UNIVERSITÉ DU QUÉBEC À MONTRÉAL

L'OXYGÉNATION MUSCULAIRE MESURÉE PAR LA SPECTROCOPIE DANS LE PROCHE INFRAROUGE LORS DE L'ENTRAINEMENT EN RÉSISTANCE : UNE REVUE DE LA PORTÉE

MÉMOIRE

PRÉSENTÉ

COMME EXIGENCE PARTIELLE

DE LA MAÎTRISE EN KINANTRHOPOLOGIE

PAR

JUAN EMMANUEL VELIZ GARCIA

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire *Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs* (SDU-522 – Rév.04-2020). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.»

REMERCIEMENTS

Je tiens à remercier les personnes m'ayant aidé, indirectement ou directement, à la rédaction de mon mémoire. Tout d'abord, mon directeur de recherche, le professeur Alain Steve Comtois pour avoir accepté de m'encadrer ainsi que pour son encadrement lors de la rédaction. Je remercie également le professeur Gilles Gouspillou pour m'avoir permis de mieux comprendre la bioénergétique mitochondriale ainsi que la professeure Kelsey Needham-Dancause pour ses explications sur les statistiques en recherche. Je tiens aussi à remercier mes collègues étudiants à la maîtrise et au doctorat, qui ont partagé leurs expériences et, ainsi, facilité la mienne. Finalement, je tiens à remercier les membres de ma famille qui m'ont soutenu lors de ce processus.

DÉDICACE

À mes parents qui ont donné énormément pour m'aider à réussir.

TABLE DES MATIÈRES

REMERCIEMENTS	ii
DÉDICACE	iii
LISTE DES FIGURES	vi
LISTE DES TABLEAUX	vii
LISTE DES ABRÉVIATIONS, DES SIGLES ET DES ACRONYMES	viii
LISTE DES SYMBOLES ET DES UNITÉS	ix
RÉSUMÉ	х
INTRODUCTION	1
CHAPITRE 1 PROBLÉMATIQUE	3
1.1 Contexte spécifique	3
1.2 Objet de la recherche	4
1.3 Énoncé du problème	4
1.4 Hypothèse	5
1.5 Limites	5
1.6 Importance	5
CHAPITRE 2 REVUE DE LA LITTÉRATURE	ε
2.1 La technologie NIRS	6
2.1.1 L'histoire de la NIRS	6
2.1.2 Les différentes méthodes de la NIRS	
2.2 NIRS dans différents milieux	
NIRS en milieu clinique 2.2.2 NIRS en milieu sportif	
2.2.3 NIRS et occlusion	
2.3 La fatigue musculaire et l'oxygénation	12
CHAPITRE 3 MÉTHODOLOGIE	14
3.1 Stratégie de recherche	
3.1.1 Recherche base des données	
3.1.2 Recherche manuelle	
3.2 Critère d'inclusion	
3.2.1 Duplicata	15

3.2.2	Titre et résumé	
3.2.3	Texte complet	15
3.3 Extr	action des données	16
3.4 Ana	lyse des données	17
CHAPITR	E 4 RÉSULTATS	18
	cles retenus	
4.2 Cara	actéristiques des études (Voir tableau 4.2)	18
4.2.1	Années de publication	
4.2.2	Sexe	
4.2.3	Exercices	
4.2.4	Muscles les plus évalués	
4.2.5	Types de contractions les plus fréquentes	
4.2.6	Mesures de force de contraction les plus utilisées	
4.2.7	Intervention externe	20
4.2.8	Outils NIRS les plus fréquents	20
4.2.9	Types d'ondes chez les outils NIRS	20
4.3 Rés	umé des objectifs principaux des études	42
CHAPITR	E 5 DISCUSSION	43
51 Rés	ultats de la recherche	43
5.1.1	Années de publication	
5.1.1	Réponses physiologiques	
5.1.2.1		
5.1.2.2		
5.1.2.3		
5.1.2.4	·	
5.2 Mét	thodes des recherches	50
5.3 Rec	herches futures	50
5.4 lim	ites et forces	50
CONCLU	SION	51
ANNEXE	A TABLEAU DE L'ARTICLE TRICCO ET AL, 2018 (LISTE DE VÉRIFICATION : REVUE DE I	_A PORTÉE).52
RÉFÉRFN	CES	53
· ·		

LISTE DES FIGURES

Figure 2.1 Les trois méthodes NIRS (Lar	nge et Tachstidis, 2019)
---	--------------------------

LISTE DES TABLEAUX

Tableau 2.1 Comparaison des trois méthodes NIRS (Lange et Tachtsidis, 2019)	8
ζ (ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	
Tableau 3.1 Classeur excel partie 1	. 16
Tableau 3.2 Classeur excel partie 2	. 16
Tableau 3.3 (Perrey et Ferrari, 2018)	. 17
Tableau 4.1 Outils NIRS	21
Tableau 4.1 Outils NIRS	. 21
Tableau 4.2 Caractéristiques des études	. 22
Tableau 4.3 Résumé et regroupement des études	. 42

LISTE DES ABRÉVIATIONS, DES SIGLES ET DES ACRONYMES

AOM: Méthode d'occlusion artérielle

AVC : Accident vasculaire cérébral

BFR: Entrainement en restriction du débit sanguin

CW-NIRS: Spectroscopie dans le proche infrarouge en onde continue

FD-NIRS : Spectroscopie dans le proche infrarouge par domaine fréquentiel

Hb: Hémoglobine

IPC: Préconditionnement ischémique

Mb: Myoglobine

MTC: Moment de force maximal

MVC: Contraction volontaire maximale

MVIC : Contraction volontaire isométrique maximale

NIRS: Spectroscopie dans le proche infrarouge

O₂: Oxygène

SmO₂: Saturation musculaire en oxygène

SR: Résolution spatiale

SRS : Spectroscopie résolue spatialement

TD-NIRS: Spectroscopie dans le proche infrarouge par domaine temporel

THb: Hémoglobine Totale

LISTE DES SYMBOLES ET DES UNITÉS

% : Pourcentage

Cm : Centimètres

D/s : Degrés par seconde

Kg : Kilogramme

Min : Minute

Mm/Hg : millimètre de mercure

Réps : répétitions

Sec : Seconde(s)

RÉSUMÉ

Objectif: L'objectif est de mieux comprendre le rôle de la technologie de la spectrocopie dans le proche infrarouge comme outils de suivi de la charge interne en réponses aux différentes modalités de l'entrainement en résistance. Méthodes: Cinq bases de données ont été utilisées pour retrouver les articles soit: Pubmed, Scopus, SPORTDiscus, Cochrane Library et Medline with full text (EBSCO). Les mots clés ayant été inscris dans les moteurs de recherches sont les suivants: ("Near-infrared spectroscopy" OR NIRS OR oximetry OR "Muscle oxygenation" OR "Tissue oxygenation") AND (« Resistance training" OR " Resistance exercise" OR "weight training" OR "Weight lifting" OR "Strength training" OR "Blood flow restriction" OR BFR OR "ischemic preconditioning" OR IPC). Pour chacune des cinq bases de données retenues, la recherche a été effectuée dans les titres, les résumés et les mots-clés le 19 janvier 2022. Résultats: Sur un total de 1783 résultats, 79 articles ont été retenus. Conclusion: Bien que des éléments pertinents semblent ressortir dans l'utilisation de l'outil NIRS comme outils d'optimisation pour l'hypertrophie, cette revue de la portée démontre une grande hétérogénéité dans les objectifs et méthodes utilisés par les auteurs de ces études.

Mots clés : Revue de la portée, NIRS, oxygénation musculaire, Entrainement en résistance

INTRODUCTION

L'entrainement en résistance est utilisé depuis les premières civilisations chinoises, égyptiennes et grecques, soit depuis plus de 3000 ans. Des haltères remontant jusqu'à la Grèce antique ont été retrouvés (Stojiljkovic et al., 2013) . Depuis, de nombreux bénéfices ont été découverts suite à des séances d'entrainement en résistance. Pour une population active ou athlétique, ces bénéfices peuvent se traduire par une réduction des risques des blessures et une plus grande explosivité (Suchomel et al., 2016). L'entrainement en résistance est grandement utilisé pour l'hypertrophie ou même nécessaire pour une activité telle que le culturisme. Chez les personnes âgées, les bénéfices se trouvent dans les réductions de risque de chutes (Liu-Ambrose, T. et al., 2004), dans le maintien des fonctions cognitives (Liu-Ambrose, T. et Donaldson, 2009), et plusieurs autres aspects pouvant améliorer la qualité de vie. À ce jour, la littérature scientifique tente toujours de trouver des réponses par rapport aux mécanismes entourant l'entrainement en résistance. Un exemple de ces mécanismes est la courbe de force-vitesse (Alcazar et al., 2019). Celle-ci est mesurée par la force produite par le muscle à différentes vitesse de raccourcissement ou d'allongement (Alcazar et al., 2019). Certains entrainements en résistance tenteront de combiner les deux. Il s'agit de penser à l'entrainement de puissance tel que l'haltérophilie (Suchomel et al., 2017). Un autre mécanisme entourant l'entrainement en résistance est la fatigue musculaire engendrée par ce type d'entrainement (Angleri et al., 2020). La fatigue, due à l'impossibilité de répéter un mouvement à la même intensité, est divisée en deux catégories : la fatigue centrale, qui est associée à de la fatigue neuronale, et la fatigue périphérique, qui est associée à de la fatigue musculaire (Gandevia, 2001). Afin de pouvoir approfondir les connaissances et de faciliter la prescription de l'entrainement, des outils ont été développés. On pense par exemple à un accéléromètre pour l'entrainement en puissance (Sato et al., 2012). L'accéléromètre facilite la possibilité de se situer indirectement dans la courbe force-vitesse, et permet ainsi de quantifier la vitesse à laquelle une barre olympique se déplace lors d'une séance pour un haltérophile (Sato et al., 2012). S'il y a des outils qui mesurent la performance, comme l'accéléromètre, d'autres vont mesurer des réponses physiologiques telles que la fréquence cardiaque, le lactate et la saturation en oxygène dans le corps (saturation systémique) ou une partie précise du corps (saturation locale). La littérature sur cette dernière réponse physiologique (saturation locale) est plus récente, et semble jouer un rôle dans l'entrainement en résistance (Angleri et al., 2020). En effet, un mouvement à plusieurs répétitions sous tension nécessite un apport en oxygène important afin de pouvoir maintenir l'effort (Pittman, 2000). Dans une telle situation, être capable de mesurer, par exemple, l'oxygénation musculaire locale devient un atout intéressant (Grassi et Quaresima, 2016).

C'est en effet la raison pour laquelle cette nouvelle technologie a été développée afin de pouvoir mesurer l'oxygénation locale des tissus et entre autres, musculaire. Une de ces technologies est la spectroscopie dans le proche infrarouge (NIRS), c'est une forme non invasive qui permet d'évaluer les changements hémodynamiques d'un tissu (Bhambhani, Yagesh, 2012). Depuis 2006, des outils NIRS portables sont disponibles au niveau commercial, et par conséquent, cette méthode d'analyse est plus accessible qu'auparavant à l'ensemble de la population (Perrey et Ferrari, 2018), permettant ainsi aux kinésiologues de pouvoir accéder à des paramètres non visibles à l'œil nu.

CHAPITRE 1

PROBLÉMATIQUE

1.1 Contexte spécifique

En décortiquant le nom de la technologie de la NIRS, il est possible de comprendre son fonctionnement. Le spectre visible, c'est-à-dire, les longueurs d'onde visibles à l'œil pour l'être humain, se trouvent à l'intérieur du spectre électromagnétique (Rio et al., 2008). Ce spectre visible est délimité par deux régions. D'un côté, il y a les ondes ultra-violettes, de l'autre, il y a les ondes infrarouges. Le « proche infrarouge » implique qu'on se retrouve à la limite de ce côté du spectre, soit les longueurs d'ondes de 680 nm à 850 nm (McCully et Hamaoka, 2000) ou jusqu'à 1000 nm (Ferrari et Quaresima, 2012B). Le choix de ces longueurs d'onde est relié à plusieurs raisons : d'abord, la lumière à ce niveau peut traverser les tissus biologiques; ensuite, deux chromophores (hémoglobines (Hb) et myoglobine (Mb)) sont parmi les molécules qui absorbent cette lumière; enfin, l'absorption de la lumière par les chromophores est altérée par l'oxygène (McCully et Hamaoka, 2000). Ce changement d'absorbance des molécules se caractérise par un changement de « couleur », et l'analyse de ces résultats représente la spectroscopie.

L'hémoglobine est une protéine qui se trouve à l'intérieur des globules rouges sanguins (King, 2014). La fonction primaire de l'hémoglobine est de transporter l'oxygène des poumons aux différents tissus du corps. Parmi ces tissus on y retrouve les muscles squelettiques. Le sang devient oxygéné en passant par la circulation pulmonaire où l'oxygène s'attache à l'hémoglobine (King, 2014). Par la suite, le sang oxygéné entre dans la circulation systémique artérielle afin de se rendre aux capillaires tissulaires où l'oxygène sera relâché selon la demande métabolique locale (King, 2014). D'autre part, la myoglobine est une protéine qui est située dans les myocytes. Elle a pour fonction de stocker l'oxygène et d'oxygéner le tissu musculaire local (King, 2014).

À l'aide de la NIRS, on peut avoir une mesure approximative de la saturation musculaire en oxygène (SmO₂) en observant la variation de l'absorbance des chromophores (Hb et Mb). En effet, cette mesure provient de deux données perçues par l'outil : le nombre total de chromophores et les chromophores oxygénés (Barstow, 2019). Le fonctionnement de cette technologie sera plus détaillé lors de la revue de la littérature au prochain chapitre.

1.2 Objet de la recherche

Ainsi, l'objectif principal de la recherche est de faire un recensement systématique des études ayant utilisé la technologie NIRS pour évaluer l'oxygénation musculaire lors de l'entrainement en résistance à l'aide de la méthode PRISMA pour effectuer une revue de la portée (Scoping Review).

1.3 Énoncé du problème

La littérature sur l'oxygénation musculaire a progressé durant les dernières années, principalement dû au développement d'outils commercialisés (Perrey et Ferrari, 2018). Plusieurs revues systématiques ont été trouvées en milieu clinique (Chan et al., 2017; Nielsen, 2014; Yang et al., 2019). La dernière revue publiée et trouvée sur la NIRS et l'entrainement en résistance remonte à 2007 (Pereira et al., 2007). Cette revue avait pour objectif d'examiner quatre points : passer à travers les principes de la NIRS; examiner la validité et la fiabilité de cet outil lors de la performance humaine; résumer la littérature scientifique sur l'oxygénation cérébrale, l'oxygénation musculaire ainsi que la réponse du volume sanguin lors de l'entrainement en résistance; et enfin, de mettre en évidence des exemples de réponses simultanées de l'oxygénation cérébrale et de l'oxygénation musculaire lors de l'entrainement en résistance. Au total, les auteurs (Pereira et al., 2007) n'ont trouvé que 4 articles correspondant à l'entrainement en résistance. La NIRS a été utilisée sur vaste latéral lors de 3 études et une sur le biceps. Des différentes réponses de l'oxygénation musculaire ont été trouvées lorsque la résistance était différente, lorsque le temps sous tension était différent et lorsque deux muscles étaient comparés. De plus, une des études a trouvé une différence dans le délai de réoxygénation lorsqu'ils ont comparé une charge à basse intensité (15 répétitions du 60% du 1RM (Répétitions maximales)) à une charge à haute intensité (4 répétitions du 90% du 1RM). À première vue, ces résultats semblent indiquer que les paramètres de l'exercice affecteront la réponse de l'oxygénation musculaire.

Ce n'est que plus récemment, qu'une revue systématique a recensé l'ensemble des études ayant utilisé la NIRS en milieu sportif (Perrey et Ferrari, 2018). Celle-ci avait pour objectif de souligner le rôle de l'oxymétrie musculaire lors des activités sportives auprès d'une population sportive depuis la disponibilité des outils NIRS commerciale en 2006. Cette revue systématique regroupe un total de 16 sports ainsi que 12 appareilles CW-NIRS différentes. Les auteurs ont retenu un total de 57 articles, dont 6 avant 2010. Ces résultats ont permis aux auteurs de constater que les études à ce sujet sont en pleine émergence et très hétérogènes sur les paramètres d'oxygénation musculaire.

Suite à cette recension narrative, il semble approprié de considérer qu'une revue de la portée concernant la technologie NIRS et l'entrainement en résistance est pertinente pour les praticiens ainsi que pour diriger les recherches futures, car, à ce jour, des questions demeurent sur l'évaluation de l'oxygénation musculaire lors de l'entrainement en résistance chez une population saine et active.

1.4 Hypothèse

L'hypothèse est que cette revue de la portée permettra d'éclaircir la façon dont la technique NIRS est utilisée pour l'entrainement en résistance. Par conséquent, la revue permettra de diriger les recherches futures. Une sous hypothèse est que l'oxygénation musculaire joue un rôle important permettant de mieux décrire la réponse physiologique associé à l'entrainement en résistance.

1.5 Limites

Une limite de la présente revue ciblée sur l'entrainement en résistance est le nombre d'articles pertinents. Pour réduire ce risque, une recherche manuelle sera effectuée à partir des listes de références pour chacun des articles retenus pour la revue de la portée.

Une autre limite pour la présente revue se trouve au niveau de l'hétérogénéité des participants et des muscles évalués. Afin de réduire les impacts de cette limite, les études seront limitées aux participants adultes sains, actifs et non aînés.

1.6 Importance

Cette revue de la portée vise à faire une vue globale de la recherche de l'entrainement en résistance et les paramètres NIRS ainsi qu'à trouver les lacunes de la recherche dans ce milieu.

CHAPITRE 2

REVUE DE LA LITTÉRATURE

2.1 La technologie NIRS

Comme mentionné précédemment, cette technologie vise à mesurer l'oxygène se trouvant dans un tissu. Pour y parvenir, ces outils analysent si les chromophores transportent de l'oxygène (oxyhémoglobine) ou non (désoxyhémoglobine) en observant le spectre d'absorption de ces derniers. Une lumière est émise et ensuite, interprétée par un détecteur (Lange et Tachtsidis, 2019). Dans le cas d'un muscle, les mesures sont prises dans le réseau microcirculatoire (Grassi et Quaresima, 2016). Ainsi, en mesurant la balance des chromophores oxygénés et désoxygénés, la technologie NIRS permet de mesurer, de façon indirecte, le débit sanguin (Neary, 2004).

2.1.1 L'histoire de la NIRS

Bien que les études de la technologie de la NIRS sur le corps humain soient relativement récentes, la découverte de son fonctionnement date dès les années 1800. Herschel est le premier à avoir découvert que la lumière dans le proche à infrarouge est abordée par la matière (Beć et Huck, 2019). Par la suite, dans une approche similaire, Glenn Milikan évaluait l'oxygène du sang à l'aide de la lumière du spectre visible (400nm-650nm) (Ferrari et Quaresima, 2012B). Quelques années plus tard, le proche de l'infrarouge a principalement joué un rôle dans l'agriculture (Beć et Huck, 2019). En effet, Kevin Norris, qui pendant les années 40 et 50 avait effectué plusieurs tests avec cette technologie (Norris, 1996), a introduit la NIRS dans les débuts des années 60 pour analyser les produits d'agriculture (Ferrari et Quaresima, 2012A). En 1972, un outil similaire à la NIRS, l'oxymètre à pouls, fut développé par Aoyago (Ferrari et Quaresima, 2012B). Ce n'est qu'en 1977 que la première étude effectuée sur un cerveau humain fut publiée (Jöbsis, 1977). La première étude sur un muscle a aussi été publié lors de cette année (Ferrari et Quaresima, 2012B). Ainsi, Jobsis mentionne que les sept années qui ont suivi cette première étude sur un être humain étaient les années qui ont cherché à valider l'intérêt de la spectroscopie dans le proche infrarouge (Jobsisvander Vliet, 1999).

2.1.2 Les différentes méthodes de la NIRS

Depuis, différents types de NIRS ont été développés (Fig. 2.1). En effet, il y a trois méthodes de NIRS : NIRS par onde continue (CW-NIRS), NIRS par domaine fréquentiel (FD-NIRS), et NIRS par domaine temporel (TD-NIRS). Les outils sont différenciés par le type d'illumination utilisé (Contini *et al.*, 2012).

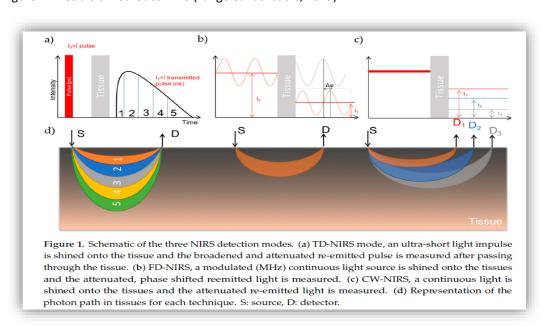


Figure 2.1 Les trois méthodes NIRS (Lange et Tachstidis, 2019)

Dans toutes les méthodes, une lumière est émise et l'atténuation est mesurée par le détecteur (Barstow, 2019; Contini *et al.*, 2012; Lange et Tachtsidis, 2019). Le plus commun et le moins dispendieux est la CW-NIRS (Barstow, 2019; Lange et Tachtsidis, 2019). Cette méthode consiste à émettre de la lumière en continu. À l'aide de l'équation de la loi modifiée de Beer-Lambert, la CW-NIRS est en mesure d'évaluer les changements de concentrations en oxygène des chromophores (Contini *et al.*, 2012). Ensuite, il y a le FD-NIRS. Cette méthodologie est basée sur une source de lumière modulée en amplitude (Barstow, 2019). La lumière qui se rend aux tissus est modulée par des fréquences dans la gamme MHz (Lange et Tachtsidis, 2019). En dernier lieu, il y a le TD-NIRS. Cette méthode émet une lumière pulsée pour obtenir des mesures de saturation en oxygène tissulaire (Barstow, 2019). Le processus dure dans les nanosecondes, ce qui

augmente la profondeur de la lumière dans les tissus (Contini *et al.*, 2012). Le Tableau 2.1 résume les caractéristiques des 3 technologies NIRS.

