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ABSTRACT

A Bonus-Malus Scales (BMS) model corresponds to a class-system with a finite number of levels,
where a relativity is assigned to each level. Depending on the transition rule of the BMS, insureds
usually move down by a level if they do not claim during their contract, and move up a specific number
of levels for each claim. The insured’s level at the end of the year is then used to compute the next
annual premium. Some recent papers generalized the BMS models theory using the newly available
granular insurance data, which has only recently become available. Even if it has been shown that
these new BMS approaches using panel data often offer better fit statistics and predictive measures
than those obtained with many advanced panel data models, BMS models still have problems. One is
that the rating system may appear unfair to many insureds because it does not recognize the initial
risk of the insured. While some authors proposed creating different BMS for each type of insureds,
we proposed a unique and general approach to that problem. Based on an improved technique for
estimating the parameters of the BMS, we show that the new Generalized BMS model generates
surcharges and discounts that depend on the size of the insured, or on the a priori risk. We apply this
new generalized BMS model to real data from a major Canadian insurance company for their farm
insurance products, where the size of each insured differs significantly.

Keywords Claim Count, Ratemaking, Bonus-Malus Systems, Generalized Additive Models
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1 Introduction

The general idea of any experience-based ratemaking model is quite simple: the insurer calculates the premiums of
each insured based on their past claims experience. A Bonus-Malus Scales (BMS) model is this type of rating model,
and is comprised of a class system with a finite number of levels where a relativity is assigned to each level. Depending
on the transition rules of the BMS, insureds usually move down by a level if they do not claim during their contract, and
move up a specific number of levels for each claim made. The insured’s new level at the end of the year is then used to
compute the next annual premium.

Classic BMS theory is described in detail in Lemaire (2012) or Denuit et al. (2007). Recently, Tan et al. (2015), Gyetvai
and Ágoston (2018) and Ágoston and Gyetvai (2020) worked on finding optimal transition rules for classic BMS theory,
via integer programming. The classic BMS theory has the problem of not taking advantage of the data structure that is
now available from insurers. Indeed, to find the relativity of each BMS level, the classic theory used aggregate data and
transition matrices based on assumptions about the heterogeneity distribution of a specific count distribution. Boucher
and Inoussa (2014) first explained how BMS models theory could be generalized for granular data, where each insured
can be observed for several contracts. Verschuren (2021) generalizes the approach for multi-products insurance, and
adds a more flexible estimation methods, using generalized additive models (GAM) theory. Finally, Boucher (2022a)
shows how BMS models are linked with simple GLM models that have covariates associated with the past claims
experience.

Even if it were shown that these new BMS approaches often offer better fit statistics and predictive measures than those
obtained using many advanced panel data models (as shown in Boucher and Pigeon (2019) in the case of automobile
insurance), the rating system of the BMS models may appear unfair to many insureds as it does not recognize the initial
risk of the insured, sometimes referred as the a priori risk. As explained in Denuit et al. (2007), Section 4.5.3, the BMS
model generates the same surcharges and the same discounts for all insureds. Risky policyholders are expected to claim
more than less risky policyholders, so they should normally also be expected to be less penalized for a claim. Similarly,
risky insureds should be rewarded much more than lower risk insureds if they do not claim. Not considering the a
priori risk in an experience-rating systems may appear to penalize risky insureds twice.

The problem of different a priori risks in experience-rating models has been known in the actuarial community for a
long time. Indeed, even classic past claim rating models normalize the past experience of each insured i before applying
claim penalties. For example, by designating λi,t a measure of the a priori risk, for contract t of insured i, a normalized
past experience

∑
t ni,t∑
t λi,t

is used in the Buhlmann-Straub credibility model instead of ni,• =
∑
t ni,t, which is used in

the Bühlmann (1967) credibility model. More advanced models based on longitudinal data also include a weighted past
claim experience to compute future premiums; see for example Bolancé et al. (2007), Abdallah et al. (2016) or Pechon
et al. (2019).

To account for the difference between the a priori risk, many authors proposed using distinct BMS models, according to
the a priori characteristics. Indeed, using the classic BMS theory based on aggregate data on an automobile insurance
portfolio, Denuit et al. (2007) uses a BMS model for young drivers and another BMS model for older drivers. Using the
BMS theory for granular data, Boucher (2022b) develops an iterative grouping procedure to partition a portolio from a
farm insurance product to create five different BMS models based on the size of each farm. Even if it results in an
interesting solution that generates a good log-likelihood and an interesting predictive score, using distinct BMS models
is far from perfect. Indeed, dividing the portfolio and estimating all parameters of each group independently means that
we consider each group to be fundamentally different, which is not the case. Moreover, creating separate BMS models
can be a good idea when the BMS used depends on the age of the driver. Indeed, because the insurer knows when an
insured will transfer to the other BMS, the insurer can propose simple solutions to limit the impact of the transition.
However, transitioning between BMSs is not that simple for BMS models based on the size of the insured. For example,
the size of the farm, which is defined by the number of insured items, can change at any time. Without an approach that
considers all possible transitions from one BMS to another, the experience-rating model could lead to illogical results.
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Situations where the insured could receive a large surcharge for past claims, even if no new claim was reported, could
occur. An extensive study of all transition rules between BMS structures should be then be considered, which highly
complicates the general rating system and eliminates the biggest advantage of the BMS: its understandability.

