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Abstract
Purpose Total metal-based toxicity potentials, like the ones
used in life cycle assessment (LCA), can sometimes introduce
bias and significantly affect the validity of LCA results since
toxicity is associated with the bioavailable metal fraction.
Methods Here, the bioavailable fraction of zinc (Zn) for world
soil types is obtained using the WHAM 6.0 geochemical
speciation model. Prior to this, the usability of the WHAM
model for soils using only globally available soil properties
(soil texture, pH, cation exchange capacity, carbonate, and
organic matter content) was validated with experimental soil
data and compared to the use of empirical regressions.
Results and discussion The results confirm that WHAM can
predict Zn bioavailable fraction with an uncertainty of less
than 2 orders of magnitude—41 % being of the same order of
magnitude—for a wide variety of soils relative to field data,
yielding estimates that are better than empirical regression
results in terms of rank and value. World BFs for Zn span
over 6 to 18 orders of magnitude for soluble and true solution
Zn, respectively, thus confirming the importance of consider-
ing spatial variability. In total, 231 soil archetypes are defined
based on the soil properties that influence speciation.
Conclusions When compared to experimental values, soluble
Zn obtained with WHAM seems to constitute a more reliable
indicator of the bioavailable fraction of Zn than true solution
Zn. Estimates obtained with theWHAM6.0 model for soluble

Zn were closer to field data in terms of value and rank as
compared to estimates obtained with empirical regressions.
Refining is required to obtain true solution Zn in organic soils.
Although not exhaustive, the validation process covers a
considerable proportion of world soils, therefore indicating
that the method is promising to study Zn bioavailability at the
global scale.

Keywords Bioavailability . Life cycle impact assessment .

Metal speciation .Modeling . Terrestrial ecotoxicity . Zinc

1 Introduction

The ecotoxicological impacts of metals are difficult to evalu-
ate because their toxicity depends on speciation, which is
related to highly variable environmental physicochemical pa-
rameters (Fairbrother et al. 2007). Omitting metal bioavail-
ability and the spatial variability of soil properties could
overestimate or underestimate the ecotoxicological impacts
(Fairbrother et al. 2007). In life cycle assessment (LCA),
metals tend to dominate ecotoxicological impacts, mainly
because characterization factors (CFs) either do not account
for metal speciation (Huijbregts et al. 2000, 2010) or are
developed for free metal ion (Humbert et al. 2005) and are
applied to other metal species (particulate, aqueous, etc.). For
this reason, metals tend to be excluded from LCA conclu-
sions, thus raising a credibility issue (Pizzol et al. 2011).

Including speciation in a global approach, such as LCA, is
not straightforward since speciation is linked to parameters
with high geographical variability and missing information,
such as location and soil type. In the last decade, two
workgroups of the United Nations Environmental Program
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(UNEP) and Society of Environmental Toxicology and Chem-
istry (SETAC) life cycle initiative reached a consensus and
suggested a framework to include metal speciation in the
definition of CFs for freshwater by incorporating a bioavail-
ability factor (BF) that represents the bioavailable fraction
obtained with a geochemical speciation model and by taking
into account the spatial variability of the physicochemical
parameters influencing speciation with the creation of fresh-
water archetypes of the same properties (Diamond et al. 2010;
Jolliet et al. 2005; Ligthart et al. 2004). The use of archetypes
is important in LCAwhen the emission sources are unknown.
In fact, using archetypes makes it possible to obtain default
values and corresponding variability ranges (minimum and
maximum values for each archetype) that are more represen-
tative of the variability of the influent parameters on the
CFs—in this case, the freshwater properties that affect metal
speciation (Diamond et al. 2010). The authors suggest defin-
ing BFs as the ratio of true solution metal concentration (free
ions and ions pairs) and the total metal concentration in the
studied environmental compartment, assuming that the true
solution metal concentration represents the metal bioavailable
fraction, and using the commonly used WHAM 6.0 model
because it takes into account the complexity of organic matter
(OM) (Diamond et al. 2010). This is coherent with the fact that
plants generally absorb Zn in its free ion form, although
ZnOH+ is also important for adsorption and absorption by
plants (Bertling et al. 2006; Brennan 2005).

Following these recommendations, new freshwater
ecotoxicity CFs that consider speciation were obtained for
six metals: nickel (Ni), copper (Cu), zinc (Zn), cobalt (Co),
cadmium (Cd), and lead (Pb) for seven freshwater archetypes,
with bioavailable metal fraction determined with the WHAM
6.0 chemical speciation model (Gandhi et al. 2010). Arche-
types were defined according to the variability of three fresh-
water properties that influence metal speciation (pH, DOC,
and water hardness) and each archetype groups of all fresh-
waters with the same combination of properties (e.g., arche-
type 1 grouped all freshwaters with high pH and water hard-
ness and mediumDOC values) (Gandhi et al. 2010). New CFs
were tested in two study cases: a Zn gutter system and a Cu
pipe system. The results indicate that including metal specia-
tion led to significant differences in terms of the contribution
of each metal to the total score (sum of CFs × emissions) and
values of the total metal freshwater ecotoxicity scores attrib-
utable to metal emissions, which were lower by 1 to 4 orders
of magnitude (Gandhi et al. 2011a). The approach was ex-
tended and standardized to 14 cationic metals (Al(III), Ba, Be,
Cd, Co, Cr(III), Cs, Cu(II), Fe(II), Fe(III), Mn(II), Ni, Pb, Sr,
and Zn) using the same seven freshwater archetypes (Dong
et al. 2014). The authors showed that for metals such as Cd,
Mn, Ni, and Zn, which are less pH dependent and have high
partition coefficients (with DOC and particles), the spatial
differences are not as important since new CFs only vary

between 0.7 and 0.9 orders of magnitude, and when compared
to current CFs, most newly calculated CFs are similar or
higher and fall within the same 2 orders of magnitude (Dong
et al. 2014).