Tableau 2.1 Comparaison des trois méthodes NIRS (Lange et Tachtsidis, 2019)

Main Characteristics	Methodology						
Main Characteristics	CW	FD	TD				
Practicalities							
Instrument cost	Depends on number of channels, from low to high	High	Very high				
Instrument size	Depends on number of channels, wearable systems available	Bulky but transportable	Bulky but transportable				
Availability of commercial systems	Yes, multiple companies	Yes, but only one company	Yes, but only one company				
Technical considerations							
Number of channels	Can be very high (more than 1000) with the latest HD-NIRS systems. Commercial systems with up to 100 channels	Can be high. Commercial system with up to 500 channels	Lowest. Usually between 1 and 3 channels. Commercial system wi up to 2 channels				
Sampling rate	Highest: 100 Hz	Middle: 50 Hz	Lowest: 1–10 Hz (can be higher, depends on number of channels wavelengths)				
Non-contact scanning possibilities	Yes	No	Yes				
Depth sensitivity	Low, depends on source detector distance	Deep, depends on source detector distance	Deep, do not depends on source detector distance				
Measurement parameters							
[HbO ₂], [HHb], [HbT]	Yes, changes	Yes, absolute but requires multi-distance	Yes, absolute, even with a single channel				
Absolute values of absorption and scattering coefficients, and path length	No	Yes, but requires multi- distance	Yes				
StO ₂	Yes, but requires multi-distance	Yes, but requires multi- distance	Yes				
DOT possible	Yes	Yes	Yes				

 $Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical \ tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ CW: continuous-wave; FD: frequency-domain; TD: time \ domain; StO_2: tissue \ saturation in \ oxygen; DOT: diffuse \ optical \ tomography; HD-NIRS: high-density \ NIRS. \ Abbreviations: \ Abbrev$

Il est toutefois important de préciser certaines limitations de la technologie et même entre chacune des méthodes (Tableau 1). Tout d'abord, la TD-NIRS a l'avantage en termes de profondeur (Contini *et al.*, 2012; Lange et Tachtsidis, 2019). Cette technique permet de mieux discriminer entre le tissu superficiel et le tissu profond, une distinction importante car, par exemple, la perfusion de la peau change lorsque la température augmente, et celle-ci n'est pas associée à l'échange gazeux (Grassi et Quaresima, 2016). De plus, la TD-NIRS et la FD-NIRS ont la possibilité de mesurer le nombre total de chromophores, tandis que la CW-NIRS ne donne que la variation du pourcentage de saturation en oxygène de l'hémoglobine (Barstow, 2019; Lange et Tachtsidis, 2019). Bien que la FD-NIRS possède des avantages technologiques sur la CW-NIRS, elle n'apporterait pas un avantage suffisant pour permettre de mettre de côté la méthode plus viable avec la technologie CW-NIRS (Davies *et al.*, 2017; van Essen *et al.*, 2020). La TD-NIRS est considérée comme la méthode ayant le plus de potentiel (Yamada, Y. *et al.*, 2019), néanmoins, la CW-NIRS est la méthode la plus utilisée dû à sa plus grande adaptabilité en termes de coût, taille et vitesse à traiter les résultats (Lange et Tachtsidis, 2019; Yamada, Y. *et al.*, 2019). Jones et collaborateurs mentionnent l'importance de prendre en considération les limitations affectant la CW-NIRS (Jones *et al.*, 2016) lors de son utilisation. Ils ont

nommé 4 limites : le tissu adipeux d'une personne; la perfusion de la peau; la contribution de la mélanine; et l'hétérogénéité du débit sanguin dans le muscle. Les auteurs précisent toutefois comment limiter ces effets. La technologie de la spectroscopie résolue spatialement aide au niveau de la profondeur atteinte par la lumière de la CW-NIRS et, par conséquent, diminue les limites de la perfusion de la peau (Jones et al., 2016). Une calibration physiologique suite à une occlusion est proposée pour pouvoir comparer différents tissus adipeux. De plus, la fiabilité de certains appareils CW-NIRS a été démontrée (Feldmann et al., 2019; McManus et al., 2018) ainsi qu'une bonne reproductibilité inter sujet (Shadgan et al., 2009). On retrouve un grand nombre d'études ayant fait une revue de la situation de la technologie lors des dernières années. En 2012 (Contini et al., 2012), un résumé des trois types de NIRS et leur fonctionnement a été effectué afin de comparer les points forts et faibles de chacune des méthodes (voir tableau 2.1). En 2016 (Jones et al., 2016), un autre article cherchait à résumer les derniers développements de la technologie CW-NIRS, l'application sur le muscle chez des personnes ayant une capacité réduite de l'exercice, les limites de la technologie, ainsi que les méthodes pour tenter de contrer ces limites lorsque possible. En 2019, on retrouve trois autres revues. La première présentait une revue du déroulement de la TD-NIRS lors de l'évaluation de l'oxygénation au niveau du cerveau et des perspectives futures (Lange et Tachtsidis, 2019). Les auteurs mentionnent la complexité du système TD-NIRS et le manque de disponibilité au niveau commercial comme des obstacles pour la recherche à ce sujet. La seconde se penchait aussi vers la TD-NIRS et les possibilités au niveau de l'imagerie médicale (Yamada, Y. et al., 2019). Cette étude se voulait très exhaustive dans son explication du développement de la TD-NIRS à travers le temps. Enfin, le troisième article se penchait sur tous les types de NIRS et la théorie de l'application de ces outils lors des études sur le muscle squelettique ainsi que des recommandations à suivre pour assurer la qualité des études NIRS (Barstow, 2019).

2.2 NIRS dans différents milieux

2.2.1 NIRS en milieu clinique

Bien que le milieu clinique de soit pas retenu pour la revue de la portée présente, la technologie NIRS a été utilisée sur des personnes atteintes de pathologies. Une revue de Grassi et Quaresima (Grassi et Quaresima, 2016) offre une section pour mettre en évidence l'usage de la NIRS sur ce type de population. Ils notent que des études ont été effectuées sur des patients ayant une insuffisance cardiaque chronique, la maladie artérielle périphérique, la maladie pulmonaire obstructive chronique et une myopathie métabolique. Ces études avaient pour objectif d'identifier les corrélations de l'oxygénation avec les symptômes, d'observer la progression des symptômes à travers le temps, et d'évaluer les effets

thérapeutiques des interventions. Au final, les auteurs considèrent que malgré ses limites, la technologie NIRS ne devrait pas être ignorée comme outil.

Une revue systématique sur des personnes ayant subi des accidents vasculaires cérébraux (AVC) a été effectuée en 2019 (Yang et al., 2019). Un AVC cause une insuffisance d'apport sanguin au cerveau, d'où l'intérêt de mesurer le nombre d'hémoglobine totale (tHb) chez des personnes ayant survécu à cette situation. C'est pourquoi cette revue systématique qualitative cherchait à résumer l'état de la littérature concernant cette approche. Un total de 66 articles a été retenu pour recenser la façon dont cette technologie a été utilisée pour la réhabilitation suite à un AVC. Six applications ont été recensées : réadaptation motrice, réadaptation des fonctions corticales, observations des changements hémodynamiques cérébrales, oxygénation cérébrale, et évaluation des risques d'AVC. Les auteurs de la revue observent l'importance de la NIRS en milieu clinique. Ils notent néanmoins que la technologie n'en est qu'au stade préliminaire en termes d'évidence.

2.2.2 NIRS en milieu sportif

La première étude effectuée sur des sportifs est celle de Chance et ses collaborateurs en 1992 (Chance *et al.*, 1992). Elle avançait une observation importante. Celle-ci mentionne que le niveau d'oxygénation et de réoxygénation dans le muscle peut être une méthode efficace pour identifier l'aptitude physique d'une personne, car la technologie est en mesure d'observer l'extraction d'oxygène (désaturation) et le tHb (mesure indirecte du débit sanguin). Ainsi, cette étude fut parmi les premières à suggérer que la technologie NIRS pourrait être un outil d'évaluation intéressant. L'étude de Bae (Bae *et al.*, 1996) quelques années plus tard corrobore avec cette idée. Les auteurs ont trouvé une différence au niveau de l'apport en oxygène dans le muscle ainsi que l'extraction de l'oxygène lorsqu'ils ont comparé des athlètes à des personnes sédentaires. Ainsi, selon leurs résultats, une personne athlétique a plus de facilité à utiliser l'oxygène qui se trouve dans le muscle, en plus de pouvoir fournir une plus grande quantité d'oxygène aux muscles sollicités (Neary, 2004).

En 2004, Neary a résumé l'ensemble des articles qu'il a trouvé sur le sport et la NIRS. L'objectif était de faire ressortir ce que les études mentionnaient à ce sujet afin de pouvoir conseiller les entrainements futurs des athlètes. Cette revue a une section qui met une emphase sur quatre études qui ont cherché à

trouver les effets de l'entrainement sur l'oxygénation musculaire. Les quatre études ont observé des différences dans l'oxygénation musculaire suite à une intervention (3-6 semaines) en entrainement de type aérobie (course à pied). Cette revue mentionne que la posture de l'athlète peut altérer le tHb, ce qui affecte, par conséquent, l'apport en oxygène. Enfin, pour l'entrainement en résistance, Neary fait référence à une étude de Hoffman et ses collaborateurs (Hoffman et al., 2003). Les auteurs de cette étude ont trouvé que l'ischémie musculaire causée lors de l'entrainement en résistance de grand volume et charge légère (15 répétitions à 60% 1RM) causait un prolongement lors de la période de réoxygénation, lorsque comparé à une charge lourde de faible volume (4 répétitions à 90% 1RM). Ce délai était associé à une réponse plus élevée de l'hormone de croissance. Les auteurs suggèrent que c'est une réponse qui est due à l'accumulation de métabolites et à l'hypoxie plus longue du tissu local.

Plus récemment, l'arrivée des outils NIRS portables a permis d'effectuer des tests sur terrain. D'ailleurs, Buccheit et collaborateurs ont publié plusieurs études cherchant à observer les résultats obtenus par la NIRS lorsqu'un athlète est à la course sur terrain. Une de leurs études a remarqué une plus grande désoxygénation pour la récupération active contrairement à la récupération passive lors de répétition de sprints (Buchheit *et al.*, 2009). Une autre étude tentait de différencier l'oxygénation musculaire lors de sprints répétés avec ou sans changement de direction (Buchheit *et al.*, 2010). Aucune différence n'a été constatée dans l'oxygénation du vaste latéral entre ces deux types de sprints, suggérant ainsi que la fatigue s'explique d'une autre façon.

D'autres auteurs ont utilisé ces outils pour voir les effets d'un stimulus externe ou un supplément. Par exemple, une étude a mesuré l'oxygénation musculaire du vaste latéral lors de sprints répétés sur vélo, alors que les participants portaient des habits de compression (Broatch *et al.*, 2018). Ils ont observé une meilleure performance avec des habits de compression. Une seconde étude a voulu observer les effets des bains contrastes, une méthode de récupération ou thérapie pour les athlètes (Shadgan *et al.*, 2018). Les auteurs ont constaté une augmentation du tHb ainsi que du nombre d'hémoglobines oxygénées dans le tissu observé (gastrocnémien gauche). Enfin, une troisième étude a tenté de pallier les effets de la posture lors du patinage de vitesse en utilisant le préconditionnement ischémique 3 jours consécutifs avant la journée du test (Richard et Billaut, 2018). Le préconditionnement ischémique n'a pas eu d'effet à ce niveau.

2.2.3 NIRS et occlusion

L'occlusion dans un contexte de muscle fait référence aux blocages de vaisseaux sanguins. Cela a pour effet de diminuer l'apport en sang et oxygène. Une occlusion du muscle actif mène à une accélération de la vitesse à laquelle une personne se fatigue (Pitcher et Miles, 1997). C'est aussi une méthode utilisée avec la NIRS pour estimer le tHb et la capacité mitochondriale (Ryan *et al.*, 2012). Tout d'abord, il y a le préconditionnement ischémique (IPC). À l'aide d'un brassard à pression, une personne va subir 3 à 4 cycles d'ischémie et de reperfusion sur un muscle donné (Caru *et al.*, 2019). L'entrainement en restriction du débit sanguin (BFR) est une méthode d'entrainement qui implique une occlusion du retour veineux et une limitation de la circulation artérielle à l'aide d'un brassard à pression, un tourniquet ou un élastique (Bennett et Slattery, 2019). Une étude a tenté d'expliquer les mécanismes physiologiques de la méthode BFR à l'aide d'un outil TD-NIRS (Ganesan *et al.*, 2015). Pour ce faire, l'outil a été placé sur le vaste interne lors d'un exercice d'extension du genou. Ils ont ensuite comparé le mouvement sans occlusion et avec occlusion. Similairement à d'autres études, l'occlusion était associée à une plus grande concentration de désoxyhémoglobine. D'ailleurs, les auteurs suggèrent qu'il y a une possibilité d'utiliser et optimiser la méthode BFR à l'aide du NIRS en adaptant la récupération et l'intensité au taux de SmO₂ mesuré par l'outil.

2.3 La fatigue musculaire et l'oxygénation

La fatigue se définit comme l'incapacité à maintenir ou produire la force nécessaire pour le maintien d'une activité (Fitts, 1994). La fatigue musculaire due à un effort physique dans des conditions jugées normales peut être regroupée en deux catégories : la fatigue centrale et la fatigue périphérique. Lorsqu'on parle de fatigue musculaire, habituellement on fait référence à la fatigue périphérique (Bhambhani, Yagesh, 2012).

Deux aspects contribuant à la fatigue musculaire sont le débit sanguin et l'oxygène transporté dans celuici. En effet, il a été démontré que la quantité d'oxygène disponible pour un muscle sollicité joue un rôle important dans l'état de fatigue du muscle actif (Wan et al., 2017). Étant donné que l'oxygène est transporté dans le sang, une altération du débit sanguin dans le muscle sollicité va affecter la quantité d'O2 disponible que le muscle peut extraire. À titre de preuve, lors de l'exercice, la pression intramusculaire ainsi que le changement du débit sanguin affectent la désoxygénation musculaire (Saltin et al., 1998). Une observation aussi remarquée par Tamaki et ses collaborateurs (Tamaki et al., 1994). L'étude de Wright (Wright et al., 1999) montre que la contraction musculaire volontaire augmente la pression artérielle et par ce fait, diminue la quantité de sang pouvant accéder au muscle actif. Hoffman et ses collaborateurs (Hoffman et al., 2003) rapportent une information similaire : une augmentation de la

pression intramusculaire est accompagnée d'une diminution de la perfusion du muscle sollicité. À cette information, ils rajoutent que la pression intramusculaire et la force de la contraction musculaire ont une relation linéaire. C'est-à-dire que plus la force nécessaire pour déplacer une charge augmente, plus la pression intramusculaire est grande. L'implication étant que la perfusion d'un muscle durant la contraction diminue plus la charge déplacée (soulevée) est lourde.

Une façon de limiter la fatigue est de contrôler l'effort donné. Une étude a cherché à mieux comprendre la relation entre l'oxygénation musculaire et l'effort (Born et al., 2017). Leurs résultats leur ont permis de constater une relation inverse entre la consommation d'oxygène (VO₂) et la SmO₂. Cela se traduit par une diminution de la concentration d'oxygène dans le muscle lorsque la mesure de consommation d'oxygène augmente. Ainsi, la NIRS reflète une plus grande sensibilité à l'intensité de l'exercice qu'un outil tel que le cardiofréquencemètre. La raison étant que le cardiofréquencemètre ne reflète pas les changements d'intensité lors de l'exercice tandis que la NIRS a reflété les changements en consommation d'oxygène. Les auteurs ont conclu que la technologie de la NIRS pourrait être considérée comme un outil pour évaluer la performance. Enfin, l'oxygène est une composante importante pour la resynthèse de la phosphocréatine (Ufland et al., 2013), elle-même importante pour la répétition d'exercice vigoureux.

CHAPITRE 3

MÉTHODOLOGIE

Ce chapitre contient la méthode utilisée pour parvenir aux objectifs du mémoire.

3.1 Stratégie de recherche

3.1.1 Recherche base des données

Dans l'objectif de réaliser une revue de la portée (Scoping Review), le tri des articles a été effectué en suivant la méthode Preferred Reported Items for Systematic Review and Meta-analysis (PRISMA) (Liberati et al., 2009) et l'ajustement pour revue de la portée (Tricco et al., 2018). Le modèle présentant le déroulement de la revue peut être observé dans le tableau en annexe A.

Les bases de données qui ont été utilisées étaient celles proposées par le service de bibliothèque de l'UQAM dans la section sciences de l'activité physique. Ce service propose six bases de données incontournables, soit : PubMed, SCOPUS, SPORTDiscus, Cohchrane Library, Medline with full text (EBSCO) et ERIC (ProQuest). ERIC (ProQuest) a été laissé de côté étant donné sa nature plus centrée sur l'éducation. Après plusieurs combinaisons de mots-clés, le choix s'est arrêté sur la combinaison suivante qui suit le guide de l'utilisateur du site de Cochrane Library : ("Near-infrared spectroscopy" OR NIRS OR oximetry OR "Muscle oxygenation" OR "Tissue oxygenation") AND (« Resistance training" OR " Resistance exercise" OR "weight training" OR "Weight lifting" OR "Strength training" OR "Blood flow restriction" OR BFR OR "ischemic preconditioning" OR IPC). Pour chacune des cinq bases de données retenues, la recherche a été effectuée dans les titres, les résumés et les mots-clés.

3.1.2 Recherche manuelle

Afin de s'assurer de limiter le nombre d'articles pertinent qui pourrait nous échapper, une recherche manuelle a été effectuée dans la liste de référence de chacun des articles retenus pour la revue de la portée.

3.2 Critère d'inclusion

3.2.1 Duplicata

Tous les articles ont été placés en ordre alphabétique du nom de l'auteur sur Endnote X9.2. Si un article avait plus d'une copie, c'est-à-dire que l'auteur et le titre étaient identiques, celle(s)-ci étai(en)t supprimées afin qu'il ne reste qu'une seule version de l'article.

3.2.2 Titre et résumé

L'article était exclu si, lors de la lecture du titre et du résumé, il était possible de déterminer avec certitude que celui-ci n'était pas une étude sur l'évaluation de l'oxygénation musculaire en entrainement en résistance à l'aide d'un outil NIRS chez des personnes adultes non ainées saines et actives.

3.2.3 Texte complet

Pour qu'un article soit considéré, il devait correspondre aux critères suivants suite à la lecture du texte complet :

- 1. L'article était écrit en anglais et évalué par les pairs.
- 2. Les sujets de l'article devaient être une population saine, sans aucune maladie ou blessure; active; de 18 ans et plus sans être considérés ainés (65 ans et plus).
- 3. Un article était considéré, qu'il y ait un suivi sur plusieurs semaines ou une simple intervention.
- 4. L'outil de l'article devait être la technologie NIRS (CW, TD ou FD) mesurant les changements de l'oxyhémoglobine et la désoxyhémoglobine.
- 5. Tous les types de contraction (concentrique, excentrique, isométrique et isocinétique) étaient pris en considération. Toutefois, la modalité choisie pour l'entrainement en résistance devait avoir un effort (charge, vitesse) constant lors d'une série de répétitions complète. Par exemple, un test incrémenté continu n'était pas pris en considération, mais une augmentation de 5% du 1 RM entre chaque série était considérée.

Les critères d'inclusion ont été inspirés de la revue systématique effectuée par Perrey et Ferrari (Perrey et Ferrari, 2018) sur l'utilisation de la technologie CW-NIRS dans le milieu sportif.

3.3 Extraction des données

Lorsqu'un article a été retenu pour la revue, les informations recueillies ont été placées dans un classeur Excel selon les attributs suivants : auteurs, date de publication, sexes des participants, mesures anthropométriques des participants, l'âge des participants, les outils utilisés, les modalités de l'entrainement, les exercices effectués par les participants, les muscles analysés et les observations analysées (voir exemple, tableau 2.1). Les mesures directement reliées à l'oxygénation musculaire (ex : SmO₂, tHb) ont aussi été notées quand elles étaient disponibles. Les mesures notées sont celles avant l'exercice et celles de la dernière série effectuée si plus d'une série était effectuée. Seules les mesures prises dans une situation normoxique sans altération externe (occlusion, suppléments, vibrations) autre que l'exercice effectué ont été notées (voir tableau 2.2).

Tableau 3.1 Classeur excel partie 1

Auteurs	Participants	Exercice	Contraction	Technologie	muscles	Méthodologie	Observations (Jaune=Hypoxie; Orange=supplément; Bleu clair= occlusion; vert= autre)
Alvares 2020	12 M Santé Actifs	Knee flexion/ Knee extension	Isocinetic (C-C)	Portamon	VL.	1set 6 reps (30D/s) Lent 1 set 6 reps 180D/S rapide	Pente de reperfusion à une corrélation significative avec le sommet du débit saguin
Alhamoud 2018	22 elite M alspine skiers(179±4cm; 83±6kg,26±4y)	Knee extension	isocinetic	Portamon	VL.	35 mvc	Hypoxia limits Rate of Torque Development and Rate of Emg Rise
Alvares2012	15 santé M w/RT exp	Elbow flexion/Elbow extension	Isocinetic (C-C) Cybex norm	Microrunman NIm inc	Biceps		Supplémentation augmente débit saguin mais pas Smo2 pendant la récupération. (Supplément L-arginine) (LAST SET)
	12 RT trained (23±2y;					TRAD: 3 sets of 10 75% 1RM DS: 1 set= 75% 1RM (15 sec) 55%1RM (15 sec) 35% 1RM CP: 1 set= 10 reps at 75% 8 reps at	
Angleri 2020	177.3±0.3cm; 79.8±5.9kg. IMC<30)	Knee extension		Oxymon	VM	80% et 6 reps at 85% 1RM 2 min récup entre chaque série	DS a produit des niveaux plus bas de HbO2 et HbDiff comparé à TRAD and CP
Behrens 2020	16 M active (26 ± 4 y; 183 ± 6 cm; 81 ± 8 kg)	Knee extension	Isométrique	Moxy	VL.	20 % MVT jusqu'à fatigue	IPC n'a pas d'effet sur SmO2
Bloomer 2010	19 RT trained M (24 ± 4y; 176 ± 5cm; 80 ± 7kg)	Bench press		Inspectra	Delt. Ant.	10 sets 50% 1RM until failure 2 min pause	Aucun des suppléments testés n'avait d'effet significatifs en relation avec la performance de l'exercice

Tableau 3.2 Classeur excel partie 2

Auteurs	tHb (base)	THb (fin)	SmO2/StO2/TSI/TOI début %	SmO2/StO2/TOI /TSI (fin)	SmO2 moyen durant (%)
Alvares 2020	0.85±1.71μM:s-1 1.01 ± 1.52 μM:s-1		68.07 ± 2.93 66.76 ± 3.52		
Behrens 2020	12:79 ± 0:36 (g/DL-1)	12:92 ± 0:49 (g/dl-1)			
Davis 2020				76.3 ± 2.3 83.1 ± 0.8	22.2 ± 3.5 22.2 ± 3.5
Denis 2011B		/ VL RF 30) 95 150 240) 25 25			
De oliveira 2018			_9.81 ± 8.11		19.00 ± 11.57

3.4 Analyse des données

Un tableau cumulatif des données extraites similaire à la revue systématique de Perrey et Ferrari (Perrey et Ferrari, 2018) sera présenté (voir Tableau 3.3). Celui-ci présentera l'ensemble d'informations similaires des articles retenus.