Instead of working on separate BMS models with special transition rules, we propose the creation of a unique and
general approach where a single BMS structure is created, but where surcharges and discounts are based on the size of
the insured or on the a priori risk. We apply this new Generalized BMS model to real data from a major Canadian
insurance company for their farm insurance product where the size of each insured can differ significantly.

The paper has the following structure. In Section 2, we will carefully explain BMS models and apply the model
to the farm insurance product. Compared to Boucher (2022a), an improved estimation technique for estimating the
parameters of the BMS based on an recursive algorithm, is proposed. Following the estimation, results are discussed,
and the problem of the size of the farm is highlighted. As expected, we show that the higher BMS levels are filled with
bigger farms, and conversely bigger farms have an average BMS level much higher than smaller farms. In Section 3, a
flexible approach to the BMS is proposed, where generalized additive theory is used. The new recursive algorithm is
then generalized to find the parameters of the Generalized BMS model. This model is then applied to the same farm
insurance portfolio. The last section concludes the paper.

2 Review of the BMS Model

2.1 Summary of Past Claims Rating Model

Experience Rating and a posteriori ratemaking refer to ratemaking models that use past claims information to predict
the future total amount of claims (also known as "loss costs"). In other words, the idea of experience rating is to
compute a premium for insured i for contract of period T that will consider all of the insured’s past insurance contracts,
or ther insured’s past claims experience from t = 1, . . . , T − 1. A new insured with T = 1 is simply someone without
any past experience.

Concerning experience rating, Boucher (2022a) introduces two kinds of variables:

1. The variable to model, named the target variable;

2. The information used to define what we consider the past claim experience, named the scope variable.

Then, formally, if we want to model the frequency part of the premium (i.e. the target variable) based only on the past
number of claims (i.e. the scope variable), it means that we are looking to compute the conditional expected value of
Ni,T , the number of claims of insured i for contract of period T , defined as :

E[Ni,T |ni,(1:T−1),Xi,T ] (1)

where ni,(1:T−1) is a vector of all past number of claims between time 1 and time T − 1 for insured i, and Xi,T is
a vector containing the covariates used in the ratemaking, for contract T . This usually corresponds to information
about the age of the insured, the marital status of the insured, etc. For the remainder of paper, we will continue to
use the number of claims Ni,T as the target, with the past number of claims ni,(1:T−1) as the scope variables, but
generalizations can be easily made.

2.1.1 The Bonus-Malus Scale Models

To model the number of claims of insured i, for contract T , the Poisson distribution of mean λi,T is usually the starting
point. It has a probability mass function defined as:
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Pr
(
Ni,T = n|ni,(1:T−1),Xi,T

)
=
λni,T exp (−λi,T )

n!
.

For experience rating, to differentiate between new insureds and insureds with experience, past claims rating models
using the number of past claims, and using κi,t = I(ni,t = 0), the number of contracts without claims, can be used. In
such situations, with minor transformations, the parameter of the Poisson distribution can be expressed as:

λi,T = exp(X ′i,Tβ + γ0(100− κi,•) + γ1ni,•) (2)

where for insured i, ni,• =
∑T−1
t=1 ni,t corresponds to the insured’s total number of past claims, and κi,• =

∑T−1
t=1 κi,t

is the sum of policy periods without claims. Another way of understanding the mean parameter of the model with κi,•
and ni,• is to rewrite λi,T as follows:

λi,T = exp(X ′i,Tβ + γ0(100− κi,• +
γ1
γ0
ni,•) = exp(X ′i,Tβ + γ0`i,T ), (3)

with:

`i,T = 100− κi,• +
γ1
γ0
ni,•

where γ0 is the Relativity parameter, Ψ = γ1
γ0

is the Jump parameter. The new variable `i,T , based on κi,• and ni,•,
summarizes all past claim experience and is called a claim score.

Despite its simplicity, this regression model, which is called the Kappa-N model in Boucher (2022a), has several
desirable qualities regarding the implied ratemaking structure:

• For an insured i without insurance experience, we would have ni,• = 0, and κi,• = 0, which means an entry
level of 100. In other words, a new insured without experience has a claim score of 100.

• Each annual contract without a claim will decrease the claim score by 1;

• Each claim increases the claim score by Ψ.