Recently, another approach was tested to obtain terrestrial
ecotoxicity CFs for Cu and Ni (Owsianiak et al. 2013).
Owsianiak et al. calculated CFs for 760 different soils by
introducing bioavailability and accessibility factors computed
with empirical regressions. A CF spatial variability of 3 and
3.5 orders of magnitude was observed for Cu and Ni, respec-
tively (2 orders of magnitude for a 95 % confidence interval)
(Owsianiak et al. 2013).

Although the results for freshwater ecotoxicity are more
mitigated, these latter developments (Dong et al. 2014;
Gandhi et al. 2010, 2011a, b; Owsianiak et al. 2013) suggest
that including speciation and the spatial variability of environ-
mental properties in CF calculation could have an incidence
on the results in global approaches such as LCA.

Although quite interesting, the UNEP/SETAC consensus
approach (Diamond et al. 2010) adopted for freshwater
ecotoxicity (Dong et al. 2014; Gandhi et al. 2010, 2011b)
could be difficult to apply to soils because of the use of a
geochemical speciation model. While there is a wide array of
speciation models and software (e.g., MINEQL+, MINTEQ,
GEOCHEM,WATSPEC,WATEQ, PHREEQ, ECOSAT, OR-
CHESTRA, WASP, WHAM, and NICA-Donnan) (Barona
et al. 1995; Cancès et al. 2003; Caruso 2004; Dijkstra et al.
2004; Fairbrother et al. 2007; Fan 2004; Ge 1999, 2002; Van
Riemsdijk et al. 2007), only two models enable the simulation
of metals and organic ligands: Windermere humic aqueous
model (WHAM) and non-ideal competitive adsorption-
Donnan model (NICA-Donnan) (Ge 2002). These models
are equilibrium models adapted to the heterogeneity of organ-
ic matter (Almas et al. 2006; Ge et al. 2005; Koopal et al.
2005; Tipping 2005). WHAM 6.0 also makes it possible to
model metal complexation reactions with inorganic ligands.
Another problem with the geochemical speciation models is
that they do not consider the kinetics of precipitation and
dissolution (Ge 1999; Sauvé 2002).Generally, a kinetic ap-
proach better represents natural environments since the reac-
tions involving metals in soils do not all occur in a sufficiently
short timeline to enable modeling in equilibrium conditions
(Al-Fasfous 2005). In fact, the kinetics of certain metal disso-
lution reactions are so slow that they are practically impossible
as compared to other reactions involving metals (Bachmann
2006). Using an equilibrium approach puts all these reactions
at the same level by assuming that they all occur instantly.
However, the use of kinetics requires data that are not avail-
able, especially with regard to kinetics related to reactions
with organic matter (Al-Fasfous 2005; Bhavsar et al. 2008;
Ge 1999, 2002). In a global approach, such as LCA, integrat-
ing a kinetic component would also mean integrating kinetics
in emissions and fate, which, along with the complexity of

528 Int J Life Cycle Assess (2015) 20:527–540



regionalization, would lead to gigantic equation systems and
disproportionately complicated data storage and calculations.

Nonetheless, the models are applied to soils, generally
using soil solution characteristics as input values (Almas
et al. 2006; Bertling et al. 2006; Cloutier-Hurteau et al.
2007; Ge et al. 2005; Meers et al. 2006; Ponizovsky et al.
2008; Shi et al. 2007, 2008; Thakali 2006; Thakali et al. 2006;
Weng et al. 2002). However, there is no consensus on which
model and parameterization are best suited to soils. In fact,
certain studies reveal good model predictions for cation spe-
ciation (Ge et al. 2005; Nolan et al. 2003), whereas others
resulted in inadequate predictions (Cloutier-Hurteau et al.
2007; Meers et al. 2006). Also, global scale soil solution data
are not available, raising the question of whether geochemical
speciation models can be used for soils when specific soil
solution data are missing. Moreover, since soils are more
heterogeneous than water, regionalization and archetype de-
termination—especially the selection of influent soil proper-
ties—are more complex.

Alternatively, Owsianiak et al. used empirical regressions
instead of speciation models to determine bioavailable frac-
tions through multiple linear regressions performed on field
data relating metal speciation (soluble metal concentration or
free ion activity) to soil properties (total metal burden, soil pH,
and soil organic matter (OM) content) (de Vries and
Groenenberg 2009; Groenenberg et al. 2010, 2012; Rodrigues
et al. 2010a, b; Römkens et al. 2004). Some authors found that
these types of regressions could be applied to a wide range of
soil conditions (Groenenberg et al. 2010; Rodrigues et al.
2010a). When comparing the two approaches, Groenenberg
et al. concluded that, although empirical regressions can be
robust speciation predictors for most cations, they depend on
the choice and number of soil properties used and are gener-
ally applicable only to the soils that were used to obtain them
(Groenenberg et al. 2010, 2012). Groenenberg et al. showed
that models yield satisfactory results for a wide range of
conditions and are better predictors of extreme conditions,
but the results may vary according to model setup and param-
eterization (Groenenberg et al. 2012). Even so, Groenenberg
et al. found that the two methods are equivalent for most soil
types and affirmed that further research is required to quantify
model uncertainty when the models are used generically
(Groenenberg et al. 2012). Also, the use of empirical regres-
sions implies deriving BFs in terms of soluble, free metal ions,
or exchangeable metal concentrations, which are not in line
with the Clearwater Consensus recommendation to use true
solution metal concentration.

