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Abstract
Purpose Regionalization in life cycle assessment (LCA) aims to increase the representativeness of LCA results and reduce the
uncertainty due to spatial variability. It may refer to adapting processes to better account for regional technological specificities
(inventory regionalization) or adding of spatial information to the elementary flows (inventory spatialization) which allow using
more regionalized characterization factors. However, developing and integrating regionalization requires additional efforts for
LCA practitioners and database developers that must be prioritized.
Methods We propose a stepwise methodology for LCA practitioners to prioritize data collection for regionalization based on
global sensitivity analysis (GSA) using Sobol indices. It involves several GSA to select the impact categories (ICs) that require
further inventory data collection (IC ranking), prioritize between inventory regionalization and inventory spatialization (LCA
phase ranking), and target specific data to collect. Then we propose a method to derive sector-specific recommendations using
statistical tests to prioritize inventory regionalization versus spatialization and the ICs onwhich to focus inventory data collection.
These recommendations are meant to help LCA practitioners and database developers define their strategy for regional data
collection by focusing on data that have the highest potential to reduce the uncertainty of the results.
Results and discussion The applicability of the methodology is illustrated through three case studies using the ecoinvent v3
database and the regionalized impact methodology IMPACT World+: one on prioritizing data collection in a single biofuel
product system and two meta-analyses of all product systems in two distinct economic sectors (biofuel production and land
passenger transport). Recommendations for regionalization can be derived for an economic sector and appear to be different from
one economic sector to another. GSA seems to be more relevant to prioritize regionalization efforts than an impact contribution
analysis (ICA) approach often used to prioritize data collection in LCA. However, further improvements, such as accounting for
spatial correlations and better computational times for GSA, are required to implement it in LCA.
Conclusions We recommend using the methodology based on GSA to efficiently prioritize regionalization efforts between ICs
and between inventory regionalization and inventory spatialization. We proved that the implementation of IC ranking and LCA
phase ranking is computationally feasible and therefore invite current LCA software providers to unlock this new horizon in LCA
interpretation. We also invite to expand the meta-analysis to all sectors in an LCA database.
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1 Introduction

Life cycle assessment (LCA) is a methodological framework
to assess the potential environmental impacts of a product or
service throughout its life cycle (International Organization for
Standardization (ISO) 2006a, b). LCA is traditionally site ge-
neric, i.e., it disregards the spatial information. The regionali-
zation of LCA started in the 1990s to reduce the inaccuracies
associated with site-generic LCA and increase the discrimina-
tion power of LCA (Vigon et al. 1993; Udo de Haes et al.
1999; Ross and Evans 2002). Indeed, the characteristics of
an activity used in the life cycle inventory (LCI) often vary
depending on the geographic location of the activity, such as
electricity production technology mix, yields, plant operations
(Turconi et al. 2013), or agricultural processes (Yang et al.
2018). Similarly, in the life cycle impact assessment (LCIA)
phase, the potential environmental impact of an elementary
flow (EF) may depend on Bthe location of a given source
and the conditions of its surroundings^ (Potting and
Hauschild 2006). To address this, spatially differentiated
LCIA methods were developed, leading to the calculation of
regionalized characterization factors (CFs) (Pfister et al. 2009;
Boulay et al. 2011, 2018; Helmes et al. 2012; Roy et al. 2013;
Chaudhary et al. 2015; Plouffe et al. 2015). In this paper,
regionalization refers to any attempt to increase the represen-
tativeness of unit processes and environmental phenomena by
accounting for its location (Patouillard et al. 2016, 2018). At
the LCI level, it may refer to adapting inputs or outputs of unit
processes to better account for regional technological specific-
ities or recontextualizing unit processes to better account for
the specific background of an activity (Lesage and Samson
2016), collectively referred to as inventory regionalization
(Patouillard et al. 2018). At the LCI level, regionalization
can also refer to the adding of spatial information to the activ-
ities and elementary flows, referred to as inventory
spatialization (Patouillard et al. 2018), which makes it possi-
ble to use more regionalized CFs. At the LCIA level, devel-
oping spatially differentiated or regionalized LCIA methods is
referred to as impact regionalization. Ultimately, regionaliza-
tion in LCA aims to increase the representativeness and envi-
ronmental relevance of LCA results and reduce the uncertainty
due to spatial variability. However, developing and integrating
regionalization in LCA requires additional work for LCA
practitioners, LCI database developers, and LCIA method de-
velopers, specifically for data collection and integration into
the LCA model (Baitz et al. 2012). LCA practitioners must,
therefore, prioritize their regionalization efforts.

LCA practitioners and LCI database developers traditionally
regionalize or spatialize the inventory, whereas LCIA method
developers regionalize LCIA methods, often relying on years
of research. In this article, we do not investigate data collection
for impact regionalization and rather focus on data collection for
inventory regionalization and spatialization. Inventory

regionalization will affect the type and quantity of flows whereas
inventory spatialization will affect the CF that will be used.
Therefore, the way for LCA practitioners to integrate regionali-
zation and spatialization in LCA model is different, even if the
type of data to be collected may sometimes rely on the same data
sources (Patouillard et al. 2018). Inventory regionalization re-
quires the collection of more representative data on technological
characteristics and the context of activities in a specific region.
Inventory spatialization requires data on the geographic locations
of the assessed activity within its spatial coverage (spatial distri-
bution of the activity), which must then be associated with the
unit process and its elementary flows. It may involve the use of a
geographic information system (GIS). The type of data and
modeling required for inventory regionalization and inventory
spatialization also depends on the assessed impact category
(IC), i.e., the EF classified in the IC and the spatial resolution
of the IC. For instance, when assessing water use IC, data col-
lection will be focused on the water consumption of processes
(for regionalization) and the spatial distribution of water EFs
among watersheds (for spatialization). As the type of data to be
collected and the modeling is different, efforts should be priori-
tized: (i) across ICs to determine which ICs require further prior-
ity data collection for inventory regionalization or inventory
spatialization and (ii) between inventory regionalization or inven-
tory spatialization. In addition, the requirements for data collec-
tion and its prioritization for inventory regionalization and inven-
tory spatializationmay vary fromone economic sector to another.
Therefore, the priority for data collection is product system spe-
cific or specific to economic sectors.

As proposed by Clavreul et al. (2013), there are different
types of uncertainty in LCA: stochastic uncertainty, often re-
ferred to as variability in LCA (spatial, temporal, technological),
and epistemic uncertainty related to the lack of knowledge on
reality, often simply referred to as uncertainty in LCA
(Huijbregts 1998). Here, we use the word uncertainty to refer
to both stochastic and epistemic uncertainty. Here we focus on
regionalization, so we aim at reducing the uncertainty due to
spatial variability. However, LCA practitioner not only aims at
reducing spatial variability but also the overall uncertainty.
Consequently, in our case studies, we account for all uncertainty
sources currently available at the operationalization level, i.e.,
LCI uncertainty covered by the pedigree matrix and spatial var-
iability of CFs for LCIA uncertainty. It means that LCA practi-
tioner may have to prioritize their efforts between inventory data
refinement (including regional data) and spatialization.

An uncertainty analysis aims to describe the uncertainty of
the results, whereas a sensitivity analysis aims to describe the
contribution of input data to the uncertainty of the results (some-
times referred as to uncertainty contribution analysis) (Igos et al.
2015). There are two types of sensitivity analysis: local sensitiv-
ity analysis (LSA) and global sensitivity analysis (GSA). LSA
assesses the effects of small variations of uncertain inputs on the
results (Huijbregts et al. 2001; Sakai and Yokoyama 2002). It is
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the most widely used sensitivity analysis and is generally less
time consuming than GSA. However, it only provides a partial
view of the sensitivity as it only tests a very small variation of the
input parameter around its deterministic value (first-order deriv-
ative). Therefore, it ignores the overall range of variation of input
variables and also ignores the correlation between parameters
(Mutel et al. 2013). However, the overall range of variation
could be large for parameters in LCA, especially when account-
ing for spatial variability of LCI data like in the agricultural
sector (Yang et al. 2018) and spatial variability of regionalized
CFs at the global scale (Roy et al. 2013; Boulay et al. 2018).
GSA explores the effects of the overall range of variation of
input variables on the uncertainty of the results. Therefore, we
focus on the use of GSA to perform sensitivity analysis.