• The impact of a single claim on the premium is then roughly equal to Ψ years without claims.

• The penalty for a claim is an increase of (exp(Ψγ0)− 1)% of the premium.

• Each year without a claim decreases the premium by (1− exp(−γ0))%.

Compared with standard count models that do not use any covariates that are linked to experience rating, Boucher
(2022a) showed that the Kappa-N model’s quality of prediction is significantly better. However, one obvious problem
with the Kappa-N model is the spectrum of possible values for the claim score `i,T . Indeed, the Kappa-N model does
not limit the claim score to minimum or maximum values. For example, with the database used in our numerical
application, we saw that the some insureds had claimed 15 or even 20 times in the past. Even if those insureds also had
many years without claims, premiums for these insureds would include an extreme surcharge of exp(20Ψγ0)− 1 times
the basic premium. Similarly, because there is no discount limit for insureds who did not claim in the last 10, 15 or 30
years, the Kappa-N model can generate large discounts.

A solution that deals with extreme situations that arises in the Kappa-N model would be to limit the values of all claim
scores, but also to apply this limit to all past insurance contracts. By adding maximum and minimum values of the
claim score to all past contract, Boucher (2022a) shows that the Kappa-N approach can be seen as a Bonus-Malus
Scales (BMS) system (see Lemaire (2012) or Denuit et al. (2007) for a historial review). Instead of having a claim
score, `i,T can be seen as the BMS level of insured i, or the BMS score.
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Formally, BMS models can be defined with four structural parameters: the entry level `0, the jump parameter Ψ, the
maximum level of the system `max and the minimum level of the system `min. For a specific insured, we then have the
BMS level defined as:

`i,t+1 = `i,t − κi,t + Ψ× ni,t, with `min ≤ `i,t ≤ `max,

where the level `i,t is limited to always be between `min and `max for all t = 1, . . . , T .

2.2 Estimation Algorithm

For the Kappa-N model with a Poisson distribution, GLM packages, such as those already programmed in R, could be
used. However, for BMS models, Boucher (2022a) mentioned that finding the best values for structural parameters Ψ,
`min and `max is not direct. Indeed, limiting the claim-score values by `min and `max for all contracts of each insured
in the database means recomputing the claim score path of each insured from their first contract to their current contract.

To estimate the structural parameters, Boucher (2022a) proposes trying all possibilities for all structural parameters and
select the BMS model with the biggest log-likelihood. An iterative technique is proposed that works by first initiating
`
(0)
min = 0, and defining Ψ(0) from a standard Kappa-N model. Because Ψ = γ1/γ0, estimating a Kappa-N model

means that we can obtain a first estimate of the jump parameter. Then, for step k:

1. With Ψ(k−1) and `(k−1)min , find `(k)max, the value from the best BMS model for all models with `max between
100 and a reasonnable maximum value;

2. With `(k)max and `(k−1)min , find Ψ(k), the value from the best BMS model for all models with Ψ between 1 and a
reasonnable maximum value;

3. With `(k)max and Ψ(k), similarly, find `(k)min.

We repeat those steps until we reach convergence. Several models with structural parameters near the values found with
this algorithm are finally checked to be sure that a local maximum has not been found.

2.2.1 An Improved Algorithm

It is possible to develop a better estimation algorithm to estimate the parameters of a BMS model. However, to better
explain the functioning of this new estimation algorithm, it is easier to take a simple example in order to detail the
different steps. Thus, let us assume three insureds have been observed for 10 years, as illustrated in Table 1, which
describes the claims history of these insureds between years one and 10. We want to predict the number of claims for
year 11, i.e. Ni,11 for i = 1, 2, 3. First, the values of κi,• and ni,• are computed for each insured i.

Let us initially assume a BMS model with a value of Ψ = 4. The left graph of Figure 1 shows the evolution of the
BMS level for these three insureds when no value of `max and `min is applied to the calculation of the levels (which
corresponds to a Kappa-N model). The graph on the right of the same figure shows the evolution of the score through
the years with `max = 115 and `min = 85.

The numerical example allows us to see that the most important thing to consider in the computation of the BMS score
`i,11 is not κi,• and ni,•, but rather the total number of jumps and the total number of drops, noted respectively as ji,•
and di,•. More formally, the two variables are defined as:

di,• =

T−1∑
t=1

(`i,t − `i,t+1)I(`i,t+1 < `i,t) , ji,• =

T−1∑
t=1

(`i,t+1 − `i,t)I(`i,t+1 > `i,t) (4)

5



A PREPRINT - JULY 24, 2022

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10 11
Year

B
M

S
 L

ev
el

s

Insured 1 2 3

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10 11
Year

B
M

S
 L

ev
el

s

Insured 1 2 3

Figure 1: Insureds with claim experience, with and without limits

Insured Years Kappa-N model BMS model
i 1 2 3 4 5 6 7 8 9 10 κi,• ni,• di,• ji,• `i,11 di,• ji,• `i,11

