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ABSTRACT

By modelling reserves with micro-level models, individual claims information is better preserved
and can be more easily handled in the fitting process. Some of the claim information is available
immediately at the report date and remains known until the closure of the claim. However, other
useful information changes unpredictably as claims develop, for example, the previously observed
number of payments. In this paper, we seek to model payment counts in a discrete manner based
on past information both in terms of claim characteristics and previous payment counts. We use a
dynamic score that weighs the risk of the claim based on previous claim behaviour and that gets
updated at the end of each discrete interval. In this paper’s model we will also distinguish between
the different types of payments. We evaluate our model by fitting it into a data set from a major
Canadian insurance company. We will also discuss estimation procedures, make predictions, and
compare the results with other models.

Keywords loss reserving · individual models · BMS · GAMLSS

1 Introduction

In order to accurately predict the cost of future liabilities for open claims, practitioners and researchers have suggested
several loss reserving models over the years. Over time, these models have changed a lot due to a significant increase in
computing capacity, as well as in the quantity (and quality) of available data. While, in the past, models were always
part of a collective framework, i.e. built for a data set aggregated by occurrence and development period (run-off
triangle), today we see a wide selection of models based on varying granularity of the underlying data set, ranging from
raw data (micro-level) to aggregated data (macro-level). The actuarial literature on the subject has grown considerably
in recent years and we do not wish to do a detailed review here in order not to lengthen this paper unnecessarily. A
review of the literature associated with some of the most important and well-known models, such as the Chain-Ladder
model (Mack [24, 23]), can be found in Wüthrich and Merz [37], and England and Verrall [11]. As for individual
approaches, let us mention, among others, the literature review in Blier et al. [5] (section 4), and Taylor [32]. It should
be noted that the quick development of research in the field, partially explained by the increasing use of techniques
derived from machine learning, makes any review of the literature necessarily incomplete on the day of its publication.

In this paper, we made a proposition in line with parametric and semi-parametric models. More specifically, we were
inspired by models based on Position Dependent Marked-Poisson Process (PDMPP) to predict the exact time of each of
the events of a claim, such as payments and settlements. One of the first papers using this type of model is Haastrup
and Arjas [12] and was expanded, in 2014, by a more practical implementation proposed by Antonio and Plat [1], in
which a more evidence-based methodology was suggested for both IBNR and RBNS reserves using a data set from
an insurance company. Antonio et al. [2] further developed this type of model by including a multi-state approach
that allowed the model to transition from one state to another as the claim evolved. Other processes that have been
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considered for the loss reserving literature include the Cox process ( in Avanzi et al. [3]) for which dependence was
considered through common shock variables and the Hawkes process with time-varying intensities ( see Maciak et
al. [22]). In contrast to these propositions, other models have been suggested. For example, let us mention, Zhao
et al. [40] who have developed a semi-parametric model for IBNR claims, and later incorporated copulae into the
model. Moreover, a more hierarchical structures was introduced in Yanez and Pigeon [39], where the development
of claims was divided into three components: duration of claims, payment frequency, and severity. Then in 2022,
another hierarchical approach was suggested in Okine et al. [26] which included the dependency between payments
and settlement date.

Because of their granular structure, micro-level models can include more claim information in the modelling process
than their aggregated counterparts. This information takes the form of covariates, which are of three types (see Taylor
et al. [31]): static, time dynamic, and unpredictable time dynamic. Although time dynamic covariates change as
time passes while static covariates remain fixed, both can be predicted with certainty at any point in time. In contrast,
unpredictable time dynamic covariates are, as the name suggests, unpredictable. Thus, both static and time dynamic
covariates can often be included in models in a more straightforward manner than unpredictable time dynamic covariates.
Despite the uncertainty associated with the latter type of covariates, useful claim information can be extracted from them.
Specifically, when modelling RBNS claims these covariates are abundant because a portion of the claim development
has already been observed. Furthermore, few models that can handle this information have been implemented, namely
Antonio et al. [2], which considered including interchangeable states based on payment counts, and Pigeon et al. [28],
which made use of incurred losses. In this paper, we propose a new method that can handle an unpredictable time
dynamic covariate in a discrete time interval framework.

For each of the open claims in the portfolio, we suggest using observed payments to improve the prediction of the
future payments. Past payments are summarized using a score system that is updated at the end of a given discrete time
interval with the new available information. Our discrete time scoring model can be implemented into any individual
model that can predict payment counts at discrete intervals and that allows for the inclusion of covariates. This latter
element is important because the claim score will be considered as a covariate. In particular, the frequency component
in Yanez and Pigeon [39] has both characteristics making it a candidate for the inclusion of this more intricate type of
covariate.

The idea of calculating a score based on previous observations is not new to the actuarial literature. In fact, the model in
this paper draws inspiration from the bonus-malus scoring system (BMS) developed for claim counts. Such a method
was developed in Boucher et al. [6], where the authors summarized previous claim counts into a single numerical claim
score. This model was further developed in Boucher and Pigeon [7], where the claim score included linear effects.
More recently Verschuren [35] proposed a version of the model that incorporates the claim development of different
product lines into the score system. Finally, in Boucher and Pigeon [8] a more compact and straightforward scoring
system, called a Kappa-N model, was implemented. In this work, we take inspiration from all these sources to introduce
a similar dynamic claim scoring system into the micro-level reserving literature.

The method we suggest offers a solution to the inclusion of past claim information in the modelling process, fully taking
advantage of a discrete interval structure. Moreover, we suggest to distinguish between different types of payments in
the modelling process. This distinction is particularly relevant in loss reserving because payments occur for a variety of
reasons (e.g., medical bills, legal fees, etc...), and their distribution could vary. We illustrate this fact in our numerical
analysis. To summarize, this paper has the following objectives:

• to implement a dynamic claim scoring system into a discrete interval payment loss reserve model, and to
weight the impact of such covariates in the fitting process;

• to develop a model that considers different types of payments, and to analyze their distribution;

• to outperform models that only make use of static and time dynamic covariates.

This paper is structured as follows. In Section 2, we look at the general framework of the model. In Section 2.6, we
discuss the estimation procedure followed by Section 3 where we describe the simulation procedure of payment counts.
In Section 4, we describe the data set used, followed by the numerical results of both our model and other comparative
models. Finally, Section 5 contains concluding remarks and mentions further topics that could be explored based on our
findings.

2 Statistical framework

In this section we specify the statistical framework of our approach. We define the notation that we use throughout the
paper and we present the construction of the dynamic claim score.
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2.1 Introductory notation

We show the typical development of a P&C claim in Figure 1. First, accident i occurs and we identify t(o)i , the
occurrence delay, i.e., the delay between the beginning of the accident year and the exact accident date. There is an
additional delay between the accident date and the reporting date denoted by t(r)i . After the accident has been reported,
several payments may be made – illustrated by dots in Figure 1 – before the claim is closed after a final delay t(c)i . At
the valuation date, claims can be split into two categories depending on their development. If the claim has not yet been
reported we considered it Incurred But Not Reported, or IBNR, and if it has been reported we consider it Reported But
Not Settled, or RBNS. Furthermore, for RBNS claims we can compute t(e)i , the delay between the reporting date and
the valuation date.

