Bali et al. (2012) use a 36-month 

rolling window; Shi (2017) uses a 24-month, non-overlapping window. The length of the test 

period should be as short as possible to capture time-varying risk characteristics, while a 

sufficiently long period is necessary to have stable estimates. Considering both aspects, we choose 

a 36-month rolling window to estimate gross alphas.21 The process is as follows: 

 GRi,t: t+w-1 − Rf, t: t+w-1 =  αi,t+ ∑ β
i,k,t

Fk, t: t+w-1

K

k=1

+εi, t: t+w-1 (14) 

where GRi, t: t+w-1 is “actual” gross returns of fund 𝑖 from month t to t+w-1 (estimated in Section 

4.2); Rf, t: t+w-1 is risk-free rate; Fk ,t: t+w-1 is the return of risk factor k, k = 1, 2, …, K; β
i,k,t

 is risk 

exposure of fund i to factor k during the period t to t+w‒1, w = 36. The intercept of regression,αit, 

is the gross alpha, the performance measure we use in the main analysis. The Sharpe ratio is equal 

to the mean of “actual” excess gross returns divided by the standard deviation of “actual” gross 

returns; the information ratio is equal to the alpha divided by the regression error obtained from 

Eq (14); the MPPM is calculated using the observed return, GRt
o, as it controls for the smoothed 

return issue.22 

 
21 Our results are robust to an alternative 48-month moving window. The estimates remain at a similar level 

compared with the 36-month window, β̂1= ‒3.45×10-6 (t-statistic = ‒1.90), β̂2= ‒0.05×10-6 (t-statistic = ‒2.03). 
22 Ingersoll, Spiegel, Goetzmann, and Welch's (2007) formula for MPPM: 
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5. Results 

First, we present summary statistics and test the nature of returns to scale at the fund-level 

and the two-level scale using different estimators. Second, we present the evidence for the time 

trend of skill in our sample and then analyze the interaction of skill and scale in determining fund 

performance. Third, we examine the heterogeneous ability to resist the diseconomy of scale and 

analyze the relationship of this ability with fund performance. Fourth, we provide evidence for the 

rationality of capital invested in hedge funds. 

5.1. Summary statistics  

Panel A of Table 2 summarizes hedge fund performance over the period of 1994-2018. The 

average gross alpha across all the funds obtained from the FH7 model is 0.32% per month and is 

about 0.28% per month under the alternative models, FF3, FFC4, and FFCPS5. The Sharpe ratio, 

information ratio, and MPPM are, on average, 0.25, 0.21, and 0.04, respectively. All the 

performance measures (gross alpha and different performance measures) suggest that Security 

Selection funds underperform other styles, on average (with gross alphas varying from 0.21% to 

0.25% per month). 

Panel B of Table 2 reports the statistics of hedge fund characteristics. Management fees 

and incentive fees are, on average, 1.41% and 18.65%, respectively. Seventy-six percent of funds 

set high-water mark provisions. The average age of the hedge fund sample is 7.00 years. Panel C 

of Table 2 presents the statistics of scale measures. The average Fund AUM across all hedge funds 

is $244 million. The average Style AUM is $87,747 million. Security Selection and Multiprocess 

 

MPPMρ,t =  
12

(1-ρ)
ln(

1
𝑤
∑[(1+GRt

o)/(1+Rft)]1-ρ
t+w-1

s=t

) , with ρ=3  
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have a larger style scale relative to other styles. The total AUM of hedge funds in our sample is 

equal to $353,129 million on average over the period 1994-2018.  

Panel A of Figure 1 plots the evolution of the total AUM of hedge funds. We observe that 

the amount of managed assets by hedge funds changes significantly over time. Before the financial 

crisis in 2008, the total AUM increased from $44 billion in 1994 to $650 billion in 2007 and then 

decreased to $250 billion in the following ten years. The number of funds increased from 375 in 

1994 to 2,548 in 2007 and then decreased to 600 in 2018. Panel B to E plot the evolution of the 

total AUM of each hedge fund style. The 2008 financial crisis also represents a turning point for 

most hedge funds styles.  

[Insert Table 1 and Figure 1 here] 

5.2. Fund-level returns to scale 

To examine the fund-level DRTS, we run the univariate regressions of the gross alpha on 

the fund scale. The gross alpha is estimated from the FH7 model. The results of the RT-RD2 

estimates are reported in Table 3. We also report the results of the OLS, FE-OLS, and FE-RD2 

estimates. OLS is the estimate obtained from a pooled OLS regression. FE-OLS is the fixed effect 

estimator of Eq (A1). FE-RD2 is Zhu’s (2018) RD2 estimator developed under the FE model, as  

Eq (A7). All three estimators are, however, biased, and we should interpret their results with 

caution. RT-RD2 is the estimate from Eq (6), which is free of the omitted variable bias, Stambaugh 

bias, and the time trend bias, as established in Section 3.  

In Panel A, we find the RT-RD2 estimate of β1 is significantly negative under the fund-

level model, at −2.13× 10-6 (t-statistic = −3.89). The difference between RT-RD2 and FE-RD2 
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(−15.43×10-6, t-statistic: −1.10) confirms a negative sample mean of the second term of Eq (3). 

The endogeneity caused by the time trend of skill in the estimates of the FE model is significant. 

In Panel B, we repeat the tests using a sample excluding the return observations from 2007 to 2009, 

considering the potential impact of these extreme returns on our estimated scale effect.23 The RT-

RD2 estimate of β1becomes −3.96×10-6 (t-statistic: −3.49). To interpret the coefficient, an increase 

of $250 million (a doubling size of an average fund) in the managed assets of a hedge fund 

decreases its gross alpha by 9.90 bps per month. We confirm DRTS at the fund level using the 

logarithm of fund AUM measure in Appendix D (Table A3). The RT-RD2 estimate of β1 under 

the fund-level model is −1.15×10-3 (t-statistic: −5.74) with the full period sample and −2.69×10-3 

(t-statistic: −5.24) after excluding Crisis 2008.24 

Table 4 reports the results of the style sub-samples. For brevity, we only report results from 

RT-RD2. The estimates range from −1.14 × 10-6 to −12.77 × 10-6. The estimated coefficients are 

statistically significant at the 1% confidence level across all styles except for Multiprocess in Panel 

B, after excluding returns during the financial crisis.  

[Insert Table 3 and Table 4 here] 

5.3. Two-level returns to scale 

To examine the two-level DRTS, we run the multiple regression of the gross alpha on the 

lagged fund AUM and style AUM. The results are reported in Table 3, Panel A for the full period 

 
23As in Figure 1, we observe that the financial crisis of 2008 has a dramatic impact on the sizes of hedge funds. 

Figure 2 plots the average gross returns of all hedge funds and different styles for each year over the period between 
1994-2018. We observe dramatic negative returns (−0.30% to −1.52%) in the year 2008 across all hedge funds styles. 
The average returns across all funds in 2008 is −1.21%. 

24 However, the magnitude of estimated scale effect is noticeably different. Using log AUM, a doubling size of 
an average fund would decrease alpha by 18.6 bps (= −2.69×10-3×Log2). A model assuming a log-linear form of 
DRTS predicts a more severe diseconomy for an average fund.  
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and Panel B excluding the financial crisis. With the style scale as a covariate, the RT-RD2 estimate 

for the fund-level scale effect remains negative and significant, at −3.37 × 10-6 (t-statistic: −2.84). 

Its magnitude remains at a level similar to that of the univariate regression.  

Regarding the estimate of β2, the coefficient in Panel A seems to exhibit increasing returns 

to style-level scale. However, this result should be interpreted with caution. It could be affected by 

the extreme returns which are beyond expectations of the normal distribution. As illustrated in 

Figures 1 and 2, sizes of all styles decreased dramatically during the 2008-2009 period. The 

dramatic decrease in style sizes is associated with underperformance and a significant attrition rate 

of hedge funds.25 A systematic negative shock on returns could lead to significant capital outflows, 

devaluated assets under management, and a decreased style size. In this context, we test the impact 

of a systematic return shock on the RT-RD2 estimate of  β2. In Appendix C (Table A2), we find a 

significant upward bias in the estimated style-level scale effect.26 However, we should interpret 

the estimates biased by extreme returns with caution as we could falsely confirm increasing returns 

to style-level scale while the true value of β2 is negative, as shown in the simulation exercise of 

Appendix C. 

[Insert Figure 2 here] 

Considering their potential impact on the estimate of style-level effect, we rerun 

regressions by excluding the extreme return observations during the financial crisis. In Panel B, 

indeed, we find that the coefficient becomes negative and significant, at −0.06 × 10-6 (t-statistic: ‒

 
25 In our sample, 565 funds were liquidated from 2007 to 2009. 
26 A one-sigma negative shock over a subperiod of 12 consecutive months causes a bias of 2.07×10−8 when γ=0.5 

and [β1,β2] = [‒3, ‒0.05] ×10−6. If the shock is more severe (e.g., a three-sigma shock), the bias is more pronounced 
(5.69×10−8). The null (β2 = 0) is rejected in 74% of cases. However, we falsely confirm increasing returns to style-
level scale, while the true value of β2 is negative (‒0.05×10−6).  
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2.23). To interpret the two-level scale effect, the impact of fund size doubling (i.e., an increase of 

250 million dollars in fund AUM) diminishes the fund’s gross alpha by 8.43 bps per month; The 

impact of style size doubling (i.e., an increase of 90 billion dollars in the managed assets of the 

peers of this fund in the same style) deteriorates its gross alpha by 54 bps further. 

The results of regressions with the style samples also provide evidence for the two-level 

DRTS. The estimate on the fund scale ranges from −1.50× 10-6 to −11.63× 10‒6. The estimate on 

the style AUM is significantly negative except for Multiprocess, ranging from −0.16× 10-6 to 

−0.02× 10-6.  

With the estimated coefficients on scale, −3.37 × 10-6 and −0.06 × 10-6 for β1 and β2 , 

respectively, we can calculate the effects of the two-level scale on the fund performance. The two-

level scale decreases monthly gross alpha by 0.63% on average, of which the fund-level and the 

style-level scale decrease the alpha by 0.08% and 0.55%, respectively.27 An average fund realizes 

a gross alpha of 0.32%; in the absence of DRTS, it would have realized a gross alpha of 0.95% per 

month. This finding suggests that style scale accounts for a larger portion of DRTS of hedge funds. 

When the AUM for a particular investment style is growing, a hedge fund in this style realizes a 

lower rate of return because of the more severe price pressure, which is caused by more trades 

chasing the same opportunities among competitors. The style size is an important factor to consider 

for capital decision-makers. 

   

 
27 The two-level effect of scale is calculated as β̂1 times each observation of fund AUM, plus β̂2 times style AUM, 

and take the sample mean, i.e., the two-level scale effect = 1

∑ (Ti-1)
N
i=1

∑ ∑ (β̂1qi,t-1+β̂2qs,t-1)
Ti
t=2

N
i=1 , with [β̂1, β̂2] = 

[−3.37, −0.06] × 10-6. 
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5.4. A close look at hedge fund skill 

In this section, we first report the time trend of hedge funds skill and then examine the 

interaction of skill and scale in determining the hedge funds performance. In Eq (1.1), the 

parameters related to skill, 𝐚𝐢, can be unbiasedly estimated as: 

�̂�𝐢  =  (𝐖′i𝐖i)
−1𝐖′i(𝐫i − �̂�′RT-RD2xi)           (15) 

       E(�̂�𝐢|𝐖,x) =  (𝐖′
i𝐖i)

−1𝐖′
iE(𝐫i − �̂�′RT-RD2xi|𝐖,x)

= (𝐖′
i𝐖i)

−1𝐖′
iE(𝐖

′
𝐢𝐚𝐢 +𝛃'xi+𝛆i − �̂�′RT-RD2xi|𝐖,x)

=  (𝐖′i𝐖i)
−1𝐖′iE(𝐖′𝐢𝐚𝐢)    =  𝐚𝐢     

given that �̂�RT-RD2 is an unbiased estimator of 𝛃, i.e., E(�̂�RT-RD2|𝐖,x)  =  𝛃. In the two-level scale 

model, xi is a matrix of Ti × 2, whose columns are fund scale and style scale, and we take the 

estimated coefficients of the two-level scale, �̂�RT-RD2  =  (
-3.37
-0.06) ×10−6.   

Using Eq (15), we estimate the time trend of skill, gi, for each fund whose number of 

observations is greater than 20 months. Figure 3 plots the cross-sectional distribution of the growth 

rate of hedge funds skill. We find that 30% (52%) of hedge funds in our sample have a positive 

(negative) and statistically significant time trend of skill, with a t-statistic above (below) 1.96 

(−1.96), while 18% of funds have heterogeneous but time-invariant skill. The mean of the time 

trend of skill across funds suggests a decrease of skill by −0.07367% per year on average, with a 

t-statistic of −8.26. Compared with a normal density, the empirical density of the time trend 

appears to be approximately symmetrical (skewness of −1.36) but considerably fat-tailed (kurtosis 

of 18.7).   

[Insert Figure 3 here] 
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Next, we estimate time-varying skill. Similar in spirit to Pástor et al. (2015), we define 

hedge fund skill as the gross alpha earned on the first dollar invested in the fund and the hedge 

fund style. The time-varying skill of the fund is estimated as the initial skill plus the changes over 

time: 

âi,t = âi,0 + ĝihi,t  =  𝐰′𝐢,𝐭�̂�𝐢           (16) 

Figure 4 plots the cross-sectional distribution of hedge fund skill and alpha in Panel A and 

Panel B, respectively. We calculate for each month between 1996-2016 the percentile of the 

estimated skill and the gross alphas across all operating funds in that month. The median of skill 

is around 0.97%. The 90th (70th and 30th) percentile of skill is around 2.11% (1.31% and 0.55%). 

The 30th percentile is above zero in most time, which indicates that about 70% of hedge funds have 

the skill to beat the market. The skill of the funds at the bottom 10% is below zero, indicating that 

at least 10% of hedge do not have the skill to beat the market. Influenced by scale, funds at the 

30th percentile sometimes fail to beat the market, but in all time, one-half of hedge funds realizes 

positive alphas.  

[Insert Figures 4 here] 

Figure 5 displays the equal-weighted average skill,  the two-level DRTS, the average gross 

alpha, and the average gross alpha adjusted for DRTS over the period 1996-2016. Panel A shows 

the result across all funds. The average skill is between 0.15% and 1.34%, while the average DRTS 

is between −1.14% and −0.15%. The average skill exhibits a significant downward trend after 

2008, and the most serious DRTS occur around 2008. The average (adjusted) gross alpha is 

between −0.20% (−0.03%) and 0.73% (1.87%). The gap between the alpha and the adjusted alpha 

(the DRTS) is minor before 2000 and is the most significant around 2008. Overall, scale accounts 
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for a large portion of hedge fund performance during the financial crisis, while the post-crisis 

performance of hedge funds declines due to skill.   

Panel B to Panel E plot the same graphs for each style. Still, the impact of scale is important 

around 2008 in all hedge funds styles. All styles, except Directional traders, have a decreasing skill 

since 2008. Scale constraints seem negligible among Directional traders before 2003. On average, 

DRTS is -0.18% before 2003 and -0.66% after 2003. The gap between the alpha and the adjusted 

alpha is small. Relative value has relatively minor DRTS in the post-crisis period, –0.35%, 

compared to –0.60% for Security Selection and Multiprocess.      

[Insert Figure 5 here] 

5.5. Heterogeneity of decreasing returns to scale 

In the previous sections, we assume that the coefficient on scale, β, is constant across funds. 

However, this assumption is too restrictive to capture the potential heterogeneity of the ability to 

resist DRTS. For example, one fund is better than another fund at managing price pressure when 

trading stocks with a large volume so that its performance suffers less. As fund skill, the ability to 

resist DRTS should also be fund specific (Harvey and Liu, 2017 and Zhu, 2018). The purpose of 

this section is to examine whether the fund can outperform if it has a better ability to resist DRTS.   

To answer this question, we extend our model by allowing fund-specific coefficients on 

scale (βi). Nevertheless, fund by fund regressions may produce imprecise estimates for the short-

lived funds. Harvey and Liu (2017) draw inference for such funds from the information of peers 

in the cross-section by using the Expectation-Maximization (EM) method. In this study, we apply 

a strategy that assumes that funds with similar features (size and style) share the same coefficient 
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on scale. In each style, we sort funds into quintile portfolios by fund size and estimate β1 and β2 

for each portfolio by RT-RD2. This approach allows us to run regressions with sufficient number 

of observations and reduce estimation error (Zhu, 2018).28  

To examine the ability to resist DRTS, we exclude funds with positive parameters and 

report the estimated parameters for each size portfolio in Panel A of Table 5. We find that the 

magnitude of the estimated coefficients on the fund scale decreases with the fund size.   

We measure the ability to resist DRTS (ARDRTS) as the effect of scale at the average size 

of each fund, i.e., ARDRTSi  = β̂1,iq̅i  + β̂2,i × q̅s , where β̂1,i  and β̂2,i  are the fund-specific 

coefficients estimated from the portfolio regressions, q̅i and q̅s are the average fund AUM and the 

average style AUM of the fund. We find that small funds are more able to manage the constraints 

imposed by the scale at the two levels. At the two levels, when the fund size and style size both 

double, the smallest fund suffers less severe decreasing returns (by 24 bps compared to the largest 

fund). The difference is statistically significant with a t-statistic of ‒3.92.   

To examine the influence of the ARDRTS on fund performance, we create high-medium-

low portfolios by sorting funds on their average skill and ARDRTS. A low-low portfolio consists 

of funds with low values of skill and low values of ARDRTS. Panel B of Table 5 reports the 

average gross alphas of nine skill-scale portfolios, calculated by taking the time-series mean for 

each fund first and then equally weighting the time-series mean across funds in the portfolio. We 

find that skill is a determinant of portfolio performance. In the columns of Panel B, all the high-

minus-low (HML) portfolios on skill have a positive gross alpha, which is statistically significant 

 
28 Among the 25 style-size portfolios, we find one portfolio (Q5 of Other style) that has a positive fund scale 

parameter β̂1 and one-half of portfolios that has a positive style scale parameter β̂2. 
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at the 1% level. Also, we observe ARDRTS is a significant factor in determining performance. On 

the table rows, all HML portfolios on ARDRTS also have positive gross alphas from 0.73% to 

1.31% per month (t-statistic: 5.67 to 14.43).  

[Insert Table 5 here] 

5.6. Do hedge fund managers invest at the optimal amount?  

In the context of DRTS, the manager should invest at his optimal amount to realize the 

maximum profits, as discussed in Section 2, and we should observe the realized value-added of 

the fund at the optimal level. When investors provide excessive capital (qi>q
i
*), the manager can 

actively manage his optimal amount qi∗ and index the excessive money (qi‒ q
i
*). Since the indexed 

investments earn no alpha, the value-added of the fund is equal to V = qi
*αi

*+(qi‒ q
i
*)×0 = qi∗αi∗ =

V𝑖
∗. To answer the question, we investigate the realized value-added and the maximum value-added.  

We calculate the realized value-added of a fund in a month as the AUM at the end of the previous 

month multiplied by the gross alpha, Sit = qi, t-1αit. Then, the value-added of the fund is a time-

series average of Sit over its lifetime, Si = 1
Ti-1
∑ Sit

Ti
t=2 . The optimal size of the fund is estimated by 

using the fund-specific parameters, q̂i, t-1
* = max {- 1

2β̂1i
(âit+β̂2iqs, t-1),0} . A negative term of 

âit+β̂2iqs, t-1 indicates that the fund has little skill, which is not sufficient to offset the impact 

imposed by the style scale. In this case, the optimal size of the fund should be zero. Accordingly, 

the optimal value-added in the month is estimated as V̂it
*  = q̂i, t-1

* α̂it
* , where α̂it

*  = âit+β̂1iq̂i, t-1
* +

β̂2iqs, t-1. If a fund has little skill, the maximal value it can exploit from the strategy is zero too. 

Likewise, the optimal value-added of the fund is obtained by taking the time-series mean of V̂it∗, 
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V̂i
∗  =  

1

Ti−1
∑ V̂it

∗Ti
t=2 . 

Table 6 reports both realized value added (Si) and optimal value-added (V̂i∗). The second 

column is for the realized value added. Specifically, we report two versions of average value-added 

across funds: (1) the cross-sectional (ex-ante) mean, which is a simple average of value-added 

across all individual funds, and (2) the cross-sectional weighted (ex-post) mean, which is the 

average value-added across funds weighted by the number of periods it appears in the database. 

The ex-ante mean shows the average hedge fund added an economically and statistically 

significant value by $300,000 per month, with a t-statistic of 5.70. Successful funds are more likely 

to survive than unsuccessful funds. The ex-post mean of value added is greater, at $550,000 per 

month. We also observe that there is a large variation across funds. The fund at the 99th percentile 

cutoff generated close to $6.33 million per month, and the fund at the 90th percentile cutoff 

generated $1.18 million per month on average. The median fund earned an average of $50,000 per 

month. In total, we find that about 63.67% of the funds had a positive value-added, while 36.33% 

of funds destroyed value.  

The third column of Table 6 reports the maximum value a fund could potentially extract 

from investment opportunities in the strategy. We observe that the optimal value the average fund 

could exploit from the strategy is $970,000 per month on average. Again, the ex-post mean is 

greater than the ex-ante mean, reflecting that skilled funds operate longer than less skilled funds. 

[Insert Table 6] 

There is a significant difference between realized value-added and optimal value. Hedge 

funds are often referred to as “smart money” attracting the brightest talents. Why then did hedge 
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fund managers deviate from the optimal behavior?   

In Table 7, we divide funds into three groups: excessively overfunded when q𝑖 > qic, qic =

 2qi
∗; moderately overfunded when qi∗ < q𝑖 ≤ qic; and underfunded when q𝑖 < qi∗. Note that the 

gross alpha becomes negative when the fund AUM is greater than qic, doubling the optimal size. 

The fund size q𝑖 and two critical fund size are the average over a fund’s existing period in the 

sample. About 30.69% of the funds are excessively overfunded. Their managers would destroy 

value if they actively manage all the money. Indeed, we find that most of these funds (30.06%) 

have a negative value added of $‒540,000 per month. If they maintain their size at the optimal 

level, they would realize a value added of $320,000 per month.    

On the other side, among funds increasing value, we find that about 28.88% of funds are 

moderately overfunded. The moderately overfunded group realized a value-added of $670,000 per 

month, while their optimal value is $1,210,000 per month. By examining their sizes, we find that 

the average AUM of the moderately overfunded group is $191 million, which is slightly greater 

than their average optimal size of $138 million. As the neoclassical assumptions state, if the 

manager invests at the optimal amount, even though he/she accepts excessive capital, he/she could 

index the excessive money and realize the maximum value-added. A plausible explanation for 

overfunding could be that these managers did not know their own capacity, as results in Table 7 

show that their realized value added (S) is much smaller than V. 

The underfunded group accounts for about 34.17% of the funds. On average, they added a 

value of $820,000 per month, which could be maximized at $1,380,000 per month. These funds 

seem to be too prudent to accept assets from investors. They have an average skill (ait) of 1.67%, 

maintaining an average size of $124 million, which is largely lower than their capacity of $215 
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million. Overall, the results suggest that hedge funds did not invest at their optimal amount.  

Note that sophisticated hedge fund investors chase performance and that overinvested 

funds are exposed as their subsequent profits decline. When additional capital inflows do not 

increase profits, investors can withdraw excess capital. This explains, in part, why only 30% of 

funds are excessively overfunded.29 However, why did underfunded funds, which performed well, 

receive insufficient funding? The strict regulations regarding limited access to the hedge fund 

could be a plausible explanation. Regulation D specifies, indeed, that the requirements for private 

placement offerings like hedge funds are exempted from registration. Particularly, Rule 504 set 

ceilings (up to $5,000,000 in any 12-month period) on the size of the offerings for the exemption.30 

There is no capital limit on the eligibility, only when a fund raises capital from accredited investors 

listed in Rule 501.  

Moreover, hedge funds use their capacity with caution. Limited partnership (LP) is a 

typical business organization form of hedge funds. The general partners (GP) are usually the 

sponsors of funds; they are also managers responsible for running funds. Mostly, they contribute 

their own capital. Investors are limited partners (LP), taking no responsibility for investment 

decisions. LP agreements are widely used to specify any restrictions on the percentage of investors’ 

assets, while investors use side letters to ensure access to the fund’s future capacity.  

[Insert Table 7 here] 

 

 
29 Zhu (2018) finds that 57% of mutual funds are excessively overfunded. 
30 Please refer to the SEC website: 
    https://www.investor.gov/introduction-investing/investing-basics/glossary/rule-504-regulation-d 

https://www.investor.gov/introduction-investing/investing-basics/glossary/rule-504-regulation-d


 

42 
 

6. Robustness checks 

6.1. Closed hedge funds 

First, we examine if past returns merely drive our findings. For example, if hedge funds 

carefully use their capacity, they would stop accessing new capital after they have reached their 

limit. In this case, the estimated scale effect could simply reflect how past returns affect current 

returns. To assess this issue, we investigate our sample and find that 326 funds have reported their 

closure to investors, of which 80 funds have reopened later. However, these funds account for less 

than 10% of our sample.  

In addition, we repeat the RT-RD2 regressions by excluding funds that were closed to 

investors. The estimate of 𝛽1 (𝛽2) remains negative and statistically significant, at ‒3.40×10‒6 (‒

0.05×10‒6), with a t-statistic of −3.51 (−2.06). Further, we investigate capital flows in our data. We 

find that on average more than 56% of funds in our data have net flows greater than $100,000 each 

month over the period 1994-2018. Therefore, our results are unlikely to be driven by the relation 

between past returns and current returns.  

6.2. Alternative performance measures 

Second, we check whether our results are robust to alternative performance measures, 

namely Sharpe ratio, information ratio, and MPPM. The results are reported in Panel A of Table 

8. With a fund-level model, we find evidence for fund-level DRTS. With a two-level model, we 

find again that the style-level DRTS is more dominant. For example, the estimate of 𝛽1  is 

significantly negative at a confidence level lower than 10% under the fund-level model. With the 

style scale as covariant, although the estimate of 𝛽1 remains negative, it becomes statistically 
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insignificant for Sharp ratio and MPPM. The estimate of 𝛽2 are all significantly negative at the 1% 

level for the three measures.   

[Insert Table 8 here] 

6.3. Alternative benchmarks 

Another robustness check is to consider alternative benchmarks. To do so, we use three 

different factor models, namely the Fama and French (1993) three-factor model (FF3), the Fama 

and French (1993) and Carhart (1997) four-factor model (FFC4), and the five-factor model 

augmented by Pástor and Stambaugh (2003) liquidity factor (FFCPS5). The negative impacts of 

scale at the two levels are confirmed with the three alternative benchmarks, as in Panel B of Table 

8. For example, under the two-level model, the estimate of  𝛽1 is ‒3.31×10-6 with the FFCPS5 

alpha (t-statistic: ‒4.52); the estimate of 𝛽2 is ‒0.07×10-6 (t-statistic: ‒2.36). The magnitude of the 

estimates of scale effect remains at a level similar to our previous result using the FH7 model.  

6.4. Alternative style classification 

Hedge funds style classification varies from one study to another, depending on different 

hedge funds databases used by researchers. In our main analysis, we consider a broad style 

classification as suggested by Agarwal et al. (2009). This classification helps adapt our style-level 

analysis to different hedge fund databases. To examine whether our results are robust to the choice 

of style classification, we consider TASS database classification. TASS classifies hedge funds into 

11 strategy categories: convertible arbitrage, dedicated short bias, emerging markets, event-driven, 

equity market neutral, fixed income arbitrage, global macro, long/short equity, multi-strategy, and 

others. We define an alternative style scale measure, Strat AUM, which is equal to the total AUM 
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of the fund’s peers in the same strategy category defined by TASS. We present the estimates of 

the two-level scale effect in Panel C of Table 8. Overall, our results hold for this alternative style 

classification. The estimate of 𝛽1 is significantly negative at a confidence level lower than 10% 

for all alternative performance measures and alternative benchmarks, except for the Sharpe ratio. 

More importantly, the estimate of 𝛽2 is consistently significant and negative at the 1% level across 

all performance measures and benchmarks. Our findings of style-level DRTS remain qualitatively 

unchanged using different style classifications. 

7. Conclusion 

This paper empirically tests a two-level model of DRTS with a sample of hedge funds. The 

two-level model assumes that a fund’s gross alpha is a decreasing function of both the fund scale 

and the style scale, which is measured by the aggregate size of peers in the hedge fund style. Pástor 

et al. (2015) and Zhu (2018) addressed econometric biases that hamper the estimation of size-

performance relationship and construct unbiased estimates for analyzing scale effect under an FE 

model assuming time-invariant fund skill. However, the FE model fails when there is a time trend 

of skill. As such, the estimators developed under this model are not bias-free. Under the FE model, 

the estimated scale effect falsely captures the correlation between skill and scale. Our results show 

that this endogeneity causes a significant bias in the estimated scale effect.  

By heterogeneously considering the time trend of fund skill in the two-level model, we 

unbiasedly estimate the two-level scale effect. Assuming every dollar has an equal effect on the 

gross alpha, we find an increase of $250 million in the fund AUM reduces the alpha by 8.43 bps 

with a t-statistic of −2.84; an increase of 90 billion dollars in the style size reduces the alpha by 54 

bps with a t-statistic of −2.23. The two-level scale decreases the alpha by 0.63% on average. The 
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style-level effect (0.55%) accounts for a larger portion of DRTS. The results confirm the 

importance of hedge fund size. When an increasing amount of capital is invested in a given strategy, 

their hedge funds should consider decreasing their portfolio size to realize the maximal value-

added.   

We also estimate heterogeneous abilities to resist DRTS (ARDRTS) and find that small 

funds have better abilities to handle the constraints imposed by scale. Further, we examine the 

impact of skill and the ARDRTS on the gross alpha and find that both are determinants of 

performance. Specifically, funds with better ARDRTS outperform their peers with the same skill 

level but a lower ARDRTS. This difference in performance is statistically significant at the 1% 

level. 

We also investigate whether hedge funds invest at the optimal amount and find that about 

65% of funds are overfunded, and a large fraction (35%) of skilled funds are underfunded. 

Plausible explanations could be related to the strict regulations on accessing capital flows to hedge 

funds and the prudent use of capacity by hedge funds. We leave these to future research.  
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Appendix A: Omitted skill bias and Stambaugh bias  

Previous empirical studies on DRTS have considered an FE model, in which skill (ai) is 

assumed to be heterogeneous across funds but constant over the lifetime of each fund (Pastor et al. 

(2015) and Zhu (2018)). A fund-level model is as Eq (A1): 

rit = ai + βxi, t-1 + εit               (A1) 

where rit is the gross alpha of fund i at time t. xi, t-1 is the lagged fund scale, either the fund AUM 

used by Pastor et al. (2015), or the logarithm of the fund AUM used by Zhu (2018). εit is the 

unexpected return, with E(εit | xi, t-1) = 0. 

In estimating the scale-performance relationship, the omitted-variable bias and the 

Stambaugh bias are two critical issues influencing the estimates of scale effect. Skill is 

unobservable but positively correlated with fund scale. The omitted variable could cause an 

upward bias in an OLS estimation. Ferreira et al. (2013), Yan (2008), Chen et al. (2004), Pástor et 

al. (2015), Zhu (2018), and among others confirm this bias in their tests with mutual funds. An 

OLS estimator with FE (FE-OLS) can eliminate the omitted-variable bias. However, the FE-OLS 

estimator still suffers the Stambaugh bias (1999) (or the finite sample bias). The Stambaugh bias 

(1999) is a case of violation of the strict exogeneity condition, i.e., E(εit | xi1, xi2,…, xiTi) = 0. In a 

regression of the return on the lagged scale, the unexpected return is correlated with the 

contemporaneous regressor, i.e., E(εit| xit) ≠ 0. An unexpected positive return (εit> 0) is associated 

with a higher contemporaneous fund scale, given the fact that fund size increases following a 

positive return and performance-chasing capital flows. This contemporaneous correlation is 

described by Pástor et al. (2015) as in Eq (A2) and in Eq (A3) by Zhu (2018), where Bit is the 
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fund’s benchmark return: 

qit
qi, t-1

 - 1 = c + γrit + νit    (A2) 

log(qit) −  log(qi, t-1) =  ϕ + ρBit + γrit + ξit      (A3) 

A positive coefficient 𝛾 tends to cause a downward bias in the OLS estimator.  

A solution to the Stambaugh bias is applying a recursive demeaning (RD) process to all 

the variables of the regression, a method proposed by Moon & Phillips (2000). Using Pástor et al. 

(2015) and Zhu's (2018) notation, we write the recursively forward-demeaned variables as: 

r̅it  =  rit −
1

Ti − t + 1
∑ris

Ti

s=t

 

x̅i,t−1  =  xi,t−1 −
1

Ti − t + 1
∑xi,s−1

Ti

s=t

 

ε̅it  =  εit −
1

Ti − t + 1
∑εis

Ti

s=t

 

The fund FE ai is dropped in the forward-demeaned procedure. We estimate β from Eq (A4):  

r̅it = βx̅i, t-1 + ε̅it               (A4) 

Though, after forward-demeaning, the lagged scale is correlated with the unexpected return, i.e., 

E(ε̅it|x̅i, t-1) ≠ 0. Pástor et al. (2015) use the recursively backward-demeaned regressor as the 

instrumental variable (IV) and implement a two-stage least squares (2SLS) procedure to Eq (A4). 

