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Structural complexity generated by forest development processes and tree species

compositional changes provide key habitat features for vertebrate communities

that rely upon tree size and decay processes for foraging, denning or nesting.

Complexity of forest structure in old stands could not only be key for harboring

increased taxonomic species diversity but also greater functional diversity through

more complexity in networks of tree cavity dependent species. Using a nest web

approach that hierarchically links cavity-bearing trees with cavity formation agents

(natural decay processes and avian excavators) and cavity users (non-excavator

species), we compared network characteristics of nest webs along a time since

fire gradient in a naturally disturbed boreal mixedwood forest landscape in eastern

North America. Since 2003, twelve 24 to 40 ha plots ranging from 61 to more than

245 years after fire were surveyed at the Lake Duparquet Research and Teaching

Forest in Abitibi, Quebec, Canada to detect active nesting, and denning cavities.

We found that network complexity both in terms of number of vertebrate species

and number of interactions among species, increased along the age gradient and

was significantly higher in the older stands than predicted by chance. Whereas

cavity-nesting communities in old forests used a higher diversity of tree species

over a wide range of decay stages, trembling aspen remained a key cavity-bearing

tree throughout the age gradient. Woodpeckers were the main cavity formation

agents whereas less than 1% of cavities originated from natural decay. The structural

development of older forests is thus a driver for functional diversity in cavity-using

vertebrate communities through higher interaction richness in nest webs, among

cavity-bearing trees, excavators and non-excavating users. The pivotal contribution

of the entire gradient of old forest cover types to the overall complexity of nest webs

in the boreal mixedwood zone is also a key for the resilience of the cavity-using
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vertebrate community to natural disturbances. We discuss how such resilience may

be compromised by even-aged industrial timber harvesting with short rotations

that shifts the age structure of boreal landscapes toward regenerating and young

pole forests whereas old forest cover types become below their historical range of

variability.

KEYWORDS

boreal mixedwood forests, old forest stands, cavity-using vertebrate communities, nest
webs, ecological networks complexity, resilience and stability of cavity-using vertebrate
communities, natural forests structural development

Introduction

In the last decades, increased knowledge in the understanding
of compositional and structural development of forest ecosystems
(Bergeron and Charron, 1994; Gauthier et al., 1996; Bergeron, 2000;
Franklin et al., 2002; Kneeshaw and Gauthier, 2003) has emphasized
the critical role of vertical and horizontal complexity of forest
structure and composition on species taxonomic diversity when
forest is aging and old large trees are decaying and dying (Harmon
et al., 1986; Grove, 2002; Saint-Germain et al., 2007; Stokland et al.,
2012). Aging of forest stands has indeed been linked to complexity
of forests, notably through increasing diversity of tree decay stages
(Franklin et al., 2002; Harper et al., 2003) that in turn harbor high
taxonomic species diversity (Grove, 2002; Stokland et al., 2012) and
are accompanied by the development of tree cavities and other
dendromicrohabitats (Remm and Lõhmus, 2011; Larrieu et al., 2017).
However, in depth knowledge of how interspecific interactions are
mediated by these keystone structural features (sensu Tews et al.,
2004) and how they drive functional diversity is less known in natural
stand development conditions.

Such ecological knowledge can be pivotal in the context where
organisms dependent on these structural features are likely to be
affected in managed landscapes under industrial timber harvesting
where their age structure has shifted toward a greater proportion of
young forest stands at the expense of older forests (Spies et al., 1994;
Esseen et al., 1997; Drapeau et al., 2000; Cyr et al., 2009), reducing
the provision of large old, decaying and dead trees. Accordingly,
ecologists have proposed forest managers silvicultural approaches
that incorporate principles from natural stand development, notably
the maintenance of biological legacies (more large old trees, standing
dead and down wood) to enhance species diversity in managed
forest landscapes (Bergeron et al., 1999; Franklin et al., 2000, 2002;
Lindenmayer et al., 2000; Harvey et al., 2002; Gauthier et al., 2009).

Studying species interactions with biological legacies in forest
ecosystems can lead to the identification of suites of species with
functional redundancies (same roles shared by multiple species) or
species that have disproportionate roles (keystone species). Such
knowledge allows in turn to make predictions about the stability and
resilience of these interaction networks (McCann, 2000; Messier and
Puettmann, 2011) and perhaps provide better monitoring tools for
assessing how managed forests are sustainable (Drapeau et al., 2009a,
2016; Simard et al., 2013) from an functional ecology viewpoint.

For vertebrates that use tree cavities for denning or nesting, the
quality and quantity of cavity-bearing trees can vary considerably
between forest cover types as forest ages, thus changing cavity
availability through tree species dynamics. This, in turn, can limit

population density of cavity users, particularly for species that
cannot excavate holes [Newton, 1994; Holt and Martin, 1997;
but see Wesolowski and Martin (2018)]. In addition, changes in
the availability of cavity-bearing trees play a critical role in the
interspecific network of interactions that hierarchically link trees,
cavity formation agents (natural decay and avian excavators) and
non-excavating users into what Martin and Eadie (1999) have
described as nest webs.

In most North American forest ecosystems where nest web
studies were conducted, it was noted that avian excavators, mainly
woodpeckers are the main cavity formation agents in these networks
(Martin et al., 2004; Aitken and Martin, 2007; Blanc and Walters,
2008; Cockle et al., 2011; Cooke and Hannon, 2011). Accordingly,
the excavation process in the structuring of nest webs is considered
a keystone process (Bednarz et al., 2004) whereas some excavators
can have a disproportionate role (keystone species) by providing a
rare resource to numerous cavity users that cannot excavate a cavity
(Martin et al., 2004; Edworthy and Martin, 2014).

