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Abstract: This paper presents the design and simulation of a mass sensitive Lamb wave microsensor
with CMOS technology provided by SilTerra. In this work, the effects of the metalization ratio
variation on the transmission gain, total harmonic distortion (THD), and two different resonant
modes (around 66 MHz and 86 MHz) are shown. It has been found that the metalization ratio can
be adjusted in order to obtain a compromise between transmission gain and sensitivity, depending
on the design criteria. By adding a Si3N4 layer on top of the device, a five-fold improvement in
transmission gain is reached. It was also shown that the transmission of the input differential IDT
configuration is 20% more efficient than a single terminal. With this combination, the mass sensitivity
is about 114 [cm2/gr].

Keywords: lamb wave; mass sensing; microsensor; metalization ratio; CMOS; THD; acoustic microsensor

1. Introduction

With ongoing improvements in microfabrication technologies, acoustic microsensors
are becoming increasingly attractive for physical or chemical measurements within liquid
and gas environments, such as relative humidity [1], temperature [2], pH [3], and pres-
sure [4]. Cell detection and analysis is also a target of great interest within microfluidic
systems [5–8]. In particular, acoustic mass sensing is a proven method to detect various
chemical or biological analytes, and as such, can play a significant role in medical diag-
nosis [9,10]. For instance, Chang et al. used an acoustic microsensor for insulin detection,
allowing the subsequent use of glycine-HCL to remove insulin for further testing [11].
Luo et al. developed a glucose biosensor using a multilayer Love-mode surface acoustic
wave, achieving a sensitivity of 7.184 MHz/mM and an accuracy of 6.96 × 10−3 mM [12].
Moreover, acoustic sensors have been used to detect different DNA [13] and cancer cells [14].
Tigli et al. developed a surface acoustic wave (SAW) device using a gold layer to immobi-
lize specific antibodies on its surface in order to detect a specific antigen that is a cancer
biomarker [14]. Another application of mass sensing devices is to determine water quality
by measuring and characterizing pH; biochemical oxygen demand; total organic carbon;
and nitrate, nitrite, ammonia, chlorine, and fluoride concentrations [15,16]. Tamarind et al.
presented a surface acoustic wave microfluidic chip with the ability to assess water quality
on-site [15].

Acoustic microsensors are operated by applying an electrical signal to input interdigital
electrodes (IDTs) situated on a piezoelectric material. The piezoelectric material transforms
the electrical signal into mechanical waves [17], which travel within the substrate. At
a certain distance from the input, output IDTs reconvert the mechanical waves into an
electrical signal, but with a phase difference according to the distance traveled and the
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physical properties of the medium. Any mass added onto the piezoelectric sensing area
between the input and output IDT will result in a proportional variation in the phase
difference between input and output signals.

In order to detect the presence of an analyte within a liquid solution through mass
sensing, immobilization must be achieved so as to selectively isolate the specific component
of interest. In the context of biological sensing, where detection of an antigen is often of
interest, antibodies can be affixed at the sensing zone using graphene [18], gold nanoparti-
cles [19–21], or other suitable materials that are effective at retaining the specific antibody.
When an antigen particle becomes attached to the immobilized antibodies on the sensing
area, the variation in mass affects the resonance frequency of the sensor. This phenomenon
can be harnessed to infer the amount of analyte that is circulating [22].

A critical factor in mass-sensitive acoustic devices is IDT geometry. The length, width,
number, and shape of IDTs affect device behavior [23]. Skinner et al. studied the effect
of IDT width on the efficiency of energy conversion of a SAW device [24]. Kuznetsova
et al. evaluated the impacts of IDT finger length on acoustic plate wave synthesis [25].
There are also various configurations for applying actuation voltage to the IDT, leading to
various electrical field distributions on the device. Zou et al. studied the effects of different
electrode materials, transducer configurations, and electrode thicknesses on the coupling
factor in an aluminum nitride (AlN) lamb wave resonator using the symmetric mode. As
a result, they found a better coupling factor when using transducers on both sides of the
piezoelectric device [26].