1 0 0 0 0 0 0 0 0 0 0 10 0 10 0 90 5 0 95
2 2 0 1 0 0 0 2 0 1 0 6 0 6 24 118 6 20 114
3 4 1 2 0 0 0 0 0 0 0 7 0 7 28 121 7 15 108

Table 1: Insureds with claims experience, with Ψ = 4 for the BMS model

Thus, for any BMS model, regardless of the values of `max and `min, the BMS score at time T of insured i is always
calculated as:

`i,T = `i,1 +

T−1∑
t=1

(`i,t+1 − `i,t)

= `i,1 −
T−1∑
t=1

(`i,t − `i,t+1)I(`i,t+1 < `i,t) +

T−1∑
t=1

(`i,t+1 − `i,t)I(`i,t+1 > `i,t)

= `i,1 − di,• + ji,• = 100− di,• + Ψñi,• , with ñi,• =
ji,•
Ψ

(5)

For an unbounded BMS model, meaning no value has been set for `max and `min (i.e. the Kappa-N model),
we obviously have di,• = κi,• and ñi,• = ni,•. Those two identities do not always hold for a BMS model
using `max and `min, because in certain situations the BMS score could have been limited over time. For our
example with three insureds, the last columns of Table 1 summarize the values of the jump and drop parameters
of each insured at time 11 for each of the two BMS models. We can see the difference in values between
κi,•, ni,• and di,•, ji,• of all insureds i, for the Kappa-N and the BMS models. Furthermore, we can verify for each
insured that equation (5) can easily be used to compute the score at time 11, `i,11, for both the Kappa-N and BMS models.

2.2.2 A Recursive Algorithm using d and ñ

The general idea of the proposed estimation method is to use Equation (2), from the original Kappa-N model, and
substitute κi,• with di,•, and ni,• with ñi,•:

λi,T = exp(X ′i,Tβ + γ0(100− di,•) + γ1ñi,•). (6)
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This model, designated Kappa-N∗, can be seen as a Kappa-N model where the number of observed claims would be
ñi,•, with di,• periods without claims. In other words, even if we are working with a BMS model where all BMS levels
from time t = 1, . . . , T are limited by `max and `min, we will show that it ends up estimating a Kappa-N model.

The problem is that ji,• is not necessarily the ultimate real number of jumps to be used to compute the final claim-score
`i,T , and di,• is not the correct number of drops. Indeed, both were computed with equations (4), which are based
on a determined value of Ψ, for known values of `max and `min. Thus, if the estimated value Ψ̂ = γ̂1/γ̂0 from
that Kappa-N∗ model turns out to be different from the selected value Ψ, the computed values of ñi,• and di,• are
no longer valid and the results generated by this model are meaningless. This is why we instead consider ñi,• and
di,• to be partially observed variables, and use an expectation-maximization algorithm to estimate the parameters instead.

We base our algorithm conditionally on {γ0, γ1}, the parameters associated with the jump parameter Ψ = γ1/γ0. The
log-likelihood function to be maximized is based on equation (6), where E[ñi,•|Ψ(0)] and E[di,•|Ψ(0)] are needed.
Equation (4), which depends on Ψ, is used to estimate those values at each iteration.

In summary, for a selected pair (`max, `min), we initiate Ψ(0) =
γ̂1
γ̂0

from the estimation of the Kappa-N model. Then,

for step k, we have:

• Computation: The values of d(k)i,• and ñ(k)i,• are computed using Equation (4) and Ψ(k−1);

• Maximization: The log-likelihood of the Kappa-N∗ model, using ñ(k)i,• and d(k)i,• , is maximized to estimate all

parameters. An updated value of Ψ(k) =
γ̂1
γ̂0

is computed.

Both the computation and the maximization steps are repeated until convergence is reached. To obtain the best BMS
model, the estimation algorithm must be used for all possible values of the pair (`max, `min). In other words, we have
to use a grid of all possible values of (`max, `min), estimate all parameters with the algorithm, and finally choose the
BMS model that generates the best log-likelihood.

Compared to the previous estimation procedure, the EM approach is only slightly faster. However, as we will see it in
Section 3, there are other important uses of this new algorithm.

2.3 Summary of the Numerical Illustration

2.3.1 Data Used

To illustrate the BMS model, Boucher (2022a) used farm insurance data from a major insurance company in Canada.
The same dataset is used here. The general form of the data is like the sample shown in Table 2, where each line of the
database corresponds to a specific coverage from an annual contract. For each observation, we have information about
the insured, the contract, the items covered, but we also see the date of the first insurance contract with the insurer.
Information about claims that happened during that period of time is also available.

