
UNIVERSITÉ DU QUÉBEC À MONTRÉAL

TOWARDS OVERCOMING ZERO-DAY VULNERABILITIES IN OPEN

SOURCE SOFTWARE : AN AUTOMATIC APPROACH FOR SECURITY

PATCHES IDENTIFICATION

DISSERTATION

PRESENTED

AS PARTIAL FULFILLMENT

OF THE DOCTORATE IN COMPUTER SCIENCE

BY

DELWENDE DONALD ARTHUR SAWADOGO

AUGUST 2022

UNIVERSITÉ DU QUÉBEC À MONTRÉAL

VERS UNE RÉDUCTION DES VULNÉRABILITÉS "ZERO-JOUR" À

TRAVERS DES APPROCHES AUTOMATIQUES DE GESTION DES

CORRECTIFS DE SÉCURITÉ

THÈSE

PRÉSENTÉE

COMME EXIGENCE PARTIELLE

DU DOCTORAT EN INFORMATIQUE

PAR

DELWENDE DONALD ARTHUR SAWADOGO

AOÛT 2022

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le
formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 – Rév.04-2020). Cette autorisation stipule que «conformément à
l’article 11 du Règlement no 8 des études de cycles supérieurs, [l’auteur] concède à
l’Université du Québec à Montréal une licence non exclusive d’utilisation et de
publication de la totalité ou d’une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l’auteur] autorise
l’Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une
renonciation de [la] part [de l’auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l’auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support of many people

who, in one way or another, have contributed and extended their precious know-

ledge and experience in my PhD studies. It is my pleasure to express my gratitude

to them.

First of all, I would like to express my deepest thanks to my supervisors Prof.

Naouel Moha and Prof. Tegawendé Bissyandé, who have given me this great op-

portunity to come across continents to pursue my doctoral degree. They showed

me passion, opportunity, intuition, and the future. I would like to thank them for

their guidance, passion for research, and social support in my difficult moments.

Since then, working in this field has been just joyful for me. They have taught

me how to perform research, write technical papers, and conduct fascinating pre-

sentations. Their dedicated guidance has made my PhD journey a fruitful and

fulfilling experience. I am pleased about the friendship we have built up during

the years.

Second, I am equally grateful to Prof. Jacques Klein (University of Luxembourg),

who did not spare any effort to assist me during all the steps of this thesis.

Third, I would like to extend my thanks to all my co-authors, including Prof.

Yves Le Traon, Dr. Kevin Alix, Timothé Riom, Abdoul-Kader Kaboré, and all the

team members of TruX and SerVal at SnT (Interdisciplinary Centre for Security,

Reliability and Trust, University of Luxembourg) for their valuable discussions

and collaborations. It was always passionate, insightful, and pleasant to converse

with them.

iv

I would like to also express my great thanks to all of my friends in Montreal and

Luxembourg for our memorable moments.

Moreover, I would like to thanks my family, brothers, and sisters for always giving

me the strength to achieve my goals, being present in all steps of my life, and

giving me this unconditional love. May God bless you.

Finally, I am as ever indebted to God, who made all things possible. "Father, I

thank you because you have heard me" (John 11 :41)

DEDICATION

To my parents, who unfortunately passed away before seeing this stage of my
life. In particular to my mother, whom I thank for always having motivated and
supported me in my life and especially during the beginning of this thesis. I am

sure that from there you are proud of me.

Table des matières

RÉSUMÉ xi

ABSTRACT xiii

CHAPITRE I INTRODUCTION 1

1.1 Motivation . 3

1.2 Thesis statement . 4

1.2.1 Existing lines of research 5

1.2.2 Thesis map . 7

1.2.3 Thesis problems . 8

1.2.4 Research methodology . 10

1.3 Thesis contributions . 13

1.4 Roadmap . 14

CHAPITRE II BACKGROUND AND RELATED WORK 15

2.1 Zero-day vulnerabilities . 15

2.2 Security-related bug reports . 18

2.3 Vulnerability-fixing patch identification 19

2.3.1 Security commit identification 19

2.3.2 Vulnerability management 20

2.3.3 Change analysis . 22

2.4 Vulnerability-introducing patch identification 23

vi

vii

2.4.1 Static analysis for vulnerability detection 23

2.4.2 Vulnerability detection with symbolic execution 26

2.4.3 Vulnerability detection with dynamic analysis 26

2.4.4 Vulnerability detection with code metadata 27

2.4.5 Machine learning application for vulnerability analysis . . 28

2.4.6 Vulnerability detection at commit level 31

CHAPITRE III VULNERABILITY-FIXING PATCH IDENTI-

FICATION 33

3.1 Motivation . 36

3.2 Data Collection . 39

3.2.1 Security patches (for positive datasets) 41

3.2.2 Pure bug fixing patches (for negative datasets) 42

3.2.3 Code enhancement patches (for negative datasets) 43

3.2.4 Unlabeled patches . 44

3.3 SSPCatcher . 45

3.3.1 Feature Extraction and Engineering 46

3.3.2 Feature Assessment . 49

3.3.3 Co-Training Model Learning 54

3.4 Experimental Study and Results 57

3.4.1 RQ1 : Effectiveness of SSPCatcher 60

3.4.2 RQ2 : Cross-project Evaluation 62

3.4.3 RQ3 : How does SSPCatcher compare against the state-

of-the-art ? . 64

3.4.4 RQ4 : Can SSPCatcher flag unlabeled patches in the wild ? 66

3.5 Insights, Threats to Validity, and Limitations 68

3.5.1 SSPCatcher and the related work 68

3.5.2 Discussion . 69

3.5.3 SSPCatcher and the practice of software development . 70

3.5.4 Threats to validity . 71

3.5.5 Limitations . 71

3.5.6 Future work . 73

3.6 Summary . 73

CHAPITRE IV VULNERABILITY-INTRODUCING PATCH IDEN-

TIFICATION 74

4.1 Replication study of VCCFinder 78

4.1.1 Datasets . 79

4.1.2 Features . 85

4.1.3 Machine learning algorithm 87

4.1.4 Results . 90

4.1.5 Analysis . 95

4.2 Research for improvement . 96

4.2.1 Using an alternate feature set 97

4.2.2 Adding Co-Training . 99

4.3 Difference with related work . 104

4.4 Summary . 105

CHAPITRE V CONCLUSIONS AND FUTURE WORK 107

5.1 Conclusions . 107

5.2 Discussions . 109

5.3 Future works . 110

RÉFÉRENCES 113

viii

ix

LISTE DES FIGURES

1.1 Thesis map . 7

1.2 Research methodology . 11

2.1 Zero-day vulnerabilities life cycle 17

3.1 Delays for validating contributor patches in Linux based on explicit

vulnerabilities . 37

3.2 Comparative delays for OpenSSL release after an explicit security

patch vs after any other patch . 38

3.3 Example of a security patch in the OpenSSL library 39

3.4 Distinct subsets of the dataset built for our experiments 41

3.5 Secbench dataset distribution . 42

3.6 Workflow for assessing the discriminative power of features 49

3.7 Euler diagrams representing the overlaps between sets of unlabeled

patches that are classified as security patches when using One-Class

SVM model based on variants of feature sets. 51

3.8 Co-Training learning model (cf. details in Algorithm 1) 56

3.9 Precision, Recall and Accuracy metrics in benchmark evaluation

with varying sizes for the unlabeled dataset. 58

3.10 Do the highlighted features provide relevant hints for manual review

of flagged patches ? . 68

4.1 Extracted from the VCCFinder paper : precision/recall performance

profile of VCCFinders . 91

4.2 Precision/recall performance profile of VCCFinder’s Replication . 91

x

4.3 Precision/recall performance profile of VCCFinder’s replication for

varying values of C parameter . 94

4.4 Precision/recall performance profile for comparing classifying algo-

rithms . 94

4.5 Precision-recall performances using New Features 100

4.6 Co-Training Performance using VCC Features’ set 103

4.7 Co-Training Performance using New Features set 103

RÉSUMÉ

Les attaques de sécurité logicielle peuvent avoir un impact considérable : elles
peuvent porter atteinte à la vie privée par la fuite de données, entraîner des
pertes financières par l’indisponibilité des services, corrompre l’intégrité de don-
nées sensibles, etc. De nombreux efforts sont déployés par les développeurs et les
équipes de recherche pour réduire l’exposition des logiciels aux attaques de par-
ties malveillantes. Les équipes de développement de logiciels propriétaires sont
généralement très organisées, avec des revues de code régulières et des analyses
statiques ainsi que des tests dynamiques continus. Dans le monde du logiciel libre,
ces ressources sont rares et les procédures de contribution au code source sont ou-
vertes. Des vulnérabilités jour-zéro peuvent passer inaperçues. Une vulnérabilité
de type jour-zéro est une vulnérabilité dans un système ou un dispositif qui a été
divulguée, mais n’a pas encore été corrigée. Ce type de vulnérabilité peut rester
inconnu des parties légitimes pendant de longues durées, augmentant ainsi les
risques d’attaques. L’objectif de cette thèse est de proposer une approche géné-
rique et automatique utilisant des techniques d’apprentissage automatique pour
détecter le plus tôt possible les vulnérabilités dans le code des logiciels libres en
contribuant aux deux blocs suivants :

— L’identification des commits corrigeant les vulnérabilités : lorsqu’un change-
ment de code (commit) est étiqueté comme étant pertinent pour la sécurité,
c’est-à-dire comme corrigeant une vulnérabilité, les mainteneurs diffusent
rapidement le changement, et les utilisateurs sont informés de la nécessité
de mettre à jour la bibliothèque l’application. Malheureusement, certains
changements pertinents pour la sécurité passent souvent inaperçus car ils
représentent des correctifs silencieux de vulnérabilités. Nous proposons SSP-
Catcher, une approche basée sur le co-entraînement pour détecter les cor-
rectifs de sécurité (c’est-à-dire les correctifs qui corrigent le code vulnérable)
dans le cadre d’un service de surveillance automatique des dépôts de code.
En s’appuyant sur différentes classes de caractéristiques, nous montrons em-
piriquement qu’une telle automatisation est réalisable et peut donner une
précision de plus de 80% dans l’identification des correctifs de sécurité, avec
un rappel de plus de 80%. Au-delà d’une telle évaluation comparative avec
des données de base qui démontre une amélioration par rapport à l’état de
l’art, nous avons confirmé que SSPCatcher peut aider à capturer des correc-
tifs de sécurité qui n’ont pas été signalés comme tels.

xii

— L’identification des commits introduisant les vulnérabilités : la détection des
vulnérabilités dans les logiciels est une course constante entre les équipes
de développement et les attaquants potentiels. Tandis que de nombreuses
approches statiques et dynamiques se sont concentrées sur l’analyse régu-
lière du logiciel dans son intégralité, une direction de recherche récente s’est
concentrée sur l’analyse des changements appliqués au code. Nous propo-
sons dans cette partie une nouvelle approche pour identifier les commits
contribuant à la vulnérabilité, basée sur une technique d’apprentissage semi-
supervisée avec un ensemble de caractéristiques spécifiques. En outre, étant
donné l’influence de VCCFinder (Perl et al., 2015) dans cette direction
de recherche, nous entreprenons une enquête sur ses performances en tant
que système de pointe. À cette fin, nous proposons également une étude de
réplication de l’approche d’apprentissage supervisé VCCFinder.

Ce document présente notre problématique, nos contributions ainsi que les travaux
réalisés dans cette thèse.

Mots-clés : correctif de sécurité, vulnérabilités "jour zéro", attaque de sécurité
logicielle, co-entraînement, vulnérabilité logicielle, apprentissage automatique, lo-
giciel libre.

ABSTRACT

Attacks on software security can have a significant impact : they can damage pri-
vacy through data leakage, cause financial losses through unavailability of services,
corrupt the integrity of sensitive data, etc. Software developers and teams are ma-
king many efforts to reduce software exposure to attacks by malicious parties.
Proprietary software development teams are usually very organized, with regu-
lar code reviews, static analysis, and dynamic testing. In the open source world,
these resources are scarce, and the procedures for contributing source code are
more open. Zero-day vulnerabilities can go unnoticed. A zero-day vulnerability is
a computer security flaw that the software or service provider is not yet aware
of or that has not yet been patched. This type of vulnerability could easily go
unnoticed by legitimate parties, thus increasing the risk of attacks. This thesis
aims to propose a generic and automatic approach using machine learning tech-
niques to detect vulnerabilities in open source software code as early as possible
by contributing to the following two blocks :

— Vulnerability-fixing patch identification : when fixing change is labeled as
being security-relevant, i.e., as fixing a vulnerability, maintainers rapidly
spread the change, and users are notified about the need to update to a
new version of the library or of the application. Unfortunately, oftentimes,
some security-relevant changes go unnoticed as they represent silent fixes of
vulnerabilities. We propose SSPCatcher, a Co-Training-based approach
to catch security patches (i.e., patches that address vulnerable code) as part
of an automatic monitoring service of code repositories. Leveraging different
classes of features, we empirically show that such automation is feasible and
can yield a precision of over 80% in identifying security patches, with an
unprecedented recall of over 80%. Beyond such a benchmarking with ground
truth data which demonstrates an improvement over the state-of-the-art, we
confirmed that SSPCatcher can help catch security patches that were not
reported as such.

— Vulnerability-introducing patch identification :
Detecting vulnerabilities in software is a constant race between development
teams and potential attackers. While many static and dynamic approaches
have focused on regularly analyzing the software in its entirety, a recent
research direction has focused on the analysis of changes that are applied to

xiv

the code. In this part, we design a new approach to identify vulnerability-
contributing commits based on a semi-supervised learning technique with
a specific feature set. In addition, given the influence of VCCFinder (Perl
et al., 2015) in this research direction, we undertake an investigation into
its performance as a state-of-the-art system. To that end, we also propose a
replication study on the VCCFinder supervised learning approach.

This document presents problems, contributions, and the work done in this thesis.

Keywords : security patches, zero-day vulnerabilities, security attacks, co-training,
software vulnerabilities, machine learning, open source software.

CHAPITRE I

INTRODUCTION

Software is an essential part of our daily lives. Nowadays, we are witnessing the

integration of software into every aspect of human activities, from simple mobile

phones to vehicles, homes (e.g., Google Home), etc. They are also increasingly in-

volved in more sensitive areas such as medicine, assistance for the elderly, natural

disaster management (Catarci et al., 2008), etc. Such software is developed by

software companies (proprietary software) or may have been developed by com-

panies or independent programmers who collaborate on the Internet and could

publicly open the source code of their work (open source software). Once mainly

leveraged by a few researchers, engineers, and other technology professionals, open

source software has rapidly gained the interest and respect of information techno-

logy (IT) professionals in many industries as well as user confidence. This change

can be explained by the openness of the code and the contribution to the de-

velopment of such software. For example, any person or entity can adapt and

customize the code of another given project. However, the use of such software

raises concerns about support and assistance in case of bugs and the impact that

modifying the code could have, such as the possibility of creating new bugs.

Detecting and fixing bugs in software is a priority activity for companies, as their

presence in software directly impacts the user experience and, therefore, the cre-

dibility of the company. Moreover, if the bug introduces a security hole, the issue-

2

level is even higher because it exposes users and/or the company to potential

attacks.

Vulnerabilities are therefore the most sensitive category of bugs. Many efforts are

made by companies and the open source communities to detect vulnerabilities in

software and to quickly propose patches to avoid attacks. Detection tools such as

VCCFinder (Perl et al., 2015) and the Buffer Overflow Detection Tool (Larochelle

et Evans, 2001) have been developed to detect vulnerabilities in open source soft-

ware (OSS). However, despite the existence of these detection/correction tools,

the efforts of companies and the open source communities, large-scale attacks are

still being carried out (Berr, 2017). Recent successful attacks have focused on vul-

nerabilities that were not yet known by any of the stakeholders in the software

projects (Farwell et Rohozinski, 2011). This type of vulnerabilities exploited by

attackers constitutes the category of zero-day vulnerabilities (Bilge et Dumitraş,

2012). A zero-day vulnerability is a computer security flaw that the software or

service provider is not yet aware of or that has not yet been patched.

For some years now, we have been witnessing sophisticated, excellently planned,

organized, and executed attacks by attackers exploiting these zero-day vulnerabi-

lities. These attacks affect many significant companies and thus leading to signi-

ficant financial and other losses (Farwell et Rohozinski, 2011).

The overall objective of this thesis is to propose some comprehensive approaches

using machine learning to reduce the presence of zero-day vulnerabilities in open

source software.

3

1.1 Motivation

Attacks that exploit zero-day vulnerabilities are becoming increasingly common.

They are the source of financial and technological damage. Moreover, we even see

the creation of online markets for these vulnerabilities (Egelman et al., 2013),

which leads to the rapid expansion of exploitable vulnerabilities worldwide and

creates an economy around the problem making the situation more complex. A

famous example of zero-day vulnerability exploitation is the attack on the Iranian

centrifuges (Farwell et Rohozinski, 2011). This confirms the urgency of in-time

detection and fixing of zero-day vulnerabilities and shows that areas, even the

seemingly most secure, are affected. Several approaches (Goseva-Popstojanova et

Tyo, 2018a; Wijayasekara et al., 2014; Wijayasekara et al., 2012; Perl et al.,

2015) have been tried to reduce these vulnerabilities.

In the industry context, giants such as Google and Microsoft have proposed free

resources based on the following principles :

— full disclosure : it consists of publishing the vulnerability so that all sta-

keholders know its existence. In this scheme, the attackers, the software

developers, and the potential victims have the same information ;

— responsible disclosure : it aims to consult the stakeholders affected by the

vulnerability (companies or the free software community) and offers them a

time to correct the vulnerability before full disclosure. For example : Google

announced since 2014 its zero-project 1 team that focuses on zero-day vulne-

rability detection. This team discloses vulnerabilities responsibly to encou-

rage affected companies to fix their vulnerabilities as soon as possible ;

— non-disclosure : non-disclosure proposes that discovered vulnerabilities are

not published.

1. https ://googleprojectzero.blogspot.com

4

In the research context, the zero-day vulnerabilities are addressed through various

different ways. Zero-day vulnerabilities are consequences of certain specific flaws.

To address the existence of silent vulnerabilities and the long delay in fixing these

vulnerabilities, many studies have been carried out to correct these flaws and can

be grouped into two main categories :

— Identification of vulnerability-fixing patches (Sun et al., 2019; Zhou et

Sharma, 2017; Sabetta et Bezzi, 2018; Meneely et al., 2013; Scandariato

et al., 2014; Ji et al., 2018; Yamaguchi et al., 2013). The second axis pro-

poses approaches that speeds up the processing of security bug reports fixing

and provides tools to detect vulnerability-fixing patches. The contribution

#1 of this dissertation proposes works in this area to improve state-of-

the-art and designs a new approach for the detection of vulnerability-fixing

patches.

— Identification of vulnerability-introducing changes and vulnerable code (Wi-

jayasekara et al., 2014; Wijayasekara et al., 2012; Ponta et al., 2019; Shin

et Williams, 2008; Chowdhury et al., 2008; Li et al., 2018; Perl et al.,

2015; Neuhaus et al., 2007). The first research axis investigates the possi-

bility of a given change (patch) being security-relevant or not. Automa-

tic approaches proposed leverage machine learning algorithms to detect

security-sensitive patches. The contribution #2 of this thesis proposes

approaches that improve the state-of-the-art and allow to vulnerability-

introducing patches detection.

1.2 Thesis statement

In this thesis, we explore the use of machine learning approaches to detect zero-

day vulnerabilities and reduce delays in the patching (i.e., the act of applying code

changes to a program source code) process to mitigate those in open source soft-

5

ware. Reducing these vulnerabilities in open source software consists of considering

several aspects. Several artifacts are involved in a typical scenario of detecting and

fixing vulnerabilities. This ranges, for example, from the bug report describing a

detected vulnerability in the software, to the patch that fixes the vulnerability.

Proposing a comprehensive approach for reducing zero-day vulnerabilities cannot

be done effectively without considering all these artifacts and their interactions.

To that end, we investigated the analysis the two main artifacts of software deve-

lopment process (Figure : 1.1) :

— Detect and disclose errors in the patching process : patches that are fixing a

bug could contain non-explicit vulnerability-fixing patches, i.e. patches that

fix vulnerability but that aren’t labeled as. When a silent vulnerability-

fixing patch is not identified as, with the right priority by maintainers, it

could increase the duration of the zero-day vulnerability presence. To reduce

it, we implement approaches to predict security-sensitive fixes to accelerate

the patching process (contribution #1).

— Detect and disclose zero-day vulnerabilities : considering the patches as

contributions from software teams to create functionalities. These patches,

instead of just adding new features and fixing bugs, could also introduce

vulnerabilities. When these vulnerabilities are not identified at the time by

legitimate parts, it may lead to the introduction of zero day vulnerability.

To fix it, we design a new approach to automatically detect whether an

incoming patch will introduce some vulnerabilities (contribution #2).

1.2.1 Existing lines of research

Many approaches were proposed to reduce the exposition of vulnerabilities in

source code. These approaches succeeded depending on their application scenario

6

but are still limited due to the complex life cycle of vulnerabilities introduction,

the missing of a comprehensive representation of vulnerabilities sensitives patches

(i.e, security-sensitive patches) and the problem of unbalanced datasets in this

area. We highlight three main research axes based on state-of-the-art reviews in

this section.

— Static code analysis : using static analysis for software vulnerabilities de-

tection is the first existing axis that yields those detection. It is based on

software code parsing to highlight code-snippets that could lead to vulne-

rable actions. However, these static approaches are limited because of the

rapid evolution of vulnerability patterns. Therefore, it is still challenging to

keep up with the detection of new vulnerabilities.

— Dynamic execution analysis : the dynamic analysis of software allows cat-

ching some vulnerabilities that are not necessarily visible through static

approaches. Dynamic taint analysis or fuzzing analyze the applications to

find some execution faults that can be used as a backdoor for malicious at-

tacks. However, this type of approach is part of the downstream detection

approaches, as it allows the presence or absence of the vulnerability to be

detected in the code and requires the code to be compiled each time. This

is not evident in the time optimization view due to the massive amount of

code set to execute at each time.

Static code and dynamic execution analysis allow the identification of vul-

nerable code and vulnerable behavior of code by analyzing the code or its

execution directly. However, these approaches are limited by the rapid evo-

lution of vulnerabilities and the massive scale of code.

— Machine learning : automatic learning approaches are recognized for predic-

ting future behavior better than the other methods for most of cases. They

allow for a given problem to train models that will predict with excellent ef-

ficiency whether or not an element belongs to a given class. Moreover, these

7

approaches will enable the evolution of the models according to the data to

adapt interactively to the growth of the nature of the problem. These ap-

proaches handle rapid pattern growth well through their prediction models

that can learn from existing pattern-sets and predict a new vulnerability

pattern based on the trained model. They are also reputed to work better

with vast sets of data. This could be the alternative to the scaling problem

of fuzzing approaches.

1.2.2 Thesis map

Figure 1.1 : Thesis map

Figure 1.1, presents the thesis map. We adopted a method that analyze primary

artifacts in the software development cycle to allow legitimate parts whose main

objective is to develop features to compete with attackers. The main steps of this

method can be grouped into the following points :

— upstream vulnerability detection problem. Unlike existing classical vulnera-

bility detection approaches (static, dynamic, etc.), which try to detect vul-

8

nerabilities in software once they have been introduced, we are interested in

predicting the vulnerable commits through machine learning techniques.