Figure 1: Development of two claims

In a loss-reserving context, we first need to distinguish the status of each of the claims in the portfolio. Let I =
I(C) ∪ I(O) be the set containing the claims available at the valuation date, where I(C) and I(O) are the subsets
containing, respectively, the closed and the open (RBNS) claims. Let I∗ be the set containing unreported claims
(IBNR), which are unknown at the valuation date.

For each claim i ∈ I , the observation period, i.e., the period between the reporting date and the closure date (if the claim
is closed) or the valuation date (if the claim is open), is denoted by (0; τi], where τi = min{t(c)i , t

(e)
i }. Afterwards,

the observation period, (0; τi], i ∈ I, can be divided into time intervals based on vector d = [d0, d1, . . . , dK ], where
dk < dk+1, d0 = 0 and dK > maxi{τi}. For the sake of simplicity, we can consider an annual framework, i.e.,
d = [0, 1, 2, . . . ], but one could also consider a monthly or seasonal division. We suggest to base this decision on the
expertise within the company, or on a cross-validation technique.

Furthermore, let Ni,k be the number of payments for claim i, i ∈ I, taking place over the interval (dk, dk+1], and we
define Ni = [Ni,0, Ni,1, . . . , Ni,K−1]. To each Ni,k, we associate an exposure measure indicating how long claim i has
been open over interval (dk, dk+1]. Thus, let Ei,k be the exposure measure of the claim i over the interval (dk, dk+1]:

Ei,k = max{min{τi, dk+1} − dk, 0},

and Ei = [Ei,0, Ei,1, . . . , Ei,K−1].

At the reporting date, micro-level information from a claim becomes available in the form of a vector Xi =
[Xi,1, Xi,2, . . . , Xi,g] of size g containing available static covariates, e.g., the region where the accident occurred, etc.
Note that this vector is not available for unreported claims (IBNR).

We can also identify a vector Zi,k = [Zi,k,1, Zi,k,2, . . . , Zi,k,h] of size h containing time dynamic covariates available
at each interval (dk, dk+1]. In particular, this vector contains at least one covariate indicating the interval k with which
Ni,k is associated. Thus, this vector exists for reported claims, as well as for those that have not yet been reported
(IBNR). For the latter, we define Z∗

i,k = [dk].

3
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2.2 A priori distribution of the number of payments

2.2.1 RBNS claims

For open claims, i ∈ I(O), we aim to predict the number of payments Ni,k, over the unobserved intervals after the
valuation date t(e)i . We use the a priori information available at the reporting date (vectors Xi and Zi,k), as well as
the exposure Ei,k before t(e)i . Commonly used approaches in a non-life-insurance context can be considered, such as
generalized linear models (GLM). The expected value of Ni,k, conditionally to Xi, Zi,k and Ei,k, is given by

µi,k = E [Ni,k|Xi,Zi,k, Ei,k] = (Ei,k) g
−1
(
Xiβ

′ + Zi,kθ
′) ,

where g−1() is the inverse of the link function, and β and θ are, respectively, the parameter vectors of static and time
dynamic covariates.

2.2.2 IBNR claims

For claims that have occurred but have not been reported, i ∈ I∗, we again aim to predict the number of payments Ni,k,
however given that the report date occurs after valuation date, predictions must be made for all the intervals. Instead of
having access to the information contained in the vectors Xi and Zi,k we only have the information contained in Z∗

i,k.
Thus, the expected value of Ni,k, knowing Z∗

i,k and Ei,k, is given by,

µ∗
i,k = E

[
Ni,k|Z∗

i,k, Ei,k

]
= (Ei,k) g

−1
(
Z∗

i,kθ
∗′) ,

where g−1() is defined as previously, and θ∗ is the parameter vector based on time intervals (dk, dk+1].

2.3 A posteriori distribution of the number of payments

We suggested a method to model frequency payments at different intervals based on information from vectors Xi and
Zi,k, that respectively include static and time dynamic covariates. Now, we can now focus on using information from
time dynamic through various measures. Let ϵi,k and ηi,k be, respectively, the cumulative number of payments and
exposure of claim i over the interval (d0, dk]:

ϵi,k =

k−1∑
j=0

Ei,j , ηi,k =

k−1∑
j=0

Ni,j .

We include the previously observed frequency in the mean parameter of claim i over interval (dk, dk+1] in the following
way:

µi,k = E [Ni,k|Xi,Zi,k,Hi,k] = (Ei,k) g
−1

(
Xiβ

′ + Zi,kθ
′ + γ1

(
ηi,k
ϵi,k

))
,

where Hi,k is known development of claim i at time dk, and γ1 is the parameter associated with the new component.

Then, we want to adjust the expected value of the frequency by incorporating a covariate that identifies payment-free
periods in order to distinguish between claims that have been open for a longer or shorter period of time. Thus, as
a claim develops, the frequency of payment-free periods may increase or reduce the expected value. This approach
is inspired from the Kappa-N structure suggested by Boucher et al. [6]. Let κi,k represent the total payment-free
exposure observed over interval (d0, dk], such that,

κi,k =

k−1∑
j=0

Ei,j1 (Ni,j = 0) ,

4
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where 1() is the indicator function.

We can rewrite the mean parameter by incorporating both elements into a single claim score:

µi,k = E [Ni,k|Xi,Zi,k,Hi,k] = (Ei,k) g
−1

(
Xiβ

′ + Zi,kθ
′ + γ0(−κi,k) + γ1

(
ηi,k
ϵi,k

))
= (Ei,k) g

−1

(
Xiβ

′ + Zi,kθ
′ + γ0

(
−κi,k +

γ1
γ0

(
ηi,k
ϵi,k

)))

= (Ei,k) g
−1

Xiβ
′ + Zi,kθ

′ + γ0

(
−κi,k + ψ

(
ηi,k
ϵi,k

))
claim score ℓi,k


= (Ei,k) g

−1
(
Xiβ

′ + Zi,kθ
′ + γ0ℓi,k

)
,

where k > 0 and ψ is defined as the jump-parameter.

With this structure, we summarize past claim experience into a single claim score that will be updated at the end of
each interval. Then, the mean parameter can identify claims that have higher chance of producing payments, and
riskier claims. Notice that κi,k is multiplied by −1 in order to better accommodate the negative impact that no-payment
periods have on the claim score.

Note that the mean parameter is unbounded. This can be an issue because upper values of the mean parameter can
become excessively large as we are including past frequency in our calculations and outliers are not uncommon. Thus,
we suggest considering a maximum value for the claim score to avoid an overestimation of future payment counts.
Moreover, the decreasing part of the measure, based on κi,k, is bounded by the maximal duration of a claim, and is
less prone to impacting excessively the prediction of the mean. Thus, the inclusion of a minimal value for the mean
parameter is less suitable. Finally, when we look into new claims, no past history has been previously observed, and
we can not include the dynamic claim score measure. Thus, by setting the initial value of the claim score to 0, all
predictions of the mean parameter are based only on the other covariates available at the report date. We suggest
obtaining a claim score such that:

ℓi,k =

min
{(

−κi,k + ψ

(
ηi,k
ϵi,k

))
, ℓmax

}
, for k = 1, 2, . . .