As opposed to automobile insurance in Canada, where insureds will frequently move from one insurer to another, we see
that farm insurance has more stable insureds. Indeed, in our case, the average number of years with the insurer is 18.4,
and the maximum observed years is around 60 1. The maximum available number of years of past claims experience
for all insureds is 15 years, and only insurance experience with the same insurer is available. That means that we
considered the first year of insurance of any insured to be his first year with the insurer. In other words, if a farm is first
seen in the database in 2003, we will consider this farm to have been a new insured without any prior experience in 2003.

1Farms are sometimes passed from generation to generation. Insurance experience would not be reset in such a case.
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Policy Number Effective First Number of Costs of
Number of Items Date Insurance Coverage . . . Province Claims Claims

. . . . . . . . . . . . . . . . . . . . . . . . . . .

125721 2 2017-01-15 1995-01-15 MACHINERY . . . Ontario 2 186,592
125722 15 2017-03-22 2013-03-22 MACHINERY . . . Quebec 0 0
125723 1 2016-01-11 1993-11-05 MACHINERY . . . Manitoba 1 18,889
125724 27 2018-02-17 2018-02-17 MACHINERY . . . Nova Scotia 1 7,444
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Fictive Data Sample - Contract Level

Number of Items by Contract
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Figure 2: Distribution of the number of years of experience with the insurer (left), distribution of the number of items
by contract (right)

For the farm insurance product, an item corresponds to a specific tractor or combine which specific information is
available. With a total of approximately 700, 000 insured items insured for more than 120, 000 contracts, the average
number of items insured per contract is around 6. The distribution of the number of items insured per contract can be
seen in Figure 2. Almost 50% of all farms only have one insured items, while approximately 10% of farms have more
than 20 insured items. More precisely, 40 farms have more than 100 insured items, with a maximum of more than 200
insured items for a single contract. As we will see in the next sections, the difference between small farms and larger
farms is important for BMS models.

Because the experience-rating algorithm is normally applied at the contract level and because we think that past claims
will identify insureds that tend to claim more, we decided to analyze the loss experience of each insured at the contract
level. That means grouping all items from a single contract into a single observation. This will also correct the situation
where a single event resulted in damage to multiple items.

2.3.2 Estimated Parameters of the BMS Model

The estimated parameters of the Poisson BMS model are shown in Table 3. The log-likelihood value is shown. For the
test dataset, the logarithmic score, defined as

∑n
i=1− log(Pr(ni; λ̂i)), has been used (see Roel et al. (2017) for details

or descriptions of other scores) to define the prediction quality. To better understand the results obtained for the Poisson
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BMS Parameters log-likelihood Log. Score
Distributions `max `min Ψ̂ γ̂0 (train) (test)

Poisson 116 85 6 0.0312 -8,490.026 2,857.029

Table 3: Results of the Poisson BMS model

BMS model, we can compute the discounts and surcharges of the model, based on the number of past claims. More
concretely, we then have:

• The jump parameter Ψ is equal to 6, meaning that each claim increases the BMS level by 6. After a claim, an
insured would need 6 years without a claim to return to the original premium.

• The value of γ0 is 0.0312. That means that the penalty for a claim is equal to exp(0.0312× 6)− 1 = 20.6%,
and each year without a claim decreases the premium by 1− exp(−0.0312) = 3.07%.

• The maximum BMS level is `max = 116, meaning that the maximum surcharge, compared to level 100, is
exp(0.0312× 16)− 1 = 64.7%;

• The minimum BMS level is `min = 85, meaning that the minimum surcharge, compared to level 100, is
1− exp(−0.0312× 15) = 37.3%.

As we can see, these basic results are found and computed easily. This method of computing the surcharges and
discounts would clearly be useful to any insureds, brokers or administrators. It is simple to explain to insureds how
large their penalties for a claim will be, and how long they will be penalized for that claim. Another interesting result of
the BMS model is that all insureds will have a premium located between 0.627 and 1.647 times the basic premium for a
new insured, at level 100. This narrowly limits the range of premiums.

2.3.3 Problems With the Size of Farms

By comparing the predicted and the observed claims frequency on the training and the test datasets, Boucher (2022a)
showed that the BMS model seems to fit the data well. We see that classifying insureds by their claim score (or BMS
level) works well as the insureds with higher levels have worse claims experience than insureds with lower levels.

However, the size of each farm in the insurance portfolio is different and size has a direct impact of the past rating
model. Figure 2 showed the distribution of the number of insured piece of machinery (called items) per farm. The BMS
model used here generates the same surcharges and the same discounts for all insureds. However, because large farms
are expected to have more claims than smaller ones, they should normally also be expected to be penalized less for a
claim. Similarly, a large farm should be rewarded much more for a year without a claim. An experience-rating system
that does not recognize this type of situations may appear to penalize larger farms twice.