— analysis of artifacts. To avoid the problems of scale with the rapid evolu-

tion of open source code (For example : chromium project from 13/02 to

20/02 2020 : 2,069 commits on the master branch, 175,343 files were mo-

dified, including 175,343 additions and 157,809 deletions), we propose a set

of approaches by analyzing each commit and bug report in order to be able

to predict their nature (security impact or not) before they are validated in

the code repository.

— Enable legitimate parties to be alert once a security-sensitive commit is pre-

dicted. We propose automatic approaches that will act as sentinels and could

be useful for :

— developers when a predicted commit may introduce or fix a vulnerabi-

lity or when a predicted bug report may contain security-related infor-

mation. This overcomes the problem of silent vulnerability patches on

the one hand, and on the other hand, reduces the time taken to expose

and triage security-related bug reports.

— the users when predicting a commit that may fix a vulnerability. This

avoids exposed vulnerability attacks on users who have not updated

their version during a silent fix.

1.2.3 Thesis problems

Problem #1 : Lack of High-quality labeled dataset for zero-day vulnerabilities

Dataset quality plays an essential role in prediction performance for machine lear-

ning approaches. The principal limit is that the common existing approaches ge-

nerally use some binary dataset. This splitting approach doesn’t reflect real-world

9

problems because the practical cases are not typically binary. For example the as-

sumption of silent vulnerbilities means that a bug labeled as non-security related

can be security-relevant without the legitimate parties knowing.

Problem #2 : Dataset Imbalance

A balanced dataset is crucial for creating a good training set (Orriols et Bernadó-

Mansilla, 2005). Most existing classification methods do not perform well on mino-

rity class examples when the dataset is highly imbalanced. They aim to optimize

the overall accuracy without considering the relative distribution of each class (Liu

et al., 2011). Typically real-world data are unbalanced, and it is one of the lea-

ding causes of the decrease in generalization in machine learning algorithms (Kim,

2007). Most of existing learning algorithms do not take into account the imbalance

of class. They give the same attention to the majority class and the minority class.

It is hard to build a good classifier in these conditions (Zhang et al., 2010). The

cost in miss predicting minority classes is higher than that of the majority class for

many unbalanced datasets ; this is mainly the case in security-sensitive datasets

where tagged vulnerabilities and vulnerability fixes tend to be the minority class.

Problem #3 : Absence of the relevant feature-sets that are specifically suited to

the vulnerability management task.

Feature engineering plays an important role in all machine learning tasks (Roh-

rhofer et al., 2021). With the exception of the work by Tian et al. (Tian et al.,

2012) proposing a set of features to predict bugs better, there is a lack of works

on security-related feature extraction. This prevents security experts from identi-

fying after predictions the most relevant features to adopt preventive solutions. For

example, based on information gain 2, it is possible to identify the set of features

2. Information gain is a metric based on entropy that allows telling how important a given

10

that influenced the model prediction.

Problem #4 : Limitations in terms of model explainability

Instead of having only the high predictions performance, a vulnerability prediction

task should also be comprehensive and explainable. A comprehensive approach

can help developers and security-teams to avoid bad practices and flags causes

of vulnerabilities presence. In this respect, many deep learning approaches are

limited by explainability despite the high prediction performance they achieve.

Additionally, black-box problems (and explainable AI), non-detection of exceptio-

nal cases, lack of prioritization, and confirmation bias problems limit these deep

learning approaches in zero-day vulnerabilities mitigation problems.

1.2.4 Research methodology

The Figure 1.2 illustrates the research methodology. We split the approach into

two significant works : i) work 1 : Automatic identification of security-sensitive

fixes and ii) work 2 : Automatic identification of vulnerability-introducing patches.

We describe the details in the overview section.

Common steps

The part entitled shared steps contains the steps of our approach shared by the

two major works carried out (work 1 and work 2).

The purpose of this thesis is propose an automatic approach to reduce zero-day

vulnerabilities in open source software.This includes also the identification of silent

attribute of the feature set is.

11

Figure 1.2 : Research methodology

security-fixes patches 1.2. Considering a set of security-related patches, we first

sought to identify attributes of each patch (e.g., patch diffs, commit messages,

authors information, meta-information, etc.). Once attributes are identified with

respect to our need to have a one-time predicting approach, we then proceed

to security-related feature engineering. We extracted and assessed features that

represent "facts" of the patch (e.g., lines_sizeof, lines_added, tf-IDF of commits

messages, etc.) to generate relevant features vectors. In the final step, we propose a

model learning approach that deals with unbalanced data sets for better prediction

performance.

Contribution #1.

Timely patching (i.e., the act of applying code changes to a program source code)

is paramount to safeguard users and maintainers against dire consequences of

malicious attacks. In practice, patching is prioritized following the nature of the

code change that is committed in the code repository. When such a change is

12

labeled as being security-relevant, i.e., as fixing a vulnerability, maintainers ra-

pidly spread the change, and users are notified about the need to update to a

new version of the library or of the application. Unfortunately, oftentimes, some

security-relevant changes go unnoticed as they represent silent fixes of vulnera-

bilities. In this part, we propose SSPCatcher, a Co-Training-based approach

to catch security patches (i.e., patches that address vulnerable code) as part of

an automatic monitoring service of code repositories. Leveraging different classes

of features, we empirically show that such automation is feasible and can yield a

precision of over 80% in identifying security patches, with an unprecedented recall

of over 80%. Beyond such a benchmarking with ground truth data which demons-

trates an improvement over the state-of-the-art, we confirmed that SSPCatcher

can help catch security patches that were not reported as such (cf. Chapter 3.

Contribution #2.

Detecting vulnerabilities in software is a constant race between development teams

and potential attackers. While many static and dynamic approaches have focused

on regularly analyzing the software in its entirety, a recent research direction has

focused on the analysis of changes that are applied to the code. VCCFinder is a se-

minal approach in the literature that builds on machine learning to automatically

detect whether an incoming commit will introduce some vulnerabilities. Given the

influence of VCCFinder in the literature, we undertake an investigation into its

performance as a state-of-the-art system. To that end, we propose to attempt a

replication study on the VCCFinder supervised learning approach. The insights

of our failure to replicate the results reported in the original publication infor-

med the design of a new approach to identify vulnerability-contributing commits

based on a semi-supervised learning technique with an alternate feature set. We

provide all artifacts and a clear description of this approach as a new reprodu-

13

cible baseline for advancing research on machine learning-based identification of

vulnerability-introducing commits (cf. Section 4).

Summary.

We ensure to answer the thesis problems highlighted in the section 1.2.3 through

this research methodology.

To address Problem #1 : Lack of high-quality labeled dataset for zero-day

vulnerabilities, we build and share with the community a qualitative and split

dataset based on artifacts contents (patches attributes).

To address Problem #2 : Dataset Imbalance, we propose a semi-supervised

learning approach based on co-training that deals with the unbalanced datasets.

To address Problem #3 : Absence of the relevant feature-sets that are

specifically suited to the vulnerability management task, we propose an

explainable and feature-engineering approach that extracts relevant and represen-

tative feature vectors.

To address Problem #4 : Limitations in terms of model explainability,

we propose a specific feature engineering setup which enables analysts to track

down the high-level vulnerability-relevant reasons why the model predicts a patch

to be security-relevant.

1.3 Thesis contributions

In this thesis, we propose an automatic learning approaches to predict the future

behavior of development artifacts and thus reduce zero-day vulnerabilities. The

main contributions are listed as follow :

14

— We motivate and dissect the problem of identifying security-relevant code

changes. In particular, we investigate the discriminative power of various fea-

tures to clarify the possibility of a learning process.

— We propose a semi-supervised approach with Co-Training (Blum et Mitchell,

1998) which we demonstrate to yield high precision (80%) and recall (80%).

This represents a significant improvement over the state-of-the-art.

— We show that our approach can help flag patches that were unlabeled until

now.

— We have confirmed our findings by manual analysis with the help of external

expertise.

— We perform a replication study of VCCFinder, highlighting the different steps

of the methodology and assessing to what extent our results conform with the

author’s published findings.

— We rebuild and share a clean, fully reproducible pipeline, including artifacts,

for facilitating performance assessment and comparisons against the VCCFin-

der’s state-of-the-art approach. This new baseline might help unlock the field.

— We explore the feasibility of assembling a new state of the art in vulnerability-

contributing commit identification by assessing a new feature set.

— We leveraged co-training to resolve the issue of lacking labeled data.

1.4 Roadmap

The remainder of this thesis is structured as follows. Chapter 2 sets out the thesis

background, focusing on the main axis of the statement. Chapter 3 presents the

first contribution in this thesis. Chapter 4 presents the second contribution. The

last Chapter highlights possible future works and the conclusion of this thesis.

CHAPITRE II

BACKGROUND AND RELATED WORK

In this chapter, we discuss main concepts related to vulnerability management, in

particular 1) zero-day vulnerabilities, 2) security-related bug reports, 3) vulnerability-

fixing patches identification, and 4)vulnerability-introducing patches identifica-

tion.

2.1 Zero-day vulnerabilities

A zero-day attack is a malicious attack that exploits a vulnerability that has not

been publicly disclosed (Bilge et Dumitraş, 2012). There is virtually no defense

against a zero-day attack. As long as the vulnerability remains unknown, the

affected software cannot be patched, and anti-virus products cannot detect the

attack through signature-based scanning. For attackers, unpatched vulnerabilities

in popular software represent an open door for any target they wish to attack.

The National Vulnerability Database (NVD 1) maintains a database with extensive

information about vulnerabilities, including technical details and disclosure dates.

The NVD defines a vulnerability as a software bug that allows attackers to execute

commands as other users, access data that have access restrictions, behave as

1. https ://nvd.nist.gov

16

another user or launch denial of service attack, etc. In general, a zero-day attack is

an attack that exploits vulnerabilities not yet disclosed to the public. However, the

life cycle of exposure vulnerabilities is more complex. Indeed, until a vulnerability

ceases to affect end-hosts after several years, there can be a race between these

attacks and the remediation measures deployed by the security community. This

race contains these steps :

1. A programming security-related bug that evades testing

2. Attacker sometimes discover the vulnerability before legitimate parties, ex-

ploit it, and package the exploit with a malicious payload to conduct zero-

day attacks against the selected target

3. After the vulnerability or the exploits are discovered by the security commu-

nity and described in a public advisory, the vendor of the affected software

releases a patch for the vulnerability and security vendors update anti-virus

signatures to detect the exploit or the specific attacks

4. However, the exploit is then reused, and in some cases, additional exploits

are created based on the patch (Brumley et al., 2008), for attacks on a

larger scale, targeting Internet hosts that have not yet applied the patch.

17

patch

zero-day
vulnerability

Follow-on
attacks

remediated
vulnerability

zero-day
attacks

disclosed
vulnerability

eva
de

tes
ting

exploit

disclosure

Remediation

successful fixing

exploit vulnerability-fix

disclosure

Figure 2.1 : Zero-day vulnerabilities life cycle

Improving the disclosure and remediation process is the best way to reduce zero-

day vulnerabilities in software (Figure 2.1). This starts by proposing automatic

approaches to identify a patch’s characteristics that introduce vulnerabilities to fa-

cilitate the testing process in time. The second area is the identification of patches

to reduce the time between disclosure and remediation and also to take advan-

tage of the relevant nature of these patches to remediate vulnerabilities. This can

also be achieved by learning the difference between simple bug fixes and vulne-

rability fixes which can be achieved by carefully studying the representation of

a security-related patch. The final area that could reduce exposed vulnerabili-

ties is to facilitate disclosure by providing approaches that identify and prioritize

security-related bug reports.

18

2.2 Security-related bug reports

Prompt patching is essential to protect users and developers from the disastrous

consequences of malicious attacks. In practice, developers fix bugs by priority.

Bugs that affect the security of the entity and its users (security bug reports) are

given higher priority than those that do not directly impact security. When such

a bug is labeled as affecting security, developers quickly fix the bug, and users

are informed of the need to upgrade to a new version of the library or a new

version of the library or application. Unfortunately, very often, some security-

related bugs go unnoticed. Identifying security-related bugs is then essential to

limit the exposure of vulnerabilities. Many works in the literature have proposed

approaches to automate the detection of commits that introduce vulnerabilities.

We will focus here only on approaches that use machine learning techniques.

Supervised learning is the most widespread approach leveraged in the literature for

security bug report identification. Wijayasekara et al. (Wijayasekara et al., 2014)

have presented a seminal work on detecting security bug reports using machine

learning. They rely on text mining to extract syntactical information bug reports

and compress them before generating feature vectors fed to Naive Bayes classifiers.

Gegick et al. (Gegick et al., 2010) used a term-by-document frequency matrix from

words in the natural language descriptions of bug reports to training a statistical

model. Similarly, Behl et al. (Behl et al., 2014), later compared term frequency-

inverse document frequency (TF-IDF) against a probabilistic learning approach

like Naives Bayes.

Zou et al. (Zou et al., 2018) proposed to use a combination of text-mining features

and meta-data (e.g., time, severity, and priority) for improving the identification

of security bugs reports. They trained a supervised approach (SVM) with Radial

Basis Function(RBF) and improved previous work by over 20 percentage points.

19

More recently, Das et al. (Das et Rahman, 2019) and Pereiraet al. (Pereira et al.,

2019) proposed an approach based on class imbalance sampling and TF-IDF vec-

tors to improve security-relevant bug report detection using Naive Bayes Multi-

nomial classification. Following up on these state-of-the-art investigations, Peters

et al. (Peters et al., 2019) proposed FARSEC, a framework for filtering and ran-

king bug reports to reduce the presence of security-related keywords and improve

text-based prediction models for security bug fixes.

Semi-supervised and unsupervised learning approaches have been experimented

with by Mostafa et al. (Mostafa et al., 2019) and Goseva-Popstojanova et al. (Goseva-

Popstojanova et Tyo, 2018b). The first work presented an evolutive and realistic

approach for the identification of security bug reports which considers the evolu-

tion of security vocabulary on NVD database and practical constraints like small

training set for security bugs reports prediction, and the second assesses the im-

pact of algorithms and features in the detection of security bug reports.

2.3 Vulnerability-fixing patch identification

Identifying fixing changes that are labeled as being security-relevant, i.e., as fixing

a vulnerability is related to several research directions in the literature, most

notably studies on 1) security commit identification, 2) vulnerability management

and 3) change analysis.

2.3.1 Security commit identification

Recently, researchers from the security industry (Zhou et Sharma, 2017; Sabetta

et Bezzi, 2018) (from SourceClear, Inc., and SAP respectively) have presented

early investigations on the prediction of security issues in relation with commit

20

changes. Zhou and Asankhaya (Zhou et Sharma, 2017) focus on commit logs,

commit metadata, and associated bug reports, and leverage regular expressions to

identify features for predicting security-relevant commits. The authors use embed-

ding (word2vec) to learn the features, which leads to an opaque decision-making

system (Pontin, 2018; Knight, 2017) when it comes to guiding a security ana-

lyst in his/her auditing tasks. The approach is further limited since experimental

data show that not all fixes are linked to reported bugs, and not all developers

know (or want to disclose in logs) that they are fixing vulnerabilities. Sabetta and

Bezzi (Sabetta et Bezzi, 2018) improve over the work of Zhou and Asankhaya

by considering code changes as well. Their approach is fully-supervised (thus,

assuming that the labeled dataset is perfect and sufficient).

2.3.2 Vulnerability management

Recently, the topic of Autonomous Cyber Reasoning Systems (Ji et al., 2018) has

attracted extensive attention from both industry and academia, with the deve-

lopment of new techniques to automate the detection, exploitation, and patching

of software vulnerabilities in a scalable and cost-effective way. Static analysis ap-

proaches such as the code property graph by Yamaguchi et al. (Yamaguchi et al.,

2014a) require a built model of vulnerabilities based on expert knowledge. Dyna-

mic approaches leverage fuzzing to test a software with intentionally invalid inputs

to discover unknown vulnerabilities (Godefroid et al., 2008; Sutton et al., 2007),

or exploit taint analyses to track marked information flow through a program as

it executes in order to detect most types of vulnerabilities (Newsome et Song,

2005), including leaks (Li et al., 2015). Such approaches, although very precise,

are known to be expensive, and achieve a limited code coverage (Brooks, 2017).

Recently, researchers have been investigating concolic analysis (Cadar et al., 2008)

tools for software security. Mayhem (Cha et al., 2012) is an example of such a

21

system.

The literature includes a number of approaches that use software metrics to high-

light code regions that are more likely to contain vulnerabilities. Metrics such as

code churn and code complexity along with organizational measures (e.g., team

size, working hours) allowed to achieve high precision in a large scale empirical

study of vulnerabilities in Windows Vista (Zimmermann et al., 2010). However,

Jay et al. (Jay et al., 2009) have warned that many of these metrics may be highly

correlated with lines of code, suggesting that such detection techniques are not

helpful in reducing the amount of code to read to discover the actual vulnerable

piece of code.

Nowadays, researchers are exploring machine learning techniques to improve the

performance of automatic software vulnerability detection, exploitation, and pat-

ching (Ji et al., 2018; Li et al., 2018). For example, Scandariato et al. (Scan-

dariato et al., 2014) have trained a classifier on textual features extracted from

source code to determine vulnerable software components. Xiaoning Du et al. (Du

et al., 2019) also propose an approach named LEOPARD that uses code metrics

features for the identification of vulnerable functions in projects. Their feature

extraction process was mainly based on code complexity instead of Yang Xiao et

al. (Xiao et al., 2020) work that used function signatures. These approaches yield

good predictions results with several machine learning algorithms. However, it’s

challenging to train automatic learning models without an available and suitable

vulnerable code data set. Jimenez et al. (Jimenez et al., 2018) proposed Vul-

Data7, an extensible framework and dataset of real vulnerabilities, automatically

collected from software archives. VulData7 retrieves patches for 1,600 of the 2,800

reported vulnerabilities from the four systems available on GitHub for analysis

and predictive vulnerability studies.

22

Several unsupervised learning approaches have been presented to assist in the dis-

covery of vulnerabilities (Yamaguchi et al., 2013; Chang et al., 2008). We differ

from these approaches both in terms of objectives and in the use of a combina-

tion of features from code and metadata. With respect to feature learning, new

deep learning-based approaches (Li et al., 2018) are being proposed since they

do not require expert intervention to generate features. The models are however

mostly opaque (Pontin, 2018) for analysts who require explainability of decisions

during audits. Capturing code semantics and properties for feature engineering is

one of the most effective approaches to unsupervised learning (Yamaguchi et al.,

2014b). Yaqin Zhou et al. (Zhou et al., 2019) propose an automatic feature

extraction approach based on graph properties for accurate predictions of vulne-

rabilities. Finally, it is noteworthy that the industry is starting to share with the

research community some datasets yielded by manual curation efforts of security

experts (Ponta et al., 2019).

2.3.3 Change analysis

Software change is a fundamental ingredient of software maintenance (Li et al.,

2013). Software changes are often applied to comply to new requirements, to

fix bugs, to address change requests, and so on. When such changes are made,

inevitably, some expected and unexpected effects may ensue, even beyond the

software code. Software change impact analysis has been studied in the literature

as a collection of techniques for determining the effects of the proposed changes

on other parts of the software (Arnold, 1996).

Researchers have further investigated a number of prediction approaches related

to software changes, including by analysing co-change patterns to predict source

code changes (Ying et al., 2004). Another related work of Tian et al. (Tian

23

et al., 2012) who propose a learning model to identify Linux bug fixing patches.

The motivation of their work is to improve the propagation of fixes upwards the

mainline tree.

2.4 Vulnerability-introducing patch identification

The possibility of automatically finding vulnerabilities in code bases has long

been identified by researchers as a worthy investigation target. In this section,

we present a selection of significant prior works that we group by families of ap-

proaches, most notably studies on 1) static analysis for vulnerability detection, 2)

vulnerability detection with symbolic execution, 3) vulnerability detection with

dynamic analysis, 4) vulnerability detection with code metadata, 5) machine lear-

ning application for vulnerability analysis and 6) vulnerability detection at commit

level

2.4.1 Static analysis for vulnerability detection

First released in May 2001, Flawfinder performs static analysis of C and C++

programs and detects calls to a manually curated list of sensitive APIs (Ferschke

et al., 2012). Examples of such APIs widely recognised as sensitive are strcpy,

random or syslog.

Splint (Larochelle et Evans, 2001) is another static security testing tool, which

performs lightweight analyses of ANSI C code and augments the code with anno-

tations that set constraints on each C statement. It notably reveals the risks of

buffer overflows, and alteration of the flow of instructions around loops and ifs.

Splint does not pretend to be complete nor sound but a good first pass at a very

small cost. It was evaluated on BIND and wu-ftpd and uncovered a few buffer

overflows, both known and by-then-unknown.

24

Find-Sec-Bugs 2 targets Web applications written in Java, and searches for poten-

tial vulnerabilities by matching high-level patterns that model problematic code

pieces. Find-Sec-Bugs was made available to developers through a convenient IDE

plugin.

Recently, (Arusoaie et al., 2017) compared several open-source, security-oriented,

Static Analysers for C and C++ code. Among the tools compared are :

— Frama-C (Signoles et al., 2012), that leverages Static- and Dynamic-Analysis,

Formal verification, and Testing ;

— Clang 3, that can find bugs such as memory leaks, ’use after free’ errors, and

dangerous (though valid) type casting ;

— Oclint 4, that performs analyses of Abstract Syntax Trees to find known pat-

terns of dangerous code constructs ;

— Cppcheck 5, that specialises in finding undefined behaviours, and that strives

to produce very few False Positives ;

— Infer 6, that catches memory safety errors by trying to build formal proofs of

programs, and then interpreting failures of proof as bugs ;

— Uno (Holzmann, 2002), that offers an approach aiming at detecting a limited

number of errors, but with high precision ;

— Sparse, that was developed by (Torvalds et al., 2003) specifically for the Linux

kernel and thus can detect low-level errors in (among other things) bitfields

operations or endianness ;

2. https://find-sec-bugs.github.io

3. https://clang-analyzer.llvm.org

4. http://oclint.org

5. http://cppcheck.sourceforge.net

6. https://fbinfer.com

25

— Flint++ 7, that can detect and warn developers about dangerous coding prac-

tices.

— git-vuln-finder 8, that is based on C/C++ pattern matching.

(Arusoaie et al., 2017) were able to compare those approaches both quantitatively

and qualitatively, and characterised Frama-C as the most precise approach, Oclint

as the tool uncovering most dangerous behaviours, and Cppcheck as presenting a

very low false-positive rate.

Taint analysis allows to follow the path data travels inside a program. This can

allow uncovering vulnerabilities that would not be detectable by analysing one

function/class/package at a time. Such approaches were proposed by (Arzt et al.,

2014) for Android applications in order to locate insecure use of data caused by

the interactions of several software components.

(Yamaguchi et al., 2014a) demonstrated an approach that combines Abstract

Syntax Trees (AST), Program Dependence Graphs (PDG), and Control Flow

Graph (CDG). They were able to discover 18 new vulnerabilities in the Linux

kernel.

A recent implementation was tried by (Wang et al., 2016) with BUGRAM that

generates n-gram sequences and considers the least likely as a bug. BUGRAM was

run on 16 Java projects and found 14 confirmed bugs that other state-of-the-art

tools were not able to find.

(Martin et al., 2005) introduced a query language to search patterns of dangerous

use, such as non-encrypted password hard-disk writing or possibility left for a SQL

injection.