Assessing changes in the nest web structure with forest structural
development along succession requires prior knowledge of natural
disturbances and the resulting age structure and composition of
forest landscapes under investigation. Studies of natural disturbance
history reconstruction of forest landscapes with dendrochronological
or paleological approaches (Bergeron et al., 2004; Cyr et al., 2009)
may provide such information but they are, however, rarely available
for areas close to one another where forest successional pathways can
be identified. The southern fringe of the boreal mixedwood forest in
northwestern Québec offers such unique conditions, where detailed
fire reconstruction studies (Bergeron, 1991; Dansereau and Bergeron,
1993) and natural forest succession pathways along this time since
fire gradient have been documented (Bergeron and Dubuc, 1989;
Bergeron, 1991, 2000; Bergeron and Charron, 1994; Bergeron and
Harvey, 1997) in an area lightly affected by timber harvesting.

In this paper, we analyze how changes in forest composition
and structure along this time since fire gradient influence the
availability of cavity-bearing trees and how this has cascading effects
on interspecific interactions within the cavity-using community
in a naturally disturbed boreal mixedwood forest landscape in
eastern North America. We hypothesize that nest web complexity
of tree-cavity vertebrate communities is driven by structural and
compositional development as the forest is aging. We predict that
increases in tree species richness and structural diversity (stem
degradation and diameter) with time since fire will increase the
functional diversity of nest webs through increases in the number
of interactions between species at all levels of their hierarchical
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structure from cavity-bearing trees to cavity formation agents to
non-excavator users.

Materials and methods

Study design

Our study was conducted in the boreal mixedwood forest of
northern Quebec in the balsam fir-white birch bioclimatic domain,
located in the northern Clay Belt of Quebec and Ontario. This
region is characterized by clay soils and low rocky hills (Robitaille
and Saucier, 1998). The average annual temperature is 0.6oC and
the average total annual precipitation is 822.7 mm (Environment
Canada, 2022). The study site is located within the conservation
area of the Lake Duparquet Research and Teaching Forest (hereafter
LDRTF) at the southern fringe of the boreal forest in Québec
(48◦30’ N, 79◦22’ W). The area spans ∼2,000 ha and contains a
complex natural forest mosaic formed by different forest cover types
originating from a variety of natural disturbances (Bergeron, 1991;
Harvey, 1999). Over the last century, the balsam fir-dominated old-
growth stands were affected by three spruce budworm outbreaks
(1919–1929, 1930–1950, 1970–1987), (Morin et al., 1993). These
outbreaks reduced the abundance of large balsam firs, killing as much
as 75% of firs of more than 15 cm in diameter at breast height (DBH)
in the study area in the most recent outbreak (Bergeron et al., 1995).
Morever, Bergeron (2000) found that the cyclic spruce budworm
outbreaks of the 20th century are important drivers in old forest stand
dynamics that drive the high mortality and recruitment of balsam fir,
which in turn allows trembling aspen individual or small patches to
occur in conifer-dominated old forests.

Fire history reconstruction at the LDRTF is well-documented
(Bergeron, 1991; Dansereau and Bergeron, 1993) and offered a
unique opportunity to investigate within a relatively limited study
area (35 km2) how structural complexity related to forest aging
and succession affects the relationships of cavity-using communities.
It includes eight major fires (1717, 1760, 1797, 1816, 1823, 1870,
1923, 1944) that occurred over the last three centuries, which within
our study area comprises the chronosequence of stands covering
the entire forest succession of the eastern boreal mixedwood forest.
Tree species compositional changes in the study area have been
well-studied (Bergeron and Charron, 1994; Bergeron and Harvey,
1997; Harvey et al., 2002). They are characterized by the transition
from young and mature forests dominated by early successional tree
species, such as trembling aspen (Populus tremuloides) and paper
birch (Betula papyrifera) whereas older forests are characterized by
mixed stands where balsam fir (Abies balsamea), black spruce (Picea
mariana), and white spruce (Picea glauca) share the forest canopy
with the deciduous species. Old-growth stands are dominated by
coniferous species and are characterized by a higher abundance
of white cedar (Thuja occidentalis) (Bergeron and Charron, 1994;
Bergeron, 2000).

In 2003, we established 12 study plots (24–40 ha) distributed
in four age classes; 61–89, 90–149, 149–244, and over 245 years
after fire, with year 2005 as a reference point (Figure 1). These age
classes were chosen [see Nappi et al. (2015) for more details] to cover
the gradient of structural and compositional changes that occur in
the boreal mixedwood forest from early to late successional stages
following wildfire disturbances that historically occurred in the study

area (Bergeron, 1991, 2000; Dansereau and Bergeron, 1993; Bergeron
and Charron, 1994).

Vegetation sampling

Changes in forest composition and structure with time since
disturbance of the forest cover are likely to influence the availability of
adequate nesting trees for cavity users, which may in turn, change the
structure and complexity of nest webs. Hence, vegetation sampling
was conducted in the study area to compare changes in stand
characteristics along the age gradient. In each study plot, nine to ten
rectangular shaped vegetation-sampling stations measuring 600 m2

(10 m × 60 m) were distributed 200 m apart in each plot for a total
112 vegetation stations. Three variables were used to characterize
the available trees for cavity-using communities: tree species, decay
stage and DBH. Vegetation was sampled in 2005 and all trees having
a DBH greater than 10 cm were characterized. Decay of standing
trees was classified based on visual appearance in 5 categories (Nappi,
2009; Nappi et al., 2015): Decay 1 (alive, > 20% foliage); Decay 2
(declining, < 20% foliage); Decay 3 (recently dead, hard wood, firm
bark cover); Decay 4 (moderate degradation, soft wood, no dead
foliage present, no small twigs, some branches remaining, usually
intact top); Decay 5 (high degradation, soft decomposed wood, very
few branches, often broken top).

An additional vegetation survey was completed in 2013 to further
characterize aspen decay along the age gradient. This survey consisted
of 180 vegetation-sampling stations measuring 400 m2 (15 sampling
stations per plot). As trembling aspens are often agregated in boreal
mixedwood forest landscapes, the sampling stations were randomly
distributed in aspen patches previously identified using areal photos
of our study area (Ministère des Ressources naturelles et de la Faune
du Québec, 2006). Trembling aspen stems > 20 cm in DBH were
characterized by measuring the DBH, the decay class and the presence
or absence of wood-decaying heart rot conks (Phellinus tremulae).

