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ABSTRACT
Serial blockface histology is a 3D imaging modality that com-
bines a vibratome with a microscope. Whole samples are ac-
quired by sequentially removing small tissue layers with the
vibrating blade and by generating a mosaic of several images
of the revealed tissue which can be assembled to obtain a 3D
representation of the sample at a high resolution. Due to many
factors, the acquired mosaic tiles can be affected by complex
illumination inhomogeneity that negatively affects the data
reconstruction and analysis. Here, we propose a convolu-
tional neural network approach to estimate and compensate
the illumination inhomogeneity. The model is trained with
simulated vignettes without using illumination ground truth,
which is many times harder or even impossible to obtain. Us-
ing a small multiresolution dataset consisting in serial OCT
images from whole mouse brains, we show that our proposed
approach has many advantages compared to an unsupervised
a posteriori illumination compensation method.

Index Terms— Serial blockface histology, Optical Co-
herence Tomography, Illumination Inhomogeneity, Convolu-
tional Neural Network, Data augmentation

1. INTRODUCTION

Serial blockface histology (SBH) is a 3D imaging modality
that combines a vibratome with a microscope. Whole 3D
samples are embedded within an agarose matrix and acquired
by sequentially removing small tissue layers with the vibrat-
ing blade, and by generating a mosaic of the revealed tissue
containing multiple image tiles. The several thousands of im-
ages acquired with this procedure can be assembled to ob-
tain a 3D representation of the whole sample at a high reso-
lution [1, 2]. When coupled with optical coherence tomog-
raphy (OCT), this imaging modality can reveal the 3D dis-
tribution of white matter in whole mouse brains without ne-
cessitating complex tissue labeling or cleaning as with other
optical whole brain 3d imaging modalities such as light-sheet
microscopy.

Due to many factors, the acquired tiles within the mo-
saic can be affected by complex illumination inhomogeneities

(also called vignetting), which can negatively affect the data
reconstruction and analysis. When degraded by a vignette,
the assembled mosaics will contain seam artifacts at locations
where neighboring tiles overlap. Thus, it is common practice
when generating image mosaics to compensate the vignetting
effect before assembling the data. Two general approaches
exist: a priori methods that will acquire the vignette before
an acquisition and use these calibration images to fix the illu-
mination during reconstruction, and an a posteriori approach
that will estimate the vignette from already acquired image
tiles and use the extracted illumination bias to reduce its ef-
fect prior to reconstruction. One such a posteriori method
is the BaSiC Background and Shading Correction algorithm
[3]. It uses a low-rank and sparse decomposition to estimate
multiplicative flatfield (shading) and additive darkfield (back-
ground) vignettes for a sequence of existing tiles.

One drawback of the BaSiC method is that it supposes that
at most < 50% of the tiles contain foreground, otherwise the
estimated vignettes converge towards the foreground instead
of the background. We also observed that the BaSiC algo-
rithm will not converge correctly when the number of tiles is
not sufficient (e.g., when applied to a small 5× 4 tiles mosaic
as illustrated in Fig.3). On the contrary, when using the algo-
rithm with a large number of tiles convergence can require
considerable amount of time and computational resources,
which limits the applicability of this technique when working
with the large mosaics often required for high magnification
serial blockface histology. To address these issues, we pro-
pose a Convolutional Neural Network (CNN) based approach
inspired by VoxelMorphCNN [4] to estimate the illumination
inhomogeneity affecting serial OCT 2D tiles. Due to the lack
of illumination ground truth, we propose to generate synthetic
vignettes to train the network in a self-supervised way. These
experiments have shown promising results compared to the
BaSiC method, which we will investigate more thoroughly in
future works.

The rest of this paper is organized as follows. Section
2 describes the experimental data, introduces two synthetic
vignette generation methods and summarizes the illumina-
tion inhomogeneity extraction network architecture. Section



3 presents the results, including examples of synthetic vi-
gnettes and a comparison between our method and the BaSiC
method. Section 3 also discusses about the performance of
the self-supervised strategy and states a few potential exten-
sions of the proposed approach.