The main goal of this project was to determine the bio-
availability of Zn in soil at the global scale using a geochem-
ical speciation model with limited soil data (only those avail-
able in world soil databases) and soil archetypes in order to
facilitate its integration into a global method such as LCA and
its generalization to other metals. The first step was to see

whether current models can be used since they could represent
a quick solution to a significant issue in LCA. The WHAM
6.0 model was selected for this project for several reasons: It is
part of the Clearwater recommendations and is commonly
used to determine speciation in freshwater and soil solutions
(Diamond et al. 2010), it models reactions with OM content
and other important metal ligands in soils, and makes it
possible to quantitatively input particulate matter, making it
simpler to use beyond its standard framework. To test the
validity of WHAM 6.0 in this specific case, a literature
review was carried out to collect field data on Zn speciation
in soils and the corresponding soil properties. BFs were
calculated with the collected field data. The speciation of Zn
in soils using the same field data was modeled using WHAM
6.0, and a second series of BFs was calculated with these
results. These two series of BFs were compared to quantify the
differences between field and modeled data in terms of values
and ranking. A third series of BFs was obtained with the same
field data using empirical regressions in order to compare the
use of WHAM 6.0 and empirical regressions. In this regard,
the applicability of empirical regressions derived by
Groenenberg et al. (2012) to predict soluble concentration
for a set of soils that fall in the same range as the one used
to obtain the regressions (results are shown in the Electronic
Supplementary Material) was tested. Soil archetypes were
created to determine the extent of the validation process and
applicability of WHAM 6.0 at the global scale by matching
field data validation results and the corresponding soil arche-
type. Archetypes will also be useful to determine generic
values when BFs are ultimately integrated into the determina-
tion of CFs. The Zn bioavailable fraction was then calculated
for each world soil type using a detailed world soil database.
Zinc was chosen because it is one of the main contributors to
the Canadian ecological footprint for terrestrial ecotoxicity
(Lautier et al. 2010). It is therefore crucial to study Zn to
determine its true contribution.

2 Methods

2.1 Nomenclature

The following Zn fractions used in this study are illustrated in
Fig. 1 and described below.

In this figure, total Zn represents total Zn concentration in
soil as obtained analytically by using an acid digestion meth-
od, except cold or dilute acid extractions (Sauvé et al. 2000).
In addition to the elemental form of the metal, it includes at
least all the fractions defined here. Part of total Zn, soluble Zn
stands for total soluble Zn (free ion, ion pairs, and complexes)
concentration in soil obtained by extracting soil solution by
water or neutral salt extractions, lysimeter, water displace-
ment, centrifugation, or rhizon moisture samplers (Sauvé
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et al. 2000). Part of soluble Zn, labile Zn includes free metal
and metal ion pairs that can dissociate rapidly in soils. This
definition of labile Zn was chosen because it is the experi-
mentally obtained Zn fraction that is the closest to true solu-
tion Zn (Nolan et al. 2005). In fact, labile Zn concentrations in
soil are obtained by mixing soil samples (1:4 soil/solvent
ratio) for 2 h, filtering the supernatant of the soil slurry,
adjusting the concentration with KNO3, and measuring the
concentration with square wave anodic stripping voltammetry
(Lessard et al. 2013; Stephan et al. 2008). The labile Zn
considered here does not include DTPA, EDTA, or acetic
acid-extracted Zn since they are much stronger ligands and
represent a much higher metal fraction than true solution. The
true solution Zn needed to calculate the BF is defined by free
Zn ions and ion pairs in soil solution, as modeled by a
geochemical model. It is analogous to labile Zn but is obtained
in a different way (geochemical modeling vs. field data
measurements).

2.2 Use of WHAM 6.0 to obtain Zn bioavailable fraction
in soils

2.2.1 BF calculation from literature field data

The first step of this study was to test the use ofWHAMwhen
only limited soil data are available. A literature review for Zn
soil speciation was therefore conducted in order to compare
WHAM 6.0 speciation results and experimental speciation
data. In total, 40 soils previously sampled around galvanized
Zn structures (Lessard 2013) and 248 additional field samples
from 18 published studies were listed (Aldrich et al. 2002;
Catlett et al. 2002; Dawson et al. 2006; de Groot et al. 1998;
Degryse and Smolders 2006; Ge 1999; Gooddy et al. 1995;
Holm et al. 1998; Kim and Owens 2009; Kim et al. 2010;
Lorenz et al. 1997; Mallmann et al. 2012; Meers et al. 2006;
Muhammad et al. 2012; Nolan et al. 2003; Rheinheimer dos
Santos et al. 2013; van Gestel 2008; Wu et al. 2000). The

samples provided measurements of soil properties (pH, cation
exchange capacity (CEC), texture, OM, and carbonate con-
tents), total Zn and soluble (278), or labile (36) Zn. The soil
data that were gathered cover a wide variety of soil properties
for the broadest possible validation. A description of the
experimental data is available in the Electronic Supplementary
Material. For each soil sample, an experimental BF (BFexp)
was calculated using total Zn and soluble or labile Zn.