The most sensitive data holds the highest potential to reduce
the uncertainty of the results, whenever possible. Heijungs
(1996) recommends prioritizing data collection by focusing on
the data that most contribute to the impact scores and which are
also the most uncertain. In other words, data collection efforts
should focus on the most sensitive data, i.e., the data that con-
tribute the most to the uncertainty. However, in practice, data
collection is mostly prioritized according to the data that most
contribute to the impact scores without taking uncertainty into
account. This is referred to as impact contribution analysis (ICA).
For instance, different authors propose methods based on ICA to
prioritize LCI database improvements (Reinhard et al. 2016) or
spatial dimension integration in LCA studies (Hernández-Padilla
et al. 2017; Patouillard et al. 2018). ICAwas also used to prior-
itize the recontextualization effort in the Québec LCI database
(Lesage and Samson 2016). Indeed, ICA is already available in
all LCA software and does not require additional computational
time. Sensitivity analysis is rarely used to prioritize data collec-
tion in LCA (Collet et al. 2014; Pfister and Scherer 2015;
Gregory et al. 2016; Wender et al. 2018). While not performing
it themselves, Reinhard et al. (2016) suggest that sensitivity anal-
ysiswould be amore efficient way to prioritize data collection for
LCI database improvements than ICA. Furthermore, only two
methodologies based on GSA exist to prioritize data collection
efforts in LCA (Mutel et al. 2013; Gregory et al. 2016), and one
of them was specifically designed for regionalized LCA model
(Mutel et al. 2013). Both methodologies rely on the Spearman
rank correlation coefficients as GSA indicators. However, the
validity of these coefficients was being questioned, as they tend
to overestimate the main sensitivity for a model with a high
number of input parameters and with interactions (Saltelli and
Sobol’ 1995; Pfister and Scherer 2015). The LCA model is a
model with a high number of uncertain parameters (economic
flows, elementary flows, and CFs could be uncertain) and poten-
tially a high degree of interactions due to the economic matrix
inversion andmatrix multiplications (Wei et al. 2015). Therefore,
this article aims to fill this gap by proposing a methodology to
prioritize data collection based on GSA indicators that are
adapted to the LCA model characteristics.

This article has two main objectives: (i) propose a stepwise
methodology for LCA practitioners to prioritize data collec-
tion for regionalization (i.e., regional data collection) based on
operational GSA tools and discuss the effectiveness of this
approach as compared to an ICA approach and (ii) derive
sector-specific recommendations to prioritize inventory data
refinement versus spatialization and the ICs on which to focus
data collection and modeling. These recommendations are
meant to help LCA practitioners and LCI database developers
define their strategy for regional data collection by focusing
on data that have the highest potential to reduce the uncertain-
ty of the results. The applicability of the methodology is illus-
trated through three case studies: one on prioritizing data col-
lection in a single biofuel product system and two meta-
analyses of all product systems in two distinct economic sec-
tors (biofuel production and passenger land transport sectors),
as defined in the ecoinvent database v3 cutoff (Wernet et al.
2016) applying the regionalized LCIAmethodology IMPACT
World+ (Bulle et al. 2019).

2 Methods

2.1 Overview of the proposed methodology

As shown in Fig. 1, a typical LCA model is an assembly of
different models among which are (i) the LCI model with LCI
input variables calculating EFs as output and (ii) the LCIA
model with LCIA input variables calculating CFs as output.
Uncertainty, and especially uncertainty due to spatial variabil-
ity, may come from LCI input variables and LCIA input var-
iables. However, in practice, LCA practitioners and LCI data-
base developers do not influence LCIA input variables: they
simply apply CFs resulting from LCIA models and provided
by LCIA method developers. Consequently, their focus is on
two groups of input variables: LCI variables, which are LCI
input variables of the LCI model, and LCIA variables, which
are CFs resulting from the LCIA model (Fig. 1). In this study,
we adopt the point of view of LCA practitioners and LCI
database developers, so both groups of variables will be re-
ferred to as input variables. A straightforward approach is to
perform GSA on the LCA results to directly test the influence
of each input variable seeing the LCA model as a black box
(dashed line on Fig. 1). Unfortunately, this GSA approach can
be computationally intensive and time-consuming because of
the large number of variables, high order of interactions, and
correlations between them. For instance, a GSA based on
classical procedure to estimate Sobol indices has a computa-
tional cost of N × (k + 2) where N is the number of samplings
and k the number of uncertain variables (Saltelli et al. 2010;
Wei et al. 2015). For the ecoinvent product system ethanol
production from sugarcane, BR containing about 400,000 LCI
variables, with IMPACTWorld+ which contains about 45,000
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LCIA variables, a straightforward GSA would require about
230 days for calculation (assuming 5000 samplings using
Brightway which is the fastest LCA software for Monte
Carlo). Alternatively, we propose to decompose this complex
problem into smaller elements and solve each one through a
stepwise approach considering the structure of the LCAmodel
and LCA practices (Fig. 1) to target a restricted number of
relevant ICs and variables within LCI or LCIA group vari-
ables. This may be seen as an alternative to the two-step sen-
sitivity analysis proposed byMutel et al. (2013), who propose
to perform a screening on the black box approach to eliminate
insensitive variables and perform a GSA on the remaining
ones. At first, we performed a GSA on endpoint results to
identify the most sensitive midpoint ICs (step 2) after
checking whether uncertainty must be reduced (step 1).
Then, for most sensitive midpoint ICs, we performed a GSA
to compare the sensitivity of the group of LCI variables to that
of the group of LCIA variables (step 3). Finally, a final GSA
tests the influence of each variable before matrix inversion
among the ICs and the group of variables (LCI or LCIA) that
were shown to be most sensitive (step 4). When using a mid-
point LCIA methodology, step 2 should be skipped and step 3
should be applied to all midpoint ICs.

The stepwise and iterative methodology we propose to pri-
oritize the regionalization effort in LCA (Fig. 1) is inspired
from the scheme for the analysis of data inaccuracy in LCI
proposed by Huijbregts et al. (2001). It aims to guide the LCA
practitioner in prioritizing data collection to reduce the overall
uncertainty of LCA results for one product system. It is made
up of four steps, as summarized in Fig. 1 in Electronic
Supplementary Materia (ESM).

& Step 1—determining whether the uncertainty of the results
meets the target level of acceptable uncertainty. The con-
fidence level of the decision-maker in the LCA results is

reflected in the uncertainty level of the results (Refsgaard
et al. 2007). If the confidence level is inadequately esti-
mated, the decision-maker may make the wrong political
or strategic decisions with potential negative impacts
(Wardekker et al. 2008). Therefore, the target level of ac-
ceptable uncertainty should be set by the decision-maker
to make the decision (Laurin et al. 2016). Considering
that, in practice, some uncertainties can hardly be reduced
in LCA (Weidema and Wesnæs 1996), the target level of
acceptable uncertainty should be the outcome of a dialog
between the LCA practitioner and the decision-maker. It
should be in line with factors including the goal and scope
of the study, assessed product system, available time and
financial resources for the study, knowledge of the LCA
practitioner, and data availability (Herrmann et al. 2014).
It should at least be assessed qualitatively and compared
with the uncertainty of LCA results, which addresses input
uncertainty from both LCI variables and CFs, if available.
If the uncertainty of the results does not meet the target
level of acceptable uncertainty, efforts are needed to re-
duce the results uncertainty. This article does not aim to
provide tools or procedures to determine what acceptable
uncertainty levels would be in the context of a study.

& Step 2—selecting the impact category that requires further
LCI data collection (IC ranking). If the uncertainty of the
results does not meet the target level of acceptable uncer-
tainty, the ICs that most contribute to the uncertainty of
endpoint impact scores should be investigated first.
Building on a midpoint-endpoint LCIA methodology
framework, GSA is performed to rank the sensitivity of
each midpoint IC to the corresponding endpoint IC, as
described in Section 2.3. This step could be influenced
by the number of EFs classified in the IC: a sensitive EF
in a low sensitive IC with few EF classified could be
hidden by the high sensitivity of an IC with many EFs.

Input variables LCA phase
Midpoint

results

Endpoint 

results

LCI 
model

Midpoint
LCA 

calcula�on

Endpoint 
LCA 

calcula�on

…

…

LCIA 
model

LCI input 

variables

CFs…LCIA input 

variables

EFs

MPs EPs

…

Step 1
UA

Step 2
GSA

IC ranking

Step 3
GSA

LCA phase ranking

Step 4
GSA

Prioritization
methodology

LCA modelFig. 1 From a black box
approach of the LCA model (red
dashed line as boundaries) to a
stepwise approach to prioritize the
regionalization effort in LCA
based on UA and GSA.
EFs: elementary flows,
CFs: characterization factors,
MPs: midpoint impact categories,
EPs: endpoint impact categories,
GSA: global sensitivity analysis,
UA: uncertainty analysis
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Depending on available resources and the target level of
uncertainty, one or more ICs, starting from the most sen-
sitive, are selected for the next step. If using a midpoint
LCIA methodology, this step should be skipped.

& Step 3—selecting inventory regionalization or inventory
spatialization (LCA phase ranking). This step aims to test
whether the main source of uncertainty lies among the
group of LCI variables or the group of LCIA variables
(i.e., CFs) to inform the LCA practitioner where to prior-
itize data collection. It refers to as LCA phase ranking
(does the uncertainty mainly come from LCI or LCIA
variables?) but it is used to prioritize data collection be-
tween inventory regionalization and spatialization.
Inventory spatialization (e.g., collecting information on
the spatial distribution of an EF) is meaningful only for
spatially differentiated ICs by accounting for the spatial
variability of the spatially aggregated CFs at a broader
geographic scale. The sensitivity of the groups of LCI
and LCIAvariables is quantified using GSA, as described
in Section 2.3. The LCA practitioner will, therefore, focus
the data collection on inventory regionalization if the
group of LCI variables is the main source of spatial uncer-
tainty or on inventory spatialization if the group of LCIA
variables is the main source of spatial uncertainty. If using
a midpoint LCIAmethodology, this step should be applied
to all midpoint ICs.