The recursively backward-demeaned scale is defined as: 
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xi,t−1  =  xi,t−1 −
1

t − 1
∑xi,s−1

t−1

s=1

       (A5) 

Their estimator of β (called FE-RD1 thereafter) is written as: 

β̂FE-RD1= (∑ ∑ x̅'i,t-1
Ti
t=2 xi,t-1

N
i=1 )

-1
(∑ ∑ x'i,t-1ri̅, t

Ti
t=2

N
i=1 )   (A6) 

The FE-RD1 estimator implies a zero intercept in the first-stage regression. Zhu (2018) points out 

that the zero-intercept entails an unrealistic assumption that a fund’s past average size equals its 

future average size. Moreover, the nonconstant regression only decreases the goodness of fit of the 

first stage. A low first-stage 𝑅2 results in a less efficient 2SLS estimator, given that the first-stage 

𝑅2 is inversely proportional to the asymptotic variance of β. Zhu (2018) proposes including an 

intercept in the first stage and using fund scale as the IV. Fund scale (xi, t-1) is qualified as an IV 

because it is correlated with x̅i,t−1 and uncorrelated with ε̅i, t. An enhanced estimator (FE-RD2) of 

𝛽 is written as: 

β̂FE-RD2= (∑ x̂̅'i
N

i=1
x̅i)

-1

(∑ x̂̅'i
N

i=1
r̅i) 

= [(∑ x̅'izi
N
i=1 )(∑ z'izi

N
i=1 )-1(∑ z'ix̅i

N
i=1 )]

-1
(∑ x̅'izi

N
i=1 )(∑ z'izi

N
i=1 )-1(∑ z'ir̅i

N
i=1 )        (A7)       

where r̅i  =  ( 

r̅i,2
r̅i,3
⋮
r̅i,Ti

), x̅i  =  (

x̅i,1
x̅i,2
⋮

x̅i,Ti−1

) and zi =  ( 

1 xi,1
1 xi,2
⋮ ⋮
1 xi,Ti−1

). 

In the simulation exercise, Zhu (2018) proves �̂�FE-RD2 has a much lower asymptotic variance than  

�̂�FE-RD1  and then an improved power of test. The FE-RD2 estimator provides a bias-free and 

efficient estimate of the scale effect if hedge fund skill is constant over time.  
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Appendix B: Returns without time trend  

Table A.1 
  
The table shows the performance of the RT-RD2 estimator when returns have no time trend. We simulate one thousand 
of samples of fund returns (r) and fund size (qi). We assume returns follow the fixed effect model: rit = ai +  β1qi, t-1+ 
β2qs, t-1+ εit. The fund size follows log (qit) ‒ log (qi, t-1) = c + γrit + vit. The simulation parameters are as described in 
Section 3.3. In each sample, we estimate 𝛽1 and 𝛽2 using the RT-RD2 estimators. Four performance measures, bias, 
standard deviation, root mean square error (RMSE) and fraction of rejecting the null are calculated across the one 
thousand samples.    
 

 �̂�1 × 10
6  �̂�2 × 10

8 
[𝛽1, 𝛽2] × 106 γ = 0.5 γ = 0.8 γ = 1.2   γ = 0.5 γ = 0.8 γ = 1.2 

Bias 
[0, 0] 0.00 0.00 0.00  0.00 0.00 0.00 
[-5, 0] -0.01 0.00 0.00  0.00 0.00 0.00 

[-3, -0.05] 0.00 -0.01 -0.01  0.00 -0.01 0.00 
[-5, -0.1] -0.01 -0.01 0.00   -0.02 0.01 0.00 

Standard deviation 
[0, 0] 0.04 0.00 0.00  0.02 0.00 0.00 
[-5, 0] 0.42 0.09 0.05  0.14 0.07 0.07 

[-3, -0.05] 0.46 0.10 0.05  0.17 0.13 0.08 
[-5, -0.1] 0.28 0.12 0.08   0.30 0.22 0.12 

RMSE 
[0, 0] 0.04 0.00 0.00  0.02 0.00 0.00 
[-5, 0] 0.42 0.09 0.05  0.14 0.07 0.07 

[-3, -0.05] 0.46 0.10 0.05  0.17 0.13 0.08 
[-5, -0.1] 0.28 0.12 0.08   0.30 0.22 0.12 

Fraction of rejecting the null 
[0, 0] 0.04 0.05 0.05  0.04 0.05 0.05 
[-5, 0] 0.95 1.00 1.00  0.00 0.00 0.00 

[-3, -0.05] 0.87 1.00 1.00  1.00 1.00 1.00 
[-5, -0.1] 0.99 1.00 1.00   1.00 1.00 1.00 
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Appendix C: Systematic shocks on returns 
 
Table A.2 
 
The table shows the RT-RD2 estimate of 𝛽2 are upward biased due to systematic shocks on returns. We simulate one 
thousand of samples of fund returns following the random trend model: rit = ai0 +gihit + β1qi, t-1+ β2qs, t-1+ εit. The fund 
size follows log (qit) ‒ log (qi, t-1) = c + γrit + vit. The simulation parameters are described in Section 3.3. From month 
31 to month 42, we impose a negative shock on the generated return. With three different degrees of severity, the 
shocks are equal to -0.0057, -0.0114, and -0.0171, corresponding to one, two, and three sigma of return residuals 
(std(휀) = 0.0057), respectively. Four performance measures, bias, standard deviation, root mean square error (RMSE) 
and fraction of rejecting the null are calculated across the one thousand samples.    
 

   �̂�2 × 10
8   

 one-sigma  two-sigma  three-sigma 
[𝛽1, 𝛽2] × 106  γ=0.5  γ=0.8  γ=1.2   γ=0.5  γ=0.8  γ=1.2    γ=0.5 γ=0.8 γ=1.2 

Bias 
[0, 0] 0.10 0.01 0.00  0.20 0.02 0.00  0.30 0.03 0.00 
[-5, 0] 1.02 1.14 1.69  2.03 2.09 3.19  2.89 2.84 4.41 

[-3, -0.05] 2.07 2.55 0.97  3.99 4.86 2.82  5.69 6.78 5.28 
[-5, -0.1] 4.37 2.53 -1.54   8.51 5.29 -2.03   11.59 9.18 -1.40 

Standard deviation 
[0, 0] 0.10 0.01 0.00  0.12 0.02 0.00  0.18 0.02 0.00 
[-5, 0] 0.76 0.39 0.37  1.48 0.77 0.73  2.38 1.04 1.16 

[-3, -0.05] 0.87 0.82 1.05  1.94 1.58 2.25  2.93 2.42 3.30 
[-5, -0.1] 2.49 3.08 1.94   5.06 5.97 4.81   7.00 8.47 7.69 

RMSE 
[0, 0] 0.14 0.01 0.00  0.23 0.03 0.00  0.35 0.04 0.00 
[-5, 0] 1.27 1.21 1.73  2.51 2.22 3.28  3.75 3.02 4.56 

[-3, -0.05] 2.24 2.68 1.43  4.44 5.11 3.61  6.40 7.20 6.23 
[-5, -0.1] 5.03 3.98 2.48   9.90 7.98 5.22   13.54 12.49 7.81 

Fraction of rejecting the null 
[0, 0] 1.00 0.99 0.92  1.00 1.00 1.00  1.00 1.00 1.00 
[-5, 0] 0.61 0.94 1.00  0.80 0.98 1.00  0.84 0.99 1.00 

[-3, -0.05] 0.97 0.99 1.00  0.80 0.82 0.93  0.74 0.85 0.91 
[-5, -0.1] 0.97 0.98 1.00   0.87 0.92 0.99   0.89 0.93 0.98 
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Appendix D: Logarithm of AUM as scale measure 

Table A3. 
 
The table reports the results which are parallel to Table 3, with the logarithm of AUM as scale measures. We regress 
gross alpha obtained from the FH7 model on the Log (Fund AUM) and Log (Style AUM). Panel A presents the results 
over the full sample period from January 1994 to December 2018. Panel B presents the results by excluding the return 
observations from 2007 to 2009. “OLS” presents the estimates from a pooled OLS regression. “FE-OLS” presents the 
estimates from a fixed effect estimator of Eq (A1). “FE-RD2” presents the estimates from a RD2 estimator developed 
under the FE model, as Eq (A7). “RT-RD2” represents the estimates from a RD2 estimator developed under the 
random trend (RT) model, as in Eq (6). We also report the first-stage R-squared for the 2SLS estimators. The t-
statistics are reported below the estimates, calculated based on cluster standard errors by hedge fund style.  
 

Panel A: Full period           

  OLS   FE-OLS   FE-RD2   RT-RD2 

Log (Fund AUM) 
(×103) 

0.08 0.11  -1.95 -2.14  -4.37 -4.57  -1.15 -1.90 
1.14 1.37  -7.05 -6.92  -9.99 -11.48  -5.74 -8.46 

Log (Style AUM) 
(×103) 

 -0.78   1.26   2.85   4.21 
 -2.21   1.42   3.81   5.26 

First-stage R2             0.11 0.17   0.13 0.20 
 

Panel B: Excluding Crisis 2008         

  OLS   FE-OLS   FE-RD2   RT-RD2 

Log (Fund AUM) 
(×103) 

-0.11 -0.03  -2.60 -2.21  -4.76 -4.24  -2.69 -2.46 
-0.57 -0.17  -4.98 -5.51  -5.35 -6.51  -5.24 -6.39 

Log (Style AUM) 
(×103) 

 
-2.12   -2.54   -0.87   -2.10  
-4.04   -2.70   -0.87   -1.54 

First-stage R2             0.10 0.18   0.09 0.13 

  



 

52 
 

References 
 

Agarwal, V., Deniel, N. D., & Naik, N. Y. (2009). Role of Managerial Incentives and Discretion 
in Hedge Fund Performance. The Journal of Finance, 64(5), 2221–2256. 

Agarwal, V., & Naik, N. Y. (2004). Risks and Portfolio Decisions Involving Hedge Funds. Review 
of Financial Studies, 17(1), 63–98. 

Bali, T. G., Brown, S. J., & Caglayan, M. O. (2012). Systematic Risk and the Cross Section of 
Hedge Fund Returns. Journal of Financial Economics, 106, 114–131. 

Berk, J. B., & Green, R. C. (2004). Mutual Fund Flows and Performance in Rational Markets. 
Journal of Political Economy, 112(6), 1269–1295. 

Berk, J. B., & van Binsbergen, J. H. (2015). Measuring skill in the mutual fund industry. Journal 
of Financial Economics, 118(1), 1–20. 

Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer. 

Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1), 
57–82. 

Chen, J., Hong, H., Huang, M., & Kubik, J. D. (2004). Does Fund Size Erode Mutual Fund 
Performance? The Role of Liquidity and Organization. The American Economic Review, 
94(5), 1276–1302. 

Christoffersen, S. E. K., & Sarkissian, S. (2009). City size and fund performance. Journal of 
Financial Economics, 92(2), 252–275. 

Fama, F., & French, R. (1993). Common risk factors in the returns on stocks and bonds. Journal 
of Financial Economics, 33, 3–56. 

Ferreira, M. A., Keswani, A., Miguel, A. F., & Ramos, S. B. (2013). The Determinants of Mutual 
Fund Performance: A Cross-Country Study. Review of Finance, 17(2), 483–525. 

Friedberg, L. (1998). Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data. The 
American Economic Review, 88(3), 608–627. 

Fung, W., & Hsieh, D. A. (1997). Empirical characteristics of dynamic trading strategies: The case 
of hedge funds. Review of Financial Studies, 10(2), 275–302. 

Fung, W., & Hsieh, D. A. (2000). Performance Characteristics of Hedge Funds and Commodity 
Funds: Natural vs. Spurious Biases. Journal of Financial and Quantitative Analysis, 35(3), 
291–307. 

Fung, W., & Hsieh, D. A. (2004). Hedge Fund Benchmarks: A Risk-Based Approach. Financial 
Analysts Journal, 60(5), 65–80. 

Fung, W., Hsieh, D. A., Naik, N. Y., & Ramadorai, T. (2008). Hedge funds: Performance, risk, 
and capital formation. Journal of Finance, 63(4), 1777–1803. 

Getmansky, M. (2012). The Life Cycle of Hedge Funds: Fund Flows, Size, Competition, and 
Performance. Quarterly Journal of Finance, 02(01). 



 

53 
 

Getmansky, M., Lo, A. W., & Makarov, I. (2004). An Econometric Model of Serial Correlation 
and Illiquidity in Hedge Fund Returns. Journal of Financial Economics, 74(3), 529–609. 

Harvey, C. R., & Liu, Y. (2017). Decreasing Returns to Scale, Fund Flows, and Performance. 
Working paper. 

Heckman, J. J., & Hotz, V. J. (1989). Choosing among alternative nonexperimental methods for 
estimating the impact of social programs: The case of manpower training. Journal of the 
American Statistical Association, 84(408), 862–874. 

Ingersoll, J., Spiegel, M., Goetzmann, W., & Welch, I. (2007). Portfolio Performance 
Manipulation and Manipulation-proof Performance Measures. The Review of Financial 
Studies, 20(5), 1503–1546. 

Jagannathan, R., Malakhov, A., & Novikov, D. (2010). Do Hot Hands Persist Among Hedge Fund 
Managers? An Empirical Evaluation. The Journal of Finance, LXV(1), 217–255. 

Moon, H. R., & Phillips, P. C. B. (2000). Estimation of Autoregressive Roots near Unity Using 
Panel Data. Econometric Theory, 16(6), 927–997. 

Pastor, L., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of 
Political Economy, 111(3), 642–685. 

Pastor, L., & Stambaugh, R. F. (2012). On the size of the active management industry. Journal of 
Political Economy, 120(4), 740–781. 

Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2015). Scale and skill in active management. Journal 
of Financial Economics, 116(1), 23–45. 

Perold, A. F., & Salomon, R. S. (1991). The right amount of assets under management. Financial 
Analysts Journal, 47(3), 31–39. 

Phillips, B., Pukthuanthong, K., & Rau, P. R. (2018a). Size Does Not Matter: Diseconomies of 
Scale in The Mutual Fund Industry Revisited. Journal of Banking and Finance, 88, 357–365. 

Phillips, B., Pukthuanthong, K., & Rau, P. R. (2018b). Size does not matter: Diseconomies of scale 
in the mutual fund industry revisited. Journal of Banking and Finance, 88, 357–365. 

Polachek, W., & Kim, M.-K. (1994). Panel estimates of the gender earnings gap: Individual-
Specific Intercept and Individual-Specific Slope Models. Journal of Econometrics, 61, 23–
42. 

Rzakhanov, Z., & Jetley, G. (2019). Competition, scale and hedge fund performance: Evidence 
from merger arbitrage. Journal of Economics and Business, 105(May), 1-15. 

Shi, Z. (2017). The impact of portfolio disclosure on hedge fund performance. Journal of Financial 
Economics, 126(1), 36–53. 

Stambaugh, R. F. (1999). Predictive Regressions. Journal of Financial Economics, 54(3), 375–
421. 

Teo, M. (2012). Diseconomies of Scale in the Hedge Fund Industry.Working paper. 

Titman, S., & Tiu, C. (2011). Do The Best Hedge Funds Hedge? Review of Financial Studies, 



 

54 
 

24(1), 123–168. 

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data (J. M. 
Wooldridge (ed.); 2nd ed.). MIT Press. 

Yan, X. (2008). Liquidity, Investment Style, and the Relation between Fund Size and Fund 
Performance. Journal of Financial and Quantitative Analysis, 43(3), 741–767. 

Yin, C. (2016). The Optimal Size of Hedge Funds: Conflict between Investors and Fund Managers. 
Journal of Finance, 71(4), 1857–1894. 

Zhu, M. (2018). Informative fund size, managerial skill, and investor rationality. Journal of 
Financial Economics, 130(1), 114–134. 

 

  



 

55 
 

Figure 1 Evolution of the U.S. hedge funds 
 
The figures plot the evolution of assets under management and the number of funds in our sample for each style during 
the period 1994-2018. The styles of hedge funds follow a definition of Agarwal et al. (2009). 
 

Panel A: All funds 

 
Panel B: Directional traders Panel C: Relative value 

  
Panel D: Security selection Panel E: Multiprocess 
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Figure 2 Gross returns of hedge funds over time 
 
The figure plots the average of monthly gross returns across hedge fund styles from 1994 to 2018. 

 

 

Figure 3 Distribution of the time trend of hedge fund skill 
 
This figure presents a fitted normal distribution and a fitted nonparametric kernel distribution of the yearly growth 
rates of skill across funds. The growth rate is estimated from Eq. (15).  
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Figure 4 Distribution of hedge fund skill and gross alpha 
 
The figure plots the cross-section of the hedge fund skill and alpha over the period 1996-2016. Time-varying skills of 
hedge funds are estimated by Eq. (16). Gross alphas are estimated under the FH7 model. Percentiles are calculated 
across all operating funds each month. 
   
Panel A. Cross-sectional distribution of the hedge funds skill 

 

Panel B. Cross-sectional distribution of gross alpha 
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Figure 5 Interaction of skill and scale 
 
The figure plots the evolution of hedge fund skill, DRTS, gross alpha, and gross alpha adjusted for DRTS from 1996 to 2016, 
Panel A for all funds in our sample and Panel B to E for funds in each style. Time-varying skills of hedge funds are estimated by 
Eq. (16). DRTS represents the total effect of scale at the fund and style levels. Gross alphas are estimated under the FH7 model.  
Gross alpha adjusted for DRTS is equal to gross alpha minus DRTS.  
 
                           Panel A. All funds 

 
                          Panel B. Directional traders 

 
 



 

59 
 

 
 
                      Panel C. Relative value 

 
                    Panel D. Security selection 
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                   Panel E. Multiprocess 
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Table 1 Simulation exercise 
 
The table reports the result of the simulation exercise. We simulate one thousand of samples of fund returns (r) and fund size (qi). Simulated returns follow the 
random trend model: rit = ai0 + gihit + β1qi, t-1+ β2qs, t-1+ εit. The fund size follows log (qit) ‒ log (qi, t-1) = c + γrit + vit. The simulation parameters are described 
in Section 3.3. In each sample, we estimate 𝛽1 and 𝛽2 using the FE-RD2 and RT-RD2 estimators. Four performance measures, bias, standard deviation, root 
mean square error (RMSE) and fraction of rejecting the null at the 5% confidence level are calculated across the one thousand samples.    
 

 FE-RD2   RT-RD2 
 �̂�1 × 10

6   �̂�2 × 10
8    �̂�1 × 106  �̂�2 × 10

8  
 [𝛽1, 𝛽2] × 106 γ = 0.5 γ = 0.8 γ = 1.2   γ = 0.5 γ = 0.8 γ = 1.2    γ = 0.5 γ = 0.8  γ = 1.2   γ = 0.5 γ = 0.8 γ = 1.2 

Bias 
[0, 0] 0.10 0.01 0.00  -0.24 -0.04 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
[-5, 0] 2.81 4.19 6.35  -1.64 -1.94 -2.56  -0.01 0.00 -0.01  0.00 0.00 0.00 

[-3, -0.05] 2.21 2.90 3.09  -1.70 -1.78 -1.82  -0.01 -0.01 -0.01  0.00 0.01 0.00 
[-5, -0.1] 3.53 3.85 1.78   -2.87 -2.94 -2.27   -0.01 -0.01 0.00   0.02 0.01 -0.01 

Standard deviation 
[0, 0] 0.09 0.01 0.00  0.13 0.03 0.00  0.03 0.00 0.00  0.01 0.00 0.00 
[-5, 0] 1.96 2.82 8.58  0.71 0.96 2.83  0.56 0.12 0.06  0.18 0.07 0.07 

[-3, -0.05] 2.09 3.45 7.17  0.79 1.14 2.31  0.58 0.15 0.07  0.19 0.12 0.10 
[-5, -0.1] 6.68 9.91 16.26   2.19 3.21 5.13   0.37 0.17 0.10   0.29 0.26 0.15 

RMSE 
[0, 0] 0.13 0.01 0.00  0.27 0.05 0.00  0.03 0.00 0.00  0.01 0.00 0.00 
[-5, 0] 3.43 5.05 10.68  1.79 2.16 3.82  0.56 0.12 0.06  0.18 0.07 0.07 

[-3, -0.05] 3.05 4.51 7.81  1.87 2.12 2.94  0.58 0.15 0.07  0.19 0.12 0.10 
[-5, -0.1] 7.56 10.63 16.36   3.61 4.36 5.61   0.37 0.17 0.10   0.29 0.26 0.15 

Fraction of rejecting the null 
[0, 0] 0.94 0.71 0.64  1.00 1.00 1.00  0.06 0.07 0.06  0.06 0.05 0.05 
[-5, 0] 0.72 0.50 0.62  0.98 0.99 0.99  0.85 1.00 1.00  0.00 0.00 0.00 

[-3, -0.05] 0.60 0.45 0.69  1.00 1.00 0.96  0.76 0.98 1.00  1.00 1.00 1.00 
[-5, -0.1] 0.50 0.58 0.82   1.00 1.00 0.96   0.95 1.00 1.00   1.00 1.00 1.00 
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Table 2 Summary statistics 
 
Panel A reports the statistics of performance measures. Gross alphas are estimated from Fung and Hsieh (2004) seven-factor model 
(FH7), Fama and French (1993) three-factor model (FF3), Fama and French (1993) and Carhart (1997) four-factor model (FFC4), 
and the four-factor model augmented by Pastor and Stambaugh (2003) liquidity factor (FFCPS5). Sharpe ratio is equal to the mean 
of monthly excess returns divided by their standard deviation. Information ratio is equal to alpha divided by regression standard 
error, estimated under the FH7 model. MPPM represents the manipulation-proof performance measure of Ingersoll et al. (2007). 
Panel B reports the statistics of hedge fund characteristics, management fee (MGMT₋FEES), incentive fee (INCEN₋FEES), high 
watermark (HWM), and AGE in years. Panel C reports the statistics of scale measures (in millions). Fund AUM is hedge fund size 
in dollars of assets under management. Style AUM is hedge fund style size, measured as the total AUM of the fund’s peers in the 
same style. On the last row, we report the total AUM of all funds in our final sample over the period 1994-2018. 
 
                     Panel A: Performance measures 

  
 Gross alpha (%, per month) 
 FH7 FF3 FFC4 FFCPS5 
 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 
  Directional traders 0.33 1.16 0.29 1.11 0.30 1.05 0.29 1.05 
  Relative value 0.36 0.58 0.31 0.60 0.30 0.59 0.30 0.61 
  Security Selection  0.25 0.85 0.22 0.79 0.21 0.76 0.22 0.76 
  Multi-Process  0.35 0.68 0.29 0.66 0.29 0.64 0.30 0.65 
  Others 0.55 0.80 0.53 0.78 0.54 0.75 0.54 0.75 
  All funds 0.32 0.86 0.28 0.82 0.28 0.79 0.28 0.79 

 

Panel A (continued) 

 Sharpe ratio Information ratio 
(FH7) 

MPPM   

Mean Std. dev. Mean Std. dev. Mean Std. dev. No.  Obs. No.  Funds 
  Directional traders 0.20 0.47 0.16 0.57 0.02 0.16 27,938 624 
  Relative value 0.33 0.63 0.33 0.74 0.04 0.09 19,021 501 
  Security Selection  0.19 0.63 0.12 0.74 0.04 0.11 59,805 1,334 
  Multi-Process  0.28 0.30 0.24 0.38 0.05 0.09 31,099 662 
  Others 0.49 0.80 0.52 0.94 0.06 0.11 9,105 202 
  All funds 0.25 0.57 0.21 0.67 0.04 0.12 146,968 3,323 

 

Panel B: Fund characteristics 
 

  MGMT₋FEES (%) INCEN₋FEES (%) HWM AGE 
  Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 

  Directional traders 1.60 0.49 17.94 5.30 0.74 0.44 6.41 4.21 
  Relative value 1.38 0.42 18.96 4.64 0.73 0.45 6.50 4.58 
  Security Selection  1.32 0.41 18.91 3.83 0.78 0.41 7.21 4.98 
  Multi-Process  1.39 0.54 18.49 5.01 0.73 0.45 7.77 5.50 
  Others 1.49 0.43 18.96 5.47 0.88 0.33 5.93 4.16 
  All funds 1.41 0.47 18.65 4.63 0.76 0.43 7.00 4.90 
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                       Panel C: Hedge fund scale measures 
  

  Fund AUM ($M) Style AUM ($M) 
    Mean Std. Dev. Mean Std. Dev. 
  Directional traders   320 1,457 76,328 35,328 
  Relative value   213 414 49,022 20,099 
  Security Selection    176 425 104,932 41,885 
  Multiprocess   321 800 106,010 52,437 
  Others   266 506 28,433 11,423 
  All funds   244 809 87,747 47,127 
  Total AUM ($M)  353,129 138,528   

 



 

64 
 

Table 3 Diseconomy of scale – all hedge funds 
 
The table reports the results of regressions of gross alpha on the fund-level scale and style-level scale. Gross alpha is the 
benchmark-adjusted return estimated under the FH7 factor model over 36-month moving windows. The fund-level scale 
measure is one-month lagged Fund AUM in million dollars. The style-level scale measure is one-month lagged Style AUM, 
which is the total AUM of the fund’s peers in the same style. Panel A presents the results over the full sample period from 
January 1994 to December 2018. Panel B presents the results by excluding the return observations from 2007 to 2009. “OLS” 
presents the estimates from a pooled OLS regression. “FE-OLS” presents the estimates from a fixed effect estimator of Eq (A1). 
“FE-RD2” presents the estimates from a RD2 estimator developed under the FE model, as Eq (A7). “RT-RD2” represents the 
estimates from a RD2 estimator developed under the random trend (RT) model, as in Eq (6). We also report the first-stage R-
squared for the 2SLS estimators. The t-statistics are reported below the estimates, calculated based on cluster standard errors 
by hedge fund style. 
 

Panel A: Full period 
          

  OLS   FE-OLS   FE-RD2   RT-RD2 
Fund AUM (×106) 0.06 0.06  -2.18 -2.46  -15.43 -15.07  -2.13 -3.02 

3.97 3.39  -6.39 -5.12  -1.10 -1.12  -3.89 -6.71 
Style AUM (×106)  0.00   0.02   0.04   0.04 

 -0.19   2.03   1.59   5.09 
First-stage R2             0.03 0.05   0.05 0.07 

 

Panel B: Excluding Crisis 2008         
  OLS   FE-OLS   FE-RD2   RT-RD2 
Fund AUM (×106) 0.02 0.08  -2.18 -1.58  -4.87 -1.69  -3.96 -3.37 

0.71 1.42  -2.80 -1.82  -1.03 -0.56  -3.49 -2.84 
Style AUM (×106) 

 
-0.05   -0.09   -0.09   -0.06  
-4.69   -3.36   -3.33   -2.23 

First-stage R2             0.05 0.07   0.04 0.05 
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Table 4:  Diseconomy of scale – hedge fund styles 
 
The table reports the RT-RD2 estimates of scale effect from the regressions of gross alpha on the fund-level scale and style-
level scale. Gross alpha is the benchmark-adjusted return estimated under the FH7 factor model over 36-month moving windows. 
The fund-level scale measure is one-month lagged Fund AUM in million dollars. The style-level scale measure is one-month 
lagged Style AUM, which is the total AUM of the fund’s peers in the same style. “RT-RD2” represents the estimates from a 
RD2 estimator developed under the random trend (RT) model, as in Eq (6). Panel A presents the results over the full sample 
period from January 1994 to December 2018. Panel B presents the results by excluding the return observations from 2007 to 
2009. The t-statistics are reported below the estimates, calculated based on White’s robust standard errors. 
 

Panel A: Full period           

  Directional traders   Relative value   Security selection   Multi-process 
Fund AUM (×106) -2.12 -3.38  -5.94 -7.05  -1.14 -2.39  -6.27 -6.80  

-4.26 -5.23  -6.29 -7.00  -4.88 -9.47  -3.71 -3.82 
Style AUM (×106) 

 
0.07   0.03   0.05  

 
0.03 

    15.85     9.40     41.38     13.34 
 

Panel B: Excluding Crisis 2008          

  Directional traders   Relative value   Security selection   Multi-process 
Fund AUM (×106) -3.07 -1.50  -5.52 -5.19  -12.77 -11.63  -2.63 -2.74  

-4.17 -2.54  -3.91 -3.67  -7.73 -7.20  -0.79 -0.81 
Style AUM (×106) 

 
-0.16   -0.02   -0.06  

 
0.02 

    -14.68     -4.06     -11.90     4.48 
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Table 5 Heterogeneity of decreasing returns to scale 
 
Panel A reports the heterogeneity of scale effect across size quintile portfolios of hedge funds. To estimate fund 
specific scale coefficients, we sort funds in each style into quintiles by Fund AUM. Then, we estimate β1 and β2 by 
RT-RD2 for each style-size portfolio. For each fund, we measure the ability to resist DRTS (ARDRTS) as the effect 
of scale at the average Fund AUM and Style AUM, i.e., ARDRTS𝑖 = β̂1iq̅i + β̂2i × q̅s . Panel B reports the mean of 
gross alpha in each skill-scale portfolio. Gross alpha is first averaged over time for each fund and then equally weighted 
averaged across funds in the portfolio. The nine portfolios are created by independently sorting funds on skill and on 
ARDRTS. The time-varying skill is estimated using Eq (16), using fund specific coefficients. 
 

        Panel A: Fund specific scale effects and ARDRTS 
 Size quintiles   
 Q1 Q2 Q3 Q4 Q5 Q5-Q1 t-stat 
Fund AUM ($ mil.) 10.99 29.61 56.06 113.00 589.22   
𝛽1,𝑖(× 106) -545.36 -371.77 -80.92 -48.70 -5.82   

t-stat. -7.17 -10.20 -9.56 -13.41 -5.33   
𝛽2,𝑖(× 106) -0.02 -0.17 -0.07 -0.11 -0.08   
t-stat. -1.79 -6.96 -5.39 -8.23 -13.57   
ARDRTS -0.74 -2.03 -0.92 -1.36 -0.98 -0.24 -3.92 

 
Panel B: Gross alpha of skill-scale portfolios 

  ARDRTS  
    Low Medium High High minus Low t-stat 
 
Skill 

Low -1.44 -0.51 -0.18 1.25 5.67 
Medium -0.12 0.34 0.61 0.73 14.43 

High 0.43 1.13 1.74 1.31 11.57 
  High minus Low  1.86 1.64 1.92 

  

  t-stat 8.41 19.50 17.05 
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Table 6 Value added of hedge funds 
 
The table report the realized value added (Si) and the optimal value added (V̂i∗). For each fund, we first calculate the 
realized value added in a month, Sit  = qi, t-1αit, and then take the average monthly value added, Si = 1

Ti-1
∑ Sit

Ti
t=2 . The 

optimal value added of the fund in month t is estimated as V̂it∗  = q̂i,t−1∗ α̂it
∗ , where q̂i,t−1∗ =  max{−

1

2β̂1i
(�̂�it +

β̂2iqs,t−1),0}, α̂it∗  =  �̂�it + β̂1iq̂i,t−1
∗ + β̂2iqs,t−1, �̂�i,t, β̂1i, and β̂2i are the fund specific parameters estimated from the 

size portfolios. The cross-sectional mean, standard error of mean, t-statistic, and percentiles are the statistical 
properties of the distribution of Si (V̂i∗) across funds. Percent with less than zero is the fraction of the distribution that 
has value added estimates less than zero. The Overall mean, standard error, and t-statistic are computed by computing 
the average value added in the dataset. The numbers are reported in $ millions per month.        
 

 Si  V̂i
∗ 

Cross-Sectional weighted Mean 0.55  1.38 
Standard Error of the Mean 0.08  0.12 

t-Statistic 7.19  12.00 
    

Cross-Sectional Mean 0.30  0.97 
Standard Error of the Mean 0.05  0.07 

t-Statistic 5.70  13.68 
    

1st Percentile -2.31  0.00 
5th Percentile -0.76  0.00 

10th Percentile -0.36  0.01 
50th Percentile 0.05  0.21 
90th Percentile 1.18  2.31 
95th Percentile 2.40  4.24 
99th Percentile 6.33  11.73 

    
Percent with Si less than zero 36.33  0 

    
No. of Funds 1437 
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Table 7 Distribution of funds destroying and adding value 
 
The table reports the distribution of the funds that destroyed and added value. The realized (optimal) value added of a 
fund Si  (V̂i∗ ) is calculated as in Table 6. We divide funds into three groups: excessively overfunded when 
q𝑖 > qi

c, 𝑞𝑖
𝑐 =  2qi

∗; moderately overfunded when qi∗ < q𝑖 ≤ qic; and underfunded when q𝑖 < qi∗. q𝑖 , qi∗and 𝑞𝑖𝑐 are the 
average over a fund’s existing period in the sample. The numbers of Si (V̂i∗) are reported in $ millions per month.        
 

  % of all funds Si V̂i
∗ 

     
Si<0     
Excessively Overfunded   30.06 -0.54 0.32 
Moderately Overfunded   5.43 -0.21 0.75 
Underfunded  0.84 -0.19 0.77 
Total   36.33 -0.49 0.40 
     
Si ≥ 0     
Excessively Overfunded  0.63 0.55 1.63 
Moderately Overfunded   28.88 0.67 1.21 
Underfunded  34.17 0.82 1.38 
Total   63.67 0.75 1.30 
     
All funds     
Excessively Overfunded   30.69 -0.52 0.35 
Moderately Overfunded   34.31 0.53 1.13 
Underfunded  35.00 0.80 1.36 
Total   100.00 0.30 0.97 
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Table 8 Robustness check 
 
The table reports the RT-RD2 estimates from the robustness tests. In Panel A, we use alternative performance 
measures other than alpha. In Panel B, we use alternative factor models for estimating alpha. In Panel C, we consider 
an alternative style classification. Sharpe ratio (SR) is equal to the mean of monthly excess returns divided by their 
standard deviation; information ratio (IR) is equal to the alpha divided by the regression standard error estimated under 
FH7; MPPM of Ingersoll et al. (2007). “FF3” is the Fama-French (1993) three factor model, “FFC4” is a four-factor 
model augmented with the Carhart (1997) momentum factor, and “FFCPS5” is a five-factor model augmented with 
the liquidity factor of Pastor and Stambaugh (2003). “Strat AUM” is a style scale measure, which is equal to the total 
AUM of the fund’s peers in the same strategy category defined by TASS. The sample period is from January 1994 to 
December 2018 excluding the financial crisis 2007-2009. The t-statistics are reported below the estimates, calculated 
based on clustered standard errors by hedge fund style.  
 