To ensure coherence with work on freshwater ecotoxicity,
it was considered that the bioavailability factor (BF) was given
by the ratio of bioavailable Zn ([Zn] bioavailable]) to total Zn
([Zn]total) (Eq. 1) (Diamond et al. 2010; Gandhi et al. 2010,
2011b):

BF ¼ Zn½ �bioavailable
Zn½ �total

ð1Þ

According to available Zn speciation field data, experimen-
tal BFs were calculated using soluble and labile Zn to repre-
sent the bioavailable fraction of Zn. These BFs are used
throughout the study to validate the use of WHAM 6.0 and
empirical regressions. Labile Zn was chosen because it is the
closest fraction for which field data were available to the
bioavailable Zn fraction as defined in the Clearwater Consen-
sus (Diamond et al. 2010). Soluble Zn fraction was chosen
because it generally includes most of Zn bioavailable fraction
and more field data are available.

In order to obtain dimensionless BFs (mg/L soil)/(mg/L
soil), soil density and available water capacity were used to
transform concentrations into the proper units (see Electronic
Supplementary Material for details).

2.2.2 BF calculation with WHAM 6.0

The WHAM 6.0 model was initially developed to model
chemical equilibria in oxic waters (Lofts and Tipping 2001).

Fig. 1 Description of zinc fractions used in this study
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It contains sub-models that represent ion binding on humic
substances (humic ion-binding model VI) (Tipping 1998) and
mineral solids (SCAMP sub-model) (Lofts and Tipping
1998). The latter sub-model contains a surface complexation
model to four surface types—silica, iron, manganese, and
aluminum oxides—and a cation-exchange model for clays
(Lofts and Tipping 1998, 2001). While it does not consider
precipitation, WHAM 6.0 was chosen for its coherence with
LCA-derived freshwater ecotoxicological CFs (Gandhi et al.
2010, 2011b). The model is also frequently used in soil metal
speciation studies and includes data on 19 other common
metals, thus facilitating its generalization (Almas et al. 2006;
Bertling et al. 2006; Cloutier-Hurteau et al. 2007; Ge et al.
2005; Meers et al. 2006; Ponizovsky et al. 2008; Shi et al.
2007, 2008; Thakali 2006; Thakali et al. 2006; Weng et al.
2002), and makes it possible to quantitatively enter particulate
phases as input parameters, thus facilitating its adaptation to
soils.

WHAM 6.0 is only applied to field data listing all soil
properties (28 for labile Zn and 78 for soluble Zn; see details
in the Electronic Supplementary Material) to ensure that di-
vergences are not due to missing data. An exception was made
for four peat soils for which texture is not listed to determine
whether these extreme soils can also be modeled. However,
the results for these samples must be interpreted carefully
since their modeling is based on incomplete data.

The objective was to obtain bioavailable Zn fractions at the
global scale with limited input data in order to integrate the
approach into a global assessment method such as LCA. In
this case, global coherence was preferred over precision. For
this reason, various assumptions were made to convert soil
properties to fit WHAM input parameter requirements. Some
may seem quite rough to soil scientists, but the study should
be viewed as a first attempt to use a geochemical speciation
model for this purpose. This will make it possible to compare
and highlight the eventual need to improve the assumptions
(or not).

WHAM 6.0 was used with default parameters as if soil was
oxic water with a high level of particulate phases (particulate
oxides, silica, quartz, clay, and organic matter). Using an oxic
model for anoxic conditions could increase the uncertainty
since variations in the redox conditions can influence Zn
speciation (Bostick et al. 2001). Nonetheless, although soils
can be under anoxic conditions, the method was chosen as a
first estimate. Also, since LCA models do not consider a very
large soil depth (10 cm for USEtox), it seems reasonable to
consider oxic conditions.

Particulate silica, quartz, clay, and iron oxide were obtained
using soil texture (% sand, silt, and clay); particulate humic
and fulvic acids (HA and FA, respectively) were used to
account for soil OM content; major cations (Ca2+, Mg2+, K+,
Na+, and Al3+) in solution were obtained with CEC and total
Zn; and carbonate content (CO3), Cl

−, and SO4
2−were entered

as solution components. The inclusion of estimated dissolved
organic carbon (DOC) as colloidal HA and FAwas also tested
to determine whether it improves the modeling results. The
equations used for WHAM 6.0 modeling data preparation are
described in the supporting information.

A second set of BFs was obtained (BFWHAM), and the
values and ranking were compared to the values and ranking
of BFexp. BFWHAM were first obtained for each experimental
sample.