Acoustic microsensors can rely on different types of acoustic waves to measure or
detect the presence of biological particles. For example, a lamb wave, which exhibits
significant sensitivity to mass loading specifically within liquids [27], is an elastic wave that
propagates along a thin layer membrane, whose thickness is less than or equivalent to the
wavelength at play [9,28]. Kong et al. developed a lamb wave sensor to assess blood clot
formation, in order to predict the risk of cardiovascular disease [29]. Lamb wave sensors
can also be used for the detection of microparticles. Nam et al. implemented a lamb wave
sensor that can detect the presence of nucleic acids in less than 30 min [30]. Lamb wave
detection has been successfully demonstrated in environmental sensing applications such
as humidity [31], temperature [32], and pressure [33] monitoring.

There are two main approaches for implementing these acoustic sensors. They can
either be fabricated on a piezoelectric substrate to interface with a distinct electronic circuit
or be integrated monolithically with complementary metal–oxide–semiconductor (CMOS)
technology. With CMOS monolithic integration, the direct inclusion of integrated electronic
circuits renders the whole system smaller and more compact, reduces parasitic capacitance,
and has the potential to significantly lower costs at scale. Furthermore, assembly and
packaging are simplified by eliminating the need for combining several heterogeneous chips
with complex mounting or wirebonding schemes. References [34–36] present examples
of heterogeneous sensor implementations. Tigli et al. implemented a CMOS integrated
SAW device with a ZnO piezoelectric membrane for cancer biomarker detection with a
frequency sensitivity of 8.704 pg/Hz [14]. In this paper, we propose a mass sensitive
lamb wave microsensor designed with dual interdigital electrodes (IDT) for biological
mass sensing, which can be integrated monolithically with CMOS SilTerra technology
and its Si3N4 layer, which provides a fivefold improvement in transmission gain. The
technology, aside from the inherent benefits provided by monolithic integration, features
a very thin suspended piezoelectric layer of aluminum nitride (AlN), which promises
superior sensitivity compared to thicker ones [37]. Furthermore, the top layer of silicon
nitride (Si3N4) can be utilized to protect the device from direct contact with the fluidic
environment [38], while also serving as an acoustic wave guiding layer to improving
the transmission gain of the device. With the parameters of the selected technology for
this work, lamb wave operation is the most appropriate with which to perform mass
sensing. In order to optimize insertion loss and coupling factor, differential mode signals
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are investigated, and the impacts of IDT width on sensitivity and transmission gain. Total
harmonic distortion (THD) is also studied to assess system linearity.

This article is divided into five sections: Section 2 provides a theoretical overview of
lamb waves, IDTs, and the sensitivity metric; Section 3 details the parameters and specifics
of the proposed device, and provides an overview of the simulation methodology; Section 4
presents and discusses the simulation results; Section 5 concludes.

2. Theoretical Background

Lamb wave velocity is defined by the waveguide material, and the h/λ ratio, in which
h is the piezoelectric layer thickness and λ is the acoustic wavelength [37,39,40]. Both
symmetric and antisymmetric modes can be generated in a lamb wave device [9]. The S0
mode, also called the extensional mode, is generated symmetrically, whereas the A0 mode,
associated with flexural plate waves (FPWs), is antisymmetric. S0 and A0 sensitivities are
the same for solid sensing, but there are some differences in liquid sensing [41]. The zero-
order antisymmetric mode A0 is seen in devices operating in the range of 5 to 30 MHz [42]
and exhibits low attenuation within liquids, which is essential for biological mass sensing.
The shift in resonant frequency, ∆f, in response to a variation in analyte mass per unit area,
∆m, can be used as a means to detect the presence and measure the quantity of the analyte.

Mass sensitivity is defined as [37,43]:

Sm =
∆ f

∆m · fs
(1)

where fs is the unloaded resonance frequency.
Radiation loss, which is a critical factor in lamb wave attenuation, is minimized in

the A0 mode compared to the S0 mode, provided that its phase velocity is inferior to the
velocity of a bulk acoustic wave in the liquid medium [44,45]. In the A0 mode, wave
velocity can be controlled by the wavelength and the piezoelectric thickness; thus, a phase
velocity lower than the nominal velocity of sound can be obtained, decreasing radiation
losses in liquids. By increasing the piezoelectric layer’s thickness, the A0 and S0 mode
waves converge with the Rayleigh mode [46].

Lin et al. showed that with an AlN-based symmetric mode lamb wave, by increasing
h/λ to 1, the phase velocity increases to around 5.5 km/s [46]. In the present work, h is
1.3 µm and λ is 20 µm, yielding a phase velocity of around 0.8 km/s, corresponding to the
h/λ vs. phase velocity curve presented by Lin et al. for the A0 mode.