Panel A: Alternative performance measures 
  SR IR MPPM 
Fund AUM (×106) 
 

-79.18 -49.28 -185.34 -161.98 -39.85 -27.12 
 -1.85 -1.37 -4.73 -4.87 -2.26 -1.46 

Style AUM (×106) 
 

 -3.05  -2.21  -1.37 
    -2.81   -2.47   -2.57 

 
Panel B: Alternative benchmarks 
  FF3 FFC4 FFCPS5 
Fund AUM (×106) 
 

-3.28 -2.53 -3.93 -3.33 -3.89 -3.31 
 -3.66 -3.23 -4.64 -3.92 -6.29 -4.52 

Style AUM (×106) 
 

 
-0.08 

 
-0.07 

 
-0.07 

    -2.54   -2.48   -2.36 
 

Panel C: Alternative style classification  

  FH7 FF3 FFC4 FFCPS5 SR IR MPPM 
Fund AUM (×106)  
 

-3.67 -2.88 -3.63 -3.64 -60.18 -171.96 -32.99 
 -2.83 -3.02 -4.04 -4.84 -1.56 -4.63 -1.87 

Strat AUM (×106)  
 

-0.06 -0.09 -0.07 -0.06 -3.96 -2.41 -1.56 

  -2.62 -3.25 -3.18 -2.94 -4.25 -3.37 -3.34 
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PAPER 2. SOCIAL INFLUENCES AND UNIQUENESS OF HEDGE FUND STRATEGIES  
    

 

 

 

ABSTRACT 

 

Unlike previous studies, we explore a mechanism that explains how social networks 
could be detrimental to fund performance due to competition. We postulate that if 
social networks facilitate investment herding, then a central fund would have a less 
unique strategy, proxied by the strategy distinctiveness index of Sun et al. (2012), 
which leads to lower performance. We consider alumni and employment ties 
between the closest hedge fund competitors and confirm this point of view. 
Particularly, smart managers with career ambitions are more vulnerable to this 
negative effect. We also find that investment herding is encouraged under social 
influences. 

 

 

 

 

JEL classification: G11; G23; J24 

Keywords: Hedge funds; Social networks; Strategy uniqueness; Performance 
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1.  Introduction 

“Worldly wisdom teaches that it is better for reputation to fail conventionally than to 

succeed unconventionally.” 

   – John Maynard Keynes, in General Theory (1936) 

Studies of social network influence in the field of money management have significantly 

expanded in recent years (Cohen et al., 2008, 2010; Pool et al., 2015; Rossi et al., 2018; Qi et al.,  

2020; Lin et al., 2021; Spilker, 2022). A dominant paradigm of these studies rooted in information 

economics recognizes the beneficial effect of social networks on fund performance, given that 

networks provide essential channels for transmitting important information. The negative 

externalities of social networks are not yet thoroughly discussed in the literature. Our study is 

motivated by Scharfstein and Stein's (1990) discussion on reputational herding among professional 

managers. Managers choose to follow the crowd to “share the blame” in case of unsuccessful 

investment decisions. In this context, social networks may play an important role in facilitating 

herding behavior among managers with the reputation concern. However, “following the crowd” 

may be inefficient in a highly competitive environment. Our objective is to explore a mechanism 

that explains how social networks could be detrimental to fund performance due to competition.   

We consider the hedge fund industry as a case study given that it is characterized by intense 

competition. The industry is crowded with the most knowledgeable and experienced financial 

market participants,31 to whom investors pay the highest fees for performance. In general, each 

fund employs one or a combination of particular investment strategies in a specific style. 

 
31 A large number of hedge fund managers in our sample are top graduates from the most prestigious universities 

of the U.S. and are experienced at reputable financial services companies. Please see Table 1. 
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Competition is even more vigorous within a style category where funds exploit similar investment 

opportunities. As documented by Sun et al. (2012), to succeed in a highly competitive economy 

like the hedge fund industry, uniqueness of strategies is crucial for generating superior 

performance.  Indeed, when a profitable strategy becomes well-known and heavily traded, the 

superior return of such opportunity would be competed away (Stein, 2009). The style-level 

diseconomy of scale also suggests that competition of funds chasing the same opportunity 

decreases the alpha of a fund (Pastor et al., 2015; Kooli and Zhang, 2022). Therefore, it becomes 

puzzling that competitors would exchange valuable information with each other since hedge fund 

managers have strong incentives to care about relative performance (Stein, 2008). Behavioral 

economists have long recognized that rational speculations of individuals can cause collective 

irrationality or even systematic mistakes (Keynes, 1936; Bikhchandani et al., 1992; Banerjee, 1992; 

Avery and Zemsky, 1998; Hirshleifer, 2020). Scharfstein and Stein (1990) discuss that reputational 

herding could be rational from the perspective of mangers, but it may be inefficient from a social 

standpoint. Therefore, we postulate that the social network effects could be twofold in their nature 

in a highly competitive economy. On the one hand, social networks have an information-benefit 

impact on fund performance; on the other hand, networks could be detrimental to performance in 

facilitating manager herding. Herding managers tend to be reluctant to develop and pursue unique 

strategies. As competition intensifies, manager herding would quickly diminishes the superior 

return of a novel strategy.     

We empirically examine this mechanism by constructing an alumni and employment 

networks among the closest hedge fund competitors. An alumni tie indicates the managers of two 

funds are alumni of the same school; an employment tie indicates their managers have worked at 

the same employer. Unlike previous studies that examine the beneficial effect of networks 



 

73 
 

(Gerritzen et al., 2020; Lin et al., 2021; Spilker, 2022), we focus on the social influences from a 

fund’s closest competitors and find strong and robust evidence that the negative effect of social 

networks is amplified due to competition. Specifically, we investigate how social networks affect 

uniqueness of hedge fund strategies, proxied by the “Strategy Distinctiveness Index” (SDI) of Sun 

et al. (2012). We postulate that if social networks influence funds toward similar investments, a 

fund at a central position in the networks would have a less unique strategy (i.e., a lower SDI) due 

to higher exposure to this kind of social influences. Consequently, this fund would perform less 

than its peers at the periphery of networks given all else being equal.  

Therefore, our baseline analysis consists of two tests using a multivariate panel regression: 

the first tests the relation between social networks and the SDI32 , and the second tests the relation 

between social networks and future fund performance. Following Sun et al. (2012), we construct 

the SDI for individual funds using monthly return data on about 2,711 hedge funds whose 

managers are located in the U.S. and covered by the Lipper TASS database from January 1994 to 

December 2018. At the end of each quarter, we classify funds into five styles by the K-mean 

clustering approach (Brown and Goetzmann, 2003; Sun et al., 2012). In each style, we define 

ANW and ENW pairwise connections between funds using the biographical data of hedge fund 

managers collected from LinkedIn.  

In the first test, we find strong evidence that a central position in social networks, measured 

in three dimensions (degree, closeness, and betweenness), is associated with a lower SDI. The 

estimate coefficients on the centrality measures are consistently significant and negative at the 1% 

 
32 Sun et al. (2012) document a cross-sectional heterogeneity in the SDI. Our first test also serves to 

analyze the role of social networks as a determinant of SDI, in addition to fund characteristics such as fund 
size, age, incentive fees and return volatility.  
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confidence level or lower across both networks, even after controlling for various fund 

characteristics that are potential determinants of SDI as well as style and time fixed effect. For 

example, a one-standard-deviation increase in the ANW and ENW degree corresponds to a 

decrease in the SDI of – 1.40% and – 0.45% (t-stat: ‒ 13.75 and ‒ 4.64), respectively. In addition, 

we show that when social connections increase strategy similarity between two funds, the social 

network effect on a fund’s SDI is a decreasing function of the fund’s centrality. Indeed, we find 

that connectedness in the ANW and ENW increases the returns correlation between two funds by 

5.15% and 6.22% (t-stat: 9.01 and 4.51), after controlling for the effect of networking in cities, 

influences from shared media markets, similar fund features and investment focuses, and style and 

time fixed effects. These findings are consistent with the herding theory, which recognizes that 

social networks bring the crowd into conformism in financial markets (Keynes, 1936; Scharfstein 

and Stein, 1990; Bikhchandani et al., 1992; Banerjee, 1992).  

In the second test, we find that a central position in networks predicts lower abnormal 

performance, measured by a Fung and Hsieh (2004) seven-factor adjusted alpha, an FFCPS five-

factor adjusted alpha, an appraisal ratio, and a smoothing-adjusted Sharpe ratio, respectively. The 

coefficients on all centrality measures, except for the ENW betweenness, are significant and 

negative at the 10% confidence level or lower after controls across the four performance measures 

and both networks. For example, a one-standard-deviation increase in the ANW and ENW degree 

predicts a decrease in the annual FH alpha of – 0.28% and – 0.30% (t-stat: – 3.04 and ‒ 3.79) in 

the following year. Particularly, the use of appraisal ratio as an alternative performance measure 

mitigates the concern that the higher abnormal return of funds situated on the periphery of the 

network is a result of taking excessive idiosyncratic risk. Our results are robust to different 

subsamples of styles, the financial crisis and non-crisis subperiods, a subsample of funds whose 
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managers are located in the U.S. financial centres, and after controlling for city fixed effect. The 

aggregate network effects become larger in magnitude when we sum up influences from both types 

of social ties. To summarize, our findings provide strong and robust evidence supporting that the 

negative influence of social networks is strengthened by competition and becomes more dominant 

than the information-benefit effect. A plausible explanation is that managers' desire for conformity, 

e.g., for a reputational reason, impedes the development of unique strategies that bring superior 

returns.   

We also examine heterogeneous network effects from different manager characteristics, as 

well as social network influence on style-shifting of funds and their risk hedging. We find that 

smart managers with less established careers, who are more likely to pursue unique strategies 

because of their skill and ambition, are more vulnerable to the negative effect of social influence. 

We also find alumni ties increase (decrease) the probability that two funds remain in the same style 

(switch to different styles) in the future, while employment ties seem to have less influence on 

style-shifting. By investigating the relation between network centrality and the R2 of a fund’s 

returns against risk factors (Titman and Tiu, 2011), we find that funds more exposed to social 

influence are also more exposed to systematic risk.  

This paper makes several contributions to the literature. First, our paper adds to the fast-

growing literature on social network effects in financial markets using a unique dataset about U.S. 

HF managers’ biographical information hand-collected from LinkedIn. Second, we focus on 

relationships between the closest competitors instead of examining networks across all hedge 

funds. By doing so, we find that the negative network effect on performance is amplified due to 

competition. In an environment where unique ideas are crucial for success, managers would 

concern themselves with this negative externality in their decision-making. Third, we postulate a 
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mechanism through which social networks impact hedge fund performance. We show that social 

networks are a strong determinant of SDI. Using the SDI as a proxy for strategy uniqueness, we 

show that social networks can impair performance by deterring managers from pursuing unique 

strategies when these information channels bring managers into conformity in their decision-

making. Fourth, our paper provides empirical evidence supporting that social networks induce 

inefficient herding behavior among institutional investors, which is consistent with the conceptual 

framework of Keynes (1936), Scharfstein and Stein (1990), Bikhchandani et al. (1992), Banerjee 

(1992), and Avery and Zemsky (1998). Prior empirical studies on institutional herding mostly 

focus on examining institutional investors’ shareholdings or trading activities on securities and the 

corresponding impacts on security prices (Sias, 2004; Boehmer and Kelley, 2009; Cai et al., 2019). 

Our study explores another important aspect of institutional herding, i.e., the role of social ties in 

facilitating this behavior and its impact on fund performance. 

The remainder of the paper is organized as follows. Section 2 presents the literature review  

and hypotheses. Section 3 introduces data and variables. Section 4 presents empirical results and 

robustness tests. Section 5 concludes.  

2. Literature review and hypotheses 

Literature in economics and finance shows that the behaviors of economic agents are 

influenced by their social ties (Ellison and Fudenberg, 1995; Uzzi and Lancaster, 2003; Larcker et 

al., 2013; Fracassi, 2017; among others). One of the most addressed topics is the social influences 

on investment behavior and performance.33 In the area of hedge funds, previous studies have 

 
33 Studies addressing social influences on investment behaviors and performance include: Hong et al. (2004, 

2005), Cohen et al. (2008, 2010), Brown et al. (2008), Kuhnen (2009), Hochberg et al. (2010), Han and Yang (2013), 
Pool et al. (2015), Bajo et al. (2016), Rossi et al. (2018), Qi et al. (2020), Lin et al. (2021), Spilker (2022), etc. 
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examined alumni ties and employment ties between hedge fund funds. They find evidence 

supporting that social networks provide informational benefits that enhance fund performance. For 

example, Lin et al. (2021) examine alumni ties between managers and find that information 

advantage brought by central positions in networks can influence managers’ investment styles and 

thus improve hedge fund performance. Spilker (2022) examines employment ties based on 

managers’ past hedge fund management experiences and finds stronger ties lead to more similar 

and profitable investments.  

 Hedge funds operate in a highly competitive industry where unique talent is best rewarded. 

Sun et al. (2012) propose a “Strategy Distinctiveness Index” (SDI) for measuring the level of 

uniqueness of a fund’s strategy relative to its cohorts investing in the same style. They find that 

high-SDI funds have better abnormal performance, suggesting that unique strategies are important 

for generating superior performance. They also find that small, young, and high incentive fees 

hedge funds are more likely to pursue unique strategies. Interpersonal relationships allow 

managers to observe and talk to each other. These interactions play an important role in diffusing 

investment information which constitutes a decision externality for managers. A manager in a 

central position is more exposed to information flowing through networks and thus would be more 

significantly influenced by the behaviors of his peers. We develop two hypotheses about how 

social networks influence hedge fund strategy uniqueness based on different economic theories.  

The first hypothesis is based on the herding theory, which can be traced back to Keynes 

(1936). Conformism, i.e., the tendency of individuals to make decisions by following the actions 

of others rather than using owned information, is one of the most striking regularities of human 

society. Jones (1984) discusses various explanations for the desire to conform. An explanation of 

imitation can be due to socio-psychological factors (Baddeley, 2010). In behavioral economics, 
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information cascades and herding are generated by Bayesian learning of individuals (Bikhchandani 

et al., 1992; Banerjee, 1992; and Avery and Zemsky, 1998). In their models, a player can observe 

previous actions of other players before making his/her decision. His/her observations provide 

information for adjusting his/her probabilistic judgment to make the decision. From the perspective 

of professional money managers, in a short-run view, it may be rational to simply follow the 

investment decisions of other managers for a reputational reason (Keynes, 1936; Scharfstein and 

Stein, 1990). Money managers operate their funds usually on a large scale with borrowed money. 

Behaving in a contrarian fashion by ignoring near-term market fluctuations needs greater resources 

and will receive the blame if the decision turns out to be unsuccessful. In contrast, “following the 

crowd” can share the blame if many others make the same mistake. For this reason, a manager 

would concern himself with foreseeing impending changes in the conventional basis of valuation, 

rather than making superior long-term forecasts of the probable yield. Prior empirical studies also 

find social networks bring the crowd into conformism in financial markets. For example, Pool et 

al. (2015) find that neighbor managers have similar investments due to word-of-mouth 

communications. Fracassi (2017) examines various social ties between executives and directors of 

U.S. public companies. They find that the more connections two companies share, the more similar 

their capital investments are. Qi et al. (2020) focus on alumni ties between mutual fund managers 

and find connected managers have similar portfolio allocations. Consistent with the view that 

social networks influence managers toward conforming behavior, we present the following 

hypothesis: 

H1. Conformism hypothesis. When all else equal, a hedge fund located in a central position 

in social networks has a less unique strategy and lower performance than its peers on the periphery 

of networks. 
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Under certain circumstances, informed individuals might exhibit contrarianism. For 

example, Park and Sabourian (2011) show that contrarianism occurs when investors have hill-

shaped signals. As one of the most sophisticated arbitrageurs, hedge fund managers would be 

concerned about the commonality of an investment approach and thereby intentionally 

differentiate their investments from peers. The first concern would be the profitability of a well-

known, heavily traded strategy. Any superior abnormal return of such a strategy will likely be 

competed away (Berk and Green, 2004; Pastor et al., 2015; Zhu, 2018; Kooli and Zhang, 2022). 

The second concern is the “crowded-trading” effect, which suggests a price uncertainty faced by 

each arbitrageur when other arbitrageurs are using the same model and taking the same positions 

(Stein, 2009). In such circumstances, the inability of traders to condition their behavior on current 

market-wide arbitrage capacity creates a coordination problem, which drives prices further away 

from fundamental values. The uncertainty grows with leveraged arbitrageurs forced to liquidate 

the assets in a fire sale. Hence, managers would leverage their information and make contrarian 

decisions due to decreasing returns to scale and the crowded trading effect. Our alternative 

hypothesis is, therefore, as follows:  

H2. Contrarianism hypothesis. When all else equal, a hedge fund located in central 

positions in social networks has a unique strategy and better performance than its peers on the 

periphery of networks. 

3. Data and variables 

In this section, we describe the hedge fund sample, biographical data of hedge fund 

managers, manager tenures, and the variables used in this study. Our main variables are fund 

performance measures, the strategy distinctiveness index (SDI), and network centrality measures. 
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Control variables include various hedge fund characteristics. Our data are collected from two 

sources, the Lipper TASS hedge fund database (TASS) and LinkedIn, a platform for professional 

networking with worldwide users. This online service allows users to create profiles based on their 

educational backgrounds and work experiences. TASS is recognized as one of the leading sources 

of hedge fund information and has been widely used in the hedge fund literature. It retains data on 

dead funds since 1994, which are less subject to the survivorship bias. Besides fund returns and 

characteristics, TASS provides information about portfolio managers, manager workplace location 

(country, city, and zipcode), and hedge fund firms.  

3.1. Hedge fund sample 

Our initial sample consists of hedge funds that report monthly net returns in U.S. dollars to 

TASS between January 1994 and December 2018. Considering the backfilling issue, we remove 

each fund's first 12-month return observations and keep funds with at least 24-month return 

observations. TASS classifies hedge funds into 12 self-reported strategy categories: convertible 

arbitrage, dedicated short bias, emerging markets, equity market neutral, event-driven, fixed 

income arbitrage, global macro, long-short equity, multi-strategy, managed future, options strategy, 

and funds of funds. We filter out funds of funds and funds with undefined strategies. Then, we 

keep funds with portfolio managers located in the United States. Our final sample consists of 2711 

hedge funds, including 228 live funds and 2483 graveyard funds, and 2036 portfolio managers. 

Among these HFs, 2181 funds are managed by a single manager, and 530 funds are managed by 

multiple managers.  
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3.2. Manager biographical backgrounds and tenure at hedge fund 

Biographical information of hedge fund managers is collected from LinkedIn. We match a 

LinkedIn user profile with a manager from the hedge fund sample by checking three conditions: 

(1) matched manager name, (2) matched employer name, i.e., the hedge fund firm name from 

TASS must appear on the LinkedIn profile as one of the employers, and (3) work position at the 

matched employer are among President, CEO, Founder, Co-founder, Partners, Chief Investment 

Officer, Vice president, Director, and Portfolio Manager. In total, we match 1713 out of 2036 

managers. For each matched manager, we collect from his or her LinkedIn profile the education 

records (universities, colleges, degrees) and the work experience information (employer names 

and employment periods).  

TASS does not provide information about manager tenure at a fund. For a fund with 

multiple managers, their tenures can span different periods over the fund's lifetime. In this case, 

we determine tenure for each manager based on employment information collected from LinkedIn. 

Specifically, we determine a manager’s tenure as the employment period at the hedge fund firm.34 

The manager tenure is the fund's lifetime for a fund with a single manager. In total, we determine 

2818 manager tenures (fund-manager pairs) for 2571 funds and 1712 managers. Figure 1 shows 

the geographical distribution of hedge fund managers in our sample. We cluster managers with the 

same zip code in a circle. The size of the plotted circle is determined by the number of managers 

located in this district. There are about one-half of hedge fund managers (862) clustered in the U.S. 

financial centers.35  

 
34 If the employment period is outside of the period the fund has performance records in TASS, we drop the 

observation of this manager. We find only one such manager.  
35 They are New York City, Boston, Chicago, Los Angeles, Philadelphia, and San Francisco, as referred by 

Christoffersen and Sarkissian (2009). 
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[Insert Figure 1 Here] 

Hedge fund managers are recognized for their top-tier talent and extensive experience in 

financial markets. Indeed, we find that a substantial proportion of managers are graduates from the 

most prestigious business schools in the U.S., such as Wharton and Harvard. Panel A of Table 1 

presents the top ten schools (among 777 schools) by the number of alumni in our sample. For 

example, the Wharton School is ranked number one, with 70 alumni managing 124 funds. Harvard 

Business School is ranked number four, with 46 alumni managing 93 funds. In total, 388 managers 

are alumni from the top ten schools, managing 656 funds. Also, we find that many managers are 

experienced at reputable financial services companies such as Morgan Stanley and Goldman Sachs. 

Panel B of Table 1 presents the top ten employers of managers. For instance, Morgan Stanley is 

ranked number one, with 46 managers managing 68 funds. Goldman Sachs is ranked number three, 

with 43 managers managing 67 funds. In total, 350 managers have worked at the top ten companies, 

managing 578 funds. 

[Insert Table 1 Here] 

3.3. Performance measures 

We adopt four risk-adjusted performance measures widely used in the hedge fund literature, 

A Fung and Hsieh (FH, 2004) seven-factor adjusted alpha, a FFCPS five-factor adjusted alpha,  an 

appraisal ratio, and a smoothing-adjusted Sharpe ratio. The FH model includes an equity market 

factor (the return on S&P 500 in excess of the risk-free rate), a size spread factor (Russell 2000 

index total return minus S&P 500 total return), a bond market factor (change in the 10-year treasury 

constant maturity yield), a credit spread factor (change in the spread between Moody's Baa yield 

and the 10-year treasury), and three trend-following factors for bonds, currency, and commodities. 
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Different benchmarks for hedge funds have been used in prior studies. For example, Bali et al. 

(2012) use the Fama-French three-factor model and the Carhart four-factor model. Shi (2017) uses 

a five-factor model as an alternative benchmark adjustment, the Carhart four-factor model 

augmented by the liquidity factor of Pástor and Stambaugh (2003). We also consider this five-

factor model as an alternative benchmark adjustment, and we call it the FFCPS model for brevity. 

The FFCPS model includes the Fama and French (1993) three factors, a momentum factor 

(Jegadeesh and Titman, 1993) and a liquidity factor (Pastor and Stambaugh, 2003). For each fund 

at the end of each month, we regress the excess return of a fund (Rit) on the risk factors (Ft) over 

the prior 24 months. The fund’s alpha in month t+1 is equal to the next month's excess return 

(Ri, t+1) minus the products of the estimated factor loadings β̂i and factor returns in month t+1, as 

in Eq (1): 

 Rit  =  αi + β'iFt + εit  

 α̂i,t+1  =  Ri,t+1 ‒  β̂'iFt+1 (1) 

The appraisal ratio measures a fund’s abnormal return relative to its idiosyncratic risk, which is 

calculated as the mean of the monthly alphas (FH) divided by their standard deviation. Illiquidity 

and smoothing in hedge fund returns can cause an upward bias in Sharpe ratios. We follow 

Getmansky, Lo, and Makarov’s (2004) method to adjust hedge fund returns for the bias of the 

smoothing return.36 Then, the smoothing-adjusted Sharpe ratio is defined as the ratio between the 

mean of monthly smoothing-adjusted excess returns and their standard deviation.  

 
36 Specifically, we estimate the smoothing coefficient (𝜃) of each fund in a MA(2) process using maximum 

likelihood estimation via the “innovations algorithm” of Brockwell & Davis (1991): Rt
o=μ + θ0ϵt + θ1ϵt-1 + θ2ϵt-2, with 

1= θ0+θ1+θ2, and θk∈[0,1], k=0, 1, 2. Rt
o denotes the observed excess returns. The smoothing-adjusted return, R̂t, is 

estimated by R̂t = μ̂ + ϵ̂t. 
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Panel A of Table 2 reports the summary statistics of hedge fund performance. The variables 

are winsorized at the 1% level. At the end of each quarter, we annualize alpha by compounding 

the monthly alphas obtained from Eq (1) over the following 12 months. On average, hedge funds 

in our sample generate an annual FH alpha of 3.19%, with a standard deviation of 15.13%, and an 

annual FFCPS alpha of 2.87%, with a standard deviation of 13.60%. The reported appraisal ratio 

and smoothing-adjusted Sharpe ratio are also calculated over the 12-month rolling periods. The 

mean of the appraisal ratio is 0.16, with a standard deviation of 0.44. The mean of the smoothing-

adjusted Sharpe ratio is 0.21, with a standard deviation of 0.39.  

[Insert Table 2 Here] 

3.4. Hedge fund styles and the SDI 

Following Sun et al. (2012), we use SDI as a proxy for the uniqueness of hedge fund 

strategies. The SDI measures how much a fund’s returns are correlated with those of its cohorts in 

the same style. Suppose a fund i belongs to the style I. When it employs a unique strategy, its 

returns (Ri) would be less correlated with the return of a typical strategy of its style (μI), where μI 

can be measured as the average return of all funds in style I, i.e., μIt = ∑ Rit /𝑖𝜖𝐼 count (𝑖ϵ𝐼). 

Therefore, the SDI of the fund is calculated as one minus the sample correlation between the fund’s 

return and the average return of all funds in style I over a period of T months:  

 
SDI𝑖 = 1 ‒  corr (Ri, μI) = 1 ‒ 

∑ (Rit ‒ R̅i)(μIt ‒ μ̅I)
𝑇
s=1

√∑ (Rit ‒ R̅i)2∑ (μIt ‒ μ̅I)
2𝑇

s=1
𝑇
s=1

 (2) 
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To calculate the SDI, we need to define hedge fund styles. Given the limitations of TASS style 

classification, 37  we define styles by the K-mean clustering approach following Brown and 

Goetzmann (2003, 1997) and Sun et al. (2012). The SDI can be viewed as a distance metric used 

in a clustering program. Graphically, a higher metric value indicates a farther distance to the center 

of the cluster. A K-mean clustering algorithm is a procedure to find a locally optimized partition 

of funds that minimizes the sum of the distance of all funds to their corresponding cluster.  

In this procedure, the number of clusters (styles) K is a prespecified parameter. Tuning this 

parameter is crucial for guaranteeing the quality of clustering. In previous studies, Brown and 

Goetzmann (2003) considered an adjusted R2 as a performance measure for comparing different 

K, K = 5 and K = 8, and find the performance of K = 8 is better than K = 5. Sun et al. (2012) fixed 

K at 10, the same number of TASS styles. The optimal K in a clustering program is usually sample-

specific. Undoubtedly, the TASS hedge fund sample has dramatically changed over time. Since 

style classification is an important instrument of our study, it affects not only the calculated SDI 

but also the construction of hedge fund social networks, we examine the optimal K for our sample. 

In Appendix A, we compare performance between K = 5 and K = 10 based on two performance 

measures, adjusted R2, and silhouette value. We find the performance of K = 5 is better than K = 

10. Therefore, in our study, we fix the number of hedge fund styles at 5. 

At the end of each quarter, we group funds with at least 24 prior month returns into five 

style clusters based on their return correlation over the period. These procedures generate time-

varying, dynamic, and sufficiently stable hedge fund styles. The annual switching rates are equal 

 
37 TASS classification is based on self-reporting by funds. Sun et al. (2012) summarize its limitations as follows: 

1) potential misclassification, 2) the database provides only the most recent snapshot of style reporting, whereas a 
fund’s style could change over time, and 3) most importantly, some of TASS styles are more broadly defined than 
others. In consequence, the SDI calculated based on these classifications may merely capture a dispersion of a broader 
definition. 
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to the percentage of fund pairs that change status from belonging to the same style to switching to 

different styles and vice versa, ranging from 15% to 27% between 1996-2018 (with an average of 

20.76%.) With the defined styles, we calculate the SDI for each fund by Eq (2). The mean of SDI 

is 0.37, with a standard deviation of 0.21. For a better understanding of the variable, we report the 

properties of the SDI in Appendix B. Figure A2 presents its cross-sectional distribution, which 

shows a pattern of a large variation in the SDI across funds, as found by Sun et al. (2012). The 

histogram displays the percentages of funds with the time-series average SDI at different values. 

About 73% of the sample funds exhibit an average SDI lower than 0.50. The distribution is more 

than 15% in each of the 0.25 to 0.45 SDI bins, and about 10% in the 0.15, 0.55, and 0.65 SDI bins. 

Figure A3 plots the SDI across styles with different popularity. The popularity of a style is 

measured by the number of funds as members. In Panel A, we find that Style 1, the most popular 

style (also called the mainstream style), accounts for about 30-50% of all hedge funds over the 

period 1996-2018, Style 2 accounts for about 20% of all funds, and Style 5, the least popular style, 

has only about 10% of funds as members. In Panel B, we find that larger styles tend to have a 

lower average SDI than smaller ones. 

3.5. HF networks and centrality measures 

To construct social networks of the closest competitors, we consider all cohorts in a given 

style at a given point in time. This approach allows us to have a time series of networks whose 

evolution is caused by the style-shifting of funds, the entrance of new funds, the attrition of 

liquidated funds, and manager tenure. At the end of each quarter, we define the pairwise 

connections between funds within each style based on social relationships between their managers. 

Using the manager biographical data collected from LinkedIn, we identify two types of social ties, 

Alumni Network (ANW) and Employment Network (ENW), and we call them the HF networks. 
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An alum connection indicates that managers of the two funds are alumni of the same school. An 

employment connection indicates that managers of the funds have worked at the same employer. 

In the case that multiple managers manage a fund, a connection between funds indicates at least 

one manager from one fund is connected with a manager from the other fund by alumni or 

employment tie. In addition, we require that the two funds do not have common managers to ensure 

that the estimated effect does not reflect the preferences of the same manager. The alumni and 

employment relationships of managers have been examined by prior studies (Gerritzen et al., 2020; 

Qi et al., 2020;  Lin et al., 2021; Spilker, 2022). Shared educational backgrounds increase the 

probability of exchanging information between two managers based on mutual recognition. We 

take a weaker form for the employment ties by not requiring employment overlap in time. Shared 

experience backgrounds could drive similar investments, e.g., due to having been exposed to 

common training at the prior employer or firm culture, even though there is no exchange of ideas 

(Gerritzen et al., 2020). 

Figure 2 displays a snapshot of the HF networks as of December 2007. The size of a node 

represents its level of degree centrality. The color of a node denotes the style it belongs to. The 

color of the edge denotes the type of relationship: a lighter line for ENW and a darker line for 

ANW. We observe that one or two styles are more popular with more funds as members. A larger 

style also tends to have more connections than a smaller style. For example, there are 716 

connections in the largest style and only 45 connections in the smallest style. 

[Insert Figure 2 Here] 

Network centrality measures the importance of a position in social networks and has been 

used in prior studies to examine social influences on the behaviors of economic agents (Larcker et 
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al., 2013; Bajo et al., 2016;  Fracassi, 2017; Rossi et al., 2018; Qi et al., 2020; Lin et al., 2021; 

etc.). Different measures capture different dimensions of the network effect. We adopt three 

centrality measures commonly used in the literature. The first measure is degree centrality, which 

is equal to the number of connections of a node divided by the total number of nodes in the network 

minus one. This measure can be interpreted as an immediate probability that the fund catches 

information flowing through the network. The second measure is closeness centrality, which is 

equal to the inverse of the average distance between a node and all other nodes in the network. 

This measure indicates the average distance that randomly generated information in networks 

travels to reach the fund. The third measure is betweenness centrality, which measures how many 

shortest paths between other nodes go through a particular node. This measure captures bridge 

roles of a position in networks, e.g., a degree of control over important paths of information flows. 

We calculate the three centrality measures in the ANW and ENW, respectively, for each 

fund at the end of each quarter between 1996-2018. Panel A of Table 2 reports the summary 

statistics. For the ANW, the means of the degree, closeness, and betweenness centrality measures 

are 0.24%, 0.51%, and 0.0047%, with a standard deviation of 0.52%, 1.08%, and 0.03%. For the 

ENW, the means of the three measures are 0.08%, 0.15%, and 0.0008%, with a standard deviation 

of 0.25%, 0.44%, and 0.01%. To examine their evolution over our sample period, for each measure, 

we first calculate its cross-sectional mean at a given time ( Nett =  Nt
-1∑ Netit

Nt
i=1 )  and then 

standardize the time-series of Nett . The standardized Nett  has a zero mean and unit variance. 

Figure 3 plots the time series of the standardized centrality over the period 1996-2018. All three 

measures exhibit averagely lower values in earlier years than in later years of the period. For 

example, the standardized ENW degree was below zero before 2004 and became positive in most 

years after that. Moreover, all three measures seem to fluctuate more violently over the post-2008 
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crisis period. When we plot the standardized SDI in the figure, we notice that the SDI appears to 

mirror the pattern of the centrality measures, indicating a negative correlation between the SDI 

and centrality. As a result, we calculate the correlation between the series of SDI and centrality. 

For example, for the ENW closeness, the correlation is ‒ 0.24.  

[Insert Figure 3 Here] 

We examine their cross-sectional correlation for a basic understanding of the relation 

between our main variables. We first calculate the time-series average of each variable for each 

fund and then the pairwise correlations between the mean variables. Panel B of Table 2 reports the 

correlation matrix. Firstly, we confirm a positive correlation between the SDI and future fund 

performance across all four alternative measures, consistent with Sun et al. (2012). Secondly, we 

find a negative correlation between the SDI and centrality across all six centrality measures, 

ranging from ‒ 0.18 to ‒ 0.04. Thirdly, we also find a negative correlation between centrality and 

fund performance across all performance measures and centrality measures. 

