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RÉSUMÉ

Les métabolites secondaires produits par les bactéries, les plantes et les champignons
sont une riche source de composés bioactifs. Ces composés sont essentiels à
plusieurs industries, notamment l’industrie pharmaceutique, pour la production
de nombreux produits thérapeutiques tels que les antibiotiques, les immunosup-
presseurs et les antitumoraux. Les gènes impliqués dans les voies métaboliques qui
synthétisent les composés des métabolites secondaires sont connus sous le nom de
groupes de gènes biosynthétiques (BGC). Les champignons filamenteux sont con-
nus pour produire une grande variété de métabolites secondaires, et d’importants
efforts de recherche ont été consacrés au développement d’approches pour la décou-
verte de BGC dans les génomes fongiques. La découverte de nouveaux métabo-
lites secondaires pourrait grandement bénéficier la santé humaine. Cependant
l’identification des régions de BGC dans les génomes fongiques est un processus
complexe et coûteux, et posant un défi aux approches de découverte de BGC
fongiques. Cette thèse propose l’application d’approches d’apprentissage automa-
tique pour identifier les BGC dans les génomes fongiques, impliquant trois étapes
principales : (1) améliorer la disponibilité de données représentatives sur les BGC
fongiques pour soutenir le développement des approches d’apprentissage; (2) iden-
tifier les potentielles régions de BGC sur les génomes fongiques; (3) optimiser les
composants associés aux potentielles régions de BGC pour faciliter la curation par
des experts ainsi que la caractérisation expérimentale des ses composés.

Pour améliorer la disponibilité de données représentatives sur les BGC fongiques,
des ensembles de données de référence sont construits pour soutenir la concep-
tion de la prédiction des régions de BGC comme un problème d’apprentissage
supervisé. Comme les ensembles de données contiennent des instances de BGC
fongiques conservées et des instances de régions de non-BGC composées de gènes
orthologues fongiques, la tâche de prédiction de BGC peut être abordée comme
une classification binaire. La prédiction des régions de BGC potentielles est réal-
isée par TOUCAN, une plateforme d’apprentissage supervisé, pour lequel des
modèles de classification sont entraînés sur la base des ensembles de données de
référence proposés. TOUCAN s’appuie sur un ensemble d’attributs discriminants
(k-mers d’acides aminés, domaines protéiques Pfam, et termes de la Gene Ontol-
ogy), et sur des méthodes de post-traitement pour identifier les régions candidates
de BGC dans les génomes fongiques. Finalement, une approche d’apprentissage
par renforcement est proposée afin d’optimiser les régions de BGC potentielles



xiv

prédites par les outils de l’état de l’art pour la découverte des BGC. L’approche
d’apprentissage par renforcement vise à améliorer la composition des régions can-
didates de BGC en se basant sur les profils de domaines protéiques trouvés dans
les instances de BGC et non-BGC, et sur des annotations fonctionnelles des com-
posants des BGC.

Mots-clés : apprentissage automatique, groupes de gènes biosynthétiques, génomique
fonctionnelle



ABSTRACT

Secondary metabolites produced by bacteria, plants and fungi are a rich source
of bioactive compounds. These compounds are vital to several industries, most
prominently the pharmaceutical industry for the production of many therapeutics
such as antibiotics, immunosuppressants, and antitumor. Genes involved in the
metabolic pathways that synthesize secondary metabolite compounds are known
as Biosynthetic Gene Clusters (BGCs). Filamentous fungi are known to pro-
duce a large variety of secondary metabolites, and significant research effort has
been dedicated to develop approaches for BGC discovery in fungal genomes. The
discovery of novel secondary metabolite compounds could greatly benefit human
health. However identifying BGC regions in fungal genomes is a complex and
expensive process, posing a challenge to fungal BGC discovery approaches. This
thesis proposes the application of machine learning approaches to identify BGC
regions in fungal genomes, involving three main steps: (1) improving the avail-
ability of representative data on fungal BGCs to support development of learning
approaches; (2) identifying potential BGC regions on fungal genomes; (3) optimiz-
ing components associated to potential BGC regions to facilitate expert curation
and experimental characterization of compounds.

To improve the availability of representative data on fungal BGCs, benchmark
datasets are built to support designing the prediction of BGC regions as a su-
pervised learning problem. Since the datasets contain instances of curated fun-
gal BGCs, and instances of non-BGC regions composed of fungal orthologous
genes, it allows the BGC prediction task to be tackled as a binary classification.
The prediction of potential BGC regions is handled by TOUCAN, a supervised
learning framework for which classification models are trained based on the pro-
posed benchmark datasets. TOUCAN relies on a set of discriminative features
(amino acid k-mers, Pfam protein domains, and Gene Ontology terms), and post-
processing methods to identify candidate BGC regions in fungal genomes. Finally,
a reinforcement learning approach is proposed as a way of optimizing potential
BGC regions predicted by state-of-the-art BGC discovery tools. The reinforce-
ment learning approach aims to improve the composition of candidate BGCs based
on protein domain profiles found in BGC and non-BGC instances, and on func-
tional annotations of known BGC components.

Keywords: machine learning, biosynthetic gene clusters, functional genomics



INTRODUCTION

The discovery of natural products, or secondary metabolites, has brought funda-

mental changes to society and promoted improvements in human health. From

penicillin to caffeine, these compounds are so relevant as to the point that, a few

decades ago, most medications in use were derived from secondary metabolite

(SM) compounds (Pickens et al., 2011). These substances produced by fungi,

bacteria and plants carry diverse chemical structures and high variability in their

composition. Unlike primary metabolites, secondary metabolites are not required

for an organism growth nor reproduction (Bills & Gloer, 2016). Instead they are

known to be involved in a variety of biological activities, such as ones that allow

specific reactions and adaptations to environmental factors, and also interaction

with or protection against other organisms (Bills & Gloer, 2016; Keller, 2019). Fil-

amentous fungi are a particular rich source of these bioactive compounds. Previous

studies have claimed that the majority of fungal secondary metabolites revealed

up until recently possesses antibacterial, antifungal or antitumor activities (Keller,

2019).

The search for fungal secondary metabolites is extremely valuable, since it could

unveil novel compounds with pharmacological activities potentially leading to the

development of medications. The potential of discovering relevant fungal sec-

ondary metabolites relies frequently on bioinformatics and computational biology

approaches built to perform the first step of identifying the genes involved in

metabolic pathways that synthesize these important compounds. These genes

are often contiguously arranged in the genomes of producing organisms, and are

known as biosynthetic gene clusters (BGCs) (Kautsar et al., 2020). Recent growth
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in the availability of genomic and proteomic data has provided an unprecedented

opportunity to search for these compounds in fungal genomes. At the same time,

the demand for robust approaches to identify secondary metabolites is increasing,

with new findings on possible applications of these compounds in medicine and

industrial processes (Bills & Gloer, 2016).

Major challenges are associated with the discovery of fungal secondary metabo-

lites. Bioinformatics and computational biology approaches dedicated to identify

fungal BGCs generally lack scalability to be able to process in a generalized man-

ner the exponentially growing, newly sequenced genomic data made publicly avail-

able. In addition, a common obstacle faced by these approaches is the re-discovery

of known compounds, which contributes with minor progress to the field. Given

the cost associated with the identification, curation, and experimental characteri-

zation of these complex compounds, the number of known fungal BGCs to date is

scarce, which limits the amount of a priori knowledge available to support build-

ing powerful automatic discovery approaches. The validation steps within the

BGC discovery process, which spans from accurate definition of BGC components

to secondary metabolite compound production, could greatly benefit from predic-

tions obtained by robust approaches that are able to follow the fast pace of newly

sequenced fungal genomes made publicly available, as well as recent findings on

secondary metabolite types and their applications.

The capability of machine learning algorithms to extrapolate and build experience

from data makes them a possible solution to obtain high quality BGC predictions,

thereby facilitating the discovery of novel compounds. In this thesis, a machine

learning-based approach for BGC discovery is presented to support identification

of novel secondary metabolites in fungi. While the main focus of this thesis is to

identify candidate BGC regions in fungal genomes, its contributions also directly

promote improvement of BGC data availability, and enhancement of candidate
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BGC composition. In Chapter 1, the background context for this thesis is pre-

sented, where key concepts are introduced: definition of secondary metabolites,

biosynthetic gene clusters, supervised learning, reinforcement learning, and bio-

logical features. In Chapter 2, the research problem is described, presenting the

motivation, objectives and hypothesis addressed in this thesis. In Chapter 3, an

overview of the state-of-the-art is presented, with a short description of previous

works. Chapter 4 describes the first contribution of this thesis, which consists of

the development of benchmark datasets to support BGC discovery approaches for

fungi. Chapter 5 presents the second contribution of this thesis, the development

of a supervised learning framework to discover fungal BGCs. Chapter 6 presents

the third contribution of this thesis, a reinforcement learning approach integrating

functional annotations to improve fungal BGC prediction.

This thesis includes the content of published and submitted articles which repre-

sent its main contributions.
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Biomedicine (BIBM), 2019, pp. 1280-1287, DOI 10.1109/BIBM47256.2019.

8983041. (article, published)

• Chapter 5: Almeida, H., Palys, S., Tsang, A. and Diallo, A. B. (2020).

"TOUCAN: a framework for fungal biosynthetic gene cluster discovery", in

the journal NAR Genomics and Bioinformatics (NARGAB), 2020, Volume

2, Issue 4, December 2020, lqaa098, DOI 10.1093/nargab/lqaa098 (article,

published)

Almeida, H., Tsang, A. and Diallo, A. B. (2019). "Towards accurate iden-

tification of Biosynthetic Gene Clusters in fungi", in Machine Learning in
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Computational and Systems Biology (MLCSB) COSI of the 27th Confer-

ence on Intelligent Systems for Molecular Biology (ISMB), 2019. (poster,

published)

• Chapter 6: Almeida, H., Tsang, A. and Diallo, A. B. (2021). "Improving

candidate Biosynthetic Gene Clusters in fungi through reinforcement learn-

ing", (article, submitted)

Almeida, H., Tsang, A. and Diallo, A. B. (2021). "A reinforcement learn-

ing approach to improve fungal Biosynthetic Gene Cluster prediction", in

the 25th international conference on Research in Computational Molecular

Biology (RECOMB), 2021. (poster, published)
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BACKGROUND
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In this chapter, an overview of fundamental concepts is presented. These concepts

include notions of the biological and machine learning backgrounds which are

relevant to understanding the contributions of this thesis.

1.1 Secondary metabolites: concepts and definition

Fungi, bacteria and plants produce a variety of organic compounds that are not

directly implicated in vital functions, such as organism development, reproduc-

tion or growth (Vining, 1990; Croteau et al., 2000). These compounds, known

as secondary metabolites (SMs) or natural products, are classified into differ-

ent types according to their chemical compositions and biosynthetic pathways.

Secondary metabolite types include polyketides (PKS), non-ribosomal peptides

(NRPS), terpenoids, ribosomally synthesized and post-translationally modified

peptides (RiPPs), fatty acids, and alkaloids (Croteau et al., 2000; Bills & Gloer,

2016; Keller, 2019). These compounds take part in survival functions of their

the producing organisms, potentially acting as defense against other microbes

or environmental stress, such as exposure to UV radiation; favoring interspecies

communication; or facilitating nutrient acquisition (Keller, 2015; Bills & Gloer,

2016).

The study of fungal SMs has been highly significant to human health, as they can

be the source of both harmful and beneficial compounds (Keller, 2015; Bills &

Gloer, 2016; Kjærbølling et al., 2019). Some fungal SMs are known for their

toxic properties, while others for their pharmacological activities. Aflatoxin,

sterigmatocystin, alternariol, altertoxin, trypacidin and gliotoxin are examples

of known mycotoxins derived from fungal SMs, the latter being a potential anti-

tumor agent in cancer treatment (Keller, 2015, 2019). Several compounds have

antifungal properties, such as fumagillin, fetullamide, echinocandin, and aspterric

acid (Keller, 2019). Cyclosporin and mycophenolic acid are used as immunos-
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supressants (Keller, 2015; Bills & Gloer, 2016), and ergot alkaloids are used for

migraine treatment (Keller, 2015). Statins, such as lovastatin and mevastatin,

are used as cholesterol-lowering drugs (Bills & Gloer, 2016), while penicillin and

oosporein are used as antibacterials (Keller, 2019).

Figure 1.1: Examples of fungal secondary metabolites: cyclosporin A, used as
an immunosuppressant medication; lovastatin, a cholesterol-lowering medication;
penicillin, largely used as an antibiotic; and aflatoxin, a powerful carcinogenic
toxin.

Filamentous fungi, more specifically the Aspergillus genus, are a rich source of

SM compounds (Inglis et al., 2013; Kjærbølling et al., 2020). Aspergillus niger

is a species of particular interest for SM research, given its ubiquitous presence,

its relevance for industrial processes, and its capability of producing a variety of

SM compounds (Aguilar-Pontes et al., 2018; Frisvad et al., 2018; Evdokias et al.,

2021). Similarly, Aspergillus nidulans has also been a species of interest in SM

research because it has been used for decades as a model organism in genetic and



8

cell biology studies (Kjærbølling et al., 2020; Drott et al., 2020). Filamentous

fungi, including the mushrooms, are considered to hold strong potential to unveil

a large variety of SM compounds (Bills & Gloer, 2016), consequently making these

organisms suitable targets for SM research.

1.2 Biosynthetic gene clusters

Genes encoding biosynthetic pathways that produce SMs are often found to ar-

range contiguously or clustered in an organism genome. These clusters of genes

are known as Biosynthetic Gene Clusters (BGCs). Biosynthetic Gene Clusters

are minimally composed of at least a gene encoding a backbone enzyme, which

defines the main SM compound produced by a cluster, and genes for tailoring

enzymes, which are involved in the production of variants by modifying the pro-

duced core compound (Keller, 2015). For example, polyketides are made by the

backbone enzyme polyketide synthase, and non-ribosomal peptides are made by

the backbone enzyme non-ribosomal peptide synthetase. Tailoring enzymes such

as methyltransferases add methyl groups to the core compounds to generate vari-

ants.

Apart from these minimal components, BGCs can also include cluster-specific

transcription factors, transporters, and hypothetical (functionally uncharacter-

ized) proteins (Keller, 2019), as shown in Figure 1.2. Genes encoding transcrip-

tion factors in BGCs are known to play a role in the regulation of the in-cluster

BGC genes. Genes encoding in-cluster transporters are involved in the export of

metabolites to facilitate their function, or as a self-protection role by expelling

toxins derived from the SM compound produced by the organism. Although hy-

pothetical proteins found in BGCs may not immediately demonstrate an obvious

role in the production of a compound as their biochemical function have not been

characterized, are still of interest in SM research (Keller, 2015).
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Figure 1.2: Examples of BGCs from Aspergillus species obtained from the public
available BGC database MIBiG

Previously discovered BGCs can be found in publicly available BGC databases,

such as ClusterMine360 (Conway & Boddy, 2012), antiSMASH database (Blin

et al., 2018), and the Minimum Information about a Biosynthetic Gene cluster

(MIBiG) database (Kautsar et al., 2019). However, the number of known com-

pounds to date found in these databases is overwhelmingly larger for bacterial

BGCs than it is for fungi, or even for plant BGCs. While ClusterMine360 is

solely dedicated to bacterial BGCs, most entries in the antiSMASH and MIBiG

databases are also for bacterial BGCs. From over ≈25,800 genomes in the anti-

SMASH database, less than 200 are fungal while more than 25,000 are bacterial

(as of August 2021). Entries in the antiSMASH database consist of BGC predic-

tions obtained with the antiSMASH tool (Blin et al., 2018) for genomes from the

National Center for Biotechnology Information (NCBI).

MIBiG contains the largest number of publicly available, manually curated fungal

BGCs (as of August 2021), and can be integrated with the analysis of existing

BGC discovery tools, such as antiSMASH. A recent update to the MIBiG database
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presented by Kautsar et al. (2019) revealed a total of 2,021 BGCs, with 1,670

from bacteria, 249 from fungi, 19 from plants and 83 unknown. The majority

of BGC types in MIBiG entries across all taxonomic groups are for polyketide

and non-ribosomal peptides, which corresponded to a total of 825 and 672 BGCs,

respectively. While the most common genus in MIBiG is the bacteria Streptomyces

with 568 entries, the second one is the filamentous fungi Aspergillus, with 79

entries (Kautsar et al., 2019).

1.3 Machine learning

Machine learning methods rely on algorithms that are capable of learning from ex-

perience and improve its own performance at a given task. These ML algorithms

learn how to perform a given task T , normally by observing from data, and eval-

uate their performance P through specific measures, with the goal of enhancing

their experience E (Mitchell, 1997). Murphy (2021) presented machine learning

methods through a probabilistic perspective, and described it as decision making

under certainty, where problems are viewed through random variables that hold

probability distributions that indicate probable values of these variables.

Applications of machine learning methods are endless, and they have contributed

to achieve outstanding advancements in a broad range of areas, from medicine

to natural language to finance. Various disciplines form the field of machine

learning, being supervised learning the most common in current research works.

Reinforcement learning is another discipline that has recently grown among ma-

chine learning applications. Further descriptions of both disciplines are provided

in the following Sections 1.4 and 1.5.
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1.4 Supervised learning

In supervised learning, the objective is to learn a function f : X → Y , from

inputs x ∈ X that maps it to outputs y ∈ Y for a given task T . To learn

this mapping, an algorithm samples experience E from a set of examples DX,Y .

The training dataset D is composed of input-output pairs, in which input x are

features extracted from data and y are labels or categories. Data inputs in x are

usually represented by a vector of fixed length. A learning algorithm is fitted to

D by minimizing a loss function `(y, y′), where y′ is a predicted label for an input

x (Mitchell, 1997; Murphy, 2021).

Classification and regression Supervised learning tasks are most commonly rep-

resented as classification or regression problems. In regression, a learning algo-

rithm outputs predictions of real value, such as y ∈ R. In classification, a learning

algorithm outputs predictions within a set of classes C, such as C = Ci, ..., Cn.

When C represents a set of mutually exclusive n classes when n = 2, the problem

is known as a binary classification task, whereas if n > 2 the problem is known as

a multi-class classification (Goodfellow et al., 2016; Murphy, 2021).

Evaluation metrics Performance of supervised learning algorithms are often

evaluated based on Precision (P), Recall (R), and F-measure (F-m). These metrics

are specially valuable when the distribution of Y labels in a dataset D of a given

task presents an imbalanced distribution, such as one of the classes Ci composing

only a small fraction of the entirety of D instances. P, R and F-m are computed

from the number of true positive (TP), false positive (FP), and false negative (FN)

results within predictions outputted by a supervised learning model. Precision,

also known as specificity, measures the number of correct predictions within all

predictions, and is computed as P = TP
TP+FP

. Recall, also known as sensitivity,
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measures the number of correct results that were actually outputted, and is com-

puted as R = TP
TP+FN

. F-measure, or F-score, is the harmonic mean of Precision

and Recall, and is computed as F -m = 2×P×R
P+R

.

Class imbalance The distribution of dataset labels may be imbalanced in cer-

tain classification tasks. The class imbalance problem occurs when the label of

interest is scarce. Class imbalance is often a condition in classification tasks de-

signed for biological datasets (Almeida et al., 2014). Data sampling is among the

popular techniques to deal with class imbalance (He & Ma, 2013), due to its low

computational cost and better performance compared to other methods, such as

cost-sensitive techniques (Borrajo et al., 2011). Oversampling increases the num-

ber of instances in the minority class. Since new data might not be available, new

instances could be artificially generated. Undersampling discards data instances

belonging to the majority class to achieve a given distribution balance, but this

technique might result in information loss.

Methods Logistic regression is a probabilistic, discriminative classification model

that relies on a logistic function to estimate a dependent variable, which presents

two possible values in a binary classification context (Murphy, 2021). A binary

logistic regression predictor is defined as p(y|x; θ) = (y|σ(wTx+ b)), for a input

vector x, a set of class labels y ∈ {1, ..., C}, weights w, a bias b, and a sigmoid or

logistic function σ.

A Support vector machine (SVM) is a non-probabilistic predictor trained to rely

on a subset of training points known as "support vectors" at test time (Murphy,

2021). The support vectors are the closest data points found near a maximum

margin from a separating hyperplane H. An SVM predictor is defined as f(x) =∑N
i=1 αiK(x,xi) for a weight vector α, a kernel function K, an instance to be
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classified x, and support vectors xi.

Random forest is an ensemble classification model that relies on base decision

tree learners trained on random data subsets and input variables. The model

final output is obtained by an ensemble of decisions from the decision tree learn-

ers (Murphy, 2021). The ensemble Random forest predictor of a set of M trees

is defined as f(x; θ) =
∑M

m=1 βmFm(x; θm), for a input vector x, a mth decision

tree Fm, and weights βm.

Multilayer perceptron (MLP) is a feedforward neural network predictor, composed

of stacked input, hidden and output perceptron layers, and nonlinear activation

function (Murphy, 2021). A perceptron is a deterministic classifier defined as

f(xn; θ) = (HwTxn + b), that starts with random weights w which are then

updated as in wt+1 = wt− ηt(ŷn− yn)xn, for a labeled input pair (xn, yn), and a

learning rate ηt at iteration t. Backpropagation is used to compute the gradient

of a loss function with regards to the weights of a given network output. While a

perceptron relies on a linear threshold function H(a), MLPs rely on differentiable

activation functions, such as the rectified linear unit (ReLU) (Murphy, 2021).

1.5 Reinforcement learning

Reinforcement learning focuses on the problem of an autonomous agent that inter-

acts with its environment to maximize a reward signal, through learning from its

own experience (Mitchell, 1997; Sutton & Barto, 2018). A reinforcement learning

agent is capable of operating under uncertainty about its environment, making

these methods suited to handle interactive problems, optimization, planning, and

real-time decision making (Sutton & Barto, 2018).

In reinforcement learning, an agent learns how to interact with an environment in

order to maximize its perceived rewards and achieve a goal. The learning agent
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has to decide between a set of available actions A to navigate different states Si in

the environment. The reinforcement learning agent core is represented in terms of

a policy π(x) which maps environment states to actions, and determines the agent

behaviour. During its transition between environment states, the agent receives

feedback in terms of rewards or penalties, which it uses to acquire experience and

improve its performance over time.

At the same time a reinforcement learning agent attempts to maximize its reward,

it has also to find a balance between exploration and exploitation. When exploit-

ing, the agent decides to take a greedy action, meaning an action that provides

maximum reward at a given point. When exploring, the agent opts for a non-

greedy action, which allows it to better estimate the return value of other actions.

While exploitation may offer the current maximum expected reward, exploration

may offer a higher reward value over time (Russell & Norvig, 2002; Sutton &

Barto, 2018).

Temporal-difference reinforcement learning methods do not require an environ-

ment model and are capable of learning after a single time step. Q-learning

is a temporal-difference algorithm that learns an action-value function Q that

approximates the optimal action-value function and computes expected rewards

for a given state (Sutton & Barto, 2018). Apart from being a model-free re-

inforcement learning method, Q-learning is an incremental on-line algorithm,

for which action-values are updated at each time step based on existing esti-

mates. These aspects could indicate that Q-learning is a suitable reinforcement

learning method to optimize the decision-making process in a variety of biolog-

ical tasks, which can be environment-free context, and benefit from a continu-

ous approach capable of providing on-line updates. A Q-learner is defined as

Q(St, At) = Q(St, At)+α [Rt+1 + γmax
a
Q(St+1,a)−Q(St, At)], for a set of actions

A and states S, and respective rewards R at a timestep t. Q-learning considers a
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α learning rate, and a γ discount-rate factor, while ε defines a probability for the

algorithm exploration versus exploitation rate (Sutton & Barto, 2018).

1.6 Biological feature representation

Machine learning-based algorithms, including supervised and reinforcement learn-

ing, rely on data to acquire experience and produce outputs. Omics disciplines, in-

cluding genomics, transcriptomics, proteomics, metabolomics and more, focus on

the comprehensive study of biological molecules, often through statistical, bioin-

formatics and computational biology approaches (Hasin et al., 2017). Omics data

are commonly represented through a variety of biological features to be processed

as input by learning methods. Biological features are often sequence ones, which

mainly extract patterns occurring in genome sequences; or functional ones, which

focus on describing the function of protein products and genes encoded by a

genome sequence (Pevsner, 2015).

Sequence features Sequence features are often extracted directly from DNA,

RNA, or protein sequences, through intrinsic methods that rely on signals or

sequence patterns (Pevsner, 2015). One example of sequence features are codons,

a set of three nucleotides in a DNA or RNA sequence that codes for an amino

acid or a stop signal to protein synthesis. Introns and exons are other examples

of sequence features. While introns represent the non-coding parts of a DNA

sequence, exons represent the coding parts of a sequence that are translated to

proteins. Sequence motifs are also an example of features, representing a short

recurring pattern of either nucleotides or amino acids that are assumed to have

specific biological functions (Hashim et al., 2019), such as binding or structural

properties. Finally, K-mers are also an example of sequence features. Widely

used features in bioinformatics, k-mers are a sub-sequence of length k extracted
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from biological sequences. Figure 1.3 shows an example of k-mer extraction from

an amino acid sequence.

Figure 1.3: Example of k-mer extraction from an amino acid sequence

K-mer features can be representative of sequence motifs and conserved regions.

Analysing the re-occurrence of motifs can point to relevant sequence regions that

hold specific biological functions, such as transcription factor binding sites, ele-

ments involved in gene regulation, or the definition of protein secondary struc-

ture (Bailey et al., 2015; Hashim et al., 2019). Previous studies have evaluated

the applicability of various k-mer lengths (Chor et al., 2009; Breitwieser et al.,

2018; Kirk et al., 2018), however the most suitable value of k may vary widely

according to the task at hand. Optimization of k values for a given problem will

therefore likely to lead better performance. Generally, larger values of k will re-

sult in a more sparse vector space representation of the data, which may lead to

overfitting (Wang et al., 2016).

Functional features Unlike sequence features, functional features are often ob-

tained from external resources, such as curated biological databases, experimental

approaches, or even manual annotation. Examples of functional features are con-

served protein domains and families. Protein domains define the function or struc-
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ture of a protein, and protein families determine a set of proteins evolutionarily

related, with expressive sequence similarity. While a protein may present multiple

domains with specific functions, similar domains may also be found in different

proteins. The assignment of protein domains and families given an amino acid

sequence normally relies on identifying protein signatures through computational

approaches.

Pfam (Mistry et al., 2020) is one of the most common resources to obtain con-

served protein domains and protein families for amino acid sequences. Pfam is

built based on multiple sequence alignments and profile Hidden Markov Models

(HMM). Protein sequence conservation is modeled using HMMs to represent a

chain of states (match, delete, and insert), estimated from a seed alignment of

representative of a protein family. A full alignment is built next, matching the

HMMs derived from seed alignments to UniProtKB/Swiss-Prot (UniProt Con-

sortium, 2020) sequences. Extracting Pfam domains from amino acid sequences

provides information on common or shared functional profiles, making them rele-

vant features to help identify targets for computational biology and bioinformatics

tasks. Figure 1.4 shows an example of a few Pfam conserved protein domains ex-

tracted from amino acid sequences of fungal BGCs from MIBiG.

Another example of functional features are gene products, the biochemical mate-

rials resulting from gene expression (Pevsner, 2015). Gene Ontology (GO) (Ash-

burner et al., 2000; Gene Ontology Consortium, 2021) is an extensively used re-

source to obtain gene product annotations. Entries in the GO knowledge base

are mostly curated from published data, and provide information about the func-

tion of genes and gene products across a variety of organisms. Annotations in

GO represent a relationship between a specific gene and its function, supported

by evidence. The ontology is constructed as a directed acyclic graph, a network

in which GO terms are nodes connected to their ancestor and children terms.
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Figure 1.4: Example of Pfam domains extracted from MIBiG fungal BGCs.
(1) Alternariol − Aspergillus nidulans ; (2) lovastatin − Aspergillus terreus ; (3)
monascorubrin − Talaromyces marneffei ; (4) naphthopyrone − Aspergillus nidu-
lans ; (5) ferrichrome − Aspergillus oryzae ; (6) brassicicene C − Alternaria bras-
sicicola ; (7) fumigaclavine C − Aspergillus fumigatus

Figure 1.5 shows examples of GO terms ancestor charts for the synthesis of as-

perthecin (GO:0036184) and polyketide (GO:0030639), which are related to sec-

ondary metabolism. The charts were obtained with QuickGO (Binns et al., 2009),

a GO browser.

There are three categories of GO terms: biological process, which involves a chem-

ical or physical transformation to which a gene or gene product contributes; molec-

ular function, which is the biochemical activity of a gene product; and cellular

component, which indicates the cellular location where the gene product is ac-

tive (Ashburner et al., 2000). Since gene products may be implicated in different

processes and functions, the relationships between a gene product and GO cat-

egories are one-to-many. Similarly to Pfam domains, obtaining GO terms for

genomic data helps identify a functional profile and potential targets for specific

tasks, which also makes them relevant functional features.

Regarding the discovery of BGCs, both sequence and functional features are rel-

evant to represent attributes of genomic sequences that will be processed with
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Figure 1.5: Examples of GO term annotations for the synthesis of asperthecin
and polyketide

Relevance to
Feature Resource BGC discovery Available at
k-mers - recurrence of -

signature motifs
protein functions related

protein domains Pfam to BGC composition pfam.xfam.org
and SM synthesis

gene products GO genes linked to secondary geneontology.org
metabolism pathways

Table 1.1: Biological features considered in the methodology of this thesis
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bioinformatics or computational approaches to identify potential BGC candidate

regions. These features can indicate the presence of patterns through the re-

occurrence of sequence motifs, the presence of protein functions known to take

part in BGCs and in the synthesis of SM compounds, and the appearance of

processes known to belong to secondary metabolism pathways. A summary of

the biological features applied in Chapters 4, 5, and 6 is presented in Table 1.1.

The next chapter presents a global view of the BGC discovery research problem,

describing main challenges associated with it, the hypothesis and main objectives

of this thesis.



CHAPTER II

RESEARCH PROBLEM
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2.1 Motivation

Secondary metabolites are bioactive compounds of diverse chemical structures pro-

duced primarily by bacteria, filamentous fungi and plants. These SM compounds

were shown to provide fitness advantages and survival functions to the produc-

ing organism, for instance playing important roles in self-protection (Keller, 2015;

Bills & Gloer, 2016; Drott et al., 2020). Fungal SMs have benefited human health

due to their pharmaceutical properties, acting as cholesterol-lowering drugs, an-

tifugal, immunossupressants, antibiotics, and anti-tumor agents in cancer treat-

ment (Keller, 2015; Bills & Gloer, 2016; Chavali & Rhee, 2017). Genes implicated

in the biosynthesis of SM compounds in fungi are usually co-located in an or-

ganism genome, and are known as Biosynthetic Gene Clusters (BGCs) (Kautsar

et al., 2020).

Discovery of fungal BGCs could potentially lead to the identification of novel

compounds relevant to the pharmaceutical and agricultural industries. With the

growing amount of genome sequencing data that becomes available, the oppor-

tunities to identify novel SM compounds increase. Despite the large volume of

genomic data available and previous effort put into developing approaches to iden-

tify BGCs, fungal BGC discovery remains a complex task.

One of the main reasons for the complexity in identifying fungal BGCs is due

to their genomic diversity (Kjærbølling et al., 2019). In a comparative genomics

analysis of Aspergillus species from section Flavi, Kjærbølling et al. (2020) demon-

strated that more than half of fungal genomes varies across these related species,

with a lower count of clade-specific protein families and a high count of species-

specific genes. The authors also found that species-specific genes seemed to be

over-represented in sub-telomeric regions, near the chromosome ends, locations

previously known to be enriched with BGCs in some Aspergillus species. More-
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over, an analysis of the species-specificity for which functional annotations were

found showed their most common functions were transporters, transcriptional fac-

tors, methyltransferases and P450 enzymes suggesting their involvement in regula-

tion and production of bioactive compounds, thus potentially also in SM synthesis.

As a consequence, fungal BGC pathways of which synthesize the same or similar

compounds are known to show noticeable variation in synteny among closely re-

lated species, or even between different strains of the same species (Kjærbølling

et al., 2020). The diversity in fungal BGCs may be the result of the organisms

evolution in response to environmental adaptation and survival (Bills & Gloer,

2016; Keller, 2019; Kjærbølling et al., 2020; Evdokias et al., 2021), providing

them means to defend against other organisms, protect against UV exposure, or

thrive in hostile environments.

However, the genomic diversity of fungal genomes represents a great challenge for

accurately identifying fungal candidate BGC regions for in silico approaches, and

significant curation effort is often needed to accurately identify true positive genes

and reconstruct the metabolic pathway of a candidate BGC. Apart from the high

genomic diversity in fungal genomes, as well as in the genes composing BGCs,

the function of BGC neighboring genes can also be a source of ambiguity. For

instance, certain BGC neighboring genes may show potentially relevant functional

roles but not necessarily belong to a nearby candidate BGC, or take part in the

metabolite production. At the same time, certain neighboring genes may encode

proteins that seem inconsistent or superfluous to a nearby candidate BGC, but in

reality play an important role in the cluster (Keller, 2015).

Typically, in silico candidate fungal BGCs obtained through different bioinfor-

matics approaches and curated by experts are then experimentally characterized.

Beyond the complexity of generating accurate in silico BGC predictions, exper-

imental characterization and production of these SM compounds is also a chal-
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lenging task. An important number of candidate BGC metabolic pathways are

found to be silent or poorly expressed under laboratory conditions, which can

prevent validation of in silico BGC predictions and ultimately the production

of SM compounds (Montiel et al., 2015; Zhang et al., 2019). Metabolic engi-

neering methods applied to chemically synthesize these silent or poorly expressed

compounds, such as gene deletion (Gerke et al., 2012) or overexpression (Ev-

dokias et al., 2021), promoter engineering (Montiel et al., 2015), and pathway

refactoring (Zhang et al., 2019) can be complex and expensive (Pickens et al.,

2011; Rahmat & Kang, 2020). The complexity associated with the experimental

characterization of these compounds only reiterates the importance of generating

accurate candidate BGC predictions through bioinformatics approaches, as a first

step for identifying novel SM compounds. There are three main challenges that

can be considered for identifying fungal BGCs: (1) data scarcity, (2) discovery of

BGC regions, and (3) defining BGC composition and boundaries.

1 Data scarcity Due to all the challenging aspects of accurately identifying

fungal BGCs, the number of compounds previously mapped and experimentally

characterized is scarce. Among publicly available BGC databases, the number of

known fungal BGCs is limited, especially when compared to the number of bac-

terial BGCs. The scarcity of known fungal BGCs can make it more challenging

to build robust tools to support BGC discovery, given the restricted amount of

curated data available to draw insights from and build useful genomic profiles

for fungal BGCs. To illustrate the scarcity of fungal BGCs available in public

databases, the MIBiG and antiSMASH databases hold (as of July 2021) respec-

tively, a total of 15.7% and 1.9% of BGC entries from eukaryotes, while 84.3%

and 98.1% BGC entries are from bacteria and archaea.

Not only the number of curated fungal BGCs available is rather small, BGC re-
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gions themselves are scarce throughout fungal genomes. An analysis of fungal

BGCs in the MIBiG database points to an estimate that, in average, BGC re-

gions correspond to only 1% of the total genome length. Besides handling the

genomic diversity of these clusters, approaches to discover BGCs must also aim to

overcome the challenges of building robust methods despite the limited number of

known fungal BGCs available from which to draw enough knowledge from, at the

same time as handling the scarcity of the targeted and scarce BGC regions found

within whole fungal genomes. Since fungal BGC regions are a small percentage

of the entire genome sequence, it is also not evident how to determine non-BGC

regions that could be relevant for the task and potentially support BGC discovery

approaches. Creating novel datasets that represent an array of fungal BGCs, as

well as a robust array of non-BGC regions could therefore be beneficial to the

development of BGC discovery approaches.

2 Discovery of BGC regions Identifying candidate BGC regions is a vital step

towards experimental characterization and reproduction of SM compounds. This

task is normally performed with the support of bioinformatics and computational

biology approaches developed for BGC discovery, often focused on specific or-

ganisms. The scarcity of fungal BGC data, as well as the characteristic genomic

diversity shown by these clusters, can have a direct effect on the development

of BGC discovery approaches, and therefore on the ability of such approaches to

accurately identify candidate regions. Some aspects of the genomic diversity of

these clusters can be observed in an analysis of the distribution fungal BGCs in

the MIBiG database. The length of BGC regions varies from 617 up to 344,927

base pairs (bp), while the number of Pfam domains found in these BGCs can vary

from 1 to 61, as shown in Table 2.1-A. Also Table 2.1-B shows how the BGC

lengths and Pfam domain counts are spread across different size groups.
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A
bp length domains

min 617 1
max 344,927 61
x̄ 31,231 18.8
σ 35,196 11.9

B
kbp length domain count

x < 10 22.3% 23.9%
10 < x < 30 40.8% 59.4%
30 < x < 50 22.3% 14.2 %

x > 50 14.5% 2.58 %

Table 2.1: (A) Minimum, maximum, arithmetic mean and standard deviation of
base pair (bp) length and domain counts in MIBiG fungal BGCs. (B) Percentage
of fungal BGCs in MIBiG per kilo base pair (kbp) length and domain counts.

The genomic diversity aspect can also be seen in a more detailed analysis of the

Pfam domain distribution of MIBiG fungal BGCs, as shown in Figure 2.1. Pfam

domains found in these clusters were manually curated by experts as high (usually

present in BGCs) and medium (usually present, but not limited to BGCs). The

presence of high and medium domains in MIBiG fungal BGCs is represented in

each row, showing that while the clusters share a structural pattern concerning a

set of specific domains, there is clearly a wide diversity of domains representing

discriminative features for BGC discovery, an indication of the complexity of this

task.

Previous approaches relying heavily on rule-based methods, or requiring manu-

ally curated data as input for example (Vesth et al., 2016), partially work around

the data scarcity and genomic diversity aspects. But they can also result in

approaches that overpredict genomic boundaries of BGCs (Khaldi et al., 2010;

Blin et al., 2017), or that are not able to generalize well when predicting candi-

dates in new genomes, performing well only for a limited number of organisms or

BGC types (Khaldi et al., 2010; Takeda et al., 2014). The approach capability

of generalizing when facing newly sequenced genomes is important to follow the

exponential growth in genomic sequence data available, and support the identifi-

cation of novel SM compounds. Additionally, overprediction of BGC boundaries

that are carried over the experimental characterization phase may inflict extra
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Figure 2.1: Distribution of manually curated high (usually present in BGCs − rep-
resented as blue points) and medium (usually present, but not limited to BGCs
− represented as orange points) Pfam domains in MIBiG fungal BGCs, demon-
strating one aspect of their genomic diversity
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cost, require more expert curation and increase the process complexity.

Along with the genomic diversity and the data scarcity aspects of fungal BGCs,

another concern is the re-discovery of known SMs versus identifying novel com-

pounds (Keller, 2019). Approaches to discover BGCs often have to handle a

balance between robustness, which may imply replicating the identification of

previously known BGCs but missing unknown clusters; and novelty, which may

imply discovering less common BGC structures, but missing known ones.

Machine learning approaches, which are able to generalize from data, might be

suitable to handle fungal BGC discovery and overcome these challenges. These

ML approaches have been applied more to bacteria compared to fungi, most likely

due to the larger availability of bacteria BGC data.

3 Defining BGC composition and boundaries Biosynthetic gene clusters were

shown to be generally composed of minimal building blocks (Keller, 2019), more

specifically genes encoding a backbone enzyme and tailoring enzymes. However,

BGC components are known to vary noticeably by presenting changes in the ar-

rangement of genes involved in the metabolic pathway that synthesizes the SM

compound. Cluster composition may vary at times due to the presence or absence

of certain components, and at other times due to the location in which these com-

ponents appear, such as in overlapping regions of neighboring BGCs, or spanning

across multiple chromosomes.

While a backbone and tailoring enzymes are critical components for the synthesis

of SM compounds, other components such as transcription factors, transporters,

and hypothetical proteins may also be part of a BGC. The level of granularity

in BGC components is often high since some components, such as transcription

factors, frequently appear as cluster specific (Keller, 2019). These diverse compo-
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nents could play relevant roles in the cluster biosynthetic pathway (Keller, 2015),

and therefore their accurate identification is important for the BGC discovery

process.

Figure 2.2: Comparison of MIBiG fungal BGCs from different species associated
with the same SM compound

A comparison of varying cluster compositions among MIBiG fungal BGCs is shown

in Figure 2.2, for clusters associated to the synthesis of the same SM compounds.

The cyclopiazonic acid BGC in Aspergillus flavus spans from positions 2,000 to

16,000 containing 3 genes, and in Aspergillus oryzae it spans from positions 5,000

to 25,000 containing 7 genes. The cercosporin BGC appears in very different

locations in Cercospora beticola, spanning from positions 2,255,000 to 2,295,000

corresponding to 16 genes, and in Cercospora zeina, spanning from positions 2,000

to 22,000 corresponding to 7 genes. Two transport-related genes and one core gene

(backbone) appear in the monacolin K BGC found in Aspergillus terreus, while in

Monascus pilosus the monacolin K BGC shows only one transport-related gene
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and two core genes. The fumonisin BGC comprises one transport-related gene and

four core genes in two Fusarium species, but is composed of 24 genes in Fusarium

verticillioides, while in Fusarium oxysporum it is composed of 17 genes. Although

the sterigmatocystin BGC spans from similar positions in two Aspergillus species,

it is composed of 17 genes in Aspergillus nidulans and 26 genes in Aspergillus

ochraceoroseus.