Model predictions were considered valid if a difference of
less than 2 orders of magnitude was observed between exper-
imental and modeling results—the acceptable uncertainty in
LCA toxic impact assessment (Humbert et al. 2005;
Rosenbaum et al. 2008). This uncertainty level is higher than
the single order of magnitude uncertainty usually found for
speciation models or empirical relations in other studies
(Groenenberg et al. 2010; Römkens et al. 2004). However,
this work is the first attempt to encompass all soil types, even
extreme soils, perhaps creating more bias than in previous,
more restricted studies. We are aware that 2 orders of magni-
tude are the acceptable uncertainty for CF and not BF (i.e.,
including fate and effect). However, Gandhi et al. and Dong
et al. showed that most of the variability of regionalized CFs is
attributable to BFs, and the fate and effect factors contribute
much less to CF variability (Gandhi et al. 2010, 2011a, b;
Dong et al. 2014).We are also aware that this uncertainty of 2
orders of magnitude can be insufficient if the span is of 5 to 8
orders of magnitude. For this reason, the proportions of soils
for which BFs fall in the same order of magnitude, in a 1 order
of magnitude range, 2, 3, 4, and up orders of magnitude, were
also shown. Not all data points must meet this criterion be-
causeWHAM used in this context could work for certain soils
and not others.

BF ranking was compared using the Spearman rank corre-
lation coefficient. The Spearman coefficient was used by
Fenner et al. (2005) to compare the rankings of long-range
transport potential estimates of persistent organic chemicals
(Fenner et al. 2005). The coefficient was computed with Eq. 2
(Gauthier 2001):

rho ¼ 1−
6
X

n
d2i

n n2−1ð Þ ð2Þ

Equation 2 defines the Spearman rank correlation coeffi-
cient (Gauthier 2001).

In Eq. 2, n represents the number of samples, and di is the
difference between the ranks of the two series (rankWHAM–
rankexp). The Spearman rank correlation coefficient is a value
between −1 and 1. A value close to 0 indicates no correlation
between the ranks of the two series. To determine whether the
correlation is significant, a lack of correlation between the two
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series was assumed. The calculated correlation coefficient was
then compared to a critical value representing the correlation
coefficient that would be obtained randomly. When two series
had more than 30 pairs, as is the case for soluble Zn (with 82
pairs), a t value could be obtained with Eq. 3 and compared to
a corresponding critical value in a t table (Gauthier 2001):

t ¼ rho
ffiffiffiffiffiffiffiffi
n−2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−rho2
� �q ð3Þ

In Eq. 3, t value is calculated to evaluate the significance of
the Spearman rank correlation coefficients for samples of over
30 pairs (Gauthier 2001). If the absolute value of the correla-
tion coefficient or the corresponding t value for numerous
samples is higher than the critical value, the correlation is
significant. The root mean square error (RMSE) and the
coefficient of determination (R2) were also determined.

2.3 BF calculation with empirical regressions
and comparisons

In order to compare the two approaches, a third series of BFs
(BFreg) was calculated with empirical regressions using the
same process as the one used by Owsianiak et al. (2013).
Dimensionless (mg/L soil/mg/L soil) BFreg was also obtained
using the available water capacity, as was done for BFexp. The
various empirical regressions and available water capacity
values that were used are presented in the supporting infor-
mation. Comparing BFWHAM, BFreg, and BFexp highlights the
advantages of each methodology for the global assessment of
Zn bioavailability.

2.4 Defining Zn bioavailable fraction for all soil types

2.4.1 Creating soil archetypes

Soil archetypes were created to determine the extent of
the validation and applicability of WHAM 6.0 at the
global scale. In fact, they are a way to match field data
validation results to analogous world soils, supposing
that soils with similar properties will have similar bio-
availability factors.

The first step was to determine the most influential prop-
erties on Zn speciation. The influence of soil pH is regularly
observed in the literature (Brennan 2005; Catlett et al. 2002;
Chadi et al. 2008; Kabata-Pendias and Mukherjee 2007;
Knight et al. 1998; Nolan et al. 2003). Clay, OM, and oxides
are also important ligands for Zn (Aldrich et al. 2002; Brennan
2005; Catlett et al. 2002; Ge 1999; Kabata-Pendias and
Mukherjee 2007). For these reasons, the selected properties
include pH, OM and carbonate content, CEC, and soil texture

(clay and sand fractions). Although oxides are important
ligands, they were not considered in the creation of archetypes
due to data availability but were nonetheless included in
WHAM 6.0 modeling (see Section 2.2.2).

When creating the soil archetypes, the soil properties
influencing Zn speciation were used as a basis to establish
the different soil archetypes because we believed they would
better represent the spatial variability of Zn bioavailable frac-
tion. Of course, soil orders group soils with at least one
common feature and certainly affect the definition of soil
properties (e.g., proportion of cations and type of organic
matter content) (Duchaufour 2001). However, they can also
group soils with very different properties. For example, ac-
cording to FAO90 taxonomy groups in HWSD, eutric rego-
sols can have pH values from 4.4 to 8.8 and total organic
carbon from 0.04 to 13.32 %. Knowing that pH and OM
content are very influent parameters for metal speciation,
these differences are likely to influence Zn speciation. Even
so, a table relating soil taxonomy to the archetypes is available
in the supporting information.

Data for labile and soluble Zn were treated separately.
Multiple linear regressions were performed using XLSTAT
software (Addinsoft 2013) with soil samples that contained all
soil properties (28 for labile Zn and 78 for soluble Zn). Linear
regressions were also performed using the same software for
each soil property in order to determine individual influence
and include more samples. Soil properties for which
Pr>|t|<0.05 were considered significantly influent. The results
are detailed in the supporting information.