Tableau 3.3 (Perrey et Ferrari, 2018)

Table 1 Summary of findings for studies investigating muscle tissue oxygenation in moderately trained to elite	e athletes during and after various sports carried out on the field or simulated in
laboratory settings	

G	Charles (comp)	C1-	Part to a second	P	*	161.(-)4	D Iv	
Sport	Study (year)	Sample	Participants ^a	Exercise, protocol	Instrumentation and measured NIRS variables ^b	Muscle(s) ^a	Results	
Alpine skiing	Sperlich et al. (2013) [15]	12	Competitive elite alpine skiers (M: 26 ± 4 years, 80 ± 5 kg)	3 min in the downhill tuck position with passive vibration (60 Hz, 4-6 mm) and different levels of compression garments on lower limbs	PortaMon ^c (TSI, ΔtHb)	Left vastus lateralis (Sf: NA < 15 mm)	Greater deoxygenation during the 3-min period, and enhanced reoxygenation after 90 s by leg compression (20-40 mmHg)	
Climbing	Fryer et al. (2015) [16]	44	4 ability groups: controls $(26\pm2\ years, 79\pm11\ kg)$, intermediate $(29\pm4\ years, 80\pm13\ kg)$, $10\ advanced$ $(27\pm5\ years, 72\pm10\ kg)$ and $10\ elite (30\pm9\ years, 69\pm5\ kg)$ climbers; all M	Continuous and intermittent (10-s contraction and 3-s rest) at 40% MVC on a climbing-specific testing apparatus	NONIN 7600 (rSO ₂)	Flexor digitorum profundus and flexor carpi radialis (dominant arm) (Sf: NA)	Greater deoxygenation (sustained contractions) and faster reoxygenation in elite climbers	
	Fryer et al. (2016) [17]	38	4 ability groups: 9 controls $(26\pm6 \text{ years}, 79\pm11 \text{ kg}), 9$ intermediate $(29\pm4 \text{ years}, 79\pm13 \text{ kg}), 10 \text{ advanced}$ $(27\pm5 \text{ years}, 72\pm10 \text{ kg})$ and $10 \text{ elite} (30\pm9 \text{ years}, 69\pm5 \text{ kg})$ climbers; all M	Climbing-specific finger endurance test: continuous contraction at 40% MVC until voluntary contraction on a climbing- specific testing apparatus	NONIN 7600 (rSO ₂)	Flexor digitorum profundus and flexor carpi radialis (dominant arm) (Sf: NA)	Greater deoxygenation in elite and advanced rock climbers with similar vessel occlusion among groups	
	Fryer et al. (2015) [18]	46	Sport climbers with a range of abilities (36 M and 10 F, 31 ±7 years)	Handgrip contraction at 10% MVC followed by 3-5 min of ischemia	PortaLite ^c (TSI, ΔtHB, ΔHHb, ΔO ₂ Hb, oxidative capacity index – TSI half-time to recovery)	Flexor digitorum profundus (Sf: 1.8 ± 0.6 mm)	Forearm flexor oxidative capacity index is an important determinant of rockelimbing performance	
	Giles et al. (2017) [19]	28	Sport climbers with a range of abilities (35 \pm 6 years, 64 \pm 9 kg)	Handgrip contraction at 10% MVC followed by 3-5 min of ischemia	PortaLite ^c (TSI, oxidative capacity index – TSI half-time to recovery)	Flexor digitorum profundus (Sf: NA)	Oxygenation kinetics is greater in the dominant hand than in the non- dominant hand	
	MacLeod et al. (2007) [20]	20	11 intermediate rock climbers (23 ± 3 years) and 9 non-hand-trained healthy controls (22 ± 1 year)	Continuous and intermittent (10 s contraction and 3 s rest) endurance test at 40% MVC on a climbing-specific testing apparatus	NIRO-500 (ΔtHb , ΔHHb , $\Delta O_2 Hb$)	Flexor digitorum superficialis (Sf: NA)	Greater occlusion (ΔtHb) and deoxygenation during contractions in climbers	

CHAPITRE 4

RÉSULTATS

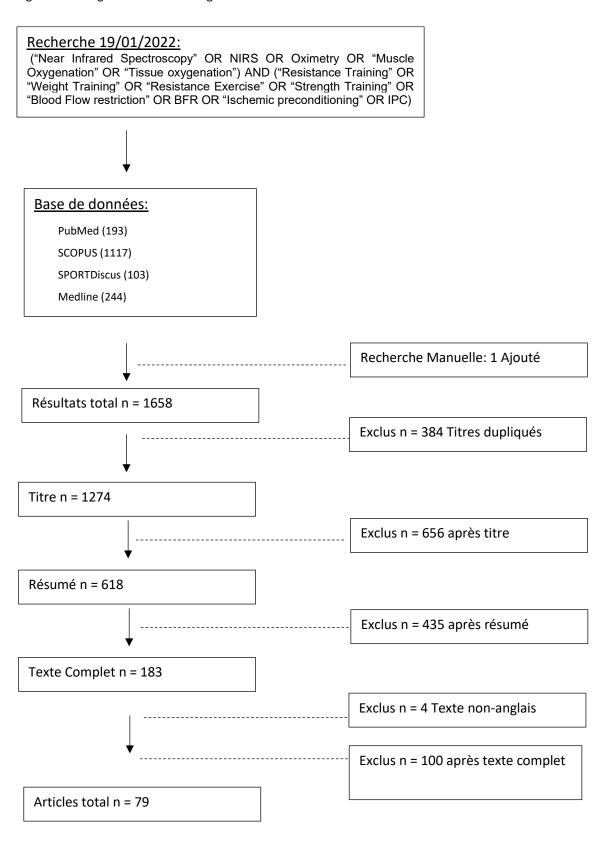
4.1 Articles retenus

La figure 4.1 démontre les résultats obtenus en utilisant la stratégie de recherche mentionnée lors de la méthodologie. Un total de 1657 articles a été trouvé dans les bases de données proposées par l'UQAM. Parmi ceux-ci, 384 ont été exclus parce qu'ils étaient dupliqués. Après l'analyse des titres, 656 articles ne correspondaient pas aux critères de sélections. L'analyse des résumés a exclu un total de 485 articles. De ce fait, 183 articles ont été retenus pour la lecture complète de l'article. Suite à ces lectures, 104 articles ont été exclus pour les raisons suivantes : le texte n'était pas en anglais (4), c'était une soumission de résumé (1), participants non actifs (45), mesures FNIRS uniquement (1), il n'y avait aucune analyse de SmO₂ (8), participants déjà utilisés pour une autre étude sélectionnée (1), il y avait une intervention : externe (7) ou bien avant le test (14), les modalités de l'entrainement n'étaient pas claires (1), la mesure NIRS était prise au repos (3), l'âge ne correspondait pas aux critères (2), ou il n'y avait pas d'entrainement en résistance (14). Ainsi, un total de 79 articles a été retenu, et 23 de ces articles avaient, au minimum, une mesure correspondant aux critères mentionnés plus tôt.

4.2 Caractéristiques des études (Voir tableau 4.2)

4.2.1 Années de publication

Parmi les articles retenus, 50 ont été publiées entre 2016 et 2022, 18 entre 2010 et 2015, 8 entre 2005 et 2009, et 3 avant 2005.


4.2.2 Sexe

Parmi les articles sélectionnés, 61 ont évalué le sexe masculin, 14 ont évalué les deux sexes, et 4 ont évalué le sexe féminin.

4.2.3 Exercices

L'exercice le plus commun était celui de l'extension du genou qui a été utilisé dans 40 articles. Les exercices plus complexes tels que le squat, bench press et soulevé du poids mort ont été utilisés 8, 5 et 2 fois respectivement.

Figure 4.1. Diagramme de la stratégie de recherche et de la sélection des articles

4.2.4 Muscles les plus évalués

L'outil NIRS était placé le plus souvent sur le vaste latéral pour un total de 42 études. Les muscles tels que le biceps brachial et le droit fémoral étaient les deuxièmes et troisièmes plus représentés avec 10 et 9 études, respectivement, qui ont cherché à observer les variations physiologiques mesurées par un outil NIRS.

4.2.5 Types de contractions les plus fréquentes

Les deux types de contractions les plus fréquentes étaient isométriques (16) et isocinétiques (14).

4.2.6 Mesures de force de contraction les plus utilisées

Les forces de contraction les plus utilisées étaient la force de contraction volontaire en pourcentage (26) ainsi que le pourcentage de la répétition maximale (25).

4.2.7 Intervention externe

Un total de 33 articles a cherché à mesurer un groupe témoin à une intervention externe, autre que la charge soulevée. Les interventions les plus fréquentes étaient les suppléments et une situation d'hypoxie avec 9 études chaque condition. Le BFR et l'IPC ont aussi été équitablement représentés avec 6 fois chacun. Une seule étude a évalué les effets de l'immersion en eau froide, tandis que 2 ont voulu évaluer les effets de la pression négative du bas du corps.

4.2.8 Outils NIRS les plus fréquents

Un total de 18 outils NIRS ont été utilisés. Le plus fréquemment utilisé était le Portamon avec un total de 23 études. Le seul autre outil NIRS se trouvant avec 10 et plus d'études était le NIRO et ses variations (200, 200x, 300 et 500), combinant un total de 12 recherches. Ces outils sont représentés dans le tableau 4.1.

4.2.9 Types d'ondes chez les outils NIRS

Parmi les 18 outils NIRS, la méthode onde continue a été la plus représentée à travers les études pour un total de 72 études. Une illumination à domaine fréquentielle a été utilisée pour 6 études et une seule étude s'est servie d'un outil NIRS à domaine temporel.

Tableau 4.1 Outils NIRS

Outils NIRS Types d'ondes d'études Portamon (3, 5, 6, 20, 28, 29, 30,35,39, 42, 43, 48, 51, 59, 60, 61, 62, 64, 65, 68, 69, 70, 77) Onde continu 23 Niro (300:200:200x;500) (15,16,18,19,45, 49, 55, 56, 63, 72, 73, 79) Onde continu 12 Oxymon (7, 8, 10, 21, 22, 41, 44, 57) Onde continu 8 Moxy (9, 17, 32, 40, 52, 58) Onde continu 6 Oxiplex TS (1, 12, 14, 54, 76) Domaine fréquentiel 5 Inspectra (11, 13, 71, 74) Onde continu 4 MicroRunman Nim Inc (4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 ISS Imagent (24, 47) Domaine fréquentiel 2 ISS Imagent (24, 47) Domaine fréquentiel 2 Woor-VMS-NIRS: Moor instruments (36, 50) Onde continu 2 Overvalite (29, 75) Onde continu 2 Portalite (29, 75) Onde continu 1 27) Domaine temporel 1 OM-200 (66) Onde continu 1 NE-20 (27) Onde continu 1 NIMO, nirox srl (67) <t< th=""><th></th><th></th><th>Nombres</th></t<>			Nombres
Portamon	Outils NIRS	Types d'ondes	d'études
(3, 5, 6, 20, 28, 29, 30,35,39, 42, 43, 48, 51, 59, 60, 61, 62, 64, 65, 68, 69, 70, 77) (30, 60, 61, 62, 64, 65, 68, 69, 70, 77) (15, 16, 18, 19, 45, 49, 55, 56, 63, 72, 73, 79) Onde continu 12 Oxymon (7, 8, 10, 21, 22, 41, 44, 57) Onde continu 8 Moxy (9, 17, 32, 40, 52, 58) Onde continu 6 Oxiplex TS (11, 12, 14, 54, 76) Inspectra (11, 13, 71, 74) Onde continu 4 MicroRunman Nim Inc (4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 2 ISS Imagent (24, 47) Domaine fréquentiel 2 USS Imagent (24, 47) Domaine fréquentiel 2 CW-NIRS, NIMS philadelphia (37, 38) Onde continu 2 Protalite (29, 75) Onde continu 1 TRS-20 (27) Domaine temporel 1 Onde continu 1 Artinis non-spécifié		7,000 0. 0.10.00	5. 5 5 5 5 5 5
Column			
Niro (300;200;200x;500)		Onde continu	23
15,16,18,19,45, 49, 55, 56, 63, 72, 73, 79 Onde continu			
(7, 8, 10, 21, 22, 41, 44, 57) Onde continu 8 Moxy (9, 17, 32, 40, 52, 58) Onde continu 6 Oxiplex TS (1, 12, 14, 54, 76) Domaine fréquentiel 5 Inspectra (11, 13, 71, 74) Onde continu 4 MicroRunman Nim Inc (4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 Nonin-7600 (25, 26) Onde continu 2 ISS Imagent (24, 47) Domaine fréquentiel 2 Moor-VMS-NIRS: Moor instruments (36, 50) Onde continu 2 CW-NIRS, NIMS philadelphia (37, 38) Onde continu 2 Portalite (29, 75) Onde continu 2 Prototype Ellerby (23) Onde continu 1 OM-200 (66) Onde continu 1 OM-200 (66) Onde continu 1 NIMO, nirox srl (67) Onde continu 1 Artinis non-spécifié 1		Onde continu	12
Moxy	Oxymon		
(9, 17, 32, 40, 52, 58)	(7, 8, 10, 21, 22, 41, 44, 57)	Onde continu	8
Oxiplex TS (1, 12, 14, 54, 76) Domaine fréquentiel 5 Inspectra (11, 13, 71, 74) Onde continu 4 MicroRuman Nim Inc (4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 Nonin-7600 (25, 26) Onde continu 2 ISS Imagent (24, 47) Domaine fréquentiel 2 Moor-VMS-NIRS: Moor instruments (36, 50) Onde continu 2 CW-NIRS, NIMS philadelphia (37, 38) Onde continu 2 Portalite (29, 75) Onde continu 2 Prototype Ellerby (23) Onde continu 1 TRS-20 (27) Domaine temporel 1 OM-200 (66) Onde continu 1 HEO-200, OMRON (78) Onde continu 1 NIMO, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	Moxy		
(1, 12, 14, 54, 76) Domaine fréquentiel 5 Inspectra (11, 13, 71, 74) A MicroRunman Nim Inc (4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 Nonin-7600 (25, 26) Onde continu 2 ISS Imagent (24, 47) Domaine fréquentiel 2 MOOr-VMS-NIRS: Moor instruments (36, 50) Onde continu 2 CW-NIRS, NIMS philadelphia (37, 38) Onde continu 2 Portalite (29, 75) Onde continu 2 (29, 75) Onde continu 1 TRS-20 (27) Domaine temporel 1 OM-200 (66) Onde continu 1 HEO-200, OMRON (78) Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	(9, 17, 32, 40, 52, 58)	Onde continu	6
Inspectra	Oxiplex TS		
(11, 13, 71, 74)	(1, 12, 14, 54, 76)	Domaine fréquentiel	5
MicroRunman Nim Inc (4, 31, 53)	Inspectra		
(4, 31, 53) Onde continu 3 HB14 ASTEM (2, 33, 34) Onde continu 3 Nonin-7600 (25, 26) Onde continu 2 ISS Imagent (24, 47) Domaine fréquentiel 2 Moor-VMS-NIRS: Moor instruments (36, 50) Onde continu 2 CW-NIRS, NIMS philadelphia (37, 38) Onde continu 2 Portalite (29, 75) Onde continu 2 Prototype Ellerby (23) Onde continu 1 TRS-20 (27) Domaine temporel 1 OM-200 (66) Onde continu 1 HEO-200, OMRON (78) Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	(11, 13, 71, 74)	Onde continu	4
HB14 ASTEM	MicroRunman Nim Inc		
(2, 33, 34)	(4, 31, 53)	Onde continu	3
Nonin-7600	HB14 ASTEM		
C25, 266 Onde continu 2	(2, 33, 34)	Onde continu	3
SS Imagent (24, 47) Domaine fréquentiel 2	Nonin-7600		
SS Imagent (24, 47) Domaine fréquentiel 2	(25, 26)	Onde continu	2
Moor-VMS-NIRS: Moor instruments (36, 50)			
(36, 50) Onde continu 2 CW-NIRS, NIMS philadelphia 0nde continu 2 Portalite (29, 75) Onde continu 2 Prototype Ellerby 0nde continu 1 TRS-20 0nde continu 1 OM-200 0nde continu 1 HEO-200, OMRON 0nde continu 1 NIMo, nirox srl 0nde continu 1 Artinis non-spécifié 0nde continu 1	(24, 47)	Domaine fréquentiel	2
CW-NIRS, NIMS philadelphia 2 (37, 38) Onde continu 2 Portalite (29, 75) Onde continu 2 Prototype Ellerby (23) Onde continu 1 TRS-20 (27) Domaine temporel 1 OM-200 (66) Onde continu 1 HEO-200, OMRON Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	Moor-VMS-NIRS: Moor instruments		
Onde continu 2	(36, 50)	Onde continu	2
Portalite (29, 75) Onde continu 2 Prototype Ellerby (23) Onde continu 1 TRS-20 (27) Domaine temporel 1 OM-200 (66) Onde continu 1 HEO-200, OMRON Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	CW-NIRS, NIMS philadelphia		
Conde continu Conde contin	(37, 38)	Onde continu	2
Prototype Ellerby (23)	Portalite		
Cas Onde continu	(29, 75)	Onde continu	2
Cas Onde continu	Prototype Ellerby		
C27) Domaine temporel 1	**	Onde continu	1
OM-200 (66)	TRS-20		
(66) Onde continu 1 HEO-200, OMRON Onde continu 1 (78) Onde continu 1 NIMo, nirox srl Onde continu 1 Artinis non-spécifié 1	(27)	Domaine temporel	1
HEO-200, OMRON	OM-200		
HEO-200, OMRON (78) Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié		Onde continu	1
(78) Onde continu 1 NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié 1	` '		
NIMo, nirox srl (67) Onde continu 1 Artinis non-spécifié		Onde continu	1
(67) Onde continu 1 Artinis non-spécifié			
	-	Onde continu	1
	Artinis non-spécifié		
	· ·	Onde continu	1

Légende : Les numéros entre parenthèses représentent le numéro qui a été assigné aux études lors du tableau 4.2

Tableau 4.2 Caractéristiques des études.

					Méthodologie de	
Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
10 H (Âge: 25±4y; 173.2±7cm; MC: 73.1±9.8kg)	Biodex flexion du coude	ISS oxyplex TS	Biceps	L'exercice excentrique peut diminuer l'oxygénation musculaire.	2 séries à 35 MVC (4 secondes de contraction, 12 de récupération) - contraction excentrique	Maintien d'un plus grand pourcentage de HbO ₂ disponible après dommage musculaire causé par exercice excentrique
11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: 71.3±12.3kg)	Extension du genou	HB14 Astem	Quadriceps (4)	Évaluer la SmO ₂ des muscles du quadriceps lors d'une contraction musculaire.	50% contraction volontaire maximale soutenue	Le temps de fatigue était associé à la SmO₂ du VM et RF, mais pas du VI ou VL
22 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg)	Extension du genou	Portamon	Vaste Latéral	Évaluer les effets de l'hypoxie sur le taux de développement du moment de force.	35 MVC - isocinétique	L'hypoxie limite le taux de développement du moment de force et le taux d'augmentation du EMG
15 H	Flexion du coude et extension du coude	Microrunman NIm inc	Biceps	Évaluer les effets de L- Arginine sur la force et la performance du biceps brachial.	3 sets 10 reps MVC (60D/s) 2 min pause	Supplémentation augmente le débit sanguin, mais pas SmO₂ pendant la récupération.
12 4	Flexion et extension du	Bortomon	Vacto Latáral	Étudier la relation entre la NIRS et la vitesse de contraction en entrainement en	2 méthodes: 1 série 6 répétitions lentes (30Degrés/seconde) 1 série 6 répétitions rapides	Pente de reperfusion à une corrélation significative avec le sommet du débit sanguin
	25±4y; 173.2±7cm; MC: 73.1±9.8kg) 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: 71.3±12.3kg) 22 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg)	10 H (Âge: 25±4y; 173.2±7cm; MC: Biodex flexion du coude 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: 71.3±12.3kg) 22 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg) Flexion du coude et extension du coude et extension du coude 15 H Flexion et extension du	10 H (Âge: 25±4y; 173.2±7cm; MC: Biodex flexion du coude ISS oxyplex TS 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: Extension du genou HB14 Astem 22 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg) Flexion du coude et extension du dicrorunman NIm inc Flexion et extension du 15 H Flexion et extension du	10 H (Âge: 25±4y; 173.2±7cm; MC: Biodex flexion du coude ISS oxyplex TS Biceps 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: Extension du genou HB14 Astem Quadriceps (4) 22 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg) Flexion du coude et extension du coude et extension du coude 15 H Flexion et extension du Flexion et extension du Flexion et extension du Flexion et extension du Flexion et extension du	10 H (Âge: 25±4y; 173.2±7cm; MC: 31±9.8kg) 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: 8 Extension du genou HB14 Astem Quadriceps (4) 12 H (Âge: 26±4; Taille: 179±4cm; MC: 83±6kg) 15 H 16 H (Âge: 26±4; Taille: 179±4cm; MC: 81±1 HB14 HB14 HB14 HB14 HB14 HB14 HB14 HB1	Participants Exercice Technologie Muscle(s) Objectif NIRS l'entrainement 10 H (Âge: 25±4y; 173.2±7cm; MC: 73.1±9.8kg) 11 H (Âge: 25.9±7.4; Taille: 174.4±7.0cm; MC: 71.3±12.3kg) Extension du genou HB14 Astem Quadriceps (a) Extension du genou Portamon Vaste Latéral Flexion du coude t extension du coude NIm inc Flexion et extension du coude NIm inc Flexion et extension du coude t extension du coude NIm inc Flexion et extension du coude NIm inc Flexion et extension du coude NIm inc Flexion et extension du coude NIm inc Flexion et extension du coude NIm inc Flexion et extension du extension du coude et extension du coude et extension du coude et extension du coude NIm inc Flexion et extension du extension du extension du coude NIm inc Flexion et extension du extension du extension du coude et extension du coude NIm inc Flexion et extension du extension du extension du coude NIm inc Flexion et extension du extension en entrainement en entrainement en entrainement en entrainement en entrainement en entrainement en extension service excentrique extension de contraction excentrique excentrique extension de contraction excentrique excentriq

Légende : HBO₂= Oxyhémoglobine; MVC= Contraction de force volontaire maximale; SmO₂= Saturation musculaire en oxygène; VM= vaste médial; VI= Vaste intermédiaire; RF= droit fémoral; VL= Vaste latéral; EMG= Électromyogramme; MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	Méthodologie de l'entrainement	Observations
Anders <i>et al</i> 2021 ⁶	9 H (Âge: 21.9 ± 2.4; Taille: 181.8 ± 11.9 cm; MC: 85.8 ± 6.2 kg)	Extension de la jambe	Portamon	Vaste Latéral	Observés les différentes données de la NIRS et les paramètres différents.	50 répétitions 180 degré- seconde (Bilatérale et unilatérale)	Les différentes conditions appliquées dans cette étude ont démontré des réponses similaires dans les paramètres de la NIRS.
Angleri <i>et al</i> 2020 ⁷	12 H (Âge: 23±2; Taille: 177.3±0.3cm; MC: 79.8±5.9kg)	Extension du genou	Oxymon	Vaste Médial	Observées si les différentes méthodes d'entrainement engendrent différentes réponses au niveau des données NIRS.	TRAD: 3 séries de 10 répétitions à 75% 1RM DS: 1 série = 75% 1RM (15 sec. Récupération) 55%1RM (15 sec. Récupération) 35% 1RM PC: 1 série= 10 répétitions à 75% 8 répétitions à 80% et 6 répétitions à 85% 1RM 2 min récup entre chaque série	L'entrainement drop set (DS) a produit des niveaux plus bas de HbO2 et HbDiff comparés à l'entrainement traditionnel (TRAD) et en pyramide croissante (PC).
Balas <i>et al</i> 2020 ⁸	34 (17 H; Âge: 27.7±10.2; 17 F Âge: 26.3±4.6)	Test de préhension	Oxymon	Fléchisseurs profonds des doigts	Évaluer si différents bénéfices ressortent selon la méthode d'immersion à eau froide et le sexe.	60% MVC ratio intermittent 8:2	L'immersion à eau froide a mené à une SmO ₂ plus basse lors de la contraction pour les deux sexes.
Behrens <i>et al</i> 2020 ⁹	16 H (Âge: 26 ± 4; Taille: 183 ± 6 cm; MC: 81 ± 8 kg)	Extension du genou	Моху	Vaste Latéral	Évaluer si le IPC améliore la performance.	20 % MVT jusqu'à fatigue	Le conditionnement pré-ischémique (IPC) n'a pas d'effet sur SmO ₂ lors d'un exercice sous-maximal.
Bhambhani <i>et al</i> 2014 ¹⁰	11 (8H, 3F) (34.5 ± 5.2y)	Flexion du coude	Oxymon	Biceps	Observer la réponse hémodynamique du muscle à différent paramètres.	24 répétitions à 12 par minute (20%-40%-60%) MVC	Le déclin en HbO ₂ suggère un plus grand besoin d'oxygénation par le muscle quand l'intensité augmente.