& Step 4—collecting data for inventory regionalization or
inventory spatialization. The most sensitive {LCI
variable|unit process} couple for inventory regionalization
or {elementary flow|unit process} couple for inventory
spatialization should be identified for selected ICs based
on a GSA and selected for additional data collection. This
GSA may be performed following the framework defined
byWei et al. (2015), who recommend GSA tools based on
the number of input variables by accounting for interac-
tions and correlations in LCA. After refining the model
with the newly collected data, the stepwise process starts
over if the target level of acceptable uncertainty has not
been reached. This article does not aim to provide addi-
tional tools or procedures for step 4.

2.2 Data and settings used for the case studies

We applied the proposed methodology to three case studies:
one based on the assessment of a single product system and
two others based on the meta-analysis of two economic sec-
tors. Our case studies relied on the ecoinvent v3.3 database
(cutoff by classification version) for the LCI data (Wernet
et al. 2016) and the IMPACT World+ regionalized LCIA
methodology for the LCIA data (Bulle et al. 2019). The single
product system that was selected is ethanol production from
sugarcane, BR. We chose two economic sectors, as defined in

ecoinvent v3.3, which use the ISIC rev. 4 classification
(United Nations Statistics Division 2008): biofuel production
sector (19a—liquid and gaseous fuels from biomass) and pas-
senger land transport sector (4922—other passenger land
transport). They include 95 and 127 product systems, respec-
tively. The implemented version of IMPACTWorld+ has two
endpoint ICs, ecosystem quality (EQ) and human health
(HH), and several midpoint ICs. We used the Brightway 2
(Mutel 2017) LCA software to perform the LCA calculation
(conventional LCA calculation, not regionalized LCA calcu-
lation) and the Monte Carlo simulations with independent
sampling (5000 iterations). The code used for the case studies
and a visual description of the sampling procedure for the case
study is available in the ESM.

The uncertainty of the LCI data is based on the pedigree
matrix approach to estimate the probability distribution pa-
rameters of input data using a lognormal distribution (Muller
et al. 2016) most of the time. Several sources of uncertainty
are accounted using the pedigree matrix approach, including
an estimation of the spatial variability of the LCI data. The
version of ecoinvent 3 implemented in Brightway (and in all
other LCA software) does not consider correlations between
input parameters, which may bias the results when performing
an uncertainty or sensitivity analysis (Groen and Heijungs
2017). For instance, mass conservation in a unit process is
not respected between input and output water flows when
performing a Monte Carlo analysis. In the same way, the
amount of land transformation elementary flows (from/to) in
a unit process are not balanced when each amount is indepen-
dently sampled. Therefore, we developed a methodology to
preserve physical correlation, such as mass conservation, be-
tween uncertain input and output flows within a unit process
when performing an uncertainty analysis. It only applies to
input and output flows that are represented as random vari-
ables and if the distribution used to describe the uncertainty of
the flow quantity is a lognormal distribution. Doing so, inputs
are no longer variables but are recalculated based on the out-
put variables. The detail of this methodology is described in
the ESM. We applied it to all land transformation and water
elementary flows.

The uncertainty of LCIAvariables can be decomposed into
the basic uncertainty of CFs from the LCIA model itself and
uncertainty due to the variability of CFs over space and time
(if spatially or time-differentiated). For the LCIAvariables, we
only considered the spatial variability of regionalized CFs as
the source of uncertainty because it is the only type of uncer-
tainty that the LCA practitioner can reduce himself and it is the
only uncertainty information currently available in a format
that can be integrated into an uncertainty analysis. Spatial
variability is accounted for in spatially differentiated ICs in
IMPACT World: freshwater acidification, terrestrial acidifica-
tion, freshwater eutrophication, land occupation, and land
transformation for EQ and water availability for HH. Global
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CFs are used to run LCA calculations for regionalized ICs,
even when we knew the process location, in order to test if
more regionalized CFs are needed or not. Global CFs are
calculated using a weighted average of native CFs based on
different proxies representing the probability for an elementa-
ry flow to occur in each native region (Bulle et al. 2019). The
spatial variability of global CFs is represented with a four-
parameter beta distribution, which has definite lower and
upper bounds and fits a variety of shapes. We used the
moment method described in Riggs (1989) to estimate the
four parameters of each CF distribution. During the Monte
Carlo sampling, we also accounted for the LCIA spatial cor-
relation in a unit process for land transformation IC only and
only for some EFs, i.e., sampled value for CF from one type of
land use is consistent with the sampled value for CF to one
type of land use. Other spatial LCIA correlations for region-
alized ICs are not considered as data and tools are not ready to
implement it in a reasonable amount of time. More specifical-
ly, we are sampling the same CF for all EFs and disregarding
the EF location, i.e., implicitly assuming all activities are oc-
curring in the same location.

2.3 GSA methodology used for IC ranking and LCA
phase ranking

GSA may be performed using analytic (Imbeault-Tétreault
2010; Heijungs 2010) or sampling methods. The former is
less computationally intensive but involve certain limita-
tions, among which the fact that the results are only robust
for slight input variations and do not account for the cor-
relation between input variables (Heijungs 2010).
However, in the LCA framework, probability density func-
tions of LCA input variables may span several orders of
magnitude (especially regionalized CFs) and are likely to
be correlated with each other. GSA using sampling
methods are more computationally intensive, but they can
account for large input variations and the correlation be-
tween variables. Therefore, they are better adapted to the
LCA framework. There are different approaches to
performing a GSA using sampling methods. These may
be divided into two groups: (a) screening approaches
(e.g., elementary effects method), which aim to simplify a
model by identifying non-influential variables before
performing a more targeted GSA, and (b) importance mea-
sures (e.g., correlation coefficient, Sobol indices) that
quantify the importance of input variables on the results
(Iooss and Lemaître 2015). In this article, because we were
interested in identifying most sensitive variables, we fo-
cused on importance measures. Importance measures
based on regression techniques, such as the Spearman cor-
relation coefficient, are often used in LCA (Mutel et al.
2013; Pfister and Scherer 2015) but perform poorly for
models with interaction (nonlinear) (Saltelli and Sobol’

1995; Borgonovo and Plischke 2016). Since LCA is a
model with interactions, importance measures based on
regression techniques should be avoided. Sobol indices
(also called sensitivity indices) (Sobol 1993) are based on
variance decomposition and are recommended for sensitiv-
ity analysis in LCA as they account for interactions and
correlations (Padey et al. 2013; Wei et al. 2015).
Therefore, the sensitivity indices are chosen as sensitivity
measurements for GSA for IC ranking and LCA phase
ranking.

Performing a GSA to obtain sensitivity indices may be
divided into two steps: (1) uncertainty analysis and (2) esti-
mation of sensitivity indices based on the uncertainty analysis
results. Here, uncertainty analysis is performed using a Monte
Carlo simulation. The estimation of sensitivity indices to rank
the ICs and LCA phase, respectively, is described in the fol-
lowing sections.

2.3.1 Estimation of sensitivity indices from GSA

Sensitivity indices are non-parametric, i.e., no assumption
on the form of the probability distribution for the input
variables or the result is required to calculate it. They could
be calculated for any kind of model, including non-linear
ones. Two important measures may be derived from Sobol
variance decomposition: (1) the first-order sensitivity in-
dex SI1X i , which measures the main effect of the variable
Xi on the results, and (2) the total sensitivity index SITX i ,
which measures the total effects of the variable Xi on the
results, i.e., the main effect and the interaction effects with
the other variables (Saltelli et al. 2010). Each sensitivity
index has its own purpose (Saltelli and Tarantola 2002;
Saltelli 2017): (1) first-order sensitivity indices are de-
signed for factor prioritization, i.e., to identify the most
sensitive variables; (2) total sensitivity indices are de-
signed for factor fixing, i.e., to identify non-sensitive var-
iables in order to fix them for model reduction purposes to
build a simplified model, for instance (Padey et al. 2013).
However, both provide complementary information on the
influence of a variable in the model. Indeed, a variable may
have no main effect but still influence the model through
the interaction effects. Estimating first-order sensitivity in-
dices is relatively easy, whereas estimating total sensitivity
indices is more computationally intensive (Saltelli et al.
2010). However, total sensitivity indices may be calculated
easily for simple models, as demonstrated in Sections 2.3.2
and 2.3.3. Since the purpose of this article is to prioritize
the data collection effort, we selected the first-order sensi-
tivity index as an indicator for prioritization but always
check higher order sensitivity indexes that reflect the inter-
action effects to remain critical with regard to the total
effect of the variables on the model.
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For the model Y = f(X1, X2,…XK) where Xi are the uncer-
tain (or random) variables of the model and Y is the output, the
first-order sensitivity index (SI1X i ) and total sensitivity index
(SITX i ) for Xi are defined as follows (Saltelli et al. 2010):

SI1X i ¼
Var E Y jX ið Þð Þ

Var Yð Þ ð1Þ

SITX i ¼ SI1X i þ ∑
i≠ j

SI2X iX j þ…þ SIkX i…X k ð2Þ

where

& Var(Y) is the variance of Y;
& Var(E(Y| Xi)) = E((E(Y| Xi) − E(E(Y| Xi)))

2). Var(E(Y| Xi)) is
the variance of E(Y| Xi) (the expectation of Y conditional
on Xi). It represents Bthe expected reduction in variance
that would be obtained if Xi could be fixed^ (Saltelli et al.
2010).