Nest search and cavity monitoring

This study is based on data compiled between 2003 and 2012.
Data was collected using nest search surveys and long-term cavity
monitoring. Nest search surveys were carried out almost every year
between 2003 and 2012. However, they were conducted in all age
classes in years 2003, 2004, 2005, and 2009. From 2003 to 2004, data
on cavity nesters were collected as part of a study on the foraging
ecology of woodpeckers (Nappi, 2009), which consisted of surveying
2 transect lines per plot with 100 m buffers on each side covering
a total of 104–120 ha in each age category (1 km long and 400 m
wide, ∼40 ha plots). Unlike later years, nest search effort was mainly
directed toward finding woodpeckers (excavators) nests. In these
2 years, 51 occupied cavities were found. In 2008, systematic cavity
density surveys were done on areas of 6.4 ha in each sampling plot
[see Ouellet-Lapointe et al. (2012)] and nest searches were done in
8 of the 12 plots (2 plots in each age category; 80 ha in each age
category). This search effort allowed the detection of 41 occupied
cavities. In 2009, all 12 plots were sampled and the size of the
sampling plots was reduced to 30 ha, covering 90 ha in each age class.
Observers followed 8 line transects per plots having a buffer zone of
50 m on each side to increase the detection rate of active nests. This

Frontiers in Forests and Global Change 03 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1084696
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1084696 January 23, 2023 Time: 13:58 # 4

Cadieux et al. 10.3389/ffgc.2023.1084696

FIGURE 1

Localization of 12 forest plots where nest searches and cavity monitoring were conducted, from 2003 to 2012. Plots were distributed in four stand age
categories (61–89, 90–149, 150–244, and over 245 years after fire) in the conservation area of the Lake Duparquet Research and Teaching Forest. Time
since the last fire was calculated using 2005 as year of reference (based on detailed studies of fire history reconstruction: Bergeron, 1991; Dansereau and
Bergeron, 1993, and Bergeron, 2000).

search effort allowed the detection of 132 occupied cavities. Occupied
cavities were found during nest search surveys for other years (2008;
n = 56 occupied cavities, 2010; n = 74, 2011; n = 42, 2012: n = 32),
but given the unequal nest search efforts that were made between age
classes, these cavities were not used in network comparisons. No nest
search surveys were conducted in 2006–2007.

Nest searches were realized between the beginning of May and
the middle of July. Observers walked along transect lines and used
visual and auditory cues that would indicate the presence of an
occupied cavity: breeding-bird behavior, begging nestlings or wood
chips on the ground. When possible, the excavator of the cavity
was visually identified. If no excavator was present at the site, we
identified the excavator with the size and characteristics of the cavity.
If there was a doubt, the excavator remained unidentified. All trees
with occupied cavities were marked with an aluminum tag and
geo-referenced. These cavities were then inspected with a camera
mounted on a telescopic pole [TreeTop Peeper(TM), Sandpiper
Technologies, Manteca, CA, USA] to determine the state of the
cavity: non-completed excavation, suitable cavity or occupied cavity.
A cavity was considered “occupied” if it contained at least one egg or
nestling (Martin et al., 2004), or if a mammal was present inside the
cavity. To collect additional information on the use of cavity by small
mammals, particularly the Sciuridae family, we recorded the presence
or absence of nesting material in each cavity (branches, straw, leaves,
or bark). For nests that were not accessible with the telescopic pole
and camera (higher than 15.24 m) and for nests that were in cavities

with an opening too small for the camera [ex: some of the Red-
breasted Nuthatch (Sitta canadensis) nests], we used nesting clues
(behavior of adult cavity nesters) to confirm cavity activity. Nests
found opportunistically in a 50 m radius around the plots were also
georeferenced and characterized.

To assess the interactions of cavity producing agents with non-
excavating users, which can be more elusive (Ouellet-Lapointe et al.,
2012), we inspected existing cavities once a year from 2008 to 2012.
Since it would have been logistically impossible to inspect every cavity
found, we selected a subset of cavities to be monitored in order to get
reasonable sample sizes on various cavity types (excavated or non-
excavated, excavator species) in the stand ages in which they were
located. Accordingly, the last 2 years of cavity monitoring (2011 and
2012) were more focused on increasing the sample size for rarer cavity
types in our study area such as large cavities excavated by the Pileated
Woodpecker (Dryocopus pileatus) and Northern Flicker (Colaptes
auratus) and small cavities excavated by the Red-breasted Nuthatch.

Statistical analyses

Forest structural development along the time since
fire gradient

We used linear and polynomial mixed effects models to
compare stand characteristics of our response variables: tree species
composition, tree degradation (the five categories of tree decay),
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tree size (DBH), and tree structural diversity (calculated with a
Shannon-Weaver diversity index that combined degradation and
DBH classes) along the time since fire gradient (explanatory variable)
of our study sites. We used generalized mixed models with a binomial
distribution to compare the probability of trembling aspen having a
conk of Phellinus tremulae along the time since fire gradient. Plot
location was treated as a random variable in all models to account
for the hierarchical structure of the sampling design (Bates et al.,
2012). We used a bootstrap procedure with a 1,000 permutations to
estimate parameters and 95% confidence intervals (Bates et al., 2012).
Statistical analyses were conducted using the R version 3.2.3 (R Core
Team, 2015).

Nest web production
The complete boreal mixedwood nest web was created as a

reference for illustrating the complexity and diversity of the cavity-
nesting community at the landscape scale across the time since fire
gradient of forest cover types. It is composed of all the nest data
that were collected in the study plots and their surroundings from
the entire 2003 to 2012 period for the whole study area (35 km2)
in the continuous boreal mixedwood forest of Lake Duparquet. To
assess changes in the structure and functional diversity of nest webs
along the time since fire gradient, we constructed nest webs within
the four age classes of our 12 study plots (61–89, 90–149, 150–244,
and > 245 years after fire). Each age class had three study plots
and only nest surveys conducted during 2003, 2004, 2005, and 2009

characterized by a similar nest search effort between age classes were
used to build nest webs and compare their network characteristics.