0, for k = 0.
(1)

One should note that the claim score for claim i is updated at the end of each interval k based on information up to the
end of the previous interval k − 1. As such, it is possible to identify which claims are more likely to produce payments
derived from past information summarized by the value of the claim score at any given time. We could also expand
upon the definition of the claim score by letting νi,k be the sum of the previously observed frequencies such that:

νi,k =

k−1∑
j=0

Ni,j

Ei,j
,

and we can then reformulate the value of the risk measure:

ℓi,k =

{
min {(−κi,k + ψνi,k) , ℓmax} , for k = 1, 2, . . .

0, for k = 0.
(2)

=


min


k−1∑
j=0

(
−Ei,j1 (Ni,j = 0) + ψ

(
Ni,j

Ei,j

))
, ℓmax

 , for k = 1, 2, . . .

0, for k = 0.

Then we can obtain a recursive structure reminiscent of the Bonus-Malus structure used for claim count modelling:

5
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ℓi,k =

min
{(

ℓi,k−1 − Ei,j1 (Ni,j = 0) + ψ

(
Ni,j

Ei,j

))
, ℓmax

}
, for k = 1, 2, . . .

0, for k = 0.
(3)

In particular, model (3) has the added advantage of being able to compute the value of any risk score ℓi,k just by
knowing the value of the previous risk score ℓi,k−1 and the information from the current interval (dk−1, dk]. Hence,
unlike previous propositions (1 and 2), all information observed over the period (d0, dk−1] is not mandatory to compute
ℓi,k.

For the remaining part of this paper, we label these three propositions as models (M1), (M2) and (M3), respectively for
models based on claim score definitions (1), (2) and (3). Further considerations will be addressed in next section using
(M1) as an example, however similar results can be obtained for models (M2) and (M3).

2.4 Payment categories and IBNR specifications for claim-score modelling

Payments can be divided into several categories, e.g., payments related to medical costs, or administrative costs.
Suppose there are A different categories of payments. Also, suppose that we want to incorporate past payment count
information in the fitting process from different payment categories as the claims develop using a claim score. For a
given payment category, we propose using a dynamic claim score model with two parameters

(
ψ(a), ℓ

(a)
max

)
where the

level of risk associated with the category a, a = 1, . . . , A, at the beginning of the interval (dk, dk+1] is given by

ℓ
(a)
i,k =

min

{(
−κ(a)i,k + ψ(a)

(
η
(a)
i,k

ϵi,k

))
, ℓ(a)max

}
, for k = 1, 2, . . .

0, for k = 0,

where ψ(a) is the jump-parameter for category a, ℓ(a)max is the maximum claim score for category a, and

ϵi,k =

k−1∑
j=0

Ei,j , η
(a)
i,k =

k−1∑
j=0

N
(a)
i,j , κ

(a)
i,k =

k−1∑
j=0

Ei,j1

(
N

(a)
i,j−1 = 0

)
.

Information from claim scores of each category can then be incorporated into the process. Let ℓi,k =[
ℓ
(1)
i,k , ℓ

(2)
i,k , . . . , ℓ

(A)
i,k

]
be the vector containing the risk levels associated with the different categories of payments.

Then, for RBNS claims, we can obtain the expected value of the number of payments from category a,

µ
(a)
i,k = E

[
N

(a)
i,k |Xi,Zi,k, Ei,k, ℓi,k

]
= (Ei,k) g

−1
(
X′

iβ
(a) + Z′

i,kθ
(a) + γ(a)ℓ

(a)
i,k

)
,

and we obtain the expected value of the number of payments from category a for IBNR claims:

µ
∗(a)
i,k = E

[
N

(a)
i,k |Z

∗
i,k, Ei,k, ℓ

∗
i,k

]
= (Ei,k) g

−1
(
Z∗′

i,kθ
∗(a) + γ∗(a)ℓ

∗(a)
i,k

)
.

We include the same restriction that we used in the RBNS claims by setting ℓ∗(a)max as maximal claim score and by
including its respective jump-parameter ψ∗(a). Notice that, because information from these type of claims is unknown
we can only include covariate vector Z∗

i,k, in addition to the claim scores ℓ∗(a)i,k .

2.5 Distribution of duration of claims

With pricing models, where BMS models are commonly used to predict claim counts, the duration of contracts is known
beforehand. However, in a loss reserve context, when we seek to predict outstanding payment counts the full duration of

6
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open or unreported claims is unknown, and thus an additional model is required to predict this value in order to obtain
the exposure values after the evaluation date. This problem was fully addressed in Yanez and Pigeon [39], where, for
claim i, the duration was divided in three parts modelled by three random variables:

• T (o)
i for the occurrence delay;

• T (r)
i for the reporting delay; and

• T (c)
i for the closure delay.

For RBNS claims, the report and occurrence date are known, and the information contained in the covariate vectors
Xi and Zi,k is also accessible. Hence, it is only necessary to model the closure delay with the added advantage of
having access to micro-level information. In Yanez and Pigeon [39], a variety of distributions are considered from the
survival literature, such as the Weibull and the Gamma distribution. It is worth noting that the training set used contains
right-censored observations because of the valuation date. For more details, refer to the above-mentioned paper.

For IBNR claims however, it is necessary to model all three parts of the duration, and no individual information is
available. In Yanez and Pigeon [39], the occurrence delay is addressed with methods that consider seasonal effects.
The reporting delay is based on the paper by Antonio and Plat [1], where a mixture of a Weibull distribution with
degenerate components was considered to accommodate the observations that only take a few days to complete. The
closure delay was addressed similarly to the RBNS claims without considering individual information. Again, refer to
Yanez and Pigeon [39] for more details.

2.6 Parameter estimation

The a priori distribution parameters β(a), θ(a), and γ(a) for each type of payment a = 1, . . . , A are estimated by
maximizing the likelihood function given by

Λ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p(
N

(a)
i,k |Xi,Zi,k,Ei,k,ℓi,k

) (n(a)i,k |xi, zi,k, ei,k, ℓi,k

)
,

where p() is the probability mass function of the number of claim payments over each interval given covariates, dynamic
claim score, and exposure. We suggest estimating jump-parameter ψ(a) and the maximal values of claim scores ℓ(a)max

by looking for the values that generate the best likelihood or the best predictions, based on an out-of-sample analysis.

Because we distinguish between IBNR and RBNS reserves, it is also important to comment on the parameter estimation
procedure for IBNR claims. One can follow the same procedure already described, but instead of using micro-level
covariate vectors, i.e, Xi and Zi), we only have access to the covariate vector Z∗

i,k. Thus, the likelihood function is
given by

Λ∗ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p∗(
N

(a)
i,k |Z∗

i,k,Ei,k,ℓ∗i,k

) (n(a)i,k |z
∗
i,k, ei,k, ℓ

∗
i,k

)
,

where p∗() is the probability mass function. The procedure for estimating jump-parameters, ψ∗(a), and the maximum
values of claim scores ℓ∗(a)max remains similar.