7. https://github.com/JossWhittle/FlintPlusPlus

8. https://github.com/cve-search/git-vuln-finder

26

(Livshits et Lam, 2005) presented a framework available as an Eclipse plug-in

to perform various static analyses. Their approach managed to find 29 security

errors, two of which in widely used Java software : hibernate and the J2EE im-

plementation.

2.4.2 Vulnerability detection with symbolic execution

Symbolic execution has also long been identified by researchers as a promising

technique to detect vulnerabilities in software. It enables some flexibility on the

testing by using unknown symbolic variables rather than hard-coded-like asserting

tests. Symbolic execution methods were notably experimented in cadar2008klee

by the tool KLEE that found 56 new bugs, including 3 in COREUTILS (Cadar

et al., 2008).

A good review of the use of Symbolic execution for software security was published

in cadar2013symbolic by (Cadar et Sen, 2013).

More recently, (Li et al., 2016a) leveraged CIL—a C intermediate language—

library to statically analyze the source code, allowing backward tracing of the

sensitive variables. Then, the instrumented program is passed to a concolic testing

engine to verify and report the existence of vulnerabilities. Their approach focuses

on buffer overflows and was reportedly not able to deal with nested structures in

C code, function pointers and pointer’s pointer.

2.4.3 Vulnerability detection with dynamic analysis

Another important technique for software security is Dynamic Analysis, where

programs under test are actually run and monitored. Fuzzing, which automatically

generates inputs and tests a program on them, has rapidly come to play a major

27

role in software vulnerability detection. Fundamentally, a fuzzer is an infinite loop

which mutates an input seed and launches the target program on the mutated

seed. If the target crashes, a bug is detected. Manual analysis will tell if the bugs

is a vulnerability or not. AFL is a popular fuzzer for C/C++ programs (Zalewski,

2017). Recent works (Zhu et al., 2019; Klees et al., 2018) use it as the reference.

AFL instruments the target program to keep track of the coverage. If a mutated

seed increases the coverage, the seed is kept to be mutated further. FuzzIL is a

fuzzer for Javascript VM (Groß, 2018). Like AFL, it uses coverage to rank seeds.

JQF (Padhye et al., 2019) or Kelinci (Kersten et al., 2017) are coverage-guided

fuzzers to test Java programs.

Approaches have augmented symbolic execution with actual execution of parts

of programs, allowing to overcome limitations of symbolic execution. Such hybrid

methods are called concolic, as they mix both concrete and symbolic execution.

MACE (Cho et al., 2011), uses model-inference to direct concolic execution. This

approach improves the exploration of the state-space of programs, thus allowing

to find more vulnerabilities than tools with less coverage.

2.4.4 Vulnerability detection with code metadata

Often, code nowadays comes with large amounts of associated metadata, such as

bug tracking and code versioning information.

This metadata was quickly identified as a treasure trove ready to augment vulne-

rability detection approaches. In 2005, it was shown by (Śliwerski et al., 2005)

that changes made on Fridays to the Mozilla and Eclipse projects were more likely

to introduce problems than the changes made in other days.

(Kim et al., 2008) considered change log, author, change date, source code, change

28

delta and metadata on 12 well-known software projects (Apache HTTP, Bugzilla,

Eclipse, PostgreSQL, etc). They were able to reach an average precision of 0.61

for a recall of 0.6 for vulnerability introducing commits.

Vulture was demonstrated by (Neuhaus et al., 2007). It is able to learn known

vulnerabilities to detect new ones. Vulture managed to obtain a 70% precision on

the Mozilla project, while not only detecting vulnerabilities, but also pinpointing

their location.

(Wijayasekara et al., 2012) proposed to mine bug databases as some of these bugs

are only revealed to be vulnerabilities years after. In another work, this idea was

experimented on the Linux Kernel for data between 2006 and 2011 (Wijayasekara

et al., 2014). They reported a precision of 0.02, but noted that this performance

is better than random.

(Meneely et al., 2013) found that, on Apache HTTPD, VCCs were related

with bigger commits as non-VCC while tracking 68 vulnerabilities and their 124

manually-found related VCCs.They note as well that bigger commits were related,

generally, with the introduction of new features.

VulPecker (Li et al., 2016b) chose to focus on patch hunks and code similarity

analysis. It led (Li et al., 2016b) to discover 40 vulnerabilities not in the NVD

database, 18 of which were still unpatched.

2.4.5 Machine learning application for vulnerability analysis

A large body of work in the literature has proposed to use machine learning to

discover vulnerability patterns in an entire code base, without considering commits

individually. (Ghaffarian et Shahriari, 2017) provide a thorough literature survey

on various approaches in this direction. One of the key finding reported by the

29

authors is that the field of vulnerability prediction models was not yet mature.

Literature approaches have employed learning techniques on diverse program-

ming languages and software systems : (Chang et al., 2008) have applied a

HMFSM (Heuristic Maximal Frequent Subgraph Mining) to four C programs

(make, openssl, procmail and amaya). Their approach uses a a mix of static ana-

lysis and data mining to extract patterns that were then associated with their

frequency : the more frequent a pattern, the safer it is considered. In their evalua-

tion, they managed to find 3800 violations of well-known patterns. (Zimmermann

et al., 2010) proposed to use a measure of code complexity (McCabe, 1976) to

predict the presence of vulnerabilities in Windows Vista. Using Linear Regres-

sion, they manage to have a precision below 64% for a relatively low recall of

21% on a ten-fold validation process. (Yamaguchi et al., 2013) have presented

CHUCKY, an approach to identify anomalous or missing checks on C programs.

It is a combination of taint analysis and machine learning that results in finding

up to 96% of missing checks by comparing a piece of code to the most similar

ones. (Scandariato et al., 2014) extracted text from 182 releases of 20 Android

applications to generate feature vectors, using a feature discretisation method

proposed by (Kononenko, 1995). This approach achieved good performance for

detecting vulnerabilities within a project, but lower performance for inter-project

detection. DEKANT was proposed to generate a model out of sliced pieces of

PHP applications and WordPress plugins (Medeiros et al., 2016). This model,

based on a set of annotated source code, serves as the basis for the discovery of

new vulnerabilities.

Researchers have explored various code representations for learning vulnerability

properties. (Feng et al., 2016) used machine learning on CFGs. Their tool, Genius,

identified 38 potentially vulnerable firmware, 23 of which were manually confir-

med. Similarly, (Lin et al., 2018) have tokenised Abstract Syntax Trees (AST)

30

to feed a deep learning classifier (Bi-LSTM) to obtain a model of vulnerabilities.

This model was then applied to a new project and enabled early vulnerability

detection. Recently, (Ban et al., 2019) also used Bi-LSTM on ASTs from C and

C++ datasets. In contrast to these works, (Alohaly et Takabi, 2017) presented

an approach that balances text and structural features. Tested on phpAdmin and

Moodle, their results were slightly below those of an usual bag of words technique.

Other papers focused on the importance of the extracted features. For example,

(Shin et Williams, 2011) tried to focus on the correlation between code com-

plexity features and the presence of vulnerabilities. The overall performance was

rather low in term of completeness (letting no vulnerable program pass unflag-

ged (Ghaffarian et Shahriari, 2017)) with an overall precision of 12%, while the

recall reached 67% to 81% depending on the project, respectively Firefox and

Wireshark. Though, another paper, namely (Moshtari et al., 2013) replicated

this study with much more success using Bayesian Networks (as used by (Shin et

Williams, 2011)) only focusing on Firefox and adding more complete information

they had on the vulnerabilities through the allocated Common Weakness Enume-

ration (i.e., the vulnerability type). They even reached greater success changing

either for IBK algorithm or Random Tree by Random Committee, by reaching a

Recall of 92% and a Precision of 98% for the latter case, but still only on Mozilla.

On cross-project attempt (adding Eclipse, Apache Tomcat, Linux kernel 2.6.9 and

OpenSCADA) it drops at 32% for the Precision and 7% for the Recall. It is to

mention that Mozilla presents a ground truth of on average 2300 vulnerabilities

split into 1000 files. Other projects considered on the cross-project analysis do

only so from 12 files (OpenSCADA) to 814 (Eclipse written in Java).

(Goseva-Popstojanova et Tyo, 2018a) investigated what features to consider for

vulnerability detection, and concluded that the features do not affect significantly

the classification performance. The best performing algorithm was different de-

31

pending not only on the features but more importantly on the dataset.

2.4.6 Vulnerability detection at commit level

A few articles try to address the issue of automated detection of vulnerabilities at

commit level.

(Yang et al., 2017) focus on automatically detecting vulnerability-contributing

changes in the Mozilla Firefox project. The tool extracts features from commits

and uses a random forest classifier to detect VCCs. By first using an estimated

number of potential VCCs present in the code under analysis, they claim to pro-

duce fewer False Positives than VCCFinder. (Sabetta et Bezzi, 2018) consider

the code modified by a commit as a text document, and then leverage Natural

Language Processing techniques to feed multiple machine learning classifiers. One

of (Wang, 2019) contribution is to filter commits by excluding or including those

matching a list of keywords. For example, their filtering step can discard up to

92% of commits, hence vastly reducing the effort needed to analyse the suspicious

commits.

Other works have directly mentioned and inherited from VCCFinder. Directly

trying to improve on VCCFinder, in a 5 pages technical report, (Yamamoto, 2018)

aims at decreasing the number of false-positive results yielded by VCCFinder. To

that end, he proposes to separate additions from deletions in the commits to

extract code-related features. The results presented in this technical paper are

claimed to be slightly better than those of VCCFinder. (Zhou et Sharma, 2017)

compare different algorithms for automatically discovering security issues. Albeit

mentioning that VCCFinder uses LinearSVM, they only consider information from

the commit message, gathered using regular expressions, and from bug reports.

32

Finally, even if they do not propose an ML based approach to detect vulnerability

at commit level, (Hogan et al., 2019) address the issue of the reliability of the

labelled data taking VCCFinder as an example. They simplified the version of

the project scrapper available online for VCCFinder, re-adapted the code to make

it work regarding their focus and manually analysed the commits considered as

VCCs. They conclude that only 58% of the commits that would be considered as

ground truth, if they relied on VCCFinder’s technique, are actually contributing

to a vulnerability. This is an issue we did not have to address since we attempted

to replicate the performances presented in VCCFinder original paper using data

provided by the authors, not to check the validity of the ground truth construction

method. The issue raised by (Hogan et al., 2019) underlines an important problem

for the field that had already been mentioned by (Goseva-Popstojanova et Tyo,

2018a).

CHAPITRE III

VULNERABILITY-FIXING PATCH IDENTIFICATION

Recently, our digital world was shaken by two of the most widespread malware

outbreaks to date, namely WannaCry and Petya. Interestingly, both leveraged a

known exploit with an available patch (Trend Micro, 2017). Despite the availa-

bility of such a patch that could have prevented an infection, a large number of

systems around the globe were impacted, leading to a loss of over 4 billion US

dollars (Berr, 2017). In a typical scenario of vulnerability correction, a developer

proposes changes bundled as a software patch by pushing a commit (i.e., patch +

description of changes) to the code repository, which is analyzed by the project

maintainer, or a chain of maintainers. The maintainers eventually reject or apply

the changes to the master branch. When the patch is accepted and released, all

users of the relevant code must apply it to limit their exposure to attacks. In rea-

lity, for some organizations, there is a time lag between the release of a patch and

its application. While in the case of critical systems, maintainers are hesitant to

deploy updates that will hinder operations with downtime, in other cases, the lag

can be due to the fact that the proposed change has not been properly advertised

as security-relevant, and is not thus viewed as critical.

Patching (i.e., the act of applying code changes to a program source code) is an

absolute necessity. Timely patching of vulnerabilities in software, however, mainly

depends on the tags associated to the change, such as the commit log message,

34

or on the availability of references in public vulnerability databases. For example,

nowadays, developers and system maintainers rely on information from the Natio-

nal Vulnerability Database (NIST, 2018) to react to all disclosed vulnerabilities.

Unfortunately, a recent study on the state of open source security (Snyk.io, 2017)

revealed that only 9% of maintainers file for a Common Vulnerability Enumera-

tion (CVE) ID after releasing a fix to a vulnerability. The study further reports

that 25% of open source software projects completely silently fix vulnerabilities

without disclosing them to any official repository.

Silent vulnerability fixes are a concern for third-party developers and users alike.

Given the low coverage of official vulnerability repositories, there are initiatives

in the software industry to automatically and systematically monitor source code

repositories in real-time for identifying security-relevant commits, for example

by parsing the commit logs (Zhou et Sharma, 2017) or by mining the code of

the components (Scandariato et al., 2014). Manual analysis of code changes is

indeed heavy in terms of manpower constraints, requires expert knowledge, and

can be error-prone. Some other existing works in this area also use the code

and logs of commits as inputs to train machine learning models for predicting

security-relevant commits. Sabetta et al. (Sabetta et Bezzi, 2018) leveraged bag-

of-words model to identify security-relevant fixes. They achieved a high precision

(at 80%) but face two major problems that we attempt to solve : their features are

not explicitly related to security semantics ; they do not address the unbalanced

dataset problem in real-world scenarios. It is further noteworthy that the literature

has also proposed approaches (Zhou et Sharma, 2017; Scandariato et al., 2014)

for detecting code changes that introduce security vulnerabilities. Conversely, we

are focused on identifying whether a proposed patch is applying code changes to

fix an existing vulnerability.

In this chapter, we investigate the possibility to apply machine learning techniques

35

to automate the identification of source code changes that actually represent se-

curity patches (i.e., patches that address vulnerable code). To that end, we in-

vestigate three different classes of features related to the change metadata (e.g.,

commit logs), the code change details (e.g., number of lines modified), as well as

specific traits that are recurrent in vulnerabilities (e.g., array index change). We

then build on the insight that analysts can independently rely either on commit

logs or on code change details to suspect a patch of addressing a vulnerability.

Thus, we propose to build a Co-Training based approach where two classifiers

leverage separately text features and code features to eventually learn an effective

model. This semi-supervised learning approach further accounts for the reality

that the datasets available in practice include a large portion of samples whose

labels (i.e., “security-relevant” or not) are unknown. We refer to our approach as

SSPCatcher (for “Security Sensitive Patch Catcher”).

Our work deals with the automation of the identification of security patches (i.e.,

patches fixing vulnerabilities) once a code change is presented to be applied to a

codebase. To align with realistic constraints a of practitioners, we only leverage the

information available within the commit.

a. In practice, identifying security patches must be done at commit time. An approach
would be very successful if it could leverage future comments of bug reports and advisories
inputs (e.g., CVE). Such information is however not available in reality when the commit is
made.

Overall, we make the following contributions :

— We motivate and dissect the problem of identifying security-relevant code

changes in Section 2. In particular, we investigate the discriminative power

of a variety of features to clarify the possibility of a learning process.

— We propose a semi-supervised approach with Co-Training (Blum et Mitchell,

1998) which we demonstrate to yield high precision (95%) and recall (88%).

36

This represents a significant improvement over the state-of-the-art.

— Finally, we show that our approach can help flag patches that were unlabeled

until now. We have confirmed our findings by manual analysis, with the help

of external expertise.

The implementation, dataset, and results of SSPCatcher are publicly available

for the community as a replication package :

http://github.com/vulnCatcher/vulnCatcher

The remainder of this chapter is organized as follows. We motivate our study

in Section 3.1 and overview data collection in Section 3.2. Section 3.3 describes

SSPCatcher while Section 3.4 presents the experimental study and results. Sec-

tion 3.5 discusses threats to validity and future work and Section 4.4 summarise

our contributions in this work.

3.1 Motivation

The urgency of updating a software given a proposed change is assessed at different

levels of the software development cycle. The stakeholders here are (1) Developers

that are using third libraries parts, (2) maintainers that validate developers’ code,

and (3) the user that use the software and make some updates. We then consider

the cases of developer-maintainer and maintainer-user communications.

(1) Patch processing delays by maintainers. We consider the case of the

Linux kernel, which is developed according to a hierarchical open source model

referred to as Benevolent dictator for life (BDFL) (van Rossum, 2008). In this

model, anyone can contribute, but ultimately all contributions are integrated by a

single person, Linus Torvalds, into the mainline development tree. A Linux kernel

37

maintainer receives patches related to a particular file or subsystem from deve-

lopers or more specialized maintainers. After evaluating and locally committing

them, he/she propagates them upwards in the maintainer hierarchy, eventually up

to Linus Torvalds. Since the number of maintainers is significantly lower than that

of contributors, there is a delay between a patch authoring date and its commit

date. A recent study, however, has shown that author patches for Linux are ad-

dressed in a timely manner by maintainers (Koyuncu et al., 2017). Nevertheless,

given the critical nature of a security patch, we expect its processing to be even

more speedy if the commit message contains relevant information that attracts

maintainers’ attention.

Figure 3.1 illustrates the delay computed on randomly sampled sets of 1 000 com-

mits where the log clearly contained a CVE reference, and 1 000 commits with no

such references. These 1 000 commits selected are a part of the negative dataset,

identified by the data collection process described in Section 3.2 ; therefore these

commits do not involve vulnerability fixes.

The delay is computed as the difference of time between the contribution date

(i.e., Author date in git) and the date it was accepted in the repository (i.e.,

Commit date in git). The boxplots show how patches that are explicitly related

to vulnerabilities are validated faster than other patches : on median average,

security patches are validated fifteen hours faster. We confirmed that the difference

is statistically significant with MWW tests (Mann et Whitney, 1947).

Other.patches

Vulnerability.patches

0 10 20 30 40 50 60 70
Delay (hours)

Figure 3.1 : Delays for validating contributor patches in Linux based on explicit vulne-
rabilities

38

Often, if proper notice is given, maintainers are likely to prioritize the validation of

security patches.

(2) Version release delays for users. In the development cycle of software,

versioning allows maintainers to fix milestones with regards to the addition of

new features, or the stabilization of a well-tested branch after the application of

several bug fixes. However, when a security patch is applied to the code base, it

is common to see maintainers release a new version early to protect users against

potential attacks. These exceptional cases could then change the versioning cycle

to prioritize customer’s security and motivate the goal of our work : identifying

silent vulnerability fixes.

We did a study to confirm this assumption. We consider the case of the OpenSSL

library and compare the delay between a given commit and the subsequent version

release date (which is inferred by checking commits with version tags). The delay

was computed for all the 1 550 OpenSSL commits (495 of which carry security

patches) collected in our study datasets.

Boxplot representations in Figure 3.2 show that many OpenSSL versions are re-

leased just after security patches. In contrast, the gap between any other commit

and a version release is bigger : releases are made on average seven days after a

security patch, but about twenty days after other types of patches.

●●●●● ●●●●● ●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●

Other.patches

Vulnerability.patches

0 5 10 15 20 25 30
Delay (days)

Figure 3.2 : Comparative delays for OpenSSL release after an explicit security patch vs
after any other patch

39

To reduce user exposure, it is necessary to release new versions when vulnerabilities

are patched. To that end, it is critical to identify such security patches.

3.2 Data Collection

For much modern software, developers rely on the git version control system. Git

makes available the history of changes that have been made to the code base in

the form of a series of patches. Thus, a patch constitutes a thorough summary

of a code change, describing the modification that a developer has made to the

source code at the time of a commit. Typically, a patch as depicted in Figure 3.3,

includes two artifacts : a) the log message in which the developer describes the

change in natural language ; b) the diff which represents the changes that are to

be applied. The illustrated vulnerability, as in many cases, is due to a missing

constraint that leaves a window for attackers to exploit.

commit 5ebff5337594d690b322078c512eb222d34aaa82
Author: Michal Schmidt <anonymized@redhat.com>
Date: Fri Mar 2 10:39:10 2012 +0100

util: never follow symlinks in rm_rf_children()
The function checks if the entry is a directory
before recursing, but there is a window between
the check and the open, during which the
directory could be replaced with a symlink.
CVE-2012-1174
https://bugzilla.redhat.com/show_bug.cgi?id=803358

diff --git a/src/util.c b/src/util.c
index 20cbc2b0d..dfc1dc6b8 100644
--- a/src/util.c
+++ b/src/util.c
@@ -3593,7 +3593,8 @@ static int rm_rf_children(int fd,...) {
if (is_dir) {

int subdir_fd;
- if((subdir_fd = openat(fd, de->d_name, O_RDONLY|...)) < 0){
+ subdir_fd = openat(fd, de->d_name, O_RDONLY|...|O_NOFOLLOW);
+ if (subdir_fd < 0) {

if (ret == 0 && errno != ENOENT)
ret = -errno;

continue;

Figure 3.3 : Example of a security patch in the OpenSSL library

For our experiments, we consider three projects whose code is widespread among

40

IT systems : the Linux kernel development project, the OpenSSL library project,

and the Wireshark network protocol analyzer. We also consider the Secbench

(?) dataset, which includes a large number of vulnerability fixing commit samples

from a variety of projects using mixed programming languages.

For each of our study projects, we attempt to collect positive and negative data

for the classical binary classification task, as well as the unlabeled data for our

semi-supervised learning scenario :

— Positive data (i.e., security patches). We collect patches reported as part of

security advisories, and thus known to be addressing a recognized and reported

vulnerability.

— Negative data (i.e., non-security patches). We use heuristics to build the

dataset of negative data. To ensure that it is unbiased and representative, we

explicitly consider different cases of non-security patches and transparently col-

lect these sets separately with a clear process to enable replication. Concretely,

we consider :

— Pure bug fixing patches. We collect patches that are known to fix bugs in

project code, but that are not security-relevant.

— Code enhancement patches. We collect patches that are not about fixing

bugs or vulnerabilities. Such patches may be delivered by commits to

perform code cleaning, feature addition, performance enhancement, etc.

— Unlabeled data. We finally collect patches that are about fixing the code,

but for which we do not yet know whether it is about fixing a vulnerability or

non-security bugs.

The creation of these datasets is summarized in Figure 3.4 and detailed in the

following paragraphs.

41

security
patches

pure bug-fix
patches

code-enhanc.
patches unlabeled

patches

Explicitly related
to a CVE

Negative data:
non-security patches

Positive data:
security patches Don’t know yet if

security patches

Explicitly related to a bug in a tracking
system and not related to security

Commit logs checking:
Not related to bug, security, …

Unlabeled data:

Figure 3.4 : Distinct subsets of the dataset built for our experiments

3.2.1 Security patches (for positive datasets)

Security patches from study projects We leverage a recent framework proposed

by Jimenez et al. (Jimenez et al., 2018) for automated collection of vulnerability

instances from software archives. The framework builds upon the National Vul-

nerability Database information and attempts to connect such information with

other sources such as bug tracking systems and git repositories. The data recove-

red include information, for each item, about the CVE ID, the CVE description,

the time of creation, the associated bug ids from the project bug tracking system,

the list of impacted software versions, and the list of commits that fixed the vul-

nerability. Overall, as of July 2018, we managed to retrieve 1 398, 986, and 495

security patches for Linux, Wireshark, and OpenSSL respectively for this part.

We call this part of the whole dataset C-projects dataset given the uniform

nature of the programming language used.

Security patches from Secbench We consider data from the Secbench (?) data-

base, which contains 676 reported vulnerability patches from 238 projects. The

authors exploited the projects’ commits using regular expressions for each vul-

nerability and then classified the vulnerabilities using the CWE taxonomy. Some

vulnerabilities contain score and severity information (CVE). However, some pro-

42

Figure 3.5 : Secbench dataset distribution

jects are no longer accessible. Overall, we managed to collect a total of 648 security

patches within 114 projects. Most vulnerability samples are contributed by only

a few number of projects as shown by the long tail distribution in Secbench (cf.

Figure 3.5).