For each nest web, strength of interactions was measured for
each link between species (trees–excavating agent and excavating
agent–non-excavating users) and was calculated separately between
the tree and the excavator level and the excavator and non-excavator
level. The linkage strength between a tree species and a cavity
formation agent (either natural decay or an excavator) was defined
as the proportion of cavities produced by the cavity formation
agent in a given tree species. The linkage strength for cavity reuse
by cavity excavators (woodpeckers), facultative cavity excavators
(nuthatches and chickadees) or non-excavator users, was calculated
as the proportion of total nests located in cavities not excavated
by the focal species. In our nest webs, three categories of linkage
strength were used: weak (< 10%), medium (11–50%), and strong
links (> 50%).

Network characteristics of nest webs
Nest webs were characterized with four different network

characteristics including interaction richness, species richness,
number of links and mean link strength. Interaction richness was
defined as the number of different interspecific interactions found
in nest webs. Every used cavity was categorized on the basis of its
interspecific interactions stemming from the three different levels:
the cavity-bearing tree level, the cavity formation level and the non-
excavator user level (Dyer et al., 2010). Species richness was calculated
by summing all species identified in each nest web i.e., cavity-bearing

FIGURE 2

Polynomial mixed effects models of tree species basal area in relation with time since fire in the 12 forest plots where cavity-using communities were
monitored. The gray shaded ribbons represent 95% confidence intervals.
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trees, excavators and non-excavators. The number of links was
calculated by summing all connections between cavity-bearing trees
and cavity formation agents (natural decay and excavator species) and
between excavators and non-excavator users. Mean link strength was
calculated by summing all link strengths divided by the total number
of species in the nest web.

To verify if network characteristics changed along the age
gradient, observed nest webs were compared with simulated nest
webs created by the random sampling of the complete boreal
mixedwood nest web. To do so a bootstrap procedure with
replacement of 10 000 permutations was used to generate nest webs
and calculate confidence intervals for each network characteristic. For
each nest web, we used the observed abundances of used cavities (80
occupied cavities in stands between 61 and 89 years after fire, 106
occupied cavities in stands of 90 to 149 years after fire, 70 occupied
cavities in stands of 150 to 244 years after fire, and 40 occupied
cavities in stands of > 245 years after fire) as the sample size of nests
to construct our randomly sampled nest webs. We tested the null
hypothesis that interspecific interactions in nest webs were randomly
distributed between age-class categories thus expecting to find the
different network metrics of our nest webs to fall between the 95%
confidence interval for each age-class category of simulated nest webs.

Interactions between cavity producers and users
We assessed the probability of cavity occupancy by cavity users

(a cavity used by a bird or mammal species other than the one

that created it) and identified key cavity producing agents in nest
webs along the stand age gradient of our study plots. This analysis
was performed using cavity monitoring data collected between 2008
and 2012. A cavity was considered occupied if it contained eggs or
fledglings for birds, if one or more individuals for mammals were
found during cavity inspection or if mammals’ nest material (loose
branches and leaves) filled the cavity without an individual. Based
on our empirical observations these filled cavities were occupied
by red squirrels (Tamiasciurus hudsonicus) and northern flying
squirrels (Glaucomys sabrinus) denning sites.

For each cavity we determined its probability of occupancy by
cavity users as a function of the excavator’s identity and its position
along the stand age gradient. We used generalized mixed models
with a binomial error distribution of the response variable (use or
non-use of a cavity) and a logit link (Bates et al., 2012). Since some
trees had more than one cavity and some cavities were inspected
multiple times (repeated measures), the variable TreeID was used
as random effects to ensure that the hierarchical structure of the
sampling design was considered. We used a theoretical-information
approach to compare the strength of support of a list of 7 candidate
models constructed using combinations of the variables Excavator
(5 categories), Forest Age (time since fire; 7 categories, ordinal, but
treated as a numeric continuous variable) and Year (Burnham and
Anderson, 2002; Anderson, 2008). We conducted separate analyses
for cavities where non-cavity users were found than those filled with
mammals’ nest material.

FIGURE 3

Probability of trembling aspen bearing Phellinus tremulae fungal conks in relation to forest stand age. The gray shaded ribbons represent the 95%
confidence intervals.
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Results

Forest structural development along the
time since fire gradient

Aspen, paper birch, balsam fir, white cedar and white spruce
were co-dominant tree species across forest cover types. As expected,
forest vegetation was found to follow a transition in tree species
composition along the time since fire gradient from a shade-
intolerant deciduous to a mixed and a dominant coniferous forest
cover for canopy trees (Figure 2). This is particularly the case for
trembling aspen, a tree species highly selected by cavity users because
of its vulnerability to heart-rot fungi (Phellinus tremulae). However,
Figure 3 shows an increase in the probability for stems of trembling
aspens to harbor heart rot disease as stand age increases, despite its
net reduction in basal area. This increased probability for aspens to be
infected by heart rot disease is also linked with the size of trembling
aspens stems where mean DBH increased significantly from mature
stands (32.4 cm) to old forests (43.6 cm; Table 1). When combining
all tree species, mean diameter, amount of dying and dead trees and
trees structural diversity defined by tree decay increased significantly
along the age gradient, particularly when forest become older than
150 years old (Table 1).

The cavity-using vertebrate community

During 2003–2012 we collected data on 423 occupied cavities of
14 species of cavity users, which were located in 4 tree species (the
complete boreal mixedwood nest web in Figure 4). All excavators
had strong links with the trembling aspen which harbored 95% of
nests. Apart from two occupied nests found in non-excavated natural
cavities, the non-excavators exclusively reused cavities excavated by
excavators. Occupied cavities were created by 7 excavators; 2 species

of weak cavity excavators (nuthatches and chickadees) and 5 strong
cavity excavators (woodpeckers). Overall, 7 species of non-excavating
users were found.