3 Simulation procedure

As stated previously, loss reserves are split into two types: IBNR and RBNS. We have established different modelling
procedures for both reserves, and in this section, we must establish the two different simulation procedures. We consider
model (M1) for these algorithms, however similar algorithms can be constructed for models (M2) and (M3) by adapting
the calculation of step 5c (5) for IBNR claims and steps 3(a and b) (6 and 7) for RBNS claims.

3.1 IBNR simulation procedure

The exact number of IBNR claims and their information are unknown at the valuation date. Before we define the
simulation procedure for the number of payments, we must perform a few steps. As indicated in Subsection 2.5, for

7
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these claims all three delays must be simulated: the occurrence delay, t(o)i , the reporting delay, t(r)i , and the closure
delay, t(c)i (see Figure 1). In this particular context we consider, u(r)i = t

(o)
i + t

(r)
i , the delay between the beginning of

the accident year and the report date of claim i. Moreover, because of the unobserved nature of IBNR claims we must
also simulate how many have occurred per accident year. Several propositions have been put forward to predict this
value. For instance, in Zhao et al. [40] a semi-parametric methodology was suggested, whereas in Antonio and Plat
[1] an approach based on a Poisson process was considered. In this paper we will accommodate the thinned-Poisson
model by Pigeon et al. [28] to our simulation procedure, although the aforementioned models can also be considered.

Let m = 1, . . . ,M be the accident year of a given claim, where M is the total number of years considered. We select
an approach inspired by the work of Pigeon et al. [28], and we assign a distribution to I∗m, the number of IBNR claims
for each m accident year. By letting mi be the accident year of claim i, we have:

I∗m ∼ Poisson
(
θωmPr

(
U

(r)
i ≤M −mi + 1|mi = m

))
, (4)

where θωm is the occurrence measure, for which ωm is the total exposure registered for period m. Notice that the
occurrence measure is thinned by Pr

(
U

(r)
i ≤M −mi + 1

)
. This value represents the probability that the report date

occurs before the evaluation date. In order to obtain this value we consider the distribution of the sum of the occurrence
delay T (o)

i , that is the delay between the beginning of the accident date and the exact accident date, and the report delay
T

(r)
i , the delay between the accident date and the report date. The distributions suggested for each of these two delays

are briefly detailed in section 2.5. We can now define the simulation procedure for IBNR payments as follows:

• Step 1: Obtain Ĩ∗ =
∑

m Ĩ∗m ,where Ĩ∗m is the simulated value of I∗m for each occurrence period m (see
Equation (4)).

• Step 2: Obtain Ũ (r)
i , the simulated value of

(
U

(r)
i |U (r)

i > M −mi + 1
)

, the delay between the beginning of
the occurrence period and the exact reporting date of each simulated IBNR claim, where,

Pr
(
U

(r)
i ≤ u|U (r)

i > M −mi + 1
)
=

Pr
(
M −mi + 1 < U

(r)
i ≤ u

)
1− Pr

(
U

(r)
i ≤M −mi + 1

) ,
for i = 1, . . . , Ĩ∗.

• Step 3: Obtain T̃ (c)
i , the simulated value of

(
T

(c)
i |mi

)
, the closure delay of claim i, for i = 1, . . . , Ĩ∗.

• Step 4: Calculate

Ẽi,k =


di,k+1 − di,k, if di,k+1 ≤ T̃

(c)
i

T̃
(c)
i − di,k, if di,k+1 > T̃

(c)
i

0, elsewhere,

for k = 0, . . . ,K − 1 and i = 1, . . . , Ĩ∗.

• Step 5: For i = 1, . . . , Ĩ∗, go through each of the following sub-steps.

– Step 5a: Set k = 0, the first time interval for which the exposure of claim i is positive and obtain its risk
level by setting ℓ̃∗(a)i,0 = 0 for a = 1, . . . , A.

– Step 5b: Obtain Ñ (a)
i,k , a simulated value of

(
N

(a)
i,k |Z∗

i,k, Ẽi,k, ℓ̃
∗
i,k

)
, for a = 1, . . . , A.

– Step 5c: Calculate the next risk level,

ℓ̃
∗(a)
i,k+1 = min

−
k∑

j=1

Ẽi,j1

(
Ñ

(a)
i,j = 0

)
+ ψ∗(a)

∑k
j=1 Ñ

(a)
i,j∑k

m=1 Ẽi,j

, ℓ∗(a)max

 (5)

for a = 1, . . . , A.
– Step 5d:
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* If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the exposure of claim i is positive.
Then return to Step 5b.

* If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

3.1.1 RBNS simulation procedure

With RBNS claims, we have micro-level information in the form of vectors Xi and Zi,k. Because we are dealing with
open claims, a portion of the development has already been observed, so we can use the observed risk level contained in
ℓi,k to simulate the unobserved potion of the development. Furthermore, unlike with IBNR claims, the exact number of
open claims, I(O), is known beforehand. With these considerations can now describe the simulation procedure,

• Step 1a: Set i = 1, the first open claim.

• Step 1b: Obtain T̃ (c)
i , the simulated value of

(
T

(c)
i |Xi

)
, the closure delay of open claim i,

• Step 1c: If T̃ (c)
i > t

(e)
i , set i = i+ 1, the next open claim.

• Step 1.d:
– If i ≤ I(O), go to Step 1.b.
– If i = I(O) + 1, continue.

• Step 2: Calculate the exposures after the evaluation date,

Ẽi,k =



di,k+1 − t
(e)
i , k ∈ {k : di,k ≤ t

(e)
i , di,k+1 ≤ T̃

(c)
i }

T̃
(c)
i − t

(e)
i , k ∈ {k : di,k ≤ t

(e)
i , di,k+1 > T̃

(c)
i }

di,k+1 − di,k, k ∈ {k : di,k > t
(e)
i , di,k+1 ≤ T̃

(c)
i }

T̃
(c)
i − di,k, k ∈ {k : di,k > t

(e)
i , di,k+1 > T̃

(c)
i }

0, elsewhere,

for k = 0, . . . ,K − 1 and i ∈ I(O).
• Step 3: For each i ∈ I(O), go through each of the following sub-steps.

– Step 3a: Set k = {k : di,k ≤ t
(e)
i < di,k+1}, the first time interval that takes place after the evaluation

date and obtain its risk level by calculating

ℓ̃
(a)
i,k =

min

{
−
∑k

j=1Ei,j1

(
N

(a)
i,j = 0

)
+ ψ(a)

∑k
j=1 N

(a)
i,j∑k

j=1 Ei,j
, ℓ

(a)
max

}
, if di,k < t

(e)
i

ℓ
(a)
i,k , if di,k = t

(e)
i ,

(6)

for a = 1, . . . , A. Note that if a portion of the interval has been observed, i.e., when di,k < t
(e)
i , we

use the first portion, (di,k, t
(e)
i ], to update the risk level of the remainder of the interval. However, if no

portion of the interval has been observed, i.e., when di,k = t
(e)
i , then the latest information available

occurs at the previous time interval (di,k−1, di,k], and the risk level is updated based on this information
instead.