IDT geometry affects certain properties of the device. IDT finger length and the
number of electrodes determine electrical impedance: the lower the length, the higher
the impedance [47]. Another important characteristic of IDT is the metalization ratio, η.
It is defined as η = w/p where w is the finger width and p is the pitch (center-to-center)
between each finger, as shown in Figure 1. η affects the coupling factor and the insertion
loss [48]. The effects of η on sensitivity, transmission gain, and THD are also investigated;
the results are presented in Section 3.

Figure 1. IDT with a metalization ratio of w/p.
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Skinner et al. studied the impact of metalization ratio on the efficiency of energy
conversion for a SAW sensor, reporting optimal output energy for η of 0.74.

Within an acoustic waveguide, there are countless acoustic modes that can propa-
gate [49]. Each mode has its specific shape and phase velocity (vp). IDTs generate a force
on the piezoelectric surface, producing a displacement in the piezoelectric resonator, which
in turn can excite acoustic wave modes [50]. The mode whose displacement shape has
more correlation (overlap integral [51]) with the displacement produced by the IDT will be
excited with greater power. As a result, the greater the coupling efficiency, the greater the
transmission gain will be. Varying the IDT metalization ratio induces a slightly different
displacement shape. Depending on the shape of a given mode, its optimal IDT metalization
ratio can vary. Considering that fundamental λ is dictated by IDT pitch, the resonant modes
can appear at different frequencies as per f = vp/λ.

In this study, the THD of the transmitted signal is also examined in order to assess the
linearity of the system, or in other words, the extent to which varying the IDT metalization
ratio introduces harmonic distortion. For a pure harmonic input signal at a given frequency,
total harmonic distortion is defined as:

THD =

√
V2

2 + V2
3 + V2

4 + . . .

V1
(2)

where Vn is the root mean square (RMS) voltage of the nth harmonic of the received signal.

3. System Overview and Simulation Methodology

The two-port device developed in this work through the SilTerra technology is schema-
tized in Figure 2. It consists of a thin layer of aluminum beneath 1.3 µm of aluminum
nitride (AlN), the piezoelectric material, covered by 1.5 µm of Si3N4, the protection and
waveguide material. The separation between the transmitter and receiver IDT acts as the
delay line, enclosing the sensing area with the immobilizers that were explained in the
previous section.

Protective layer (S𝒊𝟒𝑵𝟑)

Sensing area (immobilizers)

𝐏𝐢𝐞𝐳𝐨𝐞𝐥𝐞𝐜𝐭𝐫𝐢𝐜 
(𝐀𝐥𝐍)

E𝐥𝐞𝐜𝐭𝐫𝐨𝐝𝐞 (𝐀𝐥)

𝑽𝒊

x

z

y

𝐈𝐃𝐓 (𝐀𝐥)

Figure 2. Three-dimensional schematic of the device showing different layer order, IDT locations,
and the wave propagation direction.

The SilTerra technology provides a suspended AlN piezoelectric layer directly above
a conventional 130 nm CMOS semiconductor process, as illustrated in Figure 3. The
technology features a thin layer of AlN, which helps improve sensitivity [37] and a Si3N4
layer for protection and wave guiding.
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Figure 3. Cross-section of the Lamb wave microsensor realized with the CMOS Silterra technology.

In this work, COMSOL Multiphysics 6.0, Stockholm, Sweden, was used to perform
finite-element method (FEM) simulations. An sinusoidal electrical signal was applied to
the input IDT and transformed into mechanical waves through the piezoelectric layer (as
shown in Figure 4, 200 ns after voltage application). The resulting induced electrical signal
at the output IDT was monitored and analyzed to design a sensitive mass sensor.

× 10ିଵଵ

0

5

10

15

20

25

30

Figure 4. Time-domain simulation of the lamb wave illustrating the wave propagation and the total
displacement of each part of the device at 216 ns with an input signal frequency of 86 MHz and
metalization ratio of 85%.

One of the methods to detect a variation of mass in acoustic sensors is to measure the
device’s resonance frequency before and after mass loading. Based on (1), the greater the
frequency shift, the greater the sensitivity [43]. The physical properties of AlN used in the
simulation are listed in Table 1.

Table 1. AlN physical properties used in this work’s simulations [26].