Small to medium-sized cavities were produced by three
woodpecker species, the Downy Woodpecker (Picoides pubescens),
the Yellow-bellied Woodpecker (Sphyrapicus varius) and the Hairy
Woodpecker (Picoides villosus). The Yellow-bellied Sapsucker was
the dominant excavator with the highest relative nest abundance
and was the supplier of numerous small cavities used by small-
bodied non-excavators. Two small-bodied non-excavators, the red
squirrel and the northern flying squirrel, had strong links with
sapsucker cavities. However, the latter also had medium links
with Downy Woodpecker cavities. The majority of large-bodied
non-excavators reused Pileated Woodpecker cavities. However, the
Northern Saw-Whet Owl (Aegolius acadicus) and the Common
Goldeneye (Bucephala clangula) had medium links with Northern
Flicker cavities. Excavators reuse of cavities excavated by other
species was observed for almost every species, but not for the Hairy
Woodpecker and the Pileated Woodpecker. Notably, the Northern
Flicker had intermediate links with the Pileated Woodpecker cavities
(Figure 4).

Nest webs along the age gradient

Important changes in nest webs’ structure occurred at different
stages of forest succession. Compared to older forest nest webs,
the mature deciduous forest nest web (61–89 years after fire) was
simplified (Figure 5). This network consisted in a very limited
number of cavity-nesting species that was substantially reduced
in complexity. Moreover, the links between Pileated Woodpecker,
Northern Flicker cavities and large-bodied non-excavating users were
restricted to the 89 years old stand plot as shown with species with an
asterisk (∗) in Figure 5. The other two 61 years old plots harbored no
large cavity dwellers and users (Figure 5). Trembling aspen was the

TABLE 1 Stand characteristics of the twelve forest stands of our study design for assessing nest webs along the age gradient of forest cover types in the
Lake Duparquet Research and Teaching Forest in the Abitibi region, Québec, Canada.

Variables Time since fire (years)

61–89 90–149 150–244 > 245

Deciduous basal area (m2/ha) 19.4 [14.0, 26.8]
(A)

15.3 [11.2, 20.6]
(AB)

11.5 [8.3, 15.8]
(AB)

9.7 [7.2, 13.2]
(B)

Coniferous basal area (m2/ha) 4.9 [3.7, 6.3]
(A)

13.3 [10.4, 16.8]
(B)

12.2 [9.4,15.7]
(B)

18.1 [14.0, 23.0]
(B)

Large trembling aspen (> 20 cm) mean
DBH

32.4 [27.4, 36.7]
(AB)

28.4 [23.8, 33.0]
(A)

38.6 [34.0, 43.1]
(BC)

43.6 [39.3, 48.1]
(C)

Living tree basal area (m2/ha) 21.2 [18.2, 25.6]
(A)

23.1 [19.7, 27.6]
(A)

17.6 [14.9, 20.1]
(A)

19.0 [16.2, 22.4]
(A)

Decaying tree basal area (m2/ha) 1.3 [0.7, 2.4]
(A)

1.4 [0.7, 2.4]
(A)

1.8 [0.9, 3.2]
(A)

2.5 [1.4, 4.4]
(A)

Dead tree basal area (m2/ha) 3.7 [2.9, 5.0]
(A)

5.8 [4.4, 7.6]
(AB)

5.2 [3.9, 7.0]
(AB)

7.1 [5.4, 9.35]
(B)

Tree DBH (cm) 17.4 [16.2, 18.5]
(A)

19.8 [18.7, 20.9]
(B)

20.1 [19.0, 21.2]
(B)

21.8 [20.8, 22.8]
(B)

Tree composition diversity 1.14 [1.02, 1.24]
(A)

1.30 [1.20, 1.40]
(AB)

1.41 [1.30, 1.51]
(B)

1.26 [1.15, 1.36]
(AB)

Tree structural diversity 2.02 [1.91, 2.13]
(A)

2.28 [2.17, 2.38]
(B)

2.37 [2.27, 2.49]
(BC)

2.52 [2.41, 2.63]
(C)

Mean values and 95% confidence interval values (in parentheses) are presented. For each category of stand age, significant differences are indicated by different letters.
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only cavity-bearing tree in this nest web. In the three other stand age
classes whereas all excavators maintained a strong link with trembling
aspen the use of other cavity-bearing tree species increased from 0
to 3% to 17 to 10% along the age gradient. The small-bodied non-
excavating users had strong links with the Yellow-bellied Sapsucker
cavities, except in older forest nest webs where they seemed to use a
wider range cavity resources. All large-bodied non-excavating users
had strong links with the Pileated Woodpecker cavities (Figure 5).

Network complexity increased along the age gradient even
though there was a decrease in nest abundance. Network metrics such
as interaction richness, species richness and mean number of links per
species increased as the forest age increased and were significantly
higher than predicted by random sampling of the complete boreal
mixedwood nest web (Figure 6). The average link strength was
significantly lower than predicted in older forests (150–244 years after
fire and > 245 years after fire).

Interactions between cavity producing
agents and non-excavating users

We conducted 458 cavity inspections on 273 cavities located on
179 trees. These cavities were excavated by 6 different excavators:

the Red-breasted nuthatch, the Downy Woodpecker, the Yellow-
bellied Sapsucker, the Hairy Woodpecker, the Northern Flicker
and the Pileated Woodpecker. However, cavities excavated by the
Red-Breasted Nuthatch were excluded from this analysis because
no other cavity user was found in this cavity type despite our
inspection efforts (0 nests from non-excavators for 29 inspections in
25 nuthatch cavities).

Cavity users mainly occupied holes excavated by specific
excavators whereas less than 1% of occupied cavities were in holes
originating from natural decay. Models which included Excavators
and Forest Age (Time since fire) had strong support (Wi = 0.82) for
all excavators while the closest following models being Excavators
only with a low weight (Wi = 0.13; Table 2). Using the predicted
probabilities of multi-model inference, we plotted the probability of
a cavity being occupied considering its excavator (Figure 7). Cavities
excavated by the Pileated Woodpecker were significantly more likely
to be occupied than cavities excavated by all other excavators with
the exception of the Downy Woodpecker (Figure 7). Although
confidence intervals were large in each case, cavities were more likely
to be occupied by cavity users as forest was aging along our time since
fire gradient (Figure 7).