Légende: RM= Répétition Maximal; HbDiff= Hémoglobine différencié; MVC= Contraction maximal volontaire; MVT= Moment de force maximal volontaire; HbO₂= Oxyhémoglobine; MC= Masse corporelle; H= Homme; f= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
	·		Ü	()	Comparer la glycine propionyl-L-caritine à trois autres	40 - / (to a do 500/ 4004	
Bloomer <i>et al</i>	19 H (24 ± 4y; 176 ± 5cm; 80 ±			Deltoïdes	suppléments et leurs effets sur la	10 séries de 50% 1RM jusqu'à l'échec. 2 minutes	Aucun des suppléments testés n'avait d'effet significatif en relation avec la performance de
2010 ¹¹	7kg)	Bench press	Inspectra	Antérieur.	performance.	de pause	l'exercice
Broxterman et al 2015 ¹²	6 H (Âge: 25 ± 4; Taille: 179 ± 4 cm; MC:82 ± 10 kg)	Force de préhension	Oxyplex TS	Fléchisseurs des doigts	Étudier la relation entre la fatigue centrale et périphérique et la constante de courbure.	50% contraction intermittente (1.5 on, 1.5 off) 20 répétitions/minute jusqu'à échec	L'Occlusion du débit sanguin a exacerbé le développement de la fatigue centrale et périphérique.
Bunevicius <i>et al</i> 2018 ¹³	8 H (Âge: 22.1 ± 0.3)	Flexion plantaire	Inspectra	Gastrocnémien Médiale	Étudier les effets de l'occlusion sur la période tardive de récupération.	75% MVC 30 répétitions/minute jusqu'à l'échec	L'application du BFR tard dans la période de récupération après un exercice à haute résistance diminue l'oxygénation musculaire et la capacité de travail lors du prochain exercice à haute résistance.
Cayot <i>et al</i> 2016 ¹⁴	7 H (Âge: 24.8 ± 1.4; Taille: 181.0 ± 3.0cm; MC: 81.4 ± 0.1 kg)	Extension du genou	Oxyplex TS	Vaste Latéral	Observer comment les différents niveaux d'occlusions affecte l'oxygénation microvasculaire.	3x %MVC 5 sec 5 min pause 20% 40% 60% 80%	Le BFR cause une concentration de HHb plus grande lorsque comparé à l'entrainement sans occlusion.
	10 H (Âge: 28.0 ± 6.3; Taille: 1.8				Évaluer la réponse en SmO₂ selon le niveau		Le muscle VL de personnes habitué à l'entrainement en résistance peut avoir une activation plus tard du système métabolique oxydative ou une plus grande quantité
Cettolo et al	± 0.1m; MC:	Développé des		Vaste latéral	d'activité physique de la		d'oxygène stocké lors d'une contraction
200715	77.8 ± 9.9kg)	jambes	Niro-300	(VL)	personne.	5X MVC(2-4s) 2 min pause	isométrique maximale courte et rapide.

Légende: RM= répétition maximale; MVC= Contraction volontaire maximale; BFR= entrainement par occlusion; HHb= désoxyhémoglobine; MC= Masse corporelle; H= homme.

Tableau 4.2 (suite)

						Méthodologie de	
					-1	_	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
					Étudier les effets de la		La vibration semble avoir un effet sur la
	16 H (Âge: 26.3				vibration du corps		diminution et la récupération de la SmO ₂ et sur
Coza et al	± 5.1; MC: 71.2	Flexion		Gastrocnémien	complète sur la SmO ₂	67 répétitions/ Essais; 40	l'oscillation périodique du débit sanguin et de
201116	± 4.8 kg)	plantaire	Niro-200	Médiale	lors de l'exercice.	répétitions/secondes	l'oxygénation du tissu
					Comparer les		
					différentes demandes	2 exercices (front et back	Aucune différence en SmO₂ lorsque les deux
					énergétiques entre le	squat): 3 séries de 15	exercices sont comparés. Cependant, la
	11 (5F 6H) (Âge:				front squat et le back	répétitions 70% 1RM 2-	récupération de SmO ₂ est plus lente pour le
202017	23.7 ± 1.4)	Squat	Moxy-3	Vaste Latéral	squat.	3min de récupération	back squat.
					Évaluer si		
					l'entrainement		
	•				excentrique apporte	_	Les résultats suggèrent qu'une répétition
	10 (9H; 1F) (Âge:				une plus grande	Excentrique 60 d/s	maximale d'une contraction excentrique cause
	27.4 ±3.6; Taille:				diminution en SmO ₂ que	concentrique 60d/s	une plus grande extraction d'O ₂ dans le muscle,
	175 ±7cm; Âge:	Extension du			l'entrainement en	Jusqu'à la fatigue, "as hard	lorsque comparer à une contraction
2011A ¹⁸	66.7 ±9.1kg)	genou	Niro-300	Vaste Latéral	concentrique.	as you can"	concentrique
						contractions maximal 10x	Les principaux résultats de cette recherche sont
	11H (Âge: 25					30d/s	que les TOI du VL et RF sont significativement
	±3.3y; Taille:			Vaste Latérale		60d/s	plus bas lors de contraction à 30 degré
	182 ± 6cm; MC:	Extension du		(VL) / Droit	contraction à un effet	120d/s	secondes lorsque comparé aux trois autres
2011B ¹⁹	77.6 ±6.2kg)	genou	Niro-200	fémoral (RF)	sur TOI.	240d/s	méthodes.
					Évaluer les effets d'un		
	12 H (Âge:29 ±				supplément de	3x jusqu'à fatigue 60	
	9; Taille: 137 ±	Force de			betterave sur la	contractions/min (0.5 c; 0.5	La récupération de la SmO2 dans les muscles
	69 cm; MC: 81.3	préhension		Fléchisseur de	contraction musculaire,	repos) suivi d'une minute	était plus grande suite à une supplémentation
al 2018 ²⁰	± 10.1 kg)	isotonique	Portamon	l'avant-bras	le tHb et la SmO ₂ .	de pause	de gel de betterave
Denis <i>et al</i> 2011B ¹⁹ De oliveira <i>et al</i> 2018 ²⁰	±3.3y; Taille: 182 ± 6cm; MC: 77.6 ±6.2kg) 12 H (Âge:29 ± 9; Taille: 137 ± 69 cm; MC: 81.3 ± 10.1 kg)	genou Force de préhension isotonique	Portamon	(VL) / Droit fémoral (RF) Fléchisseur de l'avant-bras	sur TOI. Évaluer les effets d'un supplément de betterave sur la contraction musculaire, le tHb et la SmO ₂ .	30d/s 60d/s 120d/s 240d/s 3x jusqu'à fatigue 60 contractions/min (0.5 c; 0.5 repos) suivi d'une minute	que les TOI du VL et RF sont significativen plus bas lors de contraction à 30 degré secondes lorsque comparé aux trois autre méthodes. La récupération de la SmO2 dans les mus était plus grande suite à une supplément de gel de betterave

Légende: SmO₂= Saturation musculaire en oxygène; TOI= Index de saturation du tissu; MC= Masse corporelle; d/s= Degré par seconde; H= Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Evereice	Technologie	Musclo(s)	Objectif NIRS	l'entrainement	Observations
Auteurs	Farticipants	Exercice	reciliologie	iviuscie(s)	Objectii Niko	i enti amement	Observations
Deruiter <i>et al</i> 2007 ²¹	15 H (Âge: 20- 30; Taille: 183 ± 6 cm; MC: 76 ±6 kg)	Extension du genou	Oxymon	Vaste Latéral (VL)/ Droit fémoral (RF)/Vaste Médial (VM)	Évaluer le moment à laquelle la capacité de moment de force maximal (MTC) arrête la réoxygénation des muscles.	Les niveaux de moment de force évalué étaient (randomisée): 20, 25, 30, 35, 40, and 45% MTC. 10 minutes de pause entre séries	La réoxygénation des parties superficielles des muscles VL et VM arrête lors d'une contraction de 25% MTC, cependant, pour le RF, elle arrête à 35% MTC.
Deruiter <i>et al</i> 2012 ²²	17 H (Âge: 27 ± 7; Taille: 183 ± 8 cm; MC: 78.4 ± 9.2 kg)	Extension du genou	Oxymon	Vaste Latéral (VL)/ Droit fémoral (RF)/Vaste Médial (VM)	Évaluer le seuil de moment de force pour la fatigue périphérique lors de contraction isométrique répété.	5 x 6 minutes de contraction rythmique MVC (30%, 50%, 20%,40%, 20%, 35%)	Observer les EMG et la désoxygénation musculaire lors d'une contraction sous-maximale des extenseurs des genoux semble être une méthode faisable pour estimer le début de la fatigue périphérique pour un exercice relié à la capacité aérobie.
Downs <i>et al</i> 2014 ²³	13 (5 H 8F) (Âge: 31.8 ± 12.5; Taille: 169.1 ± 12.1cm; MC: 68.3 ± 12.1 kg)	Développé des jambes	Prototype Ellerby	Vaste Latéral	Mesurer les réponses vasculaires lors de quatre méthodes différentes. (BFR et sans BFR)	3x jusqu'à fatigue volontaire 90 secondes de récupérations charge haute=80% 1RM Charge basse=20%1RM	Les exercices à haute charge et BFR affectent le système cardiovasculaire différemment.
Formenti <i>et al</i> 2018 ²⁴	8 F (Âge: 24.8 ± 4.9; ; Taille: 164 ± 4.7 cm; MC: 63.3 ± 7.2 kg)	Extension du genou	ISS imagent	Vaste Latéral	Évaluer les effets de la vitesse lors de l'entrainement en résistance sur la SmO ₂	3 visites de 3 séries (2sec, 6sec, 10sec par contractions): contraction jusqu'à fatigue 3min de pause	La vitesse de mouvement plus lente crée des taux de désoxygénation plus haut lorsque comparée à des mouvements de vitesse normale.

Légende: MVC= Contraction volontaire maximale; BFR= Entrainement par occlusion; RM= Répétition maximale; SmO₂= Saturation musculaire en oxygène; MC= Masse corporelle; H- Homme; F= Femme.

Tableau 4.2 (suite)

Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	Méthodologie de l'entrainement	Observations
Fryer <i>et al</i> 2014 ²⁵	29 H (9 intermédiaires (Âge: 29 ± 4; Taille: 178 ± 9cm; MC: 79.6 ± 1kg) 10 Avancé (Âge: 27 ± 5; Taille: 179 ± 7cm; MC: 71.8 ± 10.3kg) 10 élites (Âge: 30 ± 9; Taille: 175 ± 7cm; MC: 69.3 ± 5.4kg))		NONIN-7600	Fléchisseur avant-bras, fléchisseurs des doigts profond (FDP) et fléchisseur radiale du carpe (FCR)	Déterminer la cinétique hémodynamique des muscles fléchisseurs de l'avant-bras sur des grimpeurs de trois niveaux différents.	40 % MVC jusqu'à fatigue volontaire	Les grimpeurs élites et avancés ont une capacité plus grande de désoxygénation des muscles FDP et FCR que les grimpeurs intermédiaires et les non-grimpeurs lors d'une contraction soutenue.
Fryer <i>et al</i> 2015 ²⁶	44 H	Force de préhension	NONIN-7600	Fléchisseur avant-bras (FDP et FCR)	Évaluer les capacités oxydatives des muscles pour des grimpeurs de trois niveaux différents. Utiliser la NIRS pour	Jusqu'à fatigue volontaire: soutenue et intermittent (10 on, 3 off) 40%MVC	Les grimpeurs élites ont une capacité de récupération plus vite pour se rendre à la zone de moitié de récupération que les groupes contrôle et intermédiaires.
Ganesan <i>et al</i> 2015 ²⁷	6 H (Âge: 25 ± 4; Taille: 179 ± 4 cm; MC:82 ± 10 kg)	Extension du genou	TRS-20 (TD)	Vaste Médial	mesurer les réponses physiologiques du vaste intermédiaire lors de contraction avec et sans BFR.	3 séries jusqu'à fatigue 90 secondes de récupération	NIRS peut jouer un rôle dans l'optimisation et le monitorage de l'individualisation d'un entrainement BRF.

Légende : MVC= Contraction volontaire maximale; BFR= entrainement par occlusion, MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

		I	T	I	1	1	T
						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
7.0.000.0		27.0.0.0			Comparer l'oxygénation		
	10 H (Âge:				musculaire de jeunes		
	21.8±2.04;				adultes à des adultes		
	Taille:				plus âgées lors d'un		
	179±4.7cm;				protocole	8 séries de 10 répétitions à	La diminution SmO ₂ était plus grande chez les
Gepner et al	MC:	Extension du			d'entrainement en	60 degrés/seconde - 3 min	adultes d'âge moyen que chez les jeunes
2019 ²⁸	90.7±11.6kg)	genou	Portamon	Vaste Latéral	résistance isocinétique.	récupération	adultes
					Quantifier la		
	14H (Âge: 22.6	Barbell flexion			performance lors d'une	2 exercices (10 min entre):	Les marqueurs d'oxygénation musculaire et
	± 1.3; Taille:	du coude	_	Biceps brachial	intervention de BFR,	4 séries de 10 répétitions.	d'activation musculaire n'ont pas été affectés
Girard et al	179 ± 8c m; MC:	extension du	Portamon	Triceps	hypoxie systémique ou	70% 90 secondes de	par l'hypoxie, systémique ou locale ou une
2019 ²⁹	72.3 ± 6.6 kg)	coude couché	Portalite	brachial	les deux.	pauses.	combinaison des deux.
					Déterminer les taux de		
Cnimassau at	2011/18002222	Extension du			synthétisation de	8 séries de 8 rép. À 80% 1	L'hypoxie environnementale n'a pas potentialisé
Gnimassou et al 2018 ³⁰	20 H (Âge:22.2 ± 0.4)		Portamon	Vaste Latéral	protéine avec hypoxie	RM 2 minutes de pause	la réponse à court terme anabolique après l'entrainement en résistance.
ui 2018**	· · · · · · · · · · · · · · · · · · ·	genou	PORTAINON	vaste Lateral	ou pas.	<u>'</u>	Tentrament en resistance.
	31 (16 H et 15 F				Déterminer si l'hypoxie	Jusqu'à la fatigue :	
	(Âge: 28.5 ± 8.8;				affecte l'oxygénation	dynamique: 50 ou 75 %	Les résultats démontrent qu'une courte
C	Taille: 168.1 ±	Fukamaiam du	N 4:		disponible lors du repos suite à un	1RM (2 secs. Concentrique-	exposition à l'hypoxie est efficace pour réduire
Gomes <i>et al</i> 2013 ³¹	6.8 cm; MC: 69.1 ± 11.0 kg))	Extension du	Microrunman NIm inc	Vaste Latéral	entrainement.	2 secs. excentriques) statique: 100 % 1RM	l'oxygène disponible dans le cerveau et les muscles lors de conditions de repos.
2013	12 H (Âge:	genou	NIIII IIIC	Vaste Lateral	Évaluer les effets de	Augmentation progressive	muscles fors de conditions de repos.
	21.63 ± 1.17;				l'entrainement de force	sur 6 sessions. Session 8= 4	
Gomez-	Taille: 181 ±				sur l'oxygénation	séries de 75% 1RM; 4x8	Les deux variables (la charge et le niveau
Carmona et al	8cm; MC: 77.76				musculaire des	(10RM) 2 minutes de	d'effort) ont significativement influencé la SmO ₂
2020 ³²	± 8.77 kg)	Squat	Moxy	Vaste Latéral	membres inférieurs.	récupération.	de façon modérée ou haute.
the section DED		- Luis Cuc	· '		4 D (- (1111	· · · · · · · · · · · · · · · · · · ·	5 5

Légende: BFR= entrainement par occlusion; SmO₂= Saturation musculaire en oxygène; RM= Répétition maximale; MC= Masse corporelle; H= Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
						Drop set: série 1 (2x95%	
						1RM) série 2 (2x85%1RM)	
						série 3 (10x75%1RM)	
	16 H (Âge: 21.9					Reverse drop set: série 1(Drop-set provoque une plus grande activation
	± 2.6; Taille:				Vérifier l'influence de	3x55%1RM) série	musculaire et hypoxie intramusculaire que le
Goto et al	173 ± 5 cm; MC:	•		Triceps	différentes charges sur	2(3x65%1RM) série 3 (10x	reverse drop-set chez les personnes ayant de
2016 ³³	68.2 ± 9.1 kg)	prise proche	HB14-2 (ASTEM)	brachial	l'activité musculaire.	75%1RM)	l'expérience en entrainement en résistance.
	44 H (PRE (Âge:						
	21.6 ± 1.3;						
	Taille: 170.9 ±						
	3.8cm; MC:						
	64.7 ± 5.3kg)						
	FRE (Âge: 20.6 ±						
	0.9; Taille:				Mesurer la réponse à		Les résultats suggèrent qu'une amplitude de
	169.2 ± 4.1cm;				court et long terme de		mouvement partiel cause une plus grande
Goto et al	MC: 63.3 ±	Extension du	11D4 4 3 (ACTEAA)	Triceps	deux méthodes	3 séries de 8 répétitions	hypoxie intramusculaire qu'une amplitude de
201934	5.7kg))	coude	HB14-2 (ASTEM)	brachial	d'entrainement.	(8RM). 1 minute de pause.	mouvement complète.
	11 H (Âge: 24.1						
	± 3.1; Taille: 176 ± 5.4 cm;				Mesurer les effets du		Le IPC a créé une plus grande oxygénation
Hallan at al	MC: 77.2 ±	Extension du		Gastrocnémien			locale au niveau du muscle qui contracte, toutefois sans aucune évidence d'amélioration
Halley <i>et al</i> 2018 ³⁵	-		Dambanan		IPC sur la fatigue	2 minutes MAVC	
201855	5.4kg)	genou	Portamon	latéral	neuromusculaire. Déterminer si le IPC	2 minutes MVC	de la performance (travail total effectuer)
					combiné avec un	"All out maximal nouses"	
	10 H (Âge: 24.1		moorVMS-NIRS;			"All out maximal power" test 45 répétitions/minutes	
Halley et al	± 3; MC: 80.5 ±	Extension de la	Moor		exercice dynamique	pour 3 minutes. (300d/s	IDC n'a pas altérer l'expression du tissue les
2019 ³⁶		Extension de la	Instruments Ltd	Droit fémoral	optimise la livraison d'oxygène au muscle.	extension: 500d/s flexion)	IPC n'a pas altérer l'oxygénation du tissue lors de la durée de l'exercice de 3 minutes.
2013.	7 kg)	jambe	motruments Lta	ייין ופוווטומו	a oxygene au muscle.	extension. Soou/s nexion)	de la durée de l'exercice de 5 minutes.

Légende: RM= répétition maximale; MVC= contraction volontaire maximale; IPC= Pré-conditionnement ischémique; d/s= degrés par seconde; MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
					Examiner les effets de		
	11 H (Âge: 20.8				deux protocoles	2 protocoles (4séries	
	± 1.3; Taille:				d'entrainement sur	chacun):	
	182.4 ± 7.3 cm;				l'oxygénation	protocole 1= 15 répétitions	La durée de l'exercice semble avoir une
Hoffman et al	MC: 96.2 ± 14.4		cw-nirs, NIMS,		musculaire et la réponse	à 60%1RM Protocole 2= 4	influence sur la désoxygénation et le délai de
200337	kg)	Squat	philadelphia	Vaste Latéral	hormonale anabolique.	répétitions à 90%1RM	réoxygénation suite à un exercice.
					Examiner les effets de		
	11 H (Âge: 20.8				l'entrainement en	2 protocoles:	
	± 1.3; Taille:				résistance à haute et	5 sets de 15 répétitions à	
	182.4 ± 7.3 cm;				basse charge sur la	60% 1RM	Le taux de réoxygénation suite à un exercice est
Hoffman et al	MC: 96.2 ± 14.4		cw-nirs, NIMS,		peroxydation des	5 sets de 4 répétitions à	significativement corrélé à la concentration en
2007 ³⁸	kg)	Squat	philadelphia	Vaste Latéral	lipides.	90% 1RM	plasma malondialdehyde (MDA).
						Contraction isométrique-	Ces résultats suggèrent que les adaptations
						intermittente sous-	locales, potentialise les fonctions oxydatives, et
	20 H (Âge: 26 ±				Observer si sept jours	maximale de 40 ou 60 %	le débit sanguin microvasculaire au-delà des 24-
	5; Taille: 180 ± 6				de IPC ont un effet sur la	pour une durée de 2	72 heures de protection, malgré, ce qui semble,
Jeffries et al	cm; MC: 80 ± 12	Flexion		Gastrocnémien	capacité oxydative des	minutes. (2.5sec. actif/	un manque de changement systémique au
2018 ³⁹	kg).	plantaire	Portamon	médial	muscles.	2.5sec. repos)	niveau cardiovasculaire.
	H (6 athlètes						
	aérobies (Âge:					3 protocoles:	
	23±1; MC: 77±1					1er: Contraction maximale	
	kg); 7				Comparer la force	volontaire (MVC) soutenue	Les grimpeurs avaient une plus grande
	dynamophiles				isométrique des	jusqu'à fatigue	résistance à la contraction isométrique et une
	(Âge: 24±1, MC:				fléchisseurs des avant-	2e: 40% MVC soutenue	habileté à maintenir un MVC à une
	80±3 kg); 8			FICELIAN	bras entre des	pour 3 min.	consommation d'O ₂ plus basse lors d'un état
Landan Nada	grimpeurs (Âge:	Farra da		Fléchisseur des	grimpeurs, des	3e: contraction	ischémique dans les fléchisseurs de l'avant-bras.
Jordan Nolan	25±2; MC: 74±2	Force de	NA aver	doigts	dynamophiles et des	intermittente pour 3 min. (Ceci suggère une adaptation impliquant la
et al 2018 ⁴⁰	kg))	préhension	Moxy	superficiel	athlètes aérobies.	5sec travail/ 5sec repos)	consommation d'oxygène intracellulaire.