Symbol AlN Unit

Stiffness constants C11 345 109 [N/m2]
C12 125
C13 120
C33 395
C44 118
C66 110

Dielectric constants ε11 8.0 10−11 [F/N]
ε33 9.5

Piezo constants e15 −0.48 [C/m2]
e31 −0.58
e33 1.55

Mass density ρ 3260 [Kg/m3]
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All FEM simulations were performed using COMSOL Multiphysics and analyzed in
Mathworks MATLAB R2022a, Natick, MA, USA. Importantly, all layer physical properties
and dimensions followed the specifications, guidelines, and design rules of the SilTerra
technology, in order to ensure that the CMOS-compatible acoustic sensor design would
be implementable. The input IDTs were defined as terminals with a sinusoidal signal of
5 sin (2π frt). In order to choose the excitation frequency fr, a frequency study was first
performed to determine the resonance frequency peaks for the design under consideration,
as shown in Figure 5. The wave modes corresponding to these resonance frequency peaks
were determined by analyzing their respective wave deformation shapes. It can be observed
that the localization of the dominant frequency peak changes when the metalization ratio
passes about 50%. For a metalization ratio superior or equal to 50%, the dominant frequency
is located at 86 MHz and is labeled mode a. For a metalization ratio inferior to 50%, the
dominant frequency peak is located at 66 MHz and is labeled mode b. Both a and b modes
behave similarly to A0 lamb waves but for different phase velocities. The phase velocity
for mode a at a metalization ratio of 85% was determined to be 2.013 km/s, whereas it
was found to be 1.672 km/s for mode b at a metalization ratio of 40%. It is posited that
the existence of these two A0-like modes can be explained by the varying mode shape
deformations induced by the different metalization ratios.

Figure 5. Cont.
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Figure 5. Mode a and mode b shown in output frequency spectrum for metalization ratios of (a) 10%,
(b) 50%, and (c) 85%.

In order to configure the simulation model to accurately represent reality, two periodic
boundary conditions are used on both ends of the device parallel to wave propagation,
along with low reflecting boundaries for both ends orthogonal to wave propagation, in
order to eliminate any unrepresentative wave reflections that might behave destructively.
As shown in Figure 6, it takes about 40 ns for the acoustic signal to reach the output IDT,
but about 350 ns for it to stabilize. To assess mass sensitivity in COMSOL without varying
other device conditions, a thin layer of immobilizer PMMA is placed above the Si3N4.
To simulate the loading of additional mass, the density of the PMMA is correspondingly
increased. Any increase in mass density affects the velocity of the lamb wave and alters
the resonance frequency and phase shift of the device. As a result, mass sensitivity can
be inferred.

Figure 6. Cont.
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Figure 6. Time domain simulation waveforms for IDT metalization ratio of 85%: (a) harmonic signal
with amplitude of 5 V applied to input IDT starting at time t = 0; (b) received signal at output IDT;
(c) close-up of two periods of received signal from 745 to 765 ns.

The use of a technology providing monolithic integration of acoustic and CMOS
semiconductor devices creates the possibility of a full chip-scale system, such as the one
suggested in Figure 7. In this setup, a harmonic signal is generated at a specific frequency,
as defined by the digital signal processing (DSP) unit, then amplified and fed to the input
IDT. A harmonic signal at the same frequency is received and amplified at the output
IDT, digitized, and processed by the DSP. By sweeping the excitation frequency, DSP can
determine the system’s resonance frequency, hence the deposited mass on the sensor.

In Figure 8, two alternate methods are used to apply the electrical signals to the input
IDT. The first is the differential approach in which IDT are alternately connected to the
negative and positive phases of a sinusoidal signal. The second is the single-ended method
in which IDT are alternately connected to a single phase of a sinusoidal signal and ground.
In both topologies, the bottom plane is connected to the ground.
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Figure 7. Block-level diagram of a possible integrated detection system.

GNDGND

GNDGND

(a) (b)

Figure 8. Illustration of the (a) differential and (b) single-ended electrode configurations, highlighting
positive, negative, and ground (GND) signals.

Lin et al. have presented equivalent circuit models for different methods of applying
signals for single-ended configurations, and concluded that grounding the bottom plane
increases static capacitance compared to a floating plane, which improves the coupling
coefficient [46].