2. MATERIALS AND METHODS

2.1. Experimental Data

The data used for this paper was acquired in whole mouse
brains with a custom serial OCT system [1, 2]. These datasets
were generated by other previous and ongoing research
projects in accordance with the animal ethics committee
of the Montreal Heart Institute. They consist in 3D mosaics
acquired with a serial Fourier-Domain OCT (FD-OCT) at
3 different resolutions using 3x, 10x and 25x magnification
objectives. With FD-OCT, each mosaic tile is a 3D vol-
ume describing the tissue’s optical backscattering at multiple
depth within the brain. For the purpose of this paper, the
volumetric tiles were converted into 2D tiles by computing
average intensity projections along the tissue depth. Each
mosaic for every tissue slice was intensity normalized with
0.1% clipping, and the 512× 512 tiles were saved as separate
jpeg files. In total, 121 mosaics were used (110 mosaics at 3x
magnification, 1 mosaic at 10x magnification, and 10 mosaics
at 25x magnification) resulting in 6572 tiles for the training
dataset and 40 tiles for the validation dataset (2 mosaics out of
110 mosaics at 3x magnification were used for the validation
dataset).

2.2. Synthetic vignette generation

For this study, it was assumed that the illumination inhomo-
geneity consisted only in a multiplicative vignette V (x, y),
often called a flatfield. This vignette is assumed to be shared
for all the image tiles Ik within a same mosaic. The simplified
image formation model can be expressed as

I ′k(x, y) = V (x, y) · Ik(x, y), (1)

where I ′k(x, y) is the observed tile. The goal of the proposed
method is to estimate this vignette V̂ and use it to compensate
the illumination inhomogeneity

Îk(x, y) = I ′k/V̂ (x, y). (2)

In many cases, the real flatfield can be hard or impossible
to estimate. For this reason, we propose to use synthetic vi-
gnettes to train the illumination inhomogeneity extraction net-
work. Two vignette generation methods are proposed: Gaus-
sian vignettes and Zernike vignettes. Both of these models
were chosen to create vignettes with some degree of symme-
try and smoothness. A Gaussian vignette consists in

VG(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3)

where σ = 1 was used for the Gaussian function standard de-
viation. A more complex model using Zernike polynomials
[5] was also considered for the vignette generation. Zernike
polynomials are often used to represent the wavefront distor-
tion in optics, and it forms an orthonormal basis on the unit
circle. For this paper, a 5th order Zernike polynomial was
used. Its coefficients were generated using uniform sampling
between -1 and 1. The vignette was synthesized with
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where Cm
n ∼ U(−1.0, 1.0) are the Zernike coefficients,

and Zm
n are the nth order polynomials
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To generate the vignettes with both models, the 2D simu-
lation domain was first initialized in the range [−1, 1] in the
XY directions. Then to represent random illumination cen-
tering, scaling and rotations, a random geometry transform
was generated. This was performed by using uniform sam-
pling for the rotation angle (θ ∼ U(−π/2, π/2)) and for the
scale (sx,y ∼ U(1/2, 2)), and Gaussian sampling for the cen-
ter translation (tx,y ∼ N (µ = 0.0, σ = 1/4)). The spatial
transforms were represented as 3× 3 matrices and combined
to obtain the global spatial transform M. This transforma-
tion is applied to the vignettes simulation domain prior to vi-
gnettes intensity computation.

M = TS ·R, (7)

with

TS =

sx 0 tx
0 sy ty
0 0 1

 ,R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (8)

the combined translation/scale (TS) and rotation (R) ma-
trices, respectively. Figure 1 show some generated vignettes
using the Gaussian model (top row) and the Zernike model
(bottom row).

2.3. Vignette Extraction Network

For the vignette extraction network, we used a model inspired
by the VoxelMorphCNN [4] network for 3D deformable,
pairwise medical image registration. We adapted the en-
coder/decoder architecture to receive 2D images as input and



Fig. 1. Example of synthetic vignettes generated with the
Gaussian (top) and Zernike (bottom) models, respectively.
White contour lines are overlaid to help visualize the gen-
erated illumination inhomogeneity.