Légende: RM= Répétition maximale; IPC= Pré-condtionnement ischémique; MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	Méthodologie de l'entrainement	Observations
	'				Comprendre si faire des		Des entrainements en charges basses en
	10 H (Âge: 22.5				exercices ischémiques à		résistance ischémiques jusqu'à la fatigue
	± 0.6; height:				charges basses		volontaire augmentent le total de CSA des
	180.6 ± 2.0 cm;				fréquemment améliora		muscles du quadriceps. Ceci était accompagné
Kacin et Strazar	MC: 76.7 ± 3.1	Extension du			l'oxygénation	50 % MVC Répétition	par une augmentation significative d'O ₂
202141	kg)	genou	Oxymon	Vaste Latéral	musculaire.	jusqu'à échec volontaire	disponible dans le muscle lors de l'exercice.
	12H (Âge: 21.8						
	± 3.0; Taille:						
	184.4 ± 7.7cm;						
	MC: 85.5 ±				Examiner les effets sur		Les hommes ont désaturé plus rapidement que
	12.0) 12F (Âge:				l'oxygénation		les femmes et la différence observée par la
	21.1 ± 0.9;	Force de			musculaire que le sexe		masse musculaire, la force, ainsi que le tissu
Keller et	Taille= 165.2 ±	préhension		Fléchisseurs	et la fatigue peuvent	MVIC 25% jusqu'à fatigue	adipeux ne sont probablement pas la cause
Kennedy	3.6; MC: 71.7 ±	(biodex		des doigts	avoir sur le début d'une	(5% descente pour 3	primaire des différences observées entre les
2021A ⁴²	14.0 kg)	systems 3)	Portamon	superficiels	phase de récupération.	secondes consécutives)	sexes.
	15 H (Âge:21.1				Examiner les effets		
	± 1.8; MC:83.9				qu'un effort soutenu		Les hommes démontrent une fatigue plus rapide
	± 10.8 kg) 15 F				peut avoir sur		que les femmes en termes d'excitation
	(âge:19.5 ± 0.8;	Extension du			l'oxygénation	MVIC 25% jusqu'à fatigue	musculaire. Les femmes ont démontré une plus
Keller et al	MC: 64.0 ± 7.9	genou (Cybex		.,	musculaire chez	(5% descente pour 3	grande capacité à maintenir une perfusion
2021B ⁴³	kg)	6000)	Portamon	Vaste Latéral	l'homme et la femme.	secondes consécutives)	musculaire.
	10 H (Âge: 27 ±				Évaluer les		La pression des tourniquets d'occlusion réduit
Wiles and all	4; Taille: 1.77 ±	F d.		FICALIA	changements de la	200/ 14/6 20 -/ - (11/1	l'index de saturation du tissu et augmente la
Kilgas <i>et al</i> 2019 ⁴⁴	0.1cm; MC: 82 ±	Force de	Outman	Fléchisseur	'	30% MVC 30 répétitions au	concentration de HHb quand elle est à 60 et
2019**	14kg)	Préhension	Oxymon	avant-bras	pendant et après le BFR.	2 secondes.	80%.
	25 H (Âge: 24 ±				Évaluer les effets de		Les individus ayant une VO ₂ max plus grande ont
Voiima at al	2; Taille: 173.2 ± 5.8 cm; MC:	Flexion du		Longue tête du	l'hypoxie à court terme sur l'endurance	30% 1 RM Répétition	atteint plus de bénéfices de la condition
Kojima <i>et al</i> 2020 ⁴⁵	66.1 ± 7.5 kg)	coude	Niro-200	biceps brachial	musculaire.	jusqu'à fatigue	hypoxique lors de l'exercice d'endurance musculaire dynamique.
				<u> </u>			Francisco est des acclusions IIIIb. Ilémentation

Légende: MVC= Contraction volontaire maximale; CSA= Section transversale; MVIC= Contraction volontaire isométrique maximale; BFR= Entrainement par occlusion; HHb= Hémoglobine désoxygénée; RM= Répétition maximale; Vo₂ max= consommation d'oxygène maximale; MC= Masse corporelle; H=Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
Kounoupis <i>et al</i> 2021 ⁴⁶	24 H (Âge: 24.0 ± 4.9; Taille: 180 ± 6 cm; MC: 75.9 ± 8.8 kg)	Extension du genou	Artinis (non- spécifié)	Vaste Latéral	Comparer la charge de travail et la réponse vasculaire.	Isométrique 30 % MVC pendant 2 minutes. Dynamique 30% MVC aux 3 secondes pendant 2 minutes	Les changements en O ₂ Hb et HHb étaient plus grands pour la contraction dynamique, montrant une plus grande demande énergétique, lorsque comparée à la contraction isométrique.
Lin <i>et al</i> 2014 ⁴⁷	11 H (Âge:24.70 ± 3.30; Taille=174.17 ± 7.40 cm; Masse=64.00 ± 7.40 kg)	Extension du genou	Imagent	Vaste Latéral	Comparer les adaptations musculaires au niveau de la SmO ₂ chez les sédentaires et des gens actifs.	20% MVC 30 secondes isométrique	Les personnes entrainées ont une plus grande capacité d'extraction d'O ₂ que les personnes non entrainées lors de contraction musculaire.
Lockhart <i>et al</i> 2020 ⁴⁸	12 H (Âge: 25 ± 5; Taille: 179 ± 6 cm; MC: 81.7 ± 13.9 kg)	Extension du genou	Portamon	Vaste Latéral	Déterminer si le changement de temps de récupération joue un rôle sur les réponses physiologiques en situation d'hypoxie.	4 Jours de 10 répétitions de 70%1Rm/ 5 séries (normoxie/hypoxie 60 secondes de repos; normoxie/hypoxie 180 secondes de repos)	L'hypoxie n'a pas augmenté la réponse physiologique ou perceptuelle à l'entrainement en résistance. Les périodes de récupération plus courte augmentent l'activation musculaire et la perception de l'effort au fur et à mesure que l'exercice progresse.
Macleod <i>et al</i> 2007 ⁴⁹	11 H (Âge: 22.5± 2.5; Taille: 175.5+6.7cm; MC: 66.4+6.8)	Pression des doigts	Niro-500	Fléchisseurs des doigts superficiels	Déterminer plusieurs réponses physiologiques à travers des tâches spécifiques à l'escalade.	Tests isométrique et intermittent (10 sec. Actif/ 3 sec. Repos) 40% MVC d'endurance jusqu'à fatigue	La réoxygénation musculaire pendant la récupération est un bon indicateur de la performance de l'endurance

Légende : MVC= Contraction volontaire maximale; O₂Hb= Hémoglobine oxygénée; HHb= Hémoglobine désoxygénée; SmO₂= saturation musculaire en oxygène; RM= répétition maximale; MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs Pa	articipants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
8 F 5.9	F (Âge: 25.6 ± 9; Taille: 168 6 cm; MC:71.0			. ,	,		
	8.6 kg) et 8 H				Mesurer les		Des réductions similaires de la contractibilité des
, ,	ge: 25.5 ± 6.2;				changements en fatigue		muscles ont été observées pour les deux sexes
	aille: 179 ± 5		moorVMS-NIRS;		lors de l'extension du	2 séries de 10 répétitions à	après l'entrainement malgré des différences
1 '	,	Extension du	Moor	D 21 6 (1	genou chez l'homme et	effort maximal de 60 degrés	intersexes en SmO ₂ lors de l'exercice
2020 ⁵⁰ 9.8	.8 kg)	genou	Instruments Ltd	Droit fémoral	la femme.	par seconde	isocinétique.
						4 séries jusqu'à la fatigue	
15	5 H (Âge: 22.0				Mesurer les effets d'un	sur 2 jours, rythmique 4,5 sec par répétition.	
	2.4; Taille:				supplément	1 jour à 30% 1RM	Les suppléments ont augmenté la réponse
	,	Extension du			préentrainement sur	1 jour à 80% 1RM	réactive hyperémie lors de l'extension du genou
		genou	Portamon	Vaste Latéral	l'hyperémie.	3minutes de récupération	à 80 %, mais pas pour 30 %.
	<u> </u>				,,	4 séries pour 3 méthodes:	
						1) Entrainement	
						traditionnel : 4 séries/6	
						répétitions 2min pause. 2)	
						Cluster 1 : 4 séries de (3	
	H 4F (Âge:				C	séries de 2 répétitions	
	7.10 ± 5.70 ; 1C: 72.30 ±				Comparer les indicateurs	séparées par 15 sec) 1min20sec de	
_	1C: 72.30 ± 3.45 kg;				physiologiques entre 3	récupérations. 3) Cluster 2 :	
	aille:173.69 ±				méthodes	24 répétitions séparées par	Les 3 méthodes ont présenté des valeurs
		Bench press	Moxy-1	Pectoraux	d'entrainement.	15 secondes entre chacune.	similaires de SmO ₂ .

Légende : SmO₂= Saturation musculaire en oxygène; RM= Répétition maximale; MC= Masse corporelle; F= Femme; H= Homme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
	10 H (Âge: 29.8 ± 9.2; Taille: 172.8 ± 4.8 cm;		3			3 méthodes: 50% 1 RM jusqu'à fatigue	
	MC:77.1± 6.1				Examiner les changements	(tempo 2-0-2)	
	Kg) 14F (Âge:				de volume sanguin et	75% 1RM jusqu'à fatigue	
	27.1 ± 8.4; Taille: 163.1 ±				d'oxygénation lors de l'exécution de différents	(tempo 2-0-2) 100% 1RM jusqu'à fatigue	La fatigue est probablement due à des facteurs
Matsuura et al	4.8 cm ; MC:	Extension du	Microrunman NIm		exercices chez l'homme et	(Isométrique: plus de 10	périphériques et non centrale pour les 3
2011 ⁵³	60.6 ± 8.4 kg)	genou	inc	Vaste Latéral	la femme.	degrés de différence)	méthodes d'entrainement.
						2 méthodes (60	
						degrés/sec.):	
						Traditionnel (TS) : 4 séries	
	11 H (Âge: 26.0				4	de 10 répétitions: 95	
	± 1.8; Taille:				Évaluer les effets de	secondes de repos	
	179.1 ± 9.1 cm;	Extension du			redistribuer le temps de	Repos redistribué (RR): 20	RR n'a pas altéré le total du débit sanguin
Merrigan et al	MC: 83.5 ± 9.8	genou			récupération en plus court,	séries de 2 répétitions: 15	musculaire, mais il a obtenu des résultats plus
202054	kg)	excentrique	Oxyplex TS	Vaste Latéral	mais plus fréquent.	secondes de repos	bas en saturation d'oxygène.
						4 séries de 8 répétitions	
						(rythmique 2.5 sec par	L'exercice de l'extension du genou ajouter à une
						répétitions):	variable comme le stimulus de la vibration
	9 H (Âge: 21 ±				Tester si l'ajout de	2x 35% 1RM (avec et sans	provoque des changements résiduels dans
	3; Taille: 177 ± 7				vibration lors d'une	vibration)	l'activation et la désoxygénation musculaire, ce
Mileva et al	cm, MC: 70 ± 8	Extension du			extension du genou à un	2x70% 1RM (avec et sans	qui résulte dans une amélioration de la
200655	kg)	genou	Niro-500	Vaste Latéral	effet sur la performance.	vibration)	performance mécanique.
					Évaluer la différence	3 séries (60%1RM) / 5	
	30 H (Âge:				d'impact entre deux types	minutes de récupération:	La balance entre le transport d'oxygène et la
	21.92 ± 2.40;				de perte de vélocité sur	Jusqu'à 20% perte de	consommation d'oxygène a diminué sur une
	Taille: 176 ± 7				l'oxygénation musculaire	Vélocité (20%VL)	plus grande mesure lorsque l'exercice était
Munoz-Lopez	cm; MC: 74.08 ±				après un entrainement en	Jusqu'à 40% perte de	effectué à 40%VL. Cependant, la récupération
et al 2020 ⁵⁶	11.35 kg,)	Squat	Niro-200Nx	Vaste Latéral	résistance.	vélocité (40%VL)	après 1 minute de l'exercice a été similaire.

Légende : RM= Répétition maximale; MC= Masse corporelle; H= homme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
					Évaluer les effets de la		
					thérapie par		
					photobiomodulation sur l'oxygénation	60 contractions	
Oliveira et al		Extension du			musculaire et la	concentriques à 180 degrés	NIRS peut servir comme outils pour mesurer les
2017 ⁵⁷	5 F (Âge: 20-26)	genou	Oxymon	Droit fémoral	performance.	par seconde	effets directs de la photobiomodulation.
	12 H (Âge: 28.8				Comparer l'oxygénation		
	± 8.4; Taille:				musculaire lors d'une		
0	176.4 ± 7.8 cm;	E. L			contraction musculaire	CO	Landania (hadana) (fizi a andara (a bata
Oranchuk et al 2020 ⁵⁸	MC: 75.5 ± 9.1 kg)	Extension du genou	Moxy	Vaste Latéral	volontaire et maximale avec BFR ou sans.	60 secondes contractions volontaires maximales	Les deux méthodes ont fini avec des résultats similaires de taux de désoxygénation.
	6/	Berion	exy	Tuste Luteru.	4700 5711 04 541151	Volentaines maximales	3 cycles de IPC à 200mm/Hg active les
	10 H (Âge, 25 ±				Examiner les effets du		composantes périphériques de consommation
Paradis-	4; Taille: 177 ± 6				IPC sur la réponse		d'O ₂ et augmente la perfusion du muscle au
Deschenes et	cm; MC: 85.8 ±	Extension du		.,, .	hémodynamique lors de	5 séries de 5 répétitions	repos et à la récupération plus qu'une
al 2016 ⁵⁹	13.9 kg)	genou	Portamon	Vaste Latéral	répétitions maximales.	maximales à 20 d/s	intervention placebo (20 mm/Hg)
	9 H (Âge: 25 ± 2; Taille: 1.78 ±						
	2cm; MC:86.5 ±						
	4.9kg) et 8F				Déterminer l'impact du		
	(Âge:22 ± 1;				IPC sur la force		Les hommes avec de l'expérience en
Paradis-	Taille: 166 ±				musculaire et la réponse	_ , , , _ , , , , , , , , , , , , , , ,	entrainement en résistance pourraient
Deschenes et al 2017 ⁶⁰	2cm; MC: 60.8 ±	Extension du	Portamon	Vaste Latéral	hémodynamique de l'homme et la femme.	5 séries de 5 répétitions	bénéficier plus du IPC que les femmes lors de
1 (2017°	2.7kg)	genou		vaste Lateral		maximales à 20 d/s	répétitions répétées et maximales.

Légende : BFR= entrainement par occlusion; IPC= Pré-conditionnement ischémique; MC= Masse corporelle; d/s= Degré par seconde ;H= Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Evercice	Technologie	Musclo(s)	Objectif NIRS	l'entrainement	Observations
Auteurs	Participants	Exercice	recimologie	iviuscie(s)	Objectii Nika		Observations
						2 méthodes (sans pause; 4	La mussian of sating du bas du same sunsu
					Vérifier si l'oxygénation	secondes de pauses entre chaque répétition): 1 série	La pression négative du bas du corps super
	9 H (Âge: 27 ±				musculaire et la	de 15 contractions à 60 % 1	imposé sur une contraction concentrique- excentrique lente peut augmenter le débit
	5, Taille: 181 ± 6				performance sont	RM 4 secondes	sanguin et l'oxygénation des muscles extenseurs
Parganlija et al	cm, MC: 80 ± 7	Développé des			affectées par	concentriques- 4 secondes	du genou. Cela suggère une augmentation de la
2019 ⁶¹	kg)	iambes	Portamon	Vaste Latéral	l'orthostasie simulée.	excentriques	perfusion des tissus musculaires.
2025	6/	James	· ortainon	7 4500 2400.41	T OT CITOSCUSIC SITTUICES	executivace	Une combinaison de pression négative du bas
							du corps et une contraction lente et à une
							charge élevée démontrent une réponse
					Vérifier si l'oxygénation		physiologique aiguë indicative d'une
	9 H (Âge: 24.4 ±				musculaire et la	1 série de 15 contractions à	augmentation de l'approvisionnement en sang
	4.4; Taille:				performance sont	60 % 1 RM 4 secondes	du muscle qui travaille et augmente
Parganlija et al	178.3 ± 8.5cm;	Développé des			affectées par	concentriques- 4 secondes	graduellement la capacité d'exploiter l'oxygène
2020 ⁶²	MC: 74.8 ± 8.6)	jambes	Portamon	Vaste Latéral	l'orthostasie simulée.	excentrique	dans les muscles.
						3 méthodes (70% 1RM):	
						3/7: 5 séries avec une	
						répétition de plus à chaque	
						série (3 répétitions au	
						premier, 7 au dernier) 15	
					Comparer les effets de	secondes récupérations	
	5 F (Age: 19-28;				trois méthodes	4 séries de 6 répétitions	Les modalités de l'entrainement ont
	Taille: 172.9 ±				d'entrainement sur	(2.5 minutes de pause)	grandement influencé les résultats. Le protocole
Penzer et al	8.0 cm; MC:	Flexion du			l'oxygénation	8 séries de 6 répétitions	3/7 a eu une plus grande efficacité que les
2016 ⁶³	66.9 ± 9.8 kg)	coude	Niro-200	Biceps brachial	musculaire.	(2.5 minutes de pause)	méthodes plus classiques.

Légende :RM= Répétition maximale; MC= Masse corporelle; H= Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
					-	Le protocole de fatigue	
						volontaire intermittente	
						consiste de 5 sec de MVIC	
					Comparer la fatigue	suivi de 5 sec de	
					neuromusculaire lors de	récupération passive	
	24 H (Age: 21.4	Extension du			contraction volontaire	jusqu'à ce que le moment	Les enfants se sont fatigués moins que les
	± 3.2; Taille:	genou et		Vaste Latéral et	maximale isométrique	de force volontaire atteigne	hommes lors du test de l'extension du genou et
Piponnier et al	179 ± 7cm; MC:	Flexion		Gastrocnémien	(MVIC) entre l'adulte et	60% de sa valeur initiale sur	aucune différence de fatigue neuromusculaire
2018 ⁶⁴	72.1 ± 8.1 kg)	plantaire	Portamon	Latéral.	l'enfant.	trois MVIC consécutifs.	n'a été observée.
					Comments falls	Le protocole de fatigue	
					Comparer la fatigue	volontaire intermittente	
					neuromusculaire lors de contraction volontaire	consiste de 5 sec de MVIC suivi de 5 sec de	
					maximale isométrique	récupération passive	À longueur optimale et longue de l'unité
	22H (Age: 21.6				(MVIC) entre l'adulte et	jusqu'à ce que le moment	musculo-tendineuse, les enfants montraient
	± 3.3; Taille:				l'enfant à différentes	de force volontaire atteigne	une fatigabilité plus basse de la performance
Piponnier <i>et al</i>	178 ± 7cm; MC:	Extension du			longueurs d'unité	60% de sa valeur initiale sur	que les adultes, principalement par la fatigue
2019 ⁶⁵	71.6 ± 8.3)	genou	Portamon	Vaste Latéral	musculo-tendineuse.	trois MVIC consécutifs.	centrale que périphérique.
		0					and the property of the same o
					NA a a company la company a partir de	2 m / th a day 1/2 NAVC	
					Mesurer l'oxygénation musculaire lors de la	3 méthodes 1/3 MVC:	
Quaresima et		Flexion		Gastrocnémien	flexion plantaire à un	40 contractions par minute 60 contractions par minute	Dans un exercice "all-out", GM désature
al 2001 ⁶⁶	6 F (Age: 21)	plantaire	OM-200	médial (GM)	tiers de la MVC.	80 contractions par minute	rapidement dans la première minute.
u, 2001	13 H (Âge: 23.8	piantane	G141-200	mediai (Givi)	ticis de la ivive.	4 séries 20% 1RM (30-15-	rapidement dans la premiere minute.
	± 5.4; Taille:				Mesurer les réponses	15-15 répétitions) 30	
	174.8 ± 4.2 cm;				physiologiques à	secondes de pause entre	BFR augmente la désaturation et gêne
Reis et al	MC: 69.8 ± 7.0	Extension du			différentes intensités de	séries (concentrique-	l'oxygénation musculaire lors d'exercice à faible
2019 ⁶⁷	kg)	genou	NIMO, Nirox srl	Vaste Latéral	BFR.	concentrique)	charge pendant les contractions musculaires.
		.'			-(-(1)11		

Légende: MVC= Contraction volontaire maximale; BFR= entrainement par occlusion; RM= répétition maximale; MC= Masse corporelle; H= Homme; F= Femme

Tableau 4.2 (suite)

Auteurs	Participants	Eversice	Technologie	Musclo(s)	Objectif NIRS	Méthodologie de l'entrainement	Observations
Auteurs	Farticipants	LACICICE	reciliologie	iviuscie(s)	Objectii Niko	rentrament	Observations
Scott <i>et al</i> 2017 ⁶⁸	14 M (Âge: 21– 29; Taille: 179.7 ± 5.9 cm; MC: 84.6 ± 11.6 kg)	Squat et deadlift	Portamon	Vaste Latéral	Évaluer si l'hypoxie augmente la réponse en oxygénation musculaire.	3 séries de 10 répétitions de 60% 1RM / 1 minute de récupération	Bien que l'oxygénation systémique soit diminuée lors de l'hypoxie, l'oxygénation locale n'a pas différé selon les conditions.
Scott <i>et al</i> 2018 ⁶⁹	12 M (age: 25.3 ± 4.3; Taille: 179.0 ± 4.5 cm; MC: 83.4 ± 9.1 kg)	Squat et	Portamon	Vaste Latéral	Évaluer les réponses physiologiques à différent niveau d'hypoxie.	5 séries de 5 répétitions à 80% 1 RM / 3 minutes de récupération	Bien qu'une dose d'hypoxie fût visible dans les marqueurs sanguins de saturation d'O ₂ , aucune grande différence de SmO ₂ n'a été trouvée parmi les différentes conditions.
Shadgan et al 2009 ⁷⁰	10 H (Âge: 30.7 ± 6.2; Taille: 177 ± 2.7cm; MC: 79.1 ± 6.7kg)	Force de préhension	Portamon	Fléchisseurs des doigts superficiels	Tester l'outil NIRS pour mesurer les chromophores.	3 séries de 30s isométriques X% MVC (10%, 30%, 50%)	Une diminution significative en tHb et O₂Hb accompagné d'une augmentation en HHb se sont produits pour chaque sujet lors d'une contraction isométrique. L'amplitude du changement s'est agrandi plus le pourcentage de la MVC était grand.
Spiering <i>et al</i> 2008 ⁷¹	9 H (Âge: 25.2 ± 6; Taille: 180.2 ± 6.3cm; MC: 91.2 ± 10.2kg)	Squat	Inspectra	Muscle de la cuisse (non- spécifié)	Mesurer les effets de la L-carnitine L-tartrate sur l'oxygénation du tissu musculaire suite à un entrainement en résistance.	4 séries de 15 à 20 répétitions (50% 1 RM) / 2 minutes de repos	L'oxygénation musculaire était réduite dans l'essai en supplémentation en L-carnitine L- tartrate lors de la récupération de l'entrainement en résistance.

Légende : RM= Répétition maximale; SmO₂= Saturation musculaire en oxygène; MVC= Contraction volontaire maximale; tHb= Total hémoglobine; O₂Hb= Hémoglobine oxygénée; HHb= Hémoglobine désoxygénée; MC= Masse corporelle; H=Homme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
7.000013	3/7 méthode (8	<u> </u>	recimologic	11143010(3)	objectii itiilo	- Cite dilletticité	
	M et 8 F (Âge:					70% 1 RM 2 méthodes:	
	24.4 ± 2.2;					3/7: 1re série 3 répétitions;	
	Taille: 172.6 ±					dernière série (5e) 7	
	9.9cm; MC:					répétitions. Augmentation	
	67.5 ± 13.1kg))					d'une répétition par série.	
	8x6 méthode				Comparer deux	15 sec de récupération	
	(7M et 7 F (Âge:				méthodes	entre séries. 150 sec pour	
	23.2 ± 2.7;				d'entrainement en	répéter le protocole 2 fois.	
	Taille: 172.2 ±				résistance et les	8x6: 8 séries de 6	
Stargier et al	8.2; MC: 68.7 ±	Flexion du			réponses	répétitions 150 sec de repos	Le TOI du muscle du biceps a démontré une plus
2019 ⁷²	11.7)	coude	Niro-200	Biceps brachial	physiologiques.	entre séries	grande fatigue suite à la méthode 3/7.
					Caractériser la réponse		
					hémodynamique dans les membres actifs et		
	10 (5 H et 5F)	Côté droit:			inactifs dans les		
	(Âge: 19 ± 2;	Flexion du			membres inférieurs et	3 séries de 10 répétitions /	
	Taille: 174 ± 5	coude (FC)		Biceps brachial	supérieurs suite à	5 minutes de repos	Suite à un exercice en entrainement en
Thomas et al	cm; MC: 70 ± 6	extension du		et droit	l'entrainement en	Charge prédéterminée (FC:	résistance, le débit sanguin du membre actif a
2020 ⁷³	kg)	genou (EG)	Niro-200	fémoral	résistance.	7 ± 2 kg EG: 28 ± 7 kg)	augmenté.
	<i>-</i>				Examiner les effets	5 - 6/	
					d'une supplémentation		
	13 H (Âge: 23 ±				de bétaïne de 14 jours		Une supplémentation en bétaïne permet une
	3; Taille: 178 ± 8				sur la performance et	10 séries jusqu'à fatigue	augmentation modérée du nombre total de
Trepanowski <i>et</i>	cm; MC: 82 ±			Deltoïdes	l'oxygénation du tissu	(50% 1 RM) / 2 minutes de	répétitions et de volumes quand on prend un
al ⁷⁴	12)	Bench press	Inspectra	Antérieur	musculaire.	récupération	dosage quotidien de 2.5g pour 14 jours.