The variety in cluster composition is an important challenge in BGC discovery,

making therefore the accurate identification of BGC components a difficult task.

Correct definition of components is challenging even when BGC regions are manu-

ally curated or experimentally characterized (Kjærbølling et al., 2019). The BGC

discovery process could benefit from approaches to optimize candidate BGC com-

position that help improve the quality of predicted BGC regions, and potentially

provide better candidates for chemical synthesis of SM compounds.

2.2 Hypothesis

The main hypothesis of this thesis is that the discovery of fungal BGCs can be

supported by machine learning approaches, and ultimately overcome the data

scarcity, genomic diversity and accurate BGC component prediction challenges

associated with this task. Firstly, machine learning approaches applied to tackle

fungal BGC discovery should be able to rely on features extracted from fungal

genome and proteome data, which is built as a robust representation of various

fungal genomic profiles that relevant to the BGC discovery problem. Next, these

machine learning-based approaches should be able to utilize relevant features to

identify candidate genomic sequence regions that could potentially contain BGCs.

Finally, the approaches developed should be able to improve the genomic regions

identified as candidate BGCs based on patterns drawn from protein domain sig-

natures of previously curated and experimentally characterized fungal BGCs.
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Conceptualizing the main hypothesis depends on the exploitation of relevant data

resources and the implementation of suitable machine learning methods. To model

the discovery of fungal BGCs as a machine learning task, this thesis seeks to answer

the following questions:

1. Could robust datasets encourage the development of new machine learning

tools to support discovery of fungal BGCs? How to adequately portrait

the diverse genomic profiles of fungi in such datasets? How to identify rele-

vant, and discriminant non-BGC data to support development of supervised

learning approaches?

2. Given a robust and representative dataset, could supervised learning ap-

proaches based on relevant features support BGC discovery in fungi, as it

was previously applied in bacteria? How could the BGC discovery task be

modeled as a supervised learning problem, suitable to overcome the fun-

gal BGC data scarcity, as well as to handle the genomic diversity of these

compounds?

3. Given predictions of candidate fungal BGC regions, could a reinforcement

learning support optimization of cluster components? Moreover, could func-

tional annotations provided by experts help improve the quality of predicted

candidate BGCs? Could such an approach help overcome the overpredic-

tion of cluster boundaries that current state-of-the-art BGC discovery tools

suffer from?

2.3 Objectives of this thesis

The global objective of this thesis is to propose a novel machine learning-based

approach to identify candidate fungal BGCs. To achieve this main objective, con-

crete objectives are drawn here by concentrating on the hypothesis questions pre-
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sented in Section 2.2, and addressed through the development of suitable method-

ologies which are further described in this thesis. In brief, this thesis addresses

the following three concrete objectives:

1. build a set of publicly available benchmark datasets that contain a sound

representation of fungal genomic profiles relevant to BGC discovery, improv-

ing BGC data availability and therefore enabling the task to be modeled as

binary classification;

2. develop a robust method to identify fungal candidate BGCs based on super-

vised learning and utilizing the previously built benchmark datasets, that is

capable of handling data from different organisms or SM types and general-

izing better than previous methods for fungal BGC discovery mostly based

on data-driven approaches, and that could facilitate newly sequenced, but

not yet annotated, genomes to be potentially processed for BGC predictions;

3. develop a state-of-the-art method to enhance the quality of predicted fungal

BGCs that is based on reinforcement learning, utilizing protein domain sig-

natures of known and experimentally characterized fungal BGCs, exploiting

functional annotations of BGC components when available to discriminate

between true positive and false positive components within BGC predictions.

Following the hypothesis and objectives of this thesis, Chapter 3 describes previ-

ous tools developed to discover BGCs, presenting a comparison between different

methods, target organisms and main approaches. The overview of related work

in Chapter 3 illustrates the potential of applying machine learning methods to

tackle fungal BGC discovery, since only a few tools use learning methods to iden-

tify BGCs, and they were mostly focused on bacteria.



CHAPTER III

RELATED WORK
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Substantial research effort has been put towards developing approaches to discover

BGCs. Medema & Fischbach (2015), Chavali & Rhee (2017), and Medema (2021)

present reviews on various computational approaches to identify SMs, as well as

new or recently updated support resources. A review of BGC discovery tools is

presented in Section 3.1, with a short description of each system. Section 3.2

presents a review of approaches to perform activity and functional analysis of

BGCs. In Section 3.3 a review of reinforcement learning approaches applied to

biological data is presented.

3.1 BGC discovery tools

Previous BGC discovery approaches are presented and compared in this Section.

Table 3.1 presents the list of studies relevant to this thesis, and a summary of their

salient features. For a fair comparison, previous studies are divided into three

main categories: data-driven approaches, probabilistic approaches, and machine

learning approaches, presented in this order in Table 3.1 and followed by more

detailed descriptions in Subsections 3.1.1, 3.1.2, and 3.1.3.

As shown in Table 3.1, most computational approaches for BGC discovery focus

on bacteria, especially more recently published or updated studies. The volume

of annotated BGC data available for bacteria is considerably larger than that

of fungi, which may explain this aspect. The lack of annotated data for fungal

BGCs, in part owing to the diversity in the organization of fungal BGCs and

the scarcity of BGCs in fungal genomes, could also be a consequence of fungi-

dedicated approaches being mostly data-driven as opposed to probabilistic or

machine learning-based.
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Tool Scope Target Input Main Publicly Last
SM approach available update

D
at

a-
dr

iv
en

MIDDAS-M Fungi Unlimited Genome sequence, Virtual clusters, Yes 2013
transcriptome gene expression levels

Takeda et al. Fungi Unlimited Nucleotide, amino Comparative genomics - 2014
acid sequences (homologous genes)

FunGene Fungi NRPS, PKS Genome sequence, Similar gene Yes 2016
ClusterS DMAT transcriptome, expression levels

Genome sequence. Motif co-
CASSIS/ Fungi NRPS, PKS gene start-end, occurrence in Yes 2016
SMIPS (mostly) DMAT protein sequence promoters around

(if SMIPS) anchor genes

EvoMining Bacteria Unlimited Genome sequence Phylogenetic enzyme Yes 2019
family analysis

P
ro

ba
bi

lis
ti
c

SMURF Fungi NRPS, PKS Genome sequence Pfam HMM profiles, Yes N/A
DMAT target domains

ClusterFinder Bacteria Unlimited Genome sequence Pfam HMM profiles Yes 2013

PRISM 4 Bacteria Unlimited Genome sequence Custom HMM library, Yes 2020
rule-based

RRE-finder Bacteria RiPP Amino acid Custom RiPP Yes 2020
sequence HMM profiles

CO-OCCUR Fungi Unlimited Genome sequence Pfam HMM profiles, Yes 2020
comparative genomics

antiSMASH/ Bacteria, Unlimited Genome sequence Pfam HMM profiles, Yes 2021
fungiSMASH fungi curated rules

M
ac

hi
ne

le
ar

ni
ng

Amino acid BiLSTM,
deepBGC Bacteria Unlimited sequence, Pfam2vec Yes 2019

Pfam domains embeddings

NeuRiPP Bacteria RiPPs Amino acid Five NN Yes 2019
sequence architectures

Amino acid LSTM, comparative
deepRiPP Bacteria RiPPs sequence genomics and Yes 2020

metabolomics

RiPPMiner- Bacteria RiPPs Genome sequence Pfam HMM profiles, Yes 2021
Genome Supervised learning

Table 3.1: Comparison of different methods for identifying BGCs
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3.1.1 Data-driven approaches

Data-driven approaches are mostly based on genomic or phylogenetic analysis of

the input data, focusing on information such as co-occurrence of gene expression

levels, and sequence alignment. While data-driven approaches seem less dependent

on previous curated data of known BGC structures, they might require more

manual analysis effort and fine-parameter tuning.

MIDDAS-M Umemura et al. (2013) relies on extracting virtual clusters from

an annotated genome sequence and checking for the co-occurence of gene ex-

pression levels among components of a BGC. Virtual clusters are obtained by

extracting a sliding window of a given size, varying from 3 to 30 genes. Then,

an induction ratio score is computed for each virtual cluster, by comparing its

expression level in SM-producing versus non-SM-producing conditions. Virtual

clusters for which genes are co-regulated with the expectation of candidate BGCs

presenting a higher score, which is magnified from standard deviations of the nor-

mal distribution found in the transcriptome data. Candidate BGCs are defined

as the virtual cluster size in a given region presenting the highest co-expression

score.

Takeda et al. (2014) describes an approach based on comparative genomics,

without relying on known BGC motifs. First, pairwise similarity search and align-

ment of homologous genes are performed for selected genomes. Next, scores are

assigned to homologous genes, as an attempt to correct boundaries of the can-

didate BGC. The last step enriches the candidate BGC by clearing up syntenic

blocks, meaning blocks of genes appearing across species. Parameter optimization

for the algorithm is performed using Aspergillus fumigatus and Aspergillus flavus

genomes.
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FunGeneClusters Vesth et al. (2016) approach is based on gene expression

levels among neighboring genes. A cluster score is computed for a given window of

genes, based on a correlation coefficient. The authors noted that FunGeneClusters

predicts co-regulated genes in general, and not specifically BGCs involved in SM

synthesis. Parameters for the method are user-defined, such as the gene window

size, choice of correlation coefficient, and a gene skipping threshold.

CASSIS/SMIPS Wolf et al. (2016) is based on identifying islands present-

ing higher concentration of cluster-specific transcription factor binding sites near

potential backbone enzymes. SMIPS is applied to perform genome-wide identifi-

cation of potential backbones, based on InterProScan Jones et al. (2014) protein

domains. CASSIS is applied to identify biding site motifs within promoters of

previously identified backbone enzymes. Motifs found are then analysed for their

presence throughout the genome versus within backbone promoters. Candidate

BGC boundaries are set according to the upstream and downstream occurrence

of backbone promoter motifs.

EvoMining Sélem-Mojica et al. (2019) analyses enzyme expansion-and-recruitment

events as indicators of enzyme association to specialized metabolism. Bacterial

genomes are scanned for significant enzyme expansion-recruitment events, a pro-

cess in which an enzyme performs a new function than its original one. Expanded

enzymes identified are then evaluated against SM databases through BLAST,

determining then possible enzyme recruitments into SM biosynthesis.

3.1.2 Probabilistic approaches

Probabilistic approaches used for BGC discovery are based on Hidden Markov

Models (HMMs), and may or may not be combined with other methods. HMM
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profiles in these approaches rely mostly on Pfam. Pfam HMM profiles describe

sequence conservation in protein families. A chain of match, delete and insert

states hold amino acid probabilities in a given state or their transition probabilities

of being added or skipped in a given state, which are derived from seed and full

sequence alignments of sequences annotated with specific protein families (Mistry

et al., 2020).

SMURF Khaldi et al. (2010) relies on a HMM approach to identify conserved

backbone protein domains, then scanning for decorating enzymes (transcription

factors, transporters) in a window of ± 20 genes around the backbone enzyme.

Genes within the window that present at least one SM-related protein domain

are considered a positive hit. Cluster boundaries are defined by reaching either a

threshold of consecutive negative hits, or a threshold in base pairs of intergenic

(non-coding) region.

ClusterFinder Cimermancic et al. (2014) presents a HMM based approach,

extracting contiguous Pfam protein domains from nucleotide sequences, and com-

puting the probability of each domain belonging to BGCs. To assign probabilities

for each domain, the authors rely on the protein domain frequency of training

datasets, as well as in the identity of neighboring domains. The authors finally

apply antiSMASH to annotate SM products from candidate BGCs.

PRISM 4 Skinnider et al. (2020) annotates genomic sequences based on a

library of HMMs composed of SM related domains, and relies on a rule-based

approach to identify candidate BGCs. The HMM library is built based on collec-

tions of Pfam conserved domains, curated BLAST databases, and selected multi-

ple sequence alignment and phylogenetic analysis of SM related substrates. The
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rule-based approach considers presence of minimum two SM related domains in

proximity. A chemical structure analysis is then performed to predict the SM

product associated with candidate BGCs found.

RRE-finder Kloosterman et al. (2020) relies on custom profile HMMs (pH-

MMs) designed to identify RiPP recognition elements (RREs), which are domains

involved in the start of Ribosomally synthesized and Post-translationally modi-

fied Peptide (RiPP) biosynthesis. Custom HMMs are built based on sequence

similarity of known RiPP classes and previously detected RREs, and based on

seed BLAST alignment for unknown RiPP classes. To validate models, the au-

thors evaluate custom HMMs of known RiPP classes against RiPP datasets or

UniProtKB.

CO-OCCUR Gluck-Thaler et al. (2020) presents an approach based on candi-

date BGC regions predicted using SMURF (HMM). Candidate BGCs outputted

by SMURF are expanded, then analysed for an unexpected co-occurrence of neigh-

boring genes of interest among a set of fungal species to identify a conserved

relationship to signature biosynthetic genes (backbones). Co-occurrence of neigh-

boring genes is analysed within previously computed sets of Dothideomycetes or-

thologs and paralogs, and their presence in known BGCs. Predicted BGCs are

assigned a SM type if there is at least 90% similarity to characterized BGC sig-

nature genes.

antiSMASH/fungiSMASH Blin et al. (2021) relies on HMMs from differ-

ent databases, such as Pfam and TIGRFAM (Haft et al., 2012), and curated

rules for 71 BGC types. After extracting conserved protein domains using the

HMM models, it applies pre-defined cluster rules analysing presence of certain
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domain families around the core gene (backbone). While expanding the predic-

tion to neighboring genes around the backbone, candidate BGCs are checked for

overlaps. The approach incorporates a set of support tools, such as RRE-finder,

RODEO (Tietz et al., 2017), and CASSIS.

3.1.3 Machine learning-based approaches

Machine learning-based approaches presented in this review are mostly based on

supervised learning, and may or may not be combined with other methods. Pri-

hoda et al. (2021) presents an overview of recent advances in machine learning

approaches applied to BGC discovery. All machine learning approaches addressed

in this review are focused on bacteria, with most specifically designed to identify

RiPPs, or applying deep learning methods. These supervised learning approaches

rely on labeled training datasets composed of positive (target) and negative in-

stances to train models, and validation and/or test datasets to evaluate the model

predictive performance.

deepBGC Hannigan et al. (2019) presents an approach based on a BiLSTM

model and Pfam protein domain embeddings (Pfam2vec) to predict BGC and

non-BGC genome regions, and a random forest classifier to identify SM prod-

ucts for candidate BGCs. Pfam2vec embeddings are built using the skipgram

architechture (Mikolov et al., 2013), embedding size of 100, and Pfam domains

extracted from bacterial genomes in order of appearance. The classification model

is composed of a BiLSTM layer of size 128, and a time-distributed dense layer with

sigmoid activation.Positive instances in the training set are obtained from Clus-

terFinder, and negative instances generated similarly to ClusterFinder ones. The

random forest classifier is built based on product class and product activity data

extracted from MIBiG BGCs. Prediction scores obtained with the classification
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model are averaged by gene, and consecutive regions are merged to form candidate

BGCs, for which potential SM products are then also predicted.

NeuRiPP de Los Santos (2019) evaluates the application of five different neu-

ral network architectures to identify precursor peptides from RiPPs. Among the

five architectures the authors listed bidirectional Long short-term memory (BiL-

STM), Linear Convolutional Neural Network (CNN), Parallel CNN, Linear CNN

+ LSTM, and Parallel CNN + LSTM. LSTM layers were of size 60, while Linear

CNNs are composed of three CNNs layers of varying sizes, and Parallel CNNs

are composed of two parallel CNN layers of three different kernel sizes. As input,

the neural networks receives fixed length sequences of 120 amino acids. Positive

training instances are composed of precursor peptides from different RiPP classes

previously identified with PRISM, RODEO, or antiSMASH, while negative in-

stances are sequences identified as not precursors by RODEO. A undersampling

method is applied to reduce the size of the negative set, which was seven times

larger than the positive set. Test instances are pre-processed by antiSMASH,

RODEO and Prodigal-short (Santos-Aberturas et al., 2019) before being submit-

ted to NeuRiPP.

DeepRiPP Merwin et al. (2020) presents an approach formed by three com-

ponents to identify precursor peptides from RiPPS. A NLPPrecursor component

is adapted from natural language models, and relies on a three layer LSTM ar-

chitecture to generate embeddings for amino acid tokens, and then to evaluate if

a given input sequence is a RiPP precursor. Two LSTM layers in the embedder

are of size 1140, while the last is of size 400, as well as the final embedding size.

NLPPrecursor is trained on a set of precursor peptides and non-precursor peptides

identified by PRISM. The approach is also composed of two other tools: BAR-
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LEY, that relies on local alignment to handle dereplication of known products

and promote identifying novel compounds; and CLAMS, that relies on compara-

tive metabolomics to analyse candidate BGCs against databases of mass spectral

data.

RiPPMiner-Genome Agrawal et al. (2021) introduces an approach that relied

on HMM and supervised learning. Genomic regions of interest are obtained using

Prodigal (Hyatt et al., 2010) for whole genomes, and analysed against Pfam HMM

profiles of enzymes belonging to RiPP classes. Random forest classifiers are built

for different RiPP classes, trained on previously identified precursor peptides and

non-precursor peptides, in an attempt to improve the prediction obtained from

the Pfam HMM analysis.

Although previous work has shown that machine learning methods are suited to

handle BGC discovery, this approach has not been applied to fungal data as it has

been to bacterial data. As addressed in Chapter 1, annotated fungal BGC data

is scarce in comparison to bacteria, which could have affected the development of

learning approaches dedicated to fungi, and consequently the discovery of novel

BGCs in these organisms.

3.2 Improvement of BGC predictions with activity and functional analysis

Previous work on improving predicted BGCs mostly focused on identifying BGC

main products, activities, or their chemical structures (Medema, 2021). Some

studies rely on functional analysis of BGC components to improve their predic-

tion. For instance, optimization of bacterial BGC boundaries in antiSMASH is

supported by CASSIS (Wolf et al., 2016), which relies on binding sites of cluster-

specific transcription factors to identify candidate BGC regions around backbone
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enzymes (Blin et al., 2021).

Skinnider et al. (2020) presents an approach to predict chemical structures for

bacterial secondary metabolites, within which machine learning classifiers were

built to predict antibacterial, antitumor, immunomodulatory, antifungal, and/or

antiviral activities. The classifiers are trained based on chemical fingerprints from

structure predictions obtained by leveraging functional annotations of secondary

metabolite tailoring enzyme reactions. Skinnider et al. (2020) reports results

outperforming antiSMASH structure prediction, both in coverage and accuracy.

Hannigan et al. (2019) builds a Random Forest classifier to identify BGC activity,

along with its BGC discovery approach. The model is built based on activity

annotations extracted from MIBiG bacterial BGCs, and predicts activity within

four types: antibacterial, cytotoxic, inhibitor, antifungal. Walker & Clardy (2021)

also presents a machine learning approach to predict BGC activity, but with more

activity types: antibacterial, anti-Gram-positive, anti-Gram-negative, antifungal,

antitumor or cytotoxic.

Activity prediction in both Hannigan et al. (2019) and Walker & Clardy (2021) is

based on bacterial BGCs only, obtained from MIBiG. While Hannigan et al. (2019)

extracts chemical activity data from MIBiG entries, Walker & Clardy (2021) as-

sociates an activity to a BGC through evidence curated from literature review of

previously reported specific activity associated to a BGC. The training dataset

in Hannigan et al. (2019) contains 370 instances, and relies solely on Pfam do-

mains as features. Walker & Clardy (2021) represents dataset instances with

antiSMASH annotations containing secondary metabolite ortholog groups and

motifs, as well as Pfam domains and Pfam subfamilies, which are generated with

a sequence similarity network algorithm (Gerlt et al., 2015). The more robust

feature representation in Walker & Clardy (2021) outperformed results obtained
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previously by Hannigan et al. (2019). Both approaches have to handle an imbal-

anced dataset, and report an ≈< 40% average F-m (Hannigan et al., 2019) and

an ≈ 70% average balanced accuracy (Walker & Clardy, 2021) when predicting

BGC activity.

Optimizing candidate BGCs based on different aspects, such as chemical struc-

tures, activity, or functional annotations is a relevant step on BGC discovery.

It allows for potentially more accurate and richer BGC predictions, facilitating

the experimental characterization process by denoting cluster components and

boundaries more precisely, or even lead to the discovery of novel compounds.

3.3 Reinforcement learning approaches for biological data

Applications of reinforcement learning to process biological data are less com-

mon when compared to other machine learning methods such as supervised learn-

ing (Mahmud et al., 2018). Previous works rely on reinforcement learning to

perform optimization tasks, such as metabolic engineering through bioretrosynthe-

sis (Koch et al., 2019), multiple sequence alignment for nucleotide sequences (Mircea

et al., 2018; Ramakrishnan et al., 2018; Song et al., 2021), control gene reg-

ulatory networks (Imani & Braga-Neto, 2018), as well as design biological se-

quences (Eastman et al., 2018; Angermueller et al., 2020) and de novo drug-like

compounds (Gottipati et al., 2020; Jeon & Kim, 2020).

Koch et al. (2019) present an approach based on Monte Carlo Tree Search to

explore metabolic pathways capable of de novo bioretrosynthesis reactions, which

identifies molecules and enzymes that are capable to convert themselves into a

given target. The sequential decision process starts from a state with a target

compound to be produced, for which its molecules can be transformed through

allowed actions that continue until a leaf node in the search tree is reached. A rank-

ing scheme is established for possible compound transformations in given states,
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providing rewards according to a biochemical score associated to the transforma-

tion.

Mircea et al. (2018) introduce a multiple sequence alignment Q-learning approach

to progressively align a set on input sequences, based on local optimal alignments

and a profile computed for input sequences, which determines their frequency

for each nucleotide. Rewards for candidate alignments consider the match or

mismatch between nucleotides (or gap) at a given position, and are computed

based on the sum-of-pairs score.

In Ramakrishnan et al. (2018) the authors also describe a multiple sequence align-

ment approach, but based on a Asynchronous Advantage Actor Critic (A3C)

model containing two separate neural networks, one considered as an actor and

the other a critic, composed of convolutional and fully connected layers. The

model is fed randomly aligned and generated sequences, and computes its reward

based on the sum-of-pairs score for proposed alignments.

The multiple sequence alignment approach in Song et al. (2021) combines two

deep (convolutional) Q-networks: a dueling deep-Q network, that learns scores

separately for states and actions; and a double deep-Q network, that aims to

avoid overestimation by converging towards the main network using a constant

ratio. Input nucleotide sequences are processed as a window of sub-sequence pairs,

for which smaller alignments are generated, shifting to subsequent windows in the

environment through forward, insertion or deletion actions.

Imani & Braga-Neto (2018) propose a Bayesian inverse reinforcement learning

approach to control gene regulatory networks. Gene expression measurements are

represented based on a partially-observed boolean signal model. Q-learning is

applied to simulate an expert intervention policy to estimate the pathway cost of

activating or suppressing certain control genes given an input gene. The goal is to
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accurately modify the gene network dynamics through gene up or down-regulation

and achieve the desired effect, such as suppressing genes associated with cancer

metastasis, or activate genes associated with tumor suppression.

Eastman et al. (2018) present an approach to perform inverse RNA folding, and

design RNA sequences that will fold into a target input secondary structure. Given

an input candidate RNA sequence of fixed length, the reinforcement learning

agent is trained to modify it through actions so as to achieve a desired structure.

Rewards are only assigned when the agent reaches the target structure. The

approach policy network is based on the Asynchronous Advantage Actor-Critic

(A3C) algorithm, and consists of a set of multiple convolutional layers.

Angermueller et al. (2020) also propose a model based reinforcement learning ap-

proach to perform sequence design using on proximal policy optimization. Actions

determine the next character in a sequence string from left to right, while rewards

are only assigned at the terminal state of each input sequence. The reward func-

tion is converged by fitting a supervised regression model on the possible sequence

prefixes collected at a certain step, unless the reward model presents uncertainty

above or accuracy below specific thresholds. To help increase sequence diversity

and avoid redundancy, the approach processes input sequences in large batches

of approximately 100 to 1000 instances, and when computing the terminal state

reward, the authors verified for sequence similarity against already proposed se-

quences.

Jeon & Kim (2020) describe an approach based on double Q-learning and deep-Q

networks to optimize molecules and design of drug-like compounds. Three dimen-

sional structure of target proteins are taken as input. Actions in the reinforcement

learning approach determine atom or bond addition or removal, under valid con-

straints, while the rewards are computed according to specific properties obtained
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by the modified molecules.

Similarly to Ramakrishnan et al. (2018), Gottipati et al. (2020) also present

an approach based on actor-critic networks that aims to identify most suitable

chemical reactants to interact with a given molecule and achieve a specific reaction.

In Gottipati et al. (2020), the actor networks based on fully connected layers select

a chemical reactant and compute possible products to be generated, while the

critic network, based on a double Q-learning, provided scores on the predicted

products obtained, aiming to maximize its rewards.

As shown in Section 3.1, most previous works focusing on fungi are based on data-

driven or probabilistic methods, thereby opening an opportunity for exploring

machine learning methods to identify fungal BGCs.



CHAPTER IV

NEW BENCHMARK DATASETS FOR FUNGAL BGC DISCOVERY

A first step towards building a robust machine learning approach for fungal BGC

discovery was designing benchmark datasets, to tackle the task of identifying can-

didate BGC regions as a supervised learning problem. This Chapter describes the

methodology adopted to built new benchmark datasets to represent diverse fun-

gal genomic profiles, providing a solid knowledge basis for learning methods. The

study presented in this Chapter was published in the 2019 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) issue and presented at

the Machine Learning and Artificial Intelligence in Bioinformatics and Medical

Informatics (MABM 2019) in the same conference, under the title "Supporting

supervised learning in fungal Biosynthetic Gene Cluster discovery: new bench-

mark datasets". Article writing, approach implementation, experimental design

and execution were performed by Hayda Almeida under the supervision of profes-

sors Adrian Tsang and Abdoulaye Baniré Diallo. A printed version of this article

is presented in the Appendix A.
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4.1 Abstract

Fungal Biosynthetic Gene Clusters (BGCs) of secondary metabolites are clusters

of genes capable of producing natural products, compounds that play an important

role in the production of a wide variety of bioactive compounds, including antibi-

otics and pharmaceuticals. Identifying BGCs can lead to the discovery of novel

natural products to benefit human health. Previous work has been focused on de-

veloping automatic tools to support BGC discovery in plants, fungi, and bacteria.

Data-driven methods, as well as probabilistic and supervised learning methods

have been explored in identifying BGCs. Most methods applied to identify fungal

BGCs were data-driven and presented limited scope. Supervised learning meth-

ods have been shown to perform well at identifying BGCs in bacteria, and could

be well suited to perform the same task in fungi.

But labeled data instances are needed to perform supervised learning. Openly

accessible BGC databases contain only a very small portion of previously curated

fungal BGCs. Making new fungal BGC datasets available could motivate the

development of supervised learning methods for fungal BGCs and potentially im-

prove prediction performance compared to data-driven methods. In this work we

propose new publicly available fungal BGC datasets to support the BGC discov-

ery task using supervised learning. These datasets are prepared to perform binary

classification and predict candidate BGC regions in fungal genomes. In addition

we analyse the performance of a well supported supervised learning tool developed

to predict BGCs.

4.2 Introduction

Natural products (NPs) are specialized bioactive compounds primarily produced

by plants, fungi and bacteria. NPs are a vital source for drugs: from anti-cancer,
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anti-virus, and cholesterol-lowering medications to antibiotics, and immunosup-

pressants (Chaudhary et al., 2013; Medema & Fischbach, 2015; Chavali & Rhee,

2017). Unlike those in plants, genes involved in the biosynthesis of many NPs in

bacteria and fungi are co-localized in the genome of organisms and usually orga-

nized as clusters of genes (Osbourn, 2010). Gene clusters capable of producing

NPs are known as Biosynthetic Gene Clusters (BGC).

The task of identifying new BGCs could potentially lead to the discovery of novel

NPs to benefit human health. However this task involves complex and costly

processes, as well as the analysis of large amounts of biological data. Develop-

ment of automatic tools that can support the identification of BGCs is therefore

highly relevant. Various approaches have been used to develop such tools, such

as data-driven methods, probabilistic methods, and supervised learning methods.

In supervised learning the BGC discovery task can be represented as binary clas-

sification task. The goal in a binary classification task is to classify data instances

as belonging to one out of two different categories. A binary classification BGC

dataset would therefore be composed of positive and negative BGC instances.

Supervised learning has been previously used to predicting bacterial BGCs (Agrawal

et al., 2017; Hannigan et al., 2019) and shown to perform well. Supervised learn-

ing methods however are developed primarily based on annotated datasets, for

which all instances are labeled as belonging to a specific class. Unlike for bac-

teria, the number of known fungal BGC data previously validated by curators

is rather limited. The Minimum Information about a Biosynthetic Gene cluster

(MIBiG) (Medema et al., 2015)1 repository is one of the largest freely available

BGC databases.

As an example of the disparity between known available BGC from bacteria versus

1http://mibig.secondarymetabolites.org/
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fungi that has been annotated by curators, MIBiG holds over 1,196 bacteria BGCs,

while only 206 are fungal BGCs2.

Generating fungal BGC datasets for supervised learning approaches imposes a few

challenges. For instance, negative samples are needed for binary classification, and

they are not directly provided by BGC databases just as annotaded BGC data. To

be able to support a robust classification approach, fungal BGC datasets used as

input should include a variety of organisms and BGC types to properly represent

fungal genomic profiles.

The availability of fungal BGC datasets could leverage the development of new su-

pervised learning approaches to tackle BGC discovery in fungi. This work presents

new datasets prepared to tackle fungal BGC discovery as a binary classification

task. These datasets are constructed in such way that they include most variety of

BGC types from different organisms, attempting to represent fungal genomic pro-

files to better suit the fungal BGC classification task. Finally we also analyse the

usage of fungal BGC datasets with one of the state-of-the-art supervised learning

methods developed for BGC discovery, DeepBGC (Hannigan et al., 2019).

4.3 Previous work

In this section we present previous work on the availability of BGC data previ-

ously predicted or annotated by curators that can support BGC discovery, and

previous work conducted towards developing automatic approaches to identify

fungal BGCs. BGC databases and some of their characteristics are discussed in

Section 4.3.1. Previous work on predicting BGCs in fungi is presented in Sec-

tion 4.3.2.

2As of July 2019.
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4.3.1 BGC Databases

Only a small number of open access BGC databases is currently available to sup-

port research on automatic tools to identify BGCs. The majority of entries in

these databases corresponds to bacteria data, while only a small portion are fun-

gal BGCs.3 MIBiG is a BGC repository in which curated entries are submitted

by curators, and added to the database in a format compliant with the Minimum

Information about any Sequence (MIxS) framework data standard. It holds 206

fungi BGCs and 1,196 for bacteria. Clustermine360 (Conway & Boddy, 2012)

contains microbial polyketide synthases (PKS) and non-ribosomal peptide syn-

thetases (NRPS) biosynthesis. It holds a total of 29 fungal BGCs, while over 900

are from bacteria. Clustermine360 entries are curated and submitted by curators,

enriched with information from the National Center for Biotechnology Informa-

tion (NCBI)4, and analysed with the antiSMASH (Blin et al., 2017) tool. The

antiSMASH database (Blin et al., 2016) has 24,773 microbial BGCs predicted

based on its homonymous tool. Unlike its bacteria version, the fungal version

of antiSMASH does not provide a database of fungal BGCs to the best of our

knowledge.

The Integrated Microbial Genomes: Atlas of Biosynthetic Gene Clusters (Had-

jithomas et al., 2016) (IMG/ABC) database contains BGCs predicted using the

ClusterFinder algorithm (Cimermancic et al., 2014). IMG/ABC holds 127 fungal

BGCs and 1,025 from bacteria.

These databases are not connected. Since it is likely that there are overlaps

among the different databases, the number of unique fungal BGCs could be even

3Number of entries for databases are reported as of July 2019.

4https://www.ncbi.nlm.nih.gov/
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smaller. The small proportion of fungal BGCs across databases is an example of

the challenges in developing automatic tools to tackle BGC discovery in fungi.

This work proposes new publicly available datasets to be an input of supervised

learning tools to predict fungal BGCs, based on MIBiG and orthologous genes.

The details on our datasets and their analysis are discussed in Section 4.4.

4.3.2 BGC discovery in Fungi

Significant effort has been put towards developing approaches to discover BGCs

(Medema & Fischbach, 2015; Chavali & Rhee, 2017). The majority of approaches

focused on processing bacterial data, while some of them are specially focused on

fungi. Identifying BGCs remains a challenging task specially in fungal genomes,

due to the diversity of clusters (Kjærbølling et al., 2018).

Previous work on fungal BGC discovery made use mostly of data-driven methods,

which are heavily based on the analysis of the input or output data and require

fine parameter-tuning. These methods required as input the genome sequence

combined with transcription data (Vesth et al., 2016; Umemura et al., 2013), or

gene functional annotations (Wolf et al., 2016), as well as both nucleotide and

amino acid sequences (Takeda et al., 2014). Vesth et al. (2016) and Umemura

et al. (2013) focused on analysing similar gene expression levels, while Umemura

et al. (2013) used virtual clusters. Vesth et al. (2016) looked at motif co-occurrence

in promoters around anchor genes, and Takeda et al. (2014) analysed homologous

genes through a comparative genomics approach.

Such data-driven methods are less dependent on curated BGC data, which are

time consuming to obtain, but they all present limitations. Wolf et al. (2016)

requires gene functional annotations, which may not be available, and Vesth et al.

(2016) relies heavily on manual curation of output to achieve the expected re-

sults. A very limited BGC prediction scope is considered in Khaldi et al. (2010)
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and Takeda et al. (2014). Both approaches are developed based on biological se-

quences from a single species, and they also require fine parameter-tuning. Such

limitations of data-driven methods can restrict their ability to generalize to new

data, and as a consequence compromise the discovery of novel BGCs.

Likely due to the larger availability of curated BGC data, probabilistic (Cimer-

mancic et al., 2014; Skinnider et al., 2015; Blin et al., 2017) and machine learning

approaches (Agrawal et al., 2017; Hannigan et al., 2019) have been more explored

in bacteria compared to fungi, and shown to perform well. Probabilistic and ma-

chine learning approaches could be beneficial for BGC discovery, since by nature

they are more capable of generalizing given new data, and will likely perform

better at identifying data patterns and discovering novel BGCs, when compared

to data-driven methods. In this study we also analyse the performance of a su-

pervised learning approach developed to tackle BGC discovery using the fungal

BGC datasets proposed by our work. The details on our experimental setup are

further discussed in Section 4.4.

4.4 Methodology

Some of the challenges in generating fungal BGC datasets for binary classifica-

tion are the need of negative instances, which are not directly provided in BGC

databases; and accounting for a variety of organisms, BGC types, and also fun-

gal genomic profiles. The availability of new fungal BGC datasets however could

potentially motivate the development of supervised learning approaches to tackle

fungal BGC discovery.

In this work we propose new publicly available fungal BGC datasets to support

supervised learning approaches tackling BGC discovery as a binary classification

task. We present here the methodology adopted to prepare fungal BGC datasets

and their analysis using a supervised learning method, with the goal of analysing
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the method performance in fungal BGC data.

Details on our proposed fungal BGC datasets are presented in Section 4.4.1. Sec-

tion 4.4.2 presents the test datasets with which we analysed the performance of

classification models built on fungal BGC datasets. In Section 4.4.3 we provide

details on the parameters considered in our analysis based on a supervised learning

method, as well as the classification models considered.

4.4.1 Proposed Datasets

Supervised learning was shown to perform well at BGC discovery in previous work

that focused on handling bacteria data (Agrawal et al., 2017; Hannigan et al.,

2019). Given that annotated data are needed to perform a supervised learning

approach, we propose here fungal BGC datasets to support the development of

this approach for fungi.

As mentioned in Section 4.2, positive and negative instances are needed to perform

fungal BGC discovery as a binary classification task using supervised learning. To

create our fungal BGC datasets, we extracted and filtered positive instances from

the MIBiG (Medema et al., 2015) repository, previously presented in Section 4.3.1.

MIBiG has the highest number of unique fungal BGCs among the BGC databases

previously presented. Additionally, MIBiG BGCs were annotated and submitted

by the research community, unlike BGCs in other databases that were automati-

cally predicted.

From all MIBiG instances, we have selected only the fungal BGC subset, excluding

BGCs belonging to Aspergillus niger (A. niger) to avoid overlaps during the test

phase, resulting in a total of 200 positive instances.

We generated synthetic negative instances collecting and integrating orthologous
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genes from OrthoDB5 (Kriventseva et al., 2018). Orthologs are homologous genes

descendants from a single gene of a last common ancestor. The OrthoDB database

contains protein-coding genes that represent the last common ancestors given a

specific phylogeny radiation of a species, and are therefore known to retain an-

cestral function (Kriventseva et al., 2018). Orthologs represent regions conserved

across species. They can correspond to a relevant negative instances for BGC

discovery. This is due to the fact that fungal BGCs are known to have opposite

characteristics and show large genomic diversity even in otherwise closely-related

or same genus species (Kjærbølling et al., 2018). Genes belonging to fungal BGCs

have been previously referred to as “species-specific" (Vesth et al., 2018), unlike

orthologs.

Orthologous genes have been previously used to discover BGCs in fungi. In Takeda

et al. (2014), the authors presented an alignment-based approach focused on iden-

tifying syntenic block regions, which are more likely to contain orthologs and less

likely to contain BGCs. Non-syntenic blocks were then used to search for can-

didate BGCs and to better define candidate cluster boundaries. The approach

in Takeda et al. (2014) was explored in small set of 10 filamentous fungi. The

results showed good performance, predicting correctly 21 out of 24 fungal BGCs.

In this study we selected the fungal OrthoDB subset to construct the synthetic

negative BGC instances. The OrthoDB fungal subset contains a total of 5,083,652

non-redundant orthologs. To avoid potential overlaps, we performed a BLAST

analysis between the fungal subsets of both OrthoDB and MIBiG. We discarded

11,000 ortholog matches found using the BLAST parameter evalue (expected

value) set to 1e− 60.

To generate synthetic negative instances, we then concatenated the amino acid

5http://orthodb.org/
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sequence of fungal orthologs using a fixed length of 7,000 amino acids to create

synthetic gene clusters. The 7,000 amino acid length is chosen since it corresponds

to the average length of fungal BGC amino acid sequences in MIBiG. Figure 4.1

shows an example of positive instances in our datasets and negative instances being

generated from OrthoDB orthologs. After processing OrthoDB fungal orthologs

a total of 693,195 synthetic negative clusters were generated.

Figure 4.1: Example of positive instances and the process to generate synthetic
negative instances from orthologs

The MIBiG fungal subset and the pool of OrthoDB synthetic negative clusters

were then considered to generate fungal BGC datasets with different distributions

of positive and negative instances. Among the MIBiG fungal subset the annotated

BGC regions corresponded in average to ≈1% of the total genome length of an

organism, which provides a hint on the imbalance in class distribution that can be

seen in a real test case scenario. Due to the natural imbalance of BGC regions ver-

sus non-BGC regions in a genome, we are interested in analysing the performance

of a supervised learning approach based on datasets with various distributions of

positive and negative instances. To analyse this aspect, we generated fungal BGC
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datasets with varying distributions by increasing the number of synthetic negative

instances randomly selected from the OrthoDB synthetic negative clusters pool.

Table 4.1 shows the positive vs. negative distributions in each dataset.

Table 4.1: Distribution of instances across fungal BGC datasets

Train Validation
Dataset Pos Neg Pos Neg
50%-50% 160 160 40 40
40%-60% 160 240 40 60
30%-70% 160 373 40 93
20%-80% 160 640 40 160
10%-90% 160 1,440 40 360
05%-95% 160 3,040 40 760
01%-99% 160 15,840 40 3,960

To generate classification models based on a supervised learning method, we ex-

tracted Pfam (El-Gebali et al., 2019)6 IDs from the positive and negative instances.

All datasets were converted into pfamtsv format (Hannigan et al., 2019), which

is required as input in the supervised learning approach applied in this work. For

each dataset, 80% were randomly selected for the training phase, while 20% were

held out for the validation phase, as shown in Table 4.1.

4.4.2 Test Datasets

To analyse the performance of classification models built based on fungal BGC

datasets, we selected a fungal genome from the Aspergillus genus to represent a

real test case scenario. Aspergillus is the most frequent genus among fungal species

in MIBiG, together with Penicillium. For this evaluation we focused specifically on

the A. niger species. A. niger is a genome of interest due to its biological diversity

and major relevance to industrial processes (de Vries et al., 2017). In Inglis et al.