to predict only 1 scalar image as output instead of a 3D de-
formation vector field. To summarize, the network consists
of 4 parts: (1) an input block, (2) an encoder and (3) decoder
linked with skip connection, (4) and a prediction head. The
input of the model is a single image formed by concatenat-
ing k random tiles extracted for a mosaic grid and affected
by the same synthetic illumination inhomogeneity V (x, y).
The tiles are concatenated over the channel dimension. The
input block performs an early image fusion of the input tiles
using large (7 × 7) 2D convolutions followed by a Leaky
ReLU activation, resulting in 48 channels. This is followed
by a UNet encoder/decoder network [6, 7] with skip connec-
tion over 4 levels. Each layer consists of two convolution
blocks (3 × 3 2D convolution + LeakyReLU), and by a 2D
max pooling. The number of features is doubled for each
layer. For the decoder part, nearest neighbor interpolation is
used for the upsampling. The prediction head consists of 4
convolution blocks (3 × 3 2D convolution + Leaky ReLU)
that progressively reduce the number of features, to finally
predict a single feature per pixel. This output is the predicted
illumination bias V̂ (x, y).

2.4. Data augmentation and training

Due to the lack of vignette ground truth and the small dataset
size, data augmentation was used to train the vignette extrac-
tion network. For every iteration, k tiles were selected ran-
domly within the training dataset. Data augmentation (ran-
dom scaling, cropping and flipping) was applied to each tile
separately to obtain tiles of shape 128 × 128. Then a syn-
thetic vignette V (x, y) was generated using either the Gaus-
sian or Zernike model (both the model and their parameters
are sampled randomly) and all k tiles are multiplied with it.
Finally, the tiles were concatenated over the channel dimen-

Fig. 2. Extracted vignette using (A) the BaSiC method, and
(B) our proposed method with k = 5 input tiles. (C) repre-
sents the relative vignette standard deviation for our method

sion to form a single input image for the network. Using the
input of shape (k, 128, 128), the network outputs a vignette
estimation V̂ of shape (1, 128, 128). Similar to VoxelMor-
phCNN [4], the loss function used for gradient descent was

L(V, V̂ ) = Lsim(V, V̂ ) + λLsmooth(V̂ ), (9)

where Lsim(V, V̂ ) = ∥V, V̂ ∥2 is the L2 norm measur-
ing the similarity between the generated and the estimated
vignettes, Lsmooth = ∥∇V̂ ∥2 is a smoothness regulariza-
tion using the spatial gradient, and λ = 1 controls the reg-
ularization. The training was performed for 625,000 random
synthetic samples, separated in 250 epochs of 2,500 samples
with a batch size of 8. An Adam optimizer with learning rate
lr = 0.4 was used. The model was implemented with Py-
Torch [8] and trained with Pytorch-Lighting [9] on a NVidia
GeForce RTX 3080 GPU. To compare the performance of the
proposed method with the BaSiC method, we used our cus-
tom Python implementation of the BaSiC algorithm [10].

3. RESULTS AND DISCUSSION

3.1. Model Training

Using simulated vignettes and data augmentation, a modified
U-Net encoder-decoder network was trained to estimate the
multiplicative illumination bias V (x, y) given k input tiles af-
fected by the same illumination bias. Training the network
with this approach takes approximately 40 minutes on a sin-
gle GPU. During training, we logged the training loss every
15 steps and validation loss every epoch. Both were consis-
tently decreasing when considering their moving average. In
addition to training/validation losses, vignettes of 8 random
samples were visualized every epoch to assess the training
progression. Qualitatively, the network quickly learned to ex-
tract Gaussian vignettes (similar to the top-middle vignette
in Fig. 1) but required additional training iterations for more
complex vignettes (ex. Zernike). Furthermore, initial vignette
estimation was affected by many rectilinear artifacts. Many
additional training iterations were necessary to obtain spa-
tially smooth vignettes. One possible explanation for these
artifacts is with the choice of the nearest neighbor upsam-
pling method in the network’s decoder. Adopting another in-



Fig. 3. Comparison between the vignette compensation with
the BaSiC method and our proposed method using k = 5
input tiles.

terpolation method, or replacing by transposed convolutions
or dilated kernels could help with reducing the smoothness
artifacts. To evaluate the influence of network architecture on
the vignette extraction performance, we trained the network
with different number of input tiles (k ∈ {1, 2, 5}). These
resulted in a final validation loss of Lk=1 = 9.4 × 10−3,
Lk=2 = 4.5 × 10−3 and Lk=5 = 2.0 × 10−3, which shows
that the synthetic vignette extraction improves as the number
of input images increases. This was an expected result, as at
least two tiles would be necessary to distinguish between the
vignette illumination bias and the underlying real image in-
tensity. The network trained with a single input still is able to
get a good estimated of the vignette, especially in cases where
the vignette greatly affects the tile appearance (ex: Gaussian
vignette with small covariance).