– Step 3b: Obtain Ñ (a)
i,k , a simulated value of

(
N

(a)
i,k |Xi,Zi,k, Ẽi,k, ℓ̃i,k

)
, for a = 1, . . . , A.

– Step 3c: Calculate the next risk level,

ℓ̃
(a)
i,k+1 = min

−
k∑

j=1

Ẽi,j1

(
Ñ

(a)
i,j = 0

)
+ ψ(a)

∑k
j=1 Ñ

(a)
i,j∑k

j=1 Ẽi,j

, ℓ(a)max

 (7)

for a = 1, . . . , A.
– Step 3d:

* If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the exposure of claim i is positive.
Then return to Step 3b.

* If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

9



A PREPRINT - JULY 25, 2022

4 Numerical results

4.1 Data Set

For our numerical analysis, we consider a data set from a Canadian insurance company. The data set contains
information from 57,593 claims about Accident Benefits (AB) coverage, i.e., no-fault benefits for accidents where the
driver, or a third party, was injured or killed in a car accident. Micro-level information is incorporated in the modelling
process in the form of categorical static covariates, which are summarized in Table 1. However, some of the covariates
contain missing values (NA). We are able to keep these observations in the process by creating a "missing value"
category for each of the covariates. We decided not to remove observations with one or more missing values as this
would have deprived us of a large amount of information.

The claims considered in our analysis have occurrence dates from 2011 to 2015, and we have information regarding
their development until December 31, 2017. In order to evaluate the performance of our model, we chose to set the
valuation date to December 31, 2015, splitting the data set into a training and an evaluation set. Payments before the
evaluation date are used to fit the models while payments from that date until December 2017 are used for validation.
At the valuation date, there were 48,855 closed claims, 7,872 open claims, and 866 unreported claims in our portfolio.

Table 1: Description of covariates
Covariate Label Number of levels

Gender Gender of the injured/killed 3
Region Geographical region where the accident occurred 3
Type of loss Kind of AB claim 5
Vehicle age Age of the vehicle, in years, when the accident occurred 6
Injured age Age of the injured/killed, in years, when the accident occurred 7
Reporting delay Delay calculated in days 7
Initial reserve Reserve at report date 5

Diving more deeply into the number of payments from the data set, which is the focus of this paper, we group payments
into three categories:

1. Medical: all medical payments;

2. Disability: recurrent payments such as Disability Income and Caregiver Disability Income; and

3. Expenses: all other types of expenses.

We chose these groups based not only on the nature of the payments, as previously described, but also on their empirical
distribution. We present, in Table 2, some descriptive statistics of the claim frequency for each category in the training
set, such as the Value-at-Risk, or VaR.

Table 2: Claim frequency descriptive statistics for each category
Mean Std. dev. 95% VaR 99% VaR

Medical 3.44 9.86 13.70 41.00
Disability 1.01 5.79 4.00 27.00

Expense 1.11 3.60 7.00 17.00
All 5.57 16.81 24.00 74.00

Finally, we make some simplifying assumptions about the possible dependency that may exist in the data set. First,
in some situations, it is possible that a casualty may trigger coverages from different claims, and we acknowledge
that this situation can cause dependency between these claims. However, we are not going to address this situation in
this study because the proposition made in this paper is more geared towards tackling the problem of including past
information from the claims themselves rather than the information from other dependent claims. Consequently, we
assumed independence between those claims. Second, we do not consider the possible dependency that may exist
between different types of payments from the same claim. We believe that this is a more complex issue that would
require a full analysis and allow for the use of innovative methods. We postpone this analysis to a future work where we
can better deal with this point.
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4.2 Fitting the models

In this subsection, we describe the models we considered in our numerical analysis, as well as the choices made
regarding estimating parameters, distributions, etc. The choices and thought process for each step are based on
Section 2.6. As previously stated, two models are required: one for IBNR claims and one for RBNS claims. We
thoroughly describe the procedure for RBNS claims and make some remarks concerning the procedure for IBNR
claims.

First, we consider a time division vector with an even yearly division between each period: d = {0, 1, 2, 3, 4, 5}. We
choose this division because it is the easiest to interpret, since many time divisions in the reserving literature are done
year-wise, such as the development periods in a loss triangle. Although, as mentioned before, this model does allow
for other time divisions. Second, we select the Poisson distribution and the Negative Binomial distribution for our
frequency models.

The Negative Binomial (type II) can be described by its mean and variance:

(
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

)
∼ Neg Bin II

(
µ
(a)
i,k , σ

)
, if Ei,k > 0, for i ∈ I,

where µ(a)
i,k and σ are such that,

E
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k ,

Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k (σ + 1).

Note that there is another version of the Negative Binomial distribution (type I), that will not be considered in this
numerical analysis1

Finally, for our numerical analysis we estimate parameters β(a), θ(a), θ∗(a), ψ(a), ψ∗(a), ℓ(a)max and ℓ∗(a)max by maximizing
the likelihood function for each distribution (Poisson and Negative Binomial), each type of payment (medical, disability
and expenses) and each method to obtain a claim score (M1, M2 and M3). A goodness of fit analysis is performed for
the models considered in the next section.

4.3 Goodness-of-fit analysis

In order to streamline the impact of a claim score in the modelling process we begin by selecting the best method for
computing the claim score among methods M1, M2 and M3. This was achieved by comparing the Akaike information
criterion (AIC) and the Bayesian (or Schwarz) information criterion (BIC) between these models. Table 3 and Table 4
contain these results, respectively for RBNS and IBNR claims. In these tables, we notice that models M1 have
consistently the lowest value for both criteria. Henceforth, since for this particular data set model M1 seems to be
the most appropriate, future numerical analysis will be done only for this particular model (estimated values of the
parameters are available in Appendix A).

Table 3: Likelihood Information Criteria for RBNS models M1,M2 and M3
AIC BIC

Distribution Payment type M1 M2 M3 M1 M2 M3

NB
Medical 232,720 232,857 232,752 233,085 233,222 233,117

Disability 81,099 81,379 81,233 81,464 81,745 81,597
Expenses 122,865 122,920 122,888 123,230 123,285 123,252

POI
Medical 331,810 332,793 332,342 332,165 333,148 332,698

Disability 203,585 205,819 204,226 203,940 206,174 204,581
Expenses 160,369 160,608 160,505 160,725 160,963 160,861

1For this distribution the variance is Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k, ℓi,k

]
= µ

(a)
i,k +

(
µ
(a)
i,k

)2

σ.
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Table 4: Likelihood Information Criteria for IBNR models M1,M2 and M3
AIC BIC

Distribution Payment type M1 M2 M3 M1 M2 M3

NB
Medical 238,606 238,774 238,613 238,707 238,875 238,713

Disability 82,481 82,951 82,698 82,581 83,056 82,798
Expenses 130,755 131,289 130,954 130,855 131,390 131,054

POI
Medical 348,062 349,250 348,669 348,153 349,341 348,760

Disability 217,424 221,672 219,138 217,515 221,764 219,229
Expenses 185,596 187,235 186,242 185,687 187,326 186,333

Our main goal in this subsection is to assess the performance of the inclusion of the claim score ℓi,k into frequency
models, in terms of goodness-of-fit. Hence, we suggest to compare the AIC and BIC of two versions of our models.
The first version will include ℓi,k as a covariate and the second version will not. We present these results in Table 5 and
Table 6. As shown in these tables, the inclusion of the claim scores provides better results in terms of BIC and AIC
across all models and all types of payments.