6http://pfam.xfam.org
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(2013) the authors present manual annotation of BGCs in Aspergilli, among which

a total of 79 BGCs are found in A. niger.

To generate candidate clusters for the test phase, we collected a manually cu-

rated A. niger genome sequence made publicly available through the Genozymes

project7. We generated test candidate clusters by considering a sliding window of

30,000 nucleotides in the A. niger genome. The 30,000 sliding window length is

defined based on the average length of the nucleotide sequence of MIBiG fungal

BGCs. A similar approach was previously applied in fungal BGC discovery to

generate virtual clusters (Umemura et al., 2013).

Figure 4.2: Example of A. niger candidate clusters generated for test phase

The 30,000 sliding window was shifted along the genome using either a 50% or

a 30% overlap. The overlaps in a sliding window mean that each test candidate

cluster will contain the last 15,000 nucleotides (if a 50% overlap) or the last 9,000

nucleotides (if a 30% overlap) of the immediate previous candidate cluster. With

the strategy of generating candidate clusters using overlaps, we are more likely

to cover regions in between two or more genes. Figure 4.2 shows an example of

candidate clusters being generated from A. niger genes using overlaps. The test

datasets based on a 50% overlap contains a total of 1,184 candidate clusters, while

7https://gb.fungalgenomics.ca/portal/
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the test datasets based on a 30% overlap contains a total of 846 candidate clusters.

4.4.3 Classification Models

In this section we describe the methods applied to analyse the performance of

a supervised learning approach using the fungal BGC datasets presented in Sec-

tion 4.4.1 and the test data presented in Section 4.4.2. To generate classification

models with our fungal BGC datases, we utilized the DeepBGC system (Hannigan

et al., 2019). DeepBGC executable, source code and other resources are openly

available8. Among these resources, there are pre-built BGC classification models

and word2vec-based embeddings built using Pfam IDs, referred to as pfam2vec

embeddings. In Hannigan et al. (2019) the authors explained that pfam2vec em-

beddings were trained based in a skipgram architecture with 100 dimensions and

over 15,686 unique Pfam IDs. DeepBGC classification is based on a Bidirectional

Long Short Term Memory (BiLSTM) neural network, for which the input are

pfam2vec embeddings. In Hannigan et al. (2019) DeepBGC hyperparameters are

described as a BiLSTM layer size of 128, dropout of 0.2, sigmoid activation, batch

size of 64, 256 timestamps over 328 epochs, using Adam optimizer at a learning

rate of 1e-4, with weighted binary cross-entropy loss. To generate classification

models using fungal BGC datasets on the DeepBGC system we adopted the same

hyperparameters described in Hannigan et al. (2019), as well as the pfam2vec em-

beddings as input for training. For each fungal BGC dataset, we have generated

a different classification model using DeepBGC. Fungal BGC models are named

by their positive instance percentage:

• pos50 (50%-50%)

• pos40 (40%-60%)

8https://github.com/Merck/deepbgc
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• pos30 (30%-70%)

• pos20 (20%-80%)

• pos10 (10%-90%)

• pos05 (05%-95%)

• pos01 (01%-99%)

To complement our analysis, we also analysed the performance of our test datasets

using the four bacteria-based models made available at the DeepBGC repository:

• deepbgc

• cf_o (clusterfinder_original)

• cf_r (clusterfinder_retrained)

• cf_g (clusterfinder_geneborder)

According to the models description at the DeepBGC releases page9 and Han-

nigan et al. (2019), the deepbgc model is based on the BiLSTM DeepBGC ar-

chitecture and trained on a MIBiG dataset. The other models are built based

on ClusterFinder (Cimermancic et al., 2014), which is a Hidden Markov Model

(HMM). cf_o is a ClusterFinder HMM using original parameters; cf_r is also a

ClusterFinder HMM but trained on a MIBiG dataset; and cf_g is a ClusterFinder

HMM that switches stages only on gene borders, and trained on a MIBiG dataset.

9https://github.com/Merck/deepbgc/releases
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4.5 Results and Discussion

We present here statistics and further details on the publicly available fungal BGC

datasets proposed in this study. We also present results of validation and test

phase obtained with classification models based on fungal BGC datasets and built

using DeepBGC. Section 4.5.1 has further information and statistics on the fungal

BGC datasets proposed in our work. In Section 4.5.2 we present results obtained

at validation of training DeepBGC using the models pos50, pos40, pos30, pos20,

pos10, pos05, and pos01. In Section 4.5.3 we present results obtained at test

phase. For the sake of comparison, we also report the results on test data using

BGC classification models provided by DeepBGC and built based on bacteria

data, as listed in Section 4.4.3. All performance metrics are reported on the

positive class only.

4.5.1 Fungal BGC datasets

The fungal BGC datasets proposed in this work are composed of positive and

negative instances, as mentioned in Section 4.4.1. These datasets are suitable for

performing binary classification to predict fungal BGCs, and are made publicly

available at https://github.com/bioinfoUQAM/fungalbgcdata. The avail-

ability of such resource can potentially motivate the development of supervised

learning approaches to tackle BGC discovery in fungi.

Positive instances in our datasets represent fungal BGCs from 52 different fungal

genera. The variety of fungal genus is relevant to provide a large representation of

BGC occurrence through different organisms. Additionally, the positive instances

contain samples of over 10 different BGC types. Table 4.2 shows the different BGC

types and a summary of fungal genera in our datasets. As the table shows, the

most common BGC type is Polyketide synthase (PKS), followed by Non-ribosomal
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peptide synthase (NRP) and Terpene synthase (TC). The presence of different

fungal genus and BGC types in the datasets are important for representing a

wide variety of BGC occurrences, and therefore contribute to building more robust

supervised learning approaches.

BGC types #
Alkaloid 3
Alkaloid/NRP 3
Alkaloid/TC 1
Alkaloid/NRP/TC 1
NRP 41
NRP/PKS 19
PKS 90
PKS/TC 5
RiPP 3
Saccharide 1
TC 23
Other 10
Total 200

BGC fungi genus # BGC fungi genus #
Acremonium 1 Metacordyceps 1
Alternaria 5 Metarhizium 1
Armillaria 1 Monascus 3
Aspergillus 9 Mycosphaerella 1
Aureobasidium 1 Myrothecium 1
Beauveria 1 Neosartorya 1
Bipolaris 3 Neotyphodium 2
Botrytis 1 Nodulisporium 1
Byssochlamys 1 Paecilomyces 1
Cercospora 1 Parastagonospora 1
Chaetomium 2 Penicillium 13
Cladonia 2 Pestalotiopsis 1
Claviceps 2 Phoma 2
Diaporthe 1 Phomopsis 1
Elsinoe 1 Purpureocillium 1
Epichloe 2 Sarocladium 1
Fusarium 8 Shiraia 1
Glarea 1 Sordaria 1
Glycomyces 1 Sphaceloma 1
Hypholoma 1 Stachybotrys 1
Hypomyces 1 Starmerella 1
Isaria 1 Talaromyces 3
Lasiodiplodia 1 Tapinella 1
Lecanicillium 1 Tolypocladium 2
Leptosphaeria 1 Trichophyton 1
Malbranchea 1 Ustilago 1

Table 4.2: Fungal genera and BGC types in positive instances of datasets

Negative instances in our datasets represent synthetic gene clusters composed of

fungal orthologs. By using fungal orthologs as source for the negative instances,

we can generate synthetic gene clusters that depict the genomic profile of fungi.

A total of 549 fungal species are present in orthologs composing our negative

instances. The main fungal groups to which the orthologs belong to are shown in
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Table 4.3, according to their taxonomy level. In this table we show the number of

species clustered under different taxonomy levels (genus, family, order, or class),

and the corresponding total of non-redundant orthologous genes for each group.

Group Taxonomy # Species # Genes
level

Aspergillus Genus 30 309,629
Cryptococcus Genus 7 44,028
Exophiala Genus 7 67,291
Metarhizium Genus 5 45,563
Penicilium Genus 21 208,580
Phytophthora Genus 6 89,378
Hypocreaceae Family 7 66,815
Pleosporaceae Family 9 94, 817
Polyporaceae Family 6 61,584
Saprolegniaceae Family 6 81,114
Trichocomaceae Family 6 52,941
Agaricales Order 25 293,149
Eurotiales Order 60 608,401
Helotiales Order 14 162,251
Hypocreales Order 50 512,282
Mucorales Order 15 164,081
Polyporales Order 17 169,368
Sordariales Order 8 66,549
Agaricomycetes Class 77 912,187
Eurotiomycetes Class 103 1,002,099
Microbotryomycetes Class 9 59,326
Pucciniomycetes Class 6 64,018
Saccharomycetes Class 76 390,808
Tremellomycetes Class 18 121,702
Ustilaginomycetes Class 9 55,465

Table 4.3: Main fungal groups present in negative instances of datasets

The 52 fungal genera in positive instances together with the 549 fungal species in

negative instance orthologs contribute to represent the genomic diversity in fungi,

and therefore support the development of more robust classification models.
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4.5.2 Validation performance

Table 4.4 shows validation metrics obtained with fungal BGC datasets. During

training phase, all models using fungal BGC datasets had early stopping before

completing the total 328 epochs. This could be a sign that the models were over-

fitting, a possible consequence due to the size of the datasets and the imbalanced

distribution between the two classes.

The best performing model pos50 is the one with the most balanced distribution

of positive and negative instances. It yield Precision (P) of 0.598, Recall (R) of

0.995, and F-measure (F) of 0.747. Models pos10, pos05, and pos01, the ones

with the most imbalanced distributions, had the lowest validation loss but also

the lowest P, R and F.

Table 4.4: Validation performance using models built on proposed datasets

Model Epochs Loss P R F
pos50 91 0.683 0.598 0.995 0.747
pos40 52 0.719 0.407 1 0.578
pos30 108 0.667 0.536 0.743 0.623
pos20 97 0.758 0.230 0.991 0.373
pos10 70 0.389 0 0 0
pos05 73 0.240 0 0 0
pos01 57 0.062 0 0 0

4.5.3 Test performance

The test phase show how the models would perform in a real case scenario, when

a complete genome is being processed to predict candidate BGC regions. The

dataset inputted in the test phase is composed of candidate clusters from the

A. niger genome sequence, as described in Section 4.4.2. The performance on

the test data is presented in two ways: gene metrics and cluster metrics. Gene

metrics show P, R, and F for genes that belong to known BGCs. Cluster metrics
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show P, R, and F for known BGCs where a minimum of one cluster gene must

be correctly classified for the cluster to be predicted as positive. Tables 4.5 and

4.6 show the results on A. niger test datasets, with overlaps of respectively 50%

and 30%. These results were obtained using classification models built with the

fungal BGC datasets described in Section 4.4.1.

Table 4.5: Performance for A. niger test data using models built on fungal BGC
datasets using 50% overlap

Gene metrics Cluster metrics
Model P R F P R F
pos50 0.049 1.0 0.094 0.072 0.988 0.134
pos40 0.048 0.962 0.091 0.073 0.988 0.136
pos30 0.044 0.867 0.083 0.073 0.977 0.136
pos20 0.039 0.694 0.074 0.079 0.93 0.146
pos10 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0

Table 4.6: Performance for A. niger test data using models built on fungal BGC
datasets using 30% overlap

Gene metrics Cluster metrics
Model P R F P R F
pos50 0.05 1.0 0.096 0.1 0.988 0.182
pos40 0.048 0.951 0.092 0.099 0.953 0.179
pos30 0.045 0.865 0.085 0.1 0.942 0.18
pos20 0.039 0.669 0.073 0.105 0.884 0.188
pos10 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0

Results in the test phase show an important decrease in performance compared

to the validation phase metrics. However the behaviors observed at the validation

step also appear in test. Similarly to the validation phase, the more imbalanced

models pos10, pos05, pos01 did not predict any candidate cluster as positive.
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This behavior happened with both test datasets of 50% or 30% overlap, and it

could indicate that the model is sensitive to an imbalanced distribution of classes.

Also similarly to the validation phase the more balanced models pos50, pos40,

pos30, pos20 tended to predict most of candidate clusters as positives, leading

to high recall but very low precision. Table 4.6 shows slightly better performance

for P, R, and F compared to table 4.5. This behavior could indicate that using a

30% overlap in the test data is better suited for the task.

Following the results obtained with models based on fungal BGC datasets, we

would like to also analyse the performance of DeepBGC models built using bac-

teria data on A. niger test datasets. Tables 4.7 and 4.8 show the results obtained

on A. niger data with respectively 50% and 30% overlap using DeepBGC bacteria

models.

Table 4.7: Performance for A. niger test data with 50% overlap using models
provided by DeepBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc 0.074 0.972 0.138 0.114 0.988 0.205
cf_o 0.05 1.0 0.096 0.074 0.988 0.138
cf_r 0.056 0.997 0.106 0.083 0.988 0.153
cf_g 0.06 0.989 0.113 0.09 0.988 0.166

Table 4.8: Performance for A. niger test data with 30% overlap using models
provided by DeepBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc 0.074 0.954 0.138 0.159 0.988 0.273
cf_o 0.051 0.984 0.096 0.103 0.988 0.187
cf_r 0.058 0.994 0.109 0.118 0.988 0.211
cf_g 0.061 0.992 0.116 0.126 0.988 0.223
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Among all DeepBGC bacteria models, deepbgc performed best at both gene and

cluster metrics, either using 30% or 50% overlap, with 0.273 F. The model cf_o

showed the lowest performance, with 0.138 F. Models cf_r and cf_g showed in

both cases better performance than cf_o. The results using DeepBGC trained

models yield a similar tendency than that of the fungal BGC models: high recall

but very low precision.

A loss in performance between validation and test results is evident, either when

using fungal BGC based models or DeepBGC bacteria models.

As mentioned in Section 4.4.1, fungal BGCs seem to show larger genomic diver-

sity, which possibly makes it more complex to perform BGC discovery in fungi if

compared to bacteria. Therefore, performance is expected to be somehow affected

by performing fungal BGC classification using bacteria-based models.

The dataset size at training time could also have had an impact on training

pos50, pos40, pos30, pos20, pos10, pos05 models, given DeepBGC classi-

fication approach. As the authors in Angermueller et al. (2016) explained, the

suitability of deep learning approaches varies according to the problem at hand;

and in cases when available data is limited conventional approaches could be rele-

vant and more advantageous. As discussed in Section 4.4.1 the number of known

fungal BGC data previously validated by curators is rather limited, which as a

consequence will limit the size of fungal BGC datasets. It is possible and worth

investigating that different classification methods, apart from a BiLSTM neural

network as adopted in DeepBGC, will be better suited for handling fungal BGC

discovery.
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4.6 Conclusion

NPs are bioactive compounds that play a vital role in the production of a large

variety of drugs, and the discovery of novel NPs can potentially benefit human

health. Great effort has been put on identifying BGCs that are capable of pro-

ducing NPs in plants, bacteria and fungi. Identifying BGCs is a challenging task,

specially in fungi given the clusters genomic diversity.

Previous work on identifying BGCs in bacteria have resulted in a large variety

of approaches and annotated data available. In fungi most previous approaches

are based on data-driven methods and present a limited scope, such as covering

only certain types of BGCs, or have been developed based on a single species

data. The availability of new fungal BGC datasets could potentially motivate

the development of new methods to identify BGCs in fungi. One example is

supervised learning, a method that have shown to perform well in bacteria data.

In this work, we present new fungal BGC datasets to leverage supervised learning

in the fungal BGC discovery task. These datasets are made publicly available at

https://github.com/bioinfoUQAM/fungalbgcdata. The availability of such

fungal BGC datasets can potentially motivate the development of binary clas-

sification approaches to tackle the BGC discovery task. We have shown results

obtained on these fungal BGC datasets using a supervised learning approach de-

veloped for bacteria BGCs. We also analysed the performance of bacteria-based

classification models applied on a fungal genome. The test performance on both

fungal-based generated models or bacteria-based models was similar given preci-

sion (low) and recall (high) metrics using the same supervised learning method.

This points to an opportunity to explore different supervised learning approaches

than the one adopted by the DeepBGC system, that might be more suitable to

handle fungal BGC datasets.



CHAPTER V

A SUPERVISED LEARNING FRAMEWORK FOR FUNGAL BGC

DISCOVERY

The availability of benchmark datasets that represent diverse fungal genomic pro-

files relevant to BGC discovery allows the development of supervised learning

approaches capable of identifying BGC regions in fungal genomes. This Chap-

ter describes the methodology adopted to build TOUCAN, a supervised learning

framework and post-processing methods to predict BGCs in fungi. The study pre-

sented in this Chapter was published in the NAR Genomics and Bioinformatics

(NARGAB) journal under the title "TOUCAN: a framework for fungal biosyn-

thetic gene cluster discovery". We note that a short version of this article was

accepted at the 27th international conference in Intelligent Systems for Molecular

Biology (ISMB), as a poster within the Machine Learning in Computational and

Systems Biology (MLCSB) COSI, under the title "Towards accurate identification

of Biosynthetic Gene Clusters in fungi". Article writing, approach implementa-

tion, experimental design and execution were performed by Hayda Almeida, un-

der the supervision of professors Adrian Tsang and Abdoulaye Baniré Diallo. The

annotation of high and medium MIBiG fungal protein domains was performed

by Sylvester Palys, then PhD student under the supervision of professor Adrian

Tsang. A printed version of this article is presented in the Appendix B.
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5.1 Abstract

Fungal secondary metabolites (SMs) are an important source of numerous bioac-

tive compounds largely applied in the pharmaceutical industry, as in the pro-

duction of antibiotics and anticancer medications. The discovery of novel fungal

SMs can potentially benefit human health. Identifying Biosynthetic Gene Clus-

ters (BGCs) involved in the biosynthesis of SMs can be a costly and complex

task, especially due to the genomic diversity of fungal BGCs. Previous studies on

fungal BGC discovery present limited scope and can restrict the discovery of new

BGCs. In this work we introduce TOUCAN, a supervised learning framework for

fungal BGCs discovery. Unlike previous methods, TOUCAN is capable of pre-

dicting BGCs on amino acid sequences, facilitating its use on newly sequenced

and not yet curated data. It relies on three main pillars: rigorous selection of

datasets by BGC experts; combination of functional, evolutionary and composi-

tional features coupled with outperforming classifiers; and robust post-processing

methods. TOUCAN best performing model yield 0.982 F-m on BGCs regions in

the Aspergillus niger genome. Overall results show that TOUCAN outperforms

previous approaches. TOUCAN focuses on fungal BGCs but can be easily adapted

to expand its scope to process other species or include new features.

5.2 Introduction

Secondary metabolites (SMs) are specialized bioactive compounds primarily pro-

duced by plants, fungi and bacteria. They represent a vital source for drug dis-

covery: from anti-cancer, anti-viral, and cholesterol-lowering medications to an-

tibiotics, and immunosuppressants (Chavali & Rhee, 2017). Genes involved in the

biosynthesis of many SMs in fungi are co-localized in the genome, organized as

clusters of genes (Kautsar et al., 2020), and known as Biosynthetic Gene Clusters

(BGC). Typically BGCs are minimally composed of one or more synthase or syn-
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thetase genes encoding backbone enzymes, which produce the core structure of

the compound, and genes that encode tailoring enzymes, which modify the core

compound to generate variants (Kjærbølling et al., 2020). Backbone enzymes de-

termine the class of secondary metabolite produced by a BGC. Biosynthetic Gene

Clusters may also contain other genes such as those encoding cluster-specific tran-

scription factors, mitigating toxic properties, transporters, tailoring enzymes, and

genes with hypothetical functions (Keller, 2019). Identifying new fungal BGCs

can potentially lead to the discovery of new compounds that can serve as vital

source for drug discovery (Macheleidt et al., 2016; de Vries et al., 2017). Despite

the availability of a large volume of fungal genome sequence data, BGC discovery

remains a challenging task (Chavali & Rhee, 2017) due to the diversity of fungal

BGCs. Fungal BGCs have been shown to present noticeable differences in synteny

and non-conservation of sequences even in related species or different strains of

the same species (Kjærbølling et al., 2020), where clustered genes of the same SM

can appear in different scaffolds among evolutionarily close species. Several stud-

ies have presented approaches to discover BGCs (Chavali & Rhee, 2017). Most

approaches to identify fungal BGCs rely on probabilistic or data-driven meth-

ods, requiring as input genomic data (Takeda et al., 2014) combined with gene

functional annotations (Wolf et al., 2016) and/or transcription data (Vesth et al.,

2016; Umemura et al., 2013). Previous works also analysed fungal gene expression

levels (Vesth et al., 2016), motif co-occurrence in promoters around anchor genes

(containing backbone enzymes) (Wolf et al., 2016), compared expression levels of

virtual gene clusters in conditions favourable to SM production (Umemura et al.,

2013), and analysed homologous genes through sequence alignment and filtering

syntenic blocks (Takeda et al., 2014). fungiSMASH (Blin et al., 2017) combines

a probabilistic method (profile Hidden Markov Models (pHMMs) from proteins)

and curated BGC detection rules, and can use tools such as Cluster Assignment

by Islands of Sites (CASSIS) (Wolf et al., 2016) and ClusterFinder (Cimermancic
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et al., 2014) to predict fungal BGC boundaries. These previous approaches present

several limitations: overprediction of BGC length (Khaldi et al., 2010; Blin et al.,

2017); dependence on manual curation (Vesth et al., 2016) which is expensive; or

consider a very limited scope, potentially affecting the ability to process different

BGC types or organisms (Khaldi et al., 2010; Takeda et al., 2014).

Approaches derived from supervised learning have shown to perform well when

predicting bacterial BGCs (Agrawal et al., 2017; Hannigan et al., 2019). To our

knowledge such methods have not been applied to identifying fungal BGCs. For in-

stance RiPPMiner (Agrawal et al., 2017) based on Support Vector Machine (SVM)

and Random Forest (RF) achieves 0.91 F-measure (F-m) in binary classification

of ribosomally synthesized and post-translationally modified peptides. A recent

approach, called DeepBGC, was designed to exploit Pfam (El-Gebali et al., 2019)

domain embeddings to represent bacterial BGCs (Cimermancic et al., 2014) to feed

a Bidirectional Long Short Term Memory (BiLSTM) neural network (Hannigan

et al., 2019). DeepBGC relies also on post-processing methods such as merging

consecutive BGC genes or filtering regions without known BGC protein domains.

DeepBGC achieved a 0.923 Area Under the Curve (AUC) when predicting BGC

positions in a set of 65 experimentally validated BGCs from six bacterial genomes,

outperforming previous studies (Hannigan et al., 2019). When handling fungal

BGC data, DeepBGC in its original version yield performance no higher than 0.2

F-m (Almeida et al., 2019), and when trained on fungal data underperformed pre-

vious methods such as fungiSMASH (Blin et al., 2017), as we show in Section 5.4.

This could indicate that BGC discovery methods developed for bacteria may not

be suitable for fungi due to the high diversity of fungal BGCs which are found

to vary even among closely related species (Kjærbølling et al., 2020). Hence it is

important to develop BGC discovery approaches dedicated to fungi, taking into

account the specific characteristics of fungal BGCs, such as high diversity, BGC
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components, as well as BGC and genome lengths which are usually longer than

bacteria. Here we propose TOUCAN, a supervised learning framework to tackle

BGC discovery in fungi that is based on a combination of heterogeneous biological

feature types: k-mers, protein domains, and Gene Ontology (terms) to represent

protein motifs and functions relevant to fungal BGCs.

5.3 Materials and methods

TOUCAN classification models were built based on a set of six open access fungal

BGC datasets of varying distributions, a total of six classifiers, and two post-

processing methods. In this Section we present the methodology adopted to de-

velop TOUCAN models. TOUCAN predictions are validated based on a set of

curated fungal BGCs.

5.3.1 Datasets

TOUCAN classification models were developed with comprehensive and exhaus-

tive fungal BGC datasets presented in (Almeida et al., 2019) that are publicly

available to support benchmarking of BGC discovery methods. The six fun-

gal BGC training datasets are composed of different distributions of positive in-

stances obtained from the Minimum Information about a Biosynthetic Gene clus-

ter (MIBiG) (Kautsar et al., 2020) repository, and synthetic negative instances

generated from OrthoDB (Kriventseva et al., 2018) orthologues. Fungal ortholo-

gous genes were previously applied in BGC discovery (Takeda et al., 2014). Ortho-

logues can be a relevant source of negative instances since they represent conserved

genes across species, while BGCs are known to show large genomic diversity even

in closely-related species (Kjærbølling et al., 2020). To build negative instances,

the amino acid sequences of OrthoDB fungal orthologous genes were concatenated

using a fixed window size of 7,000 amino acids, which corresponds to the average
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amino acid length of all positive instances from the fungal subset in MIBiG. This

process generated a pool of training samples of 693,195 synthetic negative clusters

(see (Almeida et al., 2019) for details). Studying datasets of various distributions

could shed light on the impact of class imbalance in fungal BGC discovery which

by nature presents a highly imbalanced scenario where only a small fraction of

fungal genomes actually corresponded to BGCs (Almeida et al., 2019). To account

for genomic diversity in fungi, positive instances in the six datasets represent more

than 10 different BGC types and more than 100 fungal species. While negative

instances were generated from a pool of orthologous genes representing ≈ 300

fungal species. To build and validate our models, we performed a random fixed

split in each training dataset for which 80% of instances are dedicated to train

and 20% for validation. Supplementary Table 1 shows the positive vs. negative

distribution, and the train and validation splits in the six training fungal BGC

datasets. A random fixed split allows us to evaluate the performances of the same

train and validation sets under different parameters.

In the test phase we evaluated our classification models with six test datasets,

generated similarly to Almeida et al. (2019), from a manually curated genome

sequence of Aspergillus niger NRRL3 (A. niger ), available at https://gb.fun

galgenomics.ca/portal. Aspergillus niger is an organism of interest for BGC

discovery due to its relevance to industrial processes, and its ubiquitous distribu-

tion (de Vries et al., 2017). In this work 85 manually curated BGCs (Inglis et al.,

2013) in A. niger will be considered as gold standard. Test candidate BGCs are

generated by sequentially extracted genomic regions of A. niger with a sliding

window of 5,000, 7,000 or 10,000 amino acids, with a 30% or a 50% overlap. The

overlap of genomic regions allows us to cover BGC fragmented by the sliding

windows. Multiple test datasets allow to analyse the impact of window lengths

and overlaps when handling input data of test organisms, helping to determine
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recommended parameters to obtain BGC predictions in new genome sequences.

By generating test candidates based on a fixed sliding window length, new se-

quence data can be processed without requiring curation, genome annotation or

gene models as input, unlike that of other BGC discovery tools. In Section 5.4,

we report the performance obtained by the models using different window lengths

and overlaps.

5.3.2 Features

To represent the fungal BGC dataset instances as feature vectors, we relied on

heterogeneous biological features extracted from the protein sequences of dataset

instances: k-mers, Pfam protein domains, and GO terms. Several feature types

are combined to better represent the diverse genomic profiles in fungal BGCs

and help build relevant discriminative models. Feature vectors are composed

of number of occurrences of features per training instance. K-mers (a contiguous

number of K amino acids appearing sequentially) are common features in genomic

classification tasks (Vinje et al., 2015). We have extracted k-mers with varying

lengths of 3 ≤ K ≤ 9. K-mers appearing less than three times were discarded to

reduce feature dimensionality, because presence of rare features could introduce

bias (Yang & Pedersen, 1997). K-mer lengths were evaluated separately using

validation sets to identify the K value yielding the best performance. Further

details on validation of K values are provided in Section 5.4.

Pfam protein domains were previously applied in BGC discovery both in fungi

(Khaldi et al., 2010) and in bacteria (Cimermancic et al., 2014; Hannigan et al.,

2019). Protein domains are relevant features for BGC classification and can indi-

cate the presence of backbone enzymes, a key component of BGCs (Inglis et al.,

2013; Kjærbølling et al., 2020). We performed an analysis of protein domain dis-

tribution among positive instances in our datasets to understand their relevance as
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features. In our analysis, Pfam protein domains extracted from positive instances

were manually labeled by us as high (corresponding to a domain usually only

present in BGCs) and medium (a domain usually present in, but not limited to

BGCs). The complete list of medium and high annotated Pfam domains are pre-

sented in Supplementary Tables 2 and 3. Then we analysed all positive instance

datasets for the presence or absence of such domains, shown in Supplementary

Figure 1. This analysis highlights two important aspects: first the protein domain

diversity in fungal BGCs; and second the presence of high domains shared by most

BGCs suggesting that they share a structural pattern, most likely related to the

presence of a backbone enzyme. The structural pattern yielded by the distribu-

tion of manually annotated protein domains in positive instances suggests that

this feature type might carry an important discriminating power. Pfam domain

features were extracted from our training datasets using the Pfam database.

GO term annotations were also modeled as features and obtained from our train-

ing instances using Swiss-Prot (UniProt Consortium, 2019). To identify corre-

sponding GO terms, we performed a BLAST analysis of amino acid sequences

from our dataset instances against the Swiss-Prot database composed of 560,292

reviewed entries (as of June 2019). BLAST parameters considered were evalue

(expected value) ≤ 1e − 4 and qcovs (query coverage per subject) ≥ 50. A

qcovs ≥ 50 could indicate relevant sequence similarity (Rost, 1999), since the

alignment length would correspond to at least 50% of 7,000 amino acids for each

match. We considered GO terms from all classes. GO term matches found were

filtered for duplicates, and only unique GO terms were kept to represent dataset

instances. Supplementary Table 4 shows the number of unique features per type,

extracted from each training dataset and used to build our classification mod-

els. At this point, extracted features were all kept (except for K-mers that occur

less than three times in a dataset), without relying on feature selection methods.
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The feature order is not necessarily conserved during classification, and it is by

all purposes processed in a Bag-Of-Words (BOW) manner. Considering that all

extracted features can be relevant at this point since the experiments performed

in our work are still a learning space of suitable parameters to tackle BGC discov-

ery. Feature selection could therefore limit the exploration of potentially relevant

attributes or combinations of features, but it might be valuable as a next step.

5.3.3 Classification methods

TOUCAN classification models were built with a total of six classifiers. We per-

formed experiments with different classification algorithms to assess the perfor-

mance of heterogeneous features and post-processing methods, and then identified

the best configuration to tackle the BGC discovery task. Three classifiers were

Support Vector Machine (SVM) classifiers: C-Support Vector (svc), Linear Sup-

port Vector (lsvc), and Nu-Support Vector (nusvc) classifiers. SVM classifiers

were previously applied in BGC discovery (Agrawal et al., 2017). Default pa-

rameters were used for svc and lsvc during experiments, while for the nusvc

classifier the nu parameter was adjusted in connection with the percentage of

positive instances pos in a given dataset:

nu=


0.5, if pos ≥ 30%

pos
100

, otherwise
(5.1)

The other three classifiers were a Multilayer Perceptron (mlp), Logistic Regres-

sion (logit) and Random Forest (randomf). While logit classifier can pro-

vide a baseline model for the task, neural networks (Hannigan et al., 2019) and

randomf (Agrawal et al., 2017) were also previously applied in BGC discovery.

Also for mlp, logit, and randomf default parameters were kept but could how-

ever be optimized to suit specific experiments if needed. These six classifiers were



79

evaluated independently during our experiments.

5.3.4 Post-processing methods

Predictions of candidate BGCs outputted by TOUCAN are post-processed to

improve output precision. Post-processing methods adopted in our work were

greedy approaches, such as in PRISM (Skinnider et al., 2015) which identifies

bond-forming domains and expands cluster boundaries on either ends of such do-

mains. Unlike PRISM, TOUCAN does not require curation as input, and relies on

classification models to identify potential BGC regions in which post-processing

methods can be applied, facilitating its use on newly sequenced or not yet an-

notated genomes. The post-processing methods succ and merge are shown in

Algorithm SuccessiveMerge, and aim to address potential cluster boundary

limitations (over or under estimation) common in previous approaches (Khaldi

et al., 2010; Blin et al., 2017).

BGC region length can vary greatly among fungal MIBIG BGCs: for an x number

of amino acids, x can vary such as 195 ≤ x ≤ 62, 079, with a standard deviation

σ(x) ≈ 6013.73 and mean x ≈ 7, 033. In this work, a fixed amino acid length to

generate test candidate instances from an organism genome is applied. Both succ

and merge post-processing help to overcome the shortcoming in cases where clus-

ter regions have limited boundaries. The succ post-processing gives to a nbSucc

of successive predictions the same confidence prediction score of a positive pre-

diction (confidence ≥ threshold). The merge post-processing merges a nbSucc of

successive predictions of a positive prediction (confidence ≥ threshold) into a sin-

gle positive prediction. For both succ and merge we considered 0 ≤ nbSucc ≤ 3,

set as an arbitrary parameter for a first evaluation of post-processing methods.

Both post-processing methods were applied only if nbSucc successive predictions

were also not positive.
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Algorithm 1 - SuccessiveMerge: Compute successive or merged positives
Data: P , list of predictions.

Result: P ′, list of post-processed predictions.

begin

nbSucc; // number of successive predictions

doMerge; // boolean, True to perform merge

threshold; // confidence threshold, default 0.5

merges; // list of merged predictions

for i ∈ P do
count = 1

if i.confidence ≥ threshold then
merged.ID = i.ID

while count ≤ nbSucc do
successor = P [i+ count]

if doMerge then
merged.ID + = successor.ID

else if successor.confidence < threshold then
successor.confidence = i.confidence

P.update(successor)
count++

if doMerge then
merged.confidence = i.confidence

merges.add(merged)

else
merges.add(i)

if doMerge then
return merges

return P
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5.3.5 Evaluation metrics

TOUCAN classification models were assessed in terms of Precision (P), Recall

(R), F-measure (F-m) and a clusterScore metric. To compute P, R and F-m, we

considered as True Positives (TP) BGC candidates predicted as positive that have

at least one gene that matches a gold standard BGC. The clusterScore represents

the coverage of expected gold standard BGC genes within a candidate BGC, where

0 ≤ clusterScore ≤ 1, and was computed for each BGC canidate predicted posi-

tive. To compute the clusterScore for a BGC candidate C and its gold standard

BGC match M , we first counted the number of geneMatches in C, meaning the

number of M genes in C. We then computed a similarity value sim between all

pairs of genes in the disjunctive union C 4M , and add to the clusterScore the

best sim obtained for the unmatched M − C genes. Computing the sim value

allows us to account for the possible presence of gold standard orthologues among

unmatched genes in a BGC candidate predicted positive. The sim value repre-

sents a percent identity pident obtained through a local alignment with BLAST

between two genes, using cutoffs of minimum pident ≥ 20 and minimum query

coverage qcov ≥ 10. The clusterScore for a BGC candidate C was normalized by

the number of genes in its gold standard BGC match M . Algorithm Similarity

shows the computation of sim scores, while Algorithm ClusterScore shows

the computation of clusterScores. We analysed the clusterScore of TOUCAN

predicted positives compared to state-of-the-art methods in Section 5.4.
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Algorithm 2 - Similarity: Compute similarity score of genes
Data: pred.genes, genes in a positive predicted cluster

gold.genes, genes in a gold cluster

genesFound, predicted genes matching gold genes

similarities, list of similarities between genes

Result: similarityScore, similarity score

begin

pairs = Ø // best scores for pairs of genes

pairedGenes = Ø // predicted and gold genes paired

pred.genes = pred.genes− genesFound
gold.genes = gold.genes− genesFound

for i ∈ gold.genes do
totalScore = 0

for j ∈ pred.genes do
score = similarities.get(i, j)

if score ≥ totalScore then
pair.gene1 = i

pair.gene2 = j

pair.score = score

pairs.add (pair)

totalScore = score

// Sort pairs by score in descending order

pairs = sortDescScore(pairs)

for pair ∈ pairs do
if pair.gene2 not ∈ pairedGenes then

similarityScore+ = pair.score

pairedGenes.add (pair.gene2)

return similarityScore
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Algorithm 3 - ClusterScore: Compute clusterScore evaluation metric
Data: P , list of prediction tuples (geneID, clusterID, confidenceV al)

G, list of gold tuples (goldGeneID, goldClusterID)

useSimilarity, boolean value for considering similarity scores

Result: clusterScores for a list of predictions.

begin

threshold; // confidence threshold, default 0.5

geneMatches; // count of gene matches

geneMatches∗; // count gene matches with similarity scores

clustersFound; // list of gold clusters found

// Compute successive or merged positives

P = computeSuccOrMerge(P )

// Retrieve list of only positive predictions

posGenes, posClusters = unfoldPredictions(P )

for gold ∈ G do

for gene ∈ gold.genes do

// Find occurrences of gene in predictions

pred = getAllOccurrences(gene, P )

if pred ∈ posGenes then
geneMatches+ = 1

clustersFound.add(pred)

if gold.confidence ≥ threshold & useSimilarity then
geneMatches∗ = geneMatches+similarity(gold.genes, pred.genes, genesFound)

clusterScore = geneMatches∗

length(gold.genes)

clusterScores.add(gold.ID, clusterScore)

return clusterScores

5.3.6 State-of-the-art performance comparison

The performance of TOUCAN models was compared to results obtained by two

state-of-the-art tools: fungiSMASH (Blin et al., 2017) and DeepBGC (Hanni-

gan et al., 2019) (version 0.1.18 and models as of February, 2020 available at

https://github.com/Merck/deepbgc). The experiments with fungiSMASM were
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performed with its three strictness levels: relaxed, strict, and loose, and with

default parameters for its extra feature options (as of January, 2020): "Known-

ClusterBlast", "ActiveSiteFinder", and "SubClusterBlast". DeepBGC focuses on

bacterial data and is based on a BiLSTM neural network and Pfam domain em-

beddings. A total of three DeepBGC classification models are applied in this work:

one with original DeepBGC training dataset and hyperparameters, as in (Han-

nigan et al., 2019); one built with DeepBGC original hyperparameters and our

best performing training dataset; and one built with our best performing train-

ing dataset and fungal optimized hyperparameters (thanks to the authors) (see

Supplementary Table 7 for original and fungal optimized hyperparameters).

5.4 Results

We present here results obtained with TOUCAN, a supervised learning frame-

work to discover fungal BGCs. To identify the best configuration to tackle BGC

discovery in fungi, we designed, trained and assessed several classification mod-

els combining heterogeneous biological features, datasets of various distributions,

classifiers, and post-processing methods, as described in Section 5.3. Validation

results are drawn on held-out training instances corresponding to 20% of each

training dataset. The performance of TOUCAN was assessed on test datasets of

a gold standard of 85 manually annotated A. niger BGCs (Inglis et al., 2013). The

focus here is BGC discovery, hence, the model is optimized to correctly identify

positive instances, rather than the negative ones. Thus results were reported for

the positive class.

Feature importance and performance on validation datasets To iden-

tify the most suitable K for k-mer features within 3 ≤ K ≤ 9 we performed a set

of experiments on all six datasets and six classifiers, as presented in Sections 5.3.1
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and 5.3.3. Performance of k-mer models on our validation sets is shown in Sup-

plementary Figure 2. In general better performance was achieved with K = 6,

which was thus the K value considered for our following experiments. We also

performed an analysis of feature importance across training datasets, obtained

with a randomf classifier, with default parameters. Table 5.1 shows the top 15

ranked features across training datasets.

Table 5.1: Top 15 features ranked by importance for each training dataset, from
completely balanced (50% positive, 50% negative) to most imbalanced (05% pos-
itive, 95% negative). Highlighted features appeared in multiple datasets.

Training dataset distribution

50 - 50% 40 - 60% 30 - 70% 20 - 80% 10 - 90% 05 - 95%

PF00698.21 PF00698.21 GO:0008168 HGTGTQ PF00109.26 TACSSS

PF00668.20 HGTGTQ HGTGTQ GO:0008152 GO:0044550 GTGTQA

ADGYCR GO:0031177 GQGAQW PF00550.25 LYRTGD GYARGE

GO:0016491 GAGTGG GYCRAD IDTACS VFTGQG GO:0046148

FDGYRF VEMHGT GAGTGG PF02458.15 NFSAAG TGDLAR

GO:0016740 VFTGQG QQRLLL DTACSS VEAHGT SINSFG

MHGTGT PF00668.20 TACSSS VTLSGD GO:0043041 DPQQRL

DTACSS GO:0016874 PF02801.22 FTGQGA GHSLGE LFTSGS

GO:1900557 YKTGDL GO:0009058 PF08242.12 AYEALE NSFGFG

GO:0009058 GO:0019184 GO:0046148 AYGPTE GO:0016491 CDTAVA

GRFFAA GO:0043042 GO:0047462 GO:0004315 TQVKIR FDASFF

PF14765.6 PGRFFA GEYAAL GO:0031177 GO:0046500 AYGPTE

MDPQQR MHGTGT GO:0005829 KLRGFR DTACSS YILFTS

FTSGST GO:1900790 PFAFHS GO:0016021 GO:0032259 AIVLAG

GQGAQW VEIGPH LHSLEA PF00067.22 DTFVRC AVVGHS

Features appearing on the top 15 of multiple datasets are highlighted. Protein

domain feature names start with PF, GO term feature names start with GO, and

the other features are 6-mers. We can observed that every protein domain feature

appearing among the top ranked of all datasets belonged either to the high or

medium manually annotated domains, even though (non-high and non-medium

domain features are also included in our feature set. Moreover, while GO terms

represent ≈ 30% of all top 15 ranked features, they make up for at most 0.7%
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of total features. This possibly indicates their strong discriminating power in the

task. After evaluating feature importance, we trained several classification models

combining the feature types for each classifier and training dataset distribution.