For Sciuridae nest material analysis, the model that included
Excavators, Forest Age (Time since fire) and Year had strong
support (Wi = 0.83; Table 3). The model that included Excavators

FIGURE 4

Complete boreal mixedwood nest web in Lake Duparquet, Abitibi, Québec. Nest data were collected from 2003 to 2012. Lines between species
represent the use of a cavity resource. N is the number of nests found. Links between the excavator level and the cavity-bearing tree level represent the
proportion of nests found in a tree species and links between non-excavator users and excavators or natural cavities represent the proportion of nests
found in reused cavities.
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and Year was the closest following model (Wi = 0.12; Table 3).
The Year effect in our best models highlights the fact that in the
years 2011 and 2012 we deliberately under inspected Yellow-bellied
Sapsucker cavities (a main cavity type filled with Sciuridae nest
material) and prioritized inspections in cavities created by other
excavators. Multi-model inference analyses of our competing models
show that Sciuridae nesting material had a greater probability of
being found in small cavities excavated by the Downy Woodpecker,
the Yellow-bellied Sapsucker and the Hairy Woodpecker, than
the Pileated Woodpecker and Northern Flicker, although Hairy
Woodpecker had large confidence intervals similar to those of
Northern Flicker (Figure 7). The probability of a cavity having
Sciuridae nesting material decreased with stand age regardless of
cavity origin (Figure 7) resulting in higher availability of cavities for
other non-excavating species.

Discussion

Our main hypothesis, that network complexity increased along
the age gradient of boreal mixedwood forest, was supported. Network
complexity, quantified by species richness and interaction richness
among species, were indeed higher than expected in older forest
nest webs (> 150 years after fire). Moreover, as we predicted,
this complexity was driven by a higher functional redundancy or
equivalence of all hierarchical levels of the nest web. Diversification

of tree species used by cavity excavators (links with more than one
tree species), the main cavity formation agents in our nest webs, and
the increased number of non-excavating cavity users, accounted for
the greater complexity of nest webs in older forests.

Increase in network complexity of nest
webs with forest structural development

Our study thus shows that forest structural development is a
driver of complexity for ecological networks in the boreal mixedwood
forest when using nest webs as a model. Along the forest age gradient,
we found that the increased availability of structural elements such
as large live and dead trees and a growing diversity of tree decay
stages provided key structures for cavity formation by woodpeckers
which in turn increased the complexity of interactions with non-
excavating users.

Although we found a higher functional redundancy or
equivalence between cavity substrates (tree species) and avian
excavators in our oldest stands compared with our mature stands,
the interactions between tree species and cavity formation agents
were not as diversified as those found in tropical nest webs where
a much larger number of tree species harbor cavities formed by
either natural decay or woodpecker excavations (Cockle et al.,
2012). Hence, whereas more complex in old boreal forests, our nest
webs maintained throughout the age gradient an architecture being

FIGURE 5

Nest webs along the forest stands age gradient for 61–89, 90–149, 150–244, and over 245 years after fire in Lake Duparquet, Abitibi, Québec. Nest data
were collected from 2003 to 2005 and in 2009. Lines between species represent the use of a cavity resource. N is the number of nests found. Links
between the excavator level and the cavity-bearing tree level represent the proportion of nests found in a tree species and links between non-excavator
users and excavators or natural cavities represent the proportion of nests found in reused cavities. In the 61–89 years old nest web, species with an
asterisk (*) were only detected in the 89 years old stand.
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strongly structured around trembling aspen as the keystone cavity
substrate.

Importance of trembling aspen for nest
webs architecture throughout stand age
gradient

The fact that a majority of nests were found in trembling
aspen throughout our age gradient and even in our oldest conifer-
dominated stands is noteworthy. Whereas several studies conducted
in boreal and hemiboreal forests of North America have shown
that cavity-nesting communities are strongly linked to trembling
aspen in ecosystems where this tree species is naturally present (Li
and Martin, 1991; Dobkin et al., 1995; Martin et al., 2004; Cooke
and Hannon, 2012), our study is the first to show how this close

association between trembling aspen and cavity-using communities
is consistent across the entire range of forest age and composition
in a natural successional gradient. The persistence of the shade-
intolerant trembling aspen along forest succession including our
oldest conifer-dominated forest stands is associated to its recruitment
by root suckers when canopy gaps occur in old forests due to small
to medium size disturbances of either single-tree gap replacement
or spruce budworm outbreaks (Lavertu et al., 1994; Kneeshaw
and Bergeron, 1998; Bergeron, 2000). When a disturbance occurs
trembling aspen is one of the fastest boreal tree species to fill canopy
gaps and reach a large diameter (Paré and Bergeron, 1995). For
instance, large aspen individual trees and small patches that were
indeed found in our 245 years old stands are likely associated with
the recurrent outbreaks of spruce budworm that occurred throughout
the 20th century (Morin et al., 1993) and that affected canopy
cover of old balsam fir forests at variable severities (Bergeron, 2000).

FIGURE 6

Network characteristics along the age gradient at the Lake Duparquet Research and Teaching Forest in Abitibi, Québec. Empirical network measures
from our data (indicated by asterisks) were compared with those from expected simulated data. Random sampling with replacement of the complete
boreal mixedwood nest web was used to build an expected distribution of interspecific interactions for each age class. Characteristics that are
significantly different from those simulated are outside the 95% confidence interval depicted by a line for each age-class category.

TABLE 2 Model selection based on Akaike’s Information Criterion corrected for small samples (AICc) for estimating the probability of cavity occupancy by
cavity users in relation to excavator species, time since last fire, and sampled year.