3.2. Inference and illumination compensation

After the training, we compared the extracted vignette pre-
dicted by our network with the vignette obtained using the
unsupervised BaSiC method (Fig. 2). For inference, we used
N = 25 permutations of k unaugmented input vignettes origi-
nating from the same mosaic. The N extracted vignettes were
then averaged together pixel-by-pixel. We also computed the
relative standard intensity deviation (σ(x, y)/µ(x, y)) on a
per pixel basis across the N = 25 vignettes (Fig. 2c). Com-
pared to the vignette extracted with the BaSiC method (Fig.
2a), the illumination bias estimated by the CNN model is
smoother (Fig. 2b). The BaSiC vignette was computed with
only 20 tiles (see Fig. 3), with almost half of them not con-
taining tissues. Thus the extracted vignette for this method is
biased toward background tiles. It also tries to capture finer
details such as vertical stripes which is not the case for the
network derived vignette. In fact, due to our choice of syn-
thetic vignettes (Gaussian and 5th order Zernike), our pro-
posed method estimates vignettes containing mostly low spa-

tial frequencies and is biased toward angular symmetry. We
performed some inference tests with tiles affected by rectilin-
ear vignettes (e.g., mirror reflections) and the trained method
was not able to accurately estimate those inhomogeneities
(data not shown). This indicates that additional synthetic vi-
gnette models would be necessary to capture other types of il-
lumination biases. Regarding the vignette extraction repeata-
bility, Fig. 2c shows that our method exhibits more variability
in the corners and tile boundary (≈ 22.2% for k = 5) com-
pared to the middle of the tile (< 2.5%). This was expected,
as the vignetting effect increases with distance from the image
center. This variability could indicate that the chosen vignette
synthesis models cannot accurately represent the real illumi-
nation biases in the OCT tile corners, or that the chosen net-
work architecture is not well adapted for encoding and decod-
ing near edges. Additionally, the maximum relative STD de-
creases with an increasing number of input tiles (≈ 34.6% for
k = 1, ≈ 22.6% for k = 2) and when using smoothness regu-
larization (≈ 27.0% for k = 5 without regularization), which
support the early fusion approach and spatial smoothness reg-
ularization benefit, although a thorough ablation study would
be necessary to confirm these observations.

Finally, we tested the vignette correction capacity of our
method (Fig. 3). We compensated the illumination bias by
dividing each tile pixel-by-pixel with the estimated vignette
obtained with the BaSiC method (Fig. 3, middle) and with
our method (Fig. 3, right). Qualitatively, we can see that our
method is able to reduce the vignetting effect in the assembled
mosaic which results in less visible seams between neigh-
boring tiles. Compared with the BaSiC method, our method
performs better in tiles containing tissue and worse in back-
ground tiles. In particular, for this example only 20 tiles are
available for the BaSiC method, and half of them contain only
background, thus it is biased toward fixing the illumination in
the background tiles to the detriment of illumination compen-
sation in tissue slices. Despite this advantage of our CNN
approach, we can still see some areas where the illumination
compensation was too strong in tissues and not strong enough
in the background. To address this, the training strategy could
be modified to consider the similarity between neighboring
tile overlapping areas, or by also predicting an additive dark-
field in addition to a multiplicative flatfield.

4. CONCLUSION

We explored CNN-based self-supervised illumination inho-
mogeneity compensation for serial OCT data. It showed bet-
ter vignetting compensation in tissue areas compared to the
BaSiC method, resulting in better performance when few tiles
are available to apply the algorithm. Future work will inves-
tigate in more details our CNN approach, considering for ex-
ample neighboring tiles information during training.
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