To determine THD, a frequency simulation was first performed in COMSOL Multi-
physics to find the resonance frequency of the current device configuration. Subsequently,
using an input signal at the determined frequency, a 1000 ns time-dependent simulation
was run with a time step of 0.01 ns. Using this time-series output voltage data, THD was
calculated using MATLAB.

4. Results and Discussion

In this part, the effects of metalization ratio on different characteristics of the device are
explored. In particular, its effects on gain, sensitivity, and THD in different configurations
of the device are assessed. These include simulations with and without the Si3N4 layer and
single-ended versus differential voltage stimulation.

The transmission gain of this device is shown in Figure 9. When driving the device
at the resonance frequency of mode a (about 86 MHz), transmission gain is maximal at
0.0214 for a metalization ratio of 85%. When exciting mode b, with a resonance frequency
of about 66 MHz, the gain reaches its maximum of 0.0144 for a ratio between 30% and 40%.
Figure 9 suggests that mode a is optimal for a metalization ratio above 50%, whereas mode
b is optimal for a metalization ratio below 50%, where the two transmission gain curves
cross each other.
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Figure 9. Transmission gain with respect to IDT metalization ratio.

Figure 10 presents the variations in frequency sensitivity compared to mass variation,
as the IDT metalization ratio is varied from 10% to 90%. Both deformation modes explained
in Section 2 are examined. For mode b, mass sensitivity is nearly constant for a metalization
ratio ranging from 10% to 90%. In mode a, mass sensitivity is at its maximum for an IDT
metalization ratio of 10%, but is associated with a low transmission gain which would
make it more challenging to discern the output signal from noise. However, for this mode,
transmission gain gradually increases from a metalization ratio of 25% up to 70%, and
then starts to plateau. As shown in Figure 10, considering the tradeoff between gain and
sensitivity, the sensitivity remains mostly constant at about 114 cm2/g with 10% to 90%
metalization ratios. As a point of reference, assuming a minimum detectable frequency
variation of 1 Hz for the system, its sensitivity would allow a detection resolution of 1.2 ng,
or the equivalent of about a hundred bacteria of typical weight [52].

Figure 10. Sensitivity of the device depending on IDT metalization ratio in response to a 100 kg/m3

increase in PMMA density.

Conventionally, metalization ratio is usually fixed at 50% which represents standard
bidirectional IDT [9,44,53,54]. However, in this work, we show that it is possible to achieve
a superior tradeoff between insertion loss and mass sensitivity by adjusting the metalization
ratio for a given deformation mode, according to the specification priorities. For instance,
in mode a, mass sensitivity is maximal for a metalization ratio of 10%, but with poor
transmission gain. However, for the same mode, a metalization ratio of 80% provides
maximal transmission gain, also with reasonable mass sensitivity. As for mode b, mass
sensitivity is maximal for a metalization ratio below 55%, whereas transmission gain
reaches its peak at about 35%. In this case, a metalization ratio of 80% is obviously optimal.
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According to the requirements of the designer, it is reasonable to establish a figure
of merit (FOM) in order to optimize the selection of the metalization ratio. As a generic
example, the following (plotted in Figure 11) attributes equal value to transmission gain
and mass sensitivity:

FOM = Transmission Gain×Mass Sensitivity (3)

Although constituting a very simple example, the FOM could be finely adjusted
according to design specifications and priorities, and could even incorporate additional
performance metrics of interest (e.g., THD, power consumption, size). Figure 11 illustrates
the ability to select an optimal metalization ratio in order to maximize a chosen FOM.

Figure 11. Arbitrary FOM shows the ability to optimize by means of metalization ratio.

All subsequent results were obtained using an input frequency of 86 MHz (mode
a). In Section 2, two methods of applying the input signal were presented: single-ended
(typical) and differential. To perform a fair comparison, the amplitude of the input signal
in the single-ended configuration was doubled (10 V) compared to the differential (5 V). As
shown in Figure 12, the differential configuration moderately improved transmission gain,
reaching a maximum of 0.0235 for a metalization ratio of 85%. In the single-ended method,
the maximum gain was 0.02 for a metalization ratio of 90%.

10 20 30 40 50 60 70 80 90
Metallization ratio [%]

0

0.005

0.01

0.015

0.02

0.025

G
ai

n 
[V

/V
]

differential signal
single ended signal

Figure 12. Device gain of single-ended and differential mode for metalization ratios ranging from
10% to 90% operating in mode a.