That means that the connection between the BMS levels and the size of the farm is noteworthy. To more clearly see the
impact of the number of insured items on each farm, using the BMS model from Table 3, we compute the BMS level of
each contract in the database. For each BMS level, we compute the average number of insured items from each farm for
that level. Similarly, we computed the average BMS level based on the number of insured items. Figure 3 illustrates the
result. As we expect, the higher BMS levels are filled with bigger farms, and bigger farms have an average BMS level
much higher than smaller farms. Despite the prediction quality of the BMS model, it is clear that the BMS model could
seem unfair to many insureds and regulators because it does not recognize the initial risk of the insured 2. To correct
this situation and promote the use of the BMS in practice, the BMS model should be generalized.

2It may be paradoxical, however, that regulators might prefer to use pricing models that are less accurate than a BMS model (in
both the fit statistics and the prediction quality), simply because the penalty structure appears unfair. If the fit and prediction of a
BMS model is better than another rating model, it most likely means that the BMS model is more accurate and thus, in some sense,
more fair.
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Figure 3: Average number of insured items by BMS level (left) and average BMS level by number of insured items

3 A Flexible Approach to Past Claims Models

To define the a priori risk of a farm, we used its number of insured items, noted ωi,T ∈ {1, . . . ,W}. We refer to
Figure 2 for the distribution of the number of items per contract. Because ωi,T is a discrete variable, this variable was
appropriate for the recursive division algorithm, as used in Boucher (2022b). However, instead of dividing the portfolio
into defined groups, we propose the development of a much more flexible approach.

3.1 Generalized Kappa-N model

To generalize the BMS model by accounting the size of the risk in the penalty structure, we will use the same method as
the one summarized quickly in Section 2.1.1. The idea is to develop the BMS model by generalizing a Kappa-N model.
Indeed, we used the Kappa-N model to clearly isolate and identify a claim score.

First, we use the mean function defined by equation (2) that we generalize to add two interactions with the size of the
insured ωi,T . Because we cannot clearly identify the link between past claims experience and ωi,T , functions f1(ωi,T )

and f2(ωi,T ) are introduced. It leads to the creation of a new model called Generalized Kappa-N that has a mean
function expressed as:

λi,T = exp(X ′i,Tβ − γ0κi,•f1(ωi,T ) + γ1ni,•f2(ωi,T ))

= exp(X ′i,Tβ − κi,•s1(ωi,T ) + ni,•s2(ωi,T )) (7)

where s1(ωi,T ) and s2(ωi,T ), two non-parametric functions, are used to replace the parametric functions f1(ωi,T ) and
f2(ωi,T ). This more flexible approach allows us to better understand the connection between the size of the insured
ωi,T and the past claims experience. Using splines as non-parametric functions, which are associated with a Poisson
distribution, allows us to use the generalized additive models (GAM) theory (see Wood (2006) for an overview).

As with the Kappa-N model in Section 2.1.1, the idea is to modify the form of the mean λi,T , expressed in equation (7),
to create a generalized claim score `i,T . For the generalized claim score, each claim increases the score by the jump
parameter Ψ and each year without claim decreases the claim score by Υ, a new parameter called the drop parameter.

The generalized claim score can be expressed in at least two ways:

1. Generalized Claim-Score #1:

10
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Generalized Claim-Score #1 Generalized Claim-Score #2
Insured (i) ωi log(ωi) Ψ

(1)
i Υ

(1)
i γ

(1)
0,i Ψ

(2)
i Υ

(2)
i γ

(2)
0,i

1 (blue) 1 0 4.15 1 0.0702 10.87 2.62 0.0268
2 (red) 12 2.48 6.86 1 0.0171 4.38 0.63 0.0268

Table 4: Parameters for the Generalized Kappa-N model for both insureds

λi,T = exp

(
X ′i,Tβ + s1(ωi,T )×

(
−κi,• +

s2(ωi,T )

s1(ωi,T )
ni,•

))
= exp

(
X ′i,Tβ + γ0(ωi,T )× (−Υκi,• + Ψ(ωi,T )ni,•)

)
= exp

(
X ′i,Tβ + γ0(ωi,T )× `(1)i,T (ωi,T )

)
,

where `(1)(ωi,T ) = −Υκi,• + Ψ(ωi,T )ni,•, the generalized claim-score depends on the size of the insured
ωi,T . The other parameters are now defined as:

• γ0(ωi,T ) = s1(ωi,T ): the relativity parameter depends on the size of the insured ωi,T ;

• Ψ(ωi,T ) =
s2(ωi,T )
s1(ωi,T ) : the jump parameter depends on the size of the insured;

• Υ = 1: the drop parameter does not depend on the size of the insured.