3.2.2 Pure bug fixing patches (for negative datasets)

To ensure that SSPCatcher can effectively differentiate security-relevant fixes

from other fixes, we set to collect a dataset of non-security-relevant patches fol-

lowing conservative heuristics. First, we consider patches that are not reported

in a security advisory, and whose commit logs do not include “vulnerability” or

“security” keywords. Then, we focus on those patches whose commits are linked

to a bug reported in a bug tracking system. Finally, we ensure that the bug report

itself does not hint at a potential security issue. For that, we follow the approach

43

proposed by security analysts Zhou and Sharma (Zhou et Sharma, 2017). They

proposed a regular expression that yields to catch security-sensitive commits. It,

therefore, looks for keywords and combinations of keywords in the commits, for

example : “denial.of.service”, “directory. traversal”, etc. We then applied this ap-

proach and drop all cases where the bug report matches the regular expression

provided in Table 3.1. Overall, with this method, we managed to retrieve 1 934,

2 477 and 8 142 pure bug fixing patches for Linux, Wireshark, and Secbench res-

pectively. Our dataset does not contain any pure bug-fix patches for OpenSSL due

to missing links between commits and bug reports of OpenSSL. Future work could

consider using state-of-the-art bug linking approaches (Nguyen et al., 2012; Wu

et al., 2011; Bissyande et al., 2013).

Table 3.1 : Regular expression used to filter out security-related issues described in bug
reports
(?i)(denial.of.service|\bXXE\b|remote.code.execution
|\bopen.redirect|OSVDB|\vuln|\CVE\b|\bXSS\b|\bReDoS\b
|\bNVD\b|malicious|x-frame-options|attack|cross.site
|exploit|directory.traversal|\bRCE\b|\bdos\b|\bXSRF\b
|clickjack|session.fixation|hijack|advisory|insecure
|security|\bcross-origin\b|unauthori[z|s]ed
|infinite.loop|authenticat(e|ion)|brute force|bypass
|constant.time|crack|credential|\bDoS\b|expos(e|ing)
|hack|harden|injection|lockout|overflow|password
|\bPoC\b|proof.of.concept|poison|privilege
|\b(in)?secur(e|ity)|(de)?serializ|spoof|timing|traversal)

3.2.3 Code enhancement patches (for negative datasets)

To ensure that our model will not be overfitted to the cases of fixing patches, we

collect noise dataset represented by commits that enhance the code base with new

feature additions. The model is aimed at recognizing security fixes vs all others

altogether. Thus other types of code enhancement patches are also discriminated

against. We considered the case of feature-addition more explicitly in the labeling

of the negative set because they are easy to label and also to increase the diversity

of the negative set.

44

We thus set to build a parser of commit logs for identifying such commits. To that

end, we first manually investigate a small set of 500 commits over all the projects

and attempt to identify what keywords can be leveraged. Given the diversity of

fixes and commit log tokens, we eventually decide to focus on keywords recurrent

in all commits that are not about feature addition, in order to reduce the search

space. These are : bug, fix, bugzilla, resolve, remove, merge, branch, conflict, crash,

debug. Excluding known security patches, known bug fixes (whether pure or not),

and those that match the previous keywords, we consider the remaining patches

as the sought noise for the learning process. Overall, we collected 681, 658, 679,

2 527 code enhancement patches for Linux, Wireshark, OpenSSL, and Secbench

respectively.

3.2.4 Unlabeled patches

Ultimately, our goal is to provide researchers and practitioners with an approach

for identifying silent security fixing patches. Thus, we hypothesize that some fixing

patches are actually unlabeled security patches. To build a dataset of unlabeled

patches where security patches may be included, we parse all remaining patches

(i.e., patches that are not collected in the previous datasets) and further hone in

the subset of unlabeled patches that are more relevant to be caught as security

patches. To that end, we focus on commits whose logs match the regular expression

(?i)(bug|vuln 1|fix). Eventually, we collected 147 746, 18 067,437 and 69 138

unlabeled patches for Linux, Wireshark, OpenSSL, and Secbench respectively.

Table 3.2 summarizes the statistics on the collected datasets. We note that, as we

postulated, most patches are unlabeled. Security patches are mostly silent (Snyk.io,

2017). Even in the case where a patch is present in a security advisory (i.e., the

1. Commits with logs matching keyword “vuln” cannot be directly considered to be security
patches without an audit of the full description and even of the code change.

45

NIST vulnerability database in our case), the associated commit log may not

explicitly use terms that hint to a security issue. For example, with respect to

the regular expression in Table 3.1, we note that 15.21% of Wireshark security

patches, 37.19% of Linux security patches, and up to 98.78% of OpenSSL security

patches do not match security-related tokens.

Table 3.2 : Statistics on the collected datasets
OpenSSL Wireshark Linux Secbench Total

Security patches 495 1 398 986 648 3 616

Pure bug fixing patches (–) 2 1 934 2 477 8 142 12 553

Code enhancement patches 618 681 658 2 527 4 483

Unlabeled patches 437 18 067 147 746 69 138 235 388

3.3 SSPCatcher

Our work addresses a binary classification problem of distinguishing security

patches from other patches : we consider a combination of text analysis of commit

logs and code analysis of commit changes diff to catch security patches. To that

end, we proceed to the extraction of ”facts” (e.g. #Sizeof added, #Sizeof removed,

etc.) from text and code, and then perform a feature engineering that we demons-

trate to be efficient for discriminating security patches from other patches. Finally,

we learn a prediction model using machine learning classification techniques.

In a typical classification task, an appropriately labeled training dataset is avai-

lable. In our setting, however, this is not the case as introduced earlier : in our

dataset, when a commit is attached to a CVE, we can guarantee that it does

provide a security patch ; when the commit does not mention a CVE, we cannot

assume that it does not provide a security patch. Therefore, for positive data, i.e.,

security patches, we can leverage the limited dataset of patches that have been

listed in vulnerability databases (e.g., the NVD). There is, however, no correspon-

2. No pure bug fixing dataset because of links missing between bugs and commits.

46

ding set of independently labeled negative data, i.e., non-security patches, given

that developers may silently fix their vulnerable code. This problem was raised

in previous work on the identification of bug fixing patches by Tian et al. (Tian

et al., 2012). Nevertheless, our setting requires even more refined analysis since

security patches can be easily confused with a mere non-security-relevant bug fix.

To address the problem of having a small set of labeled data and a large set of

unlabeled data for security patches, we consider a Co-Training (Blum et Mit-

chell, 1998) approach where we combine two models, each trained with features

extracted from two disjoint aspects (commit message vs. code diff) of our data-

set. This process has been shown to be one of the most effective techniques for

semi-supervised learning (Nigam et Ghani, 2000).

Concretely, SSPCatcher considers commit logs, on the one hand, and code diffs, on

the other hand, as redundant views of the changes, given that the former describes the

latter. Then we train two separate classifiers, one for each view, that are iterated by

exchanging labeled data until they agree on classification decisions (cf. Section 3.3.3).

In this section, we first provide information on feature engineering (cf. Section 3.3.1)

and assessment (cf. Section 3.3.2). Then, we present the Co-Training approach (cf.

Section 3.3.3).

3.3.1 Feature Extraction and Engineering

The objective of the feature extraction step is to transform the high-volume raw

data that we have previously collected into a reduced dataset that includes only

the important facts about the samples. The feature extraction then considers both

the textual description of the commits (i.e., the message describing the purpose

of the change) and the code diff (i.e., the actual modifications performed). The

feature engineering step then deals with the representation of the extracted facts

47

into numerical vectors to be fed to machine learning algorithms.

Commit text features

We extract text features by considering all commit logs as a bag of words, exclu-

ding stop words (e.g., “as”, “is”, “would”, etc.) which are very frequently appearing

in any English document and will not hold any discriminative power. We then

reduce each word to its root form using Porter’ stemming (Porter, 1980) algo-

rithm. Finally, given the large number of rooted words, and to limit the curse of

dimensionality, we focus on the top 10 of the most recurring words in commit

logs of security patches for the feature engineering step. This number is selected

as a reasonable vector size to avoid having a too-sparse vector for each commit,

given that commit logs are generally short. We calculate the inverse document

frequency (idf), whose formula is provided in the equation below. It is a measure

of how much information the word provides, that is, whether it is common or rare

across all commit logs. The feature value for each commit is then computed as the

idfi = log |D|
|{dj :ti∈dj}| with |D| being the total number of documents in the corpus

and |{dj : ti ∈ dj}| being the number of documents where term ti appears.

Commit code features

Besides description logs, code change details are available in a commit and can

contribute to improve the efficiency of the model as demonstrated by Sabetta

and Bezzi (Sabetta et Bezzi, 2018). Nevertheless in their work, these security

researchers considered all code change tokens as a bag of tokens for embedding.

In our work, we propose to refine the feature selection by selecting meaningful

facts from code to produce an accurate and explainable model. To that end, on

the one hand, we are inspired by the classification study of Tian et al. (Tian

48

et al., 2012), and we extract code facts representing the spread of the patch

(e.g., the number of files/lines modified, etc.), the code units involved (e.g., the

number of expressions, boolean operators, function calls, etc.). On the other hand,

we manually investigated a sample set of 300 security patches and noticed a few

recurring code facts : for example, sizeof is often called to fix buffer overflow

vulnerabilities, while goto, continue or break constructs are frequently involved

in security fixes related to loops, etc. Thus, we engineer two sub-categories of

features : code-fix features and security-sensitive features.

Overall, Table 3.3 provides an enumeration of the exhaustive list of features used

in this study.

Table 3.3 : Exhaustive list of features considered for learning
ID code-fix features ID security-sensitive features
F1 #files changed in a commit F1 #Sizeof added
F2 #Loops added F2 #Sizeof removed
F3 #Loops removed F3 F1 - F2
F4 F2 - F3 F4 F1 + F2
F5 F2 + F3 F5-F6 Similar to F1 to F2 for #continue
F6-F9 Similar to F2 to F5 for #ifs F7-F8 Similar to F1 to F2 for #break
F10-F13 Similar to F2 to F5 for #Lines F9-F10 Similar to F1 to F2 for #INTMAX
F14-F17 Similar to F2 to F5 F11-F12 Similar to F1 to F2 for #goto

for #Parenthesized expressions
F18-F21 Similar to F2 to F5 F13-F14 Similar to F1 to F2 for #define

for #Boolean operators
F22-F25 Similar to F2 to F5 F15-F18 Similar to F1 to F4 for #struct

for #Assignments
F26-F29 Similar to F2 to F5 F19-F20 Similar to F1 to F2 for #offset

for #Functions call
F30-F33 Similar to F2 to F5 for #Expression F21-F24 Similar to F1 to F4 for #void

ID text features
W1-W10 10 Most recurrent non-stop words

49

Binary SVM classification
with augmented security set

+ portions of bug-fix and
code-enhancement setssecurity

patches

Training

flagged
unlabeled
patches

One-Class
SVM

Training

ClassifierUnlabeled
patches

Bug-fix
patches

Code-
enhanc.
patches

Training

Training

Binary
SVM

Training

Classifier

One-class SVM training on portion of security patch dataset

Classification of
Unlabeled patches

with one-class
classifier

Augmentation of security
patch training set with
newly classified from

unlabeled set

Classification performance
computed on the testing sets of
security patches and bug fix +
code enhancement patches

Precision
Recall

1

2

3

4

5

Legende

A B
The arrow means that A
is used as input in B.

A B
The double-arrow means
that B is yielded by A.

Figure 3.6 : Workflow for assessing the discriminative power of features

3.3.2 Feature Assessment

Statistical analysis

Before leveraging the features that we have engineered based on manual analysis

and intuitive facts, we propose to assess their fitness with respect to discriminating

security patches against other types of patches. To that end, we used the Mann-

Whitney U test (Mann et Whitney, 1947) in order to compare the distribution of

a given feature within the set of security patches against the combined set of pure

bug fixing patches and code enhancement patches. The null hypothesis states

that the feature is distributed independently from whether the commit fixes a

vulnerability or not. If we can reject the null hypothesis, the feature is distributed

differently in each set and thus is a promising candidate as input for the machine

learning algorithms.

The Mann-Whitney U tests helped discover that a large majority (i.e., 53 out of

67) of the computed features were not meaningful unless we rescaled the feature

values according to the size of the patches. Indeed, for example, code enhancement

patches that can be huge (e.g., the addition of a new program file) may include

a number of loops and sizeof calls, making related features meaningless, unless

50

their numbers are normalized to the size of code in the patch. We then applied,

for each feature value per patch, the following formula :

Fnorm =
F

#patch_added_lines+#patch_removed_lines
(3.1)

where the normalized value Fnorm of a feature is computed by taking into account

the patch size. Table 3.4 provides some example cases where the statistical tests

were successful against a strict significance level of α = 0.0005 for the p-value.

Due to space limitations, we show only top-3 features per feature group. For 52

out of 67 features engineered, the statistical analysis shows a high potential of

discriminative power. Nevertheless, in the rest of our experiments, and following

insights from previous studies (Perl et al., 2015), we keep all features for the

learning process as some combinations may contribute to yielding an efficient

classifier.

Table 3.4 : Statistical analysis results for top normalized features with highest discrimi-
native potential.

Code-fix features sec.-sensitive features Text features

F6 F16 F24 F11 F22 F24 W2 W4 W6

Mean for
security patches 0.120 0.038 0.110 0.004 0.006 0.350 0.360 0.360 0.350

Mean for
other patches 0.090 0.016 0.050 0.003 0.004 0.330 0.310 0.320 0.330

P-value (MWW) 5e−62 2e−40 4e−103 1e−13 1e−15 6e−47 2e−65 2e−66 7e−50

Classification experiments

The previous statistical analysis assessed the discriminative power of engineered

features with respect to security patches and the combined set of bug fixing and

code enhancement patches. We propose to further assess the behaviour of one-

class classification models with these features applied to the unlabeled patches.

Our experiments aim at answering two questions :

51

1

37 161
395

99 513
Text

Features

Code-Fix
Features

security-sensitive
Features

(a) Flagged Linux unlabeled patches

7156

23

178
Text

Features

Code-Fix
Features

security-sensitive
Features7

30

(b) Flagged OpenSSL unlabeled patches

2

6 841

422 10 192
Text

Features

Code-Fix
Features

security-sensitive
Features

(c) Flagged Wireshark unlabeled patches

Figure 3.7 : Euler diagrams representing the overlaps between sets of unlabeled patches
that are classified as security patches when using One-Class SVM model based on va-
riants of feature sets.

— Can the features help effectively classify unlabeled patches ? We attempt to

assess to what extent unlabeled patches that are flagged as security patches

would constitute noise or good samples to help augment the training data of

a binary classifier.

— Are the feature categories independent and thus splittable for a Co-Training

model learning ? The choice of Co-Training as an approach is based on the

hypothesis that the views are redundant. However, another constraint for the

efficacy of Co-Training is that the features must be independent (Nigam et

Ghani, 2000) (i.e., they do not lead to exactly the same classifications).

Features efficiency. Various verification problems in machine learning involve

identifying a single class label as a ‘target’ class during the training process, and

at prediction time make a judgement as to whether or not an instance is a member

of the target class (Hempstalk et Frank, 2008). In many cases, a one-class classifier

is used in preference to a multi-class classifier, mainly because it is inappropriate

or challenging to collect or use non-target data for the given situation. In such

cases, the one-class classifier is actually an outlier detector since it attempts to

differentiate between data that appears normal (i.e., from the target class) and

52

abnormal with respect to a training data composed only of normal data. Thus, if

the features are not efficient to fully characterize the normal data in the training

set, many samples classified as normal will actually be false positives and thus

constitute noise in an augmented set of normal data.

Given the lack of ground truth (for unlabeled patches), we assess whether unlabe-

led patches that are flagged as security patches by a one-class classifier are noise

(i.e., false positives), and thus deteriorate a binary classification performance when

added to a training dataset. The comparison is done following two experiments :

— First, we compute accuracy, precision and recall metrics of a classical SVM

binary classifier using the existing set of security patches as positive data

and other sets of non-security (i.e., bug-fix and code enhancement) patches as

negative data.

— Second, we augment the existing set of security patches with automatically

labeled patches after applying a one-class classifier to the dataset of unla-

beled patches. Then we use this augmented set as the positive data and redo

the first experiment. This workflow is detailed in Figure 3.6.

If the features are not efficient in characterizing security patches, the one-class

classifier will yield false positives and false negatives. Thus, when adding false

positives to the ground truth positive data, we will be introducing noise which

will lead to performance degradation. However, if the features are efficient, we

will be increasing the training set and potentially leading to a better classification

performance.

Equations (3.2) and (3.3) provide the standard formulas for computing perfor-

mance metrics, where TP is the number of True Positives, TN that of True

Negatives, FP that of False Positives and FN that of False Negatives.

53

Precision =
TP

TP + FP
; Accuracy =

TP + TN

TP + TN + FP + FN
(3.2)

Recall =
TP

TP + FN
; F1 = 2 ∗

Precision ∗Recall

Precision+Recall
(3.3)

Our experiments are performed with 10-fold cross validation and performance is

measured for the target class of security patches and only on the initial ground

truth samples. Using only the initial set of security patches in the training dataset,

we record an average Accuracy of 58% (Recall = 56%, Precision= 71%). However,

when we augment the training set with flagged unlabeled patches, we observe a

clear improvement of the accuracy to 79% (Recall = 76%, Precision= 85%).

The engineered features are effective for characterizing security patches. They can be

used to collect patches for artificially augmenting a training dataset.

Features independence. The two most closely related work in the literature (Zhou

et Sharma, 2017; Sabetta et Bezzi, 2018) rely on commit text or/and code changes

that they treat as simple bags of words. Nevertheless, no experiments were perfor-

med to assess the contribution and complementarity of the different information

parts. We explore these contributions by evaluating the overlap among the unla-

beled patch subsets that are flagged when using different feature sets. Figure 3.7

illustrates these overlaps with Euler diagrams for the different projects considered

in our study. We note that although there are overlaps, a large portion of samples

are detected exclusively with each feature set (e.g., in Linux, 99, 513+395 = 99, 908

patches out of 99, 513+395+1+37, 161 = 137, 070 patches –73%– are exclusively

detected by either code-fix features or text features). Nevertheless, we note that

security-sensitive features are more tightly related to code-fix features (except for

7 patches in OpenSSL, all flagged patches with security-sensitive features are also

flagged with code-fix features 3, which was to be expected given that security-

3. This does not mean that security-sensitive features are useless or redundant. Patches

54

sensitive features are also about “fixing” code). We then conclude that code-fix

features can be merged with security-sensitive features to form code features,

which constitute a feature set that is independent from the text features set.

As Krogel and Schefferd demonstrated, Co-Training is only beneficial if the data

sets used in classification are independent (Krogel et Scheffer, 2004). This insight

on the sets of engineered features serves as the foundation for our model learning

detailed in the following paragraphs.

Code features (formed by security-sensitive features + code-fix features) and Text

features are independent. They will represent two distinct views of the data, an

essential requirement for Co-Training.

3.3.3 Co-Training Model Learning

Experimental results described above have established that the different fea-

tures engineered provide meaningful information for the identification of security

patches. Nevertheless, given the large number of these features, manual construc-

tion of detection rules is difficult. We propose to apply techniques from the area of

machine learning to automatically analyze the code commits and flag those that

are most likely to be delivering security patches.

In the construction of our learning-based classifier, we stress on the need for practi-

cal usefulness to practitioners. Thus, following recommendations by authors (Perl

et al., 2015) proposing automatic machine-learning approaches to support se-

curity analysts, we strive to build an approach towards addressing the following

challenges :

— Generality : Our feature engineering mixes metadata information from commit

logs, which may or may not be explicit, with numerical code metrics. It is thus

flagged with code-fix features are scarcely flagged with security-sensitive features.

55

important that the classifier effectively leverages those heterogeneous features

to infer an accurate combined detection model.

— Scalability : Given that most relevant software projects include thousands of

commits that must be analyzed, it is necessary for the approach to be able to

operate on the large amount of available features in a reasonable time frame.

— Transparency : In practice, to be helpful for analysts, a classifier must pro-

vide human-comprehensible explanations with the classification decision. For

example, instead of requiring an analyst to blindly trust a black-box deci-

sion based on deep features, information gain 4 (InfoGain) scoring values of

human-engineered features can be used as hints for manual investigation.

Model Learning

Experiments with one-class classification have already demonstrated that it is

possible to build a classifier that fits with the labeled patches in the ground truth

data. Unfortunately, in our case, a major problem in building a discriminative

classifier is the non-availability of labeled data : the set of unlabeled patches is

significantly larger than the limited dataset of labeled patches that we could col-

lect. A classification task for identifying security patches requires examples of

both security and security-irrelevant patches. In related work from the security

industry (Zhou et Sharma, 2017), team members having relevant skills and ex-

perience spent several months labeling closed-source data to support the model

learning. Since their dataset was not publicly 5 available, we propose to rely on

the Co-Training algorithm to solve the non-availability problem. The algorithm

was proposed by Blum and Mitchell (Blum et Mitchell, 1998), for the problem of

4. Information gain is a metric based on entropy that allows to tell how important a given
attribute of the feature set is.

5. Our requests to obtain datasets from authors of (Zhou et Sharma, 2017) and (Sabetta et
Bezzi, 2018) remained unresponded.

56

semi-supervised learning where there are both labeled and unlabeled examples.

The goal of Co-Training is to enhance the performance of the learning algorithm

when only a small set of labeled examples is available. The algorithm trains two

classifiers separately on two sufficient and redundant views of the examples and

lets the two classifiers label unlabeled examples for each other.

Figure 3.8 illustrates the Co-Training process implemented in this work. It takes

labeled and unlabeled patches from a given project or a set of projects and learns

a classification model for predicting patch security relevance. An important as-

sumption in Co-Training is that each view is conditionally independent given the

class label. We have demonstrated in Section 3.3.2 that this was the case for the

different categories of features explored in this work. Indeed, Co-Training is ef-

fective if one of the classifiers correctly labels a sample that the other classifier

previously misclassified. If both classifiers agree on all the unlabeled patches, i.e.

they are not independent, labeling the data does not create new information.

Initial Ground-truth
Labeled Patches

LP

SVM binary
Classifier h1

SVM binary
Classifier h2

Pool U’

pseudo-labeled
instances by h1

pseudo-labeled
instances by h2

View B
(e.g., only commit logs)

View A
(e.g., only code diffs)

Co-Training Algorithm
with Text features

Co-Training Algorithm
with Code features

Unlabeled patches
UP

μ samples

Figure 3.8 : Co-Training learning model (cf. details in Algorithm 1)

Concretely, given a training set comprising labeled patches and noted LP , and a

57

set of unlabeled patches UP , the algorithm randomly selects µ samples from UP

to create a smaller pool U ′, then executes the process described in Algorithm 1

during k iterations.

The overall idea behind the Co-Training algorithm steps is that the classifier h1

adds examples to the labeled set which are in turn used by the classifier h2 in the

next iteration and vice versa. This process should make classifiers h1 and h2 to

agree with each other after k iterations. In this study, we selected Support Vector

Machines (SVM) (Vapnik, 2013) as the internal classification algorithm for the

Co-Training. SVM indeed provides tractable baseline performance for replication

and comparisons against state-of-the-art works.

Identification of security patches

Eventually, when the Co-Training is stabilized (i.e., the two internal classifiers

agree), the output classifier can be leveraged to classify unlabeled patches. Even-

tually, in this work, we consider the classifier built on the code view (which has

been constantly improved due to the co-training) as the yielded classifier.