3.6. Control variables 

Control variables are various fund characteristics, including fund return volatility (Vol), 

R2(FH), assets under management, fund age, redemption notice period, lockup period, personal 

capital commitment, high water mark, management fees, incentive fees, minimum investment, and 

leverage. Vol is the standard deviation of monthly net-fee-returns over the prior 24 months of each 

quarter. R2(FH) denotes the R-squared obtained from the 24-month rolling window regressions of 

Eq (1) with the FH model. RedempNotice is the redemption notice period in days. Lockup is the 

lockup period in months. PersonalCapital is an indicator of personal capital commitment. HWM 

is an indicator that the fund sets a high water mark provision. MGMT_FEE and INC_FEE are 
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management fees and incentive fees in percentage. MIN_INV is the required minimum investment 

by fund in $million. Leverage is an indication of whether the fund uses leverage. Panel C of Table 

2 summarizes the statistical properties of these variables. The average return volatility is 3.32% 

per month. The mean of R2(FH) is 0.54, with a standard deviation of 0.21. An average fund has a 

size of $258.78 million and an age of 8.46 years. Across funds, the average redemption notice 

period is 42.65 days, the lockup period is 5.51 months, management fees are 1.35%, incentive fees 

are 18.84%, and the required minimum investment is $1.58 million. About 43% of funds have 

personal capital commitment, 73% set high water mark provisions and 64% use leverage. 

4. Results 

4.1. Baseline results 

Our baseline analysis consists of two tests using a multivariate panel regression. We first 

examine how HF networks influence a fund’s SDI. Then, we examine how networks affect the 

fund’s future abnormal performance. The two tests serve to examine our hypotheses. As discussed 

in Section 2, social networks could influence strategy uniqueness in two possible ways. Consistent 

with the conformism hypothesis that assumes social ties bring funds toward similar investments, 

a central position in the networks is associated with a lower SDI. It predicts lower performance 

due to a declined novelty of the fund's strategy. Based on the contrarianism hypothesis that 

assumes managers with information advantage intentionally differentiate themselves from peers 

due to the concern of commonality of a well-traded strategy, a central position is associated with 

a higher SDI and predicts higher performance.  

4.1.1.  Relation between network centrality and SDI  
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 We run the regression of the SDI on the network centrality controlling for fund 

characteristics and style and time fixed effects, as in Eq (3): 

 SDI𝑖,𝐼,𝑡  =  cI + ct + γNet𝑖,𝐼,𝑡 + 𝛗′FundChar
𝑖,𝐼,𝑡

 + ϵ𝑖,𝐼,𝑡 (3) 

where SDI𝑖,𝐼,𝑡 is the SDI of fund i in the style I at the end of quarter t; cI and ct represent style and 

time-fixed effects; Net𝑖,𝐼,𝑡 is one of the six network centrality measures among degree, closeness, 

and betweenness, calculated in the ANW and ENW, respectively; FundChar𝑖,𝐼,𝑡 is a vector of 

control variables, including fund return volatility (Vol), redemption notice period, leverage lockup 

period, personal capital commitment, fund size measured by the natural logarithm of assets under 

management, management fees, incentive fees, high water mark, the logarithm of minimum 

investment, fund age, and average FH alpha over the past one year.  

Table 3 reports the estimated coefficients and their corresponding t-statistics, calculated 

based on clustered errors by style and time. Overall, we find strong evidence that a central position 

in the network is associated with a lower SDI. The estimate coefficients on all centrality measures 

are negative and statistically significant at the 1% confidence level or lower. Across all centrality 

measures, a one-standard-deviation increase in centrality corresponds to a 2% to 7% standard 

deviation decrease in the SDI, in the presence of a host of potential determinants of SDI. For 

example, the coefficients on the ANW and ENW degrees are ‒ 2.69 and – 1.87 (t-stat: ‒ 13.75 and 

‒ 4.64). Between the two types of relationships, the alumni network strongly influences the SDI 

than the employment network. A one-standard-deviation increase in the ANW degree corresponds 

to a decrease in the SDI of – 1.40%, while the increase in the ENW degree suggests a decrease in 

the SDI of – 0.45%. The results suggest that central managers under the influence of the social 
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networks invest in a less distinct way. By contrast, when all else equal, managers located on the 

periphery of the networks might behave in a unique fashion.  

 Regarding the coefficients on the fund characteristics, we find that the SDI decreases with 

fund return volatility, fund size, high-water-mark dummy, minimum investment, and fund age, 

while it increases with the use of leverage, personal capital commitment, management and 

incentive fees, and past average alpha.  

[Insert Table 3 Here] 

 

4.1.2.  Relation between network centrality and fund performance 

In the second test, we run the regression of abnormal performance on lagged network 

centrality, controlling for fund characteristics and style and time fixed effects, as in Eq (4): 

 AbnormalPerf𝑖,𝐼,𝑡+1  =  𝜇I + 𝜇t + βNet𝑖,𝐼,𝑡 + θ'FundChar𝑖,𝐼,𝑡 + ϵ𝑖,𝐼,𝑡+1 (4) 

where AbnormalPerf𝑖,𝐼,𝑡+1 is the risk-adjusted performance of fund i in the style I in the following 

year, which is measured by the FH alpha, the FFCPS alpha, the appraisal ratio, and the smoothing-

adjusted Sharpe ratio, respectively. Control variables include the average and standard deviation 

of monthly net fee returns in the preceding 24-month period (AvgPast2YRet and Vol), and 

redemption notice period, leverage lockup period, personal capital commitment, the logarithm of 

fund size, management fees, incentive fees, high water mark, the logarithm of minimum 

investment, and fund age.  
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Panel A of Table 4 reports the results with the FH alpha as the dependent variable. We find 

evidence that a central position in the networks predicts lower performance at the l% confidence 

level or lower across all centrality measures except for the ENW betweenness. For example, the 

estimated coefficients on the ANW and ENW degrees are ‒ 0.53  and ‒ 1.25 (t-stat: – 3.04 and ‒  

3.79), implying that a one-standard-deviation increase in degree centrality predicts a decrease in 

the annualized alpha of ‒ 0.28% and ‒ 0.30% in the subsequent year. A one-standard-deviation 

increase in the ANW and ENW closeness predicts a decrease in the annualized alpha of ‒ 0.23% 

and ‒ 0.26%. Regarding the coefficients on the fund characteristics, we find the lengths of the 

redemption notice period, the high-water-mark dummy variable, management fees, and minimum 

investment requirement are significantly and positively associated with future fund alpha, and the 

fund size and age tend to predict a lower alpha. 

Panels B to D of Table 4 present the results with the FFCPS alpha, the appraisal ratio, and 

the smoothing-adjusting Sharpe ratio as the dependent variable. For brevity, we report only the 

coefficients and t-statistics on the centrality measures. We also find the coefficients are negative 

and significant at the 10% confidence level or lower across all centrality measures, except for the 

ENW betweenness, across the three performance measures. Specifically, the significant results 

with the appraise ratio eliminate a concern that the negative relation between alpha and centrality 

could reflect an alternative mechanism, i.e., an eccentric manager who invests in an idiosyncratic 

way has a superior return by taking an excessive idiosyncratic risk. The coefficients on the ANW 

and ENW degree are ‒ 3.39 and ‒ 4.33 (t-stat: – 6.31 and ‒ 4.52), suggesting a one-standard-

deviation increase in degree centrality predicts a decrease in the appraisal ratio (FH) of – 1.76% 

and – 1.04%. When it comes to the smoothing-adjusting Sharpe ratio, a one-standard-deviation 
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increase in the ANW and ENW degree predicts a decrease of – 1.20% and – 0.60% (t-stat: – 6.24 

and ‒ 3.23). 

To summarize, our baseline results are consistent with the conformism hypothesis, which 

implies that social networks bring funds toward similar investments. We will investigate this 

assumption further in Section 4.2. A fund more exposed to this kind of influence tends to have a 

less unique strategy. When unique strategies are important for superior performance, the negative 

externality of social networks becomes more dominant than the information-benefit effect.   

[Insert Table 4 Here] 

 

4.1.3.  Robustness 

In this section, we consider three robustness tests, in which we rerun the regressions (3) 

and (4) with different subsamples. The first robustness check ensures that SDI heterogeneity across 

styles does not drive our findings. As shown in Figure A3, larger styles tend to have a lower 

average SDI than smaller styles. Figure 2 shows that larger styles have more connections than 

smaller styles, so funds in large styles tend to possess higher network centrality. In a panel 

regression that includes observations of all styles, our inference would be biased if this 

heterogeneity across styles drives a negative relation between centrality and SDI.    

The style and time-fixed effects mitigate this issue to some extent. To eliminate this 

concern, we run regressions (3) and (4) with the subsample of each style, controlling for time fixed 

effect. For brevity, we report only the results using degree measures in Panel A of Table 5. The 

relations remain negative in most style subsamples. Particularly, in the mainstream style (Style 1), 
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the negative effect on the SDI as well as performance remains strong and robust in both networks 

with t-statistics lower than – 2.00, except that the alumni network effect on alpha is negative but 

insignificant. The results of using closeness and betweenness are mostly consistent. For example, 

when using closeness, the alumni network effect on SDI and AR are – 0.63 and – 0.52 (t-stat: ‒

6.89 and ‒2.60) in the mainstream style. Therefore, our results are not driven by the heterogeneity 

across styles. 

We investigate whether our results hold during different subsample periods in the second 

robustness test. During financial crisis periods, significant structural breaks are observed in the 

hedge fund industry; for example, returns, as well as the AUM and the number of funds, 

dramatically dropped during the period 2008-2010 (Bali et al., 2012; Kooli and Zhang, 2022). 

Liquidation of funds is one of the factors causing the HF networks' evolution. As in Figure 3, the 

centrality measures fluctuate more violently over the post-2008 crisis period. Therefore, we rerun 

regressions (3) and (4) over two subperiods: the financial crisis (1999-2002 and 2008-2010) and 

the non-crisis period. In Panel B of Table 5, we find that the negative network effects remain 

significant at 10% or lower over each of the two subperiods, except that the employment network 

effect on alpha is insignificant during the financial crisis period. The results suggest that structural 

breaks caused by the financial crisis do not impact our inference about social network effects. 

In the third test, we investigate whether the observed effects from the HF networks manifest 

networking of managers in big cities. From Hong et al. (2005), we know that information is 

transferred between fund managers in a city. Big cities attract managers by offering better job 

opportunities and benefits from extensive information flow. It is possible that managers in big 

cities also possess high centrality in the HF networks since graduates from top schools and 

professionals at famous financial companies are very likely to work in big cities. Figure 1 shows 
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that half of the managers in our sample are located in financial centers. To ensure our findings are 

still robust after controlling for the effect of networking in cities, we rerun the regressions by 

adding city fixed effect and using a subsample of funds whose managers are located in the U.S. 

financial centers. The results using degree centrality are reported in Panel C of Table 5. After 

controlling for the city fixed effect, the social network effects remain significantly negative at 1% 

or lower across both networks, and similar results when using closeness centrality. Our results are 

also robust to using the subsample of managers in financial centers. Thus, the observed effects 

from the HF networks are not a manifestation of the impact of networking in big cities documented 

by Hong et al. (2005). 

[Insert Table 5 Here] 

4.1.4.  Aggregate network effect 

To examine the aggregate effect of two types of relationships, we define the AGG degree 

as the number of both types of ties divided by the number of funds minus one. The mean and 

standard deviation of AGG degree is equal to 0.32% and 0.63% across 53,332 observations. We 

repeat the baseline analysis, with the full sample, and the robustness tests, with different 

subsamples using the AGG degree as the independent variable. Table A1 in Appendix C 

summarizes the results. Overall, we observe that the effects become larger in magnitude when 

summing up influences from both networks, especially for alpha and AR. A one-standard-

deviation increase in AGG degree predicts a decrease of – 0.36% and – 1.92% (t-stat: ‒ 3.78 and 

– 6.77), respectively. 
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4.2. Social connections and strategy similarity 

Our conformism hypothesis is based on the herding theory that suggests social networks 

influence funds toward similar investments. In this section, we investigate this underlying 

assumption and explain the link between network centrality and the SDI. In Appendix D, we 

decompose the network effect on a fund’s SDI into individual influences from the fund’s social 

connections. Eq (A4) shows that the SDI of a fund is a decreasing function of the average return 

covariance with its cohorts. We describe the influence of social connectedness on strategy 

similarity between two funds in Eq (A5). The return covariance or correlation can measure strategy 

similarity since similar investments lead to more correlated returns. It is worth noticing that the 

model in (A5) allows for b > 0, b < 0, or b = 0. Particularly, a positive b indicates that connected 

funds employ more similar strategies and then have more correlated returns, which is consistent 

with herding theory. Replace (A5) with (A4) and take the partial derivative of the SDI with regard 

to connectedness with another particular fund. Eq (A6) shows the influence on the SDI from a 

social connectedness. When b > 0, it represents a decrease in the SDI. To gauge the total effect 

from all connections, we sum up (A6) across all cohorts of the fund in the same style, and Eq (A7) 

shows the total effect is a decreasing function of the degree centrality given b > 0.  

In the following, we empirically test the relation between social connectedness and strategy 

similarity between two funds, i.e., the sign of b. Specifically, we use each pair of funds in the same 

style as the unit of analysis and run a multivariate panel regression under the pair model based on 

annual data. At the end of each year t, for each fund pair in style, we measure the strategy similarity 

between the fund pair by their return correlation as well as covariance over prior 24 months 

(StratSimijt). The social connectedness (Connectedij, t-1) is a dummy variable, which is equal to 1 
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if the fund pair is socially connected at the end of year t-1, otherwise 0. We regress StratSimijt on 

Connectedij, t-1, controlling for location proximity of managers and similar fund features, which 

potentially explain their strategy similarity, and for style and time fixed effects, as in Eq (5): 

 StratSimijt  = 𝜌I + 𝜌t + 𝛿Connectedij, t-1 + 𝛕′Controlsij + eijt (5) 

where 𝛿 is the coefficient of interest, measuring social influence from a connectedness on the 

strategy similarity after controls. Controls is a vector of SameCity, SameMediaMkt, FdCharSim, 

AssetSim, APRSim, SecSim, GeoSim, and InvSim. SameCity is an indicator that equals 1 if the 

managers of fund i and fund j are located in the same city, controlling for the networking effect in 

the same city (Hong et al., 2005). SameMediaMkt is an indicator that equals 1 if their managers 

are located within 50 miles of each other, controlling for a community effect from shared media 

markets (Pool et al., 2015).38 FdCharSim, AssetSim, SecSim, APRSim, GeoSim, and InvSim are 

Jaccard coefficients, measuring the similarity in fund features, invested asset classes, investment 

approaches, sector focuses, geographic focuses, and investment focuses, respectively.  

To calculate the Jaccard coefficients, we create for each fund (i) a n-dimension Boolean 

vector (BVi) to indicate whether the fund possesses certain features. For example, a BV of fund 

features includes indicators for redemption notice period longer than 30 days, redemption 

frequency lower than monthly, minimum investment greater than $1 million, with lockup periods, 

 
38 The geographical distance between two managers is calculated using the manager workplace location zip code 

information from TASS. A U.S. zipcode can be converted into a pair of latitude and longitude (𝜙𝑖 , 𝜆𝑖). The distance 
(in miles) between manager i and manager j can be calculated using the Vincenty formula for distances on ellipsoids: 

distance = 3963.19 × arctan (
√(cosϕi sin(λi − λj) )

2
+ (cosϕj sinϕi − sinϕjcosϕicos(λi − λj) )

2

sinϕjsinϕi + cosϕjcosϕicos (λi − λj)
) 
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with personal capital commitment, using leverage, and setting high water mark. Moreover, each 

fund has a BV of 48 indicators for asset classes, 18 indicators for used investment approaches, 32 

indicators for sector focuses, 16 indicators for geographic focuses, and 15 indicators for investment 

focuses. Using these BV, we calculate the Jaccard coefficients for each fund pair.39 These variables 

range from 0 to 1. For example, AssetSim equal to 1 implies that two funds invest exactly in the 

same asset classes, and a value of 0 means investing in entirely different assets.   

Table 6 reports the results of the regressions (5). We find strong evidence supporting that 

social networks influence funds toward similar investments. Specifically, a connectedness in the 

ANW increases the returns correlation between two funds by 5.15% (t-stat: 9.01) and increases 

their covariance by 0.75% (t-stat: 2.37), after controlling for the effect of networking in cities, 

influences from shared media markets, similar fund features and investment focuses, and style and 

time fixed effects. Connectedness in the ENW increases return correlation by 6.22% (t-stat: 4.51) 

and increases covariance by 0.58% (t-stat: 1.37) after controls. Regarding control variables, all 

coefficients are positive and statistically significant when using the correlation as the dependent 

variable, except for GeoSim. For example, consistent with Hong et al. (2005) and Pool et al. (2015), 

we find evidence that managers in the same city or media market tend to have more similar 

investments. Moreover, fund features information based on self-reporting by funds seems to 

explain the similarity in their employed strategies. For example, our result shows that when two 

funds report employing exactly the same approaches, their return correlation increases by 12.88%, 

compared with two funds that report using entirely different approaches. When two funds report 

 
39 The Jaccard similarity is defined as the size of the intersection divided by the size of the union. The value can 

be interpreted as a percentage of shared features between two data sets. 

Jaccard(BVi,BVj) ≡
|Intersection(BVi,BVj)|

|Union(BVi,BVj)|
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investing in exactly the same asset classes, their correlation increases by 6.75%, compared with 

two funds investing in entirely different asset classes. 

  [Insert Table 6 Here] 

4.3. Manager talent, career establishment, and social network effects 

Smart and less established managers are more likely to pursue unique strategies because of 

their skills and ambitions. In this section, we investigate heterogenous social network effects 

among managers with different characteristics (i.e., smartness and career establishment). Li et al. 

(2011) find hedge fund managers from higher SAT (Scholastic Aptitude Test) colleges perform 

better than managers from lower SAT, suggesting that better-educated managers are more skilled. 

They also find more experienced managers exhibit lower performance, suggesting that established 

managers are less motivated to work hard and reluctant to take investment opportunities that could 

risk their careers. Similarly, we measure the smartness of a manager by the average SAT of the 

college/university he attended and his career establishment by the length of work experience. We 

collected SAT scores of the U.S. colleges/universities from College Simple and PrepScholar.40 

The SAT scores in our sample range from the lowest of 900 to the highest of 1555, with a 

mean/median of around 1293/1295. WORK is defined as the number of years of work experience 

at financial service companies, using the employment information of managers collected from 

LinkedIn. Financial work experience is more relevant for measuring the degree of professional 

career establishment. The mean and median of WORK are 14.70 and 14.04 years, respectively; 

the shortest is 0 years, and the longest is 45.95 years. 

 
40 From College Simple, we collect a list of the 1066 colleges in the U.S. with the highest SAT Score for freshmen, 

at https://www.collegesimply.com/colleges/rank/colleges/highest-sat-scores/. We also search SAT scores from 
PrepScholar, an online SAT instructor. Both sources generate very similar results.  

https://www.collegesimply.com/colleges/rank/colleges/highest-sat-scores/
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To examine heterogeneous effects, we apply regressions (3) and (4) to two subsamples 

with SAT or WORK above and below the sample median. In Panel A of Table 7, we report the 

results using the ANW degree centrality. With the subsample SAT >= 1295, we find the effect on 

the SDI is negative at a larger magnitude, with a coefficient of – 4.34 (t-stat: – 17.98). A one-

standard-deviation increase in the ANW degree (0.675%) corresponds to a decrease in the SDI of 

– 2.93%. With the subsample SAT < 1295, we find the coefficient becomes less significant 

statistically and economically. A one-standard-deviation increase in degree (0.23%) suggests a 

decrease in the SDI of – 0.66% (t-stat: – 1.83). Similarly, we find the effect on alpha is also more 

negative with the subsample SAT >= 1295. A one-standard-deviation increase in degree predicts 

a decrease in the annual alpha of – 0.39% (t-stat: – 2.58), whereas the effect becomes statistically 

insignificant with the subsample SAT < 1295. In results not reported, our findings remain similar 

when using the closeness or betweenness centrality.  

Panel B of Table 5 reports the results with the subsample WORK >=14 and WORK <14, 

where the degree centrality is calculated in the employment network. We find that the negative 

network effect is more significant in magnitude among managers with less experience. Among 

managers with financial work experience of less than 14 years, a one-standard-deviation increase 

in degree (0.21%) corresponds to a decrease in the SDI of – 1.16% (t-stat: – 5.70) and a decrease 

in alpha of – 0.44% (t-stat: – 2.93). Among more established managers, a one-standard-deviation 

increase in degree (0.37%) corresponds to a decrease in the SDI of – 0.40% (t-stat: – 2.21) and a 

decrease in alpha of – 0.17% (t-stat: – 1.33). To summarize, results suggest that smart managers 

with career ambition, who are more likely to pursue unique strategies, are more vulnerable to the 

negative effect of social networks. 

  [Insert Table 7 Here] 
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4.4. Style shifting and social ties  

In this section, we examine another important aspect of social influences ‒ how the HF 

networks affect funds’ investment styles. Previously, we show that social networks increase 

strategy similarity between funds, but do they also increase the probability that two funds will 

invest in the same style in the future? Our time-varying style grouping allows us to examine the 

style-shifting of funds from year to year. Using the pair model, we define a dummy variable for 

each fund pair in the same style, StyleShift
ij, t+1, which is equal to 1 if the fund i and j s still belong 

to the same style in the next year and 0 if they switch to different styles. On average, about 30% 

of fund pairs in our sample remain in the same style for the next year. Mainstream funds are more 

likely to stay mainstream; 43.5% of fund pairs remain in the next year. We estimate the following 

logistic model with the same controls as used in Eq (5), where Pr (‧) means probability:  

 Pr (StyleShift
ij, t+1)  = Pr (𝜌I + 𝜌t + 𝛿Connectedijt + 𝛕′Controlsij + eijt>0) (6) 

Table 8 reports the results with the full sample and a subsample of fund pairs in the 

mainstream style. We find that an alum tie increases (decreases) the probability of two funds 

remaining in the same style (switching to different styles) in the next year. With the full sample, 

an alum connectedness would increase the probability of remaining in the same style by about 3% 

(t-stat: 2.36). For mainstream funds, the connectedness would increase the probability of remaining 

in the mainstream by about 6% (t-stat: 2.68). However, we do not find evidence that employment 

ties impact the style-shifting of hedge funds. Regarding control variables, we find that funds whose 

managers are in the same city and have similar asset classes, sector focuses, and investment 

approaches are more likely to remain in the same style.  
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  [Insert Table 8 Here] 

4.5. Social influence and hedging  

Under a rational model, a hedge fund manager optimizes his portfolio allocation between 

an indexed investment and a proprietary strategy. Managers possessing profitable proprietary 

strategies tend to have lower indexed allocations and, thus a lower R2 of returns against risk factors 

(Titman and Tiu, 2011). The purpose of this section is to examine how HF social networks 

influence a fund’s exposure to systematic risk. 

As previously shown, herding leads to a less profitable proprietary strategy. Under the 

rational expectation, a herding manager would tilt toward indexed investments. Therefore, due to 

herding, similar and indexed investments are two sides of the same coin. A central manager would 

have higher exposure to systematic risk. To investigate this relation, we run the regression (7) 

using the quarterly panel data:    

 R2𝑖,𝐼,𝑡  =  cI + ct + θNet𝑖,𝐼,𝑡 + 𝛝′FundChar𝑖,𝐼,𝑡 +NL_FAC
𝑖,𝐼,𝑡
+ Kurt𝑖,𝐼,𝑡 +  ϵ𝑖,𝐼,𝑡 (7) 

where R2𝑖,𝐼,𝑡 is the R2 (FH) of fund i at the end of quarter t. FundChar𝑖,𝐼,𝑡 is the vector of control 

variables as used in Eq (3). In addition, we add two variables, the importance of nonlinear factors 

(NL_FAC) and the kurtosis of the residuals (Kurt) from Eq (1). NL_FAC is equal to the sum of 

absolute betas on three PTFS nonlinear factors divided by the sum of absolute betas across all 

seven factors. Funds being more exposed to nonlinear factors tend to have a smaller R2 (Ingersoll 

et al., 2007), and “fat” tails in fund returns also lead to a smaller R2 (Titman and Tiu, 2011).  
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Table 9 reports the results of the regression (7) using the degree centrality measure. We 

find strong evidence that a central network position is associated with a higher R2. All of the 

coefficients on the centrality measures, including untabulated results with closeness and 

betweenness, are consistently positive and significant at the 1% confidence level or lower. For 

example, a one-standard-deviation increase in the ANW and ENW degree corresponds to an 

increase of 0.89% and 0.50% (t-stat: 6.96 and 5.15) in a fund’s R2 after controls. The results show 

that central funds more exposed to social influences are also more exposed to systematic risk.  

The R2 increases with fund return volatility, fund size, high-water-mark dummy, minimum 

investment, and fund age, while it decreases with leverage, personal capital commitment, 

management and incentive fees, and past average alpha. We also find that funds with higher 

importance of nonlinear factors and kurtosis of the return residuals have a lower R2, consistent 

with the prediction of Ingersoll et al. (2007) and Titman and Tiu (2011).  

  [Insert Table 9 Here] 

5. Conclusion 

Academic research has focused on the beneficial influence of social networks in fund 

management. In this paper, we explore a mechanism that explains how social networks could be 

detrimental to fund performance due to competition. Social networks can facilitate investment 

herding among fund managers. This behavior deters the development of unique strategies and thus 

harms performance when unique investments are important for success in competition. We find 

strong and robust evidence supporting this point of view. Using a sample of hedge funds over the 

period 1994-2018, we examine two types of social ties (alumni and employment) between the 

closest competitors investing in the same style. We find that a central manager in social networks 
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tends to have a less unique strategy and lower abnormal performance. We also find that managers 

connected by a social tie tend to have more correlated returns, supporting that investment herding 

is encouraged under social influences. This kind of influence also increases the probability that 

managers will invest in the same style in the future. A plausible explanation for herding can be 

due to reputation concerns for managers, which deserves further examination. Furthermore, our 

results show that smart and less established managers are more vulnerable to the negative effect 

of social influence. Central managers also tend to choose more exposure to systematic risk due to 

a declined return in their proprietary strategy. 
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Appendix A: Optimal number of hedge fund styles 

The number of clusters (styles) K is a prespecified parameter in a K-mean clustering 

program. Tuning this parameter is crucial to guarantee the quality of classifications. In the previous 

studies, for example, Brown and Goetzmann (2003) consider an adjusted R2 as a performance 

measure for comparing five style classification (K = 5) to eight styles (K = 8). The adjusted R2, 

which is obtained from the regression of fund returns on styles classifications, measures the extent 

to which the classifications explain cross-sectional variability in future returns. They find five style 

classifications have a lower fitness than eight styles, with a TASS hedge fund sample between 

1989-1999. The study of Sun et al. (2012) fixed the style number at K = 10, which is the same 

number of TASS styles. Given potential changes over time in the TASS hedge fund sample and 

the importance of the optimal K in our study, we revisit the subject and evaluate comparative 

performance of five style classifications and ten styles, i.e., K = 5 and K = 10. In addition to the 

adjusted R2, we also consider an alternative performance measure, the silhouette value. We 

describe the calculations of two performance measures as below.  

To implement the adjusted R2 measure, at the end of each quarter between 1996-2018, we 

classify funds into five (or ten) styles using the prior two-year fund returns, and then regress the 

third year returns of each fund (Rit) on their corresponding style return (μIt). These procedures 

allow us to have a time-series of the adjusted R2 measure. We plot the time-series for K = 5 and 

for K = 10 in Panel A of Figure A1. The second measure is the silhouette value (Rousseeuw, 1987). 

The silhouette criterion is one of the most prominent methods to find the optimal number in a K-

mean clustering program. This criterion measures how close a member to its own cluster compared 

to other clusters. In our style clustering program, the silhouette value can be interpreted as a 
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measure of how similar a fund’s strategy to its own style compared to other styles. The silhouette 

value is defined as Eq (A1): 

 S(i)=
a(i) ‒ b(i)

max(a(i), b(i))
 (A1) 

where a(i) is the average distance between fund i and all other funds of the same cluster, b(i) is the 

minimum of the average distances between fund i and all the funds in each other cluster. S(i) 

measures how well fund i matches its style. For example, when S(i) is negative, i.e., a(i) is much 

larger than b(i), we can conclude fund i has been misclassified. After implementing the clustering 

program of each quarter, we calculate the silhouette value for each fund and take an average of the 

values across funds. This also generates a time-series of average silhouette value over the period 

1996-2018. We plot the time-series in Panel B of Figure A1.  

In Panel A, we observe a minor gap between the adjusted R2 of five style and ten style 

classifications. On average, five style clusters explain 24.39% of the cross-sectional variability of 

subsequent returns, which is comparable to the fitness of ten styles (28.11%). It is worthy noticing 

the adjusted R2 is strictly increasing with K. For example, in the extreme case K = the number of 

funds, the fitness would increase to 100%. Comparing with the results of Brown and Goetzmann 

(2003), who find the fitness of five styles is averagely at 13.28%, we find the fitness of five styles 

has substantially improved in a sample with more recent observations. In Panel B, we observe that 

the silhouette values of five styles are above those of ten styles in most of years, indicating a better 

quality of five style classifications than ten styles. Based on the results of both analyses, we 

conclude that five style classifications are sufficient for explaining cross-sectional return variations 

in our hedge fund sample. In our study, we cluster hedge funds into five styles. 
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Figure A1 

The figure compares the performance of clustering with five styles (K = 5) and ten styles (K = 10) based on two 
performance measures, adjusted R2, and silhouette value. At the end of each quarter between 1996-2018, the hedge 
fund style clusters are defined by K-mean clustering programs using the prior 24-month fund returns. These procedures 
allow us to calculate a time-series of each measure. Panel A plots the time-series of adjusted R2 from the regression 
of a fund’s returns on its style returns over the year following the quarter the clustering is implemented. Panel B plots 
the time-series of the average silhouette value across all funds in a quarter. The silhouette value is defined by Eq (A1). 
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Appendix B: Properties of hedge fund styles and the SDI  

Figure A2 Cross-sectional distribution of the SDI 
The histogram plots the percentage of funds with the time-series average SDI at different values. The SDI of each 
fund at each quarter is calculated over the prior 24 months based on the five style clusters by Eq (2). We calculate the 
time-series average SDI for each fund over its lifetime period.  

 
Figure A3 SDI and style popularity 
Panel A illustrates the percentage of funds in five styles over 1996-2018. Style 1 to Style 5 denote styles ordered by 
their popularity, which is measured by the number of funds as members. Style 1, also called the mainstream style, has 
the largest number of funds as members, and Style 5 has the smallest number. Panel B plots the cross-sectional average 
SDI of each style over time.  
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Appendix C: Aggregate network effect 

Table A1 
The table reports the baseline results, with the full sample and the robustness tests, with different subsamples, in which 
the independent variable is the degree centrality measure calculated in the aggregate network. For brevity, we report 
only the coefficients and the corresponding t-statistics on the AGG degree centrality. The aggregate (AGG) network 
includes both alumni and employment ties. The AGG degree of a fund is then equal to the number of both types of 
ties divided by the total number of funds in the AGG network minus one. 
 

DepVar: SDI Alpha (FH) AR (FH) 
  Coef. t-stat Coef. t-stat Coef. t-stat 
Full sample  -2.18 -13.08 -0.57 -3.78 -3.05 -6.77 
Subsamples:   
Financial crisis -2.29 -7.92 -0.60 -1.92 -2.66 -3.16 
Noncrisis -2.06 -10.18 -0.54 -3.27 -3.26 -6.18 
Financial centers -1.81 -8.42 -1.19 -6.48 -5.16 -8.36 
Style 1 -1.32 -8.07 -0.20 -1.40 -1.66 -4.57 
Style 2 0.04 0.16 -0.56 -2.27 -3.47 -5.38 
Style 3 -1.22 -2.23 -2.14 -4.93 -8.07 -6.32 
Style 4 -0.51 -0.63 -1.32 -2.59 -5.01 -2.68 
Style 5 -3.51 -3.22 1.70 1.55 2.98 0.89 
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Appendix D: Decomposition of the network effect on SDI 

To explain the link between network centrality and the SDI, we decompose the total 

network effect into individual influences from the fund’s connections. We start the analysis from 

the formula of SDI of fund i, which belongs to style I:  

 SDI𝑖 = 1 ‒  corr (Ri, μI) = 1 ‒ 
cov (Ri, μI)
σiσI

 (A2) 

with: cov (Ri, μI) =  cov (Ri, 
1

𝑁I
∑Rj
jϵI

)   

 = cov (Ri, Ri +
1

𝑁I − 1
∑ Rj
jϵI,j≠i

)    

 = cov (Ri, Ri) +
1

𝑁I − 1
∑ cov (Ri, Rj)
jϵI,j≠i

    

 = σi2 +
1

𝑁I − 1
∑ σij
jϵI,j≠i

 (A3) 

where σi and σI denote the standard deviation of Ri and μI, σij ≡ cov (Ri, Rj), 𝑁I = count (𝑖ϵ𝐼), 

the total number of funds in Style I. Replacing (A3) into (A2), we have: 

 SDI𝑖 = 1 ‒ 
σi
σI
−

1

σiσI(𝑁I − 1)
∑ σij
jϵI,j≠i

 (A4) 

The SDI of fund i is a function of the average covariance with its cohorts, ∑ σijjϵI,j≠i /(𝑁I‒1).  

Now, we describe the influence from the social connectedness between fund i and fund j 

on their strategy similarity by Eq (A5): 
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 σij = a + bConnij  (A5) 

where Connij is a dummy variable denoting a social connectedness between fund i and fund j, 

which is equal to 1 if their managers are socially connected, otherwise 0; the coefficient b denotes 

the social influence from the connectedness on the strategy similarity, which is measured by the 

return covariance; the coefficient a denotes the covariance in the absence of social influence. The 

model in Eq (A5) allows for b > 0, b < 0, or b = 0.  Particularly, a positive b implies that connected 

funds employ more similar strategies and then have more correlated returns. 