2. Generalized Claim-Score #2:

λi,t = exp(X ′i,Tβ + (−s1(ωi,t)κi,• + s2(ωi,t)ni,•)

= exp(X ′i,Tβ + γ∗0 × (−Υ(ωi,t)κi,• + Ψ(ωi,t)ni,•)

= exp
(
X ′i,Tβ + γ∗0 × `

(2)
i,t (ωi,t)

)
,

where `(2)(ωi,T ) = −Υ(ωi,T )κi,• + Ψ(ωi,T )ni,•, the generalized claim-score, also depends on ωi,T . For this
second generalized claim-score, the parameters are now defined as:

• γ∗0 : the relativity parameter, which comes from the Kappa-N model, is used to obtain normalized
parameters that can easily be compared with the parameters of the Kappa-N model. The relativity
parameter does not depend on the size of the insured ωi,T ;

• Ψ(ωi,T ) =
s2(ωi,T )
γ∗
0

: the jump parameter depends on the size of the insured.

• Υ(ωi,T ) =
s1(ωi,T )
γ∗
0

: the drop parameter depends on the size of the insured;

A numerical application can be used to show the differences between the two generalized claim-scores. Using the same
dataset as in Section 2.3.1, the Generalized Kappa-N model is used. A Poisson distribution is again used to model the
number of claims.

Figure 4 shows the functions Ψ(ωi,T ),Υ(ωi,T ) and γ0(ωi,T ) for the two generalized claim scores, based on the
smoothing functions s1(ωi,T ) and s2(ωi,T ) estimated by a Poisson GAM. The dashed line shows the estimates of Ψ,Υ

and γ0 from the Kappa-N model. It is interesting to see that the Generalized Kappa-N model allows us to develop a
flexible relationship between the parameters Ψ,Υ and γ0 and the risk size ω.

3.1.1 Example of Two Generalized Claim Scores

To better interpret the generalized claim score and to analyze the differences between the two generalized claim scores,
we provide an example with two insureds, both summarized in Table 4 and illustrated with specific dots in all the graphs
in Figure 4):
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Figure 4: Smoothed functions from the Generalized Kappa-N model (generalized claim-score #1: left, generalized
claim score #2: right)

1. An insured with only one insured item (i.e. ωi,T = 1), which is represented by the blue dots. If the insured
claims, the value of the first score `(1)(ωi,T ) will increase by Ψ(1) = 4.15 and the value of the second score
`(2)(ωi,T ) will increase by Ψ(2) = 10.87. Because γ(1)0 6= γ

(2)
0 , we can show that the resulting surcharge will

be the same.

2. An insured with twelve insured items (ωi,T = 12), which are represented by the red dots. If no claim is made,
the insured will be rewarded by a drop of Υ(1) = 1 for the first score `(1)(ωi,T ), and a drop of Υ(2) = 0.63

for the second score `(2)(ωi,T ). Again, despite the difference between the scores, the resulting discount will
be the same for each score.

Another way to compare the two scores is shown in Figure 5 with the same two insureds. Both insureds are at level 100.
The figure shows how the two generalized scores can be interpreted. For the first score, illustrated by the top graph,
we see two relativity curves (γ0(s1) in blue and γ0(s2) in red). Policyholder #1, in blue, will be rated by the value
shown by the blue curve, and the second policyholder will be rated by the relativities associated with the red curve.
We also see that the jump parameter is not the same for both insureds. Indeed, the first insured has a jump parameter
of Ψ(s1) ≈ 4, and the second insured has a jump parameter of Ψ(s2) ≈ 7. For the first generalized score, the drop
parameter Υ is the same regardless of the size of the insured (in purple), meaning that both insured moves down by one
level if they do not claim.

The second generalized score is illustrated in the bottom graph of the same figure. This time, we see that only one
relativity curve γ0 applies to all insureds. The jump parameters Ψ(s1) and Ψ(s2) diffres depending on the size of the
insured. The jump parameters from generalized claim score #2 are also very different than the jump parameters of
generalized claim score #1. Indeed, we have Ψ(s1) < Ψ(s2) for the first score, and Ψ(s1) > Ψ(s2) for the other score.
Drop parameters (Υ(s1) and Υ(s2)) also depend on the size of the insured.

3.1.2 Practical Considerations

Table 5 shows the log-likelihood for the Generalized Kappa-N model (L(gKN) = −8486.277) and the log-likelihood
obtained for the Kappa-N model (L(KN) = −8506.237). Adding an interaction between the size of the insureds
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Figure 5: Examples of the penalty structure for two insureds for the Generalized Kappa-N model

and the total number of claims, and between the size of the insured and the total number of years without a claim
significantly improves the log-likelihood.