For each training dataset distribution, a random fixed split, designating 80% of

its instances were selected for train and 20% for validation, as mentioned in Sec-

tion 5.3.1. The top F-m performances on validation sets per training dataset are

shown in Supplementary Table 5. During validation we noted that models built

with three feature types outperformed models using one feature type, such as the

ones built when evaluating the most suitable K-mer length.

Validation performance seems to be overall affected by the instance distribution:

more imbalanced datasets show lower F-m compared to more balanced ones.

When analysing MIBiG fungal BGCs, only ≈1% of a genome sequence would

correspond to cluster regions (Almeida et al., 2019), so utilising more balanced

training data could provide better performance than using real case scenario distri-

butions. We selected the dataset with the best F-m average performance, which

was the most balanced (50-50%), to perform further evaluation with hyperpa-

rameter optimization through a grid search, followed by cross validation (CV)

classification for all six classifiers. Best performing hyperparameters to maximize

F-m for each classifier were listed in Supplementary Table 8. A 5-fold CV was

performed with optimized hyperparameters on the 50%-50% dataset instances,

randomly split between train and validation at each fold. Supplementary Table 6

shows the average performances on the 5-fold CV for each classifier.
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Table 5.2: TOUCAN best performing models per test set sliding windows and
overlaps in A. niger

Sliding Training Post-

window Overlap set Classifier process P R F-m

10,000 50% 50-50% mlp merge3 1 0.871 0.931

10,000 50% 40-60% mlp merge3 1 0.753 0.859

10,000 50% 30-70% mlp merge2 1 0.706 0.828

10,000 50% 20-80% mlp merge2 1 0.706 0.828

10,000 50% 10-90% mlp merge3 1 0.647 0.786

10,000 50% 05-95% mlp merge3 1 0.447 0.618

7,000 50% 50-50% logit merge3 0.929 0.765 0.839

7,000 50% 40-60% logit merge3 1 0.741 0.851

7,000 50% 30-70% mlp merge3 0.969 0.729 0.832

7,000 50% 20-80% mlp merge3 1 0.741 0.851

7,000 50% 10-90% mlp merge3 1 0.694 0.819

7,000 50% 05-95% mlp merge3 1 0.647 0.786

5,000 50% 50-50% logit merge3 0.817 0.788 0.802

5,000 50% 40-60% logit merge3 0.914 0.753 0.826

5,000 50% 30-70% logit merge3 0.953 0.718 0.819

5,000 50% 20-80% logit merge3 1 0.718 0.836

5,000 50% 10-90% mlp merge3 0.913 0.741 0.818

5,000 50% 05-95% mlp merge3 0.923 0.706 0.800

10,000 30% 50-50% mlp merge3 1 0.847 0.917

10,000 30% 40-60% mlp merge3 1 0.741 0.851

10,000 30% 30-70% mlp merge2 1 0.694 0.819

10,000 30% 20-80% mlp merge2 1 0.671 0.803

10,000 30% 10-90% mlp merge3 1 0.6 0.750

10,000 30% 05-95% mlp merge3 1 0.459 0.629

7,000 30% 50-50% mlp merge3 0.95 0.906 0.928

7,000 30% 40-60% mlp merge3 1 0.824 0.903

7,000 30% 30-70% mlp merge2 1 0.741 0.851

7,000 30% 20-80% mlp merge3 1 0.741 0.851

7,000 30% 10-90% lsvc merge3 1 0.553 0.712

7,000 30% 05-95% mlp merge3 1 0.635 0.777

5,000 30% 50-50% logit merge3 0.908 0.812 0.857

5,000 30% 40-60% logit merge3 0.985 0.788 0.876

5,000 30% 30-70% logit merge3 1 0.753 0.859

5,000 30% 20-80% mlp merge3 0.985 0.776 0.868

5,000 30% 10-90% mlp merge3 0.984 0.729 0.838

5,000 30% 05-95% mlp merge3 1 0.706 0.828
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TOUCAN performance on test datasets We assessed TOUCAN models on

six test datasets with amino acids sliding window lengths of 5,000, 7,000, 10,000,

with overlaps of 50% and 30%, as described in Section 5.3.1. Candidate BGC

predictions on the test data were obtained with TOUCAN classification models

built using the six training dataset distributions with fixed train and validation

splits, three feature types, and six classifiers. We then processed TOUCAN pre-

dicted candidate BGCs with post-processing methods succ and merge, considering

0 ≤ nbSucc ≤ 3.

Table 5.2 shows for the positive class the best F-m obtained for each test dataset

among all training dataset distributions. The highest 0.931 F-m was obtained by

a model built with a 50-50% distributed training set, a mlp classifier, and a merge3

post-processing. The best F-m was achieved with 10,000 amino acid sliding win-

dow test datasets. Regarding classifiers, mlp and logit yielded best performance

followed less often by lsvc. As mentioned in Section 5.3.3, default parameters

were used when performing our experiments. Tuning the classifier parameters

may impact on the performance, but this is not the focus of this study. Overall

results showed that a 30% overlap seems to be more advantageous for all slid-

ing window lengths, even though the best F-m was achieved with test candidates

generated based on a 50% overlap. The training set distribution seemed to have

little influence on test candidates with a sliding window length of 5,000 amino

acids, showing only a small variation on F-m for both 30% and 50% overlap. Less

balanced training distribution seemed to affect performance more for candidates

with a sliding window length of 10,000 amino acids, with a F-m varying from

0.618 F-m to 0.931 F-m when using 50% overlap, and from 0.629 F-m to 0.917

F-m when using 30% overlap.

We selected the best performing test datasets (10,000 amino acid sliding window)

to carry an evaluation using 5-fold CV classification models based on the best per-
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forming training set (50%-50%). The predicted BGC candidates obtained with CV

classification models were also processed with TOUCAN post-processing methods

succ and merge, in the same manner as the models presented in Table 5.2. The

best performance results obtained with the 10,000 amino acid sliding window test

data among all 5-fold CV classification models are shown in Table 5.3.

Table 5.3: TOUCAN best performances for the completely balanced (50% pos-
itive, 50% negative) CV models on A. niger test sets generated with a 10,000
amino acid sliding window.

Training Sliding Post-

set window Overlap Classifier process P R F-m

50-50% 10,000 50% svc merge3 0.941 0.941 0.941

50-50% 10,000 30% randomf merge3 1 0.965 0.982

As shown in Table 5.3, the 5-fold CV classification models improved to a 0.982

F-m from the previously best 0.931 F-m achieved with models based on fixed train

and validation splits. Performance results in Tables 5.2 and 5.3 show TOUCAN

models discriminative power to identify candidate BGC regions from non-BGC

regions. Our results also demonstrate TOUCAN models capacity of obtaining rel-

evant BGC predictions on new or non-annotated genomes in test dataset instances

generated solely based on sliding windows of fixed amino acid length. This aspect

distinguishes TOUCAN from previous approaches that rely on gene models and

other genomic annotations as input (Agrawal et al., 2017; Hannigan et al., 2019).

Performance comparison with DeepBGC We compared the performance

of three DeepBGC classification models using the 10,000 amino acid sliding win-

dow test datasets, which yield the best F-m with TOUCAN. As mentioned in

Section 5.3, two out of the three DeepBGC models were trained using the best per-

forming constructed training dataset( 50%-50% dataset in this case). The Deep-
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BGC hyperparameters applied in this comparison are also listed in Section 5.3.

As shown in Almeida et al. (2019), during validation phase the DeepBGC model

trained using the original hyperparameters and the 50%-50% training dataset

had early stopping at epoch 109, from the original total of 328 epochs, as applied

in Hannigan et al. (2019).

Table 5.4 shows P, R, and F-m performances of the three DeepBGC models for the

positive class on the test dataset with a 50% or 30% overlap. DeepBGC models

built with original hyperparameters yielded high recall but very low precision,

consequently leading to F-m metrics lower than 0.3 for either models based on

the 50%-50% training set or based on DeepBGC original data. Models built with

fungal optimized hyperparameters yielded a noticeable performance improvement,

with a 0.627 F-m.

Table 5.4: Performance metrics of DeepBGC models for A. niger test sets gener-
ated with 10,000 amino acid sliding window.

Training DeepBGC Sliding

dataset model window Overlap P R F-m

DeepBGC original 10,000 50% 0.114 1 0.205

DeepBGC original 10,000 30% 0.159 1 0.274

50%-50% original 10,000 50% 0.075 1 0.140

50%-50% original 10,000 30% 0.105 1 0.191

50%-50% fungal 10,000 50% 0.464 0.765 0.578

50%-50% fungal 10,000 30% 0.580 0.682 0.627

For each of the three DeepBGC models, the test sets using a 30% overlap resulted

in better performance than the ones using a 50% overlap. DeepBGC perfor-

mance on predicting fungal BGCs shows high recall but very low precision, which

consequently lead to F-m metrics lower than 0.2. The most imbalanced mod-

els classified all test candidates as negative, which could be a sign of the model
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trying to optimize accuracy towards the majority class. Originally, DeepBGC

was developed to predict bacterial BGCs, for which much more data is available

compared to fungal BGCs. The larger amount of bacterial BGC data available

benefits the development of supervised learning approaches. Fungal BGC data

is more scarce, which makes it challenging to build robust classification models.

Supervised learning approaches that fit bacteria may not be suitable to discover

BGCs in fungi (Almeida et al., 2019).

Performance comparison with fungiSMASH We compared the perfor-

mance of fungiSMASH on the same 10,000 amino acid sliding window test datasets

used to compare with DeepBGC. The fungiSMASH parameters considered in this

comparison are described in Section 5.3. fungiSMASH predictions are also as-

sessed in terms of P, R, and F-m which are shown for the positive class in Ta-

ble 5.5. fungiSMASH best performance yielded a 0.571 F-m when using a 50%

overlap and 0.692 F-m when using a 30% overlap, both under relaxed strictness.

As expected, loose strictness results in higher recall and lower precision, while a

strict parameter results in higher precision but lower recall.

Table 5.5: Performance metrics of fungiSMASH models for A. niger test sets
generated with 10,000 amino acids sliding window.

fungiSMASH Sliding
strictness window Overlap P R F-m Overlap P R F-m
relaxed (default) 10,000 50% 0.470 0.729 0.571 30% 0.649 0.741 0.692
strict 10,000 50% 0.471 0.576 0.519 30% 0.671 0.600 0.634
loose 10,000 50% 0.435 0.788 0.561 30% 0.591 0.800 0.68

Similar to TOUCAN models, fungiSMASH seems to yield generally better per-

formance on 30% overlap test candidates. fungiSMASH showed in general a more

stable performance predicting fungal BGCs compared to DeepBGC. Apart from

being based on a different approach than DeepBGC, fungiSMASH was developed
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focusing on fungal organisms. The difference in performance between the bacteria-

focused approach of DeepBGC and the fungal-focused approach of fungiSMASH

may be another indication that BGC discovery is a complex task, and can benefit

from approaches built to target related organisms.

TOUCAN yields reproducible performance on Aspergillus nidulans

To assess TOUCAN reproducibility we assessed the performance of its models in

the A. nidulans genome. As in A. niger, A. nidulans is a species known as an

important source of BGCs (Inglis et al., 2013; Kjærbølling et al., 2020). Previous

work on manual annotation of BGCs in Aspergilli (Inglis et al., 2013) identified

a total of 70 BGCs in A. nidulans, which are considered as gold standard for this

analysis. To obtain candidate BGCs for testing, A. nidulans genome sequence was

processed in the same manner as A. niger. Test candidate BGCs for A. nidulans

were obtained by extracting genomic regions sequentially from its genome, using

amino acid sliding windows of 10,000 amino acids that overlap by 30% and 50%.

The analysis on A. nidulans used the best performing model parameters previously

established in A. niger : 50%-50% dataset, hyperparameter optimization, and 5-

fold CV.

Table 5.6: Best performances per overlap of TOUCAN compared to fungiSMASH
and DeepBGC for A. nidulans test sets generated with 10,000 amino acid sliding
window.

Sliding

System Model window Overlap P R F-m

TOUCAN lsvc + merge3 10,000 50% 0.919 0.814 0.864

TOUCAN svc + merge3 10,000 30% 0.953 0.871 0.910

fungiSMASH relaxed (default) 10,000 50% 0.550 0.786 0.647

fungiSMASH relaxed (default) 10,000 30% 0.775 0.786 0.780

DeepBGC 50%-50% fungal 10,000 50% 0.473 0.629 0.540

DeepBGC 50%-50% fungal 10,000 30% 0.631 0.586 0.607
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Table 5.6 shows TOUCAN best performance results among all six classifiers and

post-processing methods for the A. nidulans 10,000 amino acid sliding window

test sets. For comparison, we evaluated A. nidulans BGC predictions obtained

with the best fungiSMASH and DeepBGC models on the same test sets, for which

the results are also shown in Table 5.6. We observed that similar F-m performance

metrics were achieved for A. nidulans and A. niger. TOUCAN and DeepBGC,

both based on supervised learning, yielded the least F-m variation on the results

obtained for the two Aspergillus species, suggesting that due to their generalization

ability, supervised learning approaches may be a suitable approach to tackle BGC

discovery.

TOUCAN True Positive predictions improve coverage of BGC genes

We compared TP predictions (BGC candidate predicted positives that have at

least one gene matching a gold standard BGC) obtained from best performing

models in A. niger and A. nidulans for TOUCAN (0.982 F-m and 0.910 F-m,

respectively) versus fungiSMASH (0.692 F-m and 0.780 F-m, respectively), and

DeepBGC (0.620 F-m and 0.607 F-m, respectively). First we analysed the dis-

tribution of clusterScores computed for each BGC candidate predicted positive.

Figure 5.1 shows the clusterScore distribution in A. niger and A. nidulans TP

predictions obtained with TOUCAN, DeepBGC and fungiSMASH best models.

We observed that compared to the other tools, TOUCAN TP predictions more

often present a clusterScore = 1, meaning that TOUCAN predictions better en-

compass genes matching gold standard BGCs, possibly as a result of TOUCAN

merge post-processing. Although merge post-processing leads to more compre-

hensive predictions, it could result in overprediction of cluster boundaries.
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Figure 5.1: Distribution of clusterScores among True Positive predictions in A.
niger and A. nidulans genomes. clusterScore distribution was computed for best
performing models of each system (A.niger: TOUCAN: 0.982 F-m, DeepBGC:
0.627 F-m, fungiSMASH: 0.692 F-m; A. nidulans: TOUCAN: 0.910 F-m, Deep-
BGC: 0.607 F-m, fungiSMASH: 0.780 F-m).

To mitigate, filtering methods could be applied to refine candidate cluster regions,

and also as an opportunity to fine-tune TOUCAN predictions to specific genus

or species of interest. One possible way to apply targeted filtering is to rely on

manually curated annotations of relevant features, such as the annotated high

and medium Pfam protein domains shown in Section 5.3.2. We also analysed

the presence of backbone enzymes within genes of TP predictions. Backbone

enzymes are considered as the BGC core (Kjærbølling et al., 2020), playing a key

role on its biosynthesis and defining the BGC compound to be produced (Inglis

et al., 2013). We mapped the presence and absence of backbone genes among
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TOUCAN, DeepBGC and fungiSMASH best models TP predictions.

Figure 5.2: Presence of backbone enzymes among positive predictions in A. niger
and A. nidulans genomes. Each backbone enzyme is shown per the gene ID it is
associated with and the clusterScore assigned to the candidate predicted BGC.

Figure 5.2 shows backbone genes and product types found in A. niger and A.

nidulans, respectively. Scores in Figure 5.2 (or the color intensity) correspond to

the clusterScore computed for the predicted BGC. Backbone enzyme genes were

present in 86.6% of all TOUCAN TP predictions for A. niger, versus 76.2% in

fungiSMASH and 75.9% in DeepBGC. For A. nidulans 93.5% of TOUCAN TP

predictions found backbone enzymes, versus 89% for fungiSMASH and 82.9% for

DeepBGC.

5.5 Discussion

Secondary metabolites are bioactive compounds that play a vital role in the pro-

duction of various drugs. Discovery of novel fungal BGCs can potentially benefit

human health. In this work we presented TOUCAN, a supervised learning frame-
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work for fungal BGC discovery. We evaluated classification models based on fun-

gal BGC datasets of various distributions, six classifiers, heterogeneous biological

features, and three post-processing methods. TOUCAN best performing model

achieved 0.982 F-m in A. niger and 0.910 f-m in A. nidulans, outperforming pre-

vious methods. The results obtained with TOUCAN models could indicate that

standard supervised learning approaches are suitable to tackle BGC discovery.

TOUCAN outperformance is possibly due to a combination of factors: combining

feature types, evaluating the impact of different class distributions during train-

ing, and post-processing candidate BGC predictions. merge post-processing can

help identify regions that might have been missed, but in certain cases it may

potentially lead to overestimation of predicted cluster boundaries.

The performance of TOUCAN models was compared to two BGC discovery state-

of-the-art approaches: DeepBGC, based on deep learning, and fungiSMASH,

based on probabilistic methods. TOUCAN models showed better F-m when pre-

dicting BGCs in A. niger and A. nidulans compared to DeepBGC and fungiS-

MASH. TOUCAN also yielded more comprehensive coverage of gold standard

BGC genes within predicted clusters, and was able to identify backbone enzyme

genes more often in its TP predictions compared to the other methods. The pres-

ence of backbone enzymes can be a crucial aspect in determining the presence of

a BGC in a given genomic region. The results obtained by TOUCAN, as well

as the performance of DeepBGC models, demonstrate the potential of exploring

supervised learning approaches for BGC discovery, and relevance of developing

BGC prediction tools focused on fungal organisms. Fungi were shown to be an

important source for bioactive compounds (Macheleidt et al., 2016; de Vries et al.,

2017) used in the pharmaceutical industry, but fungal BGC data available in open

access databases are scarce compared to bacteria. The availability of more an-

notated fungal BGCs is hence an important aspect to promote development and



97

improvement of existing and new fungal BGC discovery approaches. Previous

BGC discovery tools require curated data to identify candidate BGC regions in

an organism, which may not be available or is expensive to obtain. Unlike previ-

ous approaches, TOUCAN is capable of outputting BGC predictions from amino

acid sequences without requiring further data curation as input. This aspect can

facilitate TOUCAN usage and its application on newly sequenced genomes, pro-

moting the discovery of novel candidate BGC regions and potentially novel drugs,

such as antibiotics, immunosuppressants, and anti-cancer medications.

5.6 Data availability

TOUCAN source code as well as all datasets applied in our experiments are made

publicly available at http://github.com/bioinfoUQAM/TOUCAN. TOUCAN

source code is available under the MIT permissive software license. The datasets

used in this work were obtained from open access databases, which are available

under the Creative Commons Attribution 4.0 international license.



Supplementary Figure 1: Presence of Pfam protein domains annotated as high (usually present in
BGCs) and medium (usually present, but not limited to BGCs) in our datatset positive instances.
Each positive instance in our datasets is represented in a row. The columns represent the absence
or presence of a high or medium Pfam protein domains, sorted by occurrence. The distribution
of high and medium protein domains among positive instances shows that a structural pattern is
shared by different BGC IDs.
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Supplementary Figure 2: P, R, and F-m for classifiers on each validation set for 3 ≤ K ≤ 9
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Supplementary Table 1: Distribution of positive and negative instances across fungal BGC datasets,
from completely balanced (50% positive, 50% negative) to most imbalanced (05% positive, 95%
negative). Each dataset was split between train and validation subsets during the training phase.

Dataset Train Validation Total
distribution Pos Neg Pos Neg Pos Neg

50% - 50% 160 160 40 40 200 200
40% - 60% 160 240 40 60 200 300
30% - 70% 160 373 40 93 200 466
20% - 80% 160 640 40 160 200 800
10% - 90% 160 1,440 40 360 200 1,800
05% - 95% 160 3,040 40 760 200 3,800

Supplementary Table 2: Pfam domains annotated as high (usually present in BGCs) in our dataset
positive instances.

Pfam ID Domain Pfam ID Domain
PF00389 2-Hacid dh PF00378 ECH 1
PF01073 3Beta HSD PF00487 FA desaturase
PF00725 3HCDH PF00551 Formyl trans N
PF00583 Acetyltransf 1 PF00368 HMG-CoA red
PF01648 ACPS PF16197 KAsynt C assoc
PF00698 Acyl transf 1 PF00109 ketoacyl-synt
PF13561 adh short C2 PF02801 Ketoacyl-synt C
PF00578 AhpC-TSA PF08659 KR
PF00596 Aldolase II PF00753 Lactamase B
PF01063 Aminotran 4 PF00657 Lipase GDSL
PF00501 AMP-binding PF12013 OrsD
PF08031 BBE PF00550 PP-binding
PF00144 Beta-lactamase PF00432 Prenyltrans
PF00199 Catalase PF14765 PS-DH
PF00135 COesterase PF16073 SAT
PF00668 Condensation PF00975 Thioesterase
PF00394 Cu-oxidase PF06330 TRI5
PF01041 DegT DnrJ EryC1 PF08195 TRI9
PF14226 DIOX N PF11991 Trp DMAT
PF01738 DLH PF01040 UbiA
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Supplementary Table 3: Pfam domains annotated as medium (usually present, but not limited to
BGCs) in our datatset positive instances.

Pfam ID Domain Pfam ID Domain Pfam ID Domain
PF02826 2-Hacid dh C PF00970 FAD binding 6 PF00891 Methyltransf 2
PF10014 2OG-Fe Oxy 2 PF12831 FAD oxidored PF05050 Methyltransf 21
PF03171 2OG-FeII Oxy PF18325 Fas alpha ACP PF13489 Methyltransf 23
PF02737 3HCDH N PF18314 FAS I H PF13649 Methyltransf 25
PF13622 4HBT 3 PF17951 FAS meander PF13679 Methyltransf 32
PF13520 AA permease 2 PF17828 FAS N PF10017 Methyltransf 33
PF00664 ABC membrane PF00465 Fe-ADH PF07690 MFS 1
PF00005 ABC tran PF01613 Flavin Reduct PF00153 Mito carr
PF03109 ABC1 PF00258 Flavodoxin 1 PF03972 MmgE PrpD
PF01061 ABC2 membrane PF01070 FMN dh PF00175 NAD binding 1
PF07859 Abhydrolase 3 PF00743 FMO-like PF13460 NAD binding 10
PF08386 Abhydrolase 4 PF03959 FSH1 PF07993 NAD binding 4
PF12697 Abhydrolase 6 PF04082 Fungal trans PF08030 NAD binding 6
PF00330 Aconitase PF11951 Fungal trans 2 PF13450 NAD binding 8
PF00694 Aconitase C PF01019 G glu transpept PF05368 NmrA
PF00441 Acyl-CoA dh 1 PF00117 GATase PF03169 OPT
PF01553 Acyltransferase PF01408 GFO IDH MocA PF02784 Orn Arg deC N
PF08240 ADH N PF01341 Glyco hydro 6 PF00724 Oxidored FMN
PF00106 adh short PF13692 Glyco trans 1 4 PF00067 p450
PF00107 ADH zinc N PF13632 Glyco trans 2 3 PF04389 Peptidase M28
PF13602 ADH zinc N 2 PF13579 Glyco trans 4 4 PF01432 Peptidase M3
PF08493 AflR PF13439 Glyco transf 4 PF01435 Peptidase M48
PF00171 Aldedh PF00534 Glycos transf 1 PF02129 Peptidase S15
PF00248 Aldo ket red PF00535 Glycos transf 2 PF03572 Peptidase S41
PF01425 Amidase PF00903 Glyoxalase PF00082 Peptidase S8
PF01979 Amidohydro 1 PF05199 GMC oxred C PF08530 PepX C
PF04909 Amidohydro 2 PF00732 GMC oxred N PF01328 Peroxidase 2
PF01593 Amino oxidase PF00043 GST C PF07976 Phe hydrox dim
PF00155 Aminotran 1 2 PF02798 GST N PF05721 PhyH
PF00202 Aminotran 3 PF13417 GST N 3 PF00348 polyprenyl synt
PF00266 Aminotran 5 PF08759 GT-D PF00484 Pro CA
PF12796 Ank 2 PF13419 HAD 2 PF01619 Pro dh
PF08546 ApbA C PF00372 Hemocyanin M PF04303 PrpF
PF00026 Asp PF00132 Hexapep PF07992 Pyr redox 2
PF01212 Beta elim lyase PF00010 HLH PF13738 Pyr redox 3
PF00170 bZIP 1 PF00682 HMGL-like PF14027 Questin oxidase
PF00571 CBS PF18558 HTH 51 PF04055 Radical SAM
PF00285 Citrate synt PF00702 Hydrolase PF00581 Rhodanese
PF01179 Cu amine oxid PF12146 Hydrolase 4 PF00355 Rieske
PF02727 Cu amine oxidN2 PF13344 Hydrolase 6 PF02982 Scytalone dh
PF07731 Cu-oxidase 2 PF01231 IDO PF13243 SQHop cyclase C
PF07732 Cu-oxidase 3 PF00478 IMPDH PF13249 SQHop cyclase N
PF00173 Cyt-b5 PF00180 Iso dh PF08498 Sterol MT C
PF01266 DAO PF00857 Isochorismatase PF02668 TauD
PF01323 DSBA PF12706 Lactamase B 2 PF00205 TPP enzyme M
PF08354 DUF1729 PF02866 Ldh 1 C PF02458 Transferase
PF08592 DUF1772 PF00056 Ldh 1 N PF06609 TRI12
PF06441 EHN PF02900 LigB PF07428 Tri3
PF01370 Epimerase PF13472 Lipase GDSL 2 PF04820 Trp halogenase
PF07110 EthD PF00206 Lyase 1 PF00264 Tyrosinase
PF03807 F420 oxidored PF00221 Lyase aromatic PF01977 UbiD
PF04116 FA hydroxylase PF13452 MaoC dehydrat N PF00201 UDPGT
PF00667 FAD binding 1 PF01575 MaoC dehydratas PF08325 WLM
PF00890 FAD binding 2 PF13813 MBOAT 2 PF00096 zf-C2H2
PF01494 FAD binding 3 PF08241 Methyltransf 11 PF00098 zf-CCHC
PF01565 FAD binding 4 PF08242 Methyltransf 12 PF001728 Zn clus
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Supplementary Table 4: Unique features per training dataset distribution from completely balanced
(50% positive, 50% negative) to most imbalanced (05% positive, 95% negative). Number of unique
features (#) and feature percentage (%) is shown per each feature type for the total number of
features in each dataset. K-mer features are shown for K = 6, the best performing K value in our
study.

Dataset K-mers (K=6) Pfam domains GO terms Total
distribution # % # % # % #

50% - 50% 45,874 (95.41) 1,866 (3.88) 341 (0.71) 48,081
40% - 60% 59,040 (96.59) 2,370 (3.87) 286 (0.46) 61,124
30% - 70% 80,604 (96.17) 2,885 (3.44) 323 (0.38) 83,812
20% - 80% 160,750 (97.38) 3,975 (2.41) 340 (0.20) 165,065
10% - 90% 559,708 (98.61) 7,524 (1.33) 354 (0.06) 567,586
05% - 95% 1,826,067 (98.97) 18,307 (0.99) 562 (0.03) 1,844,936

Supplementary Table 5: Validation performance on fixed train and validation sets per classifier.
Models were built using all feature types combined.

Dataset Classifier P R F-m Average
F-m

50-50% lsvc 1 0.925 0.961 0.755
50-50% logit 1 0.925 0.961 0.755
40-60% mlp 0.951 0.975 0.962 0.715
30-70% logit 0.947 0.9 0.923 0.693
20-80% lsvc 0.925 0.925 0.925 0.732
20-80% mlp 0.925 0.925 0.925 0.732
10-90% mlp 0.948 0.925 0.936 0.738
05-95% lsvc 0.941 0.8 0.864 0.655

Supplementary Table 6: Validation performance on 5-fold CV per classifier on the completely
balanced (50% positive, 50% negative) dataset. Models were built using all feature types combined.

Dataset Classifier P R F-m
50-50% lsvc 0.934 0.925 0.929
50-50% logit 0.922 0.935 0.928
50-50% mlp 0.948 0.910 0.928
50-50% nusvc 0.708 0.750 0.723
50-50% randomf 0.944 0.900 0.919
50-50% svc 0.911 0.900 0.904
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Supplementary Table 7: DeepBGC original and fungal optimized hyperparameters applied during
evaluation

Parameter Original Fungal
batch size 64 16
hidden size 128 128
timesteps 256 256
num epochs 328 50
dropout 0.2 0.2
optimizer adam adam
learning rate 1e-4 1e-4
loss weighted binary weighted binary

cross-entropy cross-entropy

Supplementary Table 8: TOUCAN best performing hyperparameters to maximize F-m for each
classifier.

lsvc C = 0.01, loss = squared hinge, penalty = l2
logit penalty = l1, C=10, solver = saga
mlp activation = relu, batch size = 256, hidden layer sizes= 256,

learning rate = ’adaptive’, solver = ’adam’
nusvc coef0 = 0.01, gamma = 0.01, kernel = sigmoid
randomf bootstrap = False, criterion = entropy, max features= log2,

n estimators = 1000
svc C = 100, gamma = 0.001, kernel = rbf
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CHAPTER VI

IMPROVING BGC PREDICTION THROUGH REINFORCEMENT

LEARNING AND FUNCTIONAL ANNOTATIONS

The results obtained with TOUCAN, a supervised learning framework to identify

fungal BGCs, yield high F-measure when predicting cluster regions, outperforming

previous tools. However due to the post-processing methods, TOUCAN predicted

BGC regions were prone to overestimation of cluster boundaries, a common issue

among previous BGC discovery tools. This Chapter describes the methodology

adopted to build a reinforcement learning method to improve BGC predictions

outputted by state-of-the-art tools. The approach aims to optimize composition

of candidate BGCs, optionally integrating functional annotations of BGC compo-

nents to improve performance. The study presented in this Chapter was submitted

to the Bioinformatics journal, under the title "Improving candidate Biosynthetic

Gene Clusters in fungi through reinforcement learning". We note that a short

version of this article was accepted at the 25th international conference on Re-

search in Computational Molecular Biology (RECOMB), as a poster under the

title "A reinforcement learning approach to improve fungal Biosynthetic Gene

Cluster prediction". Article writing, approach implementation, experimental de-

sign and execution were performed by Hayda Almeida, under the supervision of

professors Adrian Tsang and Abdoulaye Baniré Diallo. A printed version of this

article is presented in the Appendix C.
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6.1 Abstract

Motivation: Precise identification of Biosynthetic Gene Clusters (BGCs) is a

challenging task. Performance of BGC discovery tools is limited by their capacity

to accurately predict components belonging to candidate BGCs, often overesti-

mating cluster boundaries. To support optimizing the composition and boundaries

of candidate BGCs, we propose reinforcement learning approach relying on pro-

tein domains and functional annotations from expert curated BGCs.

Results: The proposed reinforcement learning method aims to improve candi-

date BGCs obtained with state-of-the-art tools. It was evaluated on candidate

BGCs obtained for two fungal genomes, Aspergillus niger and Aspergillus nidu-

lans. The results highlight an improvement of the gene precision by above 15% for

TOUCAN, fungiSMASH and DeepBGC; and cluster precision by above 25% for

fungiSMASH and DeepBCG, allowing these tools to obtain almost perfect preci-

sion in cluster prediction. This can pave the way of optimizing current prediction

of candidate BGCs in fungi, while minimizing the curation effort required by do-

main experts.

Availability and Implementation:

https://github.com/bioinfoUQAM/RL-bgc-components

Contact: diallo.abdoulaye@uqam.ca

Supplementary information: Supplementary data is available at Bioinformat-

ics online.

6.2 Introduction

Filamentous fungi produce a large array of Secondary Metabolites (SM) which play

an important role in the survival and development of producing organisms (Keller,

2015). Identifying novel fungal SMs is a field of high interest, given the relevance

of these compounds particularly in the pharmaceutical industry for production of
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various medications (Chavali & Rhee, 2017; Kjærbølling et al., 2019). Biosynthetic

pathways that produce SM compounds are encoded by clusters of genes often ap-

pearing contiguously in an organism genome, known as Biosynthetic Gene Clus-

ters (BGCs) (Keller, 2019; Kautsar et al., 2020). The genomic diversity of fungal

genomes makes accurate identification of BGCs in fungi a highly challenging task

for dedicated state-of-the-art tools, and even for manual curation or experimental

characterization performed by experts (Kjærbølling et al., 2019). BGCs generally

contain minimal components: backbone enzymes, defining the core chemical com-

pound to be produced; and tailoring enzymes, capable of generating variants by

modifying the cluster core compound (Keller, 2019). They may also present other

components, such as cluster-specific transcription factors, transporters, and hypo-

thetical proteins (Keller, 2015). Fungal BGCs are known to vary considerably in

composition (similar clusters with different components), and location (cluster re-

gions overlapping or spanning multiple chromosomes) even among closely related

species (Keller, 2019; Kjærbølling et al., 2020; Evdokias et al., 2021).

Various approaches to obtain candidate BGCs (potential sequence regions encod-

ing biosynthesis of SMs) were previously presented (Chavali & Rhee, 2017), such

as fungiSMASH (Blin et al., 2021), DeepBGC (Hannigan et al., 2019), and TOU-

CAN (Almeida et al., 2020). However these approaches show limitations when

it comes to the identification of components and boundaries of candidate BGCs,

often overpredicting candidate regions. fungiSMASH offers the option to integrate

CASSIS (Wolf et al., 2016) to improve cluster boundary prediction. Apart from

being a potentially time-consuming option, CASSIS requires curated input, such

as gene start and end positions and a reference anchor (backbone) gene, which

may not be readily available and therefore limit its stand-alone application to

other state-of-the-art BGC discovery approaches.

Obtaining accurate candidate BGCs is a critical step towards chemical synthesis
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of SM compounds, which can be a complex and costly process as many of these

metabolic pathways are silent or poorly expressed (Montiel et al., 2015; Zhang

et al., 2019). In this work, we propose a reinforcement learning approach based

on protein family domains from Pfam (El-Gebali et al., 2019) and functional anno-

tations to support optimizing the boundaries and composition of candidate BGCs

obtained with state-of-the-art tools, therefore potentially facilitating validation

and experimental characterization of SM compounds. Protein domains were pre-

viously used in approaches to identify BGCs (Khaldi et al., 2010; Hannigan et al.,

2019), and are used here to represent common or shared functional profiles among

BGCs, such as presence of relevant components. Reinforcement learning methods

are capable of adapting dynamically given feedback received (Neftci & Averbeck,

2019), and therefore might be suitable to handle the overestimation of candidate

BGC boundaries, as well as the intrinsic diversity of fungal BGC components,

potentially favoring the discovery of novel compounds.

In reinforcement learning, a learning agent interacts directly with an environment

through actions in a goal-oriented manner, attempting to maximize its task reward

and find an optimal solution (Sutton & Barto, 2018). The agent actions are as-

signed rewards or penalties, computed based on a given function and according to

environment states reached (Sutton & Barto, 2018). When optimizing candidate

BGCs, rewards could be assigned for when the agent identifies correct components

and properly defines cluster boundaries, while penalties could be given when the

agent disregards relevant components from a candidate BGC. While navigating

through the environment, the learning agent tries to balance exploitation (acquired

knowledge of best actions taken) and exploration (choose actions not tried pre-

viously) (Sutton & Barto, 2018). Reinforcement learning approaches had limited

applications in biological contexts so far (Mahmud et al., 2018), however results

show they generated robust policies and outperformed previous methods in tasks
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performing multiple sequence alignment (Mircea et al., 2018), controlling gene

regulatory networks (Imani & Braga-Neto, 2018), optimizing DNA and protein

sequences (Angermueller et al., 2020), and performing de novo drug design (Got-

tipati et al., 2020). Our reinforcement learning approach relies on protein domains

and functional annotations of BGC components to optimize candidate BGCs ob-

tained with state-of-the-art tools, which often overestimate cluster boundaries.

6.3 Methods

The reinforcement learning approach presented here relies on Q-learning (Watkins

& Dayan, 1992), a off-policy temporal difference algorithm, which is capable of

learning directly from interacting with the environment, without relying on an

environment model nor on a long-term value. Rather, a Q-learner uses the next

step reward and estimates its gain for the following update and learns from each

state transition (Sutton & Barto, 2018). To model a reinforcement learner agent,

Pfam protein domains were extracted from curated BGC instances and synthetic

non-BGC instances, as described in Section 6.3.1. Specific rewards were computed

for protein domains according to their occurrence in cluster regions of BGC and

synthetic non-BGCs, as described in Section 6.3.2. Test candidate BGCs were

then submitted to the reinforcement learning agent to decide on potential BGC

components to keep or skip. As a final step, the agent decisions could then be fur-

ther enhanced by strategies developed based on curated functional annotations of

BGC components, as described in Section 6.3.3. Overall performance is evaluated

based on cluster and gene metrics, as described in Section 6.3.4.

6.3.1 Datasets

Publicly available fungal BGC benchmark datasets (Almeida et al., 2019) were

applied to develop the reinforcement learning approach presented here. Both
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training and test data are represented through the occurrence of Pfam protein

domain features in curated BGC regions, non-BGC regions, and test candidate

BGC regions. Previous work has shown the relevance of Pfam domains as features

for BGC analysis (Inglis et al., 2013; Kjærbølling et al., 2020) and discovery (Han-

nigan et al., 2019; Almeida et al., 2020). Pfam domains can indicate the presence

of key BGC components as discussed in Section 6.2, such as polyketide synthase

or non-ribosomal peptide synthetase genes encoding backbone enzymes, genes en-

coding tailoring enzymes, transcription factors or transporters. Genes (or genomic

regions, if gene annotations are not available) composing BGCs may contain none

to multiple relevant Pfam domains.

Training Publicly available training datasets are presented in Almeida et al.

(2019). These training datasets are composed of curated fungal BGC instances

obtained from MIBiG (Minimum Information about a Biosynthetic Gene clus-

ter) (Kautsar et al., 2020) repository, and synthetic non-BGC instances created

from OrthoDB (Kriventseva et al., 2018) fungal orthologous genes. Training

datasets of various distributions were generated through sampling of ortholo-

gous synthetic non-BGC instances, combined with curated fungal BGC instances

(see Almeida et al. (2019) for details). Previous work has shown the relevance

of orthologous genes in BGC discovery as they indicate conserved genomic re-

gions (Takeda et al., 2014; Almeida et al., 2020), while BGC regions tend to

present high genomic diversity even among closely related species (Kjærbølling

et al., 2020). Publicly available training datasets of various distributions were

previously evaluated in Almeida et al. (2020), identifying the most balanced one

(50% BGC and 50% non-BGC instances) as the dataset yielding the best perfor-

mance. For comparison purposes, this is therefore the training dataset applied in

our approach.
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Testing The decisions taken by the reinforcement learning agent are evaluated

on candidate BGCs obtained for the Aspergillus niger NRRL3 genomic sequence

(publicly available at https://gb.fungalgenomics.ca/portal) by three tools:

TOUCAN (Almeida et al., 2020), fungiSMASH (Blin et al., 2021), and Deep-

BGC (Hannigan et al., 2019). Aspergillus niger is an organism of interest given

its ubiquitous presence, and its importance for industrial processes and biotech-

nology, which makes it a relevant species in the study of BGC discovery (de Vries

et al., 2017; Aguilar-Pontes et al., 2018; Evdokias et al., 2021). To obtain test

candidate BGCs from A. niger amino acid sequence, we extracted sequentially

sliding windows of fixed 10,000 amino acid length with a 30% window overlap

(see Almeida et al. (2020) for details). Aspergillus niger candidate BGCs were

then obtained from each BGC discovery tool, based on the same sequentially

sliding windows to allow candidate predictions to be compared across the three

tools. Before being processed by the proposed reinforcement learning agent, can-

didate BGCs obtained by all three tools were pre-processed using a majority vote

strategy.

Candidate BGC pre-processing −Majority vote: Candidate BGCs contain a set

of genomic region identifiers (such as gene names), as well as their corresponding

Pfam protein domains. Examples of candidate BGCs are shown in Figure 6.1. For

our experiments, candidate BGCs were obtained based on a test set of A. niger

genomic regions of 10,000 amino acid sliding windows with a 30% overlap.
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Figure 6.1: Computation of majority vote pre-processing for candidate BGCs:
regions are merged according to the average score of predicted labels

On one hand, overlapping regions allow for covering potential BGC fragmenta-

tion due to fixed length sliding windows. On the other hand it will also generate

repeated regions in candidate BGCs. The majority vote strategy, shown in Fig-

ure 6.1, therefore handles duplicated regions based on a local consensus. It works

as follows: each gene g in a candidate BGC is represented by a label vector

L = l0, l1, ..., lm where m is the number of candidate BGCs in which g appears

and li the candidate BGC label (0 for predicted as non-BGC and 1 for predicted

as BGC). The majority vote score vscore for a gene g is therefore the average value

of its predicted labels L. Sequential genes presenting a vscore ≥ 0.5 are therefore

concatenated as positive candidate BGCs, while the other genes with a vscore < 0.5

are concatenated as negative candidate BGCs, up to a limit of 10,000 amino acids
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per cluster. In our experiments, A. niger gene models were used as reference

points, however in the lack of gene models, regions of fixed smaller size than the

sliding window length could be considered instead.