& SIkX i…X k is the kth-order sensitivity index which repre-
sents the sensitivity due to interactions between variables
Xi… Xk.

IfX1, X2,… Xk are uncorrelated, the following equation can
be written (Saltelli et al. 2010):

∑
i
SI1X i þ ∑

i
∑
j>i

SI2X iX j þ…þ SIkX 1…X k ¼ 1 ð3Þ

It is important to point out that, when Xi are correlated,
sensitivity indices (SI1X i and SITX i ) may still be calculated
and interpreted in the same way as in the uncorrelated case
(Most 2012). When Xi are correlated, sensitivity indices con-
tain two parts: Bthe correlated contribution (by the correlated
variations, i.e. variations of a parameter which are correlated
with other parameters) and the uncorrelated contribution (by
the uncorrelated variations, i.e. the unique variations of a pa-
rameter which cannot be explained by any other parameters)^
(Xu and Gertner 2008). However, the correlated and
uncorrelated contributions to sensitivity indices cannot be
distinguished, unless a dedicated procedure described by Xu
and Gertner (2008) is applied. The first-order sensitivity in-
dex, which contains both parts, still identifies the most sensi-
tive variables and may thus be used for factor prioritization
(Most 2012).

To estimate the first-order sensitivity index, as suggested
by Most (2012), we performed a Monte Carlo sampling to
obtain 5000 samples x̂ij for the set of input random variables
X = {X1, X2,…XI} and then computed the 5000 associated
values of model output ŷ j. The model output Y values may

be plotted against the values obtained for a single variable Xi,
called scatter plot, that represents (Y| Xi) (see the ESM for an
example of a scatter plot). We then sorted the sampled values
x̂ij and divided them into 100 subsets. For each subset, we

calculated the average value of ŷ j to obtain an estimation of

E(Y| Xi), also called smoothed curve. Finally, we obtained an
estimation of Var(E(Y| Xi)) by calculating the variance of the
estimated smoothed curve, which was then used to estimate
SI1X i . The estimation of the first-order sensitivity indices for
a simple model is provided as examples in the ESM.

2.3.2 Impact categories’ ranking

To perform the IC ranking for a product system, we applied a
GSA on the following model f1 called IC ranking, which
represents the aggregation of midpoint impact categories
expressed in endpoint units in the LCIA phase of an LCA.
Their contribution to an endpoint impact category is assessed.

f 1 YMP1 ;…; YMPNð Þ ¼ ∑
i
YMPi ¼ YEP j ð4Þ

& YEP j : total impact score for one endpoint impact category

(EPj).
& YMPi : impact score contribution to the EPj of the ith mid-

point impact category (MPi).
& N: number of MPi contributing to an EPj.

This model is a one-order additive model, so there is no
interaction between variables. Inputs YMPi are correlated since
the same LCI model is used to calculate them and they may
have common EFs, so Eq. (3) does not apply. For a product
system and for each EPj, we estimated SI1 for each YMPi ; as
described Section 2.3.1, and ranked them. The higher the
SI1YMPi

, the more sensitive MPi is to EPj.

2.3.3 LCA phase ranking

Here, we present the method used to estimate the sensitivity of
the two groups of LCI and LCIA variables, respectively. LCI
input variables may be correlated with each other, as may
LCIA input variables. But, in the LCA framework, it is gen-
erally assumed that LCI variables are not correlated with
LCIA variables. As recommended by Wei et al. (2015), to
account for correlation in LCA when performing GSA, we
defined uncorrelated groups of correlated variables to estimate
the sensitivity indices of each group. This procedure refers to
group sensitivities in order to better understand the sensitivity
of a group of variables, as described by Jacques et al. (2006).
We, therefore, created two uncorrelated groups of variables:
XLCI gathering all LCI input variables and XLCIA gathering all
CFs. To perform the LCA phase ranking for a product system,
we applied a GSA on the following model f2 called LCA phase
ranking, which represents the midpoint LCA calculation:

f 2 XLCI ;XLCIAð Þ ¼ YMPi½ � ð5Þ
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Due to the structure of LCA calculation, this model is a
two-order model. As input variables are assumed to be
uncorrelated, Eq. (3) is true: SI1XLCI þ SI1XLCIA þ SI
2XLCI ;LCIA ¼ 1 (Saltel l i et al . 2010). SI2XLCI ;LCIA is the
second-order sensitivity index that represents the sensitiv-
ity of the model to the interactions between XLCI and XLCIA,
i.e., Bthe part of the variance of Y due to Xi and Xj which is
not included in the individual effects of Xi and Xj^
(Jacques et al. 2006). Here, if SI2XLCI ;LCIA is higher than
SI1XLCI þ SI1XLCIA , no prioritization between XLCI and
XLCIA can be made. We will consider that XLCI and XLCIA

are equally important and that data collection should be
enhanced for both.

As suggested by Jacques et al. (2006), we created two
mutated models based on the reference model Y = f2(XLCI,
XLCIA) to estimate the first sensitivity index for XLCI and
XLCIA: Y ′ = f2′(XLCI, XLCIA = fixed) is a mutated model
where only LCI variables are uncertain because LCIA var-
iables are set to their deterministic value; Y ′ ′ = f2 ′ ′(XLCI =
fixed, XLCIA) is a mutated model where only LCIA vari-
ables are uncertain because LCI variables are set to their
deterministic value. By construction, first-order sensitivity
indices for each mutated model are equal to 1: SI10X LCI ¼ 1
and SI100X LCIA ¼ 1.

Based on Jacques et al. (2006), first-order (and higher or-
der) sensitivity indices may be estimated for the mutated
models based on the value of sensitivity index of the reference
model SIX i and the ratio of the variance between the reference

model and the mutated models: SI 0XLCI ¼ SIXLCI *
Var Yð Þ
Var Y

0ð Þ and

SI 00XLCIA ¼ SIXLCIA*
Var Yð Þ
Var Y

0 0ð Þ.
So, for a product system and the selected midpoint ICs, the

LCA phase ranking is determined by comparing the values for
SI1XLCI and SI1XLCIA ; which may be estimated by:

SI1XLCI ¼
Var Y

0� �

Var Yð Þ ð6Þ

SI1XLCIA ¼
Var Y

0 0� �

Var Yð Þ ð7Þ

with Var(Y) the variance of the Y for the reference model,
Var(Y′) the variance of the Y′ for the corresponding mutated
model, and Var(Y ′ ′) the variance of the Y″ for the correspond-
ing mutated model. Var(Y′) is estimated based on a Monte
Carlo simulation addressing only LCI uncertainty, setting
LCIA variables to their deterministic value (see Section 2.2
for Monte Carlo settings in case studies). Var(Y ′ ′) is estimated
based on a Monte Carlo simulation addressing only LCIA
uncertainty, setting LCI variables to their deterministic value.
Var(Y) is estimated based on a Monte Carlo simulation

addressing LCI and LCIA uncertainty simultaneously. In ad-
dition, from Eq. (3), we calculated:

SI2XLCI ;LCIA ¼ 1−SI1X LCI−SI1XLCIA ð8Þ

2.4 Methodology for the meta-analysis per sector

The procedure described in Section 2.1 applies to a product
system in a specific study. To assess another product system,
the same procedure should be applied from the beginning.
Here, we propose amethod to test whether the stepwise approach
may be generalized to all product systems in a specific economic
sector and whether the trends in IC ranking and LCA phase
ranking are maintained. If trends are observed and statistically
significant, specific recommendations may be formulated for an
economic sector regarding the data collection prioritization for
regionalization. LCA practitioners and LCI database developers
would be able to use the requirements without performing addi-
tional sensitivity analyses unless the product system they are
interested in contains disruptive technologies or technologies that
are poorly represented in the database that describes the econom-
ic sectors.

The method we use to perform a meta-analysis of all the
product systems in a given sector in an LCI database to test
sectorial trends in IC ranking and LCA phase ranking contains
four steps.

1. Uncertainty analysis of all product systems in a sector:
We performed three Monte Carlo simulations per product
system. All three simulations rely on the same sampled
values at each iteration for LCI variables and CFs: (a)
solely addressing LCI uncertainty, setting LCIAvariables
to their deterministic value; (b) solely addressing LCIA
uncertainty, setting LCI variables to their deterministic
value; and (c) simultaneously addressing both LCI and
LCIA uncertainty. For each simulation and each iteration,
we obtained impact scores for all ICs.

2. GSA to estimate the first-order sensitivity indices of all prod-
uct systems in a sector: Using impact scores from (c), we
derived SI1 to rank midpoint ICs for each endpoint IC, as
described in Section 2.3.2. Using samplings from (a) and
(b), we derived SI1 for the groups of LCI variables and
LCIA variables to identify the most sensitive LCA phase
(LCA or LCIA), as described in Section 2.3.3. Therefore,
for each product system, we obtained the sensitivity-
based ranking of midpoint ICs and LCA phases.