Candidate model Log likelihood K* 4 AICc Akaike weight (Wi)

Occupied cavity∼Excavator + Time since fire −122.95 7 0.00 0.82

Occupied cavity∼Excavator −125.81 6 3.65 0.13

Occupied cavity∼Excavator + Time since fire + Year −121.73 11 5.93 0.04

Occupied cavity∼Excavator + Year −124.27 10 8.91 0.01

Occupied cavity∼Time since fire −133.32 3 12.53 <0.01

Occupied cavity∼Intercept −136.41 2 16.68 <0.01

Occupied cavity∼Time since fire + Year −131.74 7 17.58 <0.01

Occupied cavity∼Year −134.88 6 21.80 <0.01

Models with explanatory variables are contrasted to a null model (model with only the intercept). *Number of parameters in models.
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Hence, despite an important decrease in its availability along our age
gradient, the quality of trembling aspen individual trees for cavity
excavation persisted as its size and its propensity to be infected by
heartrot fungi (Phellinus tremulae) were significantly higher in older
forests (Figure 3, Table 1). This could explain why a majority of
cavity nesters still strongly selected trembling aspen in older forests
that can thus be considered a keystone structure (sensu Tews et al.,
2004) in the eastern boreal mixedwood forests nest webs. Moreover,
the strong association of cavity excavators with trembling aspen in the
nest web architecture in our study area is likely to reflect evolutionary
adaptation of cavity excavators to interactions between historical
natural disturbance fire regimes (Drapeau et al., 2016) and spruce
budworm cyclic outbreaks (Morin et al., 1993) of eastern boreal
mixedwood forests that are characterized by high proportions of the
forest cover with stands older than 100 years (Bergeron et al., 2004)
where trembling aspen is persisting and available as a cavity-bearing
tree along the entire stand age gradient (Bergeron and Charron, 1994;
Bergeron, 2000).

Increases of interactions between cavity
producers and users along stand age
gradient

Complexity of nest webs along our age gradient also increased
at the level of interactions between cavity producing agents

(woodpeckers) and non-excavator users. Increases in tree structural
diversity and corresponding availability of a wider range of tree
decay stages also provided a wider range of cavity substrates for
weak excavators such as Red-breasted nuthatches, Black-capped
Chickadees (Poecele atricapillus) in older forest stands.

For numerous studies on cavity nesters in North America, an
important pattern has emerged: only one or sometimes two excavator
species provide the bulk of occupied cavities in the nest web (Martin
et al., 2004; Blanc and Walters, 2008; Cooke and Hannon, 2012).
In our study, the cavities of the Yellow-bellied Sapsucker and the
Pileated Woodpecker represented 63% of all cavities found. The
Pileated Woodpecker was a keystone excavator in our study since
57% of non-excavating species reused its cavities although they
represented less than 10% of the available cavities in the nest web
(Figure 3). Moreover, the Pileated Woodpecker maintained its status
across the entire range of forest age and composition of our natural
successional gradient (Figure 4). Although a number of studies have
found this species to be a keystone excavator (Bonar, 2000; Aubry
and Raley, 2002; Martin et al., 2004; Cooke and Hannon, 2011), to
our knowledge, it is the first time that the functional role of Pileated
Woodpecker is confirmed across a successional age gradient ranging
from mature to old forest stands.

Contrary to other well-studied nest webs in North America
(Martin et al., 2004; Edworthy et al., 2018), the Northern Flicker
played a less important role as a large-cavity provider in our
continuous forest landscape mosaïc with few forest edges and open

FIGURE 7

Probability that a cavity excavated by a woodpecker will be used by a cavity user (full line) or will be filled with nest material by sciuridae species that
makes it unusable for other species (dotted line) along a time since fire gradient of forest structural development stages in a boreal mixedwood natural
forest landscape in eastern Canada. The 95% confidence intervals are represented by the gray ribbons.
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TABLE 3 Model selection based on Akaike’s Information Criterion corrected for small samples (AICc) for estimating the probability of cavity occupancy by
Sciuridae nest material in relation to excavator species, time since last fire, and sampled year.

Candidate model Log likelihood K* 4 AICc Akaike weight (Wi
d)

Sciuridae nest material∼Excavator + Time since fire + Year −248.69 11 0.00 0.83

Sciuridae nest material∼Excavator + Year −251.66 10 3.82 0.12

Sciuridae nest material∼Excavator + Time since fire −255.86 7 5.95 0.04

Sciuridae nest material∼Excavator −258.98 6 10.13 0.01

Sciuridae nest material∼Time since fire + Year −259.75 7 13.75 <0.01

Sciuridae nest material∼Time since fire −266.74 3 19.51 <0.01

Sciuridae nest material∼Year −263.89 6 19.95 <0.01

Sciuridae nest material∼Intercept −271.05 2 26.09 <0.01

Models with explanatory variables are contrasted to a null model (model with only the intercept). *Number of parameters in models.

habitats. It became, however, an important provider in remnant
habitats (riparian buffers and cutblock separators) in managed forest
landscapes nearby (Ouellet-Lapointe et al., 2012) as this generalist
species is mostly associated to open woodlands (Wiebe and Moore,
2020). Two of its cavities were occupied by large non-excavating
users strongly associated with the Pileated Woodpecker cavities, thus
providing some functional redundancy as a large cavity provider for
cavity-using birds and mammals in boreal habitats where Pileated
Woodpecker cavities are absent.

A point often overlooked in most studies on cavity users
but underlined by Cooke and Hannon (2012), is the probable
underestimation of cavity use by non-obligate cavity nesters, like
Sciuridae. Our investigation of Sciuridae nest material (branches,
straw, leaves, or bark) shows that almost half of small cavities
excavated in our study plots had nest material importation showing
that small cavities were not only heavily used by Sciuridae but
that this behavior probably limited their availability to other non-
excavating users (Figure 7). This result corroborates Cooke and
Hannon (2012) observations of chew marks on 45% of Yellow-
bellied sapsucker cavity entry holes. In our study, we found a clear
preference by Sciuridae (red squirrel and northern flying squirrel) for
all smaller cavities regardless of the excavator with cavities formed by
Downy Woodpecker with the highest probability of being used. Large
cavities such as those created by the Northern Flicker and the Pileated
Woodpecker had, however, the lowest probability of being utilized by
squirrels (Figure 7).