The Kappa-N model supposes that each year without claims is rewarded by Υ = 1. Maximum likelihood estimation of
the joint density of the Kappa-N shows a value of Ψ̂ = 4.11. For practical purposes and ease of use, Ψ can be rounded
to obtain Ψ = 4. Consequently, the rating system can be understood more easily by the legislative authorities that
regulate pricing, by the various administrators of insurance companies and maybe more importantly, by policyholders.
The same transformation should be done with the Generalized Kappa-N model. In other words, Ψ and Υ could also be
rounded. However, Υ(2) is more problematic because its lowest value is around 0.2 for large insureds. Rounding Υ(2)

to 0 in that case will not be useful approximation, because it would mean that a year without a claim would not lead to
as discount. It could be possible to round to the nearest 0.5 instead with the constraint that Υ(2) ≥ 0.5.

Table 5 also shows the impact of rounding Ψ and Υ of the Generalized Kappa-N model. The impact of rounding the
claim-score parameters was less notable for the Kappa-N model, as seen by the small difference in the log-likelihood
between both models. For the Generalized Kappa-N model, the impact seems more significant. In Figure 4, we see
that Ψ(1) and Ψ(2) can easily be rounded without loosing to much of precision. Figure 6 shows the distribution of the
rounded values of Ψ and Υ by the number of insured items, where Υ(1) is not shown because it is always equal to 1 (by
design).

3.2 Generalized BMS model Using the Size of the Insured

The problems present in the Kappa-N model also exist in the Generalized Kappa-N model. First, by using a generalized
claim score based on κ• and n•, the rating model does not allow for forgiveness and a claim will always have an impact
on the premium. Moreover, because the Generalized Kappa-N model has no minimum or maximum values for the
claim-score (`(1) or `(2)), it can lead to situations where the computed surcharges or discounts would be too large to be
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Model Rounded Loglike. (train) Log. Score (test)

Kappa-N No -8506.237 -2858.234
. Yes -8506.303 -2858.179

Generalized Kappa-N No -8486.277 -2854.272
. Yes (score 1) -8487.000 -2855.131
. Yes (score 2) -8489.187 -2854.993

Table 5: Kappa-N and Generalized Kappa-N models with rounded claim-score parameters
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Figure 6: Rounded values of Ψ and Υ (by 0.5) by the number of insured items

applied in practice. Figure 7 shows the distribution of claim scores by the number of insured items, from which we
observe that the spectrum of possible values for `(1) or `(2) is quite large, especially for small insureds.
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Figure 7: Minimum, maximum and average values of claim-scores `(1) or `(2) by the number of insured items

Compared to a Kappa-N model, the general idea of the BMS model is to limit the maximum surcharge and the
maximum discount of the insured, for the current contract but also for all available past contracts. The same kind of
modifications have to made for the Generalized Kappa-N model.

Like we did when adapting the BMS model from the Kappa-N model, we can adjust several models using all possible
values of `max and `min. However, this approach is not ideal because it assumes that the optimal values of `max and
`min are the same for all policyholders regardless of their ω size. The generalized score #1, illustrated in Figure 8,
better illustrates the problem. Seeking an ideal value of `max impacts each relativity curves differently. For example,
the graph on the left of Figure 8 illustrates a fictitious situation where `max = 132. In this example, which can be
understood with the help of Figure 5, we see that the impact for policyholders would be very different depending on
the size of the insured, and thus would very differently impact their relativities. Indeed, this limit `max would mean
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that the maximum surcharge for insureds in red would be only 17.4%, which is probably too low, but would be about
61.6% for insureds in green, which is probably too high. Consequently, we could take a different approach and assume
that instead of trying to obtain an optimal `max to limit the insured’s premiums, we could simply find the maximum
relativity for all policyholders, regardless of their size. This situation is illustrated in the right-hand graph in the same
figure. This time, a maximum relativity of 1.25 would imply a maximum BMS level of about 115 for the insureds in
green and 144 for the insureds in red. Such a situation would only create more problems, where only one or even less
than one claim can reach the maximum BMS level for the green group of insureds, while the limit becomes potentially
unattainable for the insureds in the red group. In other words, regardless of whether the left or right approach in Figure
8 is used, it gives the impression that this kind of BMS will be well suited to the policyholders in the blue group, but
will cause problems for all other policyholders.
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Figure 8: Problems of limiting the claim score

3.2.1 How to Find the Best Limits for the Generalized Claim Score

We have to develop an approach to limit the generalized claim score. To achieve this, we need to work in stages.

The first step is to fit a Generalized Kappa-N model that does not suppose any upper or lower bounds on the generalized
claim score. That means that we have to work with the structural parameters, Ψ(gKN), Υ(gKN) and γ(gKN)

0 , estimated
by the Generalized Kappa-N model. We then use all possible combinations of `max ∈ {100, 101, . . . , 200} and
`min ∈ {85, 86, . . . , 100} to compute the total log-likelihood L(`min, `max) of each partial-BMS model3 for all
possibilities:

L(`min, `max) =

n∑
i=1

log(Pr(Ni,T |`(gKN)
i,T