6.3.2 Reinforcement learning method

The proposed reinforcement learning approach is based on the temporal-difference

and off-policy algorithm Q-learning (Watkins & Dayan, 1992; Sutton & Barto,

2018). In Q-learning, the action-value function Q converges towards an optimal

policy, and allows the reinforcement learning agent to decide on the next step.

The Q function provides the expected value of an action a, given a state s, and

it is dynamically updated during the agent experience of interacting with the

environment. Given a set of actions A, a set of states S and respective rewards R

at a timestep t, the Q function is computed as:

Q(St, At) = Q(St, At) + α [Rt+1 + γmax
a
Q(St+1,a)−Q(St, At)]

where α is the learning rate, and γ the discount-rate factor. Additionally, a

probability ε defines the algorithm exploration versus exploitation rate (Sutton &

Barto, 2018). In the context of optimizing BGC components, the reinforcement

learning agent chooses the most suitable action within the set of actions A =

keep, skip for a candidate BGC, which is a set of states represented by Pfam

domains within each gene. At the training phase state rewards were computed by

extracting Pfam protein domains from the selected training dataset, as described

in Section 6.3.1. Each protein domain d is represented by an occurrence vector

C = c0, c1, ...cn, where n is the number training dataset instances, and ci the

domain occurrence per training instance (ci > 0 if a curated BGC instance, and

ci < 0 otherwise). To determine the rewards per action Rkeep and Rskip of a

domain d, we first compute a score s as follows:
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skeep =
∑
x∈C

x

|C| sskip = |1− skeep|

After computing both skeep and sskip, a keepSkip threshold is applied to finally

determine the rewards Rkeep and Rskip for domain d, as in:

Rkeep, Rskip =

skeep,−skeep if skeep > (sskip ∗ keepSkip)

−sskip, sskip otherwise.

The agent is assigned a penalty for each step it receives a negative reward R < 0,

with a total penalty computed per episode. An episode is completed when the

agent has gone through the entire training dataset.

In the testing phase, the reinforcement learning agent is evaluated by the keep

or skip actions it decides on for genes in candidate BGCs. Pfam domains are

therefore extracted per gene (or per fixed size region, in case gene models are not

available) in candidate BGCs. The optimal action for a gene g containing a set

of domains D = d0, d1, ..., dn, where n is the number of domains found in g is

computed as follows:

ga = argmax(
n∑

i=0

di(Rkeep),
n∑

i=0

di(Rskip))

Genes for which Rskip > Rkeep are assigned the action ga = skip, otherwise they are

assigned a ga = keep. Only genes assigned a ga = keep action will be maintained

in a given candidate BGC.

6.3.3 Integrating functional annotations

Biosynthetic gene clusters are generally formed by components that play different

roles in the cluster, such as backbone and tailoring enzymes, transcription factors,

transporters, and hypothetical proteins, as discussed in Section 6.2. Backbone and

tailoring enzymes for instance are considered essential BGC building blocks for the

biosynthesis of SM compounds (Keller, 2019). A total of 85 A. niger BGCs (In-
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glis et al., 2013) were used as our gold standard. To define these BGCs, Inglis

et al. (2013) described obtaining in silico BGCs from state-of-the-art tools, and

refining their boundaries based on published experimental data, synteny between

BGC genes across multiple species, assignment of experimentally based GO terms,

intergenic distance between boundary and adjacent genes. These 85 gold stan-

dard A. niger BGCs were then manually curated with their functional annotation

within clusters. Pfam protein domains were then extracted from functionally an-

notated BGC gold-standard genes, and associated with a BGC component role.

A list of all Pfam domains associated with each annotated BGC component is

shown in Supplementary Table 1.

Figure 6.2: Example of functional annotation strategies applied to a candidate
BGC

To integrate the functional annotation of BGC components, three strategies were

developed based on Pfam domains associated to component roles. The three
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strategies are applied to enhance the reinforcement learning agent decisions. The

averageAction strategy handle genes lacking Pfam domains; the neighborWeight

strategy handles presence of annotations in neighboring genes; and the dryIslands

strategy handles absence of annotations in contiguous neighboring genes.

Various gold-standard BGC genes, mostly annotated as hypothetical proteins,

simply do not contain any Pfam domain annotations and therefore may be directly

assigned an action ga = skip. BGC components considered hypothetical proteins

may play a relevant role in the cluster (Keller, 2015). However they become

challenging components to identify due to their lack of features, which makes

them harder to distinguish from the noise within non-relevant components. With

the averageAction strategy, if the reinforcement learning agent assigns an action

ga = keep for a minimum gene threshold in a candidate BGC G, then genes in

G that do not contain protein domains (D = ∅) will also be assigned an action

ga = keep. Optimization of the minimum threshold ([25%, 50%, 75%]) has yielded

50% as the most suitable value.

To implement the neighborWeight and dryIslands strategies, a candidate BGC

G is assigned a weight vectorW , where for each gene g inG a weight w is computed

as follows:

w =
n∑

i=0

hi
hi =


β if backbone,

λ if other annotation,

σ otherwise.

where n is the number of domains found in g, and h the score associated with the

BGC component functional annotation. For the sake of the experiments described

in Section 6.4, we have set the following values: β = 2 if backbone, λ = 1.5 if

other annotation, and σ = 0 otherwise. For the neighborWeight strategy, if a

k number of surrounding neighbors of a gene g present a
∑k

i=0wi > 1, then the
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gene weight gw = 1 and the gene action ga = keep. Optimization of the number

of neighbor genes k = [1, 2, 3] has yielded the most suitable k = 1. For the

dryIslands strategy, if
∑j

i=0 gw = 0 for j sequential genes in G, then the gene

action ga = skip. Optimization of the dry island size j = [3, 4, 5] has yielded

the most suitable j = 3. Figure 6.2 shows an example of how the reinforcement

learning agent decisions are adjusted by the neighborWeight and dryIslands

strategies. Functional annotations of BGC components provide expert domain

knowledge and could potentially improve the actions chosen by the reinforcement

learning agent, therefore improving precision of candidate BGC components.

6.3.4 Evaluation metrics

The performance of the reinforcement learning approach proposed here is evalu-

ated in terms of gene metrics and cluster metrics, for which precision (P), recall

(R), F-measure (F-m) are computed. Cluster metrics show the performance on

identifying cluster regions, and considers as true positives (TPs) candidate BGCs

G that have at least one gene g that belongs to the set of gold-standard BGC genes.

Gene metrics shows the performance on matching genes in candidate BGCs with

the complete set of gold-standard BGC genes, and considers as true positives

(TPs) the candidate BGC genes that are identical or similar gene matches to

gold-standard BGC genes. The similarity between candidate and gold-standard

BGC genes is obtained through local BLAST alignment, with minimum thresh-

olds of percent identity pident ≥ 20 and query coverage qcov ≥ 10. We also

compute the average F-m between cluster and gene metrics F-m.

6.4 Results

The reinforcement learning approach proposed here is evaluated on candidate

BGCs obtained with three BGC discovery tools: TOUCAN (Almeida et al.,
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2020), fungiSMASH (Blin et al., 2021) independently and also combined with

CASSIS (Wolf et al., 2016), and DeepBGC (Hannigan et al., 2019) for the A.

niger genome. A total of 85 A. niger BGCs (Inglis et al., 2013) were manually

curated and are considered as gold standard to evaluate the performance of our

reinforcement learning approach on selecting BGC components from candidate

BGCs. In Section 6.4.1 we present an overview of the distribution of genes pre-

senting protein domains associated to functional annotations in the training and

test data. Section 6.4.2 presents the results obtained by the reinforcement learn-

ing approach on candidate BGCs from the three tools, and Section 6.4.3 shows

an analysis of reproducibility of the reinforcement learning approach in a second

fungal genome, Aspergillus nidulans.

6.4.1 Distribution of domains linked to BGC components

We performed an analysis of the presence of protein domains associated with BGC

component roles in genes belonging to the training and test datasets. The dis-

tribution of genes that present protein domains associated with BGC component

types is shown in Table 6.1. A protein domain may be associated with multiple

component roles if it was found to be present in genes annotated with different

components.
Table 6.1: Domains linked to A. niger BGC components in dataset genes

Component Training Test
type BGCs non-BGCs gold BGCs non-gold BGCs
Backbones 17.0% 2.0% 15.9% 2.2%
Tailoring enzymes 30.5% 7.8% 9.9% 11.9%
Transcription factors 4.8% 2.1% 5.9% 4.3%
Transporters 5.6% 2.8% 7.4% 4.6%
Non-component domains 44.7% 46.93% 49.3% 58.9%
No domains 14.6% 41.15% 15.5% 23.2%
Total # genes 2833 1781 624 11239

It is noticeable from Table 6.1 that protein domains appearing in BGC components

are mostly found among genes in BGCs and gold BGCs instances. Genes that do

not contain any protein domains are mostly found among non-BGCs and non-gold
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BGCs instances. The percentage of genes without any encoded protein domains

is higher than that of genes with encoded domains associated to transcription

factors and transporters among BGCs and gold BGC genes.

The distribution of genes encoding protein domains associated with backbones in

the training data is similar to the that of the test data. Genes without any en-

coded protein domains also yield a similar distribution among BGCs (14.6%) and

gold BGCs (15.5%) genes. Among non-gold-standard BGC genes, more than half

encode protein domains that are not associated to any component role. Overall

the percentages in Table 6.1 demonstrate how the presence of protein domains as-

sociated to BGC components is ubiquitous both in BGCs and non-BGC regions,

which makes correctly identifying BGC components a challenging task.

6.4.2 Reinforcement learning improves candidate BGCs

We present here the results obtained by the proposed reinforcement learning ap-

proach on candidate BGCs obtained with three BGC discovery tools: TOUCAN,

fungiSMASH (fungiSMASH/C combined with CASSIS), and DeepBGC. Previ-

ously to processing candidate BGCs, we optimized the following reinforcement

learning agent parameters: learning rate α, discount-rate factor γ, exploration-

exploitation probability ε, and the keepSkip threshold, as described in Section 6.3.2,

over a set of 500 episodes on the training data evaluating both fixed and incremen-

tal parameter values. The parameters α = 0.01, γ = 0.01, ε = 0.01, keepSkip =

0.5 yielded the smallest average penalty over 500 episodes. Supplementary Tables

2 and 3 show a summary of the parameter optimization. In this Section, we refer

here to TOUCAN, fungiSMASH, fungiSMASH/C and DeepBGC as the candidate BGCs

directly outputted by each tool; TOUCAN-Q, fungiSMASH-Q, fungiSMASH/C-Q and

DeepBGC-Q as the candidate BGCs processed by the proposed reinforcement learn-

ing approach; and TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all and
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DeepBGC-Q-all as the candidate BGCs processed by the reinforcement learning

approach combined with functional annotation strategies.

Table 6.2: Performance on A. niger candidate BGCs from TOUCAN, fungiS-
MASH and DeepBGC

gene metrics cluster metrics average % gold-std. genes

model P R F-m P R F-m F-m negative skipped

TOUCAN 0.269 0.906 0.414 0.963 0.929 0.946 0.68 12.6% -

TOUCAN-Q 0.402 0.68 0.506 0.963 0.929 0.946 0.726 12.6% 26.4%

TOUCAN-Q-all 0.409 0.74 0.527 0.963 0.929 0.946 0.737 12.6% 16.2%

fungiSMASH 0.341 0.665 0.451 0.649 0.741 0.692 0.571 33.2% -

fungiSMASH-Q 0.521 0.516 0.519 1 0.741 0.851 0.685 33.2% 22.3%

fungiSMASH-Q-all 0.495 0.575 0.532 1 0.741 0.851 0.691 33.2% 13.8%

fungiSMASH/C 0.371 0.713 0.488 1 0.729 0.844 0.666 34.13% -

fungiSMASH/C-Q 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%

fungiSMASH/C-Q-all 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%

DeepBGC 0.351 0.481 0.406 0.732 0.612 0.667 0.536 52.4% -

DeepBGC-Q 0.574 0.42 0.485 1 0.612 0.759 0.622 52.4% 12.2%

DeepBGC-Q-all 0.538 0.46 0.496 1 0.612 0.759 0.627 52.4% 7.1%

Table 6.2 shows the results obtained by the reinforcement learning agent on can-

didate BGCs for all three tools. As discussed in Section 6.3.4, cluster metrics

show the approach performance on identifying cluster regions, while gene metrics

show the performance on matching candidate and gold-standard genes within a

BGC. The average F-m shows the overall performance, considering both cluster

F-m and gene F-m. The proposed reinforcement learning approach improved gene

metrics, more noticeably gene precision in candidate BGCs outputted by all three

tools: an increase of 14%, 15.4%, 15.2%, and 18.7% achieved by TOUCAN-Q-all,

fungiSMASH-Q-all, fungiSMASH/C-Q-all and DeepBGC-Q-all respectively. For

TOUCAN-Q-all and fungiSMASH/C-Q-all, gene metrics were improved without

harming cluster metrics, while for fungiSMASH-Q-all and DeepBGC-Q-all clus-

ter metrics were also improved considerably, with an F-m increase of 15.9% and

9.2% for fungiSMASH-Q-all and DeepBGC-Q-all respectively. This indicates that
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the reinforcement learning agent was capable of improving the precision of can-

didate BGC components without discarding correctly predicted candidate BGCs,

and improving coverage of true positive BGC regions and properly targeting false

positive ones predicted by both fungiSMASH and DeepBGC. The average F-m of all

three tools also improved when applying the reinforcement learning agent com-

bined with the functional annotation strategies. An increase in average F-m of

5.7%, 12%, 1.4%, and 9.1% was shown for TOUCAN-Q-all, fungiSMASH-Q-all,

fungiSMASH/C-Q-all and DeepBGC-Q-all respectively. Apart from improving

gene precision, all candidate BGCs processed by the reinforcement learning agent

combined with functional annotation strategies (Q-all) yielded a smaller percent-

age of gold-standard genes skipped, except for fungiSMASH/C-Q-all, which yield

the same performance for Q and Q-all models. This suggests that BGC functional

annotations can be relevant features to support improving precision of predicted

BGCs, and better determine their structure.

Candidate BGCs shown in Figure 6.3 demonstrate the changes in cluster com-

position before and after applying the presented reinforcement learning method.

A comparison between gold-standard and candidate BGCs in Figure 6.3-A shows

how the reinforcement learning agent improved candidate BGCs from all three

tools by correctly skipping non-BGC genes (in blue). Certain cases however are

more complex for the agent, given the ambiguity of protein domains in candidate

BGC genes. As the examples in Figure 6.3-B show, more non-BGC genes were

kept by the agent, which can lead to processed candidate BGCs to be somehow

overpredicted. This behavior could be caused by the fact that domains found

in non-BGC genes in Figure 6.3-B also appear in true positive BGC genes, as

opposed to Figure 6.3-A for which most domains in non-BGC genes were not

present in any true positive BGC genes. Among protein domains of non-BGC

genes (blue) in Figure 6.3-B, more than 50% are associated to BGC component
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Figure 6.3: Comparison between gold-standard and candidate BGC composition
for four A. niger clusters. Non-BGC genes are shown in dark blue. (A) Candidate
BGCs for which the reinforcement learning agent correctly skipped most non-BGC
genes compared to their polyketide (left) and fatty acid (right) gold standard
BGCs. (B) Candidate BGCs for which the agent kept most non-BGC genes
compared to their two non-ribosomal peptide gold standard BGCs, possibly due
to their ambiguous protein domains, which more than half are associated to BGC
component roles but do not belong to neighboring clusters.
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roles, and found immediately after true positive BGC genes. Non-BGC genes

shown in Figure 6.3-A presented only 20% of domains linked to BGC component

roles. This demonstrates how ambiguous domains in candidate BGCs or their

neighboring genes, along with the genomic diversity of these clusters, may in-

crease the complexity of accurately identifying BGC components and boundaries.

Properly identifying BGC components is a challenging task not only for com-

putational approaches that attempt to do so, but even for synthetic approaches

that try to express genes composing candidate BGCs (Keller, 2019). Supple-

mentary Table 4 shows an analysis of A. niger BGC component types found in

gold-standard BGC genes and components found in candidate BGCs, before and

after applying the reinforcement learning approach proposed here. As discussed

in Section 6.3.3, gold BGC genes may contain none to multiple domains, therefore

they may present none to multiple functional annotations. Candidate BGCs out-

putted by fungiSMASH and DeepBGC presented a smaller number of true positives,

and consequently a smaller number of components was found compared to TOUCAN

candidates, as shown in Supplementary Table 4.

The reinforcement learning agent aims to improve precision of candidate BGC

components by removing potentially non-relevant regions. At the same time, the

agent has to handle ambiguous genes that map to protein domains, normally found

in both BGC and non-BGC instances. The number of backbone genes properly

identified by TOUCAN (92.9%), fungiSMASH (70.7%), fungiSMASH/C (69.7%) and

DeepBGC (64.6%) remains the same even after processing by the reinforcement

learning agent for all three tools. This could indicate that the reinforcement

learning agent was capable of learning correctly the relevance of regions encoding

such enzymes. Backbone enzymes are vital components of BGCs (Kjærbølling

et al., 2020), and their accurate identification could demonstrate the robustness

of a BGC discovery method. Transcription factors and transporters in DeepBGC
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candidate BGCs were maintained by the reinforcement learning agent, however

the overall percentage of these components remains lower than the percentage

identified by TOUCAN and fungiSMASH.

Some BGC genes are not associated to any component role, and often do not

even contain any Pfam protein domains, as discussed in Section 6.3.3. Usually

considered as hypothetical proteins, these genes pose a challenge on correctly iden-

tifying BGC components, and could be overlooked by BGC discovery approaches

since their computational representation will likely be more analogous to non-

BGC regions. These hypothetical proteins can seem to diverge from other BGC

components but they may play important self-protection roles for the organism

producing a SM compound (Keller, 2019). As shown in Supplementary Table 4,

genes without any domains were the most missed by the reinforcement learning

approach (Q) among candidate BGCs from all three tools. The averageAction

strategy aims to address this issue by keeping candidate BGC genes without do-

mains when at least a minimum 50% threshold of genes within a candidate BGC

are assigned the action keep. A more lenient threshold was experimented with

for averageAction strategy, however it can lead to the agent identifying a higher

number false positives − genes without protein domains and often associated with

non-relevant BGC regions − resulting in a decrease in precision.

6.4.3 Reproducibility in Aspergillus nidulans candidate BGCs

Similarly to A. niger, A. nidulans is a source of highly useful SMs compounds

which are also largely utilized in the pharmaceutical industry (Inglis et al., 2013;

Drott et al., 2020). To further evaluate the reproducibility of the proposed rein-

forcement learning approach, we processed the A. nidulans genome considering

as gold standard a total of 72 gold standard BGCs presented in Drott et al.

(2020). Assignment of functional annotations to BGC components is a costly and
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time-consuming process. Since manually curated component annotations were not

available for A. nidulans gold-standard BGCs, we generated pseudo-annotations

by assigning potential component types to gold-standard BGC genes based on

similar keywords found in their protein domain descriptions matching annotated

BGC components in A. niger.

For instance, backbone pseudo-annotations were assigned to genes containing sim-

ilar descriptions to the annotated backbone genes in A. niger, such as polyketide

synthases, non-ribosomal peptide synthetases, dimethylallyltryptophan synthases

and terpene synthases. Tailoring enzymes pseudo-annotations were considered

as genes containing similar descriptions of A. niger tailoring enzymes, such as

methyltransferases, monooxygenases, and oxidoreductases. Transcription factor

and transporter pseudo-annotations were assigned to genes presenting domains

described as presenting these functions. A list of all Pfam domains associated

with a pseudo-functional annotation is shown in Supplementary Table 5. The dis-

tribution of component pseudo-annotations found in the training data and gold-

standard genes for A. nidulans is shown in Table 6.3.

Table 6.3: Domains linked to A. nidulans pseudo BGC components dataset genes

Pseudo Training Test
component type BGCs non-BGCs gold BGCs non-gold BGCs
Backbones 17.5% 2.13% 20% 2.45%
Tailoring enzymes 36% 3.70% 31.63% 4.5%
Transcription factors 4.83% 2.35% 5.92% 3.92%
Transporters 5.82% 3.65% 7.55% 5.2%
Non-component domains 33.15% 48.28% 35.3% 62.12%
No domains 14.6% 41.15% 12.65% 22.8%
Total # genes 2833 1781 490 10002

Candidate BGCs for A. nidulans were obtained from TOUCAN, fungiSMASH,

fungiSMASH combined with CASSIS, and DeepBGC in the same manner as can-

didates were obtained for A. niger, performing the test set pre-processing using

a majority vote of overlapping sliding windows of fixed 10,000 amino acids as de-
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scribed in Section 6.3.1 by the reinforcement learning agent on TOUCAN, fungiS-

MASH, and DeepBGC candidate BGCs for A. nidulans are shown in Table 6.4.

Table 6.4: Performance on A. nidulans candidate BGCs from the three tools

gene metrics cluster metrics average % gold genes

model P R F-m P R F-m F-m negative skipped

TOUCAN 0.272 0.681 0.389 1 0.685 0.813 0.601 32.24% -

TOUCAN-Q 0.441 0.591 0.505 1 0.681 0.810 0.657 32.24% 13.47%

TOUCAN-Q-all 0.402 0.646 0.495 1 0.681 0.810 0.653 32.24% 7.55%

fungiSMASH 0.319 0.727 0.443 0.817 0.795 0.806 0.624 30.61% -

fungiSMASH-Q 0.479 0.592 0.53 1 0.781 0.877 0.703 30.61% 15.92%

fungiSMASH-Q-all 0.469 0.605 0.529 1 0.736 0.848 0.688 30.61% 13.88%

fungiSMASH/C 0.318 0.762 0.449 1 0.792 0.884 0.666 28.16% -

fungiSMASH/C-Q 0.484 0.581 0.528 1 0.778 0.875 0.702 28.16% 19.18%

fungiSMASH/C-Q-all 0.484 0.581 0.528 1 0.778 0.875 0.702 28.16% 19.18%

DeepBGC 0.328 0.493 0.394 0.723 0.466 0.567 0.480 50.61% -

DeepBGC-Q 0.491 0.441 0.465 1 0.466 0.636 0.550 50.61% 8.57%

DeepBGC-Q-all 0.473 0.492 0.482 1 0.472 0.642 0.562 50.61% 2.86%

Like in A. niger, the reinforcement learning approach improved gene precision in

candidate BGCs outputted by all three tools: an increase of 13%, 15%, 16.6%,

and 14.5% is seen for TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all

and DeepBGC-Q-all respectively. Gene metrics also yield improvement in A.

nidulans without harming the cluster metrics for TOUCAN-Q-all, while improv-

ing it for fungiSMASH-Q-all and DeepBGC-Q-all, and only showing a less than

1% difference for fungiSMASH/C-Q-all. As previously mentioned, this indicates

that the reinforcement learning agent was able to improve the precision of can-

didate BGC components without discarding correctly predicted candidate BGC

regions. Average F-m performance also showed improvement for all three tools

when compared to their original candidate BGCs, with an increase of 5.2%, 6.4%,

3.6%, and 8.2% for TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/c-Q-all and

DeepBGC-Q-all. When comparing the models relying on the reinforcement learn-
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ing agent only (Q) versus the ones relying on both the agent and the functional

annotation strategies (Q-all) we can observe improvements on gene recall and the

percentage of gold-standard genes skipped, but a small drop on gene precision,

with the exception of fungiSMASH/C models that yield similar performance for Q

and Q-all models. Likely, the usage of A. nidulans pseudo-annotations resulted

in a slight increase of false positive components. However it might be an useful

alternative when manually curated functional annotations are not available, or

also when wanting to favor recall over precision.

Candidate BGC composition before and after applying the reinforcement learning

agent is shown in Supplementary Figure 1. Similarly to A. niger, Supplementary

Figure 1-A demonstrates improvements in candidate BGCs achieved by the agent

by skipping non-BGC genes (in blue). When handling more complex cases, as

shown in Supplementary Figure 1-B, the agent kept most non-BGC genes, po-

tentially resulting in overpredicted boundaries. Approximately 50% of protein

domains from non-BGC genes in Supplementary Figure 1-B were associated to

pseudo-functional annotations in A. nidulans, while only 20% of domains from

non-BGC genes in Supplementary Figure 1-A were associated to any annotation.

6.5 Discussion and Conclusion

Secondary metabolites are a crucial source of compounds that benefit human

health. Identifying BGCs responsible for synthesizing these compounds in fungi

may lead to the discovery of new natural products, and potentially novel drugs.

State-of-the-art tools for BGC discovery often overpredict BGC boundaries and

components. In fungi BGCs are typically encoded by a high diversity of com-

ponents, known to vary even among evolutionary closely related species. Precise

identification of BGC components is therefore a challenging task, and can facilitate

the validation and experimental characterization of SM compounds. In this work
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we presented a reinforcement learning method and functional annotation strate-

gies to support optimizing fungal candidate BGCs obtained with state-of-the-art

tools. We evaluated our proposed approach on candidate BGCs obtained for A.

niger and A. nidulans by three BGC discovery tools: TOUCAN, based on su-

pervised learning; fungiSMASH, based on probabilistic and rule-based methods,

as well as a version of fungiSMASH combined with CASSIS for cluster border

prediction; and DeepBGC, based on deep learning. The results obtained by our

reinforcement learning approach yield improvement of cluster and gene precision

of BGC candidates obtained from all three tools, without affecting correctly pre-

dicted BGC regions.

Overall, best average F-m performances obtained for A. niger relied on the combi-

nation of the reinforcement learning method and functional annotation strategies

based on expert curation. In A. nidulans, even pseudo-functional annotations

were able to improve BGC gene recall, and reduce the number of gold-standard

genes being skipped by the reinforcement learning agent. This indicates that,

when available, integrating functional annotations further advances the approach

capabilities. Functional annotations may however not always be publicly available,

since they can be time-consuming to obtain. The results have shown however that

the reinforcement learning approach alone, based solely on Pfam protein domains,

improved average F-m of candidate BGCs in average by 7% in A. niger and 5.8%

in A. nidulans. The performance of the reinforcement learning approach indicates

its ability to identify the relevance of certain protein domain profiles associated

with fungal BGCs, supporting previous findings of these as relevant features in the

context of BGC discovery (Khaldi et al., 2010; Cimermancic et al., 2014; Hannigan

et al., 2019).

The results achieved through reinforcement learning in candidate BGCs from both

fungal genomes evaluated are indicative of the method generalization power and
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robustness by handling candidate BGCs from different organisms. Additionally

a preliminary analysis, shown in Supplementary Figure 2, was performed by pro-

cessing completely annotated MIBiG BGCs from three fungal species using the

proposed reinforcement learning method. The fact that the completely anno-

tated BGCs were kept almost intact by the reinforcement learning method, with

or without functional annotation strategies is another indication of its potential

robustness on properly identifying essential BGC components for the SM biosyn-

thesis.

As discussed in Section 6.2, properly identifying BGC components can be a great

challenge, given the underlying high diversity of BGCs. Moreover, another impor-

tant challenge related to the scarcity of validated fungal BGC data are potential

biases, both of cluster boundary definition, as well as of BGC composition, since

most MIBiG fungal BGCs composing the training dataset are polyketide syn-

thases. While reported as manually curated (Kautsar et al., 2020), most MIBiG

fungal BGCs in the training dataset are partially annotated, and Inglis et al.

(2013) presented limited experimental characterization evidence for the annotated

Aspergillus BGCs considered as gold standard BGCs in this work. While the

number of completely or partially annotated fungal BGCs is scarce, the number

of experimentally characterized clusters is even smaller. This only highlights that

improving the availability of validated and experimentally characterized fungal

BGC data can be a fundamental step towards supporting the development of

robust in silico approaches for fungal BGC discovery.

Data availability The source code as well as all datasets applied in our exper-

iments are made publicly available at https://github.com/bioinfoUQAM/RL-

bgc-components. All material is available under the MIT software license. The

datasets used in this work were obtained from open access databases, which are
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Supplementary Table 1: Pfam protein domains associated with annotations of BGC components in
A. niger

Pfam Pfam Component Pfam Pfam Component
ID Description type ID Description type
PF00106 adh short backbone PF00076 RRM 1 tailoring enzyme
PF00107 ADH zinc N backbone PF00107 ADH zinc N tailoring enzyme
PF00109 ketoacyl-synt backbone PF00109 ketoacyl-synt tailoring enzyme
PF00195 Chal sti synt N backbone PF00172 Zn clus tailoring enzyme
PF00501 AMP-binding backbone PF00176 SNF2 N tailoring enzyme
PF00550 PP-binding backbone PF00271 Helicase C tailoring enzyme
PF00668 Condensation backbone PF00400 WD40 tailoring enzyme
PF00698 Acyl transf 1 backbone PF00501 AMP-binding tailoring enzyme
PF00975 Thioesterase backbone PF00550 PP-binding tailoring enzyme
PF01575 MaoC dehydratas backbone PF00590 TP methylase tailoring enzyme
PF01648 ACPS backbone PF00668 Condensation tailoring enzyme
PF02797 Chal sti synt C backbone PF00698 Acyl transf 1 tailoring enzyme
PF02801 Ketoacyl-synt C backbone PF00743 FMO-like tailoring enzyme
PF06330 TRI5 backbone PF00891 Methyltransf 2 tailoring enzyme
PF07993 NAD binding 4 backbone PF00975 Thioesterase tailoring enzyme
PF08240 ADH N backbone PF01263 Aldose epim tailoring enzyme
PF08241 Methyltransf 11 backbone PF01266 DAO tailoring enzyme
PF08242 Methyltransf 12 backbone PF01370 Epimerase tailoring enzyme
PF08354 DUF1729 backbone PF01408 GFO IDH MocA tailoring enzyme
PF08659 KR backbone PF01494 FAD binding 3 tailoring enzyme
PF11991 Trp DMAT backbone PF01565 FAD binding 4 tailoring enzyme
PF13193 AMP-binding C backbone PF01717 Meth synt 2 tailoring enzyme
PF13452 MaoC dehydrat N backbone PF02668 TauD tailoring enzyme
PF13602 ADH zinc N 2 backbone PF02801 Ketoacyl-synt C tailoring enzyme
PF13671 AAA 33 backbone PF02894 GFO IDH MocA C tailoring enzyme
PF14765 PS-DH backbone PF03171 2OG-FeII Oxy tailoring enzyme
PF16073 SAT backbone PF04082 Fungal trans tailoring enzyme
PF16197 KAsynt C assoc backbone PF04191 PEMT tailoring enzyme
PF17828 FAS N backbone PF05721 PhyH tailoring enzyme
PF17951 FAS meander backbone PF07992 Pyr redox 2 tailoring enzyme
PF18314 FAS I H backbone PF07993 NAD binding 4 tailoring enzyme
PF18325 Fas alpha ACP backbone PF08031 BBE tailoring enzyme
PF18558 HTH 51 backbone PF08240 ADH N tailoring enzyme
PF00096 zf-C2H2 transcription factor PF08241 Methyltransf 11 tailoring enzyme
PF00172 Zn clus transcription factor PF08242 Methyltransf 12 tailoring enzyme
PF04082 Fungal trans transcription factor PF08659 KR tailoring enzyme
PF06331 Tfb5 transcription factor PF13241 NAD binding 7 tailoring enzyme
PF11951 Fungal trans 2 transcription factor PF13489 Methyltransf 23 tailoring enzyme
PF12157 DUF3591 transcription factor PF13602 ADH zinc N 2 tailoring enzyme
PF00005 ABC tran transporter PF13649 Methyltransf 25 tailoring enzyme
PF00083 Sugar tr transporter PF13847 Methyltransf 31 tailoring enzyme
PF00664 ABC membrane transporter PF14226 DIOX N tailoring enzyme
PF00854 PTR2 transporter PF14765 PS-DH tailoring enzyme
PF01061 ABC2 membrane transporter PF14823 Sirohm synth C tailoring enzyme
PF01490 Aa trans transporter PF14824 Sirohm synth M tailoring enzyme
PF01544 CorA transporter PF16073 SAT tailoring enzyme
PF03619 Solute trans a transporter PF16197 KAsynt C assoc tailoring enzyme
PF06422 PDR CDR transporter PF18558 HTH 51 tailoring enzyme
PF07690 MFS 1 transporter
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Supplementary Table 2: Parameter optimization for the reinforcement learning agent

Parameters Penalty (500 episodes)
α ε γ Max Min Average

0.01 0.01 0.01 1336 34 50.81
0.01 0.01 0.1 1370 102 122.63
0.01 0.01 0.25 1370 129 148.50
0.01 0.01 0.5 1403 194 212.81
0.01 0.01 0.75 1394 207 223.89
0.01 0.01 1.0 1400 221 238.95
0.1 0.1 0.01 1477 283 336.46
0.1 0.1 0.1 1597 295 379.70
0.1 0.1 0.25 1601 328 437.76
0.1 0.1 0.5 1612 432 548.94
0.1 0.1 0.75 1732 646 734.96
0.1 0.1 1.0 1746 716 1349.31

0.25 0.25 0.01 1783 760 831.16
0.25 0.25 0.1 1864 759 843.07
0.25 0.25 0.25 1865 791 884.95
0.25 0.25 0.5 2026 904 1019.68
0.25 0.25 0.75 1977 1198 1335.59
0.25 0.25 1.0 2756 1697 2458.74
0.5 0.5 0.01 2370 1515 1661.68
0.5 0.5 0.1 2370 1587 1681.00
0.5 0.5 0.25 2411 1596 1732.92
0.5 0.5 0.5 2495 1795 1908.18
0.5 0.5 0.75 2596 2131 2249.36
0.5 0.5 1.0 3150 2570 2964.74

0.75 0.75 0.01 2827 2367 2489.42
0.75 0.75 0.1 2802 2390 2508.21
0.75 0.75 0.25 2878 2441 2553.75
0.75 0.75 0.5 2882 2558 2684.29
0.75 0.75 0.75 3018 2754 2886.99
0.75 0.75 1.0 3327 3061 3209.54
1.0 1.0 0.01 3440 3197 3317.77
1.0 1.0 0.1 3457 3199 3318.97
1.0 1.0 0.25 3446 3199 3319.27
1.0 1.0 0.5 3434 3190 3315.63
1.0 1.0 0.75 3442 3171 3318.10
1.0 1.0 1.0 3443 3179 3320.03

Supplementary Table 3: keepSkip parameter optimization for the reinforcement learning agent

Parameter Penalty (500 episodes)
keepSkip Max Min Average

0.1 1170 31 48.622
0.25 1194 31 48.718
0.5 1241 31 47.452

0.75 1239 30 48.762
1 1336 34 50.814

1.25 1343 33 51.428
1.5 1349 32 51.534
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Supplementary Figure 1: Comparison between gold-standard and candidate BGC composition for
four A. nidulans clusters. Non-BGC genes are shown in dark blue. (A) Candidate BGCs for
which the reinforcement learning agent correctly skipped most non-BGC genes compared to their
non-ribosomal peptide (left) and polyketide (right) gold standard BGCs. (B) Candidate BGCs for
which the agent kept most non-BGC genes compared to their polyketide (left) and polyketide/non-
ribosomal peptide (right) gold standard BGCs, possibly due to their ambiguous protein domains,
which approximately half are associated to BGC component roles but do not belong to neighboring
clusters.

132



Supplementary Table 4: Percentage of A. niger BGC components in gold-standard genes present
in candidate BGCs

Component TOUCAN TOUCAN-Q TOUCAN-Q-all

type (classified positive) (keep) (keep)
Backbones 92.9% 92.9% 92.9%
Tailoring enzymes 91.9% 83.9% 87.1%
Transcription factors 89.2% 78.4% 86.5%
Transporters 86.9% 78.3% 84.8%
Non-component domains 87.6% 63.0% 68.5%
No domains 78.3% 0.0% 41.2%
Component fungiSMASH fungiSMASH-Q fungiSMASH-Q-all

type (classified positive) (keep) (keep)
Backbones 70.7% 70.7% 70.7%
Tailoring enzymes 61.3% 56.4% 59.7%
Transcription factors 62.2% 51.3% 56.7%
Transporters 71.7% 65.2% 69.6%
Non-component domains 65.6% 44.8% 47.7%
No domains 67.0% 0.0% 39.2%
Component DeepBGC DeepBGC-Q DeepBGC-Q-all

type (classified positive) (keep) (keep)
Backbones 64.6% 64.6% 64.6%
Tailoring enzymes 66.1% 61.3% 62.9%
Transcription factors 43.2% 40.5% 43.2%
Transporters 45.6% 43.5% 45.6%
Non-component domains 46.1% 34.4% 35.7%
No domains 36.1% 0.0% 25.8%

Supplementary Figure 2: Comparison between completely annotated MIBiG BGCs before and after
processed by the proposed reinforcement learning method (with and without functional annotation
strategies) for fumonisin B1 from Fusarium verticillioides, mycophenolic acid from Penicillium bre-
vicompactum, and chaetoglobosin from Penicillium expansum. Post-processed BGCs were kept
almost intact by the reinforcement learning method, potentially indicating its robustness on iden-
tifying relevant components for SM biosynthesis.
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Supplementary Table 5: Protein domains associated with pseudo-annotations of BGC components
in A. nidulans

Pfam Pfam Component Pfam Pfam Component
ID Description type ID Description type
PF00106 adh short backbone PF02133 Transp cyt pur transporter
PF00107 ADH zinc N backbone PF07690 MFS 1 transporter
PF00109 ketoacyl-synt backbone PF13577 SnoaL 4 transporter
PF00326 Peptidase S9 backbone PF00067 p450 tailoring enzyme
PF00501 AMP-binding backbone PF00106 adh short tailoring enzyme
PF00550 PP-binding backbone PF00248 Aldo ket red tailoring enzyme
PF00668 Condensation backbone PF00296 Bac luciferase tailoring enzyme
PF00698 Acyl transf 1 backbone PF00550 PP-binding tailoring enzyme
PF00755 Carn acyltransf backbone PF00668 Condensation tailoring enzyme
PF00975 Thioesterase backbone PF00743 FMO-like tailoring enzyme
PF01575 MaoC dehydratas backbone PF00881 Nitroreductase tailoring enzyme
PF01583 APS kinase backbone PF00891 Methyltransf 2 tailoring enzyme
PF01648 ACPS backbone PF01370 Epimerase tailoring enzyme
PF02801 Ketoacyl-synt C backbone PF01494 FAD binding 3 tailoring enzyme
PF07859 Abhydrolase 3 backbone PF01565 FAD binding 4 tailoring enzyme
PF07993 NAD binding 4 backbone PF03171 2OG-FeII Oxy tailoring enzyme
PF08240 ADH N backbone PF04140 ICMT tailoring enzyme
PF08242 Methyltransf 12 backbone PF05063 MT-A70 tailoring enzyme
PF08354 DUF1729 backbone PF05368 NmrA tailoring enzyme
PF08659 KR backbone PF05721 PhyH tailoring enzyme
PF11991 Trp DMAT backbone PF08031 BBE tailoring enzyme
PF13193 AMP-binding C backbone PF13450 NAD binding 8 tailoring enzyme
PF13452 MaoC dehydrat N backbone PF13460 NAD binding 10 tailoring enzyme
PF13489 Methyltransf 23 backbone PF13489 Methyltransf 23 tailoring enzyme
PF13602 ADH zinc N 2 backbone PF13649 Methyltransf 25 tailoring enzyme
PF14765 PS-DH backbone PF14226 DIOX N tailoring enzyme
PF16073 SAT backbone PF00009 GTP EFTU transcription factor
PF16197 KAsynt C assoc backbone PF00172 Zn clus transcription factor
PF17951 FAS meander backbone PF00249 Myb DNA-binding transcription factor
PF18314 FAS I H backbone PF00320 GATA transcription factor
PF18325 Fas alpha ACP backbone PF03143 GTP EFTU D3 transcription factor
PF18558 HTH 51 backbone PF03144 GTP EFTU D2 transcription factor
PF00005 ABC tran transporter PF04082 Fungal trans transcription factor
PF00083 Sugar tr transporter PF08447 PAS 3 transcription factor
PF00149 Metallophos transporter PF08493 AflR transcription factor
PF00153 Mito carr transporter PF08938 HBS1 N transcription factor
PF00324 AA permease transporter PF10297 Hap4 Hap bind transcription factor
PF00664 ABC membrane transporter PF11951 Fungal trans 2 transcription factor
PF01544 CorA transporter PF13921 Myb DNA-bind 6 transcription factor
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CONCLUSION

The benefits brought by the discovery of secondary metabolites are remarkable,

and have had significant impact on human health throughout the last decades.