3. Statistical tests for IC ranking in a sector: We used the
one-tailed and non-parametric Page’s trend test for each end-
point IC to test whether the mean trend of the midpoint IC
ranking is statistically significant (Page 1963). We tested the
null hypothesis H0 : SI1MPk ¼ SI1MPl for k and l, referring
all midpoint ICs contributing to the selected endpoint. If H0
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may be rejected with a level of significance < 0.05, then we
assume that the trend for the IC ranking for the sector is H1

: Mean SI1MP1ð Þ > … > Mean SI1MPkð Þ w i t h Mean
SI1MPkð Þ representing the mean value of SI1MPk among
all the product systems in the sector.

4. Statistical tests for LCA phase ranking in a sector: We
used the one-tailed and non-parametric Wilcoxon signed-
rank test for paired data to test whether a trend statistically
exists for the LCA phase ranking among all the product
systems for the sector for each midpoint IC (Wilcoxon
1945). We tested the null hypothesis H0 : SI1X LCI ¼ SI
1X LCIA for each midpoint IC for the paired data
SI1XLCI ; SI1XLCIAð Þ of each product system. If H0 may be
rejected with a level of significance < 0.05, then we assume
that the trend for the LCA phase ranking for each midpoint
IC for the sector is H1 : SI1XLCI > SI1X LCIA or SI1XLCI <

SI1XLCIA depending on the sign of the statistics of the test.

3 Results

The results presented in this section illustrate how to apply the
methodology proposed in Section 2.1, specifically focusing
on step 2 IC ranking and step 3 LCA phase ranking. For
certain cases studies, we (a) identified the most sensitive ICs
to be investigated in priority and (b) determined whether data
collection should prioritize inventory regionalization or inven-
tory spatialization. First, we applied the methodology to a
single product system and then present the results of the
meta-analysis of two economic sectors.

3.1 Operationalization of the methodology
through a single product system

We selected the ethanol production from sugarcane, BR prod-
uct system from the ecoinvent v3.3 database (cutoff version).
It belongs to the biofuel production sector that is studied in the
next section. Figure 2 illustrates the first-order sensitivity in-
dices (SI1) for the IC ranking model for all midpoint ICs for
the two endpoint ICs (EQ and HH). The SI1 calculation con-
siders the uncertainty from LCI and LCIA variables simulta-
neously. The higher the SI1, the more sensitive the midpoint
IC. The results in Fig. 1 clearly show that land transformation
IC (EQ) and water availability IC (HH) should be prioritized
for regionalization. However, these results should be consid-
ered with caution given the way we sampled CFs for the two
ICs, i.e., without accounting for spatial correlation (see
Section 4.2.3 for the discussion).

Figure 3 shows the sensitivity indices for the LCA phase
ranking model for all midpoint ICs for the two endpoint ICs
(EQ and HH) for the selected product system. SI1_LCI

represents the share of the IC sensitivity due to the group of
LCI variables only. SI1_LCIA represents the share of the IC
sensitivity due to the group of LCIA variables only.
SI2_LCI,LCIA represents the share of the IC sensitivity due to
the interactions between LCI and LCIAvariables, i.e., sensitivity
which is not purely due to LCI variables only or LCIAvariables
only but due to the term where both are multiplied. The sum of
all sensitivity indices for each IC is equal to one since the groups
of LCI variables and the group of LCIAvariables are uncorrelat-
ed. Results show that for both land transformation IC (EQ) and
water availability IC (HH), the group of LCIA variables is the
most sensitive. Therefore, the regionalization effort should focus
on inventory spatialization for both ICs. Again, these results
should be considered with caution (see Section 4.2.3 for the
discussion). For all regionalized ICs except land occupation IC
(EQ), the group of LCIA variables is the most sensitive, and
regionalization effort should focus on inventory spatialization.
For other ICs, efforts should focus on inventory refinement.

3.2 Meta-analysis of two economic sectors: biofuel
production and passenger land transport

Results for the sector meta-analysis are illustrated in Fig. 4 for the
biofuel production (left) and passenger land transport (right) sec-
tors for EQ (figures for HH are in the ESM). It represents mid-
point ICs sorted in decreasing order of their respective mean
values for the sector of first sensitivity index from the IC ranking
model, as per Fig. 2. The length of the histograms represents the
mean for all product systems within each sector of the first-order
sensitivity index from the IC ranking model. Stacked portions in
the histograms represent the share of sensitivity due to the groups
of LCI variables, the group of LCIA variables and the interac-
tions between LCI and LCIA variables, as per Fig. 3. Each por-
tion is calculated based on the mean for all product systems
within each sector of corresponding sensitivity index from the
LCA phase ranking model.

Statistical test results for each sector, as described in
Section 2.4, are statistically significant with a confidence level
of 95 to > 99%. They indicate that there are similar IC and
LCA phase rankings across all product systems in each sector.
For HH, water availability IC (HH) is the most sensitive mid-
point IC for both studied sectors. As the sensitivity mainly
stems from the group of LCIA variables, efforts should first
focus on spatializing the inventory for this midpoint IC for
product systems pertaining to both sectors. For EQ endpoint,
the efforts should focus on inventory spatialization of land
transformation IC for the biofuel production sector. For the
passenger land transport sector, efforts should focus on inven-
tory refinement of global warming and marine acidification
ICs. In both sectors, the group of LCIA variables is generally
the most sensitive for almost all regionalized ICs, except for
land occupation IC for both sectors and land transformation IC
for passenger land transport only.
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4 Discussion

4.1 Strengths of the methodology

Impact contribution analysis (ICA) is often used to priori-
tize data collection in an LCA study even though Heijungs
(1996) stated that data prioritization should also account
for sensitivity in addition to ICA. Figure 5 presents the
comparison of IC ranking based on ICA versus GSA for
the ethanol production from sugarcane, BR product sys-
tem. It highlights different rankings depending on the pri-
oritization methodology. The most sensitive midpoint IC is
land transformation, whereas this IC is the least contribut-
ing midpoint to EQ impact score. In addition, the three
most impacting ICs are not ranked as the most sensitive
ICs. This figure underlines that prioritizing efforts based
on ICA can mislead LCA practitioners by leading them to
focus their data collection efforts on ICs that have a low
sensitivity index and thus a low potential for uncertainty

reduction. As a reminder, only uncertainty due to spatial
variability for LCIA variables is accounted here during the
GSA. GSA integrating all types of uncertainty will provide
different results. In general, there is no reason to expect
that the ICA and the GSA provided to same rankings.
ICA is a way to decompose the impact score (deterministic
results) to identify the origins of the impacts. GSA is a way
to decompose the uncertainty (probabilistic results) to
identify the origins of the uncertainty. A deterministic val-
ue could be low but the associated uncertainty (its sensi-
tivity index for instance) could be high, or vice versa. The
deterministic value of a parameter does not reflect the
spreading of this parameter. Moreover, ICA does not make
it possible to rank LCA phases to prioritize between inven-
tory regionalization and spatialization. GSA appears to be
more relevant than ICA to IC ranking and LCA phase
ranking for this specific example. The relevance of GSA
as compared to ICA for IC ranking should be studied for all
the product systems of the different economic sectors.
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Fig. 2 First-order sensitivity
indices for the IC ranking model
for midpoint ICs pertaining to EQ
endpoint (left) and HH endpoint
(right) for the ethanol production
from sugarcane, BR product
system, sorted in decreasing order
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4.2 Challenges in the operationalization
of the methodology

4.2.1 Setting the acceptable level of uncertainty

The first step of the proposed methodology is to set the target
level of acceptable uncertainty for decision-makers. It may be
challenging to identify and quantify the targets, and this may
be related to (i) the confidence level between two scenarios in
the comparison or (ii) the distribution of the results themselves
when the purpose is not to compare scenarios. (i) may be
quantified by using statistical tests between scenarios, taken
into account correlations between scenarios if relevant, to as-
sess the robustness of the conclusion and compare the confi-
dence level set by the decision-maker (Henriksson et al.
2015). For instance, scenario A would be considered better
than scenario B if the confidence level is higher than 75%.

(ii) may be quantified by calculating a statistic measure of the
dispersion of the results as, for instance, the coefficient of
variation (standard deviation divided by mean value), inter-
quartile ratio, or any metric reflecting the results’ uncertainty.
The choice of statistic measure of dispersion should be con-
sistent with the properties of the result (underlying distribu-
tion, negative results, null mean, etc.).

In both cases, considering LCA practitioners’ and decision-
makers’ lack of knowledge and experience working with sta-
tistical tools, setting the target level of acceptable uncertainty
may be a challenging task. In addition, this target level must
be realistic with regard to the expected level of uncertainty of
the different LCA studies. For instance, consequential LCA
and prospective LCA are expected to be more uncertain by
nature (Herrmann et al. 2014). Setting the acceptable level of
uncertainty can also be part of the iterative process in LCA:
uncertainty may be reduced step by step, and the decision-
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Fig. 3 Sensitivity indices for the
LCA phase ranking model for
midpoint and endpoint ICs
pertaining to EQ endpoint (top)
and HH endpoint (bottom) for the
ethanol production from
sugarcane, BR product system.
SI1_LCI: first-order sensitivity
index for LCI variables; SI1_
LCIA: first-order sensitivity index
for LCIA variables; SI2_
LCI,LCIA: second-order
sensitivity index due to the
interactions between SI1_LCI:
first-order sensitivity index for
LCI and LCIA variables.
Regionalized ICs are identified
with the asterisk symbol
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maker may decide when he/she is comfortable with the uncer-
tainty level. Further research and experiments on the mean-
ings of acceptable uncertainty for decision-making and how to
realistically assess it quantitatively must be conducted.