The effect of a social connectedness between fund i and fund j (Connij=1) on the strategy 

distinctiveness of fund i (SDI𝑖) can be measured by the partial derivative of SDI𝑖 with respect to 

Connij. Replacing (A5) into (A4) and taking the partial derivative, we have:  

 
∂SDIi
∂Connij

 = −
𝑏

σiσI(𝑁I − 1)
 (A6) 

To gauge the network effect on fund i’s SDI, we sum up the individual social influence, 

∂SDIi/∂Connij, across all connections of the fund. Then, we have the network effect on SDI is a 

decreasing function of the fund’s network centrality when b is positive, as in Eq (A7): 

 ∑
∂SDIi
∂Connij

jϵI,j≠i

 = −
𝑏

σiσI(𝑁I − 1)
∑ Connij
jϵI,j≠i

= −
𝑏

σiσI
Degreei (A7) 

with: Degreei ≡
∑ ConnijjϵI,j≠i

𝑁I − 1
  

 

  



 

113 
 

References 
 

Avery, C., & Zemsky, P. (1998). Multidimensional Uncertainty and Herd Behavior in Financial 
Markets. 88(4), 724–748. 

Baddeley, M. (2010). Herding, social influence and economic decision-making: Socio-
psychological and neuroscientific analyses. Philosophical Transactions: Biological Sciences, 
365(1538), 281–290. 

Bajo, E., Chemmanur, T. J., Simonyan, K., & Tehranian, H. (2016). Underwriter networks, 
investor attention, and initial public offerings. Journal of Financial Economics, 122(2), 376–
408. 

Bali, T. G., Brown, S. J., & Caglayan, M. O. (2012). Systematic Risk and the Cross Section of 
Hedge Fund Returns. Journal of Financial Economics, 106, 114–131. 

Banerjee, A. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 
107(3), 797–817. 

Berk, J. B., & Green, R. C. (2004). Mutual fund flows and performance in rational markets. 
Journal of Political Economy, 112(6), 1269–1295. 

Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A Theory of Fads, Fashion. Journal of 
Political Economy, 100(5), 992–1026. 

Boehmer, E., & Kelley, E. K. (2009). Institutional investors and the informational efficiency of 
prices. Review of Financial Studies, 22(9), 3563–3594. 

Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer. 
Brown, J. R., Ivković, Z., Smith, P. A., & Weisbenner, S. (2008). Neighbors Matter: Causal 

Community Effects and Stock Market Participation. Journal of Finance, 63(3), 1509–1531. 
Brown, S. J., & Goetzmann, W. N. (1997). Mutual fund styles. Journal of Financial Economics, 

43(3), 373–399. 
Brown, S. J., & Goetzmann, W. N. (2003). Hedge Funds with Style. The Journal of Portfolio 

Management, 29(2), 101–112. 
Cai, F., Han, S., Li, D., & Li, Y. (2019). Institutional herding and its price impact: Evidence from 

the corporate bond market. Journal of Financial Economics, 131(1), 139–167. 
Christoffersen, S. E. K., & Sarkissian, S. (2009). City size and fund performance. Journal of 

Financial Economics, 92(2), 252–275. 
Cohen, L., Frazzini, A., & Malloy, C. (2008). The small world of investing: Board connections 

and mutual fund returns. Journal of Political Economy, 116(5), 951–979. 
Cohen, L., Frazzini, A., & Malloy, C. (2010). Sell-Side School Ties. The Journal of Finance, 40(4), 

35–37. 
Ellison, G., & Fudenberg, D. (1995). Word-of-Mouth Communication and Social Learning. The 

Quarterly Journal of Economics, 110(1), 93–125. 
Fama, F., & French, R. (1993). Common risk factors in the returns on stocks and bonds. Journal 



 

114 
 

of Financial Economics, 33, 3–56. 
Fracassi, C. (2017). Corporate Finance Policies and Social Networks. Management Science, 63(8), 

2420–2438. 
Fung, W., & Hsieh, D. A. (2004). Hedge Fund Benchmarks: A Risk-Based Approach. Financial 

Analysts Journal, 60(5), 65–80. 
Gerritzen, M., Jackwerth, J. C., & Plazzi, A. (2020). Birds of a Feather-Do Hedge Fund Managers 

Flock Together? In Swiss Finance Institute Research Paper No.16-10. 
Getmansky, M., Lo, A. W., & Makarov, I. (2004). An Econometric Model of Serial Correlation 

and Illiquidity in Hedge Fund Returns. Journal of Financial Economics, 74(3), 529–609. 
Han, B., & Yang, L. (2013). Social networks, information acquisition, and asset prices. 

Management Science, 59(6), 1444–1457. 
Hirshleifer, D. (2020). Presidential Address: Social Transmission Bias in Economics and Finance. 

Journal of Finance, 75(4), 1779–1831. 
Hochberg, Y. V., Ljungqvist, A., & Lu, Y. (2010). Networking as a barrier to entry and the 

competitive supply of venture capital. Journal of Finance, 65(3), 829–859. 
Hong, H., Kubik, J. D., & Stein, J. C. (2004). Social Interaction and Stock-Market Participation. 

Journal of Finance, LIX(1), 137–163. 
Hong, H., Kubik, J. D., & Stein, J. C. (2005). Thy neighbor’s portfolio: Word-of-mouth effects in 

the holdings and trades of money managers. Journal of Finance, 60(6), 2801–2824. 
Ingersoll, J., Spiegel, M., Goetzmann, W., & Welch, I. (2007). Portfolio performance manipulation 

and manipulation-proof performance measures. Review of Financial Studies, 20(5), 1503–
1546. 

Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling Losers : Implications 
for Stock Market Efficiency. The Journal of Finance, 48(1), 65–91. 

Jones, S. R. G. (1984). The Economics of conformism. Oxford: Blackwell. 
Keynes, J. M. (1936). The General Theory of Employment, Interest, and Money. 
Kooli, M., & Zhang, M. (2022). Not only skill but also scale: Evidence from the hedge funds 

industry. International Review of Financial Analysis, 83, 102230. 
Kuhnen, C. M. (2009). Business networks, corporate governance, and contracting in the mutual 

fund Industry. Journal of Finance, 64(5), 2185–2220. 
Larcker, D. F., So, E. C., & Wang, C. C. Y. (2013). Boardroom centrality and firm performance. 

Journal of Accounting and Economics, 55(2–3), 225–250. 
Li, H., Zhang, X., & Zhao, R. (2011). Investing in talents: Manager characteristics and hedge fund 

performances. Journal of Financial and Quantitative Analysis, 46(1), 59–82. 
Lin, J., Wang, F., & Wei, L. (2021). Alumni social networks and hedge fund performance: 

Evidence from China. International Review of Financial Analysis, 78, 101931. 
Park, A., & Sabourian, H. (2011). Herding and Contrarian Behavior in Financial Markets. 

Econometrica, 79(4), 973–1026. 



 

115 
 

Pastor, L., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of 
Political Economy, 111(3), 642–685. 

Pástor, Ľ., Stambaugh, R. F., & Taylor, L. A. (2015). Scale and skill in active management. Journal 
of Financial Economics, 116(1), 23–45. 

Pool, V. K., Stoffman, N., & Yonker, S. E. (2015). The People in Your Neighborhood: Social 
Interactions and Mutual Fund Portfolios. Journal of Finance, 70(6), 2679–2732. 

Qi, T., Li, J., Xie, W., & Ding, H. (2020). Alumni Networks and Investment Strategy: Evidence 
from Chinese Mutual Funds. Emerging Markets Finance and Trade, 56(11), 2639–2655. 

Rossi, A. G., Blake, D., Timmermann, A., Tonks, I., & Wermers, R. (2018). Network centrality 
and delegated investment performance. Journal of Financial Economics, 128(1), 183–206. 

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster 
analysis. Journal of Computational and Applied Mathematics, 20, 53–65. 

Scharfstein, D. S., & Stein, J. C. (1990). herd behaviour and investment. The American Economic 
Review, 80(3), 465–479. 

Shi, Z. (2017). The impact of portfolio disclosure on hedge fund performance. Journal of Financial 
Economics, 126(1), 36–53. 

Sias, R. W. (2004). Institutional Herding. Review of Financial Studies, 17(1), 165–206. 
Spilker, H. D. (2022). Hedge fund family ties. Journal of Banking and Finance, 134, 106326. 
Stein, J. C. (2008). Conversations among competitors. American Economic Review, 98(5), 2150–

2162. 
Stein, J. C. (2009). Presidential Address: Sophisticated investors and market efficiency. Journal 

of Finance, 64(4), 1517–1548. 
Sun, Z., Wang, A., & Zheng, L. (2012). The road less traveled: Strategy distinctiveness and hedge 

fund performance. Review of Financial Studies, 25(1), 96–143. 
Titman, S., & Tiu, C. (2011). Do the best hedge funds hedge? Review of Financial Studies, 24(1), 

123–168. 
Uzzi, B., & Lancaster, R. (2003). Relational embeddedness and learning: The case of bank loan 

managers and their clients. Management Science, 49(4), 383–399. 
Zhu, M. (2018). Informative fund size, managerial skill, and investor rationality. Journal of 

Financial Economics, 130(1), 114–134. 
 
  



 

116 
 

Figure 1: Geographical distribution of hedge fund managers 
 
The figure displays the geographical distribution of hedge fund managers in our sample. We cluster managers with the same zip code into a circle, whose size 
indicates the number of managers. The total number of managers is equal to 1712, and 862 managers are located in the U.S financial centers (New York City, 
Boston, Chicago, Los Angeles, Philadelphia, and San Francisco). 
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Figure 2: HF Networks as of December 2007 
 
The figure displays a snapshot of the HF networks at the end of the year 2007. The size of a node indicates its level 
of degree centrality. The color of a node denotes the style the fund belongs to. The color of the edge denotes the type 
of social ties: a lighter line for the employment ties and a darker line for the alumni ties.  
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Figure 3: Evolution of HF network centrality 
  
The figure displays the evolution of standardized centrality measures and SDI over the period 1996-2018. We first 
calculate the cross-sectional mean of each measure at a given time (Nett =  Nt

-1 ∑ Netit
Nt
i=1 ), and then standardize the 

time-series of Nett. The standardized variables have a zero mean and a unit variance. 
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Table 1 Top ten schools and employers of hedge fund managers 
 
Panel A and Panel B display the top ten schools and employers of hedge fund managers, respectively. The second 
column of Panel A presents the number of alumni of the school in our sample, while that of Panel B presents the 
number of managers having work experience at the company. The third column presents the number of funds managed 
by these managers. 
    

Panel A Top ten schools of hedge fund managers   
  No Mgr. No Fund 

1 Wharton School, University of Pennsylvania 70 124 
2 New York University - Leonard N. Stern School of Business 51 82 
3 The University of Chicago - Booth School of Business 50 68 
4 Harvard Business School 46 93 
5 Columbia Business School 42 65 
6 Harvard University (Excluding Harvard Business School) 29 53 
7 Yale University 28 51 
8 University of Pennsylvania (Excluding Wharton School) 25 40 
9 Princeton University 24 45 

10 Massachusetts Institute of Technology 23 35 
  Total 388 656 

 

Panel B Top ten employers of hedge fund managers    
   No Mgr. No Fund 

1 Morgan Stanley 46 68 
2 Merrill Lynch 44 72 
3 Goldman Sachs 43 67 
4 JP Morgan 42 68 
5 Lehman Brothers 39 65 
6 Bear Stearns 33 67 
7 UBS 30 49 
8 Salomon Brothers 25 46 
9 Citigroup 24 32 

10 Credit Suisse 24 44 
  Total 350 578 
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Table 2 Summary statistics 
 
Panel A reports the summary statistics of the main variables, fund performance, the SDI, and the centrality measures. 
We estimate monthly alphas under the FH seven-factor model and the FFCPS five-factor model by Eq (1). At the end 
of each quarter, we annualized alphas by compounding monthly alphas over the following one year. Also, the appraisal 
ratio (AR) and the smoothing-adjusted Sharpe ratio (SR) are calculated over the 12-month rolling periods. The SDI is 
calculated over the previous 24 months and measured as 1 minus correlation between the fund’ return and the return 
of its corresponding style cluster. Network centrality is measured in three dimensions and in the Alumni Network 
(ANW) and Employment Network (ENW), respectively. Degree is equal to the number of connections of a manager 
in the network divided by the total number of managers minus one. Closeness is the inverse of the average distance 
between the manager and all the other managers in the network. Betweenness is the average proportion of the shortest 
paths between other managers in the network that pass through the manager. Panel B reports the correlation matrix 
between the main variables. Panel C summarized statistical properties of the control variables. Vol is the standard 
deviation of net-fee returns over the prior 24 months. R2(FH) denotes the R-squared obtained from the 24-month 
rolling window regressions of Eq (1) with the FH model. RedempNotice is the redemption notice period in days. 
Lockup is the lockup period in months.  PersonalCapital is an indicator for personal capital commitment. HWM is an 
indicator if the fund sets high water mark provision. MGMT_FEE and INC_FEE are management and incentive fees. 
MIN_INV is the required minimum investment. Leverage is an indication if the fund uses leverage. 
 

Panel A  Main variables 
  Mean  Std Min  Max Obs 

Alpha (FH%p.a.) 3.19 15.13 -37.09 57.83 44,575 
Alpha (FFCPS%p.a.) 2.87 13.60 -33.16 51.54 44,575 
AR (FH) 0.15 0.44 -0.79 1.64 44,575 
SR 0.21 0.39 -0.63 1.49 44,575 
SDI 0.37 0.21 0.01 1.21 53,332 
Alumni network:      
Degree (%) 0.24 0.52 0.00 4.78 53,332 
Closeness (%) 0.51 1.08 0.00 7.37 53,332 
Betweenness (%) 0.0047 0.03 0.00 0.99 53,332 
Employment network:      
Degree (%) 0.08 0.25 0.00 3.83 53,332 
Closeness (%) 0.15 0.44 0.00 4.37 53,332 
Betweenness (%) 0.0008 0.01 0.00 0.29 53,332 
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Panel B  Correlation matrix of main variables 

 (FH) (FFCPS)   ANW ENW 
  Alpha Alpha AR SR SDI Deg. Close. Btw. Deg. Close. Btw. 

Alpha (FH) 1.00           
Alpha (FFCPS) 0.76 1.00          
AR (FH) 0.71 0.58 1.00         
SR 0.55 0.56 0.83 1.00        
SDI 0.12 0.13 0.23 0.13 1.00       
Alumni network: 
Degree -0.05 -0.05 -0.10 -0.07 -0.15 1.00      
Closeness -0.04 -0.04 -0.12 -0.07 -0.18 0.91 1.00     
Betweenness -0.04 -0.05 -0.08 -0.03 -0.11 0.65 0.61 1.00    
Employment network: 
Degree -0.03 -0.03 -0.03 -0.03 -0.04 0.29 0.28 0.25 1.00   
Closeness -0.01 -0.02 -0.02 -0.02 -0.05 0.31 0.32 0.27 0.95 1.00  
Betweenness -0.02 -0.02 -0.02 0.00 -0.05 0.18 0.18 0.16 0.71 0.65 1.00 
 

Panel C  Control variables 
  Mean  Std Min  Max Obs 

NetFeeReturn (%p.a.) 8.61 18.99 -69.55 214.41 44,575 
Vol (%p.m.) 3.32 2.32 0.00 13.31 44,575 
R2(FH) 0.54 0.21 0.02 0.99 44,575 
AUM($M) 258.78 1028.66 0 38700 42,129 
Age(years) 8.46 4.78 2 33 44,575 
Redemp_Notice (days) 42.65 29.39 0 365 2,711 
Lockup (months) 5.51 7.86 0 84 2,711 
PersonalCapital 0.43 0.50 0 1 2,711 
HWM 0.73 0.44 0 1 2,711 
MGMT_FEE (%) 1.35 0.49 0 4 2,710 
INC_FEE (%) 18.84 4.94 0 50 2,705 
MIN_INV ($M) 1.58 19.37 0 1000 2,705 
Leverage 0.64 0.48 0 1 2,711 
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Table 3 SDI and network centrality 
 
The table reports the panel regressions of hedge fund SDI on network centrality, controlling for hedge fund characteristics and style and time fixed effects, as in 
Eq (3). Net represents one of centrality measures among degree, closeness, and betweenness in the Alumni (ANW) or Employment (ENW) network. Volatility of 
net fee returns (Vol) are measured over a window of 24 months. PastAvgAlpha is the average FH alpha over the past year. Other characteristics include the lengths 
of the redemption notice and lockup periods, indicator variables for personal capital commitment and high-water mark, management fees, incentive fees, fund age, 
AUM, minimum investment, and an indicator variable for leverage. The coefficients are multiplied by 100. The t-statistics are calculated based on clustered errors 
by style and time.  
 

  ANW   ENW 

 Degree Closeness Betweenness  Degree Closeness Betweenness 
  Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 

Net (%) -2.69 -13.75 -1.18 -9.47 -10.54 -4.21  -1.87 -4.64 -1.28 -5.21 -54.22 -3.63 
Vol (%p.m.) -2.31 -23.73 -2.31 -23.71 -2.31 -23.60  -2.31 -23.63 -2.31 -23.64 -2.31 -23.63 
Redemp_Notice (30 days) -0.01 -0.07 -0.01 -0.09 -0.03 -0.23  -0.05 -0.37 -0.04 -0.36 -0.05 -0.37 
Leverage 1.84 8.12 1.88 8.30 2.01 8.83  2.01 8.83 2.00 8.76 2.01 8.82 
Lockup (months) 0.00 -0.3 -0.01 -0.45 -0.01 -0.64  -0.01 -0.54 -0.01 -0.41 -0.01 -0.65 
PersonalCapital 0.84 3.69 0.79 3.49 0.65 2.85  0.70 3.06 0.71 3.12 0.64 2.77 
ln(AUM) -1.35 -17.86 -1.34 -17.77 -1.32 -17.53  -1.33 -17.74 -1.33 -17.72 -1.33 -17.74 
MGMT_FEE (%) 2.57 9.29 2.53 9.16 2.50 9.05  2.56 9.3 2.56 9.31 2.52 9.15 
INC_FEE (%) 0.29 10.71 0.29 10.75 0.29 10.79  0.29 10.93 0.29 10.90 0.29 10.93 
HWM -1.81 -6.86 -1.76 -6.63 -1.85 -6.94  -1.81 -6.77 -1.81 -6.77 -1.83 -6.87 
ln(MIN_INV) -0.66 -5.83 -0.66 -5.89 -0.67 -5.96  -0.69 -6.09 -0.69 -6.16 -0.67 -5.94 
Age(years) -0.48 -20.22 -0.48 -20.17 -0.48 -20.07  -0.49 -20.45 -0.49 -20.63 -0.48 -20.07 
PastAvgAlpha(%p.m.) 0.95 7.2 0.95 7.20 0.96 7.26  0.96 7.24 0.96 7.26 0.96 7.28 
AdjR2 0.20  0.20  0.19   0.19  0.19  0.19  
Obs 41,702   41,702   41,702     41,702   41,702   41,702   
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Table 4 Hedge fund performance and network centrality 
 
The table reports the panel regressions of hedge fund abnormal performance on one-year lagged network centrality, controlling for hedge fund characteristics and 
style and time fixed effects, as in Eq (4). Panel A reports the results with the FH alpha as the dependent variable. Net represents one of centrality measures among 
degree, closeness, and betweenness in the Alumni (ANW) or Employment (ENW) network, respectively. AvgPast2YRet and Vol are the average and the standard 
deviation of net-fee-returns measured over the preceding 24 months. Other characteristics include the lengths of the redemption notice and lockup periods, indicator 
variables for personal capital commitment and high-water mark, management fees, incentive fees, fund age, AUM, minimum investment, and an indicator variable 
for leverage. Panel B to D report the results with alternative performance measures, the FFCPS alpha, the appraisal ratio, and the smoothing-adjusted Sharpe ratio, 
as the dependent variable, respectively. For brevity, we report only the coefficients on centrality measures and the corresponding t-statistics. The t-statistics are 
calculated based on clustered errors by style and time. 
 
       Panel A Dependent variable: FH alpha 

  ANW   ENW 

 Degree Closeness Betweenness  Degree Closeness Betweenness 
  Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 

Net (%) -0.53 -3.04 -0.23 -2.55 -6.18 -2.56  -1.25 -3.79 -0.60 -2.88 -8.09 -0.93 
Vol (%p.m.) -0.14 -1.3 -0.14 -1.29 -0.14 -1.28  -0.14 -1.32 -0.14 -1.32 -0.14 -1.29 
Redemp_Notice (30 days) 0.85 8.22 0.85 8.24 0.85 8.22  0.84 8.14 0.84 8.15 0.85 8.18 
Leverage 0.32 1.65 0.33 1.69 0.35 1.80  0.35 1.79 0.35 1.77 0.35 1.81 
Lockup (months) 0.02 1.75 0.02 1.72 0.02 1.69  0.02 1.77 0.02 1.81 0.02 1.68 
PersonalCapital -0.08 -0.48 -0.09 -0.54 -0.10 -0.64  -0.07 -0.44 -0.08 -0.49 -0.12 -0.72 
ln(AUM) -0.13 -2.09 -0.13 -2.07 -0.12 -2.00  -0.13 -2.04 -0.13 -2.02 -0.13 -2.02 
MGMT_FEE (%) 1.47 7.77 1.47 7.74 1.46 7.70  1.50 7.96 1.49 7.88 1.46 7.72 
INC_FEE (%) 0.00 0.11 0.00 0.12 0.00 0.08  0.00 0.19 0.00 0.16 0.00 0.16 
HWM 1.33 5.5 1.34 5.54 1.32 5.44  1.34 5.56 1.34 5.54 1.33 5.48 
ln(MIN_INV) 0.27 2.98 0.27 2.96 0.27 2.94  0.26 2.83 0.26 2.82 0.27 2.95 
Age(years) -0.04 -2.01 -0.04 -2.04 -0.04 -1.99  -0.04 -2.38 -0.04 -2.31 -0.04 -2.02 
AvgPast2YRet(%p.m.) -0.21 -0.87 -0.21 -0.88 -0.22 -0.88  -0.22 -0.9 -0.22 -0.89 -0.21 -0.88 
AdjR2 0.05  0.05  0.05   0.05  0.05  0.05  
Obs 41,702   41,702   41,702     41,702   41,702   41,702   
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Panel B Dependant variable: Alpha (FFCPS) 
  ANW   ENW 

 Degree Closeness Betweenness  Degree Closeness Betweenness 
  Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 
Net (%) -0.35 -2.37 -0.19 -2.40 -5.40 -2.32  -0.74 -2.47 -0.31 -1.70 -6.41 -0.71 
FundChar Yes  Yes  Yes   Yes  Yes  Yes  
AdjR2 0.08   0.08   0.08     0.08   0.08   0.08   

Panel C Dependant variable: AR 
Net (%) -3.39 -6.31 -1.65 -5.96 -34.93 -5.64  -4.33 -4.52 -2.00 -3.49 -25.79 -0.98 
FundChar Yes  Yes  Yes   Yes  Yes  Yes  
AdjR2 0.13   0.13   0.13     0.13   0.13   0.13   

Panel D Dependant variable: SR 
Net (%) -2.30 -6.24 -0.96 -4.92 -13.78 -3.44  -2.51 -3.23 -1.62 -3.61 16.14 0.78 
FundChar Yes  Yes  Yes   Yes  Yes  Yes  
AdjR2 0.24  0.24  0.24   0.24  0.24  0.24  
Obs 41,702   41,702   41,702     41,702   41,702   41,702   
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Table 5 Robustness 
  
Panel A reports the results of the regressions (3) and (4) with the style subsamples. Style 1 is the mainstream style with the largest number of funds as members 
and Style 5 is the least popular style with the smallest number of members. The t-statistics are calculated based on heteroskedasticity-consistent standard errors. 
Panel B reports the results over the financial crisis (1999-2002 and 2008-2010) and non-crisis subperiods. Panel C reports the results controlling for city fixed 
effect and the results with a subsample of funds whose managers are located in financial centers. For brevity, we report only the coefficients of centrality measured 
by degree. The t-statistics in Panel B and C are calculated based on clustered errors by style and time. 
 

Panel A: Style subsamples 

 ANW  ENW 
DepVar: SDI Alpha (FH) AR (FH)  SDI Alpha (FH) AR (FH) 

 Coef. t-stat Coef. t-stat Coef. t-stat  Coef. t-stat Coef. t-stat Coef. t-stat 
Style 1 (Obs: 14,623) -1.64 -8.77 -0.12 -0.73 -1.52 -3.59  -0.99 -2.01 -0.89 -2.21 -4.37 -4.33 
Style 2 (Obs: 10,492) -0.31 -0.99 -0.53 -1.77 -4.50 -5.69  1.64 2.11 -1.09 -2.02 -1.63 -1.05 
Style 3 (Obs: 7,346) -1.77 -2.70 -2.16 -4.22 -8.58 -5.50  -0.13 -0.11 -3.08 -3.50 -10.32 -4.00 
Style 4 (Obs: 5,400) -1.06 -0.94 -1.71 -2.23 -8.72 -3.42  0.00 0.00 -1.54 -1.74 -2.50 -0.73 
Style 5 (Obs: 3,841) -4.53 -2.67 0.04 0.03 -0.58 -0.14   -3.31 -2.14 3.95 2.08 7.68 1.36 

 
 

Panel B: Subperiods 

 ANW  ENW 
DepVar: SDI Alpha (FH) AR (FH)  SDI Alpha (FH) AR (FH) 

  Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 
Financial crisis period (Obs: 14,945)  

Degree -2.80 -8.40 -0.67 -1.84 -2.97 -3.01  -1.69 -2.50 -0.87 -1.11 -3.66 -1.85 
Noncrisis period (Obs: 26,757) 

Degree -2.56 -10.74 -0.46 -2.39 -3.67 -5.70   -1.83 -3.74 -1.35 -3.88 -4.51 -4.15 
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Panel C: Control for networking in cities 
  ANW  ENW 

DepVar: SDI Alpha (FH) AR (FH)  SDI Alpha (FH) AR (FH) 
  Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 
City fixed effect (Obs: 38,862 ) 

Degree -2.50 -12.73 -0.57 -3.12 -3.82 -6.65  -1.00 -2.37 -1.09 -2.91 -4.98 -4.55 
Managers in financial centers (Obs: 22,009 ) 

Degree -2.34 -9.85 -1.33 -6.24 -5.60 -7.66   -0.50 -0.89 -1.30 -2.80 -6.44 -4.36 
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Table 6 Social connectedness and hedge fund strategy similarity 
 
The table reports the panel regressions in Eq (5) of strategy similarity on social connectedness between funds, 
controlling for the effect of location proximity, similar fund features, and investment focuses and for style and time 
fixed effects. The regressions use annual data between 1996-2018. The strategy similarity is measured either by the 
return correlation or covariance between two funds, which is calculated at the end of each year for each fund pair in 
the same style with prior 24-month net-fee returns. Connected is an indicator for the connectedness between two funds 
lagged by one year, defined in the Alumni (ANW) and Employment network (ENW), respectively. SameCity is an 
indicator that equals 1 if their managers are located in the same city; SameMediaMkt equals 1 if the managers are 
located within 50 miles to each other; FdCharSim, AssetSim, SecSim, APRSim, GeoSim, and InvSim are the Jaccard 
coefficients calculated using 136 indicators for various fund features and investment focuses. The regression 
coefficients are multiplied by 100. The t-statistics are calculated based on clustered errors by style and time. 
 

  ANW   ENW 
Dep Var: Correlation  Covariance  Correlation  Covariance 

  Coef. t-stat   Coef. t-stat   Coef. t-stat   Coef. t-stat 
Connected 5.15 9.01  0.75 2.37  6.22 4.51  0.58 1.37 
SameCity 1.37 3.57  -0.70 -3.78  1.36 3.56  -0.70 -3.62 
SameMediaMkt 6.63 14.44  1.47 5.10  6.67 14.49  1.48 5.32 
FdCharSim 1.16 2.10  1.06 4.02  1.16 2.11  1.06 3.28 
AssetSim 6.75 9.21  3.33 5.33  6.74 9.20  3.33 4.83 
SecSim 6.58 5.48  4.18 4.73  6.59 5.49  4.18 3.78 
APRSim 12.88 15.76  4.36 7.46  12.89 15.77  4.36 6.26 
GeoSim 0.14 0.34  -0.28 -1.73  0.13 0.34  -0.28 -2.44 
InvSim 9.72 7.62  -3.33 -6.25  9.72 7.62  -3.33 -4.42 
AdjR2 0.18   0.26   0.18   0.26  
Obs 1,139,160    1,139,160    1,139,160    1,139,160  
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Table 7 Manager talent, career establishment, and social network effect 
 
Panel A reports the panel regressions in Eq (3) and (4) with two subsamples of hedge funds whose managers went to 
a college/university with an average SAT score above and below 1295, respectively. Panel B reports the panel 
regressions with two subsamples of funds whose managers have financial work experience of more than and less than 
14 years, respectively. The control variables FundChar are the same as in Table 3 when SDI is the dependent variable 
and the same as in Table 4 when Alpha is the dependent variable. We report only the coefficient on Degree centrality, 
which is calculated in the Alumni network in Panel A and in the Employment network in Panel B, for brevity. The t-
statistics are calculated based on clustered errors by style and time. 
 

Panel A: Alumni network 
Dep Var: SDI  Alpha (FH) 
Subsample: SAT>=1295  SAT<1295  SAT>=1295  SAT<1295 

 Coef. t-stat   Coef. t-stat   Coef. t-stat   Coef. t-stat 
Degree -4.34 -17.98  -2.85 -1.83  -0.57 -2.58  0.34 0.32 
AdjR2 0.22     0.24     0.05     0.09   

            
Panel B: Employment network 
Dep Var: SDI  Alpha (FH) 
Subsample: WORK>=14  WORK<14  WORK>=14  WORK<14 

 Coef. t-stat   Coef. t-stat   Coef. t-stat   Coef. t-stat 
Degree -1.07 -2.21  -5.52 -5.70  -0.47 -1.33  -2.08 -2.93 
AdjR2 0.21     0.20     0.04     0.06   
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Table 8 Style shifting and social ties 
 
The table reports the logistic regressions Eq (6) with a sample of fund pairs across all styles and a subsample of fund 
pairs in the mainstream style (MSS). The dependent variable, StyleShift, is equal to 1 if a pair of funds remain in the 
same style in the next year, otherwise 0. The explanatory variable, Connected, is an indicator for the social 
connectedness between two funds, defined under the Alumni network (ANW) and the Employment network (ENW), 
respectively. The regressions control for manager location proximity, similar fund features, and style and time fixed 
effect. These control variables are defined the same as in Table 6. The t-statistics are calculated based on clustered 
errors by style and time. 
 

  ANW   ENW 
Sample: All styles  MSS  All styles  MSS 

  Coef. t-stat   Coef. t-stat   Coef. t-stat   Coef. t-stat 
Connected 0.19 2.36  0.30 2.68  -0.07 -0.47  -0.01 -0.06 
SameCity 0.18 3.43  0.14 1.92  0.18 3.41  0.13 1.91 
SameMediaMkt -0.03 -0.67  -0.01 -0.15  -0.03 -0.63  -0.01 -0.09 
FdCharSim 0.07 0.83  0.21 1.76  0.07 0.84  0.22 1.79 
AssetSim 0.41 3.62  0.49 3.28  0.41 3.62  0.49 3.27 
SecSim 0.26 1.62  0.66 3.18  0.26 1.62  0.66 3.18 
APRSim 0.44 3.63  0.59 3.83  0.44 3.64  0.59 3.83 
GeoSim 0.05 0.61  0.13 1.14  0.05 0.61  0.13 1.14 
InvSim 0.27 1.30  -0.35 -2.11  0.27 1.30  -0.35 -2.11 
Pseudo R2 0.20   0.18   0.20   0.18  
Obs 820,652    407,356    820,652    407,356  

  



 

130 
 

Table 9 R2 and network centrality 
 
The table reports the panel regressions of the R2 (FH) on network centrality, as in Eq (7). The R2 is estimated under 
the FH seven-factor model from the regression in Eq (1) over quarterly 24-month moving windows. NL_FAC denotes 
the importance of nonlinear factors, which is equal to the sum of absolute betas on three PTFS nonlinear factors divided 
by the sum of absolute betas across all seven factors. Kurt is the kurtosis of the residuals from the regressions (1). The 
other variables are described in Table 3. The coefficients are multiplied by 100. The t-statistics are calculated based 
on clustered errors by style and time.  
 