Whereas the Yellow-bellied Sapsucker was the dominant small-
cavity excavator with the highest nest abundance, cavities created
by other small excavators like the Downy Woodpecker and the
Hairy Woodpecker had very similar probability of being reused by
cavity users than cavities of Yellow-bellied Sapsucker suggesting good
functional redundancy of small cavity excavators for small cavity
availability (Figure 7).

Another interesting result is the increase in the probability of
occupancy of small cavities by cavity users along our stand age
gradient which coincides with a decrease in the probability of
Sciuridae nest material in small cavities for three woodpecker species
of small excavators (Figure 7). This result corroborates Trudeau
et al. (2011) study on northern flying squirrel tree-cavity use in
our region which is indeed less in old conifer-dominated forests
than in deciduous and mixed wood stands of earlier successional
stages. In old coniferous stands, northern flying squirrels often nest in
coniferous trees instead of tree cavities. Sciuridae are facultative cavity
users often occupying multiple cavities and rendering many useless

for other cavity dwellers by filling them with nest material (leaf, twigs,
bark, and other vegetation). In addition to competing with small
cavity nesters, Sciuridae, are also important nest predators (Wiebe
et al., 2007) and could explain why few small cavity nesters reuse
available cavities in boreal mixedwoods. In older forests small cavities
are thus more available to a greater number of non-excavating species
because of lesser use by the Sciuridae providing another insight why
nest webs in these forests are more complex in terms of species
richness, number of interactions and mean number of links between
cavity producers and users (Figure 6).

Resilience of eastern boreal mixedwood
nest webs

We clearly found that under natural disturbance regimes, boreal
mixedwood old-growth stands harbor more complex nest webs that
have higher interactions, weaker links and that are more robust to
species lost (sensu Dunne et al., 2002) than those of younger forest
stands.

Nest webs increased structural complexity in old forests also
suggest that boreal mixedwood cavity-using vertebrate communities
have evolved to be resilient to natural disturbances (ex: wildfires,
insect outbreaks) and even to thrive on them as we see with
mechanisms of continuous recruitment of the trembling aspen
throughout forest succession along with the increasing diversity of
decaying stages of other tree species, two drivers of the complexity
of nest webs as forests are aging. Our study also clearly shows the
pivotal contribution of old forests to the overall complexity of nest
webs in the boreal mixedwood zone. This complexity of nest webs in
old forests is thus a key for the resilience of the entire cavity-using
vertebrate community to natural disturbance regimes. In managed
landscapes, such resilience of the cavity-using community may,
however, be compromised by even-aged industrial timber harvesting
with short rotations that shifts the age structure of boreal landscapes
toward regenerating and young pole forests and consequential loss
of mature and old-growth forests (Bergeron et al., 2002, 2004). As
the proportion of older forests becomes reduced, often falling outside
its natural range of variability (Cyr et al., 2009), the complexity,
stability (Barabási, 2009; Simard et al., 2013), and robustness to
species’ loss (Dunne et al., 2002) of old forest nest webs, are likely to be
altered. Therefore, even though landscapes may become dominated
with young and mature aspen stands, the size, decay status and
degree of fungi invasion of trees may be too low to provide quality
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substrates for excavation by woodpeckers (Drapeau et al., 2009a).
This is exactly what we see with 61 years stands (Figure 5) that do
not support large excavators and cavity users and that have simplified
nest webs (Figure 5). The capacity of the cavity-using vertebrate
community to bounce back in such human-disturbed regimes may
thus be jeapardized by the strong reduction of the proportion old
forests stands at the landscape level.

Conclusion

This study increases our understanding on the ecological
processes that shape nest webs in the boreal mixed forest of eastern
Canada and is among the first to document such patterns along an
entire natural forest succession gradient. Old growth boreal forests
take different structural profiles whereas continuous secondary
disturbances that take place throughout stand dynamics (Martin
et al., 2018, 2021). In our study system, disturbance dynamics of
old forests (gaps and insect outbreaks) allows a pioneer fast growing
short-lived species like the trembling aspen to persist in the forest
canopy throughout succession, thus providing, along with increased
decay stages of other tree species, continuous recruitment of suitable
cavity substrates for excavators (mainly woodpeckers), the major
cavity formation agents.

The critical importance of conserving old forest stands and old
trees is obvious for cavity-using vertebrate communities that are
highly dependent on processes of tree cavity formation by natural
decay of old trees (Gibbons and Lindenmayer, 2002; Cockle et al.,
2010, 2012; Politi et al., 2010). Our study shows that old forests
are also keystone habitats for cavity-using communities that mainly
rely on vertebrate excavators (less than 1% of used cavities in our
nest webs are formed solely by tree decay). In such old stands,
wood-decay processes of old trees (heart-rot fungi activity) become
facilitator agents for woodpeckers, as most of the trees excavated by
woodpeckers are affected by tree fungi.

Our results raise awareness on the importance of protecting
the entire gradient old forest cover types at landscape and regional
scales for maintaining the avifauna associated to old forests and
wood-decaying trees (Imbeau et al., 2001; Drapeau et al., 2009b,
2016). However, the conservation of old forest tracks alone is not
sufficient in the context of extensive forestry presently occurring in
the Canadian boreal forest. There is also a critical need to adjust
forestry practices in managed forest landscapes to increase at the
landscape level the amount of old forests by combining the use of
longer rotations, partial harvesting under continuous forest cover
(Bergeron et al., 2002; Gauthier et al., 2009) and in managed clear-
cut landscapes, enhanced retention through a mesofilter approach
(sensu Hunter, 2005) of keystone tree species for a range of tree
decay stages (structural heterogeneity generated by tree senescence)
for key excavators (Martin et al., 2004; Drapeau et al., 2009b;
Drever and Martin, 2010; Edworthy and Martin, 2013) and other
dendromicrohabitats that are critical for biodiversity (Larrieu et al.,
2018; Martin et al., 2022).

Future research could explore how the network structure of nest
webs and the diversity of species and interactions changes as we
move north, from boreal mixedwood to coniferous-dominated boreal
forests where trembling aspen stands becomes rare and scattered but
deadwood associated birds are nevertheless strongly associated to this
pivotal forest cover type (Cadieux and Drapeau, 2017).
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