4.2.2 Uncertainty inputs in LCA

The proposed methodology fully relies on uncertainty assess-
ment. Therefore, the results strongly depend on what type of
uncertainty is included in the model and the way this proba-
bility is modeled. In this research, we only included parameter
uncertainty from LCI and LCIA. We do not account for sce-
nario or model uncertainty of the LCAmodel. The uncertainty
of LCI variables, as defined in ecoinvent v3.3, includes an

estimation of their variability and part of their epistemic un-
certainty. The variability component of LCI uncertainty con-
tains spatial variability, as well as other variability sources.
Therefore, if LCI sensitivity is predominant, additional data
collection may be required to obtain more representative data
to better describe the spatial variability (inventory regionali-
zation) or more representative data in general, not only focus-
ing on spatial variability. The uncertainty of LCIA variables,
as defined in our case studies, only accounts their spatial var-
iability due to the loss of information when aggregating CFs
from the native scale to a larger country, continent, or global
scale.

To expand the use of our proposed methodology to prior-
itize data collection for any kind of data, not only spatial data,
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Fig. 4 Mean values of all product
systems across the biofuel
production sector (top) and the
passenger land transport sector
(bottom) of the first-order
sensitivity index from the IC
ranking model for each midpoint
ICs pertaining to EQ endpoint.
Stacked portions in the
histograms represent the
contribution of mean values of all
product systems across the sector
of sensitivity indices from the
LCA phase ranking model: SI1_
LCI: first-order sensitivity index
for LCI variables; SI1_LCIA:
first-order sensitivity index for
LCIA variables; SI2_LCI,LCIA:
second-order sensitivity index
due to the interactions between
SI1_LCI: first-order sensitivity
index for LCI and LCIA
variables. Regionalized ICs are
identified with the asterisk
symbol
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other sources of uncertainty for LCIA parameters should be
added, such as the basic uncertainty of CFs from the LCIA
model itself.

4.2.3 Correlations in LCI and LCIA

Correlations in LCA could affect the validity of an uncertainty
assessment (Groen and Heijungs 2017). Here are some corre-
lations in LCA.

& LCI correlation

& Physical correlation within the unit process itself, like
mass balance. For instance, the CO2 emissions from the
combustion of carbon-based fuel in a vehicle should be
correlated with the quantity of fuel.

& LCIA correlation for regionalized ICs

& Spatial correlation at the product system level: Each unit
process should have its own location so the location of
each unit process in a product system should be
decorrelated. Therefore, different sets of CFs for each unit
process in the product system should be used for each
Monte Carlo iteration.

& Spatial correlation between ICs (inter-ICs): For a unit pro-
cess, the chosen random region during one iteration
should be consistent across all regionalized ICs, i.e., ICs
should be spatially correlated.

& Spatial correlation between CFs within an IC (intra-CFs):
For a unit process and for one IC, the chosen random
region during one iteration should be consistent across
all regionalized CFs, i.e., CFs should be spatially
correlated.

We only accounted for certain correlations in the uncertain-
ty assessment of our case studies. Regarding LCI correlation,
we only considered the physical correlation in LCI unit pro-
cesses for water elementary flows and land transformation
elementary flows. Regarding LCIA correlation, the same set
of CFs is used for all unit processes in a product system during
one Monte Carlo iteration because the inventory is aggregated
before characterization (traditional LCA calculation). This is
one of the limitations of our case study as we ignore the spatial
correlation at the product system level. In addition, CFs are
independently sampled between ICs and within IC during
Monte Carlo analysis. Because we only considered spatial
variability in the CF, the random sampling of a CF is basically
identical to choosing a CF for a given region. Therefore, the
location of the unit process is not consistent across ICs and
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across CFs for a given IC. Therefore, we ignore the spatial
correlation inter-ICs and intra-ICs. The assumption of inde-
pendent CF sampling may explain the high sensitivity of land
transformation and water availability. Indeed, the respective
elementary flows entering and leaving the same unit process
are characterized by two different CFs. We only account for
the intra-CF spatial correlation for the elementary flows of a
unit process associated with the same land use type for land
transformation because it is straightforward to implement (the
same CF value is used at each iteration for the same land use
type, we just switch its sign from from to to). Implementing
intra-CF spatial correlation for other elementary flows for land
transformation and water availability is more challenging.
Indeed, water flows entering and leaving a unit process are
not released in the same compartment as are characterized by
different CFs. In the same way, the land is rarely transformed
from one land use type to the same land use type. When there
is a change in land use type, different CFs that are not from the
same distribution should be used. We would have had to use a
GIS software and invest in efforts beyond the resources avail-
able for this study. Away to solve this issue would be that LCI
database developers provide net inventory flows.

One way to test whether intra-CF spatial correlation is im-
portant to implement would be to test the distribution of the
LCIA sensitivity among {EF|unit process} for land transfor-
mation and water availability. To do so, it is possible to cal-
culate an inequity measure like the Gini coefficient, as done
by Reinhard et al. (2016), for the distribution of the impact
contribution between unit processes. If the inequity measure is
low, the sensitivity is equally spread between {EF|unit pro-
cess} and intra-CF spatial correlation has a significant influ-
ence and should be implemented. This should be tested in the
future.

The best way to account for LCIA spatial correlations is to
perform Monte Carlo using regionalized LCA calculation
(Mutel and Hellweg 2009; Mutel et al. 2012). However, this
increases computational time. Further research and tool adap-
tation is needed to properly address correlations in LCA, es-
pecially regarding spatial correlation when performing region-
alized LCA. It could be a way to reduce the model uncertainty
in LCA. In addition, seeing as the same LCI data is used to
calculate all ICs, regionalizing the inventory for one IC may
lower the uncertainty of other ICs.

4.2.4 Prioritization of additional data collection for inventory
regionalization and inventory spatialization

GSA performed in our case studies focuses on the second step
(IC ranking) and the third step (LCA phase ranking) of the
proposed stepwise methodology. In the fourth step of the pro-
posed methodology, data that requires further collection for
inventory regionalization and inventory spatialization should
be identified. As explained before, we recommend carrying

out the fourth step by performing a GSA. As the second and
third steps are based on GSA, in the fourth step, the practi-
tioner can focus on the most sensitive parts of the LCAmodel,
i.e., on selected ICs and on LCI or LCIA variables. It may
considerably reduce the number of input variables to test for
sensitivity during the GSA in the fourth step. However, the
model on which the fourth step GSA should be performed still
has hundreds to thousands of input variables with a high order
of interactions between them. Therefore, estimating sensitivity
indices for this model could still be computationally intensive
(Groen et al. 2017). In addition, LCA practitioners may not
have the time or tools to perform a GSA. If it is the case and if
the IC and LCA phases have been prioritized based on GSA,
ICA could be used for the fourth step since it is less time
consuming and already implemented in all LCA software
and because the LCA practitioner would at least be focusing
on the most sensitive part of the model.

4.2.5 Requirements for implementation in current practices

To operationalize our methodology, uncertainty sources from
both LCI and LCIA variables should be considered. Most
available LCA software makes it possible to account for the
uncertainty from LCI variables during Monte Carlo sampling.
However, to our knowledge, probability distributions for
LCIA variables can currently only be set with openLCA and
Brightway.

Besides, uncertainty information on CFs is often missing in
LCIA methods or provided in an unusable format. When pro-
vided, often only the extrema, the mean, or the standard devi-
ation are given. This type of information is not sufficient for
Monte Carlo sampling as implemented in software since soft-
ware requires probability distributions and is often restricted
to limited standard probability distribution functions (uniform,
triangular, normal, lognormal, etc.). In some cases, it is chal-
lenging to perfectly fit a probability distribution on the histo-
gram of sampled CF. For instance, for some IC in the
IMPACT World+ method, the histogram representing the
sampled CF is multimodal. New computational approaches
that directly sample the values from the CF histogram would
solve this issue if LCIA developers provided the histogram
with the originally sampled CF.

GSA for IC ranking (step 2) and LCA phase ranking (step
3) is divided into two tasks: (1) the uncertainty analysis based
on Monte Carlo simulation and (2) the calculation of sensitiv-
ity indices, as described in Section 2.3.1. The computational
time to analyze one product system with GSA for steps 2 and
3 only is less than a minute using Brightway, mainly due to the
computational time for the Monte Carlo sampling. The esti-
mation of sensitivity indices for the IC ranking and LCA
phase ranking models is quick since the models are simple
(one-order model and two-order uncorrelatedmodel) and have
very few input variables. Computationally speaking, we
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proved that steps 2 and 3 of our methodology could be imple-
mented in standard LCA software to enhance the interpreta-
tion of LCA results with regard to sensitivity analysis and
guide LCA practitioners in an efficient data collection effort.
The fourth step of the methodology requires a GSA that may
involve hundreds to thousands of variables to be tested. The
time to run a GSA increases with the number of input vari-
ables and the level of interactions between them and further
development may, therefore, be required to reduce computa-
tional time in GSA before implementation in standard LCA
software.