The classification was based on thresholds for each soil
property commonly used in literature. Three subgroups for pH
(acid, neutral, and alkaline soils), CEC, OM, and carbonate
contents were chosen. Clay and sand contents are accounted
for in USDA soil texture classes, and the subgroups are
presented in the supporting information. Every combination
of soil properties using this classification that could be linked
to at least one experimental soil was kept as an archetype. The
list of archetypes that could be created with experimental soil
samples is included in the supporting information.

2.4.2 Defining Zn bioavailable fraction for all soil
types—extension of archetypes

The Harmonized World Soil Database (HWSD) version
1.1 (FAO/IIASA/ISRIC/ISS-CAS/JRC 2009) was used. It
contains data suited to model some 16,000 soil units and
provides information on important soil parameters (FAO/
IIASA/ISRIC/ISS-CAS/JRC 2009). Selected properties
taken from HWSD are soil pH, CEC, soil texture (% of
sand, clay, and silt), carbonate, and OM content. All
possible combinations of these soil properties found in
HWSD are listed, making it possible to restrict speciation
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modeling to 5213 samples instead of 16,000 soil units.
HWSD statistics are listed in the supporting information.

An estimation of Zn background natural concentration
was based on a mean value according to soil texture
from (Kabata-Pendias and Mukherjee 2007) (see
Electronic Supplementary Material for details on the
assumptions). Since current emissions do not occur in
pristine soils, a previous emission level of 1 g Zn/l of
soil, which represents background anthropogenic emis-
sion levels between 510 and 1176 mg/kg (mean
718 mg/kg) according to bulk density of soil, was also
considered. These emission levels fall within the range of
anthropogenic emission levels according to Kabata-
Pendias and Mukherjee (2007). In fact, non-ferric
smelters and contaminated sites contain between 443
and 1112 mg/kg of Zn, and the average concentration
of Zn in sludge for the EU is around 811 mg/kg. The use
of background metal concentration was recommended by
the Clearwater Consensus (Diamond et al. 2010), and an
average background concentration based on European
average metal concentrations in water was applied when
developing freshwater BFs (Gandhi et al. 2010).

HWSD statistics are listed in the supporting information.
For all properties, only topsoil values were considered, as-
suming that the topsoil is where most of the terrestrial living
organisms are located and most soil emissions occur. Also, the
approach is only applicable to the vadose zone of soil, and
groundwater was not considered in this study.

BFs were calculated with soluble or true solution Zn
obtained using the same assumption for WHAM 6.0 as
for experimental soil samples for each of the 5213 soil
samples. The soil samples were then grouped into ar-
chetypes based on the same classification as the one
defined for experimental soil data in order to match
experimental data to analogous HWSD soil samples.
The model was considered valid for an archetype when
WHAM predictions were below 2 orders of magnitude,
as compared to experimental data for experimental soil
samples comprised in the archetype.

For each archetype, BF minimum, maximum, median,
and mean values and an indication of WHAM valida-
tion were attributed. A BF variability of 2 orders of
magnitude within one archetype was considered accept-
able since it corresponds to the acceptable variability
between BFWHAM and BFexp and uncertainty in toxic
impacts in LCA (Humbert et al. 2005; Rosenbaum et al.
2008). This acceptable uncertainty must be low enough
to distinguish between archetypes. Soil maps showing
the extent of the validation and BF spread were obtain-
ed to target the needs to further extend WHAM param-
eterization validation and refine the archetype definition,
especially in cases in which variability was higher than
2 orders of magnitude.

3 Results

3.1 Zn speciation in soils—field data BFs (BFexp)

Figure 2 presents dimensionless (mg/L soil/mg/L soil) labile
and soluble Zn BFexp. According to Fig. 2, BFexp span over 5
orders of magnitude (5.77) for labile Zn (2.12E-02 to 3.63E-
08) and over eight for soluble Zn (1.44E-08 to 1.68E-01). The
span is greater than what was determined for soluble Zn by
Gandhi et al. (about 2 orders of magnitude) (Gandhi et al.
2010, 2011b). Since soils are more heterogeneous environ-
ments (Sauvé 2002), a larger range for soil BFs, as compared
to freshwater BFs, is not surprising. Labile Zn falls in the same
range as soluble Zn. It is interesting to note that the span also
exceeds the one modeled for Cu and Ni by Owsianiak et al.
(2013). This difference could stem from the different specia-
tion patterns between the three metals and the methodological
choices made in the two studies.

3.2 BFWHAM calculation with WHAM 6.0

Figure 3 presents soluble and labile Zn BFWHAM calculated
with the 84-16 OM assumption and estimated DOC. Accord-
ing to Fig. 3, soluble Zn BFWHAM span over 3 orders of
magnitude (1.2E-1 to 2.5E-4) and fall in the range of the
BFexp (4.94E-02 to 4.92E-06). Using WHAM tends to over-
estimate BF values (64 of 82 samples). For most samples (77
of 82), the difference between BFWHAM and BFexp is less than
2 orders of magnitude, the highest being 3.35 orders of mag-
nitude. The soluble Zn Spearman rank correlation coefficient
is 0.276, indicating a significant correlation between BFWHAM

and BFexp rankings (t value of 2.57 obtained for 80 pairs as
compared to a critical t value of 1.99 for a 95 % confidence
level) (Gauthier 2001). The labile Zn Spearman rank correla-
tion coefficient is 0.637 (t value of 4.53 as compared to t table
critical value of 2 for 32 pairs for a 95 % confidence level),
indicating a significant correlation between the BFWHAM and
BFexp rankings (Gauthier 2001).