3.4 Experimental Study and Results

Our experiments aim at assessing the performance of the overall approach, detai-

ling the impact of the Co-Training algorithm and comparing against the state-of-

the-art. We investigate the following research questions :

— [RQ-1.] What is the effectiveness of the proposed SSPCatcher

Co-Training based patch classification approach ?

To answer this research question, we perform binary classification experi-

ments and report on Precision, Recall and F-Measure performance metrics

58

Algorithm 1: Steps for each Co-Training iteration.
input : training set (LP), unlabeled data (UP)
input : pool U ′

output: U ′ : updated pool
output: LP : updated training set

Function getView(x, classifier)
if classifier = C1 then

return Text_features(x)

return Code_features(x)

Function buildClassifier(first)
vectors = ∅;
if first = True then

foreach x ∈ LP do
vectors = vectors ∪ getV iew(x,C1);

else
foreach x ∈ LP do

vectors = vectors ∪ getV iew(x,C2);

classifier ← train_model(SVM, vectors);
return classifier;

h1 ← buildClassifier(True) ; h2 ← buildClassifier(False);
(P1, N1)← classify(h1, U ′) ; (P2, N2)← classify(h2, U ′);
LP ← LP ∪ random_subset(#p, P1) ∪ random_subset(#p, P2);
LP ← LP ∪ random_subset(#n,N1) ∪ random_subset(#n,N2);
U ′ ← U ′ ∪ random_subset(#2 ∗ (p+ n), UP);

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110 120

Size (x1000) of unlabeled dataset in co-training

Linux dataset

accuracy precision recall

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15

Size (x1000) of unlabeled dataset in co-training

Wireshark dataset

accuracy precision recall

0.6

0.7

0.8

0.9

1

1 15.9 30.8 45.7 60.6 75.5 90.4 105.3 120.2 135.1

Size (x1000) of unlabeled dataset in co-training

Whole dataset (Linux+Wireshark+OpenSSL)

accuracy precision recall

Figure 3.9 : Precision, Recall and Accuracy metrics in benchmark evaluation with varying
sizes for the unlabeled dataset.

of the classifier when discriminating security patches. We also evaluate per-

formance in terms of execution time.

59

— [RQ-2.] Can SSPCatcher be trained to predict security-relevant

patches across projects ?

We investigate the possibility of training a model by leveraging data from

a given project and remaining effective on another target project. Firstly,

we consider the case when the projects are written in the same program-

ming language (C). Secondly, we consider projects that are written in mixed

programming languages.

— [RQ-3.] How does SSPCatcher compare against the state-of-the-

art ?

First, we replicate the main components of the approach proposed by Sa-

betta et al. (Sabetta et Bezzi, 2018) (i.e., SVM binary classification with bag-

of-words features of code and log) and then compare this approach against

SSPCatcher on our datasets. Second, we conduct dissection study experi-

ments where we evaluate the contribution of our feature set and the choice

of Co-Training by benchmarking against other design choices.

— [RQ-4.] Can SSPCatcher flag unlabeled patches in the wild ?

In this research question, we go beyond in-the-lab experiments and propose

to assess the performance of SSPCatcher on unseen samples. To that end

we propose to split the whole collected dataset based on timeline (instead

of the classical ten-fold cross validation). SSPCatcher is trained on all

samples except from the last year, and tested only on the last year’s data,

following experimental procedure by Allix et al. (Allix et al., 2015). We

consider the predictions of SSPCatcher on the unlabeled patches in the

test set and manually confirm whether the prediction is correct.

60

3.4.1 RQ1 : Effectiveness of SSPCatcher

We perform binary classification experiments to assess the performance of classi-

fiers in discriminating between security patches (positive class) and non-security

patches (negative class). We remind that, as illustrated in Figure 3.4, the non-

security patches consist in the pure bug-fix patches and code-enhancement patches.

These experiments, similarly to past studies (Sabetta et Bezzi, 2018; Zhou et

Sharma, 2017; Tian et al., 2012), report performance based on the ground-truth

data (i.e., unlabeled patches are not considered to compute the performance score).

Our first experiment investigates the performance of the Co-Training approach

when varying the size of the unlabeled dataset in a uniform programming language

environment (C).

In this experiment, we randomly split the labeled patch sets into two equal size

subsets : one subset is used in conjunction with the unlabeled dataset for the Co-

Training, while the other is used for testing. Precision, Recall, and Accuracy are

computed based on the test set. Figure 3.9 presents the results, showing precision

measurements above 90%, and recall measurements between 74% and 91%. We

do not show evaluation graphs for OpenSSL dataset and Secbench since this da-

taset included only 436 unlabeled patches. With this quantity of unlabeled data,

SSPCatcher yields with OpenSSL the lowest Precision metrics at 74%, but the

highest Recall at 93%. About the Secbench dataset, we do not consider it in

this experiment because of the mixed nature of the programming languages used.

We note that when using C-projects dataset (including Linux, OpenSSL, and

Wireshark) the performance remains high. The best performing state-of-the-art

approach in the literature for identifying security-relevant commits has repor-

ted Precision and Recall metrics at 80% and 43% respectively (Sabetta et Bezzi,

2018). Tian et al. have also reported F1-Measure performance around 70% for

61

identifying bug fixing commits (Tian et al., 2012), while the F1-measure perfor-

mance of SSPCatcher is 89% on average.

In contrast with OpenSSL, Wireshark, and Linux datasets which represent only

samples written in the same programming language (C), the Secbench dataset

includes projects whose code is written in various programming languages. Thus,

with Secbench we evaluate the possibility of using our feature set and the pro-

duced model to predict on any type of project. The results are lower when we

consider commits in any project (irrespective of the programming language), but

the results are higher (precision : 93%, recall : 89%, F1 score : 90%) when we only

focus on predicting commits on C files. This (better) performance on C files is

expected given that our feature set is partly inspired from the bug-fixing feature

set proposed by Tian et al. (Tian et al., 2012) who focused on the C programming

language.

Our second experiment estimates the time consumption of the classification ap-

proach to ensure that this approach can be executed in a reasonable time. We

then evaluate here the time needed for the two classifiers used in the co-training

algorithm to label the whole unlabeled dataset. The experiments were done with

a computer with these descriptions :

— MacOS : version 10.14.6

— Processor : 2,4 GHz intel core i9

— Memory : 32 GB 2400 MHz-DDR4

— Graphics : Intel UHD Graphics 630 1536 MB

The time value was obtained with the time() function of the standard python

library and the value was 125 s for the whole set of unlabeled patches

RQ1▶SSPCatcher (Co-Training + feature set) yields a highly accurate classifier

for classifying patches with respect to whether they are security-relevant or not. ◀

62

3.4.2 RQ2 : Cross-project Evaluation

In the wild of software development projects, as reflected by the case of OpenSSL,

there can be limitations in the available labeled data. Thus, it could be beneficial

if practitioners can train a model by leveraging data from another project and

still obtain reasonable classification performance on a distinct target project. We

investigate this possibility on our datasets considering firstly projects that are

written in the same programming language (C). Secondly, we consider projects

that are written in a mixed programming language (C).

Cross-project classification on C-projects dataset

Table 3.5 shows the classification performance results, in terms of Recall and Pre-

cision, when training on one project and applying the model to another. We note

that training on Wireshark data yields reasonable (although not optimal) perfor-

mance on OpenSSL patches, while training on OpenSSL interestingly offers high

performance on Linux patches. In both cases, the converse is not true. Variations

in cross-project performances may be explained by factors such as coding styles

differences, code base size, or different security patching policies among projects.

Future work will investigate the effects of these factors.

Table 3.5 : Cross-project classification on projects using programming language C

Training on

OpenSSL Wireshark Linux
precision/recall precision/recall precision/recall

T
es

ti
n
g

on OpenSSL (0.93 /0.94) 0.71 / 0.48 0.42 / 0.88

Wireshark 0.53 / 0.88 (0.93 / 0.85) 0.50 / 0.95

Linux 0.89 / 0.78 0.45 / 0.93 (0.95 / 0.84)

63

Cross-project classification on projects using mixed programming languages

Table 3.6 shows the classification performance results, in terms of Recall and

Precision, when training on one project and applying the model to another. We

first consider the top five projects in Secbench dataset that are written in mixed

programming languages. We retain Rails (95.4% Ruby), Php-src (23.8% php),

Mantisbt, Curl (7.5% php), Server (61.5% php), Mantisbt (76.9% php). To

these projects, we add the three projects (Linux, OpenSSL, Wireshark) used in

section 4.2.1. In particular, we note that training on OpenSSL data yields reaso-

nable performance on Php-src patches, while training on Wireshark offers relati-

vely high performance on Rails patches. Conversely, neither applies. The relatively

weak results of this cross-project experiment can be explained by the mixed na-

ture of the projects’ programming languages. However, these experiments show

that SSPCatcher allows us to classify with relatively acceptable results given

the difficulty of the task.

Table 3.7 illustrates the classification performance, considering Recall and Accu-

racy when applying the model to all other projects after training on one project.

We consider eight projects : Linux, Wireshark, OpenSSL, Curl, Mantisbt, Php-

src, Server, and Rails. These projects are the result of adding the top five projects

from the Secbench dataset and the three projects obtained from the Jimenez et

al. framework. The principle is to train on one project in the batch and predict

on all other projects. These experiments allow us to show that training on Linux

data yields medium performance on the other patches.

RQ2▶Cross-project classification can yield comparatively good performance in some

cases of combinations, such as when training on OpenSSL to classify Linux patches.◀

64

Table 3.6 : Cross-project classification on projects using mixed programming language

Training on

OpenSSL Wireshark Linux
precision/recall precision/recall precision/recall

T
es

ti
n
g

on Rails 0.50 / 0.29 0.60 / 0.44 0.50 / 0.30

Curl 0.51 / 0.31 0.52 / 0.75 0.46 / 0.46

Mantisbt 0.53 / 0.43 0.50 / 0.38 0.56 / 0.36

php-src 0.77 / 0.68 0.50 / 0.62 0.51/0.51

Server 0.49 / 0.46 0.57/0.72 0.47/0.44

Table 3.7 : Cross-project classification on projects using mixed programming language :
"train on one and predict on all"

Training without

OpenSSL Wireshark Linux rails Curl Php-src Mantisbt Server

Testing on all 0.51/0.58 0.51/0.58 0.56/0.59 0.50/0.60 0.51/0.51 0.36/0.18 0.54/0.49 0.43/0.13

3.4.3 RQ3 : How does SSPCatcher compare against the state-of-the-art ?

While we report a F-Measure performance of around 90%, the most recent state-

of-the-art on security commit classification (i.e., (Sabetta et Bezzi, 2018)) reports

performance metrics around 55%. Our experiments however are performed on

different datasets because the dataset used by Sabetta & Bezzi was not made

available. Thus, we first replicate the essential components of the best performing

approach in their work (Sabetta et Bezzi, 2018) (i.e., SVM bi-classification with

bag-of-words features of code and log), and can therefore compare 6 their approach

and ours in Table 3.8.

Table 3.8 : Comparison of F-Measure metrics
OpenSSL Wireshark Linux Secbench Whole data

Our Approach 0.93 0.89 0.94 0.76 0.83

Sabetta & Bezzi (Sabetta et Bezzi, 2018) 0.45 0.45 0.67 0.44 0.57

6. Note that the recorded performance of the replicated approach on our dataset is in line
with the performance reported by the authors in their paper (Sabetta et Bezzi, 2018).

65

RQ3▶Our Co-Training approach outperforms the state-of-the-art in the identification

of security-relevant commits.◀

The second experiment assesses the contribution of the feature set on the one

hand, and of the choice of Co-Training as learning algorithm on the other hand.

We replicate the SVM binary classifier proposed by Sabetta and Bezzi (Sabetta et

Bezzi, 2018) and apply it on our labeled patches. We also build a similar classifier,

however using our own feature set. We perform 10-fold cross validation for all

classifiers and evaluate the performance of the classifier in identifying labeled

security patches in the whole dataset. Results in Table 3.9 indicate that our feature

set is more effective than those used by the state-of-the-art, while the Co-Training

semi-supervised model is more effective than the classical binary classification

model.

Table 3.9 : Importance∗ of Classification method and feature set
Precision Recall F1-measure

SVM binary classification
(with features of Sabetta & Bezzi (Sabetta et Bezzi, 2018)) 0.44 0.45 0.44

SVM binary classification
(with our feature set) 0.87 0.38 0.53

Co-Training + SVM
(with our feature set) 0.85 0.81 0.83

∗Performance metrics are for classifying ’security patches’. Due to space limitation, we refer
the reader to the replication package for all evaluation data.

Given that our code-fix features overlap with features used by Tian et al. (Tian

et al., 2012) for classifying bug fix patches, we present performance comparisons

with the different feature sets. Results in Table 3.10 confirm that our extended

feature set (with vulnerability-sensitive features) allows to increase performance

by up to 26 percentage points. The performance differences between projects fur-

ther confirm that the features of Tian et al. (Tian et al., 2012) are indeed very

specific to Linux.

66

Table 3.10 : F1-Measure Comparison : Our features vs features in (Tian et al., 2012)∗
OpenSSL Wireshark Linux Secbench Whole data

Co-Training + SVM
(with our feature set) 0.93 0.89 0.94 0.76 0.83

Co-Training + SVM
(with feature set of Tian & al. (Tian et al., 2012)) 0.65 0.71 0.96 56 0.67

SVM binary classification
(with features of Tian & al. (Tian et al., 2012)) 0.69 0.77 0.99 0.48 0.61

This comparison serves to assess the impact of our security-sensitive features

3.4.4 RQ4 : Can SSPCatcher flag unlabeled patches in the wild ?

In these experiments, we only consider the C-projects dataset (Linux, OpenSSL,

and Wireshark).

Performance computation presented in previous subsections are based on cross

validations where training and test data are randomly sampled. Such validations

often suffer from the data leakage problem (Ribeiro et al., 2016), which leads to

the construction overly optimistic models that are practically useless and cannot

be used in production. For example, in our case, data leakage can happen if the

training set includes security patches that should actually only be available in the

testing set (i.e., we would be learning from the future). We thus propose to divide

our whole dataset, with patches from all projects, following the commits timeline,

and select the last year’s commits as test set. The previous commits are all used

as training set. We then train a classifier using SSPCatcher approach and apply

it to the 475 commits of the test set. To ensure confidence in our conclusions, we

focus on automatically measuring the performance based only on the last year

patches for which the labels are known (i.e., the patches coming from the security

patches dataset, the pure bug fix patches dataset, and the code enhancement

patches dataset as illustrated in Figure 3.4). Overall, we recorded precision and

recall metrics of 0.64 and 0.67 respectively.

In a final experiment, we propose to audit 10 unlabeled patches flagged as secu-

rity patches by a Co-Training classifier built by learning on the whole data. We

67

focus on the top-10 unlabeled patches that are flagged by the classifier with the

highest prediction probabilities. Two authors manually cross-examine the patches

to assess the plausibility of the classification. We further solicit the opinion of

two researchers (who are not authors of this work) to audit the flagged security

patches. For each presented patch, patch auditors must indicate whether yes or

no they accept it as a security patch. Auditors must further indicate in a Likert

scale to what extent the associated details on the features with highest InfoGain

was relevant to the reason why they would confirm the classification. Among the

10 considered patches, 5 happen to be for Linux, 3 for OpenSSL and 2 are for

Wireshark.

We compute Precision@10 following the formula :

Precision@k =
1

#auditors

#auditors∑
i=1

#confirmed patches

k

Ideally, a security patch should be confirmed experimentally by attempting an ex-

ploit. Nevertheless, this requires extremely high expertise for our subjects (Linux,

OpenSSL and Wireshark) and significant time. Instead, and to limit experimenter

bias, auditors were asked to check at least whether issues fixed by the patches have

similar occurrences in line with known potential vulnerabilities. For example, one

of the flagged security patches is “fixing a memory leak” in OpenSSL (cf. commit

9ee1c83). The literature indicates this as a known category of vulnerability which

is easily exploitable (Szekeres et al., 2013).

At the end of the auditing process, we record a Precision@10 metric of 0.55. Al-

though this performance in the wild may seem limited, it is actually comparable

to the performance recorded in the lab by the state-of-the-art, and is a very signi-

ficant improvement over a random classifier that, given the small proportion of

68

security patches (Ponta et al., 2019), would almost always be wrong. Figure 3.10

indicates the distribution of the Likert scale values for the satisfaction rates in-

dicated by the auditors for the usefulness of leveraging the features with highest

InfoGain to confirm the classification.

0 5 10 15 20 25 30 35 40
Count

Strongly disagree Disagree No opinion Agree Strongly agree

Figure 3.10 : Do the highlighted features provide relevant hints for manual review of
flagged patches ?

RQ4▶The approach helps to catch some silent security patches. Features with high

InfoGain can be useful to guide auditors.◀

3.5 Insights, Threats to Validity, and Limitations

3.5.1 SSPCatcher and the related work

Many works are related to this study (Chapter 4), as we have already explored

the related works, in this part, we highlight the main differences between our work

and the most closest others.

In the software change research axis, closely related to ours is the work of Tian

et al. (Tian et al., 2012) who propose a learning model to identify Linux bug-

fixing patches. The motivation of their work is to improve the propagation of fixes

upwards of the mainline tree. SSPCatcher, however, is substantially different

regarding : (1) Objective : (Tian et al., 2012) targets Linux development, and

identifies bug fixes. We are focused on security patches. (2) Method : (Tian et al.,

2012) leverages the classification algorithm named Learning from Positive and

Unlabeled Examples (LPU) (Li et Liu, 2003). In contrast, we explore Co-Training

69

which requires two independent views of the data. We also include a more security-

sensitive set of features. We explore a combination of latent (e.g., #sizeof) and

explicit (e.g., keyword) features. (3) Evaluation : (Tian et al., 2012) was evaluated

against a keyword-based approach. We evaluate against the state-of-the-art and

based on manual audit. All data is released and made available for replication.

Following up on the work of Tian et al. (Tian et al., 2012), Hoang et al. have

proposed a deep learning-based tool for classifying bug fix commits (Hoang et al.,

2018).

3.5.2 Discussion

The Deep learning panacea. Co-attention is an interesting deep-learning ap-

proach that could actually be relevant for accurately classifying code changes.

Unfortunately, neural network based approaches have one constraint and one li-

mitation in the context of our work : (1) they require large datasets to train

(when pre-trained models are unavailable as is the case here). Datasets on secu-

rity patches are not only scarce but also highly imbalanced ; (2) they are generally

not sufficiently explainable, which is a strong limitation as we need a trade-off

between accuracy and interpretability of results (i.e., to provide hints to the ana-

lyst as to why the patch is predicted as being security-related). Our focus in this

work was to deal with dataset imbalance, hence we did not aim for a deep learning

approach. Future work could investigate the possibility of leveraging models that

were pre-trained for bug fixes and fine-tune them for security fix detection.

Excluded features. During feature extraction, we have opted to ignore infor-

mation related to the author of a commit or the file where the commit occurs,

as such information can lead to an overfitted model. Furthermore, we expect our

classifier to be useful across projects, and thus we should not include project-

70

specific features. In contrast, although we found that some selected features have,

individually, little discriminative power, we keep them for the learning as, in com-

binations, they may help yield efficient classifiers.

Benefit of unlabeled data. Generally, labeling is expensive and time-consuming,

while unlabeled data is often freely available on large scales. Our Co-Training

approach successfully leverages such data and turns a weakness in our problem

setting into an essential part of the solution. Furthermore, it should be noted

that, by construction, our dataset is highly imbalanced. Although some data ba-

lancing techniques (e.g., SMOTE (Chawla et al., 2002)) could be used, we chose

to focus our experiments on validating the suitability of our feature set with the

Co-Training for semi-supervised learning. Future work could investigate other op-

timizations.

3.5.3 SSPCatcher and the practice of software development

SSPCatcher was designed to be readily integrated into a real-world pipeline

of collaborative software development. First, in terms of inputs, we consider in-

formation that is readily available and relevant for the purpose of security patch

prediction. Second, the features for representing patch samples are extracted only

based on the sample patch, without leveraging external information. This design

choice contributes to reducing the computation time : simple features are consi-

dered based on patch information, instead of building on complex code features

such as cyclomatic complexity metrics. Third, we envision SSPCatcher to be

deployed in a typical code management system. In such systems which implement

pre-commit tasks such as with "Git hook ", it is possible to perform a set of pro-

cessing actions on a commit before adding it to the repository. Our approach is

expected to be leveraged in such scenarios where a security relevance warning can

71

be made before the commit is made publicly visible or even accepted.

On the other hand, SSPCatcher was developed in Python and written in the

form of a library so that it can be easily integrated into an existing pipeline.

It could directly incorporate inputs from a pipeline and produce the necessary

outputs.

Finally, we note that SSPCatcher performs very well on patches applied to

C program files but also reasonably well on patches for other programming lan-

guages. This opens the door to the identification of security patches in large pro-

jects where code from different programming languages co-exist.

3.5.4 Threats to validity

As with most empirical studies, our study carries some threats to validity. An

important threat to internal validity in our study is the experimenter bias when

we personally labeled code enhancement commits. However, we have indicated the

systematic steps for making the decisions in order to minimize bias. As a threat

to external validity, the generalizability of the results can be questioned since we

could only manually assess a small sample set of flagged unlabeled patches. Given

that our ranking is based on prediction probability, assessment of top results is

highly indicative of the approach performance. Finally, threats to construct validity

concern our evaluation criteria. Nevertheless, we used standard metrics such as

Precision, Recall, F-Measure, and Likert scale to evaluate the effectiveness of the

SSPCatcher approach.

3.5.5 Limitations

Our approach exhibits a number of limitations in terms of :

72

— Programming language support : SSPCatcher applies to code changes, i.e.,

diffs. While we do not require any programming language-specific parser

to extract feature values, our feature engineering is partly inspired from

the bug-fix identification task for C programs by Tian et al (Tian et al.,

2012). Consequently, and as shown by the performance results on Secbench,

our approach works best on C language. Nevertheless, the results that we

obtain overall, including other programming languages, remain acceptable

(i.e., largely over 50% precision score).

— Expressiveness and interpretability of the feature set : our feature set is

limited to our manually engineering effort based on 300 vulnerability fixes.

We acknowledge the limitation that this feature set is not exhaustive and

that they remain high-level hints that cannot systematically be used to

explain the security relevance. This later limitation, which we share with the

state of the art, makes it necessary to rely on human expertise to document

the security aspect of the patch.

— Sensitiveness to project types : Our experimental results show that SSP-

Catcher performance differs across projects. The learned model is further

influenced by coding styles, dataset size, and security patching policies which

affect the inter-project application. Due to limitations in the collected data-

set size, the produced model may not be used in the wild without re-training.

— Exploitation of commit metadata : SSPCatcher does not exploit commit

metadata, which is a relevant source of information for learning a more

accurate model for security patch identification. We have made such a design

choice by considering that some metadata, such as the commit author, may

lead to overfitting due to the fact that some projects have designated security

maintainers.

73

3.5.6 Future work

We plan to apply SSPCatcher to security patch identification to Java projects

after collecting the necessary training data (e.g., from (Ponta et al., 2019)). Such a

classifier could then help the open source community report more vulnerabilities

and their patches (those address vulnerabilities) to security advisories. Besides

SVM, which was used to ensure tractable performance comparisons with the state-

of-the-art, we will investigate some Boosting algorithms. Finally, we will consider

adapting other security-sensitive features (e.g., stall ratio, coupling propagation,

etc. from (Chowdhury et al., 2008)) to the cases of code differences to assess

their impact on the classification performance.