Computational time for meta-analysis of a sector is longer,
as Monte Carlo sampling should be performed for all product
systems belonging to the same sector. Implementing other
sampling techniques alternative to Monte Carlo samplings,
like Latin hypercube or quasi-Monte Carlo sampling, could
lower the computational time (Groen et al. 2014). Another
avenue to improve the computational time to precompute once
Monte Carlo impact scores for a database with an LCIAmeth-
odology allowing LCA practitioner to reuse Monte Carlo im-
pact scores without performing the Monte Carlo simulation
themselves (Lesage et al. 2018).

4.3 Discussion on the results of the case studies

4.3.1 Use and limits of results for the meta-analysis per sector

The results of the sector-specific meta-analyses aim to provide
general recommendations for IC ranking and LCA phase
ranking that may be used for any product system in the sector
without performing a specific analysis for the product system.
Pre-calculated results for all sectors would enable LCA prac-
titioners to prioritize their regionalization effort for any prod-
uct system in the analyzed sectors without needing to perform
a GSA themselves. However, if the analyzed product system
is poorly represented in the original database describing the
sector or if the product system is a disruptive technology, the
meta-analysis may not provide representative results.

The rank of the most sensitive IC and LCA phase depends
on the LCI database and LCIA methodology. It would be
relevant to apply the meta-analysis to different LCI databases
and LCIA methodologies to test the robustness and/or com-
plete the results per sector. Unfortunately, most LCI databases
do not provide the uncertainty information required.

4.3.2 Importance of integration of LCIA regionalization

The meta-analysis of the two sectors shows that inventory
spatialization should be prioritized for almost all regionalized
ICs because CFs are more sensitive variables than LCI vari-
ables. This suggests the need for LCA software developers
and LCIA method developers to implement and facilitate the
use of regionalized LCIA methodology. It also highlights the

need to include the spatial variability of regionalized CFs
when performing uncertainty or sensitivity analysis in LCA.
Nevertheless, this recommendation should be better supported
by a systematic analysis of all sectors in an LCI database.

4.4 Potential adaptation for future work

The proposed methodology was designed to prioritize region-
alization efforts by accounting for uncertainty related to spa-
tial variability. This approach may be adapted to any type of
uncertainty by developing a similar methodology based on
GSA, including all uncertainty sources. Steps 1, 2, and 3
would remain relevant for this methodology. The methodolo-
gy could also be adapted for normalization and weighting.

Here, we performed the meta-analysis differentiating prod-
uct systems in their economic sectors. Performing a meta-
analysis differentiating the product systems based on geo-
graphic location (e.g., their country) may help identify poten-
tial patterns regarding the need for data collection depending
on geographic location. It may be a complementary avenue to
provide specific recommendations for data collection.

5 Conclusions

We proposed a stepwise methodology for LCA practitioner to
prioritize data collection for regionalization purposes based on
global sensitivity analysis (GSA). It makes it possible to rank
the most sensitive impact categories (ICs) within a given end-
point (step 2) and identify whether the LCI or LCIA group of
variables is the most sensitive LCA phase (step 3). We recom-
mend using the methodology to efficiently prioritize regional-
ization efforts between ICs and between inventory regionali-
zation and inventory spatialization.

The use of GSA instead of impact contribution analysis
(ICA) to prioritize the data collection effort enables modelers
to focus on the most sensitive data with the highest potential
for uncertainty reduction. It also makes it possible to prioritize
efforts between inventory regionalization and inventory
spatialization, which is not feasible with ICA. We proved that
the implementation of steps 2 and 3 of our methodology is
computationally feasible and therefore invite current LCA
software providers to implement it. However, further im-
provements, such as accounting for spatial correlations and
better computational times for GSA, are required to improve
LCA calculation and interpretation.

We also demonstrated through a meta-analysis of two sec-
tors that it is possible to derive sectorial recommendations
regarding the ICs and LCA phases that should constitute re-
gionalization priorities. By expanding the analysis to all sec-
tors in an LCI database, one could derive recommendations to
support LCA practitioners and LCI database developers in
defining their strategies for regional data collection to lower
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the uncertainty of LCA results. The proposed methodology is
primarily designed for regionalization purposes, i.e., to reduce
the uncertainty related to spatial variability. Nevertheless, it
may be adapted to other types of uncertainty to help prioritize
data collection efforts.

Acknowledgements We acknowledge the financial and technical support
of IFP Energies nouvelles and of the industrial partners of the
International Chair in Life Cycle Assessment (a research unit of the
CIRAIG): Arcelor-Mittal, Hydro-Québec, LVMH, Michelin, Nestlé,
Solvay, Optel Vision, Total, Umicore.

References

Baitz M, Albrecht S, Brauner E et al (2012) LCA’s theory and practice:
like ebony and ivory living in perfect harmony? Int J Life Cycle
Assess 18:5–13

Borgonovo E, Plischke E (2016) Sensitivity analysis: a review of recent
advances. Eur J Oper Res 248:869–887

Boulay A, Bulle C, Bayart J-B et al (2011) Regional characterization of
freshwater use in LCA: modeling direct impacts on human health.
Environ Sci Technol 45:8948–8957

Boulay AM, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A,
Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T,
Worbe S, Pfister S (2018) The WULCA consensus characterization
model for water scarcity footprints: assessing impacts of water con-
sumption based on available water remaining (AWARE). Int J Life
Cycle Assess 23:368–378

Bulle C,MargniM, Patouillard L, BoulayAM, Bourgault G, de Bruille V,
Cao V, HauschildM, Henderson A, Humbert S, Kashef-Haghighi S,
Kounina A, Laurent A, Levasseur A, Liard G, Rosenbaum RK, Roy
PO, Shaked S, Fantke P, Jolliet O (2019) IMPACT World+: a glob-
ally regionalized life cycle impact assessment method. Int J Life
Cycle Assess. https://doi.org/10.1007/s11367-019-01583-0

Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land
use impacts on biodiversity: combining species-area models and
vulnerability indicators. Environ Sci Technol 49:9987–9995

Clavreul J, Guyonnet D, Tonini D, Christensen TH (2013) Stochastic and
epistemic uncertainty propagation in LCA. Int J Life Cycle Assess
18:1393–1403

Collet P, Lardon L, Steyer J-P, Hélias A (2014) How to take time into
account in the inventory step: a selective introduction based on
sensitivity analysis. Int J Life Cycle Assess 19:320–330

Gregory JR, Noshadravan A, Olivetti EA, Kirchain RE (2016) A meth-
odology for robust comparative life cycle assessments incorporating
uncertainty. Environ Sci Technol 50:6397–6405

Groen EA, Heijungs R (2017) Ignoring correlation in uncertainty and
sensitivity analysis in life cycle assessment: what is the risk?
Environ Impact Assess Rev 62:98–109

Groen EA, Heijungs R, Bokkers EAM, de Boer IJM (2014) Methods for
uncertainty propagation in life cycle assessment. Environ Model
Softw 62:316–325

Groen EA, Bokkers EAM, Heijungs R, de Boer IJM (2017) Methods for
global sensitivity analysis in life cycle assessment. Int J Life Cycle
Assess 22:1125–1137

Heijungs R (1996) Identification of key issues for further investigation in
improving the reliability of life-cycle assessments. J Clean Prod 4:
159–166

Heijungs R (2010) Sensitivity coefficients for matrix-based LCA. Int J
Life Cycle Assess 15:511–520

Helmes RJK, Huijbregts MAJ, Henderson AD, Jolliet O (2012) Spatially
explicit fate factors of phosphorous emissions to freshwater at the
global scale. Int J Life Cycle Assess 17:646–654

Henriksson PJG, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB
(2015) Product carbon footprints and their uncertainties in compar-
ative decision contexts. PLoS One 10:1–11. https://doi.org/10.1371/
journal.pone.0121221

Hernández-Padilla F, Margni M, Noyola A, Guereca-Hernandez L, Bulle
C (2017) Assessing wastewater treatment in Latin America and the
Caribbean: enhancing life cycle assessment interpretation by region-
alization and impact assessment sensibility. J Clean Prod 142:2140–
2153

Herrmann IT, HauschildMZ, SohnMD,McKone TE (2014) Confronting
uncertainty in life cycle assessment used for decision support. J Ind
Ecol 18:366–379

Huijbregts MAJ (1998) Uncertainty in LCA LCA methodology applica-
tion of uncertainty and variability in LCA part I: a general frame-
work for the analysis of uncertainty and variability in life cycle
assessment. Int J Life Cycle Assess 3:273–280

Huijbregts M, Norris G, Bretz R (2001) Framework for modelling data
uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–
132