4 Discussion

4.1 BFWHAM calculation with WHAM 6.0

The inclusion of DOC was tested, and the results indicated
that the inclusion improves modeling estimates (see results in
the Electronic Supplementary Material). Thus, the results are
only shown for modeling estimates including DOC.

When looking at soluble Zn, among the 82 samples,
BFWHAM fall in the same order of magnitude as BFexp for
34 soil samples (41 %). For 43 samples (52 %), the
difference is between 1 and 2 orders of magnitude, and
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for the remaining 5 (7 %), the difference is around 2
orders of magnitude except for two samples for which
the differences are 2.79 and 3.35 orders of magnitude.
Considering that BFexp for soluble Zn span over 8 orders
of magnitude, an uncertainty below 2 orders of magnitude
would still make it possible to distinguish the major
differences between BFs for soluble Zn. For labile Zn,
among the 32 samples, BFWHAM fall in the same order of
magnitude as BFexp for 4 soil samples (12.5 %). For 12

samples (37.5 %), the difference is between 1 and 2
orders of magnitude; for three samples (9 %), the differ-
ence is between 2 and 3 orders of magnitude; and for the
remaining 13 (41 %), the difference ranges between 3.18
and 7 orders of magnitude. Considering that BFexp for
labile Zn span over 5 orders of magnitude, the uncertainty
below 2 orders of magnitude would still make it possible
to differentiate between the lowest and highest BFs. This
represents some 50 % of soils for labile Zn. For 13 soils,
the discrepancies are very high. Among them, nine are
soils with a high OM content (between 8 and 70 %) and
high CEC (between 29 and 245 cmol/kg), indicating that
WHAM 6.0 used in this way may not be appropriate for
these types of soils.

The 84-16 OM assumption yielded either the best or an
equivalent result for almost all soil archetypes. This assump-
tion and estimated DOC were used to compute worldwide
BFs.

Labile Zn measurements are the closest experimental re-
sults from true solution Znmodeled byWHAM6.0. Given the
availability of published Zn speciation data, there was gener-
ally only one experimental soil sample per archetype, giving a
lot of weight to experimental bias. For example, for one soil
sample, modifying the pH from 7.2 to 7.6 induced a gap of
one order of magnitude in BFWHAM. Moreover, some approx-
imations used in WHAM 6.0 modeling may not be adequate
for all soil types. For this reason, we tested various proportions

Fig. 2 BFexp and spread of
log(BFexp) for labile (1a and 1b)
and soluble Zn (1c and 1d)

Fig. 3 Comparison of BFWHAM and BFexp for soluble and labile Zn
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of cations in CEC and oxide types. For some soils, the results
varied over several orders of magnitude, indicating that part of
the difference could come from inadequate assumptions. In
the tested soils, however, the estimates that were initially
selected were the closest to the experimental results.

The results confirm that WHAM 6.0 can be used with
limited soil data as input parameters to obtain bioavailable
Zn fraction, that the results fall in the same order of magnitude
for most soil samples (41 %), and that, for the remaining soils,
with the exception of two soil samples, the uncertainty is not
higher than 2.07 orders of magnitude, still making it possible
to broadly distinguish the bioavailable Zn fractions when
using soluble Zn as the bioavailable fraction. Also, the soil
ranking according to experimental bioavailable fraction and
the ranking proposed using the modeled results are signifi-
cantly correlated. Although the results obtained with labile Zn
in soil solution indicate thatWHAM6.0 could also adequately
predict true solution Zn (for 50 % of soil samples, the differ-
ence was less than 2 orders of magnitude between the 2 BF
series and the ranking of BFWHAMwas significantly correlated
to the ranking of BFexp), further investigation—especially an
increased number of validation samples and a different pa-
rameterization—is required to confirm the adequacy of using
WHAM 6.0 for true solution Zn with limited soil data. Also, it
would be interesting to compare the results with the newer
version of WHAM. In fact, WHAM 7.0 provides a newer
version of the humic ion-binding model (version 7) (Lofts
2012), which could perhaps help solve the problem of soils
with high OM content.

4.2 Empirical BFs

Figure 4 shows the soluble Zn BFreg obtained for the soil
samples used inWHAMmodeling. Since no empirical regres-
sion that could allow a comparison with labile and true

solution Zn was found for Zn, only soluble Zn obtained by
regression was compared.

According to Fig. 4, soluble Zn BFreg span over 2.98 orders
of magnitude (6.37E-02 to 6.74E-5) and falls in the range of
BFexp (4.94E-02 to 4.92E-06) obtained for this set of soil
samples. As for the use of WHAM 6.0, the use of regressions
tends to overestimate BF values (59 of 78 cases). Of the 78
soil samples, 35 (45 %) fall in the same order of magnitude as
BFexp. For 27 samples (35 %), the difference is between 1 and
2 orders of magnitude; for 14 samples (18 %), the difference is
between 2 and 3 orders of magnitude; and for the remaining 2,
the difference is between 3 and 3.44 orders of magnitude (see
details in Electronic Supplementary Material). The results are
similar to those obtained with WHAM, though the proportion
of soils for which results fall within two orders of magnitude
as experimental values is lower when using empirical regres-
sion (80 % as compared to 93 %). Unlike WHAM, the
Spearman rank correlation coefficient is very close to 0
(0.05), indicating that experimental value ranking is not
respected when using these regressions.