3.6 Summary

We have investigated the problem of identifying security patches, i.e., patches that

address security issues in a code base. Our study explores a Co-Training approach

which we demonstrate to be effective. Concretely, we proposed to consider the

commit log and the code change diff as two independent views of a patch. The

Co-Training algorithm then iteratively converges on a classifier that outperforms

the state-of-the-art. We further show experimentally that this performance is due

to the suitability of our feature set as well as the effectiveness of the Co-Training

algorithm. Finally, experiments on unlabeled patches show that our model can

help uncover silent fixes of vulnerabilities.

Availability : We provide the dataset, scripts, and results as a replication package

at http://github.com/vulnCatcher/vulnCatcher. Our implementation of SSPCat-

cher is further open sourced for the entire research to build on our results.

CHAPITRE IV

VULNERABILITY-INTRODUCING PATCH IDENTIFICATION

Software development is a complex engineering activity. At any stage of the soft-

ware lifecycle, developers will introduce bugs, some of which will lead to failures

that violate security policies. Such bugs are commonly known as software vulnera-

bilities (Krsul, 1998) and are one of the main concerns that our ever-increasingly

digitalised world is facing. Detecting software vulnerabilities as early as possible

has thus become a key endeavour for software engineering and security research

communities (Zhu et al., 2019; Cadar et al., 2008; Livshits et Lam, 2005; Laro-

chelle et Evans, 2001). Typically, software vulnerabilities are tracked during code

reviews, often with the help of analysis tools that narrow down the focus scope

by flagging potentially dangerous code. On the one hand, when such tools build

on static analysis (either deciding based on code metrics or matching detection

rules), the number of false positives can be a deterrent to their adoption. On the

other hand, when the tools build on dynamic analysis (e.g., for pinpointing invalid

memory address), they are operated on the entire software which may not scale

to the frequent evolutions of software.

To address the aforementioned challenges that static and dynamic tools face in

finding vulnerabilities, (Perl et al., 2015) have proposed the VCCFinder approach

with two key innovations : (1) the focus is made on code commits, which are “the

75

natural unit upon which to check whether new code is dangerous”, allowing to

implement early detection of vulnerabilities just when they are being introduced ;

(2) the wealth of metadata on the context of who wrote the code and how it is

committed is leveraged together with the code analysis to refine the detection of

vulnerabilities.

VCCFinder is a machine learning approach that trains a classification model,

which can discriminate between safe commits and commits that lead to the

code being vulnerable. The experimental assessment presented by the authors

has shown great promise for wide adoption. Indeed, by training a classifier on

vulnerable commits made in 2011 on open source projects, VCCFinder was de-

monstrated to be capable of precisely flagging a majority of vulnerable commits

that were made between 2011 until 2014. VCCFinder further produced 99% less

false positives than the tool the authors decided to compare their implementation

to, namely FlawFinder (Ferschke et al., 2012). Finally, the authors reported that

VCCFinder flagged some 36 commits to which no CVE was attached, one of which

has been indeed confirmed as a vulnerability introducing commit.

VCCFinder constitutes a literature milestone in the research direction of vulnera-

bility detection at commit-time. Their overall detection performance, presented in

the form of Recall-to-Precision curve, however indicates that the problem of vul-

nerability finding remains largely unsolved. Indeed, when precision is high (e.g.,

around 80%), recall is dramatically low (e.g., around 5%). This high precision

is a promise that security experts’ time will be spent on likely Vulnerability-

Contributing Commits. This is how to make the best of their skills. Similarly,

when aiming for high recall (e.g., at 80%), precision is virtually null.

Unfortunately, since the publication of VCCFinder, and despite the tremendous

need and appeal of automatically detecting commits that introduce vulnerability,

76

this field has not attracted as much interest, and therefore as much progress, as

one could have imagined.

Thus, to date, it remains unclear (1) whether the ability of VCCFinder to detect

Vulnerability-Contributing Commits can be replicated 1, (2) whether, given some

variations in the datasets or in the algorithm implementation, the produced clas-

sification model is stable, and (3) whether some adaptations of the learning (e.g.,

to account for data imbalance) can improve the achievable detection performance.

In this work, we perform a study on the state of the art of vulnerability finding at

commit-time in order to inform future research in this direction. To that end, we

first report on a replication attempt of VCCFinder. Replication attempt for which

we tried to stick as much as possible to the original work. Then, we present an

exploratory study on alternative features from the literature as well as the imple-

mentation of a semi-supervised learning scenario. We contribute to the research

domain in several axes :

— We perform a replication study of VCCFinder, highlighting the different

steps of the methodology and assessing to what extent our results conform

with the authors published findings.

— We rebuild and share a clean, fully reproducible pipeline, including arte-

facts, for facilitating performance assessment and comparisons against the

VCCFinder state-of-the-art approach. This new baseline might help unlock

the field.

— We explore the feasibility of assembling a new state of the art in vulnerability-

contributing commit identification, by assessing a new feature set.

1. Throughout this work, we use the words reproduction (different team, same experimental
setup) and replication (different team, different experimental setup) as defined in the ACM
Artifact Review and Badging Document. We further note that this terminology was updated in
August 2020 ; We use the updated version. https://www.acm.org/publications/policies/
artifact-review-and-badging-current

77

— We identify one issue to be the lack of labelled data, and we explore the pos-

sibility to leverage a specialised technique, namely co-training, to mitigate

that issue.

The main findings of this work are as follows :

— The VCCFinder publication lacks sufficient information and artefacts to

enable replication.

— Despite our best experimental efforts, we were unable to replicate the results

reported in the publication, suggesting some generalisation issues due to high

sensitivity of the approach to dataset selection and learning process.

— A semi-supervised learning approach based on our new feature set (inspi-

red by a recent work (Sawadogo et al., 2020) that is targeting the detec-

tion of vulnerability fix commits, rather than the detection of Vulnerability-

Contributing Commits, or VCCs) does not achieve the same detection per-

formance as reported in the state of the art. Nevertheless, our approach

constitutes a reproducible baseline for this research direction.

While our work contains a replication study, it also acknowledges the limits of the

replicated approach (i.e., VCCFinder) and, more importantly, it tries to unlock this

important research field by providing a reproducible setup. Data, code and instruc-

tions are available. It also demonstrates that the artefacts we provide allow for new

experiments to advance the state of the field.

The rest of this chapter is organised as follows :

— We first focus on describing the VCCFinder approach : what resources are

available, what we had to guess, and how we reimplemented it (Section 4.1).

We compare the achieved results with the originally presented ones.

— We then propose and evaluate in Section 4.2 a new approach, built with

78

another feature set, and co-training.

— We finally summarise our contributions in Section 4.4.

4.1 Replication study of VCCFinder

The first objective of our work is to investigate to what extent the VCCFin-

der (Perl et al., 2015) state-of-the-art approach can be replicated (different team,

different experimental setup) and/or reproduced (different team, same experimen-

tal setup). VCCFinder 2 is a machine learning-based approach aiming at detecting

commits which contribute to the introduction of vulnerabilities into a C/C++

code base.

As most machine learning-based approaches, VCCFinder relies on several building

blocks :

1. A labelled dataset of commits which is used to train a supervised learning

model ;

2. A feature extraction engine that is used to extract relevant characteristics from

commits ;

3. A machine learning algorithm that leverages the extracted features to yield

a binary classifier that discriminates vulnerability-contributing commits from

other commits.

In the following, we present, for each of the aforementioned three building blocks,

the descriptions of operations in the original paper. We then discuss to what extent

we were able to replicate these operations. Subsequently, we present the results of

our replication study.

2. VCCFinder means Vulnerability-Contributing Commit Finder

79

4.1.1 Datasets

Datasets - VCCFinder Paper

A key contribution in the VCCFinder publication is the construction of two la-

belled datasets of C/C++ commits.

— A dataset of commits that contribute vulnerabilities (VCCs) into a code base ;

— A dataset of commits that fix vulnerabilities that exist within a code base.

With the assumption that a commit that fixes a vulnerability does not introduce

a new one, the authors consider the second dataset as a negative dataset (i.e.,

the corresponding dataset of non-vulnerability-contributing commits). To build

both datasets, the paper reports that 66 open-source git repositories of C and

C++ projects were considered. Overall, these repositories included some 170 860

commits. For the creation of the vulnerability-fixing commits data set, the authors

gather all the CVEs 3 related to these repositories. They selected CVEs that are

linked to a fixing commit. With this method, 718 vulnerability fixing commits

were collected.

Collecting commits contributing to a vulnerability is less straightforward. Indeed,

usually, commits introducing vulnerability are not tagged as such, and there are

no direct information in the commit message that indicates the vulnerable nature

of the commit.

To overcome this difficulty, the authors follow an approach defined by (Śliwerski

et al., 2005) and called SZZ. The principle is to start from vulnerable lines of

code. Such vulnerable lines of code are identified thanks to the vulnerability fixing

3. CVEs : Common Vulnerabilities and Exposures are publicly available cybersecurity vul-
nerabilities.

80

commits : indeed, it is reasonable to assume that the lines that have been fixed

were previously vulnerable. Then the git blame command is used on these iden-

tified lines of code. The git blame command allows finding the last commit that

modified a given line. The assumption here is that the last modification made on

a vulnerable line of code is the modification that introduced the vulnerability.

Thanks to this method, 640 vulnerability-contributing commits (VCC) have been

collected. Note that the numbers of vulnerability-contributing commits and vul-

nerability fixing commits are different simply because one commit can potentially

contribute to more than one vulnerability.

In the VCCFinder paper, both datasets have been divided into a training set and

a testing set (following a two-third, one-third ratio). All commits created before

January, 1st 2011 are put in the training set, and the remaining in the test set. The

numbers of commits of each dataset are presented in the left part of Table 4.1.

Note that among the whole dataset of 170 860 commits, only 1258 (640 + 718)

commits have been classified. The 468 (219 + 249) labelled commits in the test

set is used as ground truth, notably to compute Precision and Recall performance

metrics.

All other commits that are not categorised into the two first datasets (169 502)

are put in a third dataset named unlabelled dataset. This dataset of unlabelled

commits is also split into two datasets. All commits created after January, 1st

2011 are in a test set. In the original paper, this unlabelled test set is used to

try to uncover yet-undisclosed vulnerabilities. The authors claim VCCFinder was

able to flag 36 commits as VCCs. They detail one VCC for which they received

confirmation from the development team that it was indeed a VCC. At the time

they wrote the presentation of their work, they had not received confirmation for

the others.

81

Datasets - availability

The dataset of the original VCCFinder article is not directly accessible.

Online investigation may direct to a specific Github repository 4 that holds the

name of the tool and the name of one of the authors. However, the original paper

does not mention this repository. The code present in this repository is not fully

documented, as was already mentioned by a prior work whose authors noted

some major challenges to exploit its contents (Hogan et al., 2019). After carefully

analysing this repository, we came to the conclusion that the artefacts in this

repository would not allow us to re-construct the exact same dataset as the one

used in the original VCCFinder. Moreover, it would not even allow to construct

a different dataset, as parts of the features extraction process is missing (to the

best of our knowledge).

Datasets - our Replication Study

At the time we reached a conclusion about the available Github repository, we had

already contacted the authors of VCCFinder who offered to provide directly the

output of their feature extraction pipeline. We accepted their offer, as it seemed

that it was the only viable solution.

This dataset provided to us by VCCFinder’s authors is a database export that

contains three tables :

— A table listing 179 public repositories of C/C++ projects ;

— A table listing 351 400 commits, each commit being linked to a repository

thanks to the use of a repository id ;

4. https://github.com/hperl/vccfinder

82

— A table listing the CVEs used to identify the vulnerability fixing commits.

Note that over those 179 repositories, all commits are related to an existing repo-

sitory. However, only 50 repositories have at least one declared commit (i.e., 129

repositories have no related commit).

Furthermore, out of these 50 repositories, only 38 repositories contain at least

one vulnerability fixing or vulnerability-contributing commit. Among these 38

repositories, only 27 are linked to both a vulnerability contributing commit and

its relevant vulnerability fixing commit.

While no such process is mentioned by original authors, we opted to discard

commits that do not modify any code file, as they are very unlikely to be involved

in any vulnerability fixing or introducing. We used a simple heuristic that discards

commits with no modification to a file whose extension is either .h, .c, .cpp, or

.cc.

Table 4.1 presents a comparison between a) the number of commits that have been

involved in our replication attempt, and b) the dataset described in VCCFinder

original paper.

We note that the dataset provided to us is significantly different than the one

described in the VCCFinder paper. We also note that we are unable to evaluate

whether there is any overlap between the dataset we had access to and the original

one.

83

Table 4.1 : Datasets comparisons
VCCFinder Paper Replication

66 repositories 38 repositories
Training Test Total Training Test Total

Positive 421 219 640 470 253 723
(vuln. contr.
commit)∗

Negative 469 249 718 389 879 1268
(vuln. fixing
commit)
Unlabelled 90 282 79 220 169 502 229 381 119 489 348 870
Total 170 860 350 861

∗ Vulnerability-Contributing Commit

As shown in Table 4.1, the datasets used in the VCCFinder paper and the ones used

in our replication study are not identical. Even if the number of positive and negative

samples in the training and test sets are close (same order of magnitude), we can

notice significant differences regarding : (1) the number of repositories presenting a

fixing commit (66 vs 38), (2) the number of negative samples (i.e. fix commits) in the

Test sets (249 in the VCCFinder paper, 879 in our replication study).

This fact alone guarantees that we will not be able to obtain exactly identical results.

Given how much the datasets are different, we even expect our results to be potentially

significantly different.

Use of the data sets The aforementioned ground truth notion is important as

VCCFinder’s authors opted to both report performance metrics computed against

this ground truth, and metrics computed on data they had no ground truth for

(we do not know how they did this). Original authors were contacted but did not

come back to us on the matter. As a result, we faced huge difficulty to clearly

understand the notion of ground truth as used in the original VCCFinder paper.

Since our understanding of their notion of ground truth is based on deduction and

84

guesswork, and not on a clear authoritative description from original authors, we

now carefully detail on what we trained our classifiers on, and on what they were

tested on. More specifically, we performed three different experiments :

1. What we think the original experiment was ;

2. A less coherent setup ;

3. A more traditional setup.

We note that we cannot definitely affirm which of the first or the second setup

VCCFinder original paper used, as both are coherent with the figures reported.

The repartition is presented in Table 4.2, and detailed in the following paragraphs :

Unlabelled Train Replication : A classifier is trained on the whole training

set, including the unlabelled commits created before 2011. This first one is the one

we think to match the most with the description of the original experiment. The

negative label (i.e., not VCC) is associated with those unlabelled commits before

training. The resulting classifier is tested on the whole test set, including the

unlabelled commits from 2011 and newer. Similarly, those unlabelled commits are

associated with the negative label. The goal being to find VCCs, if the resulting

classifier predicts one originally unlabelled commit to be a VCC, this will display

as a False Positive.

Unlabelled Replication : This setup is very similar to the previous one, with

the exception that the unlabelled commits created before 2011 are not used in

the training phase. Those related to after 2011 are used in the test set (and

associated with the negative label). This scenario would enable to analyse the

model’s behaviour once facing security neutral commits. That is to say, commits

that are neither VCCs nor fixing commits, the latter having to be written with a

security mindset. Still, the model would train on the closest we have to a ground

truth. This setup is less coherent in the sense that unlabelled commits are not

85

Table 4.2 : Dataset repartition scenarios
Training Test

Unlabelled
Train

positive 470 253

Replication negative 229 770 (389 + 229 381) 120 368 (879 + 119 489)
Unlabelled positive 470 253
Replication negative 389 120 368 (879 + 119 489)
Ground
Truth

positive 470 253

Replication negative 389 879

treated similarly in the training than in the testing.

Ground Truth Replication : In this more traditional setup, a classifier is trai-

ned on the train set for which we have a ground truth, i.e., excluding the unlabelled

commits. Similarly, the resulting classifier is tested on the test set for which we

have a ground truth, i.e., excluding the unlabelled commits.

4.1.2 Features

Features - VCCFinder paper

The second main step of the VCCFinder approach consists in extracting the rele-

vant features that will feed the machine learning algorithm. Among the selected

features, VCCFinder considers code metrics and meta-data related to both a par-

ticular commit and the whole repository.

Regarding the commit 5 itself, the patch code and the commit message are both

considered. Note that a specific section of the original paper is dedicated to asser-

ting the relevance of the features by comparing their frequency in vulnerability-

contributing commits and other commits.

5. We remind that a commit is composed of a patch (i.e., the "diff" representing the code
changes), and a commit message (explaining the modification performed by the patch)

86

Regarding code metrics, for a given commit m from a repository R, VCCFinder

extracts :

— The number of structural keywords of C/C++ programs (such as if, int,

struct, return, void, unsigned, goto, or sizeof, etc) present in m. Ove-

rall, 62 keywords are referenced ;

— The number of hunks 6 in m ;

— The number of additions in m ;

— The number of files changed in R.

Regarding metadata, for a given commit m from a repository R, VCCFinder

considers :

— The total number of commits in R ;

— The percentage of commits in R performed by the author of m ;

— The number of changes performed on the files modified by m after m was

applied ;

— The number of changes performed on the files modified by m before m was

applied ;

— The number of authors altering the files impacted by m ;

— The number of stargazers, forks, subscribers, open issues and others, inclu-

ding the commit message itself.

Features - availability

The earlier mentioned git repository ends up registering commits in a database,

though as already stated (Section 4.1.1), we are unsure whether the resulting

database would have all the information needed, in particular, we have been unable

6. A hunk is a block of continuous added lines

87

to locate code that would compute all the features required. Furthermore, the

original paper does not contain enough details to fully re-implement the full feature

extraction ourselves.

Therefore, regarding the extraction of features, we have to rely on the fields present

in the database given by the original authors.

Features - our replication study

As already explained, the original paper does not precisely list all the features

extracted leading to a situation where we were unable to re-implement a feature

extraction engine, and thus unable to re-use their approach on another dataset.

However, the database that was shared with us already contains the features com-

puted by VCCFinder authors themselves. We hence directly used those features.

Since the VCCFinder authors sent us datasets with the features already extracted,

our replication study leveraged exactly the same features as the VCCFinder approach.

However, since we did not obtain or re-implement the feature extraction engine, we

are not able to extract features from other datasets of commits.

4.1.3 Machine learning algorithm

Machine learning algorithm - VCCFinder paper

The VCCFinder approach leverages an SVM algorithm (through its LibLinear (Fan

et al., 2008) implementation) to learn discriminating vulnerability introducing

commits from other commits.

This algorithm builds a hyper-plan that would separate, in our case, vulnerability

88

introducing commits from others. To classify a given commit, a distance is com-

puted between the feature vector of this commit (i.e., a point in the hyper-space)

and this hyper-plan.

The sign of this distance determines whether this commit contributes to a vulne-

rability or not.

Given a commit and the extracted features, we describe now the generation of

the feature vector of this commit that is used as input of the machine learning

algorithm.

This process follows a generalised bag-of-words approach that normalises the fea-

tures’ values into boolean vectors. Regarding the normalisation, for each feature,

commits are categorised into bins based on the occurrences of the feature. Then

a string is built by concatenating the name of the feature and the bin identifier.

Finally, joining all these newly created strings together with the texts formed by

the patch code and/or commit message, a considerable string is built and fed to a

tool named SALLY (Rieck et al., 2012). SALLY is a binary tokenisation tool which

generates a high-dimensional sparse vector of booleans from a string, computing a

hash for each split-on-space sub-string. At the end of this process, each commit is

represented now by, first, a Boolean, indicating its class (vulnerability-contributing

commit or not) and a succession of pairs (feature_hash/binary value) that

represent a sparse vector of the features.

The VCCFinder authors mention they used a handicap value C of 1 and weight

for this one-class problem of 100 as "the best values" (last sentence of their section

4.2).

Eventually, the authors present their results on the test set with a Recall-to-

Precision curve for which the actual parameter is the threshold in Figure 4.1.

89

After computing the distance from the hyperplane for each commit in the test

set and by incrementally lowering the threshold, the commits the closest to the

hyperplane will be classified as VCCs. Lowering the threshold results in increasing

the number of True Positives, but might also quickly bring more False Positives.

The higher the Recall-to-Precision curve, the more precise, and the more horizon-

tal, the more the model is not sacrificing precision for recall.

Machine learning algorithm - VCCFinder availability

As already explained, VCCFinder authors did not release code that perform all the

required steps of their approach. Even in the repository found on the Internet (but

not mentioned in the VCCFinder paper), the code that orchestrates the training

of the classifier and its usage is absent.

However, as noted above, authors provide some of the parameters in the paper.

We note that the embedding step (i.e., tokenisation and discretisation) is almost

adequately described in the original paper, with the exception of the number of

bins (cf. below).

Machine learning algorithm - our replication study

The VCCFinder authors mentioned they used the LibLinear (Fan et al., 2008)

library to run the SVM algorithm. However, several front-ends of LibLinear exist.

We decided to use the LinearSVC 7 implementation included in the popular fra-

mework scikit-learn.

Regarding the construction of the feature vectors, and more specifically regar-

7. https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.
html

90

ding the normalisation step, the authors do not specify the number of bins they

use, nor on which features this step was performed. We decided to consider 10

bins per feature containing each, as much as possible, the same number of com-

mits. This was done with scikit-learn’s preprocessing.QuantileTransformer

facility, assigning the value of 10 to n_quantiles parameter, and ’uniform’ to

the output_distribution parameter.

We then apply LinearSVC classifier with C parameter equals to one, the weight

of the class one to 100 over 200 000 iterations.

With the exception of the exact usage of the unlabelled commits, we are rather confi-

dent that our own implementation of the machine learning algorithm building blocks

mimics the VCCFinder one. However, we cannot evaluate if the differences have a

significant impact on the results obtained.

4.1.4 Results

In this section, we detail the results yielded by VCCFinder in the original paper,

as well as the results that we obtain when we replicate VCCFinder.

VCCFinder Paper

To assess the performance of their machine learning-based approach, the authors

keep about two-thirds of their datasets for training, and use one-third of the

datasets for testing. Table 4.1 presents the exact numbers. Note that, as explained

in SubSection 4.1.1, we are not sure about what the training and testing sets are

composed of.

The original results are presented in Figure 4.1, which is directly extracted from

the paper (Perl et al., 2015). The plot is obtained by measuring/computing pre-

91

Figure 4.1 : Extracted from the
VCCFinder paper : precision/recall
performance profile of VCCFinders

Figure 4.2 : Precision/recall performance
profile of VCCFinder’s Replication

cision and recall values when varying the threshold.

In the original paper, the authors compare VCCFinder against a then-state-of-

the-art tool named flawfinder(in red in Figure 4.1). Flawfinder is a static analyser

tool that looks for dangerous calls to sensitive C/C++ APIs in the code as strcpy

and flags them.

Figure 4.1 shows that VCCFinder greatly outperforms Flawfinder. The authors

also set their tool to the same level of recall that Flawfinder is capable of for this

dataset, 24%, and show that their approach presents then a precision of 60%. In

comparison, Flawfinder can only achieve 1% in such conditions. For a recall of

84%, VCCFinder has a precision of 1%.

With precision and recall values extracted from Figure 4.1, an F1-score can be

computed thanks to the following formula :

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

92

We can notice that the maximal F1-score of VCCFinder seems to be lower than

0.4, with a maximum of either (Recall ;Precision) =(0.25 ;0.6) or (Recall ;Preci-

sion)=(0.3 ;0.5). Those lead to an F1-score of either 0.35 or 0.375.