The demand for identifying new therapeutics increases, especially in the face of the

surge in antibiotics drug resistance seen in cases such as cancer treatments (Vasan

et al., 2019), and in treatment of pathogens such as Candida and Aspergillus

species (Berman & Krysan, 2020), as well as in Salmonella, Staphylococcus, Strep-

tococcus species (Aslam et al., 2018; Liu et al., 2020). Filamentous fungi show

phenomenal potential to unveil a wide range of secondary metabolites (Bills &

Gloer, 2016), with pharmaceutical properties or other applications that are yet to

be uncovered.

This thesis addresses the challenges related to the discovery of biosynthetic gene

clusters encoding the metabolic pathways that synthesize secondary metabolites in

fungi, and proposes a robust machine learning based approach to accurately iden-

tify candidate BGCs. The first main contribution of this thesis is the development

of benchmark datasets to support fungal BGC discovery and facilitate modeling

the problem as a classification task, presented in Chapter 4. This addresses the

data scarcity challenge presented in Section 2.1 and the first hypothesis of this

thesis presented in Section 2.2, since the proposed benchmark datasets were de-

signed to represent a variety of fungal genomic profiles relevant to BGC discovery,

relying on curated fungal BGCs and orthologous regions from a variety of fungal

families and species. Moreover the approach presented in Chapter 4 supports de-

velopment of supervised learning approaches, since fungal orthologous genes are

evaluated as relevant, discriminant non-BGC data for the discovery task.
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The second main contribution of this thesis is the development of TOUCAN, a

supervised learning framework to identify candidate BGC regions in fungi, capable

of outputting predictions even in newly sequenced and non-annotated genomes.

The TOUCAN framework, presented in Chapter 5, relies on classification models

built based on k-mers, Pfam protein domains, and GO terms extracted from the

previously proposed benchmark datasets. To obtain BGC predictions on new

fungal data, test genomes were represented as sliding windows of fixed amino acid

length. The framework allows candidate BGC predictions to be post-processed

with different strategies to improve BGC regions. This addresses the challenge

of discovering BGC regions and the second hypothesis of this thesis, presented

respectively in Sections 2.1 and 2.2, since the TOUCAN framework demonstrates

that the BGC discovery task can be modeled as a supervised learning problem,

relying on robust benchmark datasets and able to handle the genomic diversity of

fungal genomes.

The third contribution of this thesis is the development of a reinforcement learning

approach to enhance composition of BGC predictions, presented in Chapter 6.

The reinforcement learning approach is based on signature protein domains found

in the fungal BGC benchmark datasets. It employs specific strategies based on

functional annotations of BGC components, such as backbone, tailoring enzymes,

transcriptional factors and transporters, to help increase the quality and improve

the boundaries of candidate BGC predictions, potentially overcoming the common

issue of overprediction of BGC regions encountered by many state-of-the-art tools.

This addresses the challenge of defining BGC composition and boundaries, and

the third hypothesis of this thesis, presented respectively in Sections 2.1 and 2.2,

since the reinforcement learning approach manages to optimize the components of

BGC predictions obtained with previous tools, which will potentially reduce the

manual curation effort required to validate these candidates.



137

Achieving accurate BGC predictions in fungi imposes great challenges due to the

limited number of known clusters curated to date, and due to the high genomic

diversity of BGC regions, a consequence of the complex metabolic pathways that

synthesize fungal secondary metabolites. Beyond these challenges to obtain in

silico BGC predictions, experimental characterization and reproduction of these

compounds is also a complex and expensive task (Pickens et al., 2011; Rahmat &

Kang, 2020), since very often BGC genes are found to be silent or poorly expressed

under laboratory conditions (Montiel et al., 2015; Zhang et al., 2019). Automatic

approaches for BGC discovery that are able to overcome these challenges and

generate accurate BGC predictions play an important role in facilitating the next

steps in the production pipeline and reducing the cost of identifying and charac-

terising valuable compounds.

Limitations While substantial efforts were dedicated to developing the ma-

chine learning approach described in this thesis, certain questions remain open

and represent limitations associated with the methodology applied, which would

benefit from further work to address them. First, the evaluations presented in Sec-

tions 4.5, 5.4, and 6.4 were performed with a set of gold standard BGCs manually

curated from the Aspergillus niger genome, and reproducibility was evaluated

based on previously published Aspergillus nidulans BGCs. Both Aspergillus niger

and Aspergillus nidulans are model organisms for many research fields such as cell

biology, genetics, physiology, enzyme biochemistry, protein secretion, and fermen-

tation processes (Cerqueira et al., 2014; Cairns et al., 2018; Kumar, 2020). But

the evaluation on these two species represents only a small fraction of the possible

applications of the proposed methods in fungi. The lack of more fungal genomes

manually curated for BGCs can limit a broad evaluation of machine learning ap-

proaches. It is not surprising however that this data are scarce, given the cost and
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effort associated with the process of discovery and validation of these compounds.

The methodology applied to generate candidate BGC instances from test fungal

genomes was based on extracting a sliding window of fixed amino acid length.

While this methodology allows for newly sequenced and non-annotated genomes

to be tested for candidate BGCs, it can be limiting for certain organisms or

even for certain BGC types, cases in which sliding windows of variable length

might be more suitable. The fixed length window may also contribute to under or

overprediction of BGC regions, since previously curated BGCs are known to differ

in size. It could be interesting to study applying variable lengths when generating

test candidate BGCs, and evaluating its effect on coverage of true positive BGC

regions, as well as its suitability to different fungal genomes.

The work described in Chapter 5 was based on standard supervised learning algo-

rithms, and one might wonder whether the application of deep learning methods

would be more suitable for the task. Preliminary evaluations demonstrated how-

ever a quick overfitting behavior generally around approximately 10 epochs at the

same time showed weak generalization capability on test data. This behavior was

observed when using different models − such as LSTM, GRU, or fully connected

networks −, and irrespective of suitable hyperparameters. An additional analysis

of the performance of deep learning approaches in this task was provided with the

state-of-the-art performance comparisons, when models built with a deep learning

based tool previously developed for bacteria, but with hyperparameters specifi-

cally tuned to fungal data (thanks to the authors) was generally outperformed by

the methods presented in this thesis as well as other state-of-the-art approaches.

The data availability is likely the most important limitation to apply deep learn-

ing approaches to tackle fungal BGC discovery. However, when increased curated

data become publicly available, it will be worthwhile to revisit and re-evaluate

the application of deep learning methods to identify fungal BGCs.
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The cluster metrics applied to evaluate performance on Sections 4.5, 5.4 and 6.4

consider the presence of a minimum of one gold-standard gene in a candidate

BGC for it to be accounted as a true positive prediction. This criterion focuses

on the retrieval capability of the presented models, favouring the recall of clus-

ters and minimizing the number of missing true positive regions. However, this

metric might favour the overestimation of cluster boundaries. The gene metrics

counterbalance the cluster metrics perspective, because it compares the entirety

of genes within a candidate BGC versus its corresponding gold standard cluster.

An interesting analysis could be drawn from creating a new cluster metric crite-

rion, identifying an evaluation threshold with the minimum accepted proportion

of gold standard BGC genes within a candidate BGC.

Future directions There are many opportunities for advancement in the

search for novel secondary metabolites through the application of automatic ap-

proaches. In general, the usage of machine learning methods to identify BGCs

is in its infancy, especially when it comes to fungal data, the TOUCAN frame-

work proposed in this thesis being the first supervised learning approach to be

developed for discovering BGCs in these organisms. As well, the reinforcement

learning approach proposed in this thesis is also the first implementation of such

methods to tackle this task. The designs of both the TOUCAN framework and

the reinforcement learning approach allow for continuous experimentation during

their application in new test data, which can help to improve the discriminative

power and prediction output of the proposed methods, and consequently bene-

fit the manual curation and experimental characterization steps following BGC

prediction.

Filamentous fungi have a strong potential to produce novel compounds especially

the polyketides and nonribosomal peptides within the ascomycetes, terpenoids
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within basidiomycetes, and terpenoids and polyketides within agaricomycetes (Bills

& Gloer, 2016). Therefore, a precious opportunity awaits the application of BGC

discovery approaches in more fungal genomes to identify relevant candidate re-

gions, following their validation, characterization and ultimately the compound

reproduction.

The BGC discovery approach presented in this thesis evaluated proposed datasets,

a tool to identify candidate BGC regions, and a tool to improve predicted can-

didate BGCs based on signature protein domains and BGC components. This

pipeline could also benefit from a tool to predict BGC product type and activity,

focusing on fungi. Most previous approaches to analyse BGC activity and prod-

uct, as presented in Section 3.2, were developed for bacteria. Predicting BGC

product and activity will provide further context to support the following steps

of curation and experimental characterization of candidate BGCs.

The methods presented in this thesis provide a robust pipeline to identify candi-

date BGC regions in fungal genomes that potentially synthesize secondary metabo-

lite compounds. While many challenges still persist in generating accurate pre-

dictions, overcoming re-discovery of existing compounds and facilitating their re-

production, the approach proposed here showed the benefits of exploring machine

learning methods to tackle fungal BGC discovery.
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Abstract—Fungal Biosynthetic Gene Clusters (BGCs) of sec-
ondary metabolites are clusters of genes capable of producing
natural products, compounds that play an important role in the
production of a wide variety of bioactive compounds, including
antibiotics and pharmaceuticals. Identifying BGCs can lead to
the discovery of novel natural products to benefit human health.
Previous work has been focused on developing automatic tools
to support BGC discovery in plants, fungi, and bacteria. Data-
driven methods, as well as probabilistic and supervised learning
methods have been explored in identifying BGCs. Most methods
applied to identify fungal BGCs were data-driven and presented
limited scope. Supervised learning methods have been shown
to perform well at identifying BGCs in bacteria, and could
be well suited to perform the same task in fungi. But labeled
data instances are needed to perform supervised learning.Openly
accessible BGC databases contain only a very small portion
of previously curated fungal BGCs. Making new fungal BGC
datasets available could motivate the development of supervised
learning methods for fungal BGCs and potentially improve
prediction performance compared to data-driven methods. In this
work we propose new publicly available fungal BGC datasets
to support the BGC discovery task using supervised learning.
These datasets are prepared to perform binary classification and
predict candidate BGC regions in fungal genomes. In addition we
analyse the performance of a well supported supervised learning
tool developed to predict BGCs.

Index Terms—biosynthetic gene clusters, secondary metabo-
lites, supervised learning, BGC, fungi, dataset

I. INTRODUCTION

Natural products (NPs) are specialized bioactive compounds
primarily produced by plants, fungi and bacteria. NPs are
a vital source for drugs: from anti-cancer, anti-virus, and
cholesterol-lowering medications to antibiotics, and immuno-
suppressants [1]–[3]. Unlike those in plants, genes involved in
the biosynthesis of many NPs in bacteria and fungi are co-
localized in the genome of organisms and usually organized
as clusters of genes [4]. Gene clusters capable of producing
NPs are known as Biosynthetic Gene Clusters (BGC).

The task of identifying new BGCs could potentially lead to
the discovery of novel NPs to benefit human health. However
this task involves complex and costly processes, as well as the
analysis of large amounts of biological data. Development of

automatic tools that can support the identification of BGCs
is therefore highly relevant. Various approaches have been
used to develop such tools, such as data-driven methods,
probabilistic methods, and supervised learning methods. In
supervised learning the BGC discovery task can be represented
as binary classification task. The goal in a binary classification
task is to classify data instances as belonging to one out of
two different categories. A binary classification BGC dataset
would therefore be composed of positive and negative BGC
instances.

Supervised learning has been previously used to predicting
bacterial BGCs [5], [6] and shown to perform well. Supervised
learning methods however are developed primarily based on
annotated datasets, for which all instances are labeled as
belonging to a specific class. Unlike for bacteria, the number
of known fungal BGC data previously validated by curators is
rather limited. The Minimum Information about a Biosynthetic
Gene cluster (MIBiG) [7]1 repository is one of the largest
freely available BGC databases. As an example of the disparity
between known available BGC from bacteria versus fungi
that has been annotated by curators,MIBiG holds over 1,196
bacteria BGCs, while only 206 are fungal BGCs2.

Generating fungal BGC datasets for supervised learning
approaches imposes a few challenges. For instance, negative
samples are needed for binary classification, and they are not
directly provided by BGC databases just as annotaded BGC
data. To be able to support a robust classification approach,
fungal BGC datasets used as input should include a variety
of organisms and BGC types to properly represent fungal
genomic profiles.

The availability of fungal BGC datasets could leverage the
development of new supervised learning approaches to tackle
BGC discovery in fungi. This work presents new datasets pre-
pared to tackle fungal BGC discovery as a binary classification
task. These datasets are constructed in such way that they
include most variety of BGC types from different organisms,
attempting to represent fungal genomic profiles to better suit
the fungal BGC classification task. Finally we also analyse

1http://mibig.secondarymetabolites.org/
2As of July 2019.978-1-7281-1867-3/19/$31.00 ©2019 IEEE
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the usage of fungal BGC datasets with one of the state-of-the-
art supervised learning methods developed for BGC discovery,
DeepBGC [6].

II. PREVIOUS WORK

In this section we present previous work on the availability
of BGC data previously predicted or annotated by curatorsthat
can support BGC discovery, and previous work conducted
towards developing automatic approaches to identify fungal
BGCs. BGC databases and some of their characteristics are
discussed in Section II-A. Previous work on predicting BGCs
in fungi is presented in Section II-B.

A. BGC Databases

Only a small number of open access BGC databases is
currently available to support research on automatic tools to
identify BGCs. The majority of entries in these databases
corresponds to bacteria data, while only a small portion are
fungal BGCs.3 MIBiG is a BGC repository in which curated
entries are submitted by curators, and added to the database in
a format compliant with the Minimum Information about any
Sequence (MIxS) framework data standard. It holds 206 fungi
BGCs and 1,196 for bacteria. Clustermine360 [8] contains mi-
crobial polyketide synthases (PKS) and non-ribosomal peptide
synthetases (NRPS) biosynthesis. It holds a total of 29 fungal
BGCs, while over 900 are from bacteria. Clustermine360
entries are curated and submitted by curators, enriched with
information from the National Center for Biotechnology Infor-
mation (NCBI)4, and analysed with the antiSMASH [9] tool.
The antiSMASH database [10] has 24,773 microbial BGCs
predicted based on its homonymous tool. Unlike its bacteria
version, the fungal version of antiSMASH does not provide a
database of fungal BGCs to the best of our knowledge.

The Integrated Microbial Genomes: Atlas of Biosynthetic
Gene Clusters [11] (IMG/ABC) database contains BGCs pre-
dicted using the ClusterFinder algorithm [12]. IMG/ABC holds
127 fungal BGCs and 1,025 from bacteria.

These databases are not connected. Since it is likely that
there are overlaps among the different databases, the number
of unique fungal BGCs could be even smaller. The small
proportion of fungal BGCs across databases is an example
of the challenges in developing automatic tools to tackle BGC
discovery in fungi. This work proposes new publicly available
datasets to be an input of supervised learning tools to predict
fungal BGCs, based on MIBiG and orthologous genes. The
details on our datasets and their analysis are discussed in
Section III.

B. BGC discovery in Fungi

Significant effort has been put towards developing ap-
proaches to discover BGCs [2], [3]. The majority of ap-
proaches focused on processing bacterial data, while some of
them are specially focused on fungi. Identifying BGCs remains

3Number of entries for databases are reported as of July 2019.
4https://www.ncbi.nlm.nih.gov/

a challenging task specially in fungal genomes, due to the
diversity of clusters [13].

Previous work on fungal BGC discovery made use mostly
of data-driven methods, which are heavily based on the
analysis of the input or output data and require fine parameter-
tuning. These methods required as input the genome sequence
combined with transcription data [14], [15], or gene functional
annotations [16], as well as both nucleotide and amino acid
sequences [17]. [14] and [15] focused on analysing similar
gene expression levels, while [15] used virtual clusters. [14]
looked at motif co-occurrence in promoters around anchor
genes, and [17] analysed homologous genes through a com-
parative genomics approach.

Such data-driven methods are less dependent on curated-
BGC data, which are time consuming to obtain, but they all
present limitations. [16] requires gene functional annotations,
which may not be available, and [14] relies heavily on manual
curation of output to achieve the expected results. A very
limited BGC prediction scope is considered in [18] and [17].
Both approaches are developed based on biological sequences
from a single species, and they also require fine parameter-
tuning. Such limitations of data-driven methods can restrict
their ability to generalize to new data, and as a consequence
compromise the discovery of novel BGCs.

Likely due to the larger availability of curatedBGC
data, probabilistic [9], [12], [19] and machine learning ap-
proaches [5], [6] have been more explored in bacteria com-
pared to fungi, and shown to perform well. Probabilistic and
machine learning approaches could be beneficial for BGC dis-
covery, since by nature they are more capable of generalizing
given new data, and will likely perform better at identifying
data patterns and discovering novel BGCs, when compared
to data-driven methods. In this study we also analyse the
performance of a supervised learning approach developed to
tackle BGC discovery using the fungal BGC datasets proposed
by our work. The details on our experimental setup are further
discussed in Section III.

III. METHODOLOGY

Some of the challenges in generating fungal BGC datasets
for binary classification are the need of negative instances,
which are not directly provided in BGC databases; and ac-
counting for a variety of organisms, BGC types, and also
fungal genomic profiles. The availability of new fungal BGC
datasets however could potentially motivate the development
of supervised learning approaches to tackle fungal BGC dis-
covery.

In this work we propose new publicly available fungal BGC
datasets to support supervised learning approaches tackling
BGC discovery as a binary classification task. We present here
the methodology adopted to prepare fungal BGC datasets and
their analysis using a supervised learning method, with the
goal of analysing the method performance in fungal BGC data.

Details on our proposed fungal BGC datasets are presented
in Section III-A. Section III-B presents the test datasets with
which we analysed the performance of classification models

Authorized licensed use limited to: Universite du Quebec a Montreal . Downloaded on June 29,2021 at 19:30:17 UTC from IEEE Xplore.  Restrictions apply. 
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built on fungal BGC datasets. In Section III-C we provide
details on the parameters considered in our analysis based
on a supervised learning method, as well as the classification
models considered.

A. Proposed Datasets
Supervised learning was shown to perform well at BGC

discovery in previous work that focused on handling bacteria
data [5], [6]. Given that annotated data are needed to perform
a supervised learning approach, we propose here fungal BGC
datasets to support the development of this approach for fungi.

As mentioned in Section I, positive and negative instances
are needed to perform fungal BGC discovery as a binary
classification task using supervised learning. To create our
fungal BGC datasets, we extracted and filtered positive in-
stances from the MIBiG [7] repository, previously presented
in Section II-A. MIBiG has the highest number of unique
fungal BGCs among the BGC databases previously presented.
Additionally, MIBiG BGCs were annotated and submitted by
the research community, unlike BGCs in other databases that
were automatically predicted.

From all MIBiG instances, we have selected only the fungal
BGC subset, excluding BGCs belonging to Aspergillus niger
(A. niger) to avoid overlaps during the test phase, resulting in
a total of 200 positive instances.

We generated synthetic negative instances collecting and
integrating orthologous genes from OrthoDB5 [20]. Orthologs
are homologous genes descendants from a single gene of a last
common ancestor. The OrthoDB database contains protein-
coding genes that represent the last common ancestors given
a specific phylogeny radiation of a species, and are therefore
known to retain ancestral function [20]. Orthologs represent
regions conserved across species. They can correspond to a
relevant negative instances for BGC discovery. this is due
to the fact that fungal BGCs are known to have opposite
characteristics and show large genomic diversity even in
otherwise closely-related or same genus species [13]. Genes
belonging to fungal BGCs have been previously referred to as
“species-specific” [21], unlike orthologs.

Orthologous genes have been previously used to discover
BGCs in fungi. In [17], the authors presented an alignment-
based approach focused on identifying syntenic block regions,
which are more likely to contain orthologs and less likely to
contain BGCs. Non-syntenic blocks were then used to search
for candidate BGCs and to better define candidate cluster
boundaries. The approach in [17] was explored in small set of
10 filamentous fungi. The results showed good performance,
predicting correctly 21 out of 24 fungal BGCs.

In this study we selected the fungal OrthoDB subset to
construct the synthetic negative BGC instances. The OrthoDB
fungal subset contains a total of 5,083,652 non-redundant
orthologs. To avoid potential overlaps, we performed a BLAST
analysis between the fungal subsets of both OrthoDB and
MIBiG. We discarded 11,000 ortholog matches found using
the BLAST parameter evalue (expected value) set to 1e−60.

5http://orthodb.org/

To generate synthetic negative instances, we then concate-
nated the amino acid sequence of fungal orthologs using a
fixed length of 7,000 amino acids to create synthetic gene clus-
ters. The 7,000 amino acid length is chosen since itcorresponds
to the average length of fungal BGC amino acid sequences in
MIBiG. Figure 1 shows an example of positive instances in our
datasets and negative instances being generated from OrthoDB
orthologs. After processing OrthoDB fungal orthologs a total
of 693,195 synthetic negative clusters were generated.

Fig. 1. Example of positive instances and the process to generate synthetic
negative instances from orthologs

The MIBiG fungal subset and the pool of OrthoDB synthetic
negative clusters were then considered to generate fungal BGC
datasets with different distributions of positive and negative
instances. Among the MIBiG fungal subset the annotated BGC
regions corresponded in average to ≈1% of the total genome
length of an organism, which provides a hint on the imbalance
in class distribution that can be seen in a real test case scenario.
Due to the natural imbalance of BGC regions versus non-
BGC regions in a genome, we are interested in analysing
the performance of a supervised learning approach based on
datasets with various distributions of positive and negative
instances. To analyse this aspect, we generated fungal BGC
datasets with varying distributions by increasing the number
of synthetic negative instances randomly selected from the

Authorized licensed use limited to: Universite du Quebec a Montreal . Downloaded on June 29,2021 at 19:30:17 UTC from IEEE Xplore.  Restrictions apply. 
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OrthoDB synthetic negative clusters pool. Table I shows the
positive vs. negative distributions in each dataset.

TABLE I
DISTRIBUTION OF INSTANCES ACROSS FUNGAL BGC DATASETS

Train Validation
Dataset Pos Neg Pos Neg

50%-50% 160 160 40 40
40%-60% 160 240 40 60
30%-70% 160 373 40 93
20%-80% 160 640 40 160
10%-90% 160 1,440 40 360
05%-95% 160 3,040 40 760
01%-99% 160 15,840 40 3,960

To generate classification models based on a supervised
learning method, we extracted Pfam [22]6 IDs from the
positive and negative instances. All datasets were converted
into pfamtsv format [6], which is required as input in the
supervised learning approach applied in this work. For each
dataset, 80% were randomly selected for the training phase,
while 20% were held out for the validation phase, as shown
in Table I.

B. Test Datasets
To analyse the performance of classification models built

based on fungal BGC datasets, we selected a fungal genome
from the Aspergillus genus to represent a real test case
scenario. Aspergillus is the most frequent genus among fungal
species in MIBiG, together with Penicillium. For this eval-
uation we focused specifically on the A. niger species. A.
niger is a genome of interest due to its biological diversity
and major relevance to industrial processes [23]. In [24] the
authors present manual annotation of BGCs in Aspergilli,
among which a total of 79 BGCs are found in A. niger.

To generate candidate clusters for the test phase, we col-
lected a manually curated A. niger genome sequence made
publicly available through the Genozymes project7. We gen-
erated test candidate clusters by considering a sliding window
of 30,000 nucleotides in the A. niger genome. The 30,000
sliding window length is defined based on the average length
of the nucleotide sequence of MIBiG fungal BGCs. A similar
approach was previously applied in fungal BGC discovery to
generate virtual clusters [15].

The 30,000 sliding window was shifted along the genome
using either a 50% or a 30% overlap. The overlaps in a sliding
window mean that each test candidate cluster will contain the
last 15,000 nucleotides (if a 50% overlap) or the last 9,000
nucleotides (if a 30% overlap) of the immediate previous
candidate cluster. With the strategy of generating candidate
clusters using overlaps, we are more likely to cover regions
in between two or more genes. Figure 2 shows an example of
candidate clusters being generated from A. niger genes using
overlaps. The test datasets based on a 50% overlap contains a
total of 1,184 candidate clusters, while the test datasets based
on a 30% overlap contains a total of 846 candidate clusters.

6http://pfam.xfam.org
7https://gb.fungalgenomics.ca/portal/

Fig. 2. Example of A. niger candidate clusters generated for test phase

C. Classification Models

In this section we describe the methods applied to analyse
the performance of a supervised learning approach using the
fungal BGC datasets presented in Section III-A and the test
data presented in Section III-B. To generate classification
models with our fungal BGC datases, we utilized the Deep-
BGC system [6]. DeepBGC executable, source code and other
resources are openly available8. Among these resources, there
are pre-built BGC classification models and word2vec-based
embeddings built using Pfam IDs, referred to as pfam2vec
embeddings. In [6] the authors explained that pfam2vec em-
beddings were trained based in a skipgram architecture with
100 dimensions and over 15,686 unique Pfam IDs. DeepBGC
classification is based on a Bidirectional Long Short Term
Memory (BiLSTM) neural network, for which the input are
pfam2vec embeddings. In [6] DeepBGC hyperparameters are
described as a BiLSTM layer size of 128, dropout of 0.2,
sigmoid activation, batch size of 64, 256 timestamps over 328
epochs, using Adam optimizer at a learning rate of 1e-4, with
weighted binary cross-entropy loss. To generate classification
models using fungal BGC datasets on the DeepBGC system
we adopted the same hyperparameters described in [6], as
well as the pfam2vec embeddings as input for training. For
each fungal BGC dataset, we have generated a different

8https://github.com/Merck/deepbgc
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classification model using DeepBGC. Fungal BGC models are
named by their positive instance percentage:

• pos50 (50%-50%)
• pos40 (40%-60%)
• pos30 (30%-70%)
• pos20 (20%-80%)
• pos10 (10%-90%)
• pos05 (05%-95%)
• pos01 (01%-99%)
To complement our analysis, we also analysed the perfor-

mance of our test datasets using the four bacteria-based models
made available at the DeepBGC repository:

• deepbgc
• cf_o (clusterfinder original)
• cf_r (clusterfinder retrained)
• cf_g (clusterfinder geneborder)
According to the models description at the DeepBGC re-

leases page9 and [6], the deepbgc model is based on the BiL-
STM DeepBGC architecture and trained on a MIBiG dataset.
The other models are built based on ClusterFinder [12], which
is a Hidden Markov Model (HMM). cf_o is a ClusterFinder
HMM using original parameters; cf_r is also a ClusterFinder
HMM but trained on a MIBiG dataset; and cf_g is a
ClusterFinder HMM that switches stages only on gene borders,
and trained on a MIBiG dataset.

IV. RESULTS AND DISCUSSION

We present here statistics and further details on the publicly
available fungal BGC datasets proposed in this study. We
also present results of validation and test phase obtained with
classification models based on fungal BGC datasets and built
using DeepBGC. Section IV-A has further information and
statistics on the fungal BGC datasets proposed in our work.
In Section IV-B we present results obtained at validation of
training DeepBGC using the models pos50, pos40, pos30,
pos20, pos10, pos05, and pos01. In Section IV-C we
present results obtained at test phase. For the sake of com-
parison, we also report the results on test data using BGC
classification models provided by DeepBGC and built based
on bacteria data, as listed in Section III-C. All performance
metrics are reported on the positive class only.

A. Fungal BGC datasets

The fungal BGC datasets proposed in this work are com-
posed of positive and negative instances, as mentioned in Sec-
tion III-A. These datasets are suitable for performing binary
classification to predict fungal BGCs, and are made publicly
available at https://github.com/bioinfoUQAM/fungalbgcdata.
The availability of such resource can potentially motivate the
development of supervised learning approaches to tackle BGC
discovery in fungi.

Positive instances in our datasets represent fungal BGCs
from 52 different fungal genera. The variety of fungal genus

9https://github.com/Merck/deepbgc/releases

is relevant to provide a large representation of BGC occur-
rence through different organisms. Additionally, the positive
instances contain samples of over 10 different BGC types.
Table II shows the different BGC types and a summary of
fungal genera in our datasets. As the table shows, the most
common BGC type is Polyketide synthase (PKS), followed by
Non-ribosomal peptide synthase (NRP) and Terpene synthase
(TC). The presence of different fungal genus and BGC types
in the datasets are important for representing a wide variety of
BGC occurrences, and therefore contribute to building more
robust supervised learning approaches.

BGC types #

Alkaloid 3
Alkaloid/NRP 3
Alkaloid/TC 1
Alkaloid/NRP/TC 1
NRP 41
NRP/PKS 19
PKS 90
PKS/TC 5
RiPP 3
Saccharide 1
TC 23
Other 10

Total 200

BGC fungi genus # BGC fungi genus #

Acremonium 1 Metacordyceps 1
Alternaria 5 Metarhizium 1
Armillaria 1 Monascus 3
Aspergillus 9 Mycosphaerella 1
Aureobasidium 1 Myrothecium 1
Beauveria 1 Neosartorya 1
Bipolaris 3 Neotyphodium 2
Botrytis 1 Nodulisporium 1
Byssochlamys 1 Paecilomyces 1
Cercospora 1 Parastagonospora 1
Chaetomium 2 Penicillium 13
Cladonia 2 Pestalotiopsis 1
Claviceps 2 Phoma 2
Diaporthe 1 Phomopsis 1
Elsinoe 1 Purpureocillium 1
Epichloe 2 Sarocladium 1
Fusarium 8 Shiraia 1
Glarea 1 Sordaria 1
Glycomyces 1 Sphaceloma 1
Hypholoma 1 Stachybotrys 1
Hypomyces 1 Starmerella 1
Isaria 1 Talaromyces 3
Lasiodiplodia 1 Tapinella 1
Lecanicillium 1 Tolypocladium 2
Leptosphaeria 1 Trichophyton 1
Malbranchea 1 Ustilago 1

TABLE II
FUNGAL GENERA AND BGC TYPES IN POSITIVE INSTANCES OF DATASETS

Negative instances in our datasets represent synthetic gene
clusters composed of fungal orthologs. By using fungal or-
thologs as source for the negative instances, we can generate
synthetic gene clusters that depict the genomic profile of
fungi. A total of 549 fungal species are present in orthologs
composing our negative instances. The main fungal groups
to which the orthologs belong to are shown in Table III,
according to their taxonomy level. In this table we show the
number of species clustered under different taxonomy levels
(genus, family, order, or class), and the corresponding total of
non-redundant orthologous genes for each group.

The 52 fungal genera in positive instances together with the
549 fungal species in negative instance orthologs contribute to
represent the genomic diversity in fungi, and therefore support
the development of more robust classification models.

B. Validation performance

Table IV shows validation metrics obtained with fungal
BGC datasets. During training phase, all models using fungal
BGC datasets had early stopping before completing the total
328 epochs. This could be a sign that the models were
overfitting, a possible consequence due to the size of the
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Group Taxonomy # Species # Genes
level

Aspergillus Genus 30 309,629
Cryptococcus Genus 7 44,028
Exophiala Genus 7 67,291
Metarhizium Genus 5 45,563
Penicilium Genus 21 208,580
Phytophthora Genus 6 89,378
Hypocreaceae Family 7 66,815
Pleosporaceae Family 9 94, 817
Polyporaceae Family 6 61,584
Saprolegniaceae Family 6 81,114
Trichocomaceae Family 6 52,941
Agaricales Order 25 293,149
Eurotiales Order 60 608,401
Helotiales Order 14 162,251
Hypocreales Order 50 512,282
Mucorales Order 15 164,081
Polyporales Order 17 169,368
Sordariales Order 8 66,549
Agaricomycetes Class 77 912,187
Eurotiomycetes Class 103 1,002,099
Microbotryomycetes Class 9 59,326
Pucciniomycetes Class 6 64,018
Saccharomycetes Class 76 390,808
Tremellomycetes Class 18 121,702
Ustilaginomycetes Class 9 55,465

TABLE III
MAIN FUNGAL GROUPS PRESENT IN NEGATIVE INSTANCES OF DATASETS

datasets and the imbalanced distribution between the two
classes.

The best performing model pos50 is the one with the
most balanced distribution of positive and negative instances.
It yield Precision (P) of 0.598, Recall (R) of 0.995, and F-
measure (F) of 0.747. Models pos10, pos05, and pos01,
the ones with the most imbalanced distributions, had the lowest
validation loss but also the lowest P, R and F.

TABLE IV
VALIDATION PERFORMANCE

USING MODELS BUILT ON PROPOSED DATASETS

Model Epochs Loss P R F
pos50 91 0.683 0.598 0.995 0.747
pos40 52 0.719 0.407 1 0.578
pos30 108 0.667 0.536 0.743 0.623
pos20 97 0.758 0.230 0.991 0.373
pos10 70 0.389 0 0 0
pos05 73 0.240 0 0 0
pos01 57 0.062 0 0 0

C. Test performance

The test phase show how the models would perform in a real
case scenario, when a complete genome is being processed
to predict candidate BGC regions. The dataset inputted in
the test phase is composed of candidate clusters from the A.
niger genome sequence, as described in Section III-B. The
performance on the test data is presented in two ways: gene
metrics and cluster metrics. Gene metrics show P, R, and F for
genes that belong to knownBGCs. Cluster metrics show P, R,
and F for knownBGCs where a minimum of one cluster gene
must be correctly classified for the cluster to be predicted as
positive. Tables V and VI show the results on A. niger test

datasets, with overlaps of respectively 50% and 30%. These
results were obtained using classification models built with the
fungal BGC datasets described in Section III-A.

TABLE V
PERFORMANCE FOR A. niger TEST DATA USING MODELS

BUILT ON FUNGAL BGC DATASETS USING 50% OVERLAP

Gene metrics Cluster metrics
Model P R F P R F
pos50 0.049 1.0 0.094 0.072 0.988 0.134
pos40 0.048 0.962 0.091 0.073 0.988 0.136
pos30 0.044 0.867 0.083 0.073 0.977 0.136
pos20 0.039 0.694 0.074 0.079 0.93 0.146
pos10 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0

TABLE VI
PERFORMANCE FOR A. niger TEST DATA USING MODELS

BUILT ON FUNGAL BGC DATASETS USING 30% OVERLAP

Gene metrics Cluster metrics
Model P R F P R F
pos50 0.05 1.0 0.096 0.1 0.988 0.182
pos40 0.048 0.951 0.092 0.099 0.953 0.179
pos30 0.045 0.865 0.085 0.1 0.942 0.18
pos20 0.039 0.669 0.073 0.105 0.884 0.188
pos10 0 0 0 0 0 0
pos05 0 0 0 0 0 0
pos01 0 0 0 0 0 0

Results in the test phase show an important decrease in per-
formance compared to the validation phase metrics. However
the behaviors observed at the validation step also appear in
test. Similarly to the validation phase, the more imbalanced
models pos10, pos05, pos01 did not predict any can-
didate cluster as positive. This behavior happened with both
test datasets of 50% or 30% overlap, and it could indicate that
the model is sensitive to an imbalanced distribution of classes.

Also similarly to the validation phase the more balanced
models pos50, pos40, pos30, pos20 tended to pre-
dict most of candidate clusters as positives, leading to high
recall but very low precision. Table VI shows slightly better
performance for P, R, and F compared to table V. This
behavior could indicate that using a 30% overlap in the test
data is better suited for the task.

Following the results obtained with models based on fungal
BGC datasets, we would like to also analyse the performance
of DeepBGC models built using bacteria data on A. niger test
datasets. Tables VII and VIII show the results obtained on
A. niger data with respectively 50% and 30% overlap using
DeepBGC bacteria models.

Among all DeepBGC bacteria models, deepbgc
performed best at both gene and cluster metrics, either
using 30% or 50% overlap, with 0.273 F. The model cf_o
showed the lowest performance, with 0.138 F. Models cf_r
and cf_g showed in both cases better performance than
cf_o. The results using DeepBGC trained models yield a
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TABLE VII
PERFORMANCE FOR A. niger TEST DATA WITH 50% OVERLAP

USING MODELS PROVIDED BY DEEPBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc 0.074 0.972 0.138 0.114 0.988 0.205
cf_o 0.05 1.0 0.096 0.074 0.988 0.138
cf_r 0.056 0.997 0.106 0.083 0.988 0.153
cf_g 0.06 0.989 0.113 0.09 0.988 0.166

TABLE VIII
PERFORMANCE FOR A. niger TEST DATA WITH 30% OVERLAP

USING MODELS PROVIDED BY DEEPBGC

Gene metrics Cluster metrics
Model P R F P R F
deepbgc 0.074 0.954 0.138 0.159 0.988 0.273
cf_o 0.051 0.984 0.096 0.103 0.988 0.187
cf_r 0.058 0.994 0.109 0.118 0.988 0.211
cf_g 0.061 0.992 0.116 0.126 0.988 0.223

similar tendency than that of the fungal BGC models: high
recall but very low precision.

A loss in performance between validation and test results
is evident, either when using fungal BGC based models or
DeepBGC bacteria models.

As mentioned in Section III-A, fungal BGCs seem to
show larger genomic diversity, which possibly makes it more
complex to perform BGC discovery in fungi if compared
to bacteria. Therefore, performance is expected to be some-
how affected by performing fungal BGC classification using
bacteria-based models.

The dataset size at training time could also have had
an impact on training pos50, pos40, pos30, pos20,
pos10, pos05 models, given DeepBGC classification ap-
proach. As the authors in [25] explained, the suitability of
deep learning approaches varies according to the problem at
hand; and in cases when available data is limited conventional
approaches could be relevant and more advantageous. As
discussed in Section III-A the number of known fungal BGC
data previously validated by curators israther limited, which
as a consequence will limit the size of fungal BGC datasets. It
is possible and worth investigating that different classification
methods, apart from a BiLSTM neural network as adopted
in DeepBGC, will be better suited for handling fungal BGC
discovery.

V. CONCLUSION

NPs are bioactive compounds that play a vital role in the
production of a large variety of drugs, and the discovery
of novel NPs can potentially benefit human health. Great
effort has been put on identifying BGCs that are capable of
producing NPs in plants, bacteria and fungi. Identifying BGCs
is a challenging task, specially in fungi given the clusters
genomic diversity.

Previous work on identifying BGCs in bacteria have resulted
in a large variety of approaches and annotated data available.

In fungi most previous approaches are based on data-driven
methods and present a limited scope, such as covering only
certain types of BGCs, or have been developed based on
a single species data. The availability of new fungal BGC
datasets could potentially motivate the development of new
methods to identify BGCs in fungi. One example is supervised
learning, a method that have shown to perform well in bacteria
data.

In this work, we present new fungal BGC datasets
to leverage supervised learning in the fungal BGC dis-
covery task. These datasets are made publicly available
at https://github.com/bioinfoUQAM/fungalbgcdata. The avail-
ability of such fungal BGC datasets can potentially motivate
the development of binary classification approaches to tackle
the BGC discovery task. We have shown results obtained
on these fungal BGC datasets using a supervised learning
approach developed for bacteria BGCs. We also analysed the
performance of bacteria-based classification models applied
on a fungal genome. The test performance on both fungal-
based generated models or bacteria-based models was similar
given precision (low) and recall (high) metrics using the same
supervised learning method. This points to an opportunity to
explore different supervised learning approaches than the one
adopted by the DeepBGC system, that might be more suitable
to handle fungal BGC datasets.
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ABSTRACT

Fungal secondary metabolites (SMs) are an im-
portant source of numerous bioactive compounds
largely applied in the pharmaceutical industry, as in
the production of antibiotics and anticancer medica-
tions. The discovery of novel fungal SMs can poten-
tially benefit human health. Identifying biosynthetic
gene clusters (BGCs) involved in the biosynthesis of
SMs can be a costly and complex task, especially
due to the genomic diversity of fungal BGCs. Previ-
ous studies on fungal BGC discovery present lim-
ited scope and can restrict the discovery of new
BGCs. In this work, we introduce TOUCAN, a su-
pervised learning framework for fungal BGC discov-
ery. Unlike previous methods, TOUCAN is capable
of predicting BGCs on amino acid sequences, facil-
itating its use on newly sequenced and not yet cu-
rated data. It relies on three main pillars: rigorous se-
lection of datasets by BGC experts; combination of
functional, evolutionary and compositional features
coupled with outperforming classifiers; and robust
post-processing methods. TOUCAN best-performing
model yields 0.982 F-measure on BGC regions in the
Aspergillus niger genome. Overall results show that
TOUCAN outperforms previous approaches. TOU-
CAN focuses on fungal BGCs but can be easily
adapted to expand its scope to process other species
or include new features.

INTRODUCTION

Secondarymetabolites (SMs) are specialized bioactive com-
pounds primarily produced by plants, fungi and bacteria.
They represent a vital source for drug discovery: from an-
ticancer, antiviral and cholesterol-lowering medications to
antibiotics and immunosuppressants (1). Genes involved in

the biosynthesis of many SMs in fungi are co-localized in
the genome, organized as clusters of genes (2), and known
as biosynthetic gene clusters (BGCs). Typically, BGCs are
minimally composed of one or more synthase or synthetase
genes encoding backbone enzymes, which produce the core
structure of the compound, and genes that encode tailor-
ing enzymes, which modify the core compound to gener-
ate variants (3). Backbone enzymes determine the class of
SM produced by a BGC. BGCs may also contain other
genes such as those encoding cluster-specific transcription
factors, mitigating toxic properties, transporters, tailoring
enzymes and genes with hypothetical functions (4). Iden-
tifying new fungal BGCs can potentially lead to the dis-
covery of new compounds that can serve as vital source for
drug discovery (5,6). Despite the availability of a large vol-
ume of fungal genome sequence data, BGC discovery re-
mains a challenging task (1) due to the diversity of fun-
gal BGCs. Fungal BGCs have been shown to present no-
ticeable differences in synteny and non-conservation of se-
quences even in related species or different strains of the
same species (3), where clustered genes of the same SM
can appear in different scaffolds among evolutionarily close
species.