  ANW   ENW 
  Coef. t-stat   Coef. t-stat 

Degree (%) 1.72 6.96  2.10 5.15 
Vol (%p.m.) 2.13 23.86  2.13 23.78 
Redemp_Notice (30 days) -0.68 -5.86  -0.66 -5.7 
Leverage -2.38 -10.5  -2.48 -10.92 
Lockup (months) -0.02 -1.61  -0.02 -1.52 
PersonalCapital -0.37 -1.57  -0.31 -1.33 
ln(AUM) 0.50 7.43  0.48 7.27 
MGMT_FEE (%) -4.88 -18.03  -4.91 -18.07 
INC_FEE (%) -0.28 -11.27  -0.28 -11.47 
HWM 1.49 6.07  1.48 5.96 
ln(MIN_INV) 0.49 4.87  0.52 5.09 
Age(years) 0.39 15.62  0.40 15.86 
PastAvgAlpha(%p.m.) -0.70 -5.53  -0.70 -5.59 
NL_FAC (%) -1.35 -12.97  -1.36 -13.09 
Kurt -2.49 -21.98  -2.52 -22.14 
AdjR2 0.30   0.30  
Obs 41,702     41,702   
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PAPER 3. OVERCOMING SHORT-SALE CONSTRAINTS AND HEDGE FUND RETURNS 
    

 

 

 

ABSTRACT 

 

Our study explores the heterogeneous abilities of hedge funds to arbitrage 
overpricing and the impact of this ability on their performance. We find that on one 
side, one-third of funds in our sample tend to delay arbitrage on management 
(MGMT) mispricing, whereas no more than 3% of funds correct prices right away. 
On the other side, one-fifth of funds bet against performance (PERF) mispricing, 
while only 5% delay arbitrage. We also find that funds with the highest mispricing 
betas outperform those with the lowest betas and show that the mispricing beta 
strongly predicts hedge fund performance in the long run. 
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1. Introduction 

In financial markets, mispricing exists to the extent that the limits of arbitrage deter rational 

speculators from fully eliminating inefficiencies. 41  Abreu and Brunnermeier (2002) note that 

mispricing disappears only if a threshold proportion of arbitrageurs have traded in the direction of 

stabilizing prices. In practice, arbitrage is, however, particularly costly when betting against 

overpricing due to short-sale constraints (Pontiff, 2006). Professional arbitrageurs are a relatively 

small number of highly specialized investors using other people’s capital. As well-known 

arbitrageurs in financial markets, hedge funds may have different abilities to overcome these 

constraints, for example, due to different capital structures (Gromb and Vayanos, 2002; Liu and 

Mello, 2011) or different contractual protections from withdrawals (Hombert and Thesmar, 2014). 

The objective of this study is to investigate the heterogeneity in the cross-section of hedge funds’ 

ability to arbitrage overpricing as well as the relation between the heterogeneous abilities and fund 

performance.  

To measure the ability of hedge funds to overcome short-sale constraints, we propose a 

mispricing beta, estimated from a regression of a fund’s return on the mispricing factors 

constructed by Stambaugh and Yuan (2017). The exposure of a hedge fund to the mispricing factor 

can reflect the extent to which the fund can overcome arbitrage constraints and thus exploit the 

opportunity created by overpricing, given the arbitrage asymmetry (Stambaugh et al., 2012, 2015, 

2017). When investor sentiment is high (low), many securities are potentially overpriced 

(underpriced). Stambaugh et al. (2012) observe significantly lower returns on overpriced stocks 

 
41Numerous studies have discussed that arbitrage fails to eliminate anomalies that appear in financial markets 

because of constraints such as shorting costs, holding costs, noise trader risk, synchronization risk, institutional 
constraints, and fragile capital structure (Shleifer and Vishny (1997), Abreu and Brunnermeier (2002), Gromb and 
Vayanos (2002), Pontiff (2006), Tuckman and Vila (1992), Liu and Mello (2011), among others). 
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following high sentiment but do not observe significantly higher returns on underpriced stocks 

following low sentiment. These observations reflect that overpricing gets corrected less than 

underpricing due to short-sale impediments. For example, overpricing persists longer due to low 

supplies of stock loans from institutional investors (D'Avolio, 2002) or difficulty in short-sell high 

idiosyncratic-volatility stocks (Stambaugh et al., 2015). These constraints reduce the willingness 

of arbitrageurs to short-sell stocks. From another perspective, the potential arbitrage profits created 

by these anomalies, which are not sufficiently exploited, are substantially attributable to overpriced 

stocks through short-selling them. Arbitrageurs less constrained by short sale impediments would 

be more able to exploit these opportunities. Hedge funds’ short-selling data are not publicly 

available to researchers. However, their exposure to overpriced stocks can provide insights into 

how they arbitrage overpricing. Therefore, less constrained hedge funds that are able to exploit 

overpricing would have returns more correlated with the mispricing factor return and exhibit a 

higher mispricing beta than more constrained hedge funds.  

Using a sample of 3,584 hedge funds over the period 1995-2016, we regress each fund’s 

return on the two mispricing factors of Stambaugh and Yuan (2017), MGMT and PERF, controlling 

for ten risk factors, MKTRF, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and DEF. 

Our main findings are as follows. First, by employing an unconditional model and a conditional 

model, we find that about one-fifth of funds arbitrage PERF mispricing, given positive and 

significant t-statistics of the PERF betas greater than 1.96, only about 5% delay arbitrage, given 

significant and negative t-statistics smaller than ‒1.96; by contrast, more of hedge funds (about one 

third) tend to delay their arbitrage on MGMT mispricing; no more than 3% of funds correct prices 

right away. Using the conditional model, we estimate the dynamic arbitrage coefficients of each 

fund and find that 7.53% of funds employ dynamic arbitrage on MGMT mispricing; these funds 
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increase their MGMT betas in response to higher sentiment. Furthermore, we estimate the portfolio 

weight of overpriced stocks for each fund and find that funds with positive mispricing betas have 

weights on overpriced stocks in their portfolios ranging from – 9% to – 6%, which implies a short 

position on overpriced stocks among hedge funds betting against mispricing on average. Also, we 

find that hedge funds with negative mispricing betas have a long position on overpriced stocks, 

ranging from 14% to 19%, which are significantly higher than the weights (about 4%) in the market 

portfolio. These results confirm again that hedge funds delay arbitrage by investing in overpriced 

stocks instead of short-selling them.  

Second, we find that hedge funds with the highest mispricing betas outperform those with 

the lowest betas, with outperformance ranging from 28 to 63 bps per month under the conditional 

model. These results support our hypothesis that less constrained hedge funds (by short-sale 

impediments) outperform. We also find that hedge funds that employ dynamic arbitrage perform 

better than their peers with mispricing betas at a similar level and with lower dynamic arbitrage 

coefficients. For example, among funds with the lowest MGMT betas (– 0.40), those funds with 

the highest dynamic arbitrage coefficients (0.48) outperform their peers with the lowest dynamic 

arbitrage coefficients by 45 bps per month (t-stat: 4.01). This performance is comparable to that of 

funds with the highest MGMT betas. The result indicates that arbitrage profits are considerably 

derived from sentiment-driven overvaluation through short sales by reacting to higher sentiment.   

Third, our out-of-sample tests show that the mispricing beta and the dynamic arbitrage 

coefficient both predict the cross-sectional variation in hedge funds’ performance in the short and 

long run. For example, when the PERF beta increases by one, the fund’s average alpha over the 

next 12 months increases by 1.31% per month (t-stat: 4.53). When the dynamic arbitrage 

coefficient on MGMT increases by one, the fund’s 12-month leading alpha increases by 0.83% per 
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month (t-stat: 3.94). The results show that hedge funds’ ability to arbitrage overpricing is one of 

the sources of hedge fund performance, and this performance persists for up to two years. In 

addition, the economic value of hedge funds’ dynamic arbitrage is noticeable. Particularly, less 

constrained funds with the best ability to arbitrage MGMT in response to higher sentiment 

outperform their peers with the lowest ability by 69 bps per month on a risk-adjusted basis, 

corresponding to 8.28% per year (t-stat: 5.50). 

Finally, we analyze the sentiment exposure of hedge funds that bet against mispricing and 

find that hedge funds with significant and positive PERF mispricing betas possess significant and 

positive sentiment betas. For example, 708 out of 3,584 funds with a t-statistic of PERF beta greater 

than 1.96 have significant and positive sentiment exposure at 0.09 on average (t-stat: 2.53). We 

also find that hedge funds with the highest PERF betas have sentiment betas of 0.50 higher (t-stat: 

2.67) than those with the lowest PERF betas. Overall, we confirm a positive cross-sectional relation 

between hedge fund mispricing betas and sentiment betas as well as hedge fund performance. 

Our contribution is threefold. First, our study contributes to the literature on hedge funds’ 

arbitrage on mispricing in stock markets. Previous studies focus mainly on hedge funds’ arbitrage 

on underpricing, and few empirical studies examine hedge funds’ arbitrage on overpricing due to 

the unavailability of hedge funds’ short-selling data. 42 Our study extends previous literature by 

investigating hedge funds’ arbitrage on overpricing. Consistent with Abreu and Brunnermeier 

(2002, 2003)’s model, we find evidence supporting a lack of coordination in arbitrage among hedge 

funds and show that some hedge funds are more able to overcome the limits of arbitrage than others. 

 
42As the SEC does not require institutions to disclose their short positions, Cao et al. (2018) consider hedge funds’ 

long equity position data and find that hedge funds ownership is not significantly related to negative-alpha stocks (i.e., 
overpriced stocks). 
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For example, a large proportion of hedge funds in our sample with a positive PERF beta, compared 

with a smaller proportion of funds with a negative PERF beta, indicates that more hedge funds tend 

to exploit PERF arbitrage right away rather than delay arbitrage. Further, the outperformance of 

hedge funds with higher mispricing betas relative to those with lower betas reflects their strength 

in overcoming short-selling constraints.  

Second, we contribute to the ongoing debate over the impact of hedge funds’ heterogeneous 

sentiment-related trading strategies on their performance. Perhaps the study most closely related to 

ours is Chen et al. (2021), who find that hedge funds with high-sentiment betas outperform those 

with low-sentiment betas. They conclude that this outperformance reflects managerial skill and 

sentiment timing, a strategy of investing in overpriced securities when sentiment is expected to 

increase. A key difference between our study and theirs is that by considering the ability of 

sentiment to predict mispricing, we prove that the outperformance of hedge funds with high 

sentiment betas reflects arbitrage profits from betting against mispricing. We provide strong 

evidence that hedge funds with high mispricing betas also possess high sentiment betas and 

outperform those with low mispricing betas and low sentiment betas. Our results also suggest that, 

on average, following high sentiment, hedge funds that bet against mispricing outperform those 

following sentiment trading strategies, supporting the conventional wisdom that hedge funds 

generate alphas by betting against mispricing and that their main strength lies in overcoming short-

sale constraints.   

Third, our study adds to the strand of literature on the determinants of hedge fund 

performance. Existing studies document various sources of hedge fund performance, such as hedge 

funds’ systematic risk exposure, fund location, timing skill, fund characteristics, and manager 

personality traits (Bali et al. (2012), Titman and Tiu (2011), Chen and Liang (2007), Cao et al. 
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(2013), Brown et al. (1999), Teo (2009), Avramov et al. (2011), Brown et al. (2018), among others). 

We provide strong evidence that the ability to arbitrage overpricing is one of the sources of hedge 

fund performance. Moreover, our results suggest that hedge funds’ mispricing betas and dynamic 

arbitrage coefficients predict the cross-section of future fund performance in the long run, which 

is consistent with Jagannathan et al. (2010)’s finding of the persistence in hedge fund alphas. 

The remainder of the paper is organized as follows. Section 2 presents the literature 

background and hypotheses; Section 3 presents data and methods; Section 4 presents results; 

Section 5 checks the robustness of the results; Second 6 concludes.  

2. Background and hypotheses development 

Classical finance theory argues that security prices equal the rationally discounted value of 

expected cash flows. Even though irrational investors drive prices away from the rational present 

value, arbitrageurs who trade against them stabilize prices. In a standard finance model (e.g., Fama 

and French, 1993), the cross-section of expected returns of securities only depends on factor 

sensitivities, which reflect their exposure to systematic risks. Numerous studies have identified 

asset-pricing anomalies that violate the Fama and French (1993) three-factor model despite its 

widespread use.  

To explain observed mispricing, behavioral finance researchers propose an alternative 

model which is built on two concepts: 1) the presence of market-wide sentiment and 2) the limits 

of arbitrage (DeLong et al., 1990a and 1990b; Shleifer and Vishny, 1997; Abreu and Brunnermeier, 

2002; Pontiff, 2006; and others). For example, DeLong et al. (1990b) laid out the first assumption 

that investors are subject to sentiment. The market-wide investor sentiment influences security 

prices in the same direction simultaneously. When sentiment is high, many securities are 
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potentially overpriced. Nevertheless, speculators may be reluctant to correct prices due to the 

uncertainty of arbitrage. As Shleifer and Vishny (1997) and Pontiff (2006) discussed, trading 

against sentimental investors is costly and risky, especially when betting against overpricing due 

to short-sale impediments. Short-sale impediments, such as institutional constraints, shorting costs, 

holding costs, and wealth constraints, deter rational speculators from arbitraging overpricing and 

explain why overpricing is more prevalent than underpricing in financial markets (Miller, 1977 and 

Stambaugh et al., 2012). For example, institutional investors such as mutual funds are prohibited 

from taking short positions. Many stocks are costly to “short” due to low supplies of stock loans 

from institutional investors (D'Avolio, 2002). High transaction costs reduce arbitrageurs’ 

willingness to take short positions. Stambaugh et al. (2015) find that overpricing is even more 

pronounced among hard-to-arbitrage stocks (i.e., high idiosyncratic volatility stocks) with low 

institutional ownership. Arbitrageurs shorting overpriced stocks must wait until prices fall to fair 

values to cover their short positions. Holding costs during this period, such as margin calls for 

additional capital and fund outflows through investor withdrawals, make even seemingly riskless 

arbitrage risky (Tuckman and Vila, 1992; Shleifer and Vishny, 1997; Brunnermeier and Nagel, 

2004). Gromb and Vayanos (2002) show that if arbitrageurs’ wealth is insufficient, they may be 

unable to eliminate price discrepancies between the risky assets. 

Stambaugh et al. (2012) explore sentiment-related overpricing, which persists due to short-

sale impediments, to explain 11 well-documented asset-pricing anomalies in the finance literature. 

These anomalies reflect differences in cross-sectional average returns that survive adjustment for 

the Fama and French (1993) three-factor model by sorting stocks on measures that include financial 

distress, net stock issues, composite equity issues, total accruals, net operating assets, momentum, 

gross profit-to-assets, asset growth, return-on-assets (ROA), and investment-to-assets. Further, 



 

139 

 

Stambaugh et al. (2012) find that each anomaly is stronger following high sentiment levels. A long-

short strategy constructed based on the anomaly’s sorts, with the long leg being the highest-

performing decile and the short leg the lowest-performing decile, realizes higher returns resulting 

from significantly lower returns on the short leg consisting of the most potentially overpriced stocks. 

On the other side, the evidence for the sentiment effect on underpriced stocks is weak. They do not 

find significantly higher returns following low sentiment for most anomalies. 

In the following study, Stambaugh and Yuan (2017) construct two mispricing factors, 

MGMT and PERF, which aggregate information across the 11 anomalies previously examined by 

Stambaugh et al. (2012). The MGMT (PERF) factor is constructed using sorts on an average 

ranking across a cluster of six (five) anomalies related to firms’ management (performance). The 

factor returns are the spread portfolio returns between the long leg consisting of the most potentially 

underpriced stocks and the short leg consisting of the most potentially overpriced stocks. The six 

anomalies related to firms’ management include net stock issues, composite equity issues, accruals, 

net operating assets, asset growth, and investment to assets. The five anomalies related to firms’ 

performance include distress score, O-score, momentum, gross profitability, and return on assets. 

They find that investor sentiment predicts mispricing factor returns, especially short-leg returns. 

Following higher sentiment levels, both factors have significantly higher returns, resulting from 

significantly lower returns on the short leg of the factor.43 To interpret the findings of Stambaugh 

 
43We regress each mispricing factor on the lagged BW sentiment-level index (2006) over our sample period 1997-

2016. The BW sentiment-level index is constructed based on the first principal components of five sentiment proxies 
excluding turnover, as described in Section 3.2, over the period 1965-2018. We find that a one-standard-deviation 
increase of the sentiment level, increase the MGMT and PERF factors by 1.01% and 1.51% per month (t-stat: 2.24 and 
2.59), respectively. We also regress the mispricing factors on the BW sentiment change index (2007), which is 
constructed based on the first principal components of changes in the five variables. Nevertheless, the slopes on the 
sentiment change are statistically insignificant, at ‒ 0.24 and ‒ 0.11 (t-stat: ‒ 0.98 and ‒ 0.30) for the MGMT and PERF 
factors respectively. Thus, in this study, we use the BW sentiment level (2006) as our main sentiment metric, following 
Stambaugh et al. (2012, 2017). 
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et al. (2012, 2017), sentiment-related mispricing reflects that overpricing resulting from high 

sentiment gets corrected less by arbitrage than underpricing resulting from low sentiment, given 

that speculators are less willing or able to short stocks than to buy them. 

  Armed with an understanding of the limits of arbitrage and mispricing, we postulate first 

that there is heterogeneity in the ability to arbitrage overpricing in the cross-section of arbitrageurs 

such as hedge funds. In other words, hedge funds less constrained by short-sale impediments would 

be more able to exploit the profit opportunities created by mispricing than their more constrained 

peers.44 Then we would observe that some less constrained hedge funds exhibit higher exposure to 

the mispricing factors (i.e., mispricing beta). Second, the heterogeneity in hedge funds’ ability to 

arbitrage overpricing leads to heterogeneous performance in the cross-section. Arbitrage on 

overpricing could be one of the sources of expected returns of hedge funds. We expect that less 

constrained hedge funds with higher mispricing betas have better performance than more 

constrained hedge funds with lower mispricing betas, resulting from a better ability to arbitrage 

overpricing. Lastly, as shown by Stambaugh and Yuan (2012, 2017), betting against overpricing 

would be more profitable following high sentiment levels as sentiment-related overvaluation 

prevails in the markets. Less constrained hedge funds actively shorting overpriced stocks in 

response to high sentiment levels (i.e., dynamic arbitrage) would exhibit higher mispricing betas 

in higher sentiment periods than their average mispricing betas. Moreover, we expect that hedge 

funds that employ dynamic arbitrage strategies have even better performance than their peers who 

do not. 

 
44 For example, Hombert and Thesmar (2014) find some hedge funds are more protected by contractual 

impediments from withdrawals. Some arbitrageurs can partially overcome limits to arbitrage by securing a strong 
capital structure (Stein, 2009).  
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3. Data and method  

3.1 Hedge funds 

We employ a sample of hedge funds from the Lipper TASS database, which provides an 

extensive hedge funds sample covering both live and defunct funds since 1994 and has been widely 

used in the hedge fund literature. TASS classifies hedge funds into 12 strategy categories: 

convertible arbitrage, dedicated short-bias, emerging markets, event-driven, equity market neutral, 

fixed income arbitrage, global macro, long/short equity, managed futures, multi-strategy, option 

strategy, and funds of funds. We focus on equity-oriented hedge funds by following the screening 

method used by Chen et al. (2021). We first exclude funds in the primary categories of emerging 

markets, fixed-income arbitrage, option strategy, and managed futures.45 To address the backfilling 

issue that hedge funds may choose only to backfill returns when their past returns are favorable, 

we drop the first 12 months of returns for each fund. Then we keep funds with average assets under 

management (AUM) of at least $5 million, which report monthly net-of-fee returns, allow for 

redemption at a monthly or higher frequency, and have at least 36 months of return observations. 

Our final sample is free of backfilling and survivorship biases and includes 3584 hedge funds over 

the period 1995-2016.46  

Panel A of Table 1 reports descriptive statistics for the final hedge fund sample based on 

fund-month observations. All variables are winsorized at the 1% and 99% levels. The average fund 

return is 0.44% per month. The mean (median) AUM is $272 million ($51 million), and the average 

fund age is 75 months. The mean (median) management fee is 1.42% (1.50%), while the mean 

 
45 Dedicated short-bias funds are also excluded since no funds satisfy the following data filters. 
46 Our results are robust to excluding funds with AUM below $10 million and the first 24 months of fund returns 

and including all strategy categories and all redemption frequencies in the sample. See Section 5.3 for details. 



 

142 

 

(median) incentive fee is 12.98% (15%). About 57% of the funds use a high-water mark provision 

that requires the funds to recover previous losses before charging the incentive fee. The lockup 

period and the redemption notice period are 1.11 and 0.96 months on average, respectively. 

3.2 Mispricing factors and investor sentiment 

Panel B of Table 1 reports the summary statistics of the mispricing factors and the BW 

sentiment level over the period 1995-2016. The monthly returns of the MGMT and PERF factors 

are downloaded from Stambaugh’s website.47 On average, the MGMT (PERF) factor has a mean 

of 0.54% (0.72%) per month and a standard deviation of 3.07% (4.73%), with 25th and 75th 

percentiles of − 1.17% (− 1.64%) and 1.86% (3.05%), respectively. We also use a combined 

mispricing factor (COMB), constructed based on a single composite ranking by averaging all 11 

anomalies (Stambaugh et al., 2012, 2015). The COMB factor returns are the value-weighted returns 

on a spread strategy between the 10th decile and the 1st decile portfolios of stocks sorted on the 

mispricing score of Stambaugh et al. (2015). The COMB factor has a mean of 0.16% per month 

and a standard deviation of 5.27%, with 25th and 75th percentiles of − 2.39% and 2.81%, 

respectively.  

 Our measure of market-wide investor sentiment is the monthly sentiment-level index 

constructed by Baker and Wurgler (2006), based initially on the first principal component of six 

sentiment proxies: closed-end fund discount (CEFD), New York Stock Exchange (NYSE) share 

turnover, number and average first-day returns of initial public offerings (NIPO and RIPO), equity 

share in new issues (S), and dividend premium (PDND). Given the explosion of high-frequency 

institutional trading in recent years, we use a sentiment-level index (SENT_O) constructed over 

 
47 See https://finance.wharton.upenn.edu/~stambaugh/M4.csv 

https://finance.wharton.upenn.edu/~stambaugh/M4.csv
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the period 1965-2018 based on the first principal component of the five proxies, excluding turnover 

orthogonalized against the six macroeconomic variables.48 The monthly index is downloaded from 

Wurgler’s website.49 Over the sample period 1995-2016, the BW sentiment level has a mean of 

0.21 and a standard deviation of 0.66, with 25th and 75th percentiles of − 0.13 and 0.42, 

respectively. 

3.3 Risk factors 

To measure hedge funds’ benchmark-adjusted performance (i.e., alpha), we consider the 

risk factors as commonly used to evaluate hedge fund performance in previous studies (Kosowski 

et al., 2007; Cao et al., 2013; Bali et al., 2011; Chen et al., 2021; and among others). The risk 

factors include the market excess returns (MKTRF) and the size factor (SMB) from the M4 model 

of Stambaugh and Yuan (2017),  the change in the constant-maturity yield of the 10-year Treasury 

(∆TERM), the change in the yield spread between Moody’s Baa bond and the 10-year Treasury 

bond (∆Credit), and the three trend-following factors for bonds, currencies, and commodities 

(Ptfsbd, Ptfsfx, and Ptfcom) of Fung and Hsieh (2004), the Pastor and Stambaugh (2003) liquidity 

factor (LIQ), the inflation rate (INF), and the default spread between the yield on Baa-rated and 

Aaa-rated corporate bonds (DEF). Panel C of Table 1 reports the correlation coefficients between 

the mispricing factors, the one-month-lagged BW sentiment level, and the risk factors. We observe 

the mispricing factors MGMT, PERF, and COMB are positively correlated with the lagged 

sentiment level at 0.21, 0.19, and 0.17, respectively, and statistically significant at the 1% level, 

confirming again that higher mispricing factor returns follow higher sentiment levels (Stambaugh 

 
48 The six macroeconomic variables include industrial production index, nominal durables consumption, nominal 

nondurables consumption, nominal services consumption, NBER recession indicator, employment, and consumer 
price index. 

49 See http://people.stern.nyu.edu/jwurgler/data/Investor_Sentiment_Data_20190327_POST.xlsx 
 

http://people.stern.nyu.edu/jwurgler/data/Investor_Sentiment_Data_20190327_POST.xlsx
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and Yuan, 2017). On the contrary, lower market returns follow higher sentiment levels, given a 

significant and negative correlation of −0.14 at the 5% level. Overall, most of risk factors are 

uncorrelated with the lagged sentiment level, except for ∆Credit and DEF.  

[Insert Table 1 here] 

3.4 Mispricing beta 

In this study, we propose a mispricing beta to measure the ability of hedge funds to exploit 

profits created by mispricing in financial markets. Our empirical model for estimating the 

mispricing beta builds on the conditional framework of Ferson and Schadt (1996) and 

Christopherson et al. (1998). Suppose the returns of a hedge fund arbitraging mispricing (MISP) 

follow the process as Eq (1):   

 𝑟𝑖,𝑡 = 𝛽𝑖(𝑍𝑡−1)MISP𝑡 + 𝑣𝑖,𝑡    (1) 

where 𝑟𝑖,𝑡  is the excess return in month t, MISP𝑡 is the mispricing factor return, 𝛽𝑖(𝑍𝑡−1) is the 

fund’s mispricing beta, corresponding to an information variable 𝑍 available to investors at time 

𝑡−1. We specify the information variable as the market-wide sentiment level and approximate the 

fund’s mispricing beta as a linear function of the past sentiment level, which is demeaned as 𝑆𝑡−1 −

𝑆̅: 

 𝛽𝑖(𝑍𝑡−1) = 𝑏𝑖 + 𝐵𝑖(𝑆𝑡−1 − 𝑆̅) + 𝑢𝑖,𝑡−1   (2) 

Replace (2) into (1), we obtain: 

 𝑟𝑖,𝑡 = 𝑏𝑖MISP𝑡 + 𝐵𝑖(𝑆𝑡−1 − 𝑆̅)MISP𝑡 + 휀𝑖,𝑡   (3) 
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For the purpose of comparison, we proceed with tests under two regression models controlling for 

a set of risk factors 𝑭𝒕, which are described in Section 3.3, an unconditional model (4) in which we 

assume the mispricing beta is time-invariant and a conditional model (5), which is the regression 

form of Eq (3): 

 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑏𝑖MISP𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡 (4) 

 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑏𝑖MISP𝑡 + 𝐵𝑖(𝑆𝑡−1 − 𝑆̅)MISP𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡   (5) 

The estimate of 𝑏𝑖 represents fund i’s average mispricing beta over the regression period, which 

reflects, averagely, to what extent the fund exploits the arbitrage opportunity created by the 

mispricing factor. Less constrained hedge funds that are more able to bet against overpricing would 

have a higher 𝑏𝑖  than more constrained hedge funds. The coefficient 𝐵𝑖  under the conditional 

model measures to what extent the fund employs dynamic arbitrage (called dynamic arbitrage 

coefficient thereafter). A positive B𝑖  indicates the manager increases mispricing beta by more 

actively short-selling overpriced stocks in response to a higher sentiment level. 

4. Empirical results 

In this section, we first present the results of our in-sample analysis, which answer the 

following questions: do hedge funds bet against overpricing? Do less constrained hedge funds 

outperform? Does dynamic arbitrage deliver better performance? Next, we show evidence from 

our out-of-sample analysis that hedge funds’ mispricing betas and dynamic arbitrage coefficients 

predict their future performance in the short and long run. Finally, we examine the relation between 

hedge funds’ mispricing beta and sentiment exposure and estimate hedge funds’ positions on 

overpriced stocks. 
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4.1 Do hedge funds bet against overpricing? 

For each hedge fund, we estimate their average MGMT and PERF mispricing betas (𝑏𝑖) 

and the dynamic arbitrage coefficients (𝐵𝑖 ) under the unconditional model Eq (4) and the 

conditional model Eq (5) over their lifetime, controlling for the risk factors, MKTRF, SMB, 

∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and DEF, which are described in Section 3.3. 

We also run the regressions by replacing the MGMT and PERF factors with the COMB factor. The 

t-statistics of the coefficient estimates are calculated based on Newey-West standard errors with 

two lags. Table 2 reports the cross-sectional distributions of t-statistics of the estimated mispricing 

beta 𝑏𝑖  and the dynamic arbitrage coefficient 𝐵𝑖  across individual funds. Specifically, Table 2 

displays the percentage of t-statistics exceeding the indicated cut-off values. 

Under the unconditional model, we find that around 19.75% of hedge funds in our sample 

have t-statistics of the PERF beta (𝑏𝑃𝐸𝑅𝐹) greater than 1.96, and 4.32% of funds have t-statistics 

smaller than ‒ 1.96. The results suggest that around one-fifth of hedge funds bet against PERF 

mispricing, with a confidence level of 5%, while about 5% of funds tend to delay their arbitrage 

(by buying overpriced stocks). Nevertheless, less than 3% of funds exploit mispricing profits on 

the MGMT factor, while 31.86% of funds tend to delay arbitrage, as their t-statistics of 𝑏𝑀𝐺𝑀𝑇  are 

smaller than ‒ 1.96.50 Overall, more funds tend to correct PERF mispricing than to delay arbitrage, 

given that the distribution of  𝑏𝑃𝐸𝑅𝐹 has thicker right tails than left tails. On the contrary, more 

funds tend to delay MGMT mispricing than to correct prices right away, given that the left tails are 

thicker than the right tails. As for the COMB factor that aggregates the information across the 11 

 
50 Abreu and Brunnermeier (2002) discuss the lack of coordination among arbitrageurs, i.e., synchronization risk. 

Speculators delay arbitrage when they face uncertainty about when their peers will exploit a common arbitrage 
opportunity. Our results also confirm the lack of coordination among hedge funds. Some hedge funds tend to delay 
arbitrage by increasing long positions of overpriced stocks and then have negtaive mispricing betas; nevertheless, there 
are some hedge funds stabilizing prices. 
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anomalies, we observe that 12.03% of funds exploit mispricing profits, while 5.52% of funds tend 

to delay arbitrage. 

Under the conditional model, we find that the percentages of funds with significant t-

statistics of 𝑏𝑖 remain at a similar level, and around 8-10% of funds have t-statistics of the dynamic 

arbitrage coefficient (𝐵𝑖) greater than 1.96, and 18-24% of funds have t-statistics greater than 1.282. 

For example, even though a small proportion (1.65%) of funds have, on average, a significant 

MGMT beta, a larger proportion (7.53%) of funds employ dynamic arbitrage strategies by actively 

short-selling overpriced stocks when sentiment is higher.    

[Insert Table 2 here] 

4.2 Do less constrained hedge funds outperform? 

To examine the performance of hedge funds betting against overpricing, we form decile 

portfolios of hedge funds by independently sorting funds on their mispricing beta 𝑏𝑖  and the 

dynamic arbitrage coefficient 𝐵𝑖 , which are estimated in Eq (4) and Eq (5), respectively. Panel A 

of Table 3 reports the average performance of the decile portfolios. The performance of each fund 

is measured as the alpha 𝛼𝑖 from the following regression Eq (6) over their lifetime, where 𝑭𝒕 is a 

vector of risk factors, MKTRF, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and 

DEF, described in Section 3.3: 

 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡 (6) 

Columns (1) to (3) of Panel A present the results under the unconditional model. We 

observe the performance of the decile portfolio is an increasing function of the mispricing beta. 

For example, Portfolio 1 with the lowest 𝑏𝑀𝐺𝑀𝑇 has an average alpha of ‒ 4 bps per month, while 
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Portfolio 10 with the highest 𝑏𝑀𝐺𝑀𝑇 has an average alpha of 46 bps per month. The difference in 

performance between Portfolio 10 and Portfolio 1 is 51 bps per month (t-stat: 3.37). We observe 

similar results in Columns (4) to (6) of Panel A under the conditional model. Overall, the results 

show that hedge funds with the highest mispricing beta outperform those with the lowest beta by 

28‒63 bps per month, supporting our hypothesis that less constrained hedge funds outperform their 

peers that are more constrained by short-sale impediments. 

Columns (7) to (9) of Panel A reports the performance of the decile portfolios of hedge 

funds sorted on the dynamic arbitrage coefficient 𝐵𝑖 estimated under the conditional model. We 

find that hedge funds employing dynamic arbitrage strategies also display higher alphas. For 

example, Portfolio 10 with the highest 𝐵𝑃𝐸𝑅𝐹 outperforms Portfolio 1 with the lowest 𝐵𝑃𝐸𝑅𝐹 by 45 

bps per month (t-stat: 2.68). The results support that less constrained hedge funds, especially which 

are more able to bet against mispricing in high sentiment periods, deliver a better performance.  

Further, we show the outperformance of dynamic arbitrage strategies by constructing 3×3 

portfolios. We first sort hedge funds on the coefficients 𝑏𝑖, forming tertiles, and then sorting funds 

in each tertile by 𝐵𝑖, again forming tertiles. Panel B of Table 3 reports the performance of the 3×3 

portfolios sequentially sorted on the mispricing beta and dynamic arbitrage. We observe that hedge 

funds with higher dynamic arbitrage coefficients have a better performance than their peers with 

similar levels of mispricing betas but lower dynamic arbitrage coefficients. The effect of dynamic 

arbitrage is the most significant in the lowest 𝑏𝑖 tertile. For example, while the average mispricing 

beta of the lowest 𝑏𝑀𝐺𝑀𝑇 tertile portfolio is negative (‒ 0.40), funds with the lowest 𝑏𝑀𝐺𝑀𝑇but the 

highest 𝐵𝑀𝐺𝑀𝑇 (0.48) outperform their peers with the lowest 𝑏𝑀𝐺𝑀𝑇 and the lowest 𝐵𝑀𝐺𝑀𝑇 (‒0.80) 

by 45 bps per month (t-stat: 4.01), a performance comparable to that of hedge funds with high 

mispricing betas. Again, the results support that less constrained hedge funds actively betting 
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against mispricing in high sentiment periods have better performance, even though their average 

mispricing beta is low over time. Moreover, in the last row and the last column (H ‒ L), we report 

the difference in performance between the portfolio with the highest 𝑏𝑖 and 𝐵𝑖 and the portfolio 

with the lowest 𝑏𝑖 and 𝐵𝑖, and the corresponding t-statistic. These differences range from 32 to 50 

bps per month for all three mispricing factors, with t-statistics greater than 2.33. 