Table 4.3 describes several metrics (extracted from the original paper) such as

True Positive, False Positive, etc computed on the test set. VCCFinder flagged 53

commits that are, according to the ground truth, actually introducing a known

vulnerability. Applying VCCFinder to the larger set of unclassified commits, 36

commits were flagged as suspicious. Among those 36 potential VCCs, one was

described by authors as confirmed by the project maintainers, who had already

patched this vulnerability. Authors opted not to comment on the other 35 com-

mits, invoking "responsible disclosure".

These 36 commits are presented as belonging all to the post-January 2011 un-

classified set. Thus, on what they define themselves as the ground truth, no false

positive is met.

Our Replication Study

The results presented in Figure 4.2 show the precision per recall we obtain on

the 3 different test sets while diminishing the threshold. One can understand

the threshold as the minimum distance from the hyperplane for a commit to be

considered as VCC. The grey curves represent the lines for a constant F1-score at

0.2, 0.4, 0.6 and 0.8. We now details the results for each of the 3 test sets presented

in 4.1.1 :

Ground Truth Replication :

The replication achieves a maximum F1-score of 0.63 for a recall of 0.76 and

a precision of 0.54 (see line 2 of Table 4.3 and green dots in Figure 4.2). We

93

Table 4.3 : Results of replication on updated test set
True Positive(VCC∗) False Positives False Negatives True Negatives† Precision Recall

VCCFinder 53 36 166 79 184 0.60 0.24
Ground_Truth Replication 61 5 192 885 0.92 0.24

Unlabelled Replication 61 3145 192 157 224 0.02 0.24
Unlabelled Trained Replication 61 695 192 159 674 0.08 0.24

∗ VCC : Vulnerability-Contributing Commit
† Vulnerability-Fixing Commit and post-2011 Unlabelled

also set ourselves, for the purpose of comparison, to the reference recall used

in VCCFinder’s original paper of 0.24 to find a precision of then 0.92. In these

conditions, the F1-score is of 0.38. It presents a progressive decline and correctly

tags 61 commits as VCCs.

Unlabelled Replication :

This attempt trains on the ground truth but is tested on both ground truth and

beyond 2011 unclassified is drawn in red in Figure 4.2. We can see it perform very

poorly, presenting more than three thousand false positives, once set to the same

recall of 0.24. The precision is then barely of 2% and the F1 score of 0.037.

Unlabelled Train Replication :

It is after assessing how poorly the last experiments performed that we decided

to include unclassified in the training, forcing them as non-VCCs. The results are

illustrated thanks to the blue curve in Figure 4.2 and the last row of Table 4.3.

It improves sensibly the performances without reaching the level of the original.

The precision for fixed recall is of 8%, leading to an F1-score of 0.12.

Parameters Exploration

Besides the results on the 3 different test sets, we took the opportunity of this

replication attempt of VCCFinder to investigate the impact of various parameters.

94

0.0 0.2 0.4 0.6 0.8 1.0
Recall test

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 te
st

C:1e-06
C:1e-05
C:3e-05
C:5e-05
C:7e-05
C:0.0001
C:0.001
C:0.01
C:0.1
C:1
C:10
C:100

Figure 4.3 : Precision/recall performance
profile of VCCFinder’s replication for va-
rying values of C parameter

0.0 0.2 0.4 0.6 0.8 1.0
Recall test

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 te
st

VCCFinder_replication
Nearest Neighbors
Linear SVM
RBF SVM
Decision Tree
Random Forest_depth5__10
Random ForestF_depth2_0_200
RF_6_0_200
Neural Net
AdaBoost

Figure 4.4 : Precision/recall performance
profile for comparing classifying algorithms

Exploration over parameter C :

In the original paper it is just stated that the optimal conditions are for a cost

parameter C of 1. We experiment for different values of C on the basis of the

Ground Truth Replication. We experiment for values from C = 10−6 to 100, and

obtain the values presented in Figure 4.3.

It appears that the behaviour seems to tend toward an optimal behaviour starting

at C = 10−2 and higher. Thus, as advocated by the VCCFinder authors, using a

value of C at 1 makes sense.

Exploration over class weight parameter :

Altering the weight of the positive class (VCCs) from 0.1 to 100, we saw no

difference in the output using the same other settings. There is, thus, no reason

to deviate from the original paper declared values.

Exploration with other algorithms :

We also experimented with a variety of different machine learning algorithms.

95

Results are presented in Figure 4.4. We note that SVM—that is used by the

original VCCFinder paper—is among the algorithms that produce the best results.

4.1.5 Analysis

We discuss the experimental results of our replication attempt of the VCCFinder

approach.

RQ 1 : Is our reproduction of VCCFinder successful ?

According to the terminology used by ACM’s Artifact Review and Badging gui-

delines, a Reproduction requires the same experimental setup (Association for

Computer Machinery, 2020). We recognise that some elements of our setup were

different from the setup in VCCFinder publication. We have therefore documented

the differences.

We note that the combination of a) an implementation of the approach, and b) the

exact dataset used originally would have allowed us—and any other researcher—to

positively validate the results reported by VCCFinder’s authors.

We have been unable to Reproduce VCCFinder.

RQ 2 : Does the present work constitute a successful replication of

VCCFinder ?

The ACM’s terminology states that researchers conducted a successful Replication

when they "obtain the same result using artifacts which they develop completely

independently" 8.

8. https ://www.acm.org/publications/policies/artifact-review-and-badging-current

96

We were unable to obtain the same results, mostly because we were unable to

re-implement ourselves the code based on the paper. This is caused by the lack of

details and/or of clarity of the original paper. As an example, even if we had had

access to the software that collects the code repositories and built a database 9, we

would still miss the complete list of repositories that were involved in the original

experiment.

We have been unable to Replicate the results in the VCCFinder publication.

Given that the differences in experimental results between our replication study

and the original VCCFinder publication may be due to the variations in the data-

set or in the learning process, we propose to investigate an alternative approach,

that we would make available to the research community, and that could yield

similar performance to the promising one reported in the VCCFinder paper.

4.2 Research for improvement

VCCFinder is an important milestone in the literature of vulnerability detection.

Indeed, departing from approaches that regularly scanned source code to statically

find vulnerabilities, VCCFinder initiated an innovative research direction that

focuses on code changes to flag vulnerabilities while they are being introduced,

i.e., at commit time. Unfortunately, its replicability challenges advances in this

direction. By investing in an attempt to fully replicate VCCFinder and making

all artefacts publicly available, we unlock the research direction of vulnerability

detection at commit-time and provide the community with support to advance

the state of the art.

Considering our released artefacts of a new replicable baseline, we propose to

9. Note that the link provided in footnote 1 of page 3 in the original post-print publication
raises a 404 error.

97

investigate some seemingly-appealing variations of the VCCFinder approach to

offer insights to the community. Thus, in this section, we go beyond a traditional

replication paper by :

(1) Studying the impact of leveraging a different feature set that was claimed to

be relevant to vulnerabilities (Sawadogo et al., 2020), thus proposing a new

approach to compare against VCCFinder (in Section 4.2.1) ;

(2) Trying to overcome the problem of unbalanced datasets, i.e., the fact that

there are much more unlabelled samples than labelled ones (in Section 4.2.2).

4.2.1 Using an alternate feature set

As described above, the feature set used in VCCFinder is not sufficiently docu-

mented to be re-implemented, and the VCCFinder authors did not release a tool

that is able to extract features from a collection of commits.

In this section, we investigate the use of an alternate feature set, described in

a recent publication sawadogo2020learning that is targeting the detection of

vulnerability fix commits, rather than the detection of VCC. To reduce

ambiguity when needed, we refer to this alternate feature set as New Features,

while the VCCFinder feature set is denoted VCC Features.

In this experiment, the settings of the machine learning stay the same as in the

replication (LinearSVC with C=1 and the class weight set to 100).

98

Table 4.4 : Alternate set of features (adapted from (Sawadogo et al., 2020))
ID code-fix ID security-sensitive
F1 #commit files changed S1 #sizeof added
F2 #loops added S2 #sizeof removed
F3 #loops removed S3 S1−S2
F4 F2−F3 S4 S1+S2
F5 F2+F3 S5-S6 Like S1-S2 for continue

F6-F9 Like F2-F5 for if S7-S8 Like S1-S2 for break
F10-F13 Like F2-F5 for Lines S9-S10 Like S1-S2 for INTMAX
F14-F17 Like F2-F5 for Parenthesized expression S11-S12 Like S1-S2 for goto
F18-F21 Like F2-F5 for Boolean operators S13-S14 Like S1-S2 for define
F22-F25 Like F2-F5 for Assignements S15-S18 Like S1-S4 for struct
F26-F29 Like F2-F5 for Functions call S19-S20 Like S1-S2 for offset
F30-F33 Like F2-F5 for Expressions S21-S24 ike S1-S4 for void

ID text
W1-W10 Most recurrent top 10 word

RQ 3 : How a less extensive but more security-focused feature set alters

the VCCFinder approach ?

New Feature Set

The New Feature set is made of three types of features : Text-based features,

Security-Sensitive features and Code-Fix features. They are all shown in Table 4.4

— Code metrics : A difference between the two feature sets concerning the

code is that the new feature set focuses on 17 characteristics of the code,

while VCCFinder collects 62 keywords. Though, for each, it also computes

whether they are added, removed, the difference of those two factors and

their addition.

Taken individually, most of them are common to the two feature sets. Ex-

cept for the count of elements under parenthesis, function calls, keywords :

INTMAX, define and offset, VCCFinder’s feature set includes them all

and beyond.

— Commit message : In New Features, only the ten most significant words

present in the commit message corpus, as obtained through a term-frequency

inverse-document-frequency (TFIDF) analysis, are captured.

99

Table 4.5 : Confusion Table for New Features
True Positive(VCC) False Positives False Negatives True Negatives Precision Recall

VCCFinder 53 36 166 79 184 0.60 0.24
Ground_Truth New Features 61 9 192 854 0.871 0.241

Unlabelled New Features 61 5672 192 120 346 0.010 0.241

Note that we tried to normalise the features (as recommended in hsu2003practical).

The results of detection along the test set were the same or slightly worse with

this normalisation step. Thus we decided not to normalise the features.

Results

Figure 4.5 and Table 4.5 present the performances with the New Feature Set.

By considering the Ground Truth only (second line of Table 4.5 and green curve

in Figure 4.5), the New Features are less performant than VCC Features. For,

still, a recall of 0.24, the precision is only 67% while it used to top at 92% in such

a case.

Here again, because of the doubt on what is the actual test set in the original paper

(cf. Section 4.1.1), we also tested on both the ground truth and the unclassified

commits post January, 1st 2011 (red curve in Figure 4.5 and last row in Table 4.5).

Our feature set does not allow to outperform our VCCFinder replication.

4.2.2 Adding Co-Training

A major issue with any VCC detection endeavour is the lack of labelled data, with

less than one per cent of the data being labelled. While researchers can collect

many hundreds of thousands commits, acquiring even a modest dataset of known

VCCs requires a massive effort.

100

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Ground Truth New Features
Unlabeled New Features

Figure 4.5 : Precision-recall performances using New Features

One field of machine learning focuses on the usability of the unlabelled data.

The study by (Castelli et Cover, 1995) states that it is possible, in some case, to

leverage unlabelled samples to improve a machine learning model. (Zhang et Oles,

2000) investigated the potential for gaining information from unlabelled data. This

last study concludes that so called active-methods have already proven theoretical

efficiency.

In our case, depending on the interpretation of the use of the dataset as explained

earlier, unlabelled commits for training (before 2011) are either discarded (Ground

Truth experiment) or incorporated in the non-VCCs set (Unlabelled Replication

and Unlabelled Train Replication).

101

RQ 4 : Can semi-supervised sorting of unlabelled data improve the

VCCFinder approach ?

One semi-supervised learning approach, called co-training and introduced by (Blum

et Mitchell, 1998), could help answer this question. On a Web page classification

problem, (Blum et Mitchell, 1998) used two classifiers in parallel to complete trai-

ning sets with unlabelled data. They ended up with an error rate of just 5% based

on both the page content and hyperlinks over a test set of 265 pages : only 12

pages labelled (3 as positives course-pages, 9 negatives) and around 800 unlabel-

led. They demonstrated that Co-Training achieved performances on this problem

that was unmatched by standard, fully-supervised machine learning methods. It

is a technique that has industrially proven a reduction of false positive by a fac-

tor 2 to 11 on specific element detection on a video (Levin et al., 2003), and

for which conditions of maximum efficiency it induces were analysed (Balcan et

Blum, 2005).

Co-Training Principle

When trying to detect VCCs, an important point is that unlabelled commits are

unlabelled not because they are not VCCs, but because it is unknown whether they

are VCCs. Arguably, in any large-enough collection of commits, it is reasonable

to assume at least some of them are actually VCCs.

The insight behind trying Co-Training with VCC detection is the following : By

building two preliminary and independent VCC classifiers, the unlabelled commits

predicted to be VCCs by both classifiers could be used to augment the training

set. By repeating this step, it might be possible to leverage the vast space of

unlabelled commits.

102

Description of the algorithm

(Blum et Mitchell, 1998) showed that the co-training algorithm works well if the

feature set division of dataset satisfies two assumptions : (1) each set of features

is sufficient for classification, and (2) the two feature sets of each instance are

conditionally independent given the class.

Both the VCC Features set and the alternate feature set can be split into two

subsets of features : One based on code metrics, and one based on the commit

message.

Previous work on security patches detection showed that, for the New Feature set,

the two resulting feature subsets are independent, and thus satisfy the two main

assumptions for Co-training (Sawadogo et al., 2020).

Once these two assumptions are satisfied, the Co-training algorithm considers

these two feature sets as two different, but complementary views. Each of them

is used as an input of one of two classifiers used in Co-training : One focused on

code metrics, and the other on commit messages. The algorithm is given three

sets : a positive set, a negative set, and a set of unlabelled.

return Text_features(x)

vectors = ∅

Implementation

For the implementation of the Co-training, we select two Support Vector Machines

(SVM) (Vapnik, 2013) as classification algorithms. We also perform experiments

using three different size limits of the training set : by 1000, 5000 and 10 000

103

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

CoTraining vcc_features, 1000 unlab, Test w/o Unlab
CoTraining vcc_features, 10 000 unlab, Test w/o Unlab
CoTraining vcc_features, 1000 unlab, Test w Unlab
CoTraining vcc_features, 10 000 unlab, Test w Unlab

Figure 4.6 : Co-Training Performance
using VCC Features’ set

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

CoTraining new_features, 1000 unlab, Test w/o Unlab
CoTraining new_features, 10 000 unlab, Test w/o Unlab
CoTraining new_features, 1000 unlab, Test w Unlab
CoTraining new_features, 10 000 unlab, Test w Unlab

Figure 4.7 : Co-Training Performance
using New Features set

unlabelled commits added.

This variation enables us to compare the effect of this variable in prediction per-

formance. To respect temporality, the unlabelled commits were all taken before

January, 1st 2011, as was for the original unaltered training set. For both sets

of features, the co-training occurs after the extraction of features. One classifier

trains on the code metrics and the other on the metadata. We finally use, as for

the replication, a LibLinear model to classify the commits of the test set. For the

latter values of C is 1 and, still, the weight of the class to 100.

Co-Training Results

Co-Training with VCC Features

Performance is improved slightly (cf. Figure 4.6 vs Figure 4.2) when Co-Training

is used in conjunction with VCC Features. This improvement, however, does not

appear to change with the size increase of the training set (whether 1000 or 10 000).

104

When testing with the Unlabelled Test, performance drops for all attempts. The-

refore, no improvement can be concluded in this aspect.

Co-Training with New Features

Figure 4.7 presents the results for a Co-Training process based on New Features.

It includes variations for the training set (with 1000 and 10 000 unclassified com-

mits) and, tests with and without the unclassified commits. On testing without the

unlabelled Test set, one can conclude that the increase of 1000 unlabelled already

helps perform better than the baseline green curve of Figure 4.5. An increase of

the dataset by 10 000 is further contributing to detect more VCCs.

Co-Training Analysis

The Co-Training we implemented does not seem to be of particular help for the iden-

tification of VCCs.

This finding is clear when we consider the unclassified commits, in which cases

the performance metrics dramatically drop. There seems to be an effect, though,

for the New Features when only considering the Ground Truth.

4.3 Difference with related work

Many works are related to this study (Chapter 4), as we have already explored

the related works, in this part, we highlight the main differences between our

work and the closest others. Predicting the suspicious commits through filtering

them by excluding or including those matching a list of keywords is an axis in the

vulnerability-introducing detection area. For example, (Wang, 2019) proposes an

approach that falls in this axis and their filtering step can discard up to 92% of

105

commits. However, in the main cases, the artifacts of their works are not available

for comparison and then, cannot be used as a baseline for the research commu-

nity. In contrast, our reproduction/replication work proposes a new baseline that

might help unlock the field and share a clean, fully reproducible pipeline including

artifacts.

Another closest work is (Zhou et Sharma, 2017) that compare different algorithms

for automatically discovering security issues. They consider information from the

commit message, gathered using regular expressions, and from bug reports. In

opposition to VCCFinder and our baseline approach, no information is taken

from the patch code itself.

4.4 Summary

Vulnerability detection is a key challenge in software development projects. Ideally,

vulnerabilities should be discovered when they are being introduced, i.e., by flag-

ging the suspicious vulnerability-contributing commits. VCCFinder, presented

in 2015 at the CCS flagship security conference held the promise of detecting

vulnerability-contributing commits at scale using machine learning. Since the

research direction that this approach initiated has not boomed since then, we

have proposed to revisit it. First, we attempted (and failed) to replicate the ap-

proach and to replicate the results. Then, we propose to build an alternative

approach for the detection of vulnerability-contributing commits using a new

feature sets (whose extraction is clearly replicable) and a semi-supervised lear-

ning technique based on co-training to account for the existence of a large set

of unlabelled commits. Our experimental results indicate that the proposed ap-

proach does not yield as good performance as the ones reported in the VCC-

Finder publication. Nevertheless, it constitutes a strong and reproducible base-

106

line for the research community. Our artefacts are publicly available at https:

//github.com/Trustworthy-Software/RevisitingVCCFinder

CHAPITRE V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Ensuring software security is of the utmost importance during software evolution,

and developers are indeed increasingly concerned about secure development. Yet,

there are regular reports of successful attacks on applications. Typically, these

attacks exploit vulnerabilities (also referred to as “security-sensitive bugs”) in the

application or the operating system code. Such attacks are further feasible when

they are due to zero-day vulnerabilities, i.e., computer security flaws that the

software or service provider is not yet aware of or that have not yet been patched.

Such vulnerabilities can indeed easily go unnoticed by legitimate parties, thus

increasing the risk of attacks.

This thesis works addresses challenges towards the reduction of zero-day vulnerabi-

lities by investigating the automation of the detection of patches that introduce or

fix vulnerabilities : (1) we proposed SSPCatcher, a semi-supervised approach for

vulnerability-fixing patches detection by coping with the insufficiency of labeled

data ; (2) we replicate and comprehensively assess the state of the art VCCFinder

in vulnerability-introducing patch detection and propose an alternative approach.

Vulnerability-fixing patch identification : In our first contribution, we have

108

designed an automated approach that predicts when a fixing change should be

as being security-relevant. Concretely, we have investigated the problem of iden-

tifying security patches, i.e., patches that address security issues in a codebase.

We have proposed SSPCatcher, a Co-Training-based approach to catch secu-

rity patches as part of an automatic monitoring service of code repositories. The

Co-Training approach is developed to cope with the fact that most samples in

our training set is unlabeled (we do not know whether they are security-relevant

or not). It has been demonstrated experimentally to be more effective than prior

state-of-the-art works. We further show experimentally that this performance is

not only due to the suitability of our feature set but also to the effectiveness of

the Co-Training algorithm. Finally, experiments on unlabeled patches show that

our model can help uncover silent fixes of vulnerabilities.

This contribution is beneficial for both practitioners and researchers interested in

vulnerability-fixing patches detection because we propose an automatic approach that

(1) facilitates maintainers’ work by alerting when a given fixing patch is security

relevant or not ; (2) avoids "follow-up" attacks on silent fixing patches ; and (3) alerts

legitimate stakeholders of a given project to take the right actions or to perform more

investigation about a flagged vulnerability-fixing patch. In addition, by proposing an

accurate approach that outperforms the state of the art, we believe that this could

give more confidence to both practitioners and researchers in the using SSPCatcher.

Vulnerability-introducing patch identification : Our second contribution

deals with the problem of vulnerability-introducing patch identification. We have

first proposed to revisit VCCFinder, an influential approach for detecting vulnerability-

contributing commits at scale using machine learning. After discussing the prac-

tical challenges in replicating VCCFinder, we have designed a new approach to

identify vulnerability-contributing commits based on a semi-supervised learning

technique with a new specialized feature set. While our results do not show that

109

we outperform VCCFinder, the proposed approach constitutes a strong and re-

producible baseline for the research community.

This contribution is useful for both practitioners and researchers interested in de-

tecting vulnerability-introducing patches because (1) we reproduce an automatic ap-

proach that helps security or bug-fixing teams to grant the appropriate privilege to a

given bug, regardless of whether it is security-sensitive or not ; (2) we prove, in line

with the original VCCFinder paper (Perl et al., 2015), that this approach helps to

avoid security attacks based on software vulnerabilities by identifying patches that

are flagged as security-relevant ; (3) we propose an alternative and explainable ap-

proach for better interpretation of the results and to facilitate further investigation

by security teams ; and due to the lack of available approaches in this area, (4) we

share a fully reproducible approach for vulnerability introduction patches available to

practitioners and researchers.

5.2 Discussions

Improvement/non-improvement. In vulnerability-fixing patches identification,

we note that our contribution outperforms the state of the art by empirically sho-

wing that such automation is feasible and can yield a precision of over 80% in

identifying security patches, with an unprecedented recall of over 80%. However,

in vulnerability-introducing patches identification, our experimental results indi-

cate that the proposed approach does not yield as good performance as the ones

reported in the SSPCatcher. This could be explained by (1) the difference bet-

ween the characteristics of a vulnerability-fixing and introducing patch in terms

of feature set relevance ; and (2) the difference in terms of datasets constructions

between these two experiments.

Finally, we note that our approaches perform very well on patches applied to C pro-

110

gram files but also reasonably well on patches for other programming languages.

This opens the door to the identification of security patches in large projects where

code from different programming languages co-exist.

Practical implications. Our contributions were designed to be readily integra-

ted into a real-world pipeline of collaborative software development. We envision

these contributions to be deployed in a typical code management system. In such

systems which implement pre-commit tasks, such as "Git hook", it is possible to

perform a set of processing actions on a commit before adding it to the repository.

Our approaches are expected to be leveraged in such scenarios where a security

relevance warning can be made before the commit is made publicly visible or even

accepted. In addition, all approaches were developed in Python and written in the

form of a library so that they can be easily integrated into an existing pipeline.

It could directly incorporate inputs from a pipeline and produce the necessary

outputs.

Finally, we recommend practitioners that want to use these proposed approaches

to (1) build a security-relevant dataset by considering the data set collection

process proposed ; (2) implement the feature engineering process and train the

semi-supervised model for more accuracy ; and (3) use a versioning system that

implements pre-commit tasks such as with "Git hook" to perform the prediction

on a commit before adding it to the repository.