Légende : RM= Répétition maximale; TOI= Index de saturation du tissu. MC= Masse corporelle; H= Homme; F= Femme.

Tableau 4.2 (suite)

						Méthodologie de	
Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	l'entrainement	Observations
					Examiner les effets de la		
					citrulline malat et du jus		
	27.11.12				de betterave sur		Les résultats ne suggèrent pas que l'ingestion de
	27 H (Âge: 22 ±				l'efficience de l'énergie	250/ MM/C 2	supplément (CitMal ou BEET) avant l'exercice
Trexler <i>et al</i>	4; Taille: 178.4 ± 6.8cm; MC:	Extension de la			lors d'une extension de	25% MVC 3 minutes de	affecte le débit sanguin lors d'un exercice d'extension du genou sous maximal chez des
2020 ⁷⁵	78.9 ± 12.5kg)	iambe	Portalite	Vaste Latéral	la jambe à effort sous- maximal.	contraction rythmique (1 au 4 secondes)	hommes actifs récréativement.
2020	76.9 ± 12.3kg)	Jannue	Portaille	vaste Laterai	IIIdXIIIIdi.	2 méthodes (60 d/s et 360	nonlines actils recreativement.
					Évaluer les effets de	d/s):	
					redistribuer le temps de	Traditionnel (TS) : 4 séries	
	16 H (Âge:				récupération en plus	de 10 répétitions: 95	
	23.67 ± 2.78;				court, mais plus	secondes de repos.	RR a terminé avec un plus haut total de débit
	Taille: 181.25 ±				fréquent lors de deux	Repos redistribué (RR): 20	sanguin et de saturation en O ₂ lorsque comparé
Tufano et al	7.34 cm; MC:	Extension du			vitesses de contractions	séries de 2 répétitions: 15	à TS, indiquant un plus grand fournissement
2020 ⁷⁶	81.06 ± 8.81 kg)	genou	Oxiplex TS	Vaste Latéral	différentes.	secondes de repos	d'O ₂ au muscle lors du protocole RR.
					Évaluer si l'hypoxie		
					change les réponses		
					physiologiques et si elle		
	20 H (Âge: 23.3				accentue les	2 Méthodes:	L'index de saturation d'oxygène indique que
	± 1.8; Taille:	Daniel Lance		Tête latérale	changements	Drop set 10 RM (100%-80%-	l'oxygénation musculaire était
18/aldan at 4	178.6 ± 7.4 cm;	Bench press		du Triceps du	lorsqu'une série est	60%)	considérablement plus basse en situation
Walden et al	MC: 77.9 ± 11.5	Développé	Dortomon	bras non	effectué au maximum	Drop set entre set 10 RM/2	d'hypoxie qu'en normoxie, et ce pour les deux
2020 ⁷⁷	kg)	épaule assis	Portamon	dominant	contre sous-maximal.	(100%-80%-60%)	méthodes.

Légende : MVC= Contraction maximale volontaire; RM= Répétition maximale; MC= Masse corporelle; H= Homme.

Tableau 4.2 (suite)

Auteurs	Participants	Exercice	Technologie	Muscle(s)	Objectif NIRS	Méthodologie de l'entrainement	Observations
Yamada <i>et al</i> 2003 ⁷⁸	9 H (Âge: 19-21; Taille: 172 ± 4.1cm; MC: 64 ± 5.4kg)	Extension du	HEO-200, OMRON	Vaste Médial	Observer la relation entre l'oxygénation musculaire et une contraction isométrique.	10 secondes à 30 % MVC et 10 secondes à 50 % MVC	La force musculaire, l'épaisseur musculaire sont corrélées négativement avec l'oxygénation musculaire.
Yokoi <i>et al</i> 2014 ⁷⁹	11H (Âge :18-21 ; Taille : 170.1 ± 5.4 cm ; MC: 63.2 ± 12.2 kg)	Extension du genou	Niro-200	Droit fémoral	Évaluer les effets de l'hypoxie normobare sur la récupération du muscle fatigué.	70 % MVIC jusqu'à fatigue	Une exposition de 30 minutes à l'hypoxie normobare entre les exercices anaérobies lors d'une période de récupération a grandement accéléré la récupération du MVIC dans la région fatiguée du muscle du quadriceps ainsi que la circulation sanguine dans le muscle. Plus que dans un environnement normoxie.

Légende: MVC= Contraction volontaire maximale; MVIC= Contraction isométrique volontaire maximale; MC= Masse corporelle; H= Homme.

4.3 Résumé des objectifs principaux des études

Le tableau 4.3 résume l'ensemble des recherches NIRS et ses objectifs. Parmi les études retenues, 25 ont utilisé un facteur externe (Occlusion, supplément, hypoxie) pour comparer les réponses physiologiques pouvant être lues par un outil NIRS soit dans un état neutre ou dans un état affecté par le facteur choisi. Sept études ont cherché à observer les réponses lors d'une intervention simple. Toujours dans l'objectif d'observer les réponses physiologiques, un grand nombre d'études ont voulu comparer deux ou plusieurs types d'intervention. Les plus fréquemment observés étaient une comparaison entre méthode d'entrainement (10), comparaison entre type de personne (11), une comparaison entre les vitesses de contraction (5), et la comparaison de la charge soulevée (5).

Tableau 4.3 Résumé et regroupement des études

Objectifs de l'étude	Nombres d'études
Hypoxie (3, 29, 30, 31, 45, 48, 68, 69, 77, 79)	10
BFR (12, 13, 14, 23, 27, 41, 44, 58, 67)	9
Comparaison méthode d'entrainement (7, 33, 52, 53, 54, 63, 72, 76)	8
Suppléments (4, 11, 20, 51, 71, 74, 75)	7
IPC (9, 35, 36, 39, 59, 60)	6
Observation NIRS (22, 32, 49, 57, 66)	5
Comparaison Charge (10, 37, 38, 70, 78)	5
Comparaison vitesse de contraction (5, 19, 24, 56)	4
Comparaison entre différents niveaux d'athlètes (15, 25, 26, 40)	4
Comparaison Âge (28, 64, 65)	3
Comparaison sexe (42, 43, 50)	3
Comparaison type de contraction (1, 18, 46)	3
Orthostasie (61, 62)	2
Effet de la vibration (16, 55)	2
Amplitude de mouvement (34)	1
Comparaison personnes actifs et sédentaires (47)	1
Comparaison entre deux mouvements (17)	1
Comparaison membre actifs et inactifs (73)	1
Comparaison de contraction uni contre bilatérale (6)	1
Comparaison moment de force maximal (21)	1
Immersion eau glacé (8)	1
Comparaison de réponses de plusieurs muscles (2)	1

Légende : Les numéros entre parenthèses représentent le numéro qui a été assigné aux études lors du tableau 4.2. BFR= entrainement par occlusion. IPC= pré-conditionnement ischémique.

CHAPITRE 5

DISCUSSION

L'objectif de cette revue de la portée (Scoping Review) était de cibler les différentes études ayant utilisé la technologie NIRS afin de pouvoir identifier la façon dont cet outil est utilisé lors de l'entrainement en résistance et ainsi pouvoir faciliter les recherches à venir, par exemple, l'optimisation de l'hypertrophie à travers l'outil NIRS. À ce niveau, l'objectif du mémoire est atteint où un total de 79 articles a été retenu. Toutefois, le sous-objectif de déterminer l'importance de la SmO₂ lors de l'entrainement en résistance, bien que pertinent, n'est pas en mesure d'être répondu adéquatement, d'où le choix pour une revue de la portée. Bien qu'une revue systématique sur l'entrainement en résistance et l'outil NIRS a été publiée au cours de la préparation de ce mémoire(Miranda-Fuentes *et al.*, 2021), cette revue de la portée a de différents critères d'inclusion.

5.1 Résultats de la recherche

5.1.1 Années de publication

Tout comme d'autres revues effectuées (Miranda-Fuentes et al., 2021; Perrey et Ferrari, 2018) la grande majorité des études ont été effectuées après 2010, indiquant que les études à ce sujet sont encore récentes. Donc, ce bassin de littérature scientifique récent limite une approche de revue systématique et méta-analyse de plus grande envergure lorsque comparé, par exemple, au travail récent de Miranda-Fuentes (2021). La limitation est surtout associée aux méthodologies très hétéroclites utilisés par les différents auteurs qui ne permet pas de regrouper les études.

5.1.2 Réponses physiologiques

Bien que les objectifs de recherche des études retenues soient généraux et variés (voir tableau 4.3), il est possible de regrouper les études en 4 groupes. Ces groupes de cette revue de la portée permettent d'observer les recherches dans lesquelles un outil NIRS semble pertinent.

5.1.2.1 Observation de réponses physiologiques avec contraction musculaire

Le premier regroupement est fait d'études voulant observer les réponses physiologiques afin de pouvoir atteindre des critères, seuil, etc. Par exemple, l'étude la plus vieille retenue dans cette revue (Quaresima et al., 2001) a observé une désaturation rapide du gastrocnémien médial à 33% du MVC lors de flexion

plantaire. De façon similaire, une autre étude a comparé la désoxygénation obtenue sur les muscles du quadriceps lors d'une extension des genoux (Akima et Ando, 2017). En fait, Akima et Ando ont trouvé une association entre la fatigue et la SmO₂ des muscles du vaste médial et du droit fémoral. Un aspect mentionné par ces auteurs est que le vaste latéral et le vaste intermédiaire occupent 60% du volume du muscle quadriceps et que c'est possiblement une des raisons de ces résultats. Une autre étude a comparé la demande énergétique du back squat et du front squat (Davis et al., 2020). Aucune différence dans les paramètres mesurés par la NIRS n'a été constatée lors de ces deux mouvements. Les auteurs ont donc conclu qu'un front squat est possiblement tout aussi demandant qu'un back squat malgré que le poids soulevé soit plus léger. Cependant, ces mêmes auteurs ont observé une réoxygénation lors de la période de récupération plus lente suivant le back squat. Toujours dans l'évaluation des squats, une autre étude a remarqué que le niveau d'effort (représenté dans l'étude comme le pourcentage de répétitions effectué au total de nombre de répétitions maximales qui pourraient être effectués) jouait un plus grand rôle que la charge soulevée dans la désaturation musculaire (Gómez-Carmona et al., 2020). Une étude voulait déterminer quel était le pourcentage du moment de force (MTC) auquel la pression intramusculaire allait être augmentée et affecter les paramètres NIRS suite à une extension du genou (De Ruiter et al., 2007). Le pourcentage de MTC où la désaturation débute est plus élevé pour le droit fémoral (35% MTC), que pour le vaste médial et vaste latéral (25% MTC chacun). Une autre étude menée par le même auteur (De Ruiter et al., 2012) voulait être en mesure d'estimer le seuil de la fatigue périphérique pour un exercice aérobie à travers une évaluation d'extension du genou. Les auteurs ont considéré que l'utilisation du NIRS est adéquate pour mesurer un seuil de fatigue en lien avec le niveau d'oxygénation musculaire (De Ruiter et al., 2012). En 2007, Macleod et collaborateurs (Macleod et al., 2007) ont observé que la réoxygénation musculaire, lors du temps de récupération, était un bon indicateur de la performance de l'endurance.

Donc, pour l'ensemble de ces études mentionnées auparavant, l'outil NIRS a été en mesure d'identifier des critères ou d'observer des différences, qui néanmoins demeurent à être expliquées de manières plus approfondies.

5.1.2.2 Comparaison entre différents types de personnes

Parmi le deuxième regroupement, on trouve des études ayant cherché à comparer directement les réponses d'oxygénation entre différents types de personnes. Par exemple, pour les études comparant les hommes et les femmes, toutes ont observé une désaturation plus rapide pour l'homme (Keller *et al.*, 2021B; Keller et Kennedy, 2021A; Marshall *et al.*, 2020). Des observations ayant été aussi mentionnées par

d'autres auteurs et expliquées par les faits que les femmes ont: une plus grande densité capillaire par unité de muscles (Roepstorff *et al.*, 2006), une meilleure capacité d'exercices intenses lorsque comparées aux hommes (Parker *et al.*, 2007) et une plus grande vasodilatation lors de l'extension des genoux (Parker *et al.*, 2007). D'ailleurs, cette observation de vasodilatation plus élevée est aussi ressortie lors d'une étude cherchant à observer les effets du IPC comparant les femmes aux hommes (Paradis-Deschenes *et al.*, 2017). Le IPC ne semble pas avoir un effet majeur chez les femmes, possiblement dû aux aspects mentionnés plus haut. Toutefois, il demeure important de considérer que dans l'étude de Keller (Keller *et al.*, 2021B), bien que l'oxygénation musculaire chez la femme ait moins diminué, la performance au test a été similaire. En somme, tout en considérant le nombre limité d'études concernant la NIRS et l'entrainement en résistance et les réponses selon le sexe, la technologie NIRS semble être un outil qui permet de décrire une différence entre les deux sexes. Néanmoins, les raisons de ces différences sont encore à étudier.

Une différence a aussi été remarquée avec l'âge. Trois études ont observé ces différences. La première (Gepner *et al.*, 2019), a remarqué une diminution de SmO₂ plus grande chez les personnes plus âgées (moyenne : 47 ans) que chez les plus jeunes (moyenne : 21 ans) et cela même si tous les participants menaient un mode de vie physiquement actif. Cette différence s'accentuait plus que le nombre de séries augmentait. C'est un aspect déjà mentionné par le passé, plus on vieillit, plus les capacités oxydatives lors de l'exercice diminuent (Gepner *et al.*, 2019). Ensuite, une série de deux études par Piponnier et ses collaborateurs (Piponnier *et al.*, 2018; Piponnier *et al.*, 2019) a comparé l'oxygénation musculaire chez des enfants et de jeunes adultes. Une désaturation moins grande a été observée chez les enfants, cependant, il n'y avait aucune différence en termes de répétitions. Les auteurs proposent que la fatigue, chez les enfants, soit plus centrale que périphérique et que la maturation musculaire soit moindre chez les enfants (capillaire et autres mécanismes intracellulaires moins développés).

Le niveau du profil athlétique a aussi été comparé. Cettolo et ses collaborateurs (Cettolo *et al.*, 2007) ont observé que lors d'une contraction isométrique de courte durée et maximale, le délai avant la diminution de l'oxygénation musculaire était plus long chez les personnes habituées à l'entrainement en résistance. À l'inverse, une personne non habituée à l'entrainement en résistance désaturait plus vite. Deux études de Fryer et ses collaborateurs (Fryer, S. *et al.*, 2014; Fryer, S. M. *et al.*, 2015) ont comparé plusieurs niveaux de grimpeurs (escalade). Les résultats étant que les grimpeurs les plus élites sont en mesure d'extraire plus d'O2 (Fryer, S. *et al.*, 2014) et de récupérer plus vite (Fryer, S. M. *et al.*, 2015). Enfin, une étude (Jordan Nolan *et al.*, 2020) a comparé l'oxygénation musculaire des avant-bras chez trois types d'athlètes :

dynamophile, grimpeur et athlète aérobie. Cette étude a observé une meilleure performance des grimpeurs, suggérant une importance à l'adaptation de consommation d'oxygène intracellulaire qui ne se produit pas dans les autres sports utilisés comme comparaison. Les personnes sédentaires se retrouvent aussi avec une moins grande capacité d'extraction d'O2 (Lin *et al.*, 2014).

Toutefois, il est proposé que lorsqu'on tente de comparer des profils d'individu lors de l'entrainement en résistance, un outil NIRS serait en mesure d'observer des différences permettant de mieux comprendre les réponses physiologiques. Bien que le nombre d'études ne soit pas élevé, l'outil NIRS permet, jusqu'à présent, d'observer que plus une personne est performante dans un mouvement, plus elle sera en mesure d'extraire de l'O2 du muscle, et qu'elle aura une réoxygénation plus rapide lors d'entrainement en résistance de plus longue durée.

5.1.2.3 Comparaison entre méthodes d'entrainements

Le troisième groupe d'études est fait de recherches ayant comparé les réponses physiologiques entre méthodes d'entrainement. Certaines études ont choisi de répartir le volume d'entrainement de manière différente pour observer s'il y a des différences au niveau hémodynamique. Par exemple, deux études ont comparé le « drop set », à des méthodes traditionnelles (Angleri et al., 2020) et un « reverse drop set » (Goto et al., 2016). Dans les deux cas, une désoxygénation plus grande a été observée pour le drop set. Une différence a aussi été observée pour ceux qui ont utilisé la méthode 3/7 comparativement à des méthodes plus traditionnelles démontrant une plus grande désaturation pour la méthode 3/7. Une autre étude qui a cherché à comparer un entrainement traditionnel à un repos redistribué a constaté une plus grande désaturation dans la nouvelle méthode (Merrigan et al., 2020). Toutefois, d'autres études n'ont pas constaté de différences entre les méthodes choisies (Martínez Guardado et al., 2021; Matsuura et al., 2011). On remarque que la technologie NIRS pourrait potentiellement aider les praticiens à choisir et effectuer le suivi lors d'utilisation de différentes méthodes d'entrainement.

Cinq études ont comparé la charge soulevée. Les études qui ont maintenu le même volume et changé uniquement la charge ont constaté que plus la charge est élevée, plus la demande en oxygène est haute (Bhambhani, Y. et al., 2014; Shadgan et al., 2009; Yamada, E. et al., 2003). Cette désoxygénation est possiblement dû aussi à l'augmentation de la pression intramusculaire qui augmente avec la force de contraction et, qui, comme vu lors du chapitre 2, affecte le débit sanguin. Deux études de Hoffman et collaborateurs ont été avec une approche différente. La première (Hoffman et al., 2003) a choisi le

pourcentage de répétitions maximales (RM). Dans cette méthode, plus le pourcentage est élevé, plus le nombre de répétitions est bas. Par conséquent, plus le temps de contraction est court. Cette étude a constaté que la méthode de 60% du 1RM avait un délai plus long pour la réoxygénation, lorsque comparé au 90% du 1RM. Une possible cause suggérée par les auteurs était l'effet Bohr, c'est-à-dire une plus grande dissociation de O2Hb. La deuxième étude (Hoffman *et al.*, 2007) s'est penchée sur le délai de réoxygénation et le stress oxydatif (mesuré indirectement par la présence de malondialhyde (MDA)). Bien que plus de recherche soit suggérée par les auteurs, une possible cause avancée est que la présence de MDA affecte la réoxygénation. Les outils NIRS permettent de constater que la charge affecte l'extraction d'O2 dans le muscle.

Quatre études ont évalué la vitesse de contraction : trois ont observé que plus la contraction est lente, plus il y a de désaturation (Alvares *et al.*, 2020; Denis *et al.*, 2011B; Formenti *et al.*, 2018) et la quatrième a constaté le même résultat à travers la perte de vélocité (Munoz-Lopez *et al.*, 2021). Dans cette dernière étude, les participants effectuaient un squat jusqu'à une perte de vélocité donnée (en pourcentage). Quand une perte de vélocité plus grande était permise, les répétitions de la fin sont plus lentes, et une plus grande désaturation était observée. L'observation revenue la plus fréquemment est celle de l'étude de Barnes (Barnes, 1980) qui mentionne qu'une contraction à vélocité lente demande une activation de plus de fibre musculaire lorsque comparé à une contraction à vélocité rapide. La technologie NIRS permet de voir qu'il y a une plus grande demande périphérique lors de contraction lente en entrainement en résistance.

Trois études ont évalué les différences entre types de contraction musculaire. Une recherche a remarqué que suite à une contraction excentrique, il y avait une plus grande quantité de HbO2 (Ahmadi *et al.*, 2008). Une autre étude a remarqué une plus grande désaturation de la contraction excentrique comparée à une contraction concentrique lors d'un exercice à répétition maximale (Denis *et al.*, 2011A). La contraction dynamique à volume et intensité égale à la contraction isométrique a démontré une plus grande demande énergétique (Kounoupis *et al.*, 2021). Les auteurs mentionnent l'étude de (Chasiotis *et al.*, 1985) stipulant qu'il y a un coût plus élevé d'activation musculaire dans une contraction dynamique.

En comparant les demandes énergétiques de contraction unilatérale et bilatérale, aucune différence n'a été observée (Anders *et al.*, 2021). De manière similaire, une autre étude a voulu comparer les changements hémodynamiques des membres actifs et inactifs (Thomas *et al.*, 2020). Le membre inactif

avait des changements plus minimes et de courte durée, lorsque comparé au membre actif. La dernière étude (Goto *et al.*, 2019) a observé une plus grande hypertrophie chez leurs participants quand ils ont effectué une extension du coude à amplitude partielle, lorsque comparé à l'amplitude complète. La contraction à amplitude partielle a causé une plus grande hypoxie locale, entre autres, due à la pression intramusculaire plus grande.

Les observations de ce regroupement d'études mentionnent souvent l'hypertrophie. Cette dernière semble associée aux stress métaboliques et à la désaturation d'oxygène. On remarque par le nombre d'études limité que la pression intramusculaire et la vitesse de contraction semblent jouer un rôle important dans ce type de désaturation.

5.1.2.4 Intervention Externe

Dans ce groupe d'études, l'objectif est de voir si les variables NIRS sont affectées par une intervention externe plutôt que d'observer comment les variables NIRS réagissent. L'hypoxie est définie comme un état de diminution d'O2 dans le tissu (Gnimassou et al., 2018) ou une fraction réduite de l'O2 inspiré (Scott et al., 2018). Ces mesures font référence principalement à l'oxygénation systémique. C'est pourquoi il est pertinent de se questionner sur les effets que l'oxygénation systémique peut avoir sur l'oxygénation locale. Dix études ont évalué cet aspect (Alhammoud et al., 2018; Girard et al., 2019; Gnimassou et al., 2018; Gomes et al., 2013; Kojima et al., 2020; Lockhart et al., 2020; Scott et al., 2017; Scott et al., 2018; Walden et al., 2020; Yokoi et al., 2014).

Comme la NIRS sert de mesure indirecte du débit sanguin (Neary, 2004), il semble pertinent de l'utiliser dans des situations qui affectent directement le débit sanguin local. En effet, comme vu lors du chapitre 2, l'entrainement par occlusion (BFR) et le préconditionnement ischémique (IPC) sont deux méthodes qui utilisent l'occlusion pour obtenir des adaptations physiologiques. Neuf études ont utilisé le BFR avec la NIRS lors de l'entrainement en résistance (Broxterman et al., 2015; Bunevicius et al., 2018; Cayot et al., 2016; Downs et al., 2014; Ganesan et al., 2015; Kacin et Strazar, 2011; Kilgas et al., 2019; Oranchuk et al., 2020; Reis et al., 2019). Quant à le IPC, six études l'ont utilisé (Behrens et al., 2020; Halley et al., 2018, 2019; Jeffries et al., 2018; Paradis-Deschenes et al., 2017; Paradis-Deschênes et al., 2016). Le thème qui ressort est le stress métabolique. En effet, dans certaines études, la NIRS pouvait observer une plus grande désaturation, mais cela n'avait pas d'incidence sur la performance. Oranchuk et ses collaborateurs (Oranchuk et al., 2020) ont remarqué que le BFR et une contraction volontaire maximale isométrique

n'avaient pas de différence. Rappelant ainsi le rôle que la pression intramusculaire peut jouer sur la circulation sanguine locale.