Igos E, Meyer R, Benetto E et al (2015) Uncertainty and sensitivity
analyses in LCA: a review and application to noise characterization.
In: SETAC Europe 25th Annual Meeting

Imbeault-Tétreault H (2010) Propagation analytique de l’incertitude à
travers le calcul matriciel d’une analyse du cycle de vie

International Organization for Standardization (ISO) (2006a) ISO14040:
2006 Environmental management-life cycle assessment-principles
and framework

International Organization for Standardization (ISO) (2006b) ISO14044:
2006 Environmental management—life cycle assessment—
requirements and guidelines

Iooss B, Lemaître P (2015) A review on global sensitivity analysis
methods. In: Dellino G., Meloni C. (eds) Uncertainty management
in simulation-optimization of complex systems. Operations
Research/Computer Science Interfaces Series, vol 59. Springer,
Boston, MA, pp 101–122

Jacques J, Lavergne C, Devictor N (2006) Sensitivity analysis in presence
of model uncertainty and correlated inputs. Reliab Eng Syst Saf 91:
1126–1134

Laurin L, Amor B, Bachmann TM, Bare J, Koffler C, Genest S, Preiss P,
Pierce J, Satterfield B, Vigon B (2016) Life cycle assessment capac-
ity roadmap (section 1): decision-making support using LCA. Int J
Life Cycle Assess 21:443–447

Lesage P, Samson R (2016) The Quebec life cycle inventory database
project. Int J Life Cycle Assess 21:1282–1289

Lesage P, Mutel C, Schenker U,Margni M (2018) Uncertainty analysis in
LCA using precalculated aggregated datasets. Int J Life Cycle
Assess 23:2248–2265

Most T (2012) Variance-based sensitivity analysis in the presence of
correlated input variables. Conference: 5th International
Conference on Reliable Engineering Computing, At Brno,
Czech Republic

Muller S, Lesage P, Ciroth A, Mutel C, Weidema BP, Samson R (2016)
The application of the pedigree approach to the distributions fore-
seen in ecoinvent v3. Int J Life Cycle Assess 21:1327–1337

Mutel C (2017) Brightway: an open source framework for life cycle
assessment. J Open Source Softw 2:doi: https://doi.org/10.21105/
joss.00236

Mutel CL, Hellweg S (2009) Regionalized life cycle assessment: compu-
tational methodology and application to inventory databases.
Environ Sci Technol 43:5797–5803

Int J Life Cycle Assess (2019) 24:2238–2254 2253

https://doi.org/10.1007/s11367-019-01583-0
https://doi.org/10.1371/journal.pone.0121221
https://doi.org/10.1371/journal.pone.0121221
https://doi.org/10.21105/joss.00236
https://doi.org/10.21105/joss.00236


Mutel CL, Pfister S, Hellweg S (2012) GIS-based regionalized life cycle
assessment: how big is small enough? Methodology and case study
of electricity generation. Environ Sci Technol 46:1096–1103

Mutel CL, de Baan L, Hellweg S (2013) Two-step sensitivity testing of
parametrized and regionalized life cycle assessments: methodology
and case study. Environ Sci Technol 47:5660–5667

Padey P, Girard R, le Boulch D, Blanc I (2013) From LCAs to simplified
models: a generic methodology applied to wind power electricity.
Environ Sci Technol 47:1231–1238

Page EB (1963) Ordered hypotheses for multiple treatments: a signifi-
cance test for linear ranks. J Am Stat Assoc 58:216–230

Patouillard L, Bulle C, Margni M (2016) Ready-to-use and advanced
methodologies to prioritise the regionalisation effort in LCA.
Mater Tech 104:105

Patouillard L, Bulle C, Querleu C, Maxime D, Osset P, Margni M (2018)
Critical review and practical recommendations to integrate the spa-
tial dimension into life cycle assessment. J Clean Prod 177:398–412

Pfister S, Scherer L (2015) Uncertainty analysis of the environmental
sustainability of biofuels. Energy Sustain Soc 5:1–12

Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental
impacts of freshwater consumption in LCA. Environ Sci Technol
43:4098–4104

Plouffe G, Bulle C, Deschênes L (2015) Assessing the variability of the
bioavailable fraction of zinc at the global scale using geochemical
modeling and soil archetypes. Int J Life Cycle Assess 20:527–540

Potting J, Hauschild M (2006) Spatial differentiation in life cycle impact
assessment: a decade of method development to increase the envi-
ronmental realism of LCIA. Int J Life Cycle Assess 11:11–13

Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007)
Uncertainty in the environmental modelling process—a framework
and guidance. Environ Model Softw 22:1543–1556

Reinhard J, Mutel CL, Wernet G, Zah R, Hilty LM (2016) Contribution-
based prioritization of LCI database improvements: method design,
demonstration, and evaluation. Environ Model Softw 86:204–218

Riggs LS (1989) Numerical approach for generating beta random vari-
ates. J Comput Civ Eng 3:183–191

Ross S, Evans D (2002) Excluding site-specific data from the LCA in-
ventory: how this affects life cycle impact assessment. Int J Life
Cycle Assess 7:141–150

Roy P-O, Deschênes L, Margni M (2013) Uncertainty and spatial vari-
ability in characterization factors for aquatic acidification at the
global scale. Int J Life Cycle Assess 19:882–890

Sakai S, Yokoyama K (2002) Formulation of sensitivity analysis in life
cycle assessment using a perturbation method. Clean Techn Environ
Policy 4:72–78

Saltelli A (2017) Sensitivity analysis. Numbers policy Pract Probl Quantif
Saltelli A, Sobol’ IM (1995) About the use of rank transformation in

sensitivity analysis of model output. Reliab Eng Syst Saf 50:225–
239

Saltelli A, Tarantola S (2002) On the relative importance of input factors
in mathematical models. J Am Stat Assoc 97:702–709

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S
(2010) Variance based sensitivity analysis of model output. Design
and estimator for the total sensitivity index. Comput Phys Commun
181:259–270

Sobol IM (1993) Sensitivity estimates for nonlinear mathematical
models. Math Model Comput Exp 1:407–414

Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of
electricity generation technologies: overview, comparability and
limitations. Renew Sust Energ Rev 28:555–565

Udo de Haes HA, Jolliet O, Finnveden G et al (1999) Best available
practice regarding impact categories and category indicators in life
cycle impact assessment. Int J Life Cycle Assess 4:66–74

United Nations Statistics Division (2008) ISIC Rev.4 - Classifications
Registry. In: 2008. https://unstats.un.org/unsd/cr/registry/isic-4.asp.
Accessed 27 Feb 2018

Vigon BW, Tolle DA, Cornaby BW et al (1993) Life-cycle assessment:
inventory guidelines and principles, EPA/600/R-. Washington,
DC20460

Wardekker JA, van der Sluijs JP, Janssen PHM, Kloprogge P, Petersen
AC (2008) Uncertainty communication in environmental assess-
ments: views from the Dutch science-policy interface. Environ Sci
Pol 11:627–641. https://doi.org/10.1016/j.envsci.2008.05.005

Wei W, Larrey-Lassalle P, Faure T, Dumoulin N, Roux P, Mathias JD
(2015) How to conduct a proper sensitivity analysis in life cycle
assessment: taking into account correlations within LCI data and
interactions within the LCA calculation model. Environ Sci
Technol 49:377–385

Weidema BP,WesnæsMS (1996) Data quality management for life cycle
inventories—an example of using data quality indicators. J Clean
Prod 4:167–174

Wender BA, Prado V, Fantke P, Ravikumar D, Seager TP (2018)
Sensitivity-based research prioritization through stochastic charac-
terization modeling. Int J Life Cycle Assess 23:324–332

Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B
(2016) The ecoinvent database version 3 (part I): overview and
methodology. Int J Life Cycle Assess 21:1218–1230

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom
Bull 1:80

Xu C, Gertner GZ (2008) Uncertainty and sensitivity analysis for models
with correlated parameters. Reliab Eng Syst Saf 93:1563–1573

Yang Y, Tao M, Suh S (2018) Geographic variability of agriculture re-
quires sector-specific uncertainty characterization. Int J Life Cycle
Assess 23:1581–1589

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Int J Life Cycle Assess (2019) 24:2238–22542254

https://unstats.un.org/unsd/cr/registry/isic-4.asp
https://doi.org/10.1016/j.envsci.2008.05.005

	Prioritizing...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Overview of the proposed methodology
	Data and settings used for the case studies
	GSA methodology used for IC ranking and LCA phase ranking
	Estimation of sensitivity indices from GSA
	Impact categories’ ranking
	LCA phase ranking

	Methodology for the meta-analysis per sector

	Results
	Operationalization of the methodology through a single product system
	Meta-analysis of two economic sectors: biofuel production and passenger land transport

	Discussion
	Strengths of the methodology
	Challenges in the operationalization of the methodology
	Setting the acceptable level of uncertainty
	Uncertainty inputs in LCA
	Correlations in LCI and LCIA
	Prioritization of additional data collection for inventory regionalization and inventory spatialization
	Requirements for implementation in current practices

	Discussion on the results of the case studies
	Use and limits of results for the meta-analysis per sector
	Importance of integration of LCIA regionalization

	Potential adaptation for future work

	Conclusions
	References