[Insert Table 3 here] 

4.3 Do hedge funds’ mispricing betas predict their future performance? 

The objective of this section is to test the significance of the mispricing betas and the 

dynamic arbitrage coefficients on predicting the cross-sectional variation in hedge funds’ 

performance in the short and long run. To do so, we run two-stage Fama-MacBeth regressions. At 

the end of each month (t), in the first stage, we regress the excess return of each fund (i) on a 

mispricing factor, MISP𝑡, over the previous 36 months, controlling for the risk factors described 

in Section 3.3 and sentiment hedging against market risk (Zheng et al.  (2018)), as in Eq (7).51 We 

also require each fund has at least 36 months of return observations in the first stage regression. In 

the second stage, we run the cross-sectional regressions of the fund’s future performance, Perf𝑖,𝑡+1, 

on the estimated mispricing beta (𝑏𝑖𝑡), dynamic arbitrage (𝐵𝑖𝑡), and sentiment hedging (𝐵𝑖𝑡𝑚), 

controlling for hedge fund characteristic, as in Eq (8).  

𝑟𝑖𝑡 = 𝛼𝑖 + 𝑏𝑖𝑡MISP𝑡 + 𝐵𝑖𝑡(𝑆𝑡−1 − 𝑆̅)MISP𝑡 + 𝐵𝑖𝑡𝑚(𝑆𝑡−1 − 𝑆̅)MKTRF𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖𝑡        (7) 

Perf𝑖,𝑡+1 = 𝑤𝑡 + 𝜃1,𝑡𝑏𝑖𝑡 + 𝜃2,𝑡𝐵𝑖𝑡 + 𝜃3,𝑡𝐵𝑖𝑡𝑚 + 𝜽′𝒕𝐅𝐮𝐧𝐝𝐂𝐡𝐚𝐫𝒕 + 𝜖𝑖,𝑡+1                              (8) 

 
51 Since lower market returns follow higher levels of sentiment (as shown in Section 3.3), investors hedging against 

market risk by decreasing their market exposure in high sentiment periods would have better performance in the 
following month.  
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where, 𝐅𝐮𝐧𝐝𝐂𝐡𝐚𝐫𝒕  is a vector of variables including fund age, fund size, management fees, 

incentive fees, high-water mark, leverage, lockup period, and redemption period. 

4.3.1 Predictability in the short run 

We first use one-month leading alpha as the dependent variable in the second stage 

regression, which is the difference between the excess return 𝑟𝑖,𝑡+1 and the products of the fund’s 

risk factor loadings and factor returns in month t+1, as in Eq (9).  

 �̂�𝑖,𝑡+1 = 𝑟𝑖,𝑡+1 − �̂�′𝑖𝑡𝑭𝒕+𝟏       (9) 

where the fund’s risk factor loadings, �̂�′𝑖𝑡 , are estimated with the regression Eq (6) over the 

previous 36 months. Table 4 reports the results of the Fama-MacBeth second stage cross-sectional 

regressions. The reported t-statistics are calculated based on Newey-West standard errors with two 

lags. We find that the average slopes on the PERF and COMB betas are positive and significant. 

However, the average slope on the MGMT beta is insignificant. For example, when the average 

PERF beta increases by one, the fund’s alpha increases by 1.25% per month in the next month (t-

stat: 2.79). The average slopes on the dynamic arbitrage coefficients are all positive and significant 

for the three mispricing factors, with t-statistics greater than 2.326. For example, when the dynamic 

arbitrage coefficient on MGMT increases by one, the fund’s alpha in the next month increases by 

0.81% per month (t-stat: 3.46). For the MGMT factor, the dynamic arbitrage coefficient exhibits a 

better ability to predict hedge fund performance in the cross-section than the average mispricing 

beta. A plausible explanation could be that a larger number of funds adjust their MGMT beta in 

response to a higher level of sentiment. However, on average, only a small number of funds have 

positive MGMT betas. Table 4 also reports the average slopes on hedge fund characteristics. The 

coefficients on fund characteristics are in line with previous studies. For example, hedge funds that 
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have a larger size, use a high-water mark provision, require a longer lockup period, or require a 

longer redemption notice period tend to perform better. Moreover, as expected, the average slopes 

on sentiment hedging (𝐵𝑖𝑡𝑚) is negative and significant at the 1% level, confirming that investors 

that decrease their market exposure when sentiment is higher have better performance in the 

following month. 

Overall, our results show a positive and significant relation between hedge fund 

performance and heterogeneity in hedge funds’ ability to arbitrage mispricing, especially the ability 

to short sell overpriced stocks in response to high sentiment levels. The positive relation is 

significant even after adjusting for common risk exposures and controlling for fund characteristics. 

[Insert Table 4 here] 

4.3.2 Predictability in the long run 

In this sub-section, we rerun the second-stage regressions by replacing the dependent 

variable with the alpha over a long-term period (3, 6, 9, 12, 18, and 24 months). For example, the 

12-month leading alpha is the average of alphas estimated by Eq (9) from t+1 to t+12. If a fund 

disappears over the next 12-month period, its 12-month leading alpha is calculated by including 

alphas until its disappearance. We find similar results for all different periods in Table 5. The 

average slopes on the PERF and COMB betas remain positive and significant when the long-term 

performance is the dependent variable, indicating that hedge funds’ ability to arbitrage mispricing 

persists in the long run. Particularly, the slopes on the PERF beta range from 1.12 to 1.31 (t-stat: 

3.00 to 5.28) over the period from 3 months to 24 months. For example, when the PERF beta 

increases by one, the fund’s average alpha over the next 12 months increases by 1.31% per month 

(t-stat: 4.53). Also, the average slopes on the dynamic arbitrage coefficients remain all positive and 
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significant for all periods (except for the PERF factor under the 24-month period). For example, 

when the dynamic arbitrage coefficient on MGMT increases by one, the fund’s alpha over the next 

12 months increases by 0.83% per month (t-stat: 3.94). The results suggest that hedge funds’ ability 

to arbitrage overpricing, measured by their mispricing beta and dynamic arbitrage coefficient, is 

an important source of fund alphas. We also show that this ability persists over time in out-of-

sample tests. 

[Insert Table 5 here] 

4.3.3 Predictability over subperiods 

In this section, we investigate further the predictive power of the mispricing beta and the 

dynamic arbitrage coefficient on future hedge fund performance during different subsample 

periods. We divide our full sample period 1997-2016 into two subperiods: the financial crisis 

period, including years from 1998 to 2001 (i.e., Technology bubble and Crash), and from 2007 to 

2009 (i.e., 2008 Financial crisis) and the non-financial crisis period, which excludes the above 

years. The financial crisis period is also the period of market-wide sentiment levels experiencing 

dramatic changes. For example, the BW sentiment level increased from 0.58 in January 1998 to 

0.97 in December 2001 and reached its peak at 3.20 in February 2001. During the 2008 financial 

crisis period, the sentiment level decreased from 0.48 in January 2007 to ‒ 0.68 in December 2009 

and reached its lowest level at ‒ 0.89 in April 2009. We report the average slope of the second-

stage regressions over the two subperiods in Panel A and B of Table 6, with the 1-, 3-, or 6-month 

leading alpha as the dependent variable. Panel A of Table 6 provides evidence of a stronger positive 

relation between dynamic arbitrage and performance when the market-wide sentiment level 

experiences dramatic changes. For example, when the 6-month leading alpha is the dependent 
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variable, the average slope on MGMT (PERF) dynamic arbitrage is 1.20 (0.79) over the crisis 

subperiod. Further, Panel B shows that the slope on MGMT (PERF) dynamic arbitrage is lower 

over the non-crisis time (0.62 and 0.37, respectively) and, particularly, the slope on PERF dynamic 

arbitrage is statistically insignificant. By contrast, we find the positive relation between the 

mispricing beta and performance becomes weaker in the crisis period. For example, when the 

COMB beta increases by one, the 6-month leading alpha increases 0.41 bps per month (t-stat: 0.55) 

over the crisis period, whereas the increase is 0.84 bps per month (t-stat: 3.27) over the non-crisis 

period.  

Overall, our results show hedge funds react to past market-wide sentiment levels to various 

extents over different subsample periods. During these periods, sentiment experienced dramatic 

changes, and stocks prices moved further away from their fundamentals. Limits of arbitrage impose 

more constraints on arbitrageurs who tend to correct overpricing (e.g., the liquidation of Tiger 

Management funds during the Technology bubble). 52  We explain their ability to arbitrage 

overpricing in high sentiment periods by being less constrained by the limits of arbitrage. For 

example, being more able to negotiate with investors to secure their capital in case of 

underperformance or being more protected by contractual impediments from withdrawals. Prior 

studies support that such hedge funds recover from underperformance more quickly (Hombert and 

Thesmar, 2014). Their findings are consistent with the idea that some hedge funds overcome the 

limits to arbitrage.53  

 
52Value managers such as Tiger funds invested only little in technology stocks during the bubble time. However, 

due to accentuated sentiment-driven overpricing, Tiger funds suffered serious losses of its assets through investor 
withdrawals. Even though the manager increased the redemption period in order to curb outflows, he announced the 
fund’s liquidation in March 2000, just when prices of technology stocks started to tumble (Brunnermeier and Nagel, 
2004). 

53However, the bubble-riding type of sentiment trading could be rational among a few more skilled hedge funds, 
such as Soros funds (Brunnermeier and Nagel (2004)). Particularly, we investigate the mispricing betas of Soros funds 
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[Insert Table 6 here] 

4.4 Economic value of dynamic arbitrage 

We continue our out-of-sample tests with non-parametric portfolio analysis. Each month, 

we form ten portfolios based on hedge funds’ dynamic arbitrage coefficients, as estimated in Eq 

(7) over the past 36 months, and then hold the portfolios for a subsequent 1-, 3-, 6-, 9-, 12-, 18-, or 

24-month holding period. These portfolios consist of funds that react to past market-wide sentiment 

levels to various extents in their arbitrage on mispricing. Portfolio 10 (1) includes hedge funds with 

the best (lowest) dynamic arbitrage ability. For each of the ten portfolios, we obtain seven different 

time series of holding-period alphas, one for each holding period, from 1997 to 2016. For example, 

for a portfolio formed in month t, its 12-month holding period alpha is the average of alphas from 

t+1 to t+12. The alphas are estimated for each fund by Eq (9), in which the fund’s risk factor 

loadings are estimated with the regression Eq (6) over the previous 36 months. If a fund disappears 

over the holding period, the portfolio alpha is calculated by including its alphas until its 

disappearance. The difference in performance between Portfolio 10 and Portfolio 1 represents 

economic value derived from hedge funds’ dynamic arbitrage ability. 

Panels A, B, and C of Table 7 report the time-series average of alpha for each holding 

period. Each portfolio is sorted on the dynamic arbitrage on MGMT, PERF, and COMB factors, 

respectively. We observe strong evidence of the economic value of hedge funds’ dynamic arbitrage 

ability. As reported in the sixth column in Panel A, for a 12-month holding period, the alpha of the 

portfolio consisting of hedge funds with the highest ability is 49 bps per month (5.9% per year), 

 
during the Technology Bubble and we indeed find their funds significantly increase exposure to overpriced stocks (i.e., 
decrease mispricing betas) and also have significant and positive performance on a risk adjusted basis. 
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compared with the average alpha of – 20 bps per month realized by the portfolio of hedge funds 

with the lowest ability. In the last two rows of each panel, we report the differences between 

Portfolio 10 and Portfolio 1 for each holding period and the corresponding t-statistics, which are 

calculated based on Newey-West standard errors with two lags. For all three mispricing factors, 

we observe that the outperformance of Portfolio 10 relative to Portfolio 1 persists for a significant 

period of time (i.e., with a holding period of 6 months or longer). This outperformance ranges from 

33 bps to 69 bps per month, with t-statistics greater than 2.84. The economic value is the most 

noticeable when the holding period is around 12 months. For example, funds with the best ability 

to employ dynamic arbitrage on MGMT (PERF) factor outperform their peers with the lowest 

ability by 69 (42) bps per month on a risk-adjusted basis, corresponding to 8.28% (5.04%) per year, 

with a t-statistic of 5.50 (4.25). Among the three factors, the dynamic arbitrage ability to exploit 

profits from MGMT overpricing brings the most outstanding value. The evidence is again 

consistent with our hypothesis that less constrained arbitrageurs who are more able to bet against 

overpricing when sentiment is higher outperform their peers who are more constrained, even 

though their average mispricing beta over time is insignificant. Finally, we find that hedge funds 

with the lowest arbitrage ability (Portfolio 1) cannot beat the benchmark (given the negative alpha 

on average). 

[Insert Table 7 here] 

4.5 Sentiment exposure of hedge funds betting against overpricing 

Sentiment trading of rational arbitrageurs has been examined by prior studies, e.g., DeLong 

et al. (1990a), Brunnermeier and Nagel (2004), Griffin et al. (2011), and Chen et al. (2021), which 

argue it can be optimal for arbitrageurs to invest in overpriced securities. When sentiment is 
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expected to increase, bubble-riding appears to be rational. So, hedge funds that can time sentiment 

tend to have higher sentiment betas and display higher alphas. Concerning arbitrageurs who bet 

against mispricing, Chen et al. (2021) argue that they should have negative sentiment exposure 

because overpriced stocks are more sensitive to sentiment than undervalued stocks. In this section, 

we analyze the sentiment exposure of hedge funds that bet against overpricing. To do so, we 

consider the return process in Eq (1), by posing a constant mispricing beta without losing 

generality: 

 𝑟𝑖,𝑡 = 𝛽𝑖MISP𝑡 + 𝑣𝑖,𝑡 (1.1) 

Given that higher returns on the mispricing factor follow higher levels of sentiment, i.e.,  

 MISP𝑡 = 𝑎 + 𝑏(𝑆𝑡−1 − 𝑆̅) +  𝑢𝑡, with 𝑏 > 0, 𝑎 = 𝐸(MISP𝑡) (10) 

Replace (10) into (1.1), we have: 

 𝑟𝑖,𝑡 = 𝛽𝑖(𝑎 + 𝑏(𝑆𝑡−1 − 𝑆̅) +  𝑢𝑡) + 𝑣𝑖,𝑡  

 𝑟𝑖,𝑡 = 𝛿𝑖 + 𝛽𝑖
𝑆(𝑆𝑡−1 − 𝑆̅) +  𝑒𝑖,𝑡, (11) 

 with 𝛿𝑖 = 𝛽𝑖𝑎, 𝛽𝑖𝑆 = 𝛽𝑖𝑏, 𝑒𝑖,𝑡 = 𝛽𝑖𝑢𝑡 + 𝑣𝑖,𝑡  

The fund’s exposure to the sentiment level (𝛽𝑖𝑆) is equal to its mispricing beta 𝛽𝑖 times 𝑏 

and the fund’s alpha (𝛿𝑖) is equal to its mispricing beta times 𝑎, which reflects the profits derived 

from betting on the mispricing factor. A hedge fund arbitraging the mispricing factor would have 

a positive 𝛽𝑖 and therefore, a positive sentiment exposure 𝛽𝑖𝑆, given that 𝑏 > 0. The fund’s sentiment 

exposure seems able to predict its alpha, given the positive relation between the mispricing beta 

and the sentiment beta as well as the fund alpha. 
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To empirically test whether higher sentiment betas are associated with higher mispricing 

betas among hedge funds, we run the regressions Eq (12) of the excess return of each fund on the 

BW sentiment level without lag over their lifetime, controlling for the risk factors described in 

Section 3.3:54 

 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖
𝑆𝑆𝑡 + 𝜸

′
𝑖
𝑭𝒕 + 𝑒𝑖,𝑡 (12) 

In Panel A of Table 8, we report the average sentiment beta of hedge funds with significant 

mispricing betas at different confidence levels (i.e., with different levels of t-statistics). The 

mispricing beta of each fund (𝑏𝑖) is estimated under the unconditional model in Eq (4) over their 

lifetime, as described in Section 4.1. We observe hedge funds with significant and positive PERF 

or COMB mispricing betas also possess a significant and positive sentiment beta on average. For 

example, 708 funds with a t-statistics of PERF beta greater than 1.96 also have a significant and 

positive sentiment exposure of 0.09 (t-stat: 2.53), on average. The sentiment exposure is even 

higher among the funds with t-statistics of PERF beta greater than 2.326, at 0.12 (t-stat: 3.24). 

However, we do not have such observation with the MGMT factor, probably because only a small 

number of funds have a significant and positive MGMT beta. Only 84 hedge funds in our sample 

have a t-statistic of MGMT beta greater than 1.96. We also observe that hedge funds with 

significant and negative mispricing betas tend to have a negative sentiment exposure. For the three 

mispricing factors, the sentiment beta of hedge funds at the left tails of the distribution of t-statistics 

on mispricing betas is averagely negative, even though not all statistically significant. 

 In Panel B of Table 8, we report the average sentiment beta of the decile portfolios of hedge 

funds sorted on their mispricing betas. We find evidence that higher sentiment betas are associated 

 
54The first order autocorrelation of the BW sentiment-level index (𝜌1) is equal to 0.98. 
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with higher mispricing betas with the PERF and COMB factors. On average, the funds with the 

lowest PERF and COMB betas, respectively, have a sentiment beta of – 0.09 and – 0.11 (t-stat: – 

0.66 and – 0.77), while the funds with the highest mispricing betas have a sentiment beta of 0.40 

and 0.35 (t-stat: 3.34 and 2.94). The difference between Portfolio 10 and Portfolio 1 is 

economically and statistically significant at 0.50 and 0.46 (t-stat: 2.67 and 2.44). Combining these 

results with Table 3, we confirm the positive cross-sectional relation between hedge funds’ 

mispricing beta and sentiment beta as well as their performance.   

Prior studies (DeLong et al., 1990; Abreu and Brunnermeier, 2002; Griffin et al., 2011; 

Brunnermeier and Nagel, 2004; Chen et al., 2021) explain that when sentiment is expected to 

increase, it can be optimal for arbitrageurs to invest in overpriced assets so that hedge funds which 

are able to time sentiment tend to have higher sentiment beta and display higher alpha. In a different 

way, we explain that the outperformance of high sentiment-beta hedge funds can reflect the profits 

derived from betting against overpricing. We also show that in the presence of market-wide 

sentiment and limits of arbitrages, hedge funds employing arbitrage on the mispricing factors tend 

to have a positive sentiment exposure, resulting from lower returns on the short-leg of the 

mispricing factors (i.e., overpriced stocks) following high sentiment levels. 

[Insert Table 8 here] 

4.6 Portfolio weights on overpriced stocks of hedge funds betting against overpricing 

To eliminate the concern that underpriced stocks could drive our results, we examine in this 

section, hedge funds’ exposure to overpriced stocks by estimating their portfolio weights. Similar 

in spirit to Brunnermeier and Nagel (2004), we assume that the asset allocation decision of hedge 

fund managers involves two steps. First, allocate a fraction b of the total portfolio to the market 
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portfolio. Second, reallocate a fraction 𝑔  of the total portfolio value from the initial market 

investment to overpriced stocks. For an overpricing arbitrageur, 𝑔 should be negative, and we 

assume the additional capital from shorting positions is added to the fund’s market investment. So, 

the return of this hedge fund can be written as: 

 𝑅𝑡 = (𝑏 − 𝑔)𝑅𝑀𝑡 + 𝑔𝑅𝑆𝑡 + 𝑒𝑡 (13) 

where, 𝑅𝑀𝑡  is the market portfolio return, 𝑅𝑆𝑡  is the value-weighted return of a portfolio of 

overpriced stocks, and 𝑒𝑡 is the idiosyncratic return. We use the short-leg return of the COMB 

factor for the following tests, which corresponds to the return of the decile portfolio consisting of 

stocks with the highest mispricing scores (Stambaugh et al., 2015).55 In this model, the fraction of 

the total portfolio invested in overpriced stocks, 𝑤𝑆, is equal to (𝑏 − 𝑔)𝑚𝑆 + 𝑔, where 𝑚𝑆 is the 

weight of overpriced stocks in the market portfolio. To estimate 𝑤𝑆, we run the OLS regression 

(14) for each fund in each year from 1995 to 2016, where 𝑅𝑆𝑡 − 𝑅𝑀𝑡 represents an “overpricing 

factor”. 

 𝑅𝑡 = 𝛼 + 𝑏𝑅𝑀𝑡 + 𝑔(𝑅𝑆𝑡 − 𝑅𝑀𝑡) + 𝜖𝑡 (14) 

Hedge funds could invest in other omitted asset classes, whose returns are correlated with 

𝑅𝑆𝑡 − 𝑅𝑀𝑡, then our results could be biased. Considering this potential problem, we also run the 

regression (14) with an overpricing factor which is orthogonalized to the risk factors, SMB, 

∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and DEF, i.e., the residuals from the regression 

of the overpricing factor on the risk factors.  

 
55Our analysis in this section focuses on the COMB factor because of the unavailability of composite ranking data 

on PERF and MGMT. 
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At the end of each year, we estimate the portfolio weights of overpriced stocks for each 

hedge fund with a significant mispricing beta and report the average weight over the period 1995-

2016 in Table 9. The left of Table 9 reports the results from the regressions with the overpricing 

factor. For example, the average market exposure is about 0.26 among hedge funds with COMB 

betas greater than 2.326, and these funds have, on average, significant and negative exposures to 

the overpricing factor (‒ 0.10, t-stat: ‒ 2.73). The net investment on overpriced stocks in hedge 

funds’ portfolios is about – 9% (t-stat: ‒ 2.49). The portfolio weights of overpriced stocks among 

hedge funds with different t-statistics of mispricing beta greater than 1.282 are averagely negative, 

ranging from – 9% to – 6%. The results imply hedge funds betting against mispricing have on 

average short positions on overpriced stocks. On the right of Table 9, which reports the regressions 

with the orthogonalized overpricing factor, results remain qualitatively unchanged, and the 

estimated weights are even more negative. 

Table 9 also reports the weights of overpriced stocks for each hedge fund with negative 

mispricing betas. The results show that hedge funds have positive exposure to overpriced stocks. 

For example, among funds with t-statistics of COMB betas smaller than – 2.326, the exposure is 

about 0.18, and the net investment on overpriced stocks represents a long position, on average, of 

19%, compared with the market portfolio weights of about 4%. The results confirm that some 

hedge funds delay arbitrage by investing in overpriced stocks.    

[Insert Table 9 here] 
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5. Robustness 

5.1 Bootstrap analysis of mispricing betas 

Firstly, we check the statistical significance of the estimated coefficients in our in-sample 

analysis. As Cao et al. (2013) discussed, conventional inference can be misleading for several 

reasons. For example, hedge fund returns may not follow normal distributions. By random chance, 

some funds may appear to have significant t-statistics under the conventional levels even if the true 

value of their coefficients is not different from zero. Therefore, we employ a bootstrap analysis 

similar to Cao et al. (2013) to assess the significance of the MGMT and PERF betas and the 

dynamic arbitrage coefficients under each of the two models. The basic idea of the bootstrap 

analysis is that we randomly resample regression residuals from our model to generate hypothetical 

fund returns that have the same factor loadings as the actual fund except for the coefficient to be 

assessed (e.g., the MGMT beta), which is assumed to be zero for the pseudo fund. Then, we 

evaluate if the t-statistics of the estimated coefficients for the actual funds are different from the 

pseudo funds. Details on the procedure of this bootstrap analysis are provided in the Appendix. 

Table 10 reports the empirical p-values corresponding to the t-statistics of each coefficient 

at different extreme percentiles from the bootstrap analysis. Under the unconditional model, for the 

top-ranked funds at the extreme percentiles from 1% to 10%, the t-statistics of 𝑏𝑀𝐺𝑀𝑇 are 0.78, 

1.42, 1.79, and 2.53, respectively, with empirical p-values close or equal to 1, suggesting the 

MGMT betas of top-ranked funds cannot be distinguished from zero. Meanwhile, we find that the 

empirical p-values of 𝑏𝑃𝐸𝑅𝐹 for top-ranked funds are all close to zero, indicating that their PERF 

betas are significantly positive. Under the conditional model, we find evidence supporting that the 

MGMT betas of top-ranked funds cannot be distinguished from zero, and the PERF betas as well 

as both dynamic arbitrage coefficients are significantly positive. Figure 1 plots the kernel density 
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distributions of bootstrapped top 10th percentile t-statistics in shaded areas, as well as the actual t-

statistics of each coefficient as a vertical line. Panel A and B of the figure display the coefficients 

estimated under the unconditional model and the conditional model, respectively. At the bottom 

percentiles, we find the negative MGMT betas cannot be attributed to random chance, given that 

the empirical p-values are all close to zero. Overall, the results of the bootstrap analysis confirm 

that some hedge funds bet against PERF mispricing, but more hedge funds tend to delay arbitrage 

on MGMT mispricing. By reacting to higher sentiment levels, some hedge funds increase their 

mispricing betas to exploit profits from both mispricing factors.  

[Insert Table 10 and Figure 1 here] 

5.2 Does hedge funds’ arbitrage on underpricing drive the results? 

In our main analysis, we make inferences about hedge funds’ arbitrage on overpricing based 

on their exposure to the mispricing factors. However, if arbitrage profits from the mispricing factors 

are more closely related to the long leg of the factor, i.e., underpricing stocks, our inference could 

be biased. In Section 4.6, we have estimated exposure to overpriced stocks of hedge funds with 

positive mispricing betas by regression (14). We indeed find significant and negative exposures 

among these funds, which we identify as arbitrageurs who bet against mispricing by shorting 

overpricing securities. For a further robustness check, we also run the regression (14) by replacing 

the overpricing factor with an underpricing factor, which is equal to the long leg return of the 

COMB factor minus the market return. We find that the exposure to the underpricing factor (g) 

among hedge funds with positive mispricing betas is economically and statistically insignificant, 

suggesting that these hedge funds do not excessively invest in underpriced stocks. For example, 

among hedge funds with t-statistic of mispricing betas greater than 1.96,  the average exposure to 
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the underpricing factor is 0.04 (t-stat: 0.48). In sum, the results in our main analysis could not be 

driven by underpriced stocks. 

5.3 Alternative data filters 

Lastly, we check whether our results are robust to alternative data filters. We repeat the 

previous tests with sample filters by deleting the first 24 months of fund returns and funds with 

AUM less than $10 million from the sample. To save space, we summarize the results. From the 

in-sample analysis, we find about 20.20% (2.49%) out of 2857 funds have t-statistics of PERF 

(MGMT) betas greater than 1.96, and 4.73% (32.80%) of funds have t-statistics smaller than ‒1.96. 

About 8.44% (7.39%) of funds have t-statistics of PERF (MGMT) dynamic arbitrage coefficient 

greater than 1.96. The return spread between the top and bottom deciles of hedge funds ranked by 

mispricing betas ranges from 27 to 61 bps per month on a risk-adjusted basis (t-stat: between 1.65 

and 3.58). From the out-of-sample analysis, we find that when the PERF (MGMT) beta increases 

by one, the fund’s 12-month leading alpha increases by 1.16% (0.07%) per month (t-stat: 4.24 

(0.38)). When the dynamic arbitrage coefficient on PERF (MGMT) increases by one, the fund’s 

12-month leading alpha increases by 0.56% (1.13%) per month (t-stat: 2.44 (4.34)). The economic 

value of hedge funds’ ability to apply dynamic arbitrage on PERF (MGMT) mispricing 

corresponds to 22 (63) bps per month on a risk-adjusted basis over a 12-months period (t-stat: 2.75 

(6.49)). From the sentiment exposure analysis, the sentiment beta is, on average of 0.15 (0.14) 

among funds with t-statistics of PERF (MGMT) beta greater than 1.96 (t-stat: 3.28 (0.81)). The 

sentiment beta difference between the top and bottom deciles of hedge funds ranked by PERF 

(MGMT) betas is 0.81 (0.17) (t-stat: 4.14 (1.02)). 

Our results are also robust to including all strategy categories and all redemption 

frequencies in the sample. Considering the assumption of DeLong et al. (1990b) and Chen et al. 
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(2021) that arbitrageurs often have short horizons, our hedge fund sample in the main analysis 

keeps funds allowing for redemption at a monthly or higher frequency. However, this contractual 

feature can reflect the heterogeneous strength of capital structure among hedge funds across 

different strategy categories. Funds that set a lower redemption frequency tend to have a stronger 

capital structure and are more likely to overcome the limits of arbitrage (Hombert and Thesmar, 

2014). Therefore, we relax the data filter conditions used by Chen et al. (2021) by including funds 

with different redemption frequencies. Below we summarize the results. From the in-sample 

analysis, we find about 16.08%  and 3.09% out of 8545 funds have t-statistics of PERF and MGMT 

betas greater than 1.96, and 5.42% (27.06%) of funds have t-statistics smaller than ‒1.96. About 

9.37% (7.21%) of funds have t-statistics of PERF (MGMT) dynamic arbitrage coefficient greater 

than 1.96. The return spread between the top and bottom deciles of hedge funds ranked by 

mispricing betas ranges from 29 to 49 bps per month on a risk-adjusted basis (t-stat: 2.32-4.09). 

From the out-of-sample analysis, we find when the PERF (MGMT) beta increases by one, the 

fund’s 12-month leading alpha increases by 1.05% (0.01%) per month (t-stat: 3.82 (0.05)). When 

the dynamic arbitrage coefficient on PERF (MGMT) increases by one, the fund’s 12-month leading 

alpha increases by 0.52% (0.65%) per month (t-stat: 2.49 (3.77)). The economic value of hedge 

funds’ ability to apply dynamic arbitrage on PERF (MGMT) mispricing corresponds to 26 (62) bps 

per month on a risk-adjusted basis over a 12-months period (t-stat: 2.54 (6.14)). From the sentiment 

exposure analysis, the sentiment beta is, on average, of 0.10 (0.33) among funds with t-statistics of 

PERF (MGMT) beta greater than 1.96 (t-stat: 3.83 (3.73)). The sentiment beta difference between 

the top and bottom deciles of hedge funds ranked by PERF (MGMT) betas is 0.42 (0.10) (t-stat: 

3.54 (0.88)). 
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6. Conclusion 

This paper explores the relation between heterogeneity in hedge funds’ arbitrage on 

overpricing and their fund performance. On the one side, we find that some hedge funds tend to 

delay arbitrage by investing in overpricing, and on the other side, some hedge funds bet against 

overpricing right away. Different arbitrage strategies by hedge funds lead to cross-sectional 

variation in their mispricing betas. We find robust evidence that hedge funds betting against 

overpricing tend to have positive mispricing betas. By estimating portfolio weights of overpriced 

stocks among hedge funds with positive mispricing betas, we find that these funds possess, on 

average, a short position on overpriced stocks (ranging from – 9% to – 6%). Moreover, the 

insignificant exposures to underpriced stocks among these hedge funds indicate that they do not 

excessively invest in underpriced stocks. We show robust evidence that hedge funds with positive 

mispricing betas outperform other funds. The risk-adjusted return spread between the top and 

bottom deciles of hedge funds ranked by mispricing betas ranges from 28 to 63 bps per month (t-

stat: 1.69-4.03). Following high sentiment levels, arbitrage opportunities created by overpricing 

are more prevalent in the markets. We find that some hedge funds increase their mispricing betas 

in response to higher past sentiment levels. The economic value which can be exploited from hedge 

funds dynamic arbitrage ability is noticeable, corresponding to 69 bps per month on a risk-adjusted 

basis over a 12-months period (t-stat: 5.50). We investigate sentiment exposure of hedge funds 

betting against overpricing. We find that they possess positive exposure to sentiment levels. Our 

result supports the conventional idea that hedge funds generate alphas by betting against mispricing. 
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Appendix: Procedures of the bootstrap analysis 

The bootstrap approach follows Cao et al. (2013). The basic idea is to resample regression 

residuals from our model to generate hypothetical fund returns with zero-mispricing beta (or a zero 

dynamic arbitrage coefficient) but the same factor exposures as the actual funds. Empirical p-values 

are computed by comparing t-statistics of the estimated mispricing beta (dynamic arbitrage 

coefficient) of the actual funds at various cut-off percentiles with the distribution of the t-statistics 

of the pseudo-funds at the same cut-off percentiles. 

1. Run the regression under our model (e.g., the unconditional model) for fund i over its 

lifetime with 𝑇𝑖  month return observations and store the estimated coefficients ( �̂�𝑖 , �̂�𝑖,MGMT , 

�̂�𝑖,PERF, �̂�′𝑖) as well as the time series of regression residuals {휀�̂�,𝑡, 𝑡 = 1,… , 𝑇𝑖}: 

 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑏𝑖,MGMTMGMT𝑡 + 𝑏𝑖,PERFPERF𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡 (4.1) 

2. Resample the residuals with replacement and obtain a randomly resampled residual time 

series { 휀�̂�,𝑡𝑏𝑠}, where bs is the index of bootstrap iteration. Then, generate monthly excess returns 

for a pseudo-fund by setting 𝑏𝑖,MGMT = 0 and 𝑏𝑖,PERF = 0, respectively. For example, setting first 

𝑏𝑖,MGMT = 0, the returns of the pseudo fund are generated as Eq (A1): 

 𝑟𝑖,𝑡
𝑏𝑠 = �̂�𝑖 + �̂�𝑖,PERFPERF𝑡 + �̂�′𝑖𝑭𝒕 + 휀�̂�,𝑡𝑏𝑠 (A1) 

3. Estimate Eq (4.1) using the generated returns 𝑟𝑖,𝑡𝑏𝑠 as the dependent variable and store the 

t-statistic of  �̂�𝑖,MGMT𝑏𝑠 .  
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4. Complete Steps 1–3 across all funds in our sample for i = 1, …, N (e.g., N = 3584), to 

obtain the cross-sectional t-statistics of �̂�𝑖,MGMT𝑏𝑠  (e.g., the top 10th percentile). 

5. Repeat Steps 1–4 for 1000 iterations to generate the empirical distribution for the cross-

sectional t-statistics of �̂�𝑖,MGMT𝑏𝑠 . For the right-tail statistic (e.g., the top 10th percentile), calculate 

the empirical p-value as the frequency that the values of the bootstrapped cross-sectional statistic 

for the pseudo-funds exceed the actual value of the cross-sectional statistic. For the left-tail statistic 

(e.g., the bottom 10th percentile), the empirical p-value is calculated as the frequency that the 

values of the bootstrapped cross-sectional statistic for the pseudo-funds are smaller than the actual 

value of the cross-sectional statistic.  