De plus, les suppléments peuvent avoir des effets sur la performance et sept études ont voulu évaluer si cela était en partie dû aux paramètres d'oxygénation musculaire mesurés par NIRS. Une supplémentation en L-Arginine semble augmenter le débit sanguin local, mais non la force ou la SmO₂ (Alvares *et al.*, 2012). Dans certains cas, le supplément a augmenté l'oxygénation musculaire en début d'exercice (Bloomer *et al.*, 2010; Trepanowski *et al.*, 2011), dans d'autres aucun effet sur les variables NIRS (Martin *et al.*, 2017; Trexler *et al.*, 2020), ou bien semble avoir un effet potentiel sur la récupération (de Oliveira *et al.*, 2018; Spiering *et al.*, 2008).

Une série de deux études par Parganlija et collaborateurs (Parganlija et al., 2020; Parganlija et al., 2019) ont voulu observer si l'orthostasie simulée avait un effet sur l'oxygénation musculaire et la performance. Dans les deux cas, des différences ont été observées. Deux autres études ont mesuré les effets de la vibration sur le réseau microvasculaire lors de l'entrainement en résistance. Toutefois, deux recommandations importantes différentes en ressortent. Une étude parle de « vasomotion » en faisant référence à la vibration exercée sur le corps lors d'impact comme la course et autres (Coza et al., 2011). Les auteurs mentionnent l'importance de prendre en considération ces aspects lors de l'évaluation de l'oxygénation musculaire. La seconde étude observe la vibration comme une façon d'optimiser l'entrainement, c'est-à-dire que lors de contraction à basse intensité, la vibration aidait à augmenter la demande métabolique (Mileva et al., 2006).

Une étude a été en mesure d'observer les effets de l'immersion locale dans de l'eau glacée suite à une série de répétitions et a constaté que cela atténuait la diminution de la performance lors de la prochaine série (Baláš *et al.*, 2020). Une seule étude a mesuré les effets d'une intervention (avant le test) par photobiomodulation sur la SmO₂ (Oliveira *et al.*, 2017). Les auteurs mentionnent que c'est un projet pilote, avec un petit nombre de participants. Les résultats ont été prometteurs, la technologie NIRS est en mesure d'évaluer les effets de la photobiomodulation.

Dans ce regroupement, d'études, on remarque qu'outre l'aspect de la contraction musculaire et de l'intensité, des facteurs externes peuvent affecter l'oxygénation musculaire. L'outil NIRS a sa pertinence pour savoir ce que ces facteurs externes ont comme effet.

5.2 Méthodes des recherches

Le muscle le plus représenté est le vaste latéral. Le choix de ce muscle peut se justifier par le fait qu'il est relativement facile d'accès. On retrouve par le fait même des exercices plus sécuritaires et faciles d'exécution tel que l'extension du genou, la force de préhension ou la flexion plantaire. Comme observer dans le chapitre 2, l'accessibilité à la CW-NIRS fait en sorte qu'elle est l'option la plus représentée dans cette revue.

5.3 Recherches futures

Dans les recherches futures, il serait intéressant d'évaluer s'il est possible d'établir des profils athlétiques ou de confirmer des niveaux de performance attendus selon le degré de désaturation et la vitesse de réoxygénation. L'hypertrophie est un thème qui revient souvent et qui semble prometteur. Des recherches permettant de savoir si adapter sa méthode d'entrainement aux paramètres NIRS pour maximiser les résultats d'hypertrophie serait pertinent. La réoxygénation plus rapide semble indiquer la performance d'endurance d'une personne et, considérant l'étude de Davis (Davis et al., 2020) qui a observé une récupération plus lente suite à un front squat lorsque comparer à un back squat, on peut se poser la question si la vitesse de réoxygénation peut aussi indiquer l'intensité d'un exercice chez une même personne. Dans tous les cas, il serait pertinent pour les études de standardiser certains aspects de leurs interventions. La calibration physiologique proposée par Jones (Jones et al., 2016) et la liste de vérification proposée par Perrey (Perrey et Ferrari, 2018) pourraient aider à réduire les différences observées entre les outils NIRS.

5.4 Limites et forces

Une limitation de cette revue est l'hétérogénéité des études ayant évalué l'entrainement en résistance et les outils NIRS. Ceci peut être observé par la grande variation des objectifs, des muscles évalués, des outils NIRS utilisés, des types d'athlètes, de l'encadrement, etc. Cette hétérogénéité rend difficile la comparaison directe des résultats. Une autre limite est qu'une revue de la portée est un résumé des études qui ne prend pas en considération le risque de biais des études (Annexe A : item 22). Néanmoins, le nombre d'articles, les dates récentes des articles retenues et ses résumés permettent de faire un survol sur l'état de la situation pour la recherche dans ce milieu.

CONCLUSION

La recherche utilisant le NIRS lors d'entrainement en résistance est encore émergente, le thème du mémoire étant donc d'identifier la portée d'utilisation de ces outils dans le milieu de l'entrainement en résistance. La technologie NIRS est un outil d'observation qui permet de quantifier la charge interne, et en ce qui concerne l'entrainement en résistance, l'utilisation de cet outil semble poser encore plusieurs questions et des lacunes semblent apparentes , ex : déterminer s'il peut jouer un rôle dans l'optimisation de l'hypertrophie, déterminer si le niveau de désaturation lors de l'exercice et la vitesse de réoxygénation lors de la récupération permettent d'évaluer le niveau de performance d'un individu, parmi tant d'autres approches, celles-ci semblent les plus pertinentes dans le domaine de l'entrainement en résistance.

ANNEXE A

TABLEAU DE L'ARTICLE TRICCO ET AL, 2018 (LISTE DE VÉRIFICATION : REVUE DE LA PORTÉE)

Table. PRISMA-ScR Checklist

Section	ltem	PRISMA-ScR Checklist Item
Title	1	Identify the report as a scoping review.
		· · · · · · · ·
Abstract Structured summary	2	Provide a structured summary that includes (as applicable) background, objectives, eligibility criteria sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.
Introduction		
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to thei key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.
Methods	_	
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address) and if available, provide registration information, including the registration number.
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).
Summary measures	13	Not applicable for scoping reviews.
Synthesis of results	14	Describe the methods of handling and summarizing the data that were charted.
Risk of bias across studies	15	Not applicable for scoping reviews.
Additional analyses	16	Not applicable for scoping reviews.
Results		
Selection of sources of evidence	17	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.
Characteristics of sources of evidence	18	For each source of evidence, present characteristics for which data were charted and provide the citations.
Critical appraisal within sources of evidence	19	If done, present data on critical appraisal of included sources of evidence (see item 12).
Results of individual sources of evidence	20	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.
Synthesis of results	21	Summarize and/or present the charting results as they relate to the review questions and objectives.
Risk of bias across studies	22	Not applicable for scoping reviews.
Additional analyses	23	Not applicable for scoping reviews.
Discussion		
Summary of evidence	24	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.
Limitations	25	Discuss the limitations of the scoping review process.
Conclusions	26	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.
Funding	27	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.

RÉFÉRENCES

- Ahmadi, S., Sinclair, P. J., Foroughi, N. et Davis, G. M. (2008). Monitoring muscle oxygenation after eccentric exercise-induced muscle damage using near-infrared spectroscopy [Article]. *Applied Physiology, Nutrition and Metabolism*, 33(4), 743-752. https://doi.org/10.1139/H08-048
- Akima, H. et Ando, R. (2017). Oxygenation and neuromuscular activation of the quadriceps femoris including the vastus intermedius during a fatiguing contraction [Article]. *Clinical Physiology and Functional Imaging*, *37*(6), 750-758. https://doi.org/10.1111/cpf.12370
- Alcazar, J., Csapo, R., Ara, I. et Alegre, L. M. (2019, 2019-June-19). On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic [Review]. Frontiers in Physiology, 10(769). https://doi.org/10.3389/fphys.2019.00769
- Alhammoud, M., Morel, B., Girard, O., Racinais, S., Sevrez, V., Germain, A., Chamu, T. et Hautier, C. (2018). Hypoxia and fatigue impair rapid torque development of knee extensors in elite alpine skiers [Article]. Frontiers in Physiology, 9(JUL), Article 962. https://doi.org/10.3389/fphys.2018.00962
- Alvares, T. S., Conte, C. A., Paschoalin, V. M., Silva, J. T., Meirelles Cde, M., Bhambhani, Y. N. et Gomes, P. S. (2012, Feb). Acute l-arginine supplementation increases muscle blood volume but not strength performance. *Appl Physiol Nutr Metab*, *37*(1), 115-126. https://doi.org/10.1139/h11-144
- Alvares, T. S., Oliveira, G. V., Soares, R. et Murias, J. M. (2020, Apr). Near-infrared spectroscopy-derived total haemoglobin as an indicator of changes in muscle blood flow during exercise-induced hyperaemia. *J Sports Sci*, 38(7), 751-758. https://doi.org/10.1080/02640414.2020.1733774
- Anders, J. P. V., Neltner, T. J., Keller, J. L., Housh, T. J., Schmidt, R. J. et Johnson, G. O. (2021). Are mode-specific differences in performance fatigability attributable to muscle oxygenation? [Article]. *European Journal of Applied Physiology*, 121(8), 2243-2252. https://doi.org/10.1007/s00421-021-04694-5
- Angleri, V., De Oliveira, R., Biazon, T. M. P. C., Damas, F., Borghi-Silva, A., Barroso, R. et Libardi, C. A. (2020). Effects of Drop-Set and Pyramidal Resistance Training Systems on Microvascular Oxygenation: A Near-Infrared Spectroscopy Approach. *International Journal of Exercise Science*, 13(2), 1549-1562. http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=33414864&lang=fr&site=ehost-live
- Bae, S. Y., Yasukochi, S. M., Kan, K., Sasaki, M., Koseki, S., Hamoaka, T., Iwane, H. et Haga, S. (1996). Changes in oxygen content and blood volume in working skeletal muscle up to maximal exercise by near infrared spectroscopy. *Ther Res*, *17*(6), 129-136.
- Baláš, J., Kodejška, J., Krupková, D. et Giles, D. (2020). Males benefit more from cold water immersion during repeated handgrip contractions than females despite similar oxygen kinetics [Article]. Journal of Physiological Sciences, 70(1), Article 13. https://doi.org/10.1186/s12576-020-00742-5
- Barnes, W. S. (1980). The Relationship of Motor-Unit Activation to Isokinetic Muscular Contraction at Different Contractile Velocities. *Physical Therapy*, 60(9), 1152-1158. https://doi.org/10.1093/ptj/60.9.1152

- Barstow, T. J. (2019). Understanding near infrared spectroscopy and its application to skeletal muscle research [Review]. *Journal of Applied Physiology*, 126(5), 1360-1376. https://doi.org/10.1152/japplphysiol.00166.2018
- Beć, K. B. et Huck, C. W. (2019). Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation.

 A Review of Recent Developments. *Frontiers in chemistry*, 7, 48-48. https://doi.org/10.3389/fchem.2019.00048
- Behrens, M., Zschorlich, V., Mittlmeier, T., Bruhn, S. et Husmann, F. (2020). Ischemic Preconditioning Did Not Affect Central and Peripheral Factors of Performance Fatigability After Submaximal Isometric Exercise. *Front Physiol*, *11*, 371. https://doi.org/10.3389/fphys.2020.00371
- Bennett, H. et Slattery, F. (2019). Effects of Blood Flow Restriction Training on Aerobic Capacity and Performance: A Systematic Review. *The Journal of Strength & Conditioning Research*, 33(2), 572-583. https://doi.org/10.1519/jsc.00000000000002963
- Bhambhani, Y. (2012). Application of near Infrared Spectroscopy in Evaluating Cerebral and Muscle Haemodynamics during Exercise and Sport. *Journal of Near Infrared Spectroscopy*, 20(1), 117-139. https://doi.org/10.1255/jnirs.978
- Bhambhani, Y., Fan, J. L., Place, N., Rodriguez-Falces, J. et Kayser, B. (2014). Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities [Article]. *Frontiers in Physiology*, *5 JUN*, Article Article 190. https://doi.org/10.3389/fphys.2014.00190
- Bloomer, R. J., Farney, T. M., Trepanowski, J. F., McCarthy, C. G., Canale, R. E. et Schilling, B. K. (2010). Comparison of pre-workout nitric oxide stimulating dietary supplements on skeletal muscle oxygen saturation, blood nitrate/nitrite, lipid peroxidation, and upper body exercise performance in resistance trained men [Article]. *Journal of the International Society of Sports Nutrition*, 7, Article 16. https://doi.org/10.1186/1550-2783-7-16
- Born, D. P., Stöggl, T., Swarén, M. et Björklund, G. (2017, Apr). Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. *Int J Sports Physiol Perform*, 12(4), 440-447. https://doi.org/10.1123/ijspp.2016-0101
- Broatch, J. R., Bishop, D. J. et Halson, S. (2018, Aug 1). Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling. *Int J Sports Physiol Perform*, 13(7), 882-890. https://doi.org/10.1123/ijspp.2017-0638
- Broxterman, R. M., Craig, J. C., Smith, J. R., Wilcox, S. L., Jia, C., Warren, S. et Barstow, T. J. (2015). Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise [Article]. *Journal of Physiology*, *593*(17), 4043-4054. https://doi.org/10.1113/JP270424
- Buchheit, M., Bishop, D., Haydar, B., Nakamura, F. Y. et Ahmaidi, S. (2010). Physiological responses to shuttle repeated-sprint running [Article]. *International Journal of Sports Medicine*, *31*(6), 402-409. https://doi.org/10.1055/s-0030-1249620

- Buchheit, M., Cormie, P., Abbiss, C. R., Ahmaidi, S., Nosaka, K. K. et Laursen, P. B. (2009, Jun). Muscle deoxygenation during repeated sprint running: Effect of active vs. passive recovery. *Int J Sports Med*, 30(6), 418-425. https://doi.org/10.1055/s-0028-1105933
- Bunevicius, K., Grunovas, A., Venckunas, T., Poderiene, K., Trinkunas, E. et Poderys, J. (2018, Feb). Blood flow restriction late in recovery after heavy resistance exercise hampers muscle recuperation. *Eur J Appl Physiol*, 118(2), 313-320. https://doi.org/10.1007/s00421-017-3771-1
- Caru, M., Levesque, A., Lalonde, F. et Curnier, D. (2019, 2019/07/01/). An overview of ischemic preconditioning in exercise performance: A systematic review. *Journal of Sport and Health Science*, 8(4), 355-369. https://doi.org/https://doi.org/10.1016/j.jshs.2019.01.008
- Cayot, T. E., Lauver, J. D., Silette, C. R. et Scheuermann, B. W. (2016, Jul). Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. *Clin Physiol Funct Imaging*, *36*(4), 298-305. https://doi.org/10.1111/cpf.12228
- Cettolo, V., Ferrari, M., Biasini, V. et Quaresima, V. (2007). Vastus lateralis O2 desaturation in response to fast and short maximal contraction [Article]. *Medicine and Science in Sports and Exercise*, *39*(11), 1949-1959. https://doi.org/10.1249/mss.0b013e3181453476
- Chan, M. J., Chung, T., Glassford, N. J. et Bellomo, R. (2017, Aug). Near-Infrared Spectroscopy in Adult Cardiac Surgery Patients: A Systematic Review and Meta-Analysis. *J Cardiothorac Vasc Anesth*, 31(4), 1155-1165. https://doi.org/10.1053/j.jvca.2017.02.187
- Chance, B., Dait, M. T., Zhang, C., Hamaoka, T. et Hagerman, F. (1992, Mar). Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. *Am J Physiol*, 262(3 Pt 1), C766-775. https://doi.org/10.1152/ajpcell.1992.262.3.C766
- Chasiotis, D., Bergström, M. et Hultman, E. (1985, Jul). ATP utilization and force during intermittent and continuous muscle contractions. *J Appl Physiol (1985)*, 63(1), 167-174. https://doi.org/10.1152/jappl.1987.63.1.167
- Contini, D., Zucchelli, L., Spinelli, L., Caffini, M., Re, R., Pifferi, A., Cubeddu, R. et Torricelli, A. (2012, 2012/02/01). Brain and Muscle near Infrared Spectroscopy/Imaging Techniques. *Journal of Near Infrared Spectroscopy*, 20(1), 15-27. http://www.osapublishing.org/jnirs/abstract.cfm?URI=jnirs-20-1-15
- Coza, A., Nigg, B. M. et Dunn, J. F. (2011). Effects of vibrations on gastrocnemius medialis tissue oxygenation [Article]. *Medicine and Science in Sports and Exercise*, 43(3), 509-515. https://doi.org/10.1249/MSS.0b013e3181f2589f
- Davies, D. J., Clancy, M., Lighter, D., Balanos, G. M., Lucas, S. J. E., Dehghani, H., Su, Z., Forcione, M. et Belli, A. (2017, Oct). Frequency-domain vs continuous-wave near-infrared spectroscopy devices: a comparison of clinically viable monitors in controlled hypoxia. *J Clin Monit Comput*, *31*(5), 967-974. https://doi.org/10.1007/s10877-016-9942-5
- Davis, P. R., Yakel, J. P. et Anderson, D. J. F. (2020). Muscle Oxygen Demands of the Vastus Lateralis in Back and Front Squats. *Int J Exerc Sci*, *13*(6), 734-743.

- de Oliveira, G. V., Alvares, T. S., do Nascimento, L. A. D., Volino-Souza, M. et Mesquita, J. S. (2018). Beetroot-based gel supplementation improves handgrip strength and forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes [Article]. *Applied Physiology, Nutrition and Metabolism*, 43(9), 920-927. https://doi.org/10.1139/apnm-2017-0828
- De Ruiter, C. J., Goudsmit, J. F. A., Van Tricht, J. A. et De Haan, A. (2007). The isometric torque at which knee-extensor muscle reoxygenation stops [Article]. *Medicine and Science in Sports and Exercise*, 39(3), 443-452. https://doi.org/10.1249/mss.0b013e31802dd3cc
- De Ruiter, C. J., Maas, E. A., Wesseling, M. G. H. et De Haan, A. (2012). Knee extensor fatigue threshold is related to whole-body VO 2max [Article]. *Medicine and Science in Sports and Exercise*, 44(7), 1366-1374. https://doi.org/10.1249/MSS.0b013e318249d701
- Denis, R., Bringard, A. et Perrey, S. (2011A). Vastus lateralis oxygenation dynamics during maximal fatiguing concentric and eccentric isokinetic muscle actions [Article]. *Journal of Electromyography and Kinesiology*, 21(2), 276-282. https://doi.org/10.1016/j.jelekin.2010.12.006
- Denis, R., Wilkinson, J. et de Vito, G. (2011B). Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises [Article]. *Clinical Physiology and Functional Imaging*, *31*(5), 352-357. https://doi.org/10.1111/j.1475-097X.2011.01023.x
- Feldmann, A., Schmitz, R. et Erlacher, D. (2019, Nov). Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: reliability and validity of the Moxy Monitor. *J Biomed Opt*, 24(11), 1-11. https://doi.org/10.1117/1.Jbo.24.11.115001
- Ferrari, M. et Quaresima, V. (2012A, 2012/02/01). Near Infrared Brain and Muscle Oximetry: From the Discovery to Current Applications. *Journal of Near Infrared Spectroscopy*, 20(1), 1-14. https://doi.org/10.1255/jnirs.973
- Ferrari, M. et Quaresima, V. (2012B, Nov 1). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. *Neuroimage*, *63*(2), 921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
- Fitts, R. H. (1994, Jan). Cellular mechanisms of muscle fatigue. *Physiol Rev*, *74*(1), 49-94. https://doi.org/10.1152/physrev.1994.74.1.49
- Formenti, D., Perpetuini, D., Iodice, P., Cardone, D., Michielon, G., Scurati, R., Alberti, G. et Merla, A. (2018). Effects of knee extension with different speeds of movement on muscle and cerebral oxygenation. PeerJ, 6, e5704. https://doi.org/10.7717/peerj.5704
- Fryer, S., Stoner, L., Scarrott, C., Lucero, A., Witter, T., Love, R., Dickson, T. et Draper, N. (2014). Forearm oxygenation and blood flow kinetics during a sustained contraction in multiple ability groups of rock climbers [Article]. *Journal of Sports Sciences*, 33(5), 518-526. https://doi.org/10.1080/02640414.2014.949828

- Gandevia, S. (2001, 11/01). Spinal and Supraspinal Factors in Human Muscle Fatigue. *Physiological Reviews*, 81, 1725-1789. https://doi.org/10.1152/physrev.2001.81.4.1725
- Ganesan, G., Cotter, J. A., Reuland, W., Cerussi, A. E., Tromberg, B. J. et Galassetti, P. (2015, Jan). Effect of blood flow restriction on tissue oxygenation during knee extension. *Med Sci Sports Exerc*, 47(1), 185-193. https://doi.org/10.1249/mss.0000000000000393
- Gepner, Y., Wells, A. J., Gordon, J. A., Arroyo, E., Varanoske, A. N., Coker, N. A., Fukuda, D. H., Stout, J. R. et Hoffman, J. R. (2019). Differences in muscle oxygenation between young and middle-aged recreationally active men during high-volume resistance exercise [Article]. *Kinesiology*, *51*(1), 3-11. https://doi.org/10.26582/K.51.1.4
- Girard, O., Willis, S. J., Purnelle, M., Scott, B. R. et Millet, G. P. (2019, Oct). Separate and combined effects of local and systemic hypoxia in resistance exercise. *Eur J Appl Physiol*, *119*(10), 2313-2325. https://doi.org/10.1007/s00421-019-04217-3
- Gnimassou, O., Fernández-Verdejo, R., Brook, M., Naslain, D., Balan, E., Sayda, M., Cegielski, J., Nielens, H., Decottignies, A., Demoulin, J. B., Smith, K., Atherton, P. J., Francaux, M. et Deldicque, L. (2018, Oct). Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. *Faseb j*, *32*(10), 5272-5284. https://doi.org/10.1096/fj.201800049RR
- Gomes, P. S. C., Matsuura, C. et Bhambhani, Y. N. (2013). Effects of hypoxia on cerebral and muscle haemodynamics during knee extensions in healthy subjects [Article]. *European Journal of Applied Physiology*, 113(1), 13-23. https://doi.org/10.1007/s00421-012-2408-7
- Gómez-Carmona, C. D., Bastida-Castillo, A., Rojas-Valverde, D., de la Cruz Sánchez, E., García-Rubio, J., Ibáñez, S. J. et Pino-Ortega, J. (2020, May). Lower-limb Dynamics of Muscle Oxygen Saturation During the Back-squat Exercise: Effects of Training Load and Effort Level. *J Strength Cond Res*, *34*(5), 1227-1236. https://doi.org/10.1519/jsc.000000000003400
- Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., Nagano, A. et Hamaoka, T. (2019). Partial range of motion exercise is effective for facilitating muscle hypertrophy and function through sustained intramuscular hypoxia in young trained men [Article]. *Journal of Strength and Conditioning Research*, 33(5), 1286-1294. https://doi.org/10.1519/JSC.000000000000000001
- Goto, M., Nirengi, S., Kurosawa, Y., Nagano, A. et Hamaoka, T. (2016, Dec). Effects of the Drop-set and Reverse Drop-set Methods on the Muscle Activity and Intramuscular Oxygenation of the Triceps Brachii among Trained and Untrained Individuals. *J Sports Sci Med*, 15(4), 562-568.
- Grassi, B. et Quaresima, V. (2016, Sep). Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. *J Biomed Opt*, 21(9), 091313. https://doi.org/10.1117/1.Jbo.21.9.091313