Table 5: AIC and BIC of RBNS models with and without the claim score
AIC BIC

Model Payment type with without with without

NB
Medical 232,720 236,794 233,085 237,149

Disability 81,099 84,576 81,464 84,931
Expenses 122,865 123,964 123,230 124,320

POI
Medical 331,810 358,342 332,165 358,688

Disability 203,585 240,730 203,940 241,077
Expenses 160,370 164,481 160,725 164,828

Table 6: AIC and BIC of IBNR models with and without the claim score
AIC BIC

Model Payment type with without with without

Model Payment with without with without

NB
Medical 238,606 243,361 238,707 243,453

Disability 82,481 86,557 82,581 86,648
Expenses 130,755 132,828 130,855 132,920

POI
Medical 348,062 380,520 348,153 380,602

Disability 217,424 263,932 217,515 264,014
Expenses 185,596 193,395 185,687 193,477

With the same goal in mind, we perform a likelihood ratio test between the models that use it and those that do not. We
present results in Table 7. Given low p-values, we can confidently reject all restricted models, i.e., models that do not
include a claim score.

Then, we perform t-tests specifically for the parameter of the dynamic claim score, γ(a), for each RBNS model. Results
are in Table 8. Again, with very low p-values, we can determine that the claim score is significant as a covariate.

Having assessed the increase in terms of goodness of fit, through the AIC, the BIC, the likelihood ratio test and the
Student t-test, we can also observe how changes in the dynamic claim score affect the mean of payment counts by
plotting its relativity, i.e.,

exp
(
γ(a)ℓ

)
, for − 5 < ℓ ≤ ℓ(a)max,
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Table 7: Likelihood Ratio (L. R.) test RBNS and IBNR models with and without the dynamic claim score.
Model Payment Restricted model covariates Unrestricted model covariates L.R. test statistic p-value

NB
Medical Xi,Zi,k Xi,Zi,k, ℓi,k 4075.42 < 0.01

Disability Xi,Zi,k Xi,Zi,k, ℓi,k 4085.04 < 0.01
Expenses Xi,Zi,k Xi,Zi,k, ℓi,k 26,534.17 < 0.01

POI
Medical Xi,Zi,k Xi,Zi,k, ℓi,k 1100.91 < 0.01

Disability Xi,Zi,k Xi,Zi,k, ℓi,k 945.97 < 0.01
Expenses Xi,Zi,k Xi,Zi,k, ℓi,k 4113.61 < 0.01

NB
Medical Z∗

i,k Z∗
i,k, ℓ

∗
i,k 4757.13 < 0.01

Disability Z∗
i,k Z∗

i,k, ℓ
∗
i,k 4232.36 < 0.01

Expenses Z∗
i,k Z∗

i,k, ℓ
∗
i,k 32,459.69 < 0.01

POI
Medical Z∗

i,k Z∗
i,k, ℓ

∗
i,k 2075.74 < 0.01

Disability Z∗
i,k Z∗

i,k, ℓ
∗
i,k 1593.22 < 0.01

Expenses Z∗
i,k Z∗

i,k, ℓ
∗
i,k 7801.23 < 0.01

Table 8: Student’s t-test for parameter γ(a) for RBNS models with the dynamic claim score.
Distribution Negative Binomial Poisson

Payment category Medical Disability Expenses Medical Disability Expenses

t-value 77.03 62.88 33.74 167.86 156.24 63.74
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

for the suggested distributions. Figures 2, 3 and 4 depict these results for RBNS payments. We notice that the dynamic
claim score has an important impact on the mean parameter, particularly in the extremes. For instance, the lowest
increase of the mean parameter for a claim that has reached its maximum score comparatively to a claim with no past
history, i.e., having a score equal to zero, is 3.44 times as high (by considering the Negative Binomial for expense
payments), whereas the highest comparative increase is 12.79 times as high (by considering the Poisson for disability
payments).

Figure 2: Relativity of the dynamic risk score to the mean of medical RBNS payments

4.4 Simulation analysis

We continue our numerical analysis by simulating the number of outstanding payments for each of the claims. By
repeating algorithms described in Section 3 10,000 times, we obtain predicted values for the frequency of payments for
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Figure 3: Relativity of the dynamic risk score to the mean of disability RBNS payments

Figure 4: Relativity of the dynamic risk score to the mean of expense RBNS payments

all our models. We summarize our results for IBNR, RBNS, and total reserves in Tables 9 and 10. These tables contain
results for models that use the dynamic claim score and those that do not.

Regarding the exposure, we see that it is very well adjusted to the observed value of the RBNS claims: both the mean
and the values-at-risk are close to it. Furthermore, when considering the total reserve, we include the IBNR claims,
which reduces the accuracy of the exposure predictions, where 99% VaR is slightly under the observed value. We
can infer that the model is less accurate when handling IBNR claims. These results can be explained by the lack of
information from IBNR claims, in terms of covariates and past history.

Next, we focus on frequency models. For these results we want to compare the results between frequency models that
include the dynamic claim score to ones that do not. This analysis is not only done for the total number of payments but
also for each type of payment. We will begin by looking at the results from medical payments, which represent the
majority of the total. For these payments, the inclusion of the claim score significantly bring the 95% and 99% VaR
and mean values closer to observed value, indicating a significant improvement. Next, in terms of RBNS disability
payments, the inclusion of the claim score in the Negative Binomial model allows for the 95% and 99% VaR to be over
the observed value, a result that does not occur when the claim score is not included. However, we do not see this
improvement when considering the Poisson distribution. Finally, regarding the expense payments, both models without
and with claim score provide 95% and 99% VaR over the observed value, however the latter models tend to be more
conservative with higher results in terms of mean and VaR. Overall, all types of payments are not impacted in the same
manner, but their combined value is greatly improved when the claim score is included, without it the Values-at-Risk
considerably fall below the observed value.
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Table 9: Simulation results for RBNS outstanding payment counts from models with and without claim scores
Claim Score Dist. Payment Mean Std. dev. 95% VaR 99% VaR Observed

Weibull Exposure 5893 52.43 5979 6015 5889

with

NB

Medical 48,941 837.23 50,309 50,938 51,565
Disability 21,087 813.54 22,419 23,028 20,601
Expenses 22,905 425.36 23,599 23,902 16,653