6. Repeat Steps 2–5 by setting 𝑏𝑖,PERF = 0, and repeat Steps 1–5 for each coefficient 

estimated under the conditional model (5.1).  
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Figure 1 Mispricing t-statistics at the top 10th percentile: actual versus bootstrapped funds 

Panel A of the figure displays the t-statistics of the mispricing betas at the top 10th percentile for actual fund versus 
bootstrapped funds, which are estimated under the unconditional model Eq (4.1). Panel B displays the t-statistics of the 
mispricing betas and the dynamic arbitrage coefficients for the top 10th percentile for actual funds versus bootstrapped 
funds, which are estimated under the conditional model Eq (5.1). The shaded area represents the density distribution of 
t-statistics of the coefficient for 1000 pseudo-funds that appear at the top 10th percentile in each of 1000 bootstrap 
simulations for the cross-section of sample funds. The vertical line corresponds to the actual fund at the top 10th percentile. 
The sample period is from January 1995 to December 2016. 

 

Panel A: Unconditional model  

  
  
Panel B: Conditional model  
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Table 1 Summary statistics 

Panel A summarizes our final sample of 3584 equity-oriented hedge funds in primary categories of convertible arbitrage, event-driven, equity market neutral, 
global macro, long/short equity, multi strategy, and funds of funds, which have an average AUM of at least $5 million, report monthly net-of-fee returns, allow 
for redemption at a monthly or higher frequency, and have at least 36 months of returns. Our sample covers both active and defunct hedge funds. For each fund, 
the first 12 months of returns are excluded to mitigate backfill bias. The summary statistics are based on fund-month observations. All variables are winsorized 
at the 1% and 99% levels. Panel B reports the summary statistics of the mispricing factors, MGMT, PERF, and COMB, and the orthogonalized BW sentiment 
level (SENT_O). MGMT (PERF) is constructed by Stambaugh and Yuan (2017) based on the average ranking across a cluster of 6 (5) asset-pricing anomalies 
related to firms’ management (performance). COMB is a combined mispricing factor constructed from a long-short strategy based on the composite ranking of 
the 11 anomalies as Stambaugh et al. (2012, 2015). Panel C reports the correlation coefficients between the mispricing factors, the sentiment level, and risk 
factors. The risk factors include the market excess returns (MKTRF) and the size factor (SMB) from the M4 model of Stambaugh and Yuan (2017),  the change 
in the constant-maturity yield of the 10-year Treasury (∆TERM), the change in the yield spread between Moody’s Baa bond and the 10-year Treasury bond 
(∆Credit), and the three trend-following factors for bonds, currencies, and commodities (Ptfsbd, Ptfsfx, and Ptfcom) of Fung and Hsieh (2004), the Pastor & 
Stambaugh (2003) liquidity factor (LIQ), the inflation rate (INF), and the default spread between the yield on Baa-rated and Aaa-rated corporate bonds (DEF). 
The sample period is from January 1995 to December 2016.  

Panel A: Summary statistics of the hedge fund sample 

 Mean SD 10% 25% Median 75% 90% 
Fund return (%/month) 0.44 2.95 -2.55 -0.67 0.49 1.60 3.31 
Fund size ($million) 272.21 884.46 7.12 17.67 51.17 155.87 449.00 
Fund age (month) 75.40 52.49 21.03 35.88 61.93 101.92 148.90 
Management fee (%) 1.42 0.56 0.80 1.00 1.50 1.80 2.00 
Incentive fee (%) 12.98 8.22 0.00 5.00 15.00 20.00 20.00 
High-water mark (dummy) 0.57 0.49 0.00 0.00 1.00 1.00 1.00 
Lockup period (month) 1.11 3.90 0.00 0.00 0.00 0.00 0.00 
Notice period (month) 0.96 0.87 0.00 0.17 1.00 1.17 2.17 

 
 
Panel B: Summary statistics of the mispricing factors and the sentiment level 

 Mean SD 10% 25% Median 75% 90% 
MGMT (%/month) 0.54 3.07 -2.37 -1.17 0.39 1.86 4.41 
PERF (%/month) 0.72 4.73 -4.46 -1.64 0.40 3.05 6.56 
COMB (%/month) 0.16 5.27 -5.31 -2.39 0.14 2.81 5.65 
SENT_O 0.21 0.66 -0.54 -0.13 0.09 0.42 0.87 
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Panel C: Correlation coefficients 

 MGMT PERF COMB SENT_O MKTRF SMB ∆TERM ∆Credit Ptfsbd Ptfsfx Ptfcom LIQ INF DEF 
MGMT 1.00              
PERF 0.18 1.00             
COMB 0.50 0.81 1.00            
SENT_O 0.21 0.19 0.17 1.00           
MKTRF -0.45 -0.50 -0.53 -0.14 1.00          
SMB -0.23 -0.09 -0.17 0.07 0.19 1.00         
∆TERM -0.18 -0.22 -0.27 -0.08 0.24 0.20 1.00        
∆Credit 0.29 0.39 0.42 0.17 -0.47 -0.23 -0.53 1.00       
Ptfsbd -0.01 0.10 0.05 0.10 -0.24 -0.08 -0.31 0.27 1.00      
Ptfsfx 0.12 0.13 0.13 0.01 -0.20 0.00 -0.16 0.29 0.32 1.00     
Ptfcom 0.02 0.15 0.16 0.01 -0.17 -0.07 -0.10 0.16 0.20 0.35 1.00    
LIQ -0.20 0.06 -0.10 0.12 0.16 0.09 0.25 -0.29 -0.07 -0.11 -0.08 1.00   
INF -0.12 -0.04 -0.09 0.04 0.02 0.02 0.19 -0.15 -0.19 -0.16 -0.08 0.11 1.00  
DEF -0.05 0.01 -0.10 -0.35 -0.12 0.04 -0.02 -0.03 0.03 0.03 -0.06 -0.08 -0.22 1.00 
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Table 2 Cross-sectional distribution of mispricing t-statistics 
 
The table reports the cross-sectional distributions of t-statistics for the estimate 𝑏𝑖 and for the dynamic arbitrage coefficient 𝐵𝑖 , which are estimated under an 
unconditional and a conditional model, respectively, for each fund over their lifetime: 

Unconditional model: 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑏𝑖,MGMTMGMT𝑡 + 𝑏𝑖,PERFPERF𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡        (4.1)     
Conditional model:     𝑟𝑖,𝑡 = 𝛼𝑖 + 𝑏𝑖,MGMTMGMT𝑡 + 𝑏𝑖,PERFPERF𝑡 + 𝐵𝑖,MGMT(𝑆𝑡−1 − 𝑆̅)MGMT𝑡 + 𝐵𝑖,PERF(𝑆𝑡−1 − 𝑆̅)PERF𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡       (5.1)     

Where 𝑟𝑖,𝑡 is the excess return of hedge fund i, 𝑭𝒕 is a vector of risk factors, MKTRF, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and DEF, which 
are described in Section 3.3, 𝑆𝑡−1is the one-month lagged BW sentiment-level index, and 𝑆̅ is the average BW sentiment level. We also run the regressions by 
replacing the MGMT and PERF factors with the COMB factor. The t-statistics are calculated based on Newey-West standard errors with 2 lags. 
 

      Percentage of the funds 

    No. funds t≤−2.326 t≤−1.960 t≤−1.645 t≤−1.282 t≥1.282  t≥1.645 t≥1.960 t≥2.326 

Unconditional 
Model 

𝑏MGMT 3584 24.75 31.86 38.70 47.21 5.89 3.77 2.34 1.34 
𝑏PERF 3584 2.46 4.32 6.47 9.49 35.49 26.31 19.75 13.76 
𝑏COMB 3584 3.38 5.52 8.12 12.70 24.92 17.38 12.03 7.53 

                      

Conditional 
Model 

𝑏MGMT 3584 25.17 32.87 40.12 50.17 4.38 2.62 1.65 0.86 
𝐵MGMT 3584 2.15 3.82 6.61 10.85 17.89 11.38 7.53 4.97 
𝑏PERF 3584 3.10 4.69 6.45 9.65 31.17 22.54 16.35 10.91 
𝐵PERF 3584 2.71 4.44 7.03 11.55 19.95 12.39 8.26 5.47 
𝑏COMB 3584 3.46 5.66 8.57 12.97 24.44 16.96 11.44 6.95 
𝐵COMB 3584 3.18 5.13 8.12 12.36 23.35 15.35 10.60 6.42 
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Table 3 Outperformance of less constrained hedge funds 
 
Panel A reports the performance of decile portfolios of hedge funds independently sorted on their mispricing beta 𝑏𝑖  and dynamic arbitrage coefficients 𝐵𝑖 , which 
are estimated for each fund under the unconditional model Eq (4) and the conditional model Eq (5) over their lifetime. The performance of each fund is measured 
as the alpha from the regression: 𝑟𝑖,𝑡 = 𝛼𝑖 + 𝜸′𝑖𝑭𝒕 + 휀𝑖,𝑡 (6), where 𝑭𝒕 is a vector of risk factors, MKTRF, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, 
INF, and DEF, described in Section 3.3. Panel B reports the performance of 3×3 portfolios sorted on the mispricing beta and dynamic arbitrage. To construct the 
3×3 portfolios, we first sort hedge funds on the coefficients 𝑏𝑖, forming tertiles, and then sort funds in each tertile by 𝐵𝑖 , again forming tertiles. In the first column 
of Panel B, we also report the average mispricing beta 𝑏𝑖   of each tertile; in the last row and the last column (H-L), we report the difference in performance 
between the portfolio with the highest 𝑏𝑖 and 𝐵𝑖  and the portfolio with the lowest 𝑏𝑖 and 𝐵𝑖 , and the corresponding t-statistic. 
 

      Panel A: Performance of decile portfolios sorted on the mispricing beta and dynamic arbitrage 
    Unconditional Model   Conditional Model 
 𝑏MGMT 𝑏PERF 𝑏COMB   𝑏MGMT 𝑏PERF 𝑏COMB   𝐵MGMT 𝐵PERF 𝐵COMB 

Portfolio (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

1 -0.04 0.22 0.06   -0.04 0.20 0.09   0.14 0.22 0.25 
2 0.17 0.23 0.17   0.18 0.24 0.11   0.21 0.27 0.26 
3 0.32 0.31 0.23   0.32 0.29 0.21   0.28 0.34 0.41 
4 0.33 0.27 0.30   0.32 0.32 0.36   0.25 0.28 0.34 
5 0.35 0.28 0.36   0.36 0.29 0.34   0.36 0.34 0.35 
6 0.42 0.27 0.32   0.32 0.34 0.31   0.37 0.27 0.39 
7 0.27 0.32 0.38   0.36 0.33 0.38   0.40 0.32 0.24 
8 0.50 0.41 0.38   0.37 0.41 0.42   0.23 0.23 0.38 
9 0.53 0.41 0.47   0.60 0.42 0.36   0.42 0.38 0.26 
10 0.46 0.58 0.64   0.51 0.48 0.73   0.68 0.67 0.44 

Port. 10 – Port. 1 0.51 0.36 0.59   0.55 0.28 0.63   0.54 0.45 0.18 
t-statistics 3.37 2.18 3.63   3.59 1.69 4.03   3.42 2.68 1.14 
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 Panel B: Performance of 3×3 portfolios sorted on the mispricing beta and dynamic arbitrage 
    
MGMT: 𝑏𝑖 Low 𝐵𝑖  Med 𝐵𝑖  High 𝐵𝑖  H ‒ L t-stat 

Low 𝑏𝑖 -0.40 -0.04 0.13 0.41 0.45 4.01 
Med 𝑏𝑖 -0.14 0.33 0.37 0.40 0.07 0.71 
High 𝑏𝑖 0.07 0.45 0.47 0.46 0.02 0.13 

H ‒ L 0.47 0.48 0.35 0.05 0.50 2.67 
t-stat   3.90 4.77 0.40 3.96   

PERF:             
Low 𝑏𝑖 -0.09 0.17 0.22 0.34 0.17 1.27 
Med 𝑏𝑖 0.04 0.27 0.32 0.41 0.14 1.81 
High 𝑏𝑖 0.15 0.42 0.34 0.50 0.08 0.62 

H ‒ L 0.24 0.25 0.12 0.15 0.32 1.95 
t-stat   1.97 1.58 1.16 2.63   

COMB:             
Low 𝑏𝑖 -0.10 0.03 0.20 0.25 0.22 1.72 
Med 𝑏𝑖 0.02 0.32 0.35 0.36 0.04 0.51 
High 𝑏𝑖 0.13 0.59 0.45 0.44 -0.15 -1.28 

H ‒ L 0.23 0.55 0.25 0.18 0.40 0.60 
t-stat   4.82 2.65 1.43 3.52   
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Table 4 Predictability of mispricing beta on performance in the short run 
 
The table reports the results of the Fama-MacBeth second stage cross-sectional regressions:  in the first stage Eq (7), we 
regress at the end of each month (t) the excess return of each fund on a mispricing factor MISP𝑡 over the previous 36 
months, controlling for risk factors, MKTRF, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and DEF, 
described in Section 3.3. and sentiment hedging against market risk; in the second stage Eq (8), we run the cross-sectional 
regressions of one-month-ahead fund performance 𝑃𝑒𝑟𝑓𝑖,𝑡+1 on the average mispricing beta (𝑏𝑖𝑡), dynamic arbitrage (𝐵𝑖𝑡), 
and sentiment hedging (𝐵𝑖𝑡𝑚), controlling for fund characteristics (𝐅𝐮𝐧𝐝𝐂𝐡𝐚𝐫𝒕), fund age, fund size, management fees, 
incentive fees, high-water-mark, leverage, lockup period, and redemption period.  

𝑟𝑖𝑡 = 𝛼𝑖 + 𝑏𝑖𝑡MISP𝑡 + 𝐵𝑖𝑡(𝑆𝑡−1 − 𝑆̅)MISP𝑡 + 𝐵𝑖𝑡𝑚(𝑆𝑡−1 − 𝑆̅)MKTRF𝑡 + 𝜸′𝑖𝑭𝒕 + 휀𝑖𝑡       (7) 
Perf𝑖,𝑡+1 = 𝑤𝑡 + 𝜃1,𝑡𝑏𝑖𝑡 + 𝜃2,𝑡𝐵𝑖𝑡 + 𝜃3,𝑡𝐵𝑖𝑡

𝑚 + 𝜽′𝒕𝐅𝐮𝐧𝐝𝐂𝐡𝐚𝐫𝒕 + 𝜖𝑖,𝑡+1                   (8) 
Where 𝑆𝑡−1  is the one-month lagged BW (2006) sentiment-level index, 𝑆̅ is the average of the sentiment level, the 
performance Perf𝑖,𝑡+1 is measured as the one-month leading alpha, which is the difference between the excess return 
𝑟𝑖,𝑡+1 and the products of the fund’s risk factor loadings and factor returns in month t+1, as in Eq (9). The fund’s risk 
factor loadings are estimated using regression Eq (6) over the previous 36 months. The reported t-statistics are calculated 
based on Newey-West standard errors with 2 lags. 
 

Dependent variable: One-month leading alpha  
  MGMT PERF COMB 
  Coef. t-stat Coef. t-stat Coef. t-stat 
𝑏𝑖𝑡 -0.33 -0.95 1.25 2.79 0.72 2.10 
𝐵𝑖𝑡  0.81 3.46 0.58 2.44 0.67 2.40 
𝐵𝑖𝑡
𝑚 -1.02 -3.54 -0.97 -3.44 -0.91 -3.39 

Log (Age) -0.07 -1.33 -0.09 -1.68 -0.07 -1.23 
Log (Size) 0.12 7.1 0.13 7.02 0.12 6.67 
Mgmtfee -0.07 -1.84 -0.07 -1.94 -0.08 -1.97 
Incfee -0.01 -2.82 -0.01 -2.81 0.00 -1.71 
HWM 0.08 1.98 0.09 1.96 0.11 2.06 
Leverage 0.02 0.55 0.04 1.18 0.01 0.36 
Lockup 0.28 3.23 0.36 4.33 0.25 2.31 
Redemp. 0.60 2.27 0.86 3.03 0.83 2.91 
Constant -1.72 -5.39 -1.90 -5.64 -1.76 -5.25 
Obs       200,292      200,292     200,292  
Adj-R2  0.08  0.07  0.07  
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Table 5 Predictability of mispricing beta on performance in the long run 
 
The table reports the results of the Fama-MacBeth second stage cross-sectional regressions: at the end of each month (t), in the first stage, we regress with Eq 
(7); in the second stage, we run the cross-sectional regressions with Eq (8), in which the dependent variable is the 3-, 6-, 9-, 12-, 18-, or 24-month leading 
alpha. For example, the 12-month leading alpha is the average of alphas estimated by Eq (9) from t+1 to t+12. The reported t-statistics are calculated based on 
Newey-West standard errors with 2 lags. 
 

Dependent variable: N-month leading alpha  
  3-month 6-month 9-month 12-month 18-month 24-month 
MGMT: Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 
𝑏𝑖𝑡 -0.33 -1.00 -0.28 -0.89 -0.22 -0.80 -0.15 -0.67 -0.09 -0.49 -0.07 -0.44 
𝐵𝑖𝑡  0.82 3.42 0.83 3.36 0.84 3.58 0.83 3.94 0.74 4.27 0.62 4.25 
𝐵𝑖𝑡
𝑚 -1.01 -3.51 -0.97 -3.53 -0.92 -3.65 -0.88 -3.85 -0.71 -3.99 -0.53 -3.87 

FundChar Yes   Yes   Yes   Yes   Yes   Yes   
Adj-R2 0.08   0.09   0.09   0.09   0.08   0.07   
PERF:                         
𝑏𝑖𝑡 1.24 3.00 1.27 3.41 1.31 4.00 1.31 4.53 1.21 4.85 1.12 5.28 
𝐵𝑖𝑡  0.55 2.53 0.53 2.45 0.47 2.39 0.43 2.34 0.28 1.87 0.15 1.17 
𝐵𝑖𝑡
𝑚 -0.99 -3.51 -0.97 -3.65 -0.94 -3.84 -0.92 -4.05 -0.79 -4.31 -0.61 -4.31 

FundChar Yes   Yes   Yes   Yes   Yes   Yes   
Adj-R2 0.08   0.08   0.08   0.08   0.07   0.07   
COMB:                         
𝑏𝑖𝑡 0.69 2.11 0.68 2.06 0.73 2.32 0.80 2.79 0.82 3.37 0.80 3.82 
𝐵𝑖𝑡  0.70 2.65 0.77 3.00 0.75 3.22 0.71 3.33 0.58 3.38 0.46 3.17 
𝐵𝑖𝑡
𝑚 -0.94 -3.47 -0.94 -3.58 -0.93 -3.79 -0.90 -4.02 -0.77 -4.29 -0.61 -4.27 

FundChar Yes   Yes   Yes   Yes   Yes   Yes   
Adj-R2 0.07   0.07   0.07   0.08   0.07       
Obs 200,292      200,292     200,292    200,292    200,292    200,292    
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Table 6 Predictability over subperiods 
 
The table reports, in Panel A, the results of the Fama-MacBeth second stage cross-sectional regressions over two sample subperiods: the financial crisis period 
including years from 1998 to 2001 (i.e., Technology Bubble) and from 2007 to 2009 (i.e., 2008 Financial Crisis) and in Panel B, the results over the non-financial 
crisis period. The dependent variable is the 1-, 3-, 6-month leading alpha. The reported t-statistics are calculated based on Newey-West standard errors with 2 
lags. 
 

Panel A: Subperiod 1998-2001 and 2007-2009    Panel B: Subperiod excluding 1998-2001 and 2007-2009 
  1-month 3-month 6-month   1-month 3-month 6-month 
MGMT: Coef. t-stat Coef. t-stat Coef. t-stat   Coef. t-stat Coef. t-stat Coef. t-stat 
𝑏𝑖𝑡 -1.08 -1.40 -1.16 -1.55 -1.16 -1.70   0.11 0.39 0.15 0.55 0.24 0.98 
𝐵𝑖𝑡  1.08 2.18 1.12 2.26 1.20 2.30   0.65 2.94 0.65 2.72 0.62 2.62 
𝐵𝑖𝑡
𝑚 -0.68 -1.65 -0.63 -1.55 -0.67 -1.68   -1.22 -3.20 -1.23 -3.22 -1.14 -3.21 

FundChar Yes   Yes   Yes     Yes   Yes   Yes   
Adj-R2 0.09   0.09   0.09     0.08   0.08   0.09   
PERF:                           
𝑏𝑖𝑡 1.88 1.79 1.93 2.00 2.08 2.38   0.89 2.68 0.84 2.78 0.80 3.00 
𝐵𝑖𝑡  1.17 4.48 0.92 4.59 0.79 3.89   0.24 0.70 0.33 1.04 0.37 1.17 
𝐵𝑖𝑡
𝑚 -0.61 -1.39 -0.56 -1.35 -0.59 -1.56   -1.18 -3.25 -1.23 -3.37 -1.19 -3.42 

FundChar Yes   Yes   Yes     Yes   Yes   Yes   
Adj-R2 0.08   0.08   0.08     0.07   0.08   0.08   
COMB:                           
𝑏𝑖𝑡 0.08 0.11 0.21 0.29 0.41 0.55   1.10 3.51 0.98 3.38 0.84 3.27 
𝐵𝑖𝑡  0.73 2.40 0.73 2.73 0.84 3.04   0.63 1.57 0.69 1.77 0.72 1.95 
𝐵𝑖𝑡
𝑚 -0.67 -1.57 -0.62 -1.46 -0.64 -1.57   -1.05 -3.04 -1.12 -3.24 -1.12 -3.34 

FundChar Yes   Yes   Yes     Yes   Yes   Yes   
Adj-R2 0.06   0.06   0.07     0.07   0.07   0.07   
Obs 63,281  63,281  63,281   137,011  137,011  137,011   
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Table 7 Economic value of dynamic arbitrage 
 
This table presents the results of our univariate portfolio analysis on the economic value of hedge funds’ dynamic arbitrage 
ability. Each month, we form ten portfolios based on hedge funds’ dynamic arbitrage coefficients estimated over the past 36 
months and then hold the portfolios for a subsequent 1-, 3-, 6-, 9-, 12-, 18-, or 24-month holding period. Portfolio 10 (1) 
includes funds with the highest (lowest) dynamic arbitrage coefficients. Panel A, B, and C report, for different holding periods, 
the time-series average alpha (in percent per month) of each portfolio consisting of funds dynamic arbitrage ability in their 
arbitrage on MGMT, PERF, and COMB mispricing, respectively. The alphas are estimated for each fund by Eq (9), in which 
the fund’s risk factor loadings are estimated with the regression Eq (6) over the previous 36 months. In the last two rows of 
each panel, we report the time-series average difference in performance between Portfolio 10 and Portfolio 1 and the 
corresponding t-statistic, which is calculated based on Newey-West standard errors with 2 lags. 
 
 

  Panel A: Dynamic arbitraging on MGMT factor 
Portfolio 1-month 3-month 6-month 9-month 12-month 18-month 24-month 
1 -0.17 -0.18 -0.20 -0.20 -0.20 -0.21 -0.21 
2 0.09 0.08 0.08 0.09 0.09 0.08 0.09 
3 0.07 0.07 0.09 0.09 0.08 0.10 0.11 
4 0.16 0.16 0.17 0.19 0.20 0.21 0.22 
5 0.18 0.18 0.20 0.22 0.22 0.23 0.23 
6 0.29 0.31 0.30 0.31 0.32 0.32 0.31 
7 0.27 0.27 0.29 0.29 0.30 0.29 0.27 
8 0.24 0.25 0.25 0.27 0.29 0.30 0.28 
9 0.16 0.22 0.26 0.29 0.33 0.33 0.31 
10 0.28 0.35 0.41 0.46 0.49 0.47 0.40 
Port. 10 – Port. 1 0.45 0.54 0.61 0.66 0.69 0.68 0.61 
t-statistics 2.93 3.89 4.72 5.12 5.50 6.96 7.14 

 
 
 

  Panel B: Dynamic arbitraging on PERF factor 
Portfolio 1-month 3-month 6-month 9-month 12-month 18-month 24-month 
1 -0.01 -0.05 -0.09 -0.10 -0.11 -0.11 -0.10 
2 0.22 0.23 0.20 0.18 0.18 0.16 0.15 
3 0.16 0.19 0.20 0.20 0.21 0.23 0.23 
4 0.28 0.24 0.25 0.26 0.26 0.25 0.24 
5 0.20 0.23 0.23 0.24 0.24 0.23 0.22 
6 0.13 0.17 0.20 0.22 0.23 0.23 0.23 
7 0.15 0.16 0.17 0.21 0.23 0.25 0.24 
8 0.19 0.20 0.22 0.24 0.25 0.26 0.25 
9 0.12 0.16 0.24 0.28 0.31 0.32 0.31 
10 0.12 0.18 0.24 0.28 0.31 0.29 0.24 
Port. 10 – Port. 1 0.13 0.23 0.33 0.39 0.42 0.39 0.34 
t-statistics 0.90 1.92 2.94 3.65 4.25 4.33 4.22 
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  Panel C: Dynamic arbitraging on COMB factor 

Portfolio 1-month 3-month 6-month 9-month 12-month 18-month 24-month 
1 -0.01 -0.04 -0.10 -0.14 -0.16 -0.20 -0.19 
2 0.19 0.18 0.15 0.12 0.11 0.10 0.09 
3 0.25 0.26 0.24 0.25 0.26 0.27 0.26 
4 0.22 0.22 0.23 0.24 0.25 0.26 0.25 
5 0.13 0.15 0.17 0.20 0.21 0.21 0.21 
6 0.17 0.17 0.19 0.22 0.24 0.24 0.24 
7 0.13 0.19 0.22 0.25 0.28 0.28 0.26 
8 0.16 0.15 0.18 0.22 0.26 0.28 0.28 
9 0.23 0.26 0.31 0.34 0.37 0.37 0.34 
10 0.10 0.18 0.25 0.30 0.31 0.29 0.27 
Port. 10 – Port. 1 0.11 0.21 0.35 0.43 0.47 0.49 0.45 
t-statistics 0.66 1.59 2.84 3.75 4.39 5.29 5.62 
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Table 8 Sentiment betas versus mispricing betas 
 
Panel A of the table reports the average sentiment beta of hedge funds with significant mispricing betas at different confidence 
levels (i.e., different t-statistics). The mispricing beta of each fund (𝑏𝑖) is estimated under the unconditional model in Eq (4) 
over their lifetime. The sentiment beta of each fund (𝛽𝑖𝑆) is estimated by the regressions of the excess return of the fund on 
the BW sentiment level without lag controlling for the risk factors described in Section 3.3, as in Eq (12), over their lifetime. 
Panel B reports the average sentiment beta of the decile portfolios of hedge funds sorted on their mispricing betas.  
 

Panel A: Sentiment betas of funds with different mispricing betas 
 MGMT   PERM   COMB 

 
No. 

funds 
Sentiment 

beta t-stat   
No. 

funds 
Sentiment 

beta t-stat   
No. 

funds 
Sentiment 

beta t-stat 
t ≤ −2.326    887 -0.05 -1.21   88 -0.03 -0.19   121 -0.24 -1.09 
t ≤ −1.960    1,142 -0.05 -1.39   155 -0.13 -1.38   198 -0.15 -0.94 
t ≤ −1.645    1,387 -0.04 -1.24   232 -0.15 -1.97   291 -0.12 -1.01 
t ≤ −1.282    1,692 -0.02 -0.58   340 -0.11 -1.04   455 0.02 0.20 
t ≥ 1.282    211 0.11 1.05   1,272 0.09 3.24   893 0.13 3.96 
 t ≥ 1.645    135 0.18 1.28   943 0.10 3.14   623 0.15 3.49 
t ≥ 1.960    84 -0.01 -0.08   708 0.09 2.53   431 0.19 3.36 
t ≥ 2.326    48 0.12 0.43   493 0.12 3.24   270 0.18 2.19 

 
 
 

Panel B: Sentiment betas of decile portfolios sorted on mispricing betas 
 MGMT   PERM   COMB 
Portfolio Sentiment beta t-stat   Sentiment beta t-stat   Sentiment beta t-stat 

1 -0.05 -0.39   -0.09 -0.66   -0.11 -0.77 
2 0.17 1.51   -0.14 -1.96   -0.17 -2.38 
3 0.13 2.12   -0.08 -1.58   0.01 0.12 
4 0.00 0.00   -0.12 -2.18   -0.08 -1.38 
5 -0.10 -1.96   0.02 0.44   -0.06 -1.58 
6 -0.04 -0.78   -0.07 -1.45   0.00 0.09 
7 -0.02 -0.43   -0.02 -0.39   0.00 0.02 
8 -0.03 -0.70   0.07 1.86   0.04 0.77 
9 0.04 0.70   0.08 1.27   0.07 1.34 
10 -0.04 -0.43   0.40 3.34   0.35 2.94 
Port. 10 – Port. 1 0.01 0.09   0.50 2.67   0.46 2.44 
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Table 9 Portfolio weights of overpriced stocks of hedge funds betting against overpricing 
 
The table reports the estimated portfolio weights of overpriced stocks of hedge funds with significant mispricing betas at 
different confidence levels (i.e., different t-statistics). The mispricing beta of each fund is estimated under the unconditional 
model in Eq (4) over their lifetime with the COMB factor. Each year, we run the regression (14) of each fund’s return on the 
market return and the (orthogonalized) overpricing factor. The overpricing factor is the difference in returns between a 
portfolio of overpriced stocks and the market portfolio, 𝑅𝑆𝑡 − 𝑅𝑀𝑡. The orthogonalized overpricing factor is the residuals of 
the regression of the overpricing factor on the risk factors, SMB, ∆TERM, ∆Credit, Ptfsbd, Ptfsfx, Ptfcom, LIQ, INF, and 
DEF. The portfolio weights of overpriced stocks of each hedge fund in each year, 𝑤𝑆, are estimated as (𝑏 − 𝑔)𝑚𝑆 + 𝑔, where 
𝑚𝑆 is the weight of overpriced stocks in the market portfolio. We report the average of estimated coefficients b, g, and 𝑤𝑆 
over the period 1995-2016.  
 

 Overpricing factor  Orthogonalized overpricing factor 
  b g 𝑤𝑆 Adj. R2  b g 𝑤𝑆 Adj. R2 
t > 2.326 0.26 -0.10 -0.09 0.28  0.26 -0.14 -0.12 0.28 

 6.51 -2.73 -2.49   5.95 -3.70 -3.48  
t > 1.96 0.26 -0.10 -0.08 0.26  0.25 -0.13 -0.11 0.26 

 6.49 -2.56 -2.33   5.93 -3.48 -3.26  
t > 1.645 0.26 -0.09 -0.07 0.26  0.25 -0.12 -0.10 0.26 

 6.76 -2.33 -2.09   6.21 -3.22 -3.00  
t > 1.282 0.25 -0.07 -0.06 0.25  0.25 -0.10 -0.09 0.25 

 6.69 -2.02 -1.78   6.26 -2.89 -2.66  
          
t < ‒ 2.326 0.32 0.18 0.19 0.27  0.35 0.17 0.18 0.27 

 8.43 5.28 5.69   8.74 5.07 5.51  
t < ‒ 1.96 0.29 0.18 0.19 0.29  0.32 0.17 0.17 0.28 

 13.05 6.36 6.80   14.34 6.06 6.53  
t < ‒ 1.645 0.25 0.16 0.16 0.28  0.28 0.15 0.15 0.27 

 11.24 5.43 5.79   11.54 5.53 5.95  
t < ‒ 1.282 0.23 0.14 0.14 0.25  0.26 0.12 0.13 0.24 
  11.05 5.36 5.75   11.95 5.33 5.76  
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Table 10 Bootstrap analysis of mispricing betas 
 
The table reports the results of the bootstrap analysis for assessing the significance of the mispricing betas (𝑏𝑀𝐺𝑀𝑇  
and 𝑏𝑃𝐸𝑅𝐹) and the dynamic arbitrage coefficients (𝐵𝑀𝐺𝑀𝑇  and 𝐵𝑃𝐸𝑅𝐹) estimated under the unconditional model Eq 
(4.1) and the conditional model Eq (5.1), respectively. For each coefficient, the first row reports the t-statistics of the 
coefficient at different extreme percentiles across the sample of 3584 actual funds, and the second row is the empirical 
p-values from bootstrap simulations. The number of resampling iterations is 1000. 
 
 

   Bottom t-stat  Top t-stat 
Coefficient     1% 3% 5% 10%   10% 5% 3% 1% 

Unconditional model 
𝑏MGMT t-stat  -5.28 -4.46 -4.01 -3.36  0.78 1.42 1.79 2.53 

 p-value  0.00 0.00 0.00 0.00  1.00 1.00 1.00 0.82 
𝑏PERF t-stat  -3.07 -2.22 -1.86 -1.23  2.64 3.29 3.67 4.25 

 p-value  0.00 0.01 0.24 1.00  0.00 0.00 0.00 0.00 
Conditional model 

𝑏MGMT t-stat  -5.20 -4.50 -4.03 -3.38  0.69 1.21 1.55 2.22 
 p-value  0.00 0.00 0.00 0.00  1.00 1.00 1.00 1.00 
𝑏PERF t-stat  -3.20 -2.34 -1.87 -1.25  2.41 2.97 3.41 4.11 

 p-value  0.00 0.00 0.11 1.00  0.00 0.00 0.00 0.00 
𝐵MGMT t-stat  -2.76 -2.14 -1.79 -1.34  1.76 2.32 2.69 3.23 

 p-value  0.57 0.82 1.00 1.00  0.00 0.00 0.00 0.00 
𝐵PERF t-stat  -3.02 -2.24 -1.90 -1.41  1.80 2.39 2.71 3.34 

  p-value   0.06 0.58 0.82 0.99   0.00 0.00 0.00 0.00 
 

 
 