- Halley, S. L., Marshall, P. et Siegler, J. C. (2018, Jul). The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. *Exp Physiol*, 103(7), 976-984. https://doi.org/10.1113/ep086981
- Halley, S. L., Marshall, P. et Siegler, J. C. (2019, Dec 1). Effect of ischemic preconditioning and changing inspired O(2) fractions on neuromuscular function during intense exercise. *J Appl Physiol* (1985), 127(6), 1688-1697. https://doi.org/10.1152/japplphysiol.00539.2019
- Hoffman, J. R., Im, J., Kang, J., Maresh, C. M., Kraemer, W. J., French, D., Nioka, S., Kime, R., Rundell, K. W., Ratamess, N. A., Faigenbaum, A. D. et Chance, B. (2007, Feb). Comparison of low- and high-intensity resistance exercise on lipid peroxidation: role of muscle oxygenation. *J Strength Cond Res*, 21(1), 118-122. https://doi.org/10.1519/00124278-200702000-00022
- Hoffman, J. R., Im, J., Rundell, K. W., Kang, J., Nioka, S., Speiring, B. A., Kime, R. et Chance, B. (2003). Effect of Muscle Oxygenation during Resistance Exercise on Anabolic Hormone Response [Article]. *Medicine and Science in Sports and Exercise*, 35(11), 1929-1934. https://doi.org/10.1249/01.MSS.0000093613.30362.DF
- Jeffries, O., Waldron, M., Pattison, J. R. et Patterson, S. D. (2018). Enhanced Local Skeletal Muscle Oxidative Capacity and Microvascular Blood Flow Following 7-Day Ischemic Preconditioning in Healthy Humans. *Front Physiol*, *9*, 463. https://doi.org/10.3389/fphys.2018.00463
- Jobsis-vander Vliet, F. (1999). Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy. *Journal of Biomedical Optics*, *4*(4). https://doi.org/10.1117/1.429952
- Jöbsis, F. F. (1977, Dec 23). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. *Science*, *198*(4323), 1264-1267. https://doi.org/10.1126/science.929199
- Jones, S., Chiesa, S. T., Chaturvedi, N. et Hughes, A. D. (2016). Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. *Artery research*, 16, 25-33. https://doi.org/10.1016/j.artres.2016.09.001
- Jordan Nolan, N., McLennan, P. L. et Peoples, G. E. (2020). Forearm isometric fatigue-resistance is enhanced in rock climbers compared to power lifters and aerobically-trained athletes [Article]. Journal of Sports Medicine and Physical Fitness, 60(8), 1057-1064. https://doi.org/10.23736/S0022-4707.20.10542-5
- Kacin, A. et Strazar, K. (2011, Dec). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. *Scand J Med Sci Sports*, *21*(6), e231-241. https://doi.org/10.1111/j.1600-0838.2010.01260.x
- Keller, J. L., Anders, J. P. V., Neltner, T. J., Housh, T. J., Schmidt, R. J. et Johnson, G. O. (2021B). Sex differences in muscle excitation and oxygenation, but not in force fluctuations or active hyperemia resulting from a fatiguing, bilateral isometric task [Article]. *Physiological Measurement*, 42(11), Article 115004. https://doi.org/10.1088/1361-6579/ac3e86

- Keller, J. L. et Kennedy, K. G. (2021A). Men exhibit faster skeletal muscle tissue desaturation than women before and after a fatiguing handgrip [Article]. *European Journal of Applied Physiology, 121*(12), 3473-3483. https://doi.org/10.1007/s00421-021-04810-5
- Kilgas, M. A., McDaniel, J., Stavres, J., Pollock, B. S., Singer, T. J. et Elmer, S. J. (2019, Feb). Limb blood flow and tissue perfusion during exercise with blood flow restriction. *Eur J Appl Physiol*, *119*(2), 377-387. https://doi.org/10.1007/s00421-018-4029-2
- King, M. (2014). *Integrative Medical Biochemistry: Examination and Board Review* McGraw-Hill Education / Medical; 1st edition.
- Kojima, Y., Fukusaki, C. et Ishii, N. (2020). Effects of hyperoxia on dynamic muscular endurance are associated with individual whole-body endurance capacity [Article]. *PLoS ONE*, *15*(4), Article e0231643. https://doi.org/10.1371/journal.pone.0231643
- Kounoupis, A., Dipla, K., Tsabalakis, I., Papadopoulos, S., Galanis, N., Boutou, A. K., Vrabas, I. S., Smilios, I. et Zafeiridis, A. (2021). Muscle Oxygenation, Neural, and Cardiovascular Responses to Isometric and Workload-matched Dynamic Resistance Exercise. *International Journal of Sports Medicine*. https://doi.org/10.1055/a-1539-6561
- Lange, F. et Tachtsidis, I. (2019). Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. *Applied Sciences*, *9*(8), 1612. https://www.mdpi.com/2076-3417/9/8/1612
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J. et Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ*, 339, b2700. https://doi.org/10.1136/bmj.b2700
- Lin, T. Y., Lin, L. L., Ho, T. C. et Chen, J. J. (2014, Jan). Investigating the adaptation of muscle oxygenation to resistance training for elders and young men using near-infrared spectroscopy. *Eur J Appl Physiol*, 114(1), 187-196. https://doi.org/10.1007/s00421-013-2763-z
- Liu-Ambrose, T. et Donaldson, M. G. (2009). Exercise and cognition in older adults: is there a role for resistance training programmes? *British Journal of Sports Medicine*, 43(1), 25-27. https://doi.org/10.1136/bjsm.2008.055616
- Liu-Ambrose, T., Khan, K. M., Eng, J. J., Janssen, P. A., Lord, S. R. et McKay, H. A. (2004). Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. *Journal of the American Geriatrics Society*, *52*(5), 657-665. https://doi.org/10.1111/j.1532-5415.2004.52200.x
- Lockhart, C., Scott, B. R., Thoseby, B. et Dascombe, B. J. (2020, Aug). Acute Effects of Interset Rest Duration on Physiological and Perceptual Responses to Resistance Exercise in Hypoxia. *J Strength Cond Res*, 34(8), 2241-2249. https://doi.org/10.1519/jsc.0000000000002755
- Macleod, D., Sutherland, D. L., Buntin, L., Whitaker, A., Aitchison, T., Watt, I., Bradley, J. et Grant, S. (2007).

 Physiological determinants of climbing-specific finger endurance and sport rock climbing performance [Article]. *Journal of Sports Sciences*, 25(12), 1433-1443. https://doi.org/10.1080/02640410600944550

- Marshall, P. W., Metcalf, E., Hagstrom, A. D., Cross, R., Siegler, J. C. et Enoka, R. M. (2020, Jan). Changes in Fatigue Are the Same for Trained Men and Women after Resistance Exercise. *Med Sci Sports Exerc*, 52(1), 196-204. https://doi.org/10.1249/mss.00000000000000103
- Martin, J. S., Mumford, P. W., Haun, C. T., Luera, M. J., Muddle, T. W. D., Colquhoun, R. J., Feeney, M. P., Mackey, C. S., Roberson, P. A., Young, K. C. et et al. (2017). Effects of a pre-workout supplement on hyperemia following leg extension resistance exercise to failure with different resistance loads [Comparative Study; Journal Article; Randomized Controlled Trial]. *Journal of the International Society of Sports Nutrition*, 14, 38. https://doi.org/10.1186/s12970-017-0195-6
- Martínez Guardado, I., Mostazo Guerra, A., Sanabria Pino, B., Olcina Camacho, G. et Andrada, R. T. (2021). Acute responses of muscle oxygen saturation during different cluster training configurations in resistance-trained individuals [Academic Journal]. *Biology of Sport*, 38(3), 367-376. https://doi.org/10.5114/biolsport.2021.99701
- Matsuura, C., Gomes, P. S., Haykowsky, M. et Bhambhani, Y. (2011, Mar). Cerebral and muscle oxygenation changes during static and dynamic knee extensions to voluntary fatigue in healthy men and women: a near infrared spectroscopy study. *Clin Physiol Funct Imaging*, *31*(2), 114-123. https://doi.org/10.1111/j.1475-097X.2010.00986.x
- McCully, K. K. et Hamaoka, T. (2000). Near-Infrared Spectroscopy: What Can It Tell Us about Oxygen Saturation in Skeletal Muscle? *Exercise and Sport Sciences Reviews*, 28(3), 123-127. https://journals.lww.com/acsm-essr/Fulltext/2000/28030/Near Infrared Spectroscopy What Can It Tell Us.6.aspx
- McManus, C. J., Collison, J. et Cooper, C. E. (2018, Jan). Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise. *J Biomed Opt*, 23(1), 1-14. https://doi.org/10.1117/1.Jbo.23.1.015007
- Merrigan, J. J., Jones, M. T., Padecky, J., Malecek, J., Omcirk, D., Scott, B. R. et Tufano, J. J. (2020, Aug). Impact of Rest-Redistribution on Fatigue During Maximal Eccentric Knee Extensions. *J Hum Kinet*, 74, 205-214. https://doi.org/10.2478/hukin-2020-0028
- Mileva, K. N., Naleem, A. A., Biswas, S. K., Marwood, S. et Bowtell, J. L. (2006). Acute effects of a vibration-like stimulus during knee extension exercise [Article]. *Medicine and Science in Sports and Exercise*, 38(7), 1317-1328. https://doi.org/10.1249/01.mss.0000227318.39094.b6
- Miranda-Fuentes, C., Chirosa-Ríos, L. J., Guisado-Requena, I. M., Delgado-Floody, P. et Jerez-Mayorga, D. (2021, Apr 18). Changes in Muscle Oxygen Saturation Measured Using Wireless Near-Infrared Spectroscopy in Resistance Training: A Systematic Review. *Int J Environ Res Public Health*, *18*(8). https://doi.org/10.3390/ijerph18084293
- Munoz-Lopez, A., Marin-Galindo, A., Corral-Perez, J., Costilla, M., Sanchez-Sixto, A., Sanudo, B., Casals, C. et Ponce-Gonzalez, J. G. (2021). Effects of Different Velocity Loss Thresholds on Passive Contractile Properties and Muscle Oxygenation in the Squat Exercise Using Free Weights [Journal: Article in Press]. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0000000000000004048

- Neary, J. P. (2004). Application of near infrared spectroscopy to exercise sports science [Conference Paper]. Canadian Journal of Applied Physiology, 29(4), 488-503. https://doi.org/10.1139/h04-032
- Nielsen, H. B. (2014). Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery [Review]. *Frontiers in Physiology*, *5 MAR*, Article Article 93. https://doi.org/10.3389/fphys.2014.00093
- Norris, K. H. (1996). History of NIR. *Journal of Near Infrared Spectroscopy*, 4(1), 31-37. https://doi.org/10.1255/jnirs.941
- Oliveira, M. X., Toma, R. L., Jones, B. J. L., Cyprien, T. P., Tier, M. R., Wallace, C. A., Renno, A. C. M., Sabapathy, S. et Laakso, E. L. (2017). Effects of photobiomodulation therapy (pulsed LASER 904 nm) on muscle oxygenation and performance in exercise-induced skeletal muscle fatigue in young women: A pilot study. Progress in Biomedical Optics and Imaging Proceedings of SPIE, https://doi.org/10.1117/12.2253585
- Oranchuk, D. J., Koral, J., da Mota, G. R., Wrightson, J. G., Soares, R., Twomey, R. et Millet, G. Y. (2020, Jul). Effect of blood flow occlusion on neuromuscular fatigue following sustained maximal isometric contraction. *Appl Physiol Nutr Metab*, 45(7), 698-706. https://doi.org/10.1139/apnm-2019-0579
- Paradis-Deschenes, P., Joanisse, D. R. et Billaut, F. (2017). Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force [Journal: Article]. *Frontiers in Physiology*, 7(JAN) (no pagination). https://doi.org/10.3389/fphys.2016.00674
- Paradis-Deschênes, P., Joanisse, D. R. et Billaut, F. (2016, Sep). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. *Appl Physiol Nutr Metab*, *41*(9), 938-944. https://doi.org/10.1139/apnm-2015-0561
- Parganlija, D., Gehlert, S., Herrera, F., Rittweger, J., Bloch, W. et Zange, J. (2020). Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors [Article]. *Frontiers in Physiology*, 11, Article 781. https://doi.org/10.3389/fphys.2020.00781
- Parganlija, D., Nieberg, V., Sauer, M., Rittweger, J., Bloch, W. et Zange, J. (2019, Jun). Lower body negative pressure enhances oxygen availability in the knee extensor muscles during intense resistive exercise in supine position. *Eur J Appl Physiol*, *119*(6), 1289-1303. https://doi.org/10.1007/s00421-019-04113-w
- Parker, B. A., Smithmyer, S. L., Pelberg, J. A., Mishkin, A. D., Herr, M. D. et Proctor, D. N. (2007, Nov). Sex differences in leg vasodilation during graded knee extensor exercise in young adults. *J Appl Physiol* (1985), 103(5), 1583-1591. https://doi.org/10.1152/japplphysiol.00662.2007
- Pereira, M. I., Gomes, P. S. et Bhambhani, Y. N. (2007). A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise. *Sports Med*, *37*(7), 615-624. https://doi.org/10.2165/00007256-200737070-00005
- Perrey, S. et Ferrari, M. (2018, Mar). Muscle Oximetry in Sports Science: A Systematic Review. *Sports Med*, 48(3), 597-616. https://doi.org/10.1007/s40279-017-0820-1

- Piponnier, E., Martin, V., Bontemps, B., Chalchat, E., Julian, V., Bocock, O., Duclos, M. et Ratel, S. (2018). Child-adult differences in neuromuscular fatigue are muscle dependent [Article]. *Journal of Applied Physiology*, 125(4), 1246-1256. https://doi.org/10.1152/japplphysiol.00244.2018
- Piponnier, E., Martin, V., Chalchat, E., Bontemps, B., Julian, V., Bocock, O., Duclos, M. et Ratel, S. (2019). Effect of Muscle-Tendon Unit Length on Child-Adult Difference in Neuromuscular Fatigue [Article]. *Medicine and Science in Sports and Exercise*, 51(9), 1961-1970. https://doi.org/10.1249/MSS.00000000000001981
- Pitcher, J. B. et Miles, T. S. (1997, Jul). Influence of muscle blood flow on fatigue during intermittent human hand-grip exercise and recovery. *Clin Exp Pharmacol Physiol*, 24(7), 471-476. https://doi.org/10.1111/j.1440-1681.1997.tb01229.x
- Pittman, R. N. (2000, Apr). Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection. *Acta Physiol Scand*, *168*(4), 593-602. https://doi.org/10.1046/j.1365-201x.2000.00710.x
- Quaresima, V., Homma, S., Azuma, K., Shimizu, S., Chiarotti, F., Ferrari, M. et Kagaya, A. (2001). Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans [Article]. *European Journal of Applied Physiology*, 84(5), 387-394. https://doi.org/10.1007/s004210100390
- Reis, J. F., Fatela, P., Mendonca, G. V., Vaz, J. R., Valamatos, M. J., Infante, J., Mil-Homens, P. et Alves, F. B. (2019). Tissue Oxygenation in Response to Different Relative Levels of Blood-Flow Restricted Exercise. *Front Physiol*, *10*, 407. https://doi.org/10.3389/fphys.2019.00407
- Richard, P. et Billaut, F. (2018). Combining chronic ischemic preconditioning and inspiratory muscle warm-up to enhance on-ice time-trial performance in elite speed skaters [Article]. *Frontiers in Physiology*, *9*, Article 1036. https://doi.org/10.3389/fphys.2018.01036
- Rio, Y., Salomé Rodríguez-Morgade, M. et Torres, T. (2008). Modulating the electronic properties of porphyrinoids: a voyage from the violet to the infrared regions of the electromagnetic spectrum [10.1039/B800617B]. *Organic & Biomolecular Chemistry*, 6(11), 1877-1894. https://doi.org/10.1039/B800617B
- Roepstorff, C., Thiele, M., Hillig, T., Pilegaard, H., Richter, E. A., Wojtaszewski, J. F. et Kiens, B. (2006, Jul 1). Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. *J Physiol*, *574*(Pt 1), 125-138. https://doi.org/10.1113/jphysiol.2006.108720
- Ryan, T. E., Erickson, M. L., Brizendine, J. T., Young, H. J. et McCully, K. K. (2012, Jul). Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. *J Appl Physiol (1985)*, 113(2), 175-183. https://doi.org/10.1152/japplphysiol.00319.2012
- Saltin, B., Rådegran, G., Koskolou, M. D. et Roach, R. C. (1998, Mar). Skeletal muscle blood flow in humans and its regulation during exercise. *Acta Physiol Scand*, 162(3), 421-436. https://doi.org/10.1046/j.1365-201X.1998.0293e.x

- Sato, K., Sands, W. et Stone, M. (2012, 11/01). The reliability of accelerometry to measure weightlifting performance. *Sports biomechanics / International Society of Biomechanics in Sports*, 11, 524-531. https://doi.org/10.1080/14763141.2012.724703
- Scott, B. R., Slattery, K. M., Sculley, D. V., Lockhart, C. et Dascombe, B. J. (2017, Jul). Acute Physiological Responses to Moderate-Load Resistance Exercise in Hypoxia. *J Strength Cond Res*, *31*(7), 1973-1981. https://doi.org/10.1519/jsc.0000000000001649
- Scott, B. R., Slattery, K. M., Sculley, D. V., Smith, S. M., Peiffer, J. J. et Dascombe, B. J. (2018, Jul). Acute physiological and perceptual responses to high-load resistance exercise in hypoxia. *Clin Physiol Funct Imaging*, *38*(4), 595-602. https://doi.org/10.1111/cpf.12451
- Shadgan, B., Pakravan, A. H., Hoens, A. et Reid, W. D. (2018). Contrast Baths, Intramuscular Hemodynamics, and Oxygenation as Monitored by Near-Infrared Spectroscopy. *Journal of Athletic Training*, *53*(8), 782-787. https://doi.org/10.4085/1062-6050-127-17
- Shadgan, B., Reid, W. D., Gharakhanlou, R., Stothers, L. et Macnab, A. (2009, 11/01). Wireless near-infrared spectroscopy of skeletal muscle oxygenation and hemodynamics during exercise and ischemia. *Spectroscopy*, 23, 233-241. https://doi.org/10.3233/SPE-2009-0391
- Spiering, B. A., Kraemer, W. J., Hatfield, D. L., Vingren, J. L., Fragala, M. S., Ho, J., Thomas, G. A., Häkkinen, K. et Volek, J. S. (2008). Effects of L-carnitine and L-tartrate supplementation on muscle oxygenation responses to resistance exercise. *Journal of Strength & Conditioning Research*, 22(4), 1130-1135. http://search.ebscohost.com/login.aspx?direct=true&db=sph&AN=105649499&lang=fr&site=ehost-live
- Stojiljkovic, N., Ignjatovic, A., Savić, Z., Marković, Ž. et Milanović, S. (2013, 01/01). HISTORY OF RESISTANCE TRAINING. *Activities in Physical Education and Sport*, *3*, 135-138.
- Suchomel, T., Comfort, P. et Lake, J. (2017, 02/01). Enhancing the Force—Velocity Profile of Athletes Using Weightlifting Derivatives. *STRENGTH AND CONDITIONING JOURNAL*, *39*, 10-20. https://doi.org/10.1519/SSC.0000000000000000275
- Suchomel, T., Nimphius, S. et Stone, M. (2016, 02/02). The Importance of Muscular Strength in Athletic Performance. *Sports Medicine*, 46. https://doi.org/10.1007/s40279-016-0486-0
- Tamaki, T., Uchiyama, S., Tamura, T. et Nakano, S. (1994). Changes in muscle oxygenation during weight-lifting exercise. *Eur J Appl Physiol Occup Physiol*, *68*(6), 465-469. https://doi.org/10.1007/bf00599514
- Thomas, K. N., Kissling, L. S., Gibbons, T. D., Akerman, A. P., van Rij, A. M. et Cotter, J. D. (2020, Oct 15).

 The acute effect of resistance exercise on limb blood flow. *Exp Physiol*. https://doi.org/10.1113/ep088743
- Trepanowski, J. F., Farney, T. M., McCarthy, C. G., Schilling, B. K., Craig, S. A. et Bloomer, R. J. (2011). The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men [Journal Article;

- Randomized Controlled Trial; Research Support, Non-U.S. Gov't]. *Journal of Strength and Conditioning Research*, 25(12), 3461-3471. https://doi.org/10.1519/JSC.0b013e318217d48d
- Trexler, E. T., Keith, D. S., Lucero, A. A., Stoner, L., Schwartz, T. A., Persky, A. M., Ryan, E. D. et Smith-Ryan, A. E. (2020). Effects of Citrulline Malate and Beetroot Juice Supplementation on Energy Metabolism and Blood Flow During Submaximal Resistance Exercise. *J Diet Suppl*, 17(6), 698-717. https://doi.org/10.1080/19390211.2019.1650866
- Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., Godfrey, C. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö. et Straus, S. E. (2018, Oct 2). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. *Annals of internal medicine*, 169(7), 467-473. https://doi.org/10.7326/m18-0850
- Ufland, P., Ahmaidi, S. et Buchheit, M. (2013, Oct). Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. *Int J Sports Med*, *34*(10), 924-930. https://doi.org/10.1055/s-0033-1333719
- van Essen, T., Goos, T. G., van Ballegooijen, L., Pichler, G., Urlesberger, B., Reiss, I. K. M. et de Jonge, R. C. J. (2020, 2020/02/28). Comparison of frequency-domain and continuous-wave near-infrared spectroscopy devices during the immediate transition. *BMC Pediatrics*, 20(1), 94. https://doi.org/10.1186/s12887-020-1987-4
- Walden, T. P., Girard, O., Jonson, A. M., Dempsey, A. R., Marston, K. J. et Scott, B. R. (2020, Oct). Sessional work-rate does not affect the magnitude to which simulated hypoxia can augment acute physiological responses during resistance exercise. *Eur J Appl Physiol*, 120(10), 2159-2169. https://doi.org/10.1007/s00421-020-04440-3
- Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y. et Liu, X. (2017). Muscle fatigue: General understanding and treatment [Review]. *Experimental and Molecular Medicine*, 49(10), Article e384. https://doi.org/10.1038/emm.2017.194
- Wright, J. R., McCloskey, D. I. et Fitzpatrick, R. C. (1999). Effects of muscle perfusion pressure on fatigue and systemic arterial pressure in human subjects. *Journal of Applied Physiology*, 86(3), 845-851. https://doi.org/10.1152/jappl.1999.86.3.845
- Yamada, E., Kusaka, T., Miyamoto, K., Tanaka, S., Morita, S., Tanaka, S., Mori, S., Norimatsu, H. et Itoh, S. (2003). Muscle oxygenation, muscle force and electromyographic activity during isometric contraction [Article]. *Isokinetics and Exercise Science*, 11(4), 213-218. https://doi.org/10.3233/ies-2003-0149
- Yamada, Y., Suzuki, H. et Yamashita, Y. (2019). Time-Domain Near-Infrared Spectroscopy and Imaging: A Review. *Applied Sciences*, *9*(6), 1127. https://www.mdpi.com/2076-3417/9/6/1127
- Yang, M., Yang, Z., Yuan, T., Feng, W. et Wang, P. (2019, 2019-February-05). A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions [Systematic Review]. Frontiers in Neurology, 10(58). https://doi.org/10.3389/fneur.2019.00058

Yokoi, Y., Yanagihashi, R., Morishita, K., Fujiwara, T. et Abe, K. (2014). Effects of exposure to normobaric hyperoxia on the recovery of local muscle fatigue in the quadriceps femoris of young people [Article]. *Journal of Physical Therapy Science*, 26(3), 455-460. https://doi.org/10.1589/jpts.26.455