Total 92,932 1451.76 95,299 96,303 88,819

POI

Medical 50,749 686.03 51,888 52,384 51,565
Disability 16,727 433.92 17,430 17,713 20,601
Expenses 20,607 282.73 21,075 21,259 16,653

Total 88,084 1125.81 89,945 90,669 88,819

without

NB

Medical 38,426 587.57 39,384 39,801 51,565
Disability 18,519 625.93 19,563 20,018 20,601
Expenses 20,820 359.09 21,405 21,688 16,653

Total 77,765 1088.22 79,554 80,344 88,819

POI

Medical 42,420 441.76 43,141 43,444 51,565
Disability 17,464 243.50 17,862 18,028 20,601
Expenses 18,277 229.26 18,657 18,805 16,653

Total 78,161 796.56 79,487 79,970 88,819

Table 10: Simulation results for the total outstanding payment counts from models with and without claim scores
Claim Score Dist. Payment Mean Std. dev. 95% VaR 99% VaR Observed

Weibull Exposure 6275 57.38 6369 6409 6454

with

NB

Medical 51,922 869.71 53,360 53,973 54,986
Disability 21,885 825.47 23,248 23,843 21,620
Expenses 24,054 440.34 24,780 25,085 18,080

Total 97,861 1500.83 100,308 101,291 94,686

POI

Medical 53,473 706.31 54,641 55,137 54,986
Disability 17,360 436.99 18,066 18,354 21,620
Expenses 21,570 290.65 22,051 22,236 18,080

Total 92,403 1157.50 94,314 95,067 94,686

without

NB

Medical 41,480 629.11 42,501 42,951 54,986
Disability 19,529 648.38 20,612 21,102 21,620
Expenses 22,031 375.11 22,647 22,928 18,080

Total 83,039 1156.66 84,940 85,735 94,686

POI

Medical 45,353 479.29 46,143 46,481 54,986
Disability 18,237 250.12 18,645 18,816 21,620
Expenses 19,296 240.68 19,695 19,855 18,080

Total 82,886 851.75 84,288 84,843 94,686

After analyzing the frequency models, we can now compare the best performing model (the one that uses the Negative
Binomial distribution) to other models in the literature. However, because most models directly predict the total cost
of payments rather than payment counts, we choose to compare this value instead. Thus, we are required to add a
severity model to our dynamic score frequency model. We test popular distributions such as the Gamma, log-Normal
and inverse normal. We find that fitting each type of payment separately and including the claim score as a covariate is
satisfactory, and the Gamma distribution was chosen for this numerical analysis. As for the comparative distributions,
we chose two collective generalized linear models,based on the quasi-Poisson distribution and the Gamma distribution
(for more details see Wüthrich and Merz [37]). We also consider the individual model by Yanez and Pigeon [39],
which serves as a comparative baseline for the inclusion of dynamic claim scores. Table 11 contains the results of
10, 000 simulations of each described model, and Figure 5 displays the results.

Lets discuss the results from Table 11 and Figure 5. We notice that all the models yield satisfactory results in terms of
the 95 % and the 99 % VaRs as the values are higher than the observed value. The two collective models (Gamma and
over-dispersed Poisson) have a mean that is lower than the observed value, but their standard deviation is higher than
the individual models. Furthermore, because the 95 % and the 99 % Values-at-Risk of individual models are lower than
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Figure 5: Total reserves for selected models

the collective models but higher than the observed value, the latter approaches are preferable. As for the comparison
between both individual approaches, we notice that the mean of the total reserve is lower for the dynamic score model
however through a higher standard deviation, the 95 % and the 99 % VaRs become lower than the model that does not
make use of the claim score. This further increases the utility of the model by providing values higher than the observed
reserve but lower than the other predictions. Again, this shows an overall numerical preference for the model in this
paper over the one suggested in Yanez and Pigeon [39].

Table 11: Results of the total reserve predictions
Mean Std. dev. 75% VaR 95% VaR 99% VaR

GLM Gamma 143,604,545 7,969,902 148,973,525 156,696,768 162,534,340
GLM ODP 145,171,862 6,565,836 149,603,156 156,112,224 161,073,565

3-component RBNS 145,459,940 3,636,952 147,915,838 151,546,231 154,130,897
3-component total 149,620,225 3,678,054 152,066,762 155,830,382 158,291,786

Dynamic Score RBNS 137,509,168 4,785,344 140,729,680 145,451,829 148,969,071
Dynamic Score total 142,852,107 4,842,791 146,120,166 150,950,931 154,342,708

Observed RBNS 141,830,856
Observed total 147,308,364

5 Conclusion

In this paper, we introduced an innovative dynamic claim score to the loss reserve literature. This score allows for
the inclusion of past individual claim development in the fitting process of outstanding payment counts. Through an
interval-based approach we could feed this score information at the end of each interval and use this updated information

16



A PREPRINT - JULY 25, 2022

for the next interval. We applied this new method to the model by Yanez and Pigeon [39] because of the discrete
nature of its payment count modelling and the ease of covariate implementation it allows. However, any model that can
predict payment counts at different time development states may incorporate the claim score introduced in this paper.
Furthermore, we expanded the scope of payment count modelling by proposing a structure that can consider different
payment types.

In our numerical analysis, we applied the aforementioned model to a data set and were able to show that the inclusion
of a dynamic claim score improves the performance of traditional count models (such as the Poisson and Negative
Binomial models) in terms of goodness-of-fit. Then, we compared the predictions of outstanding payment counts
between models that use this new score and models that do not, and we obtained an overall improvement of the
predictions. Finally, we showed that our new approach yields better results than collective and individual models
available in the literature.

As mentioned before, in this paper we introduced claim scores to the micro-level loss reserving literature. Thus, given
pioneering nature of our work, it can branch out into many extensions for a variety of contexts. For example, we could
consider a claim score that is based on both the number of payments and their cost, or even a claim score based on the
previously observed total cost. We could also consider the correlation between different payment categories of the same
claim.
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A Appendix

Table 12: Estimated values for the Negative Binomial (type II) Model (RBNS)

Variable Category With the claim score Without the claim score
Medical Disability Expenses Medical Disability Expenses

Intercept 1.66 -0.56 -1.65 1.75 -0.55 -1.75

Type of loss

Single vehicle 0.08 0.44 0.46 0.09 0.53 0.48
Multi vehicle 0.22 0.07 0.33 0.23 0.06 0.34
Hit pedestrian 0.32 0.67 0.72 0.40 0.80 0.79

Other 0.36 0.47 0.46 0.41 0.57 0.50

Injured gender Male -0.16 0.12 0.10 -0.18 0.08 0.10
Unknown -0.06 0.87 0.94 -0.08 0.93 0.96

Region Ontario -0.12 0.30 1.88 -0.19 0.37 1.99
West 0.50 0.44 0.48 0.45 0.51 0.57