The physical properties of all layers play major roles in acoustic sensing: a small
thickness variation in the stack of materials could affect insertion loss (transmission gain)
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and sensitivity. Figure 13 shows that the Si3N4 layer has a significant effect on transmission
gain, and hence on acoustic coupling. The acoustic velocity of Si3N4 is lower than that of the
piezoelectric layer (AlN), which allows Si3N4 to behave as a guiding layer that concentrates
the acoustic energy in the active device [55]. Without this guiding layer, the maximum
transmission gain is 0.0048, whereas, with Si3N4 present, the maximum transmission gain
is improved to 0.0235, i.e., a 4.8 times increase.

10 20 30 40 50 60 70 80 90
Metallization ratio [%]

0

0.005

0.01

0.015

0.02

0.025

G
ai

n 
[V

/V
]

with Si
3
N

4
without Si

3
N

4

Figure 13. The effect of the Si3N4 layer on the device’s gain for metalization ratios ranging from 10%
to 90% operating in mode a.

When adjusting the IDT metalization ratio to optimize sensor characteristics such as
mass sensitivity and transmission gain, a serious worry is that any geometrical asymmetry
might affect the shape of the generated waveform, and thus adversely impact system
linearity. These concerns are alleviated in Figure 14, which demonstrates that THD remains
stable across metalization ratios and inferior to a very low value of −108 dB, regardless of
metalization ratio.

Figure 14. The effect of IDT’s metalization ratio on the device’s THD operating in mode a.

THD was calculated by applying Equation (2) to the stabilized portion of the output
time series of the simulated device. For example, in Figure 6, outputs between 400 and
900 ns was used. Confirming the linearity of the system, Figure 6b shows a smooth
harmonic output exempt of any visible distortion.
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Table 2 presents the performance of the design of this work, in relation to acoustic
sensors from the literature. Specifically, mass sensitivity (Sm) and insertion loss (IL) are
compared. Insertion loss can be calculated from the transmission gain using

Insertion loss (dB) = 10 log10
|Vi|2
|Vo|2

= 20 log10
|Vi|
|Vo|

= 20 log10
1

gain
. (4)

With FOM chosen as the ratio between mass sensitivity and insertion loss, two ver-
sions of the design of this work for different IDT metalization ratios were evaluated: one
minimizing insertion loss and the other maximizing mass sensitivity. Both proposed de-
signs were found to be reasonably competitive with the state of the art, despite the use of
non-optimized commercial technology with set material properties and thicknesses.

Table 2. Comparison of acoustic wave sensors’ performance.

Biosensor Type Sm [cm2/g] IL [dB] FOM (Sm/IL) Piezoelectric
Material Reference

SAW 2.6–121.7 25–55 1.196 ZnO [56]
SAW - 52.5–53.25 - ZnO/quartz [56]
SAW 70 - - ZnO/LiTaO3 [57]
FPW 60.16–70.06 36.04 1.944 ZnO [58]
LW 160–240 - - AlN [59]
LW 91.65 18.53 4.946 ZnO [60]

LW(A0) 175.8 45 3.907 AlN [61]
LW(A0 & S0) 174–272 20–38 13.6 GaN [62]
LW (Min IL) 114 26.74 4.263 AlN This work
LW (Max Sm) 140 66.02 2.12 AlN This work

5. Conclusions

This work presented the design and simulation of a mass sensitive lamb wave mi-
crosensor in the CMOS-based technology provided by SilTerra. It was shown that the Si3N4
layer present in the technology could provide a fivefold improvement in transmission
gain by serving as a guiding layer. The designed devices were analyzed in two different
resonant modes (around 66 and 86 MHz). It was established that the metalization ratio can
be adjusted in order to achieve an optimal tradeoff between transmission gain and sensi-
tivity, depending on design criteria. It was also determined that the input IDT differential
configuration is marginally more efficient than the single-ended one, with a 20% greater
transmission gain. Worries about metalization ratio having any influence on output signal
THD were unfounded, with very low levels (−100 dB) for all ratios. Although FEM simula-
tion results can admittedly differ from practical results due to material parameters, mesh
structure, and physics simplifications, this work was able to present a general methodology
for acoustic wave sensor optimization based on structural topology. Although results may
vary according to technology and device type, the general approach remains valid and
worthwhile. Physical devices, currently in the fabrication pipeline, will be tested as soon as
possible in order to validate this work’s conclusions.
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