Several studies have presented approaches to discover
BGCs (1). Most approaches to identify fungal BGCs rely
on probabilistic or data-driven methods, requiring as input
genomic data (7) combined with gene functional annota-
tions (8) and/or transcription data (9,10). Previous works
also analysed fungal gene expression levels (9), motif co-
occurrence in promoters around anchor genes (contain-
ing backbone enzymes) (8), compared expression levels of
virtual gene clusters in conditions favourable to SM pro-
duction (10) and analysed homologous genes through se-
quence alignment and filtering syntenic blocks (7). fungiS-
MASH (11) combines a probabilistic method (profile hid-
den Markov models from proteins) and curated BGC de-
tection rules, and can use tools such as CASSIS (cluster
assignment by islands of sites) (8) and ClusterFinder (12)
to predict fungal BGC boundaries. These previous ap-
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proaches present several limitations: overprediction of
BGC length (11,13); dependence on manual curation (9),
which is expensive; or a very limited scope, potentially
affecting the ability to process different BGC types or
organisms (7,13).

Approaches derived from supervised learning have shown
to perform well when predicting bacterial BGCs (14,15).
To our knowledge, such methods have not been applied
to identifying fungal BGCs. For instance, RiPPMiner (14)
based on support vector machine (SVM) and random for-
est achieves 0.91 F-measure (F-m) in binary classification
of ribosomally synthesized and post-translationally modi-
fied peptides. A recent approach, called DeepBGC, was de-
signed to exploit Pfam (16) domain embeddings to repre-
sent bacterial BGCs (12) to feed a bidirectional long short-
term memory (BiLSTM) neural network (15). DeepBGC
relies also on post-processing methods such as merging
consecutive BGC genes or filtering regions without known
BGC protein domains. DeepBGC achieved a 0.923 area
under the curve when predicting BGC positions in a set
of 65 experimentally validated BGCs from six bacterial
genomes, outperforming previous studies (15). When han-
dling fungal BGC data, DeepBGC in its original version
yielded performance no higher than 0.2 F-m (17), and when
trained on fungal data underperformed previous methods
such as fungiSMASH (11), as we show in the ‘Results’ sec-
tion. This could indicate that BGC discovery methods de-
veloped for bacteria may not be suitable for fungi due to
the high diversity of fungal BGCs that are found to vary
even among closely related species (3). Hence, it is impor-
tant to develop BGC discovery approaches dedicated to
fungi, taking into account the specific characteristics of
fungal BGCs, such as high diversity, BGC components,
and BGC and genome lengths that are usually longer than
bacteria. Here, we propose TOUCAN, a supervised learn-
ing framework to tackle BGC discovery in fungi that is
based on a combination of heterogeneous biological fea-
ture types: k-mers, protein domains and Gene Ontology
(terms) to represent proteinmotifs and functions relevant to
fungal BGCs.

MATERIALS AND METHODS

TOUCAN classification models were built based on a set
of six open-access fungal BGC datasets of varying distri-
butions, a total of six classifiers and two post-processing
methods. In this section, we present the methodology
adopted to develop TOUCAN models. TOUCAN pre-
dictions are validated based on a set of curated fungal
BGCs.

Datasets

TOUCAN classification models were developed with com-
prehensive and exhaustive fungal BGC datasets presented
in (17) that are publicly available to support benchmark-
ing of BGC discovery methods. The six fungal BGC train-
ing datasets are composed of different distributions of pos-
itive instances obtained from the MIBiG (Minimum In-

formation about a Biosynthetic Gene cluster) (2) reposi-
tory and synthetic negative instances generated from Or-
thoDB (18) orthologues. Fungal orthologous genes were
previously applied in BGC discovery (7). Orthologues can
be a relevant source of negative instances since they repre-
sent conserved genes across species, while BGCs are known
to show large genomic diversity even in closely related
species (3).

To build negative instances, the amino acid sequences of
OrthoDB fungal orthologous genes were concatenated us-
ing a fixed window size of 7000 amino acids, which corre-
sponds to the average amino acid length of all positive in-
stances from the fungal subset in MIBiG. This process gen-
erated a pool of training samples of 693 195 synthetic nega-
tive clusters [see (17) for details]. Studying datasets of vari-
ous distributions could shed light on the impact of class im-
balance in fungal BGC discovery, which by nature presents
a highly imbalanced scenario where only a small fraction
of fungal genomes actually corresponded to BGCs (17). To
account for genomic diversity in fungi, positive instances
in the six datasets represent >10 different BGC types and
>100 fungal species, while negative instances were gener-
ated from a pool of orthologous genes representing ≈300
fungal species. To build and validate our models, we per-
formed a random fixed split in each training dataset for
which 80% of instances are dedicated to training and 20%
for validation. Supplementary Table S1 shows the positive
versus negative distribution, and the training and valida-
tion splits in the six training fungal BGC datasets. A ran-
dom fixed split allows us to evaluate the performances of
the same training and validation sets under different param-
eters.

In the test phase, we evaluated our classification mod-
els with six test datasets, generated similarly to (17), from
a manually curated genome sequence of Aspergillus niger
NRRL3, available at https://gb.fungalgenomics.ca/portal.
Aspergillus niger is an organism of interest for BGC dis-
covery due to its relevance to industrial processes, and its
ubiquitous distribution (6). In this work, 85 manually cu-
rated BGCs (19) in A. niger will be considered as gold stan-
dard. Test candidate BGCs are generated by sequentially
extracted genomic regions of A. niger with a sliding win-
dow of 5000, 7000 or 10 000 amino acids, with a 30% or
50% overlap. The overlap of genomic regions allows us to
cover BGC fragmented by the sliding windows. Multiple
test datasets allow to analyse the impact of window lengths
and overlaps when handling input data of test organisms,
helping to determine recommended parameters to obtain
BGC predictions in new genome sequences. By generating
test candidates based on a fixed sliding window length, new
sequence data can be processed without requiring curation,
genome annotation or gene models as input, unlike that of
other BGC discovery tools. In the ‘Results’ section, we re-
port the performance obtained by the models using differ-
ent window lengths and overlaps.

Features

To represent the fungal BGC dataset instances as feature
vectors, we relied on heterogeneous biological features ex-
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tracted from the protein sequences of dataset instances: k-
mers, Pfam protein domains and GO terms. Several fea-
ture types are combined to better represent the diverse ge-
nomic profiles in fungal BGCs and help build relevant dis-
criminative models. Feature vectors are composed of num-
ber of occurrences of features per training instance. K-
mers (a contiguous number of K amino acids appearing se-
quentially) are common features in genomic classification
tasks (20).We have extracted k-mers with varying lengths of
3 ≤ K≤ 9. K-mers appearing less than three times were dis-
carded to reduce feature dimensionality, because presence
of rare features could introduce bias (21). K-mer lengths
were evaluated separately using validation sets to identify
the K value yielding the best performance. Further de-
tails on validation of K values are provided in the ‘Results’
section.

Pfam protein domains were previously applied in BGC
discovery in both fungi (13) and bacteria (12,15). Protein
domains are relevant features for BGC classification and
can indicate the presence of backbone enzymes, a key com-
ponent of BGCs (3,19). We performed an analysis of pro-
tein domain distribution among positive instances in our
datasets to understand their relevance as features. In our
analysis, Pfam protein domains extracted from positive in-
stances were manually labelled by us as high (corresponding
to a domain usually only present in BGCs) and medium (a
domain usually present in, but not limited to, BGCs). The
complete lists ofmedium and high annotated Pfam domains
are presented in Supplementary Tables S2 and S3. Then, we
analysed all positive instance datasets for the presence or
absence of such domains, shown in Supplementary Figure
S1. This analysis highlights two important aspects: first, the
protein domain diversity in fungal BGCs; and second, the
presence of high domains shared by most BGCs suggesting
that they share a structural pattern, most likely related to
the presence of a backbone enzyme. The structural pattern
yielded by the distribution of manually annotated protein
domains in positive instances suggests that this feature type
might carry an important discriminating power. Pfam do-
main features were extracted from our training datasets us-
ing the Pfam database.

GO term annotations were also modelled as features
and obtained from our training instances using Swiss-
Prot (22). To identify corresponding GO terms, we per-
formed a BLAST analysis of amino acid sequences from
our dataset instances against the Swiss-Prot database com-
posed of 560 292 reviewed entries (as of June 2019). BLAST
parameters considered were evalue (expected value) ≤ 1e−4
and qcovs (query coverage per subject) ≥ 50. A qcovs ≥ 50
could indicate relevant sequence similarity (23), since the
alignment length would correspond to at least 50% of 7000
amino acids for each match. We considered GO terms from
all classes. GO term matches found were filtered for dupli-
cates, and only unique GO terms were kept to represent
dataset instances.

The number of unique features per type extracted from
each training dataset and used to build our classification
models is shown in Supplementary Table S4. At this point,
extracted features were all kept (except for k-mers that oc-

cur less than three times in a dataset), without relying on
feature selection methods. The feature order is not neces-
sarily conserved during classification, and it is by all pur-
poses processed in a bag-of-words manner. Consider that
all extracted features can be relevant at this point since the
experiments performed in our work are still a learning space
of suitable parameters to tackle BGC discovery. Feature se-
lection could therefore limit the exploration of potentially
relevant attributes or combinations of features, but it might
be valuable as the next step.

Classification methods

TOUCAN classification models were built with a total
of six classifiers. We performed experiments with different
classification algorithms to assess the performance of het-
erogeneous features and post-processing methods, and then
identified the best configuration to tackle the BGC discov-
ery task. Three classifiers were SVM classifiers: C support
vector (svc), linear support vector (lsvc) and nu support
vector (nusvc) classifiers. SVM classifiers were previously
applied in BGC discovery (14). Default parameters were
used for svc and lsvc during experiments, while for the
nusvc classifier the nu parameter was adjusted in connec-
tion with the percentage of positive instances pos in a given
dataset:

nu =
{
0.5, if pos ≥ 30%,
pos
100

, otherwise. (1)

The other three classifiers were a multilayer percep-
tron (mlp), logistic regression (logit) and random for-
est (randomf). While logit classifier can provide a base-
line model for the task, neural networks (15) and ran-
domf (14) were also previously applied in BGC discovery.
Also for mlp, logit and randomf, default parameters
were kept but could, however, be optimized to suit specific
experiments if needed. These six classifiers were evaluated
independently during our experiments.

Post-processing methods

Predictions of candidate BGCs outputted by TOUCAN
are post-processed to improve output precision. Post-
processing methods adopted in our work were greedy ap-
proaches, such as in PRISM (24) that identifies bond-
forming domains and expands cluster boundaries on either
ends of such domains. Unlike PRISM, TOUCAN does not
require curation as input, and relies on classificationmodels
to identify potential BGC regions in which post-processing
methods can be applied, facilitating its use on newly se-
quenced or not yet annotated genomes. The post-processing
methods succ and merge are shown in the SUCCESSIVE-
MERGE algorithm, and aim to address potential cluster
boundary limitations (over- or underestimation) common
in previous approaches (11,13).
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BGC region length can vary greatly among fungal
MIBiG BGCs: for an x number of amino acids, x can
vary such as 195 ≤ x ≤ 62 079, with a standard deviation
σ (x) ≈ 6013.73 and mean x ≈ 7033. In this work, a fixed
amino acid length to generate test candidate instances from
an organism genome is applied. Both succ and merge
post-processing help to overcome the shortcoming in cases
where cluster regions have limited boundaries. The succ
post-processing gives to an nbSucc of successive predictions
the same confidence prediction score of a positive predic-
tion (confidence ≥ threshold). The merge post-processing
merges an nbSucc of successive predictions of a positive pre-
diction (confidence≥ threshold) into a single positive predic-
tion. For bothsucc andmerge,we considered 0≤ nbSucc
≤ 3, set as an arbitrary parameter for the first evaluation
of post-processing methods. Both post-processing methods
were applied only if nbSucc successive predictions were also
not positive.

Evaluation metrics

TOUCAN classification models were assessed in terms of
precision (P), recall (R), F-m and a clusterScore metric. To
compute P, R and F-m, we considered as true positives
(TPs) BGC candidates predicted as positive that have at
least one gene that matches a gold standard BGC. The clus-
terScore represents the coverage of expected gold standard
BGC genes within a candidate BGC, where 0≤ clusterScore
≤ 1, and was computed for each BGC candidate predicted
positive. To compute the clusterScore for a BGC candidate
C and its gold standard BGC match M, we first counted
the number of geneMatches in C, meaning the number of
M genes in C. We then computed a similarity value sim be-
tween all pairs of genes in the disjunctive union C�M, and
add to the clusterScore the best sim obtained for the un-
matched M − C genes. Computing the sim value allows

us to account for the possible presence of gold standard
orthologues among unmatched genes in a BGC candidate
predicted positive. The sim value represents a percent iden-
tity pident obtained through a local alignment with BLAST
between two genes, using cut-offs of minimum pident ≥ 20
and minimum query coverage qcovs ≥ 10. The clusterScore
for a BGC candidate C was normalized by the number of
genes in its gold standard BGC match M. The SIMILAR-
ITY algorithm shows the computation of sim scores, while
the CLUSTERSCORE algorithm shows the computation of
clusterScore. We analysed the clusterScore of TOUCAN
predicted positives compared to state-of-the-art methods in
the ‘Results’ section.

State-of-the-art performance comparison

The performance of TOUCAN models was compared
to results obtained by two state-of-the-art tools: fungiS-
MASH (11) and DeepBGC (15) (version 0.1.18 and models
as of February 2020 available at https://github.com/Merck/
deepbgc). The experiments with fungiSMASM were per-
formed with its three strictness levels: relaxed, strict and
loose, and with default parameters for its extra feature
options (as of January 2020): ‘KnownClusterBlast’, ‘Ac-
tiveSiteFinder’ and ‘SubClusterBlast’. DeepBGC focuses
on bacterial data and is based on a BiLSTM neural net-
work and Pfam domain embeddings. A total of three Deep-
BGCclassificationmodels are applied in this work: onewith
original DeepBGC training dataset and hyperparameters,
as in (15); one built with DeepBGC original hyperparame-
ters and our best-performing training dataset; and one built
with our best-performing training dataset and fungal opti-
mized hyperparameters (thanks to the authors) (see Supple-
mentary Table S7 for original and fungal optimized hyper-
parameters).
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RESULTS

We present here results obtained with TOUCAN, a su-
pervised learning framework to discover fungal BGCs. To
identify the best configuration to tackle BGC discovery
in fungi, we designed, trained and assessed several clas-
sification models combining heterogeneous biological fea-
tures, datasets of various distributions, classifiers and post-
processing methods, as described in the ‘Materials and
Methods’ section. Validation results are drawn on held-
out training instances corresponding to 20% of each train-
ing dataset. The performance of TOUCAN was assessed
on test datasets of a gold standard of 85 manually anno-
tated A. niger BGCs (19). The focus here is BGC discovery;
hence, the model is optimized to correctly identify positive
instances, rather than the negative ones. Thus, results were
reported for the positive class.

Feature importance and performance on validation datasets

To identify themost suitableK for k-mer features within 3≤
K≤ 9, we performed a set of experiments on all six datasets
and six classifiers, as presented in the ‘Datasets’ and ‘Clas-
sification methods’ sections. Performance of k-mer models
on our validation sets is shown in Supplementary Figure
S2. In general, better performance was achieved with K =
6, which was thus the K value considered for our follow-
ing experiments. We also performed an analysis of feature
importance across training datasets, obtained with a ran-
domf classifier, with default parameters. Table 1 shows the
top 15 ranked features across training datasets.

Features appearing on the top 15 of multiple datasets are
highlighted. Protein domain feature names start with PF,

GO term feature names start with GO and the other fea-
tures are 6-mers. We can observe that every protein domain
feature appearing among the top ranked of all datasets be-
longed to either the high ormediummanually annotated do-
mains, even though non-high and non-medium domain fea-
tures are also included in our feature set. Moreover, while
GO terms represent≈30%of all top 15 ranked features, they
make up for at most 0.7% of total features. This possibly in-
dicates their strong discriminating power in the task. After
evaluating feature importance, we trained several classifica-
tion models combining the feature types for each classifier
and training dataset distribution. For each training dataset
distribution, a random fixed split, designating 80% of its in-
stances, was selected for training and 20% for validation,
as mentioned in the ‘Datasets’ section. The top F-m perfor-
mances on validation sets per training dataset are shown in
Supplementary Table S5. During validation, we noted that
models built with three feature types outperformed models
using one feature type, such as the ones built when evaluat-
ing the most suitable k-mer length.

Validation performance seems to be overall affected
by the instance distribution: more imbalanced datasets
show lower F-m compared to more balanced ones. When
analysing MIBiG fungal BGCs, only ≈1% of a genome se-
quence would correspond to cluster regions (17), so utiliz-
ing more balanced training data could provide better per-
formance than using real case scenario distributions. We se-
lected the dataset with the best F-m average performance,
which was the most balanced (50%–50%), to perform fur-
ther evaluation with hyperparameter optimization through
a grid search, followed by cross-validation (CV) classifica-
tion for all six classifiers. Best-performing hyperparameters
to maximize F-m for each classifier are listed in Supplemen-
tary Table S8. A 5-fold CV was performed with optimized
hyperparameters on the 50%–50% dataset instances, ran-
domly split between training and validation at each fold.
Supplementary Table S6 shows the average performances
on the 5-fold CV for each classifier.

TOUCAN performance on test datasets

We assessed TOUCAN models on six test datasets
with amino acid sliding window lengths of 5000, 7000
and 10 000, with overlaps of 50% and 30%, as described
in the ‘Datasets’ section. Candidate BGC predictions on
the test data were obtained with TOUCAN classification
models built using the six training dataset distributions
with fixed training and validation splits, three feature types
and six classifiers. We then processed TOUCAN predicted
candidate BGCs with post-processing methods succ and
merge, considering 0 ≤ nbSucc ≤ 3.

Table 2 shows for the positive class the best F-m obtained
for each test dataset among all training dataset distribu-
tions. The highest 0.931 F-m was obtained by a model built
with a 50%–50% distributed training set, an mlp classifier
and a merge3 post-processing. The best F-m was achieved
with 10 000-amino acid sliding window test datasets. Re-
garding classifiers, mlp and logit yielded best perfor-
mance followed less often by lsvc. As mentioned in the
‘Classification methods’ section, default parameters were
used when performing our experiments. Tuning the clas-
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Table 1. Top 15 features ranked by importance for each training dataset, from completely balanced (50% positive, 50% negative) to most imbalanced (5%
positive, 95% negative)

Training dataset distribution

50%–50% 40%–60% 30%–70% 20%–80% 10%–90% 5%–95%

PF00698.21 PF00698.21 GO:0008168 HGTGTQ PF00109.26 TACSSS
PF00668.20 HGTGTQ HGTGTQ GO:0008152 GO:0044550 GTGTQA
ADGYCR GO:0031177 GQGAQW PF00550.25 LYRTGD GYARGE
GO:0016491 GAGTGG GYCRAD IDTACS VFTGQG GO:0046148
FDGYRF VEMHGT GAGTGG PF02458.15 NFSAAG TGDLAR
GO:0016740 VFTGQG QQRLLL DTACSS VEAHGT SINSFG
MHGTGT PF00668.20 TACSSS VTLSGD GO:0043041 DPQQRL
DTACSS GO:0016874 PF02801.22 FTGQGA GHSLGE LFTSGS
GO:1900557 YKTGDL GO:0009058 PF08242.12 AYEALE NSFGFG
GO:0009058 GO:0019184 GO:0046148 AYGPTE GO:0016491 CDTAVA
GRFFAA GO:0043042 GO:0047462 GO:0004315 TQVKIR FDASFF
PF14765.6 PGRFFA GEYAAL GO:0031177 GO:0046500 AYGPTE
MDPQQR MHGTGT GO:0005829 KLRGFR DTACSS YILFTS
FTSGST GO:1900790 PFAFHS GO:0016021 GO:0032259 AIVLAG
GQGAQW VEIGPH LHSLEA PF00067.22 DTFVRC AVVGHS

Highlighted features appeared in multiple datasets.

sifier parameters may affect the performance, but this is
not the focus of this study. Overall results showed that a
30% overlap seems to be more advantageous for all slid-
ing window lengths, even though the best F-m was achieved
with test candidates generated based on a 50% overlap.
The training set distribution seemed to have little influence
on test candidates with a sliding window length of 5000
amino acids, showing only a small variation onF-m for both
30% and 50% overlap. Less balanced training distribution
seemed to affect performance more for candidates with a
sliding window length of 10 000 amino acids, with an F-m
varying from 0.618 to 0.931 when using 50% overlap, and
from 0.629 to 0.917 when using 30% overlap.

We selected the best-performing test datasets (10 000-
amino acid sliding window) to carry an evaluation using 5-
fold CV classification models based on the best-performing
training set (50%–50%). The predicted BGC candidates
obtained with CV classification models were also pro-
cessed with TOUCAN post-processing methods succ and
merge, in the same manner as the models presented in
Table 2. The best performance results obtained with the
10 000-amino acid sliding window test data among all 5-
fold CV classification models are shown in Table 3.

As shown in Table 3, the 5-fold CV classification mod-
els improved to a 0.982 F-m from the previously best 0.931
F-m achieved with models based on fixed training and val-
idation splits. Performance results in Tables 2 and 3 show
TOUCAN models’ discriminative power to identify candi-
date BGC regions from non-BGC regions. Our results also
demonstrate TOUCANmodels’ capacity of obtaining rele-
vant BGCpredictions on new or non-annotated genomes in
test dataset instances generated solely based on sliding win-
dows of fixed amino acid length. This aspect distinguishes
TOUCAN from previous approaches that rely on gene
models and other genomic annotations as input (14,15).

Performance comparison with DeepBGC

We compared the performance of three DeepBGC classifi-
cation models using the 10 000-amino acid sliding window

test datasets, which yield the best F-m with TOUCAN. As
mentioned in the ‘Materials and Methods’ section, two out
of the three DeepBGC models were trained using the best-
performing constructed training dataset (50%–50% dataset
in this case). TheDeepBGChyperparameters applied in this
comparison are also listed in the ‘Materials and Methods’
section.As shown in (17), during validation phase theDeep-
BGCmodel trained using the original hyperparameters and
the 50%–50% training dataset had early stopping at epoch
109, from the original total of 328 epochs, as applied in (15).

Table 4 shows P, R and F-m performances of the three
DeepBGC models for the positive class on the test dataset
with a 50% or 30% overlap. DeepBGC models built with
original hyperparameters yielded high recall but very low
precision, consequently leading to F-m metrics <0.3 for ei-
ther models based on the 50%–50% training set or models
based on DeepBGC original data. Models built with fun-
gal optimized hyperparameters yielded a noticeable perfor-
mance improvement, with a 0.627 F-m.

For each of the threeDeepBGCmodels, the test sets using
a 30% overlap resulted in better performance than the ones
using a 50% overlap. DeepBGC performance on predict-
ing fungal BGCs shows high recall but very low precision,
which consequently lead to F-mmetrics<0.2. The most im-
balanced models classified all test candidates as negative,
which could be a sign of the model trying to optimize accu-
racy towards the majority class. Originally, DeepBGC was
developed to predict bacterial BGCs, for which much more
data are available compared to fungal BGCs. The larger
amount of bacterial BGC data available benefits the de-
velopment of supervised learning approaches. Fungal BGC
data aremore scarce, whichmakes it challenging to build ro-
bust classification models. Supervised learning approaches
that fit bacteria may not be suitable to discover BGCs in
fungi (17).

Performance comparison with fungiSMASH

We compared the performance of fungiSMASH on the
same 10 000-amino acid sliding window test datasets used
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Table 2. TOUCAN best-performing models per test set sliding windows and overlaps in A. niger

Sliding Training Post-
window Overlap set Classifier process P R F-m

10 000 50% 50%–50% mlp merge3 1 0.871 0.931
10 000 50% 40%–60% mlp merge3 1 0.753 0.859
10 000 50% 30%–70% mlp merge2 1 0.706 0.828
10 000 50% 20%–80% mlp merge2 1 0.706 0.828
10 000 50% 10%–90% mlp merge3 1 0.647 0.786
10 000 50% 5%–95% mlp merge3 1 0.447 0.618
7000 50% 50%–50% logit merge3 0.929 0.765 0.839
7000 50% 40%–60% logit merge3 1 0.741 0.851
7000 50% 30%–70% mlp merge3 0.969 0.729 0.832
7000 50% 20%–80% mlp merge3 1 0.741 0.851
7000 50% 10%–90% mlp merge3 1 0.694 0.819
7000 50% 5%–95% mlp merge3 1 0.647 0.786
5000 50% 50%–50% logit merge3 0.817 0.788 0.802
5000 50% 40%–60% logit merge3 0.914 0.753 0.826
5000 50% 30%–70% logit merge3 0.953 0.718 0.819
5000 50% 20%–80% logit merge3 1 0.718 0.836
5000 50% 10%–90% mlp merge3 0.913 0.741 0.818
5000 50% 5%–95% mlp merge3 0.923 0.706 0.800
10 000 30% 50%–50% mlp merge3 1 0.847 0.917
10 000 30% 40%–60% mlp merge3 1 0.741 0.851
10 000 30% 30%–70% mlp merge2 1 0.694 0.819
10 000 30% 20%–80% mlp merge2 1 0.671 0.803
10 000 30% 10%–90% mlp merge3 1 0.6 0.750
10 000 30% 5%–95% mlp merge3 1 0.459 0.629
7000 30% 50%–50% mlp merge3 0.95 0.906 0.928
7000 30% 40%–60% mlp merge3 1 0.824 0.903
7000 30% 30%–70% mlp merge2 1 0.741 0.851
7000 30% 20%–80% mlp merge3 1 0.741 0.851
7000 30% 10%–90% lsvc merge3 1 0.553 0.712
7000 30% 5%–95% mlp merge3 1 0.635 0.777
5000 30% 50%–50% logit merge3 0.908 0.812 0.857
5000 30% 40%–60% logit merge3 0.985 0.788 0.876
5000 30% 30%–70% logit merge3 1 0.753 0.859
5000 30% 20%–80% mlp merge3 0.985 0.776 0.868
5000 30% 10%–90% mlp merge3 0.984 0.729 0.838
5000 30% 5%–95% mlp merge3 1 0.706 0.828

Table 3. TOUCAN best performances for the completely balanced (50% positive, 50% negative) CV models on A. niger test sets generated with a 10 000-
amino acid sliding window

Training Sliding Post-
set window Overlap Classifier process P R F-m

50%–50% 10 000 50% svc merge3 0.941 0.941 0.941
50%–50% 10 000 30% randomf merge3 1 0.965 0.982

Table 4. Performance metrics of DeepBGC models for A. niger test sets generated with 10 000-amino acid sliding window

Training DeepBGC Sliding
dataset model window Overlap P R F-m

DeepBGC Original 10 000 50% 0.114 1 0.205
DeepBGC Original 10 000 30% 0.159 1 0.274
50%–50% Original 10 000 50% 0.075 1 0.140
50%–50% Original 10 000 30% 0.105 1 0.191
50%–50% Fungal 10 000 50% 0.464 0.765 0.578
50%–50% Fungal 10 000 30% 0.580 0.682 0.627

to compare with DeepBGC. The fungiSMASH parameters
considered in this comparison are described in the ‘Mate-
rials and Methods’ section. fungiSMASH predictions are
also assessed in terms of P, R and F-m, which are shown
for the positive class in Table 5. fungiSMASH best perfor-
mance yielded a 0.571 F-m when using a 50% overlap and
0.692 F-m when using a 30% overlap, both under relaxed
strictness. As expected, loose strictness results in higher re-

call and lower precision, while a strict parameter results in
higher precision but lower recall.

Similar to TOUCAN models, fungiSMASH seems to
yield generally better performance on 30% overlap test can-
didates. fungiSMASH showed in general a more stable
performance predicting fungal BGCs compared to Deep-
BGC. Apart from being based on a different approach than
DeepBGC, fungiSMASH was developed focusing on fun-
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Table 5. Performance metrics of fungiSMASH models for A. niger test sets generated with 10 000-amino acid sliding window

fungiSMASH Sliding
strictness window Overlap P R F-m Overlap P R F-m

Relaxed (default) 10 000 50% 0.470 0.729 0.571 30% 0.649 0.741 0.692
Strict 10 000 50% 0.471 0.576 0.519 30% 0.671 0.600 0.634
Loose 10 000 50% 0.435 0.788 0.561 30% 0.591 0.800 0.68

gal organisms. The difference in performance between the
bacteria-focused approach of DeepBGC and the fungal-
focused approach of fungiSMASH may be another indica-
tion that BGC discovery is a complex task, and can benefit
from approaches built to target related organisms.

TOUCAN yields reproducible performance on Aspergillus
nidulans

To assess TOUCAN reproducibility, we assessed the per-
formance of its models in the A. nidulans genome. As in A.
niger,A. nidulans is a species known as an important source
of BGCs (3,19). Previous work on manual annotation of
BGCs in Aspergilli (19) identified a total of 70 BGCs in
A. nidulans, which are considered as gold standard for this
analysis. To obtain candidate BGCs for testing, A. nidulans
genome sequence was processed in the same manner as A.
niger. Test candidate BGCs for A. nidulans were obtained
by extracting genomic regions sequentially from its genome,
using amino acid sliding windows of 10 000 amino acids
that overlap by 30% and 50%. The analysis on A. nidulans
used the best-performing model parameters previously es-
tablished inA. niger: 50%–50% dataset, hyperparameter op-
timization and 5-fold CV.

Table 6 shows TOUCAN best performance results
among all six classifiers and post-processing methods for
the A. nidulans 10 000-amino acid sliding window test sets.
For comparison, we evaluatedA. nidulans BGC predictions
obtained with the best fungiSMASH and DeepBGC mod-
els on the same test sets, for which the results are also shown
in Table 6. We observed that similar F-m performance met-
rics were achieved for A. nidulans and A. niger. TOUCAN
and DeepBGC, both based on supervised learning, yielded
the least F-m variation on the results obtained for the two
Aspergillus species, suggesting that due to their generaliza-
tion ability, supervised learning approaches may be a suit-
able approach to tackle BGC discovery.

TOUCAN TP predictions improve coverage of BGC genes

We compared TP predictions (BGC candidate predicted
positives that have at least one gene matching a gold stan-
dard BGC) obtained from best-performing models in A.
niger andA. nidulans for TOUCAN (0.982F-m and 0.910F-
m, respectively) versus fungiSMASH (0.692 F-m and 0.780
F-m, respectively) and DeepBGC (0.620 F-m and 0.607 F-
m, respectively). First, we analysed the distribution of clus-
terScore computed for each BGC candidate predicted posi-
tive. Figure 1 shows the clusterScore distribution in A. niger
and A. nidulans TP predictions obtained with TOUCAN,
DeepBGC and fungiSMASH best models.

We observed that compared to the other tools, TOU-
CAN TP predictions more often present a clusterScore =

Figure 1. Distribution of clusterScore among TP predictions in A. niger
andA. nidulans genomes. clusterScore distribution was computed for best-
performing models of each system (A. niger: TOUCAN: 0.982 F-m, Deep-
BGC: 0.627 F-m, fungiSMASH: 0.692 F-m;A. nidulans: TOUCAN: 0.910
F-m, DeepBGC: 0.607 F-m, fungiSMASH: 0.780 F-m).

1, meaning that TOUCAN predictions better encompass
genes matching gold standard BGCs, possibly as a result
of TOUCAN merge post-processing. Although merge
post-processing leads to more comprehensive predictions,
it could result in overprediction of cluster boundaries. To
mitigate, filtering methods could be applied to refine candi-
date cluster regions, and also as an opportunity to fine-tune
TOUCAN predictions to specific genus or species of inter-
est. One possible way to apply targeted filtering is to rely
on manually curated annotations of relevant features, such
as the annotated high and medium Pfam protein domains
shown in the ‘Features’ section.

We also analysed the presence of backbone enzymes
within genes of TP predictions. Backbone enzymes are con-
sidered as the BGC core (3), playing a key role in its biosyn-
thesis and defining theBGCcompound to be produced (19).
We mapped the presence and absence of backbone genes
among TOUCAN,DeepBGC and fungiSMASHbest mod-
els’ TP predictions. Figure 2 shows backbone genes and
product types found inA. niger andA. nidulans, respectively.
Scores in Figure 2 (or the colour intensity) correspond to
the clusterScore computed for the predicted BGC. Back-
bone enzyme genes were present in 86.6% of all TOUCAN
TP predictions for A. niger, versus 76.2% in fungiSMASH
and 75.9% in DeepBGC. For A. nidulans, 93.5% of TOU-
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Table 6. Best performances per overlap of TOUCAN compared to fungiSMASH and DeepBGC for A. nidulans test sets generated with 10 000-amino
acid sliding window

Sliding
System Model window Overlap P R F-m

TOUCAN lsvc + merge3 10 000 50% 0.919 0.814 0.864
TOUCAN svc + merge3 10 000 30% 0.953 0.871 0.910
fungiSMASH Relaxed (default) 10 000 50% 0.550 0.786 0.647
fungiSMASH Relaxed (default) 10 000 30% 0.775 0.786 0.780
DeepBGC 50%–50% fungal 10 000 50% 0.473 0.629 0.540
DeepBGC 50%–50% fungal 10 000 30% 0.631 0.586 0.607

Figure 2. Presence of backbone enzymes among positive predictions in A. niger and A. nidulans genomes. Each backbone enzyme is shown per the gene
ID it is associated with and the clusterScore assigned to the candidate predicted BGC.

CAN TP predictions found backbone enzymes, versus 89%
for fungiSMASH and 82.9% for DeepBGC.

DISCUSSION

SMs are bioactive compounds that play a vital role in the
production of various drugs. Discovery of novel fungal
BGCs can potentially benefit human health. In this work,
we presented TOUCAN, a supervised learning framework
for fungal BGC discovery. We evaluated classification mod-
els based on fungal BGC datasets of various distribu-
tions, six classifiers, heterogeneous biological features and
three post-processing methods. TOUCAN best-performing
model achieved 0.982 F-m in A. niger and 0.910 F-m
in A. nidulans, outperforming previous methods. The re-
sults obtained with TOUCAN models could indicate that
standard supervised learning approaches are suitable to
tackle BGC discovery. TOUCAN outperformance is pos-

sibly due to a combination of factors: combining feature
types, evaluating the impact of different class distribu-
tions during training and post-processing candidate BGC
predictions. merge post-processing can help identify re-
gions that might have been missed, but in certain cases it
may potentially lead to overestimation of predicted cluster
boundaries.

The performance of TOUCAN models was compared
to two BGC discovery state-of-the-art approaches: Deep-
BGC, based on deep learning, and fungiSMASH, based
on probabilistic methods. TOUCAN models showed bet-
ter F-m when predicting BGCs in A. niger and A. nidu-
lans compared to DeepBGC and fungiSMASH. TOUCAN
also yielded more comprehensive coverage of gold standard
BGC genes within predicted clusters, and was able to iden-
tify backbone enzyme genesmore often in its TP predictions
compared to the other methods. The presence of backbone
enzymes can be a crucial aspect in determining the presence

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa098/6007553 by U

niversite du Q
uebec a M

ontreal user on 29 June 2021



10 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4

of a BGC in a given genomic region. The results obtained by
TOUCAN, as well as the performance of DeepBGC mod-
els, demonstrate the potential of exploring supervised learn-
ing approaches for BGC discovery, and relevance of devel-
oping BGC prediction tools focused on fungal organisms.
Fungi were shown to be an important source for bioac-
tive compounds (5,6) used in the pharmaceutical industry,
but fungal BGC data available in open-access databases are
scarce compared to bacteria. The availability of more anno-
tated fungal BGCs is hence an important aspect to promote
development and improvement of existing and new fungal
BGC discovery approaches. Previous BGC discovery tools
require curated data to identify candidate BGC regions in
an organism, which may not be available or is expensive to
obtain. Unlike previous approaches, TOUCAN is capable
of outputting BGC predictions from amino acid sequences
without requiring further data curation as input. This as-
pect can facilitate TOUCAN usage and its application on
newly sequenced genomes, promoting the discovery of novel
candidate BGC regions and potentially novel drugs, such
as antibiotics, immunosuppressants and anticancer medi-
cations.
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van der Hooft,J.J., Van Santen,J.A., Tracanna,V., Suarez Duran,H.G.,
Pascal Andreu,V. et al. (2020) MIBiG 2.0: a repository for
biosynthetic gene clusters of known function. Nucleic Acids Res., 48,
D454–D458.

3. Kjærbølling,I., Vesth,T., Frisvad,J.C., Nybo,J.L., Theobald,S.,
Kildgaard,S., Petersen,T.I., Kuo,A., Sato,A., Lyhne,E.K. et al. (2020)
A comparative genomics study of 23 Aspergillus species from section
Flavi. Nat. Commun., 11, 1106.

4. Keller,N.P. (2019) Fungal secondary metabolism: regulation, function
and drug discovery. Nat. Rev. Microbiol., 17, 167–180.

5. Macheleidt,J., Mattern,D.J., Fischer,J., Netzker,T., Weber,J.,
Schroeckh,V., Valiante,V. and Brakhage,A.A. (2016) Regulation and
role of fungal secondary metabolites. Annu. Rev. Genet., 50, 371–392.

6. de Vries,R.P., Riley,R., Wiebenga,A., Aguilar-Osorio,G., Amillis,S.,
Uchima,C.A., Anderluh,G., Asadollahi,M., Askin,M., Barry,K. et al.
(2017) Comparative genomics reveals high biological diversity and
specific adaptations in the industrially and medically important
fungal genus Aspergillus. Genome Biol., 18, 28.

7. Takeda,I., Umemura,M., Koike,H., Asai,K. and Machida,M. (2014)
Motif-independent prediction of a secondary metabolism gene cluster
using comparative genomics: application to sequenced genomes of
Aspergillus and ten other filamentous fungal species. DNA Res., 21,
447–457.

8. Wolf,T., Shelest,V., Nath,N. and Shelest,E. (2016) CASSIS and
SMIPS: promoter-based prediction of secondary metabolite gene
clusters in eukaryotic genomes. Bioinformatics, 32, 1138–1143.

9. Vesth,T.C., Brandl,J. and Andersen,M.R. (2016) FunGeneClusterS:
predicting fungal gene clusters from genome and transcriptome data.
Synth. Syst. Biotechnol., 1, 122–129.

10. Umemura,M., Koike,H., Nagano,N., Ishii,T., Kawano,J.,
Yamane,N., Kozone,I., Horimoto,K., Shin-ya,K., Asai,K. et al.
(2013) MIDDAS-M: motif-independent de novo detection of
secondary metabolite gene clusters through the integration of genome
sequencing and transcriptome data. PLoS One, 8, e84028.

11. Blin,K., Wolf,T., Chevrette,M.G., Lu,X., Schwalen,C.J.,
Kautsar,S.A., Suarez Duran,H.G., De Los Santos,E.L., Kim,H.U.,
Nave,M. et al. (2017) antiSMASH 4.0––improvements in chemistry
prediction and gene cluster boundary identification. Nucleic Acids
Res., 45, W36–W41.

12. Cimermancic,P., Medema,M.H., Claesen,J., Kurita,K., Brown,L.
C.W., Mavrommatis,K., Pati,A., Godfrey,P.A., Koehrsen,M.,
Clardy,J. et al. (2014) Insights into secondary metabolism from a
global analysis of prokaryotic biosynthetic gene clusters. Cell, 158,
412–421.

13. Khaldi,N., Seifuddin,F.T., Turner,G., Haft,D., Nierman,W.C.,
Wolfe,K.H. and Fedorova,N.D. (2010) SMURF: genomic mapping
of fungal secondary metabolite clusters. Fungal Genet. Biol., 47,
736–741.

14. Agrawal,P., Khater,S., Gupta,M., Sain,N. and Mohanty,D. (2017)
RiPPMiner: a bioinformatics resource for deciphering chemical
structures of RiPPs based on prediction of cleavage and cross-links.
Nucleic Acids Res., 45, W80–W88.

15. Hannigan,G.D., Prihoda,D., Palicka,A., Soukup,J., Klempir,O.,
Rampula,L., Durcak,J., Wurst,M., Kotowski,J., Chang,D. et al.
(2019) A deep learning genome-mining strategy for biosynthetic gene
cluster prediction. Nucleic Acids Res., 47, e110.

16. El-Gebali,S., Mistry,J., Bateman,A., Eddy,S.R., Luciani,A.,
Potter,S.C., Qureshi,M., Richardson,L.J., Salazar,G.A., Smart,A.
et al. (2019) The Pfam protein families database in 2019. Nucleic
Acids Res., 47, D427–D432.