5.3 Future works

For future research, the topics that could be investigated include :

— Automated feature engineering. Existing works on automatic vulnerability-

introducing/fixing patch detection using machine learning often relies on

features engineered explicitly for the task. Therefore, these works, including

111

ours, require substantial human effort to identify relevant features. Due to

the typical massive size of the datasets, manual feature engineering is an

arduous task, and sometimes the easy way to leverage it is to sample. Au-

tomated feature engineering is one relevant approach that fixes the limits of

manual feature engineering. Automated feature engineering suits the huge

size of the datasets by automatically catching representative vectors from

raw data. For example, recent research has shown that neural networks can

be leveraged to learn the semantic representation of code. However, it is

still hard to understand the explainability of the features after using these

approaches. In future work, we could investigate how to leverage such re-

presentations for predicting the security relevance of code changes.

— Towards a more extensive detection approach. We have proposed ap-

proaches that aim to reduce zero-day vulnerabilities by contributing to the

automated identification of vulnerability-introducing and fixing patches. We

have experimented with these approaches on mainly C programming lan-

guages projects due to the lack of large-scale labeled datasets. In future

work, we will investigate how to build datasets for an extended set of pro-

gramming languages as well as whether transfer learning can help apply a

learned detector from one language to the other.

— Automatic vulnerability detection with a focus on categories. Re-

ducing patching process time is crucial when addressing security-sensitive

bugs. Existing works have proposed approaches that detect as many vulne-

rabilities as possible, generally, without considering their severity and ca-

tegory. However, the scope of vulnerabilities is large, and some categories

(e.g., identified by the Common Weakness Enumeration criterion) require

more attention than others due to their severity or complex structure. Our

future work idea is to investigate the identification of specific sets of vulnera-

bilities grouped according to their CWE (Common Weakness Enumeration).

112

For example, proposing an automatic approach that allows predicting im-

proper Authentication (CWE-287 1) could enable a better understanding of

the problem, consider all factors and characteristics and thus lead to more

refined and effective models.

.

1. https ://cwe.mitre.org/data/definitions/287.html

 REFERENCES

Allix, K., Bissyandé, T. F., Klein, J. et Le Traon, Y. (2015). Are your training datasets yet relevant?

Dans International Symposium on Engineering Secure Software and Systems, 51–67.
Springer.

Alohaly, M. et Takabi, H. (2017). When do changes induce software vulnerabilities ? Dans 2017 IEEE
3rd International Conference on Collaboration and Internet Computing (CIC), 59–66. IEEE.

Arnold, R. S. (1996). Software change impact analysis. IEEE Computer Society Press.
Arusoaie, A., Ciobâca, S., Craciun, V., Gavrilut, D. et Lucanu, D. (2017). A comparison of open-

source static analysis tools for vulnerability detection in c/c++ code. Dans 2017 19th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 161–168. IEEE.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D. et
McDaniel, P. (2014). Flowdroid : Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. Dans Acm Sigplan Notices, 259–269. ACM.

Association for Computer Machinery (2020). Artifact review and badging. Accessed November 27,
2020. Récupéré de https://www.acm.org/publications/policies/artifact-review-badging-current

Balcan, M.-F. et Blum, A. (2005). A pac-style model for learning from labeled and unlabeled data.
Dans International Conference on Computational Learning Theory, 111–126. Springer.

Ban, X., Liu, S., Chen, C. et Chua, C. (2019). A performance evaluation of deep-learnt features for
software vulnerability detection. Concurrency and Computation : Practice and Experience.

Behl, D., Handa, S. et Arora, A. (2014). A bug Mining tool to identify and analyze security bugs
using Naive Bayes and TF-IDF : A Comparative Analysis. ICROIT 2014 - Proc. 2014 Int.
Conf. Reliab. Optim. Inf. Technol.

Berr, J. (2017). “wannacry” ransomware attack losses could reach $4 billion.
https://www.cbsnews.com/news/ wannacry-ransomware-attacks-wannacry-virus-losses/,
Available :August 2018.

Bilge, L. et Dumitraş, T. (2012). Before we knew it : an empirical study of zero-day attacks in the
real world. Dans Proceedings of the 2012 ACM conference on Computer and
communications security, 833–844. ACM.

Bissyande, T. F., Thung, F., Wang, S., Lo, D., Jiang, L. et Reveillere, L. (2013). Empirical
evaluation of bug linking. Dans Software Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, 89–98. IEEE.

Blum, A. et Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Dans
Proceedings of the eleventh annual conference on Computational learning theory, 92–100.
ACM.

Brooks, T. N. (2017). Survey of automated vulnerability detection and exploit generation techniques
in cyber reasoning systems. arXiv preprint arXiv :1702.06162.

Brumley, D., Poosankam, P., Song, D. et Zheng, J. (2008). Automatic patch-based exploit
generation is possible : Techniques and implications. Dans 2008 IEEE Symposium on Security
and Privacy (sp 2008), 143–157. IEEE.

Cadar, C., Dunbar, D., Engler, D. R. et al. (2008). Klee : Unassisted and automatic generation of
high-coverage tests for complex systems programs. Dans OSDI, volume 8, 209–224.

Cadar, C. et Sen, K. (2013). Symbolic execution for software testing : three decades later. Commun.
ACM.

Castelli, V. et Cover, T. M. (1995). On the exponential value of labeled samples. Pattern
Recognition Letters, 16(1), 105–111.

Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dustdar, S., Juszczyk,
L., Manzoor, A. et Truong, H.-L. (2008). Pervasive software environments for supporting
disaster responses. IEEE Internet computing, 12(1).

Cha, S. K., Avgerinos, T., Rebert, A. et Brumley, D. (2012). Unleashing mayhem on binary code.
Dans Security and Privacy (SP), 2012 IEEE Symposium on, 380–394. IEEE.

Chang, R.-Y., Podgurski, A. et Yang, J. (2008). Discovering neglected conditions in software by
mining dependence graphs. IEEE Transactions on Software Engineering.

Chawla, N. V., Bowyer, K. W., Hall, L. O. et Kegelmeyer, W. P. (2002). Smote : synthetic minority
over-sampling technique. Journal of artificial intelligence research.

Cho, C. Y., Babic, D., Poosankam, P., Chen, K. Z., Wu, E. X. et Song, D. (2011). Mace : Model-
inference-assisted concolic exploration for protocol and vulnerability discovery. Dans
USENIX Security Symposium, volume 139.

Chowdhury, I., Chan, B. et Zulkernine, M. (2008). Security metrics for source code structures. Dans
Proceedings of the fourth international workshop on Software engineering for secure systems,
57–64. ACM.

Das, D. C. et Rahman, M. R. (2019). Security and performance bug reports identification with class-
imbalance sampling and and Feature Selection . 2018 Jt. 7th Int. Conf. Informatics, Electron.
Vis. 2nd Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR 2018.

Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y. et Jiang, Y. (2019). Leopard : Identifying
vulnerable code for vulnerability assessment through program metrics. 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 60–71.

Egelman, S., Herley, C. et Van Oorschot, P. C. (2013). Markets for zero-day exploits : Ethics and
implications. Dans Proceedings of the 2013 New Security Paradigms Workshop, 41–46. ACM.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. et Lin, C.-J. (2008). Liblinear : A library for
large linear classification. Journal of machine learning research.

Farwell, J. P. et Rohozinski, R. (2011). Stuxnet and the future of cyber war.

Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B. et Yin, H. (2016). Scalable graph-based bug search
for firmware images. Dans Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, 480–491. ACM.

Ferschke, O., Gurevych, I. et Rittberger, M. (2012). Flawfinder : A modular system for predicting
quality flaws in wikipedia. Dans CLEF (Online Working Notes/Labs/Workshop), 1–10.

Gegick, M., Rotella, P. et Xie, T. (2010). Identifying security bug reports via text mining : An
industrial case study. Proc. - Int. Conf. Softw. Eng.

Ghaffarian, S. M. et Shahriari, H. R. (2017). Software vulnerability analysis and discovery using
machine-learning and data-mining techniques : a survey, ACM Computing Surveys (CSUR).

Godefroid, P., Levin, M. Y., Molnar, D. A. et al. (2008). Automated whitebox fuzz testing. Dans
NDSS, volume 8, 151–166.

Goseva-Popstojanova, K. et Tyo, J. (2018b). Identification of security related bug reports via text
mining using supervised and unsupervised classification. Dans 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS), 344–355. IEEE.

Groß, S. (2018). FuzzIL : Coverage Guided Fuzzing for JavaScript Engines. (Mémoire de maîtrise).
Karlsruhe Institute of Technology.

Hempstalk, K. et Frank, E. (2008). Discriminating against new classes : One-class versus multi-class
classification. Dans Australasian Joint Conference on Artificial Intelligence, 325–336.
Springer.

Hoang, T., Lawall, J., Oentaryo, R. J., Tian, Y. et Lo, D. (2018). Patchnet : A tool for deep patch
classification. Dans Tool Demonstrations of International Conference on Software
Engineering.

Hogan, K., Warford, N., Morrison, R., Miller, D., Malone, S. et Purtilo, J. (2019). The challenges of
labeling vulnerability-contributing commits. Dans 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 270–275. IEEE.

Holzmann, G. J. (2002). Uno : Static source code checking for userdefined properties. Dans In 6th
World Conf. on Integrated Design and Process Technology, IDPT ’02.

Jay, G., Hale, J. E., Smith, R. K., Hale, D. P., Kraft, N. A. et Ward, C. (2009). Cyclomatic
complexity and lines of code : Empirical evidence of a stable linear relationship. Journal of
Software Engineering and Applications.

Ji, T., Wu, Y., Wang, C., Zhang, X. et Wang, Z. (2018). The coming era of alphahacking ? : A
survey of automatic software vulnerability detection, exploitation and patching techniques.
Dans 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC).
IEEE.

Jimenez, M., Le Traon, Y. et Papadakis, M. (2018). Enabling the continuous analysis of security
vulnerabilities with vuldata7. Dans IEEE International Working Conference on Source Code
Analysis and Manipulation.

Kersten, R., Luckow, K. S. et Pasareanu, C. S. (2017). Poster : Afl-based fuzzing for java with
kelinci. Dans ACM Conference on Computer and Communications Security.

Kim, M. (2007). An effective under-sampling method for class imbalance data problem. Dans
Proceedings of the 8th Symposium on Advanced Intelligent Systems, 825–829.

Kim, S., Whitehead Jr, E. J. et Zhang, Y. (2008). Classifying software changes : Clean or buggy ?
IEEE Transactions on Software Engineering.

Klees, G., Ruef, A., Cooper, B., Wei, S. et Hicks, M. (2018). Evaluating fuzz testing. Dans
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2123–2138.

Knight, W. (2017). The dark secret at the heart of ai. MIT Technology
Review https://www.technologyreview.com/s/604087the-dark-secret-at-the-heart-of-ai/.

Kononenko, I. (1995). On biases in estimating multi-valued attributes. Dans Ijcai, 1034–1040.
Citeseer.

Koyuncu, A., Bissyandé, T. F., Kim, D., Klein, J., Monperrus, M. et Le Traon, Y. (2017). Impact of
tool support in patch construction. Dans Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 237–248. ACM.

Krogel, M.-A. et Scheffer, T. (2004). Multi-relational learning, text mining, and semi-supervised
learning for functional genomics. Machine Learning. Krsul, I. V. (1998). Software
vulnerability analysis. Purdue University West Lafayette, IN.

Larochelle, D. et Evans, D. (2001). Statically detecting likely buffer overflow vulnerabilities. Dans
10th USENIX Security Symposium.

Levin, A., Viola, P. et Freund, Y. (2003). Unsupervised improvement of visual detectors using co-
training. Dans null, p. 626. IEEE.

Li, B., Sun, X., Leung, H. et Zhang, S. (2013). A survey of code-based change impact analysis
techniques. Software Testing, Verification and Reliability.

Li, H., Oh, J., Oh, H. et Lee, H. (2016a). Automated source code instrumentation for verifying
potential vulnerabilities. Dans IFIP International Conference on ICT Systems Security and
Privacy Protection, 211–226. Springer.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D. et McDaniel, P. (2015). Iccta : Detecting inter-component privacy leaks in android
apps. Dans Proceedings of the 37th International Conference on Software Engineering-
Volume 1, 280–291. IEEE Press.

Li, X. et Liu, B. (2003). Learning to classify text using positive and unlabeled data. Dans IJCAI,
587–592. ACM.

Li, Z., Zou, D., Xu, S., Jin, H., Qi, H. et Hu, J. (2016b). Vulpecker : an automated vulnerability
detection system based on code similarity analysis. Dans Proceedings of the 32nd Annual
Conference on Computer Security Applications, 201–213. ACM.

Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., De Vel, O. et Montague, P. (2018). Cross-project
transfer representation learning for vulnerable function discovery. IEEE Transactions on
Industrial Informatics.

Liu, Y., Yu, X., Huang, J. X. et An, A. (2011). Combining integrated sampling with svm ensembles
for learning from imbalanced datasets. Information Processing & Management, 47(4), 617–
631.

Livshits, V. B. et Lam, M. S. (2005). Finding security vulnerabilities in java applications with static
analysis. Dans USENIX Security Symposium, 18–18.

Mann, H. B. et Whitney, D. R. (1947). On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, 50–60.

Martin, M., Livshits, B. et Lam, M. S. (2005). Finding application errors and security flaws using
pql : a program query language. Dans Acm Sigplan Notices, 365–383. ACM.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering.
Medeiros, I., Neves, N. et Correia, M. (2016). Dekant : a static analysis tool that learns to detect web

application vulnerabilities. Dans Proceedings of the 25th International Symposium on
Software Testing and Analysis, 1–11. ACM.

Meneely, A., Srinivasan, H., Musa, A., Tejeda, A. R., Mokary, M. et Spates, B. (2013). When a
patch goes bad : Exploring the properties of vulnerability-contributing commits. Dans 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
65–74 IEEE.

Moshtari, S., Sami, A. et Azimi, M. (2013). Using complexity metrics to improve software security.
Computer Fraud & Security, 2013(5), 8–17.

Mostafa, S., Findley, B., Meng, N. et Wang, X. (2019). SAIS : Self-Adaptive Identification of
Security Bug Reports. IEEE Trans. Dependable Secur. Comput.

Neuhaus, S., Zimmermann, T., Holler, C. et Zeller, A. (2007). Predicting vulnerable software
components. Dans ACM Conference on computer and communications security, 529–540.
Citeseer.

Newsome, J. et Song, D. X. (2005). Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. Dans NDSS, volume 5, 3–4. Citeseer.
Nguyen, A. T., Nguyen, T. T., Nguyen, H. A. et Nguyen, T. N. (2012).

Multi-layered approach for recovering links between bug reports and fixes. Dans Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
63–71. ACM.

Nigam, K. et Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. Dans
Proceedings of the ninth international conference on Information and knowledge
management, 86–93. ACM.

NIST (2018). National vulnerability database. https://nvd.nist.gov. Orriols, A. et Bernadó-Mansilla,
E. (2005). The class imbalance problem in learning classifier systems : a preliminary study.
Dans Proceedings of the 7th annual workshop on Genetic and evolutionary computation, 74–
78.

Padhye, R., Lemieux, C. et Sen, K. (2019). Jqf : coverage-guided property-based testing in java.
398–401.http://dx.doi.org/10.1145/3293882.3339002.

Pereira, M., Kumar, A. et Cristiansen, S. (2019). Identifying Security Bug Reports Based Solely on
Report Titles and Noisy Data. 39–44.

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl, S. et Acar, Y. (2015).
Vccfinder : Finding potential vulnerabilities in open-source projects to assist code audits. Dans
Proceedings of the 22nd ACM SIGSAC, Conference on Computer and Communications
Security, 426–437. ACM.

Peters, F., Tun, T. T., Yu, Y. et Nuseibeh, B. (2019). Text Filtering and Ranking for Security Bug
Report Prediction. IEEE Trans. Softw. Eng.

Ponta, S. E., Plate, H., Sabetta, A., Bezzi, M. et Dangremont, C. (2019). A manually-curated dataset
of fixes to vulnerabilities of open-source software. Dans Proceedings of the 16th International
Conference on Mining Software Repositories, 383–387. IEEE Press.

Pontin, J. (2018). Greedy, brittle, opaque, and shallow : The downsides to deep learning.
https://www.wired.com/story/greedy-brittle-opaque-and-shallow-the-downsides-to-deep-
learning/.

Porter, M. F. (1980). An algorithm for suffix stripping. Program.
Ribeiro, M. T., Singh, S. et Guestrin, C. (2016). Why should i trust you ? : Explaining the

predictions of any classifier. Dans Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–1144. ACM.

Rieck, K., Wressnegger, C. et Bikadorov, A. (2012). Sally : A tool for embedding strings in vector
spaces. Journal of Machine Learning Research. Rohrhofer, F. M., Saha, S., Di Cataldo, S.

Geiger, B. C., von der Linden, W.et Boeri, L. (2021). Importance of feature engineering and
database selection in a machine learning model : A case study on carbon crystal structures.
arXiv preprint arXiv :2102.00191.

Sabetta, A. et Bezzi, M. (2018). A practical approach to the automatic classification of security-
relevant commits. Dans 34th IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE.

Sawadogo, A. D., Bissyandé, T. F., Moha, N., Allix, K., Klein, J., Li, L. et Le Traon, Y. (2020).
Learning to catch security patches.

Scandariato, R., Walden, J., Hovsepyan, A. et Joosen, W. (2014). Predicting vulnerable software
components via text mining. IEEE Transactions on Software Engineering.

Shin, Y. et Williams, L. (2008). An empirical model to predict security vulnerabilities using code
complexity metrics. ESEM’08 Proc. 2008 ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas.

Shin, Y. et Williams, L. (2011). An initial study on the use of execution complexity metrics as
indicators of software vulnerabilities. Dans Proceedings of the 7th International Workshop on
Software Engineering for Secure Systems, 1–7.

Signoles, J., Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V. et Yakobowski, B. (2012). Frama-c
: a software analysis perspective. volume 27. http://dx.doi.org/10.1007/s00165-014-0326-7.

Śliwerski, J., Zimmermann, T. et Zeller, A. (2005). When do changes induce fixes ? Dans ACM
sigsoft software engineering notes, 1–5. ACM.

Snyk.io (2017). The state of open-source security. https://snyk.io/
stateofossecurity/pdf/The%20State%20of%20Open%20Source.pdf, Available : August 2018.

Sun, X., Peng, X., Zhang, K., Liu, Y. et Cai, Y. (2019). How security bugs are fixed and what can be
improved : an empirical study with Mozilla. Sci. China Inf. Sci.

Sutton, M., Greene, A. et Amini, P. (2007). Fuzzing : brute force vulnerability discovery. Pearson
Education.

Szekeres, L., Payer, M., Wei, T. et Song, D. (2013). Sok : Eternal war in memory. Dans Security
and Privacy (SP), 2013 IEEE Symposium on, 48–62. IEEE.

Tian, Y., Lawall, J. et Lo, D. (2012). Identifying linux bug fixing patches. Dans Proceedings of the
34th International Conference on Software Engineering, 386–396. IEEE Press.

Torvalds, L., Triplett, J., Li, C. et Oostenryck, L. V. (2003). Sparse – a semantic parser for c.
accessed january 2020. Récupéré de https://sparse.wiki.kernel.org/index.php/Main_Page.

Trend Micro (2017). Patching problems and how to solve them.
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/
patching-problems-and-how-to-solve-them, Available : August 2018.

van Rossum, G. (2008). Origin of bdfl. All Things Pythonic Weblogs. http ://www. artima.
com/weblogs/viewpost. Jsp.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Wang, S. (2019). Leveraging machine learning to improve software reliability.
Wang, S., Chollak, D., Movshovitz-Attias, D. et Tan, L. (2016). Bugram : bug detection with n-

gram language models. Dans Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 708–719. ACM.

Wijayasekara, D., Manic, M. et McQueen, M. (2014). Vulnerability identification and classification
via text mining bug databases. Dans IECON 2014-40th Annual Conference of the IEEE
Industrial Electronics Society, 3612–3618. IEEE.

Wijayasekara, D., Manic, M., Wright, J. L. et McQueen, M. (2012). Mining bug databases for
unidentified software vulnerabilities. Dans 2012 5th International Conference on Human
System Interactions, 89–96. IEEE.

Wu, R., Zhang, H., Kim, S. et Cheung, S.-C. (2011). Relink : recovering links between bugs and
changes. Dans Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, 15–25. ACM.

Xiao, Y., Chen, B., Yu, C., Xu, Z., Yuan, Z., Li, F., Liu, B., Liu, Y., Huo, W., Zou, W. et Shi, W.
(2020). Mvp : Detecting vulnerabilities using patch-enhanced vulnerability signatures. Dans
USENIX Security Symposium.

Yamaguchi, F., Golde, N., Arp, D. et Rieck, K. (2014a). Modeling and discovering vulnerabilities
with code property graphs. Dans Security and Privacy (SP), 2014 IEEE Symposium on, 590–
604. IEEE.

Yamaguchi, F., Golde, N., Arp, D. et Rieck, K. (2014b). Modeling and discovering vulnerabilities
with code property graphs. 2014 IEEE Symposium on Security and Privacy, 590–604.

Yamaguchi, F., Wressnegger, C., Gascon, H. et Rieck, K. (2013). Chucky : Exposing missing
checks in source code for vulnerability discovery. Dans Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 499–510. ACM.

Yamamoto, K. (2018). Vulnerability detection in source code based on git
history.

Yang, L., Li, X. et Yu, Y. (2017). Vuldigger : A just-in-time and cost-aware tool for digging
vulnerability-contributing changes. Dans GLOBECOM 2017- 2017 IEEE Global
Communications Conference, 1–7. http://dx.doi.org/10.1109/GLOCOM.2017.8254428.

Ying, A. T., Murphy, G. C., Ng, R. et Chu-Carroll, M. C. (2004). Predicting source code changes by
mining change history. IEEE transactions on Software Engineering.

Zalewski, M. (2017). American fuzzy lop.
http://lcamtuf.coredump.cx/afl/.

Zhang, T. et Oles, F. (2000). The value of unlabeled data for classification problems. Dans
Proceedings of the Seventeenth International Conference on Machine Learning,(Langley, P.,
ed.), volume 20, p. 0. Citeseer.

Zhang, Y.-P., Zhang, L.-N. et Wang, Y.-C. (2010). Cluster-based majority under-sampling
approaches for class imbalance learning. Dans 2010 2nd IEEE International Conference on
Information and Financial Engineering, 400–404. IEEE.

Zhou, Y., Liu, S., Siow, J., Du, X. et Liu, Y. (2019). Devign : Effective vulnerability identification
by learning comprehensive program semantics via graph neural networks. Dans NeurIPS.

Zhou, Y. et Sharma, A. (2017). Automated identification of security issues from commit messages
and bug reports. Dans Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 914–919. ACM.

Zhu, X., Feng, X., Jiao, T., Wen, S., Xiang, Y., Camtepe, S. et Xue, J. (2019). A feature-oriented
corpus for understanding, evaluating and improving fuzz testing. Dans Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security, 658–663.

Zimmermann, T., Nagappan, N. et Williams, L. (2010). Searching for a needle in a haystack :
Predicting security vulnerabilities for windows vista. Dans Software Testing, Verification and
Validation (ICST), 2010 Third International Conference on, 421–428. IEEE.

Zou, D., Deng, Z., Li, Z. et Jin, H. (2018). Information Security and Privacy - 23rd Australasian
Conference, {ACISP} 2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceedings.
Springer International Publishing.