The results confirm that the use of WHAM to represent
bioavailable Zn fraction defined as soluble Zn seems to pro-
vide better estimates than empirical regressions in terms of
rank and value, apparently confirming that empirical regres-
sions are not easily applicable outside the range of soils used
to obtain them (Groenenberg et al. 2012) (additional results in
the Electronic Supplementary Material).

4.3 Zn bioavailable fraction for worldwide soil types

Figure 5 presents soluble and true solution Zn HWSD
BFWHAM. According to Fig. 5, HWSD true solution Zn
BFWHAM spread over 18 orders of magnitude (from 4.62E-
19 to 8.48E-01), which is much higher than for BFexp. Almost
all BFs (98 %) are comprised within the first 10 orders of
magnitude, and some 85 % of BFs are in the range, according
to Gandhi et al. (2010), between 0 and 0.01. Soluble Zn
HWSD BFWHAM are coherent with BFexp (a spread between
1.44E-08 and 1.68E-01).

The next step was to match validation results to
HWSD soil types in order to show the coverage of
the validation. HWSD soil samples were grouped into
231 soi l a rche types ( l i s ted in the Elec t ronic
Supplementary Material), of which 29 were part of the
previous empirical validation. As shown in Fig. 6, these
29 archetypes represent some 25 % of the HWSD soil
units. The validation process presented above covers
approximately 25 % of HWSD soil units for soluble
Zn and only 2.9 % for labile Zn, highlighting the need
to further extend the validation process, especially for
labile Zn. The soils covered by the validation process
(representing one quarter of the earth’s soil-covered
surface) and for which the WHAM 6.0 predictions thatFig. 4 Comparison between BFreg and BFexp for soluble Zn

Int J Life Cycle Assess (2015) 20:527–540 535



fall in the range of less than 2 orders of magnitude are
found on all continents and cover some high population
density zones, which are assumed likely to receive Zn
emissions. This shows that the breadth of the validation
process is considerable. For the other 75 %, no exper-
imental data was available to confirm the applicability
of WHAM 6.0 for these soils. However, that is not to
say that WHAM 6.0 is invalid for the 75 %; it was

simply not verified with experimental data. Nonetheless,
for at least soluble Zn, BFWHAM fall in the same range
as BFexp. It can therefore be assumed that WHAM 6.0
could yield satisfactory results for a greater proportion
of soils.

The use of WHAM seems appropriate, and soluble Zn is
not necessarily sufficient to define Zn bioavailable fraction.
Future studies should therefore consider two options: one that

Fig. 5 HWSD BFWHAM and
spread of log(BFWHAM) for true
solution (5a and 5b) and soluble
Zn (5c and 5d)

Fig. 6 Extent of WHAM validation for HWSD soil archetypes
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is more representative of the bioavailable fraction of Zn (true
solution Zn), but for which the validation coverage is limited,
and another validated with more confidence (soluble Zn).

Figure 7 illustrates the mean BFWHAM values allocated for
each of the 231 archetypes for true solution and soluble Zn.
Looking at the large proportion of mean BFWHAM values
between 0 and 10−4, the number of useful archetypes could
be reduced. Also, a large proportion of archetypes present
variability greater than 2 orders of magnitude (39.9 % for true
solution and 27.6 % for soluble Zn). However, although

refining is needed, mean values per archetype still represent
a broad BF span.

5 Conclusions

The objective of this study was to obtain the bioavailability of
Zn in soil at global scale with limited soil data (only those
available in world soil databases) to ultimately facilitate its

Fig. 7 Mean BFWHAM for HWSD soil data for true solution (6a) and soluble (6b) Zn
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integration into a global method such as LCA and its gener-
alization to other metals. To do so, the method aimed to
determine Zn bioavailable fraction with a geochemical speci-
ation model. Since no speciation model has been developed
specifically for soils in this context, the usability of WHAM 6
to calculate the Zn bioavailable fraction for world soil types
with limited soil input parameters was tested. The results
confirm that WHAM can predict Zn bioavailable fractions
with an acceptable uncertainty of 2 orders of magnitude for
a large proportion of soils (with predictions of the same order
of magnitude for 41 % of soils) and that WHAM estimates are
better than empirical regression results in terms of rank and
value. Soluble Zn seems to constitute a more reliable indicator
than true solution Zn when compared to experimental results,
except for soils with an OM content lower than 8 %. Zn world
BFs span over 6 and 18 orders of magnitude for soluble and
true solution Zn, respectively, confirming the importance of
considering this variability. The validation work carried out as
part of this project is not exhaustive, and there is no certainty
that WHAM is a good predictor of true solution Zn if it is a
good predictor of soluble Zn. However, it remains an impor-
tant step in validating the use of WHAM for soils with limited
soil data and global scale impact assessments. The use of soil
archetypes, created on the basis of the variability of influent
soil properties on Zn speciation, was important to gauge the
coverage of the validation process. Soil archetypes could also
be an interesting avenue to reduce the required number of BF
values to a manageable global scale number. This could
constitute a promising approach to derive toxicity potentials
in LCA. Prior to this redefinition, it must be determined
whether validated soils correspond to soils that are more likely
to be contaminated bymetals in order to target further needs in
speciation modeling and validation and focus efforts where
they are truly needed. Also, soil archetype definition must be
coherent with toxicity potential variability, which may differ
since it also accounts for exposure and effect factors.
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