Injured age

(18, 25] 0.06 0.54 0.30 0.07 0.63 0.32
(25, 30] 0.20 0.62 0.36 0.20 0.70 0.37
[30, 50] 0.23 0.59 0.38 0.25 0.67 0.40
(50, 70] 0.30 0.60 0.50 0.33 0.67 0.51
(70,∞) 0.36 0.56 0.65 0.41 0.64 0.70

Unknown -0.11 -0.66 -0.32 -0.09 -0.61 -0.32

Vehicle age

(3, 6] 0.01 0.07 -0.01 0.00 0.09 -0.01
(6, 10] 0.03 0.12 0.06 0.04 0.15 0.06
(10, 20] 0.05 0.27 0.16 0.05 0.32 0.17
(20,∞) -0.00 0.47 0.15 -0.01 0.59 0.15

Unknown 0.00 0.00 -0.01 -0.03 -0.05 -0.03

t
(r)
ℓ

(1, 7] -0.03 0.14 0.11 -0.03 0.14 0.12
(7, 30] -0.12 -0.06 0.08 -0.14 -0.13 0.06
(30, 90] -0.30 -0.35 0.00 -0.36 -0.50 -0.04
(90, 180] -0.69 -0.57 -0.07 -0.79 -0.85 -0.15
(180, 365] -0.74 -0.57 -0.14 -0.85 -0.83 -0.28
(365,∞) -1.10 -0.74 -0.02 -1.25 -1.07 -0.09

Initial reserve

(1000, 5000] -0.10 -0.25 -0.39 -0.12 -0.27 -0.40
(5000, 10000] -0.05 0.17 -0.11 -0.08 0.18 -0.12
(10000, 20000] -0.07 0.26 0.01 -0.11 0.24 0.01
(20000,∞) 0.00 0.55 0.12 -0.03 0.74 0.13

Time intervals

(1, 2] -0.68 0.17 -0.24 -0.10 0.45 0.03
(2, 3] -1.07 -0.14 -0.28 -0.18 0.43 0.16
(3, 4] -1.33 -0.16 -0.35 -0.25 0.37 0.18
(4, 5] -1.42 0.28 -0.10 -0.21 1.08 0.48

σ(a) 1.46 2.70 1.08 1.59 2.93 1.13

γ(a) 0.44 0.61 0.37
ψ(a) 0.14 0.16 0.18
ℓ
(a)
max 4.70 3.77 3.12
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Table 13: Estimated values for the Poisson Model (RBNS)

Variable Category With the claim score Without the claim score
Medical Disability Expenses Medical Disability Expenses

Intercept 1.72 -0.66 -1.78 1.76 -0.79 -1.90

Type of loss

Single vehicle 0.26 0.68 0.47 0.33 0.81 0.49
Multi vehicle 0.26 0.25 0.29 0.27 0.25 0.28
Hit pedestrian 0.61 0.92 0.80 0.77 1.10 0.87

Other 0.44 0.62 0.49 0.50 0.75 0.52

Injured gender Male -0.14 0.09 0.09 -0.16 0.06 0.09
Unknown 0.12 1.17 0.82 0.11 1.27 0.82

Region Ontario -0.17 0.76 2.22 -0.24 0.89 2.35
West 0.23 0.36 0.60 0.16 0.48 0.70

Injured age

(18, 25] 0.07 0.17 0.29 0.08 0.18 0.32
(25, 30] 0.20 0.27 0.36 0.21 0.25 0.38
[30, 50] 0.23 0.29 0.37 0.25 0.27 0.40
(50, 70] 0.29 0.34 0.47 0.31 0.29 0.49
(70,∞) 0.37 0.41 0.64 0.40 0.42 0.67

Unknown -0.22 -0.95 -0.38 -0.21 -1.04 -0.37

Vehicle age

(3, 6] 0.03 0.15 -0.00 0.03 0.17 -0.00
(6, 10] 0.05 0.18 0.07 0.06 0.24 0.07
(10, 20] 0.07 0.32 0.19 0.09 0.38 0.21
(20,∞) 0.12 0.53 0.15 0.14 0.73 0.16

Unknown -0.03 -0.04 -0.02 -0.07 -0.12 -0.03

t
(r)
ℓ

(1, 7] -0.04 0.06 0.04 -0.04 0.09 0.03
(7, 30] -0.15 -0.13 -0.04 -0.19 -0.19 -0.07
(30, 90] -0.33 -0.50 -0.17 -0.42 -0.67 -0.22
(90, 180] -0.69 -0.71 -0.30 -0.85 -1.07 -0.41
(180, 365] -0.68 -0.74 -0.35 -0.86 -1.10 -0.49
(365,∞) -0.58 -0.74 -0.18 -0.74 -1.07 -0.27

Initial reserve

(1000, 5000] -0.18 -0.24 -0.31 -0.21 -0.28 -0.32
(5000, 10000] -0.04 0.17 -0.04 -0.07 0.12 -0.06
(10000, 20000] 0.00 0.30 0.10 -0.04 0.22 0.10
(20000,∞) 0.23 0.70 0.29 0.28 0.90 0.32

Time intervals

(1, 2] -0.81 -0.31 -0.50 0.03 0.45 -0.07
(2, 3] -1.25 -0.69 -0.66 0.03 0.39 0.01
(3, 4] -1.57 -0.52 -0.77 -0.11 0.58 0.04
(4, 5] -1.68 -0.25 -0.70 -0.17 0.97 0.12

γ(a) 0.65 1.19 0.39
ψ(a) 0.10 0.09 0.20
ℓ
(a)
max 3.54 2.09 3.59
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Table 14: Estimated values for the Negative Binomial (type II) Model (IBNR)

Variable Category With the claim score Without the claim score
Medical Disability Expenses Medical Disability Expenses

Intercept 1.93 0.54 0.68 1.95 0.69 0.72

Time intervals

(1, 2] -0.83 0.35 0.08 -0.23 0.51 0.32
(2, 3] -0.83 0.42 0.40 -0.34 0.52 0.50
(3, 4] -0.85 0.60 0.54 -0.42 0.44 0.54
(4, 5] -0.71 0.97 0.94 -0.31 1.24 0.86

σ(a) 1.53 2.71 1.33 1.68 2.99 1.41

γ(a) 0.62 0.74 0.70
ψ(a) 0.12 0.13 0.12
ℓ
(a)
max 3.37 3.57 2.11

Table 15: Estimated values for the Poisson Model (IBNR)

Variable Category With the claim score Without the claim score
Medical Disability Expenses Medical Disability Expenses

Intercept 1.94 0.67 0.81 1.91 0.64 0.82

Time intervals

(1, 2] -0.90 0.01 -0.30 -0.01 0.62 0.17
(2, 3] -0.87 -0.02 -0.03 -0.03 0.60 0.30
(3, 4] -0.91 0.23 0.08 -0.18 0.80 0.33
(4, 5] -0.87 0.41 0.32 -0.19 1.24 0.39

γ(a) 0.85 1.32 0.73
ψ(a) 0.09 0.07 0.15
ℓ
(a)
max 2.88 2.23 2.47
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