17. Almeida,H., Tsang,A. and Diallo,A.B. (2019) Supporting supervised
learning in fungal biosynthetic gene cluster discovery: new
benchmark datasets. In: Proceedings of the IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE,
Piscataway, pp. 1280–1287.

18. Kriventseva,E.V., Kuznetsov,D., Tegenfeldt,F., Manni,M., Dias,R.,
Simão,F.A. and Zdobnov,E.M. (2018) OrthoDB v10: sampling the
diversity of animal, plant, fungal, protist, bacterial and viral genomes
for evolutionary and functional annotations of orthologs. Nucleic
Acids Res., 47, D807–D811.

19. Inglis,D.O., Binkley,J., Skrzypek,M.S., Arnaud,M.B.,
Cerqueira,G.C., Shah,P., Wymore,F., Wortman,J.R. and Sherlock,G.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa098/6007553 by U

niversite du Q
uebec a M

ontreal user on 29 June 2021



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4 11

(2013) Comprehensive annotation of secondary metabolite
biosynthetic genes and gene clusters of Aspergillus nidulans, A.
fumigatus, A. niger and A. oryzae. BMCMicrobiol., 13, 91.

20. Vinje,H., Liland,K.H., Almøy,T. and Snipen,L. (2015) Comparing
K-mer based methods for improved classification of 16S sequences.
BMC Bioinformatics, 16, 205.

21. Yang,Y. and Pedersen,J.O. (1997) A comparative study on feature
selection in text categorization. In: Proceedings of the International
Conference on Machine Learning (ICML). Nashville, Vol. 97, p. 35.

22. UniProt Consortium (2019) UniProt: a worldwide hub of protein
knowledge. Nucleic Acids Res., 47, D506–D515.

23. Rost,B. (1999) Twilight zone of protein sequence alignments. Protein
Eng. Des. Sel., 12, 85–94.

24. Skinnider,M.A., Dejong,C.A., Rees,P.N., Johnston,C.W., Li,H.,
Webster,A.L., Wyatt,M.A. and Magarvey,N.A. (2015) Genomes to
natural products prediction informatics for secondary metabolomes
(PRISM). Nucleic Acids Res., 43, 9645–9662.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa098/6007553 by U

niversite du Q
uebec a M

ontreal user on 29 June 2021



APPENDIX C



Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Improving candidate Biosynthetic Gene Clusters in
fungi through reinforcement learning
Hayda Almeida 1,2,3, Adrian Tsang 1,2 and Abdoulaye Baniré Diallo 1,3,4∗

1 Departement d’Informatique, UQAM, Montréal, QC, Canada
2 Centre for Structural and Functional Genomics, Concordia University, Montréal, QC, Canada
3 Laboratoire d’Algèbre, de Combinatoire, et d’Informatique Mathématique, UQAM, Montréal, QC, Canada
4 Centre of Excellence in Research on Orphan Diseases—Courtois Foundation (CERMO-FC), Montréal, QC, Canada
∗To whom correspondence should be addressed.

Abstract

Motivation: Precise identification of Biosynthetic Gene Clusters (BGCs) is a challenging task. Performance
of BGC discovery tools is limited by their capacity to accurately predict components belonging to candidate
BGCs, often overestimating cluster boundaries. To support optimizing the composition and boundaries of
candidate BGCs, we propose reinforcement learning approach relying on protein domains and functional
annotations from expert curated BGCs.
Results: The proposed reinforcement learning method aims to improve candidate BGCs obtained with
state-of-the-art tools. It was evaluated on candidate BGCs obtained for two fungal genomes, Aspergillus
niger and Aspergillus nidulans. The results highlight an improvement of the gene precision by above
15% for TOUCAN, fungiSMASH and DeepBGC; and cluster precision by above 25% for fungiSMASH
and DeepBCG, allowing these tools to obtain almost perfect precision in cluster prediction. This can pave
the way of optimizing current prediction of candidate BGCs in fungi, while minimizing the curation effort
required by domain experts.
Availability and Implementation: https://github.com/bioinfoUQAM/RL-bgc-components
Contact: diallo.abdoulaye@uqam.ca
Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction
Filamentous fungi produce a large array of Secondary Metabolites (SM)
which play an important role in the survival and development of producing
organisms (Keller, 2015). Identifying novel fungal SMs is a field of
high interest, given the relevance of these compounds particularly in the
pharmaceutical industry for production of various medications (Chavali
and Rhee, 2017; Kjærbølling et al., 2019). Biosynthetic pathways that
produce SM compounds are encoded by clusters of genes often appearing
contiguously in an organism genome, known as Biosynthetic Gene
Clusters (BGCs) (Keller, 2019; Kautsar et al., 2020). The genomic
diversity of fungal genomes makes accurate identification of BGCs in
fungi a highly challenging task for dedicated state-of-the-art tools, and
even for manual curation or experimental characterization performed
by experts (Kjærbølling et al., 2019). BGCs generally contain minimal
components: backbone enzymes, defining the core chemical compound
to be produced; and tailoring enzymes, capable of generating variants
by modifying the cluster core compound (Keller, 2019). They may also
present other components, such as cluster-specific transcription factors,

transporters, and hypothetical proteins (Keller, 2015). Fungal BGCs are
known to vary considerably in composition (similar clusters with different
components), and location (cluster regions overlapping or spanning
multiple chromosomes) even among closely related species (Keller, 2019;
Kjærbølling et al., 2020; Evdokias et al., 2021).

Various approaches to obtain candidate BGCs (potential sequence
regions encoding biosynthesis of SMs) were previously presented (Chavali
and Rhee, 2017), such as fungiSMASH (Blin et al., 2021),
DeepBGC (Hannigan et al., 2019), and TOUCAN (Almeida et al.,
2020). However these approaches show limitations when it comes to
the identification of components and boundaries of candidate BGCs,
often overpredicting candidate regions. fungiSMASH offers the option
to integrate CASSIS (Wolf et al., 2016) to improve cluster boundary
prediction. Apart from being a potentially time-consuming option,
CASSIS requires curated input, such as gene start and end positions and a
reference anchor (backbone) gene, which may not be readily available and
therefore limit its stand-alone application to other state-of-the-art BGC
discovery approaches.

Obtaining accurate candidate BGCs is a critical step towards chemical
synthesis of SM compounds, which can be a complex and costly process as

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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many of these metabolic pathways are silent or poorly expressed (Montiel
et al., 2015; Zhang et al., 2019). In this work, we propose a reinforcement
learning approach based on protein family domains from Pfam (El-
Gebali et al., 2019) and functional annotations to support optimizing the
boundaries and composition of candidate BGCs obtained with state-of-
the-art tools, therefore potentially facilitating validation and experimental
characterization of SM compounds. Protein domains were previously used
in approaches to identify BGCs (Khaldi et al., 2010; Hannigan et al.,
2019), and are used here to represent common or shared functional profiles
among BGCs, such as presence of relevant components. Reinforcement
learning methods are capable of adapting dynamically given feedback
received (Neftci and Averbeck, 2019), and therefore might be suitable
to handle the overestimation of candidate BGC boundaries, as well as the
intrinsic diversity of fungal BGC components, potentially favoring the
discovery of novel compounds.

In reinforcement learning, a learning agent interacts directly with
an environment through actions in a goal-oriented manner, attempting
to maximize its task reward and find an optimal solution (Sutton and
Barto, 2018). The agent actions are assigned rewards or penalties,
computed based on a given function and according to environment states
reached (Sutton and Barto, 2018). When optimizing candidate BGCs,
rewards could be assigned for when the agent identifies correct components
and properly defines cluster boundaries, while penalties could be given
when the agent disregards relevant components from a candidate BGC.
While navigating through the environment, the learning agent tries to
balance exploitation (acquired knowledge of best actions taken) and
exploration (choose actions not tried previously) (Sutton and Barto, 2018).
Reinforcement learning approaches had limited applications in biological
contexts so far (Mahmud et al., 2018), however results show they generated
robust policies and outperformed previous methods in tasks performing
multiple sequence alignment (Mircea et al., 2018), controlling gene
regulatory networks (Imani and Braga-Neto, 2018), optimizing DNA and
protein sequences (Angermueller et al., 2020), and performing de novo
drug design (Gottipati et al., 2020). Our reinforcement learning approach
relies on protein domains and functional annotations of BGC components
to optimize candidate BGCs obtained with state-of-the-art tools, which
often overestimate cluster boundaries.

2 Methods
The reinforcement learning approach presented here relies on Q-
learning (Watkins and Dayan, 1992), a off-policy temporal difference
algorithm, which is capable of learning directly from interacting with the
environment, without relying on an environment model nor on a long-
term value. Rather, a Q-learner uses the next step reward and estimates its
gain for the following update and learns from each state transition (Sutton
and Barto, 2018). To model a reinforcement learner agent, Pfam protein
domains were extracted from curated BGC instances and synthetic non-
BGC instances, as described in Section 2.1. Specific rewards were
computed for protein domains according to their occurrence in cluster
regions of BGC and synthetic non-BGCs, as described in Section 2.2. Test
candidate BGCs were then submitted to the reinforcement learning agent
to decide on potential BGC components to keep or skip. As a final step,
the agent decisions could then be further enhanced by strategies developed
based on curated functional annotations of BGC components, as described
in Section 2.3. Overall performance is evaluated based on cluster and gene
metrics, as described in Section 2.4.

2.1 Datasets

Publicly available fungal BGC benchmark datasets (Almeida et al., 2019)
were applied to develop the reinforcement learning approach presented
here. Both training and test data are represented through the occurrence of
Pfam protein domain features in curated BGC regions, non-BGC regions,

and test candidate BGC regions. Previous work has shown the relevance of
Pfam domains as features for BGC analysis (Inglis et al., 2013; Kjærbølling
et al., 2020) and discovery (Hannigan et al., 2019; Almeida et al., 2020).
Pfam domains can indicate the presence of key BGC components as
discussed in Section 1, such as polyketide synthase or non-ribosomal
peptide synthetase genes encoding backbone enzymes, genes encoding
tailoring enzymes, transcription factors or transporters. Genes (or genomic
regions, if gene annotations are not available) composing BGCs may
contain none to multiple relevant Pfam domains.

Training Publicly available training datasets are presented in Almeida
et al. (2019). These training datasets are composed of curated fungal
BGC instances obtained from MIBiG (Minimum Information about a
Biosynthetic Gene cluster) (Kautsar et al., 2020) repository, and synthetic
non-BGC instances created from OrthoDB (Kriventseva et al., 2018)
fungal orthologous genes. Training datasets of various distributions were
generated through sampling of orthologous synthetic non-BGC instances,
combined with curated fungal BGC instances (see Almeida et al. (2019)
for details). Previous work has shown the relevance of orthologous genes
in BGC discovery as they indicate conserved genomic regions (Takeda
et al., 2014; Almeida et al., 2020), while BGC regions tend to present
high genomic diversity even among closely related species (Kjærbølling
et al., 2020). Publicly available training datasets of various distributions
were previously evaluated in Almeida et al. (2020), identifying the most
balanced one (50% BGC and 50% non-BGC instances) as the dataset
yielding the best performance. For comparison purposes, this is therefore
the training dataset applied in our approach.

Testing The decisions taken by the reinforcement learning agent are
evaluated on candidate BGCs obtained for the Aspergillus niger
NRRL3 genomic sequence (publicly available at https://gb.

fungalgenomics.ca/portal) by three tools: TOUCAN (Almeida
et al., 2020), fungiSMASH (Blin et al., 2021), and DeepBGC (Hannigan
et al., 2019). Aspergillus niger is an organism of interest given its
ubiquitous presence, and its importance for industrial processes and
biotechnology, which makes it a relevant species in the study of BGC
discovery (de Vries et al., 2017; Aguilar-Pontes et al., 2018; Evdokias
et al., 2021). To obtain test candidate BGCs from A. niger amino acid
sequence, we extracted sequentially sliding windows of fixed 10,000 amino
acid length with a 30% window overlap (see Almeida et al. (2020) for
details). Aspergillus niger candidate BGCs were then obtained from each
BGC discovery tool, based on the same sequentially sliding windows to
allow candidate predictions to be compared across the three tools. Before
being processed by the proposed reinforcement learning agent, candidate
BGCs obtained by all three tools were pre-processed using a majority vote
strategy.

Candidate BGC pre-processing−Majority vote: Candidate BGCs contain
a set of genomic region identifiers (such as gene names), as well as their
corresponding Pfam protein domains. Examples of candidate BGCs are
shown in Figure 1. For our experiments, candidate BGCs were obtained
based on a test set of A. niger genomic regions of 10,000 amino acid sliding
windows with a 30% overlap.

On one hand, overlapping regions allow for covering potential BGC
fragmentation due to fixed length sliding windows. On the other hand it
will also generate repeated regions in candidate BGCs. The majority vote
strategy, shown in Figure 1, therefore handles duplicated regions based on
a local consensus. It works as follows: each gene g in a candidate BGC is
represented by a label vectorL = l0, l1, ..., lm wherem is the number of
candidate BGCs in which g appears and li the candidate BGC label (0 for
predicted as non-BGC and1 for predicted as BGC). The majority vote score
vscore for a gene g is therefore the average value of its predicted labelsL.
Sequential genes presenting a vscore ≥ 0.5 are therefore concatenated as
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Fig. 1. Computation of majority vote pre-processing for candidate BGCs: regions are
merged according to the average score of predicted labels

positive candidate BGCs, while the other genes with a vscore < 0.5 are
concatenated as negative candidate BGCs, up to a limit of 10,000 amino
acids per cluster. In our experiments, A. niger gene models were used as
reference points, however in the lack of gene models, regions of fixed
smaller size than the sliding window length could be considered instead.

2.2 Reinforcement learning method

The proposed reinforcement learning approach is based on the temporal-
difference and off-policy algorithm Q-learning (Watkins and Dayan, 1992;
Sutton and Barto, 2018). In Q-learning, the action-value function Q

converges towards an optimal policy, and allows the reinforcement learning
agent to decide on the next step. The Q function provides the expected
value of an action a, given a state s, and it is dynamically updated during
the agent experience of interacting with the environment. Given a set of
actions A, a set of states S and respective rewards R at a timestep t, the
Q function is computed as:

Q(St, At) = Q(St, At)+α [Rt+1+γmax
a

Q(St+1,a)−Q(St, At)]

where α is the learning rate, and γ the discount-rate factor. Additionally,
a probability ε defines the algorithm exploration versus exploitation
rate (Sutton and Barto, 2018). In the context of optimizing BGC
components, the reinforcement learning agent chooses the most suitable
action within the set of actions A = keep, skip for a candidate BGC,
which is a set of states represented by Pfam domains within each gene. At
the training phase state rewards were computed by extracting Pfam protein
domains from the selected training dataset, as described in Section 2.1.
Each protein domain d is represented by an occurrence vector C =

c0, c1, ...cn, where n is the number training dataset instances, and ci
the domain occurrence per training instance (ci > 0 if a curated BGC
instance, and ci < 0 otherwise). To determine the rewards per action
Rkeep and Rskip of a domain d, we first compute a score s as follows:

skeep =
∑

x∈C

x

|C| sskip =
∣∣1− skeep

∣∣

After computing both skeep and sskip, a keepSkip threshold is applied
to finally determine the rewards Rkeep and Rskip for domain d, as in:

Rkeep, Rskip =

{
skeep,−skeep if skeep > (sskip ∗ keepSkip)
−sskip, sskip otherwise.

The agent is assigned a penalty for each step it receives a negative reward
R < 0, with a total penalty computed per episode. An episode is completed
when the agent has gone through the entire training dataset.

In the testing phase, the reinforcement learning agent is evaluated by
the keep or skip actions it decides on for genes in candidate BGCs. Pfam

domains are therefore extracted per gene (or per fixed size region, in case
gene models are not available) in candidate BGCs. The optimal action for
a gene g containing a set of domains D = d0, d1, ..., dn, where n is the
number of domains found in g is computed as follows:

ga = argmax(

n∑

i=0

di(Rkeep),

n∑

i=0

di(Rskip))

Genes for which Rskip > Rkeep are assigned the action ga = skip,
otherwise they are assigned a ga = keep. Only genes assigned a ga =

keep action will be maintained in a given candidate BGC.

2.3 Integrating functional annotations

Biosynthetic gene clusters are generally formed by components that
play different roles in the cluster, such as backbone and tailoring
enzymes, transcription factors, transporters, and hypothetical proteins,
as discussed in Section 1. Backbone and tailoring enzymes for instance
are considered essential BGC building blocks for the biosynthesis of SM
compounds (Keller, 2019). A total of 85 A. niger BGCs (Inglis et al.,
2013) were used as our gold standard. To define these BGCs, Inglis
et al. (2013) described obtaining in silico BGCs from state-of-the-art
tools, and refining their boundaries based on published experimental
data, synteny between BGC genes across multiple species, assignment
of experimentally based GO terms, intergenic distance between boundary
and adjacent genes. These 85 gold standard A. niger BGCs were then
manually curated with their functional annotation within clusters. Pfam
protein domains were then extracted from functionally annotated BGC
gold-standard genes, and associated with a BGC component role. A list
of all Pfam domains associated with each annotated BGC component is
shown in Supplementary Table 1.

To integrate the functional annotation of BGC components, three
strategies were developed based on Pfam domains associated to component
roles. The three strategies are applied to enhance the reinforcement
learning agent decisions. The averageAction strategy handle genes
lacking Pfam domains; theneighborWeight strategy handles presence
of annotations in neighboring genes; and the dryIslands strategy
handles absence of annotations in contiguous neighboring genes.

Fig. 2. Example of functional annotation strategies applied to a candidate BGC

Various gold-standard BGC genes, mostly annotated as hypothetical
proteins, simply do not contain any Pfam domain annotations and
therefore may be directly assigned an action ga = skip. BGC
components considered hypothetical proteins may play a relevant role in
the cluster (Keller, 2015). However they become challenging components
to identify due to their lack of features, which makes them harder to
distinguish from the noise within non-relevant components. With the
averageAction strategy, if the reinforcement learning agent assigns
an action ga = keep for a minimum gene threshold in a candidate BGC
G, then genes inG that do not contain protein domains (D = ∅) will also
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be assigned an action ga = keep. Optimization of the minimum threshold
([25%, 50%, 75%]) has yielded 50% as the most suitable value.

To implement the neighborWeight and dryIslands strategies,
a candidate BGC G is assigned a weight vector W , where for each gene
g in G a weight w is computed as follows:

w =
n∑

i=0

hi
hi =





β if backbone,
λ if other annotation,
σ otherwise.

where n is the number of domains found in g, and h the score associated
with the BGC component functional annotation. For the sake of the
experiments described in Section 3, we have set the following values:
β = 2 if backbone, λ = 1.5 if other annotation, andσ = 0 otherwise. For
the neighborWeight strategy, if a k number of surrounding neighbors
of a gene g present a

∑k
i=0 wi > 1, then the gene weight gw = 1 and

the gene action ga = keep. Optimization of the number of neighbor
genes k = [1, 2, 3] has yielded the most suitable k = 1. For the
dryIslands strategy, if

∑j
i=0 gw = 0 for j sequential genes in G,

then the gene action ga = skip. Optimization of the dry island size
j = [3, 4, 5] has yielded the most suitable j = 3. Figure 2 shows an
example of how the reinforcement learning agent decisions are adjusted
by the neighborWeight and dryIslands strategies. Functional
annotations of BGC components provide expert domain knowledge and
could potentially improve the actions chosen by the reinforcement learning
agent, therefore improving precision of candidate BGC components.

2.4 Evaluation metrics

The performance of the reinforcement learning approach proposed here is
evaluated in terms of gene metrics and cluster metrics, for which precision
(P), recall (R), F-measure (F-m) are computed. Cluster metrics show the
performance on identifying cluster regions, and considers as true positives
(TPs) candidate BGCs G that have at least one gene g that belongs to the
set of gold-standard BGC genes. Gene metrics shows the performance on
matching genes in candidate BGCs with the complete set of gold-standard
BGC genes, and considers as true positives (TPs) the candidate BGC genes
that are identical or similar gene matches to gold-standard BGC genes. The
similarity between candidate and gold-standard BGC genes is obtained
through local BLAST alignment, with minimum thresholds of percent
identity pident ≥ 20 and query coverage qcov ≥ 10. We also compute
the average F-m between cluster and gene metrics F-m.

3 Results
The reinforcement learning approach proposed here is evaluated
on candidate BGCs obtained with three BGC discovery tools:
TOUCAN (Almeida et al., 2020), fungiSMASH (Blin et al., 2021)
independently and also combined with CASSIS (Wolf et al., 2016),
and DeepBGC (Hannigan et al., 2019) for the A. niger genome. A
total of 85 A. niger BGCs (Inglis et al., 2013) were manually curated
and are considered as gold standard to evaluate the performance of our
reinforcement learning approach on selecting BGC components from
candidate BGCs. In Section 3.1 we present an overview of the distribution
of genes presenting protein domains associated to functional annotations
in the training and test data. Section 3.2 presents the results obtained by the
reinforcement learning approach on candidate BGCs from the three tools,
and Section 3.3 shows an analysis of reproducibility of the reinforcement
learning approach in a second fungal genome, Aspergillus nidulans.

3.1 Distribution of domains linked to BGC components

We performed an analysis of the presence of protein domains associated
with BGC component roles in genes belonging to the training and test
datasets. The distribution of genes that present protein domains associated
with BGC component types is shown in Table 1. A protein domain may

be associated with multiple component roles if it was found to be present
in genes annotated with different components.

Table 1. Domains linked to A. niger BGC components in dataset genes

Component Training Test
type BGCs non-BGCs gold BGCs non-gold BGCs
Backbones 17.0% 2.0% 15.9% 2.2%
Tailoring enzymes 30.5% 7.8% 9.9% 11.9%
Transcription factors 4.8% 2.1% 5.9% 4.3%
Transporters 5.6% 2.8% 7.4% 4.6%
Non-component domains 44.7% 46.93% 49.3% 58.9%
No domains 14.6% 41.15% 15.5% 23.2%
Total # genes 2833 1781 624 11239

It is noticeable from Table 1 that protein domains appearing in BGC
components are mostly found among genes in BGCs and gold BGCs
instances. Genes that do not contain any protein domains are mostly
found among non-BGCs and non-gold BGCs instances. The percentage
of genes without any encoded protein domains is higher than that of genes
with encoded domains associated to transcription factors and transporters
among BGCs and gold BGC genes.

The distribution of genes encoding protein domains associated with
backbones in the training data is similar to the that of the test data. Genes
without any encoded protein domains also yield a similar distribution
among BGCs (14.6%) and gold BGCs (15.5%) genes. Among non-gold-
standard BGC genes, more than half encode protein domains that are
not associated to any component role. Overall the percentages in Table 1
demonstrate how the presence of protein domains associated to BGC
components is ubiquitous both in BGCs and non-BGC regions, which
makes correctly identifying BGC components a challenging task.

3.2 Reinforcement learning improves candidate BGCs

We present here the results obtained by the proposed reinforcement
learning approach on candidate BGCs obtained with three BGC
discovery tools: TOUCAN, fungiSMASH (fungiSMASH/C combined
with CASSIS), and DeepBGC. Previously to processing candidate
BGCs, we optimized the following reinforcement learning agent
parameters: learning rate α, discount-rate factor γ, exploration-
exploitation probability ε, and the keepSkip threshold, as described
in Section 2.2, over a set of 500 episodes on the training data
evaluating both fixed and incremental parameter values. The parameters
α = 0.01, γ = 0.01, ε = 0.01, keepSkip = 0.5 yielded the
smallest average penalty over 500 episodes. Supplementary Tables
2 and 3 show a summary of the parameter optimization. In this
Section, we refer here to TOUCAN, fungiSMASH, fungiSMASH/C
and DeepBGC as the candidate BGCs directly outputted by each tool;
TOUCAN-Q, fungiSMASH-Q, fungiSMASH/C-Q and DeepBGC-Q

as the candidate BGCs processed by the proposed reinforcement
learning approach; and TOUCAN-Q-all, fungiSMASH-Q-all,
fungiSMASH/C-Q-all and DeepBGC-Q-all as the candidate
BGCs processed by the reinforcement learning approach combined with
functional annotation strategies.

Table 2. Performance on A. niger candidate BGCs from TOUCAN,
fungiSMASH and DeepBGC

gene metrics cluster metrics average % gold-std. genes
model P R F-m P R F-m F-m negative skipped
TOUCAN 0.269 0.906 0.414 0.963 0.929 0.946 0.68 12.6% -
TOUCAN-Q 0.402 0.68 0.506 0.963 0.929 0.946 0.726 12.6% 26.4%
TOUCAN-Q-all 0.409 0.74 0.527 0.963 0.929 0.946 0.737 12.6% 16.2%
fungiSMASH 0.341 0.665 0.451 0.649 0.741 0.692 0.571 33.2% -
fungiSMASH-Q 0.521 0.516 0.519 1 0.741 0.851 0.685 33.2% 22.3%
fungiSMASH-Q-all 0.495 0.575 0.532 1 0.741 0.851 0.691 33.2% 13.8%
fungiSMASH/C 0.371 0.713 0.488 1 0.729 0.844 0.666 34.13% -
fungiSMASH/C-Q 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%
fungiSMASH/C-Q-all 0.523 0.508 0.515 1 0.729 0.844 0.680 34.13% 22.11%
DeepBGC 0.351 0.481 0.406 0.732 0.612 0.667 0.536 52.4% -
DeepBGC-Q 0.574 0.42 0.485 1 0.612 0.759 0.622 52.4% 12.2%
DeepBGC-Q-all 0.538 0.46 0.496 1 0.612 0.759 0.627 52.4% 7.1%
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Fig. 3. Comparison between gold-standard and candidate BGC composition for four A. niger clusters. Non-BGC genes are shown in dark blue. (A) Candidate BGCs for which the
reinforcement learning agent correctly skipped most non-BGC genes compared to their polyketide (left) and fatty acid (right) gold standard BGCs. (B) Candidate BGCs for which the agent
kept most non-BGC genes compared to their two non-ribosomal peptide gold standard BGCs, possibly due to their ambiguous protein domains, which more than half are associated to BGC
component roles but do not belong to neighboring clusters.

Table 2 shows the results obtained by the reinforcement learning
agent on candidate BGCs for all three tools. As discussed in Section 2.4,
cluster metrics show the approach performance on identifying cluster
regions, while gene metrics show the performance on matching candidate
and gold-standard genes within a BGC. The average F-m shows the
overall performance, considering both cluster F-m and gene F-m. The
proposed reinforcement learning approach improved gene metrics, more
noticeably gene precision in candidate BGCs outputted by all three
tools: an increase of 14%, 15.4%, 15.2%, and 18.7% achieved by
TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all

and DeepBGC-Q-all respectively. For TOUCAN-Q-all and
fungiSMASH/C-Q-all, gene metrics were improved without harming
cluster metrics, while for fungiSMASH-Q-all and DeepBGC-Q-all

cluster metrics were also improved considerably, with an F-m increase
of 15.9% and 9.2% for fungiSMASH-Q-all and DeepBGC-Q-all

respectively. This indicates that the reinforcement learning agent was
capable of improving the precision of candidate BGC components
without discarding correctly predicted candidate BGCs, and improving
coverage of true positive BGC regions and properly targeting false positive
ones predicted by both fungiSMASH and DeepBGC. The average F-
m of all three tools also improved when applying the reinforcement
learning agent combined with the functional annotation strategies. An
increase in average F-m of 5.7%, 12%, 1.4%, and 9.1% was shown for
TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all

and DeepBGC-Q-all respectively. Apart from improving gene
precision, all candidate BGCs processed by the reinforcement learning
agent combined with functional annotation strategies (Q-all) yielded
a smaller percentage of gold-standard genes skipped, except for

fungiSMASH/C-Q-all, which yield the same performance for Q and
Q-all models. This suggests that BGC functional annotations can be
relevant features to support improving precision of predicted BGCs, and
better determine their structure.

Candidate BGCs shown in Figure 3 demonstrate the changes in
cluster composition before and after applying the presented reinforcement
learning method. A comparison between gold-standard and candidate
BGCs in Figure 3-A shows how the reinforcement learning agent improved
candidate BGCs from all three tools by correctly skipping non-BGC genes
(in blue). Certain cases however are more complex for the agent, given the
ambiguity of protein domains in candidate BGC genes. As the examples
in Figure 3-B show, more non-BGC genes were kept by the agent, which
can lead to processed candidate BGCs to be somehow overpredicted. This
behavior could be caused by the fact that domains found in non-BGC
genes in Figure 3-B also appear in true positive BGC genes, as opposed to
Figure 3-A for which most domains in non-BGC genes were not present in
any true positive BGC genes. Among protein domains of non-BGC genes
(blue) in Figure 3-B, more than 50% are associated to BGC component
roles, and found immediately after true positive BGC genes. Non-BGC
genes shown in Figure 3-A presented only 20% of domains linked to BGC
component roles. This demonstrates how ambiguous domains in candidate
BGCs or their neighboring genes, along with the genomic diversity of
these clusters, may increase the complexity of accurately identifying BGC
components and boundaries.

Properly identifying BGC components is a challenging task not only
for computational approaches that attempt to do so, but even for synthetic
approaches that try to express genes composing candidate BGCs (Keller,
2019). Supplementary Table 4 shows an analysis of A. niger BGC
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component types found in gold-standard BGC genes and components
found in candidate BGCs, before and after applying the reinforcement
learning approach proposed here. As discussed in Section 2.3, gold BGC
genes may contain none to multiple domains, therefore they may present
none to multiple functional annotations. Candidate BGCs outputted
by fungiSMASH and DeepBGC presented a smaller number of true
positives, and consequently a smaller number of components was found
compared to TOUCAN candidates, as shown in Supplementary Table 4.

The reinforcement learning agent aims to improve precision of
candidate BGC components by removing potentially non-relevant regions.
At the same time, the agent has to handle ambiguous genes that
map to protein domains, normally found in both BGC and non-
BGC instances. The number of backbone genes properly identified by
TOUCAN (92.9%), fungiSMASH (70.7%), fungiSMASH/C (69.7%)
and DeepBGC (64.6%) remains the same even after processing by the
reinforcement learning agent for all three tools. This could indicate that
the reinforcement learning agent was capable of learning correctly the
relevance of regions encoding such enzymes. Backbone enzymes are
vital components of BGCs (Kjærbølling et al., 2020), and their accurate
identification could demonstrate the robustness of a BGC discovery
method. Transcription factors and transporters in DeepBGC candidate
BGCs were maintained by the reinforcement learning agent, however the
overall percentage of these components remains lower than the percentage
identified by TOUCAN and fungiSMASH.

Some BGC genes are not associated to any component role, and
often do not even contain any Pfam protein domains, as discussed in
Section 2.3. Usually considered as hypothetical proteins, these genes
pose a challenge on correctly identifying BGC components, and could
be overlooked by BGC discovery approaches since their computational
representation will likely be more analogous to non-BGC regions. These
hypothetical proteins can seem to diverge from other BGC components but
they may play important self-protection roles for the organism producing
a SM compound (Keller, 2019). As shown in Supplementary Table 4,
genes without any domains were the most missed by the reinforcement
learning approach (Q) among candidate BGCs from all three tools.
The averageAction strategy aims to address this issue by keeping
candidate BGC genes without domains when at least a minimum 50%
threshold of genes within a candidate BGC are assigned the action keep.
A more lenient threshold was experimented with for averageAction
strategy, however it can lead to the agent identifying a higher number
false positives− genes without protein domains and often associated with
non-relevant BGC regions − resulting in a decrease in precision.

3.3 Reproducibility in Aspergillus nidulans candidate BGCs

Similarly to A. niger, A. nidulans is a source of highly useful
SMs compounds which are also largely utilized in the pharmaceutical
industry (Inglis et al., 2013; Drott et al., 2020). To further evaluate
the reproducibility of the proposed reinforcement learning approach, we
processed the A. nidulans genome considering as gold standard a total of
72 gold standard BGCs presented in Drott et al. (2020). Assignment of
functional annotations to BGC components is a costly and time-consuming
process. Since manually curated component annotations were not available
for A. nidulans gold-standard BGCs, we generated pseudo-annotations by
assigning potential component types to gold-standard BGC genes based
on similar keywords found in their protein domain descriptions matching
annotated BGC components in A. niger.

For instance, backbone pseudo-annotations were assigned to genes
containing similar descriptions to the annotated backbone genes in A.
niger, such as polyketide synthases, non-ribosomal peptide synthetases,
dimethylallyltryptophan synthases and terpene synthases. Tailoring
enzymes pseudo-annotations were considered as genes containing similar
descriptions of A. niger tailoring enzymes, such as methyltransferases,

monooxygenases, and oxidoreductases. Transcription factor and
transporter pseudo-annotations were assigned to genes presenting domains
described as presenting these functions. A list of all Pfam domains
associated with a pseudo-functional annotation is shown in Supplementary
Table 5. The distribution of component pseudo-annotations found in the
training data and gold-standard genes for A. nidulans is shown in Table 3.

Table 3. Domains linked to A. nidulans pseudo BGC components dataset genes

Pseudo Training Test
component type BGCs non-BGCs gold BGCs non-gold BGCs
Backbones 17.5% 2.13% 20% 2.45%
Tailoring enzymes 36% 3.70% 31.63% 4.5%
Transcription factors 4.83% 2.35% 5.92% 3.92%
Transporters 5.82% 3.65% 7.55% 5.2%
Non-component domains 33.15% 48.28% 35.3% 62.12%
No domains 14.6% 41.15% 12.65% 22.8%
Total # genes 2833 1781 490 10002

Candidate BGCs for A. nidulans were obtained from TOUCAN,
fungiSMASH, fungiSMASH combined with CASSIS, and DeepBGC in
the same manner as candidates were obtained for A. niger, performing
the test set pre-processing using a majority vote of overlapping sliding
windows of fixed 10,000 amino acids as described in Section 2.1 by the
reinforcement learning agent on TOUCAN, fungiSMASH, and DeepBGC
candidate BGCs for A. nidulans are shown in Table 4.

Table 4. Performance on A. nidulans candidate BGCs from the three tools

gene metrics cluster metrics average % gold genes
model P R F-m P R F-m F-m negative skipped
TOUCAN 0.272 0.681 0.389 1 0.685 0.813 0.601 32.24% -
TOUCAN-Q 0.441 0.591 0.505 1 0.681 0.810 0.657 32.24% 13.47%
TOUCAN-Q-all 0.402 0.646 0.495 1 0.681 0.810 0.653 32.24% 7.55%
fungiSMASH 0.319 0.727 0.443 0.817 0.795 0.806 0.624 30.61% -
fungiSMASH-Q 0.479 0.592 0.53 1 0.781 0.877 0.703 30.61% 15.92%
fungiSMASH-Q-all 0.469 0.605 0.529 1 0.736 0.848 0.688 30.61% 13.88%
fungiSMASH/C 0.318 0.762 0.449 1 0.792 0.884 0.666 28.16% -
fungiSMASH/C-Q 0.484 0.581 0.528 1 0.778 0.875 0.702 28.16% 19.18%
fungiSMASH/C-Q-all 0.484 0.581 0.528 1 0.778 0.875 0.702 28.16% 19.18%
DeepBGC 0.328 0.493 0.394 0.723 0.466 0.567 0.480 50.61% -
DeepBGC-Q 0.491 0.441 0.465 1 0.466 0.636 0.550 50.61% 8.57%
DeepBGC-Q-all 0.473 0.492 0.482 1 0.472 0.642 0.562 50.61% 2.86%

Like in A. niger, the reinforcement learning approach improved
gene precision in candidate BGCs outputted by all three tools:
an increase of 13%, 15%, 16.6%, and 14.5% is seen for
TOUCAN-Q-all, fungiSMASH-Q-all, fungiSMASH/C-Q-all

andDeepBGC-Q-all respectively. Gene metrics also yield improvement
in A. nidulans without harming the cluster metrics for TOUCAN-Q-all,
while improving it for fungiSMASH-Q-all and DeepBGC-Q-all,
and only showing a less than 1% difference for fungiSMASH/C-Q-all.
As previously mentioned, this indicates that the reinforcement learning
agent was able to improve the precision of candidate BGC components
without discarding correctly predicted candidate BGC regions. Average
F-m performance also showed improvement for all three tools when
compared to their original candidate BGCs, with an increase of 5.2%,
6.4%, 3.6%, and 8.2% for TOUCAN-Q-all, fungiSMASH-Q-all,
fungiSMASH/c-Q-all and DeepBGC-Q-all. When comparing the
models relying on the reinforcement learning agent only (Q) versus the
ones relying on both the agent and the functional annotation strategies
(Q-all) we can observe improvements on gene recall and the percentage
of gold-standard genes skipped, but a small drop on gene precision, with the
exception of fungiSMASH/C models that yield similar performance for
Q and Q-allmodels. Likely, the usage of A. nidulans pseudo-annotations
resulted in a slight increase of false positive components. However it might
be an useful alternative when manually curated functional annotations are
not available, or also when wanting to favor recall over precision.

Candidate BGC composition before and after applying the
reinforcement learning agent is shown in Supplementary Figure
1. Similarly to A. niger, Supplementary Figure 1-A demonstrates
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improvements in candidate BGCs achieved by the agent by skipping non-
BGC genes (in blue). When handling more complex cases, as shown
in Supplementary Figure 1-B, the agent kept most non-BGC genes,
potentially resulting in overpredicted boundaries. Approximately 50% of
protein domains from non-BGC genes in Supplementary Figure 1-B were
associated to pseudo-functional annotations in A. nidulans, while only
20% of domains from non-BGC genes in Supplementary Figure 1-A were
associated to any annotation.

4 Discussion and Conclusion
Secondary metabolites are a crucial source of compounds that benefit
human health. Identifying BGCs responsible for synthesizing these
compounds in fungi may lead to the discovery of new natural products,
and potentially novel drugs. State-of-the-art tools for BGC discovery
often overpredict BGC boundaries and components. In fungi BGCs are
typically encoded by a high diversity of components, known to vary even
among evolutionary closely related species. Precise identification of BGC
components is therefore a challenging task, and can facilitate the validation
and experimental characterization of SM compounds. In this work we
presented a reinforcement learning method and functional annotation
strategies to support optimizing fungal candidate BGCs obtained with
state-of-the-art tools. We evaluated our proposed approach on candidate
BGCs obtained for A. niger and A. nidulans by three BGC discovery
tools: TOUCAN, based on supervised learning; fungiSMASH, based on
probabilistic and rule-based methods, as well as a version of fungiSMASH
combined with CASSIS for cluster border prediction; and DeepBGC,
based on deep learning. The results obtained by our reinforcement
learning approach yield improvement of cluster and gene precision of
BGC candidates obtained from all three tools, without affecting correctly
predicted BGC regions.

Overall, best average F-m performances obtained for A. niger relied
on the combination of the reinforcement learning method and functional
annotation strategies based on expert curation. In A. nidulans, even pseudo-
functional annotations were able to improve BGC gene recall, and reduce
the number of gold-standard genes being skipped by the reinforcement
learning agent. This indicates that, when available, integrating functional
annotations further advances the approach capabilities. Functional
annotations may however not always be publicly available, since they
can be time-consuming to obtain. The results have shown however
that the reinforcement learning approach alone, based solely on Pfam
protein domains, improved average F-m of candidate BGCs in average
by 7% in A. niger and 5.8% in A. nidulans. The performance of
the reinforcement learning approach indicates its ability to identify the
relevance of certain protein domain profiles associated with fungal BGCs,
supporting previous findings of these as relevant features in the context of
BGC discovery (Khaldi et al., 2010; Cimermancic et al., 2014; Hannigan
et al., 2019).

The results achieved through reinforcement learning in candidate
BGCs from both fungal genomes evaluated are indicative of the method
generalization power and robustness by handling candidate BGCs from
different organisms. Additionally a preliminary analysis, shown in
Supplementary Figure 2, was performed by processing completely
annotated MIBiG BGCs from three fungal species using the proposed
reinforcement learning method. The fact that the completely annotated
BGCs were kept almost intact by the reinforcement learning method, with
or without functional annotation strategies is another indication of its
potential robustness on properly identifying essential BGC components
for the SM biosynthesis.

As discussed in Section 1, properly identifying BGC components
can be a great challenge, given the underlying high diversity of BGCs.
Moreover, another important challenge related to the scarcity of validated
fungal BGC data are potential biases, both of cluster boundary definition,

as well as of BGC composition, since most MIBiG fungal BGCs
composing the training dataset are polyketide synthases. While reported
as manually curated (Kautsar et al., 2020), most MIBiG fungal BGCs
in the training dataset are partially annotated, and Inglis et al. (2013)
presented limited experimental characterization evidence for the annotated
Aspergillus BGCs considered as gold standard BGCs in this work. While
the number of completely or partially annotated fungal BGCs is scarce,
the number of experimentally characterized clusters is even smaller.
This only highlights that improving the availability of validated and
experimentally characterized fungal BGC data can be a fundamental step
towards supporting the development of robust in silico approaches for
fungal BGC discovery.

Data availability The source code as well as all datasets applied in our
experiments are made publicly available at https://github.com/
bioinfoUQAM/RL-bgc-components. All material is available
under the MIT software license. The datasets used in this work were
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Creative Commons Attribution 4.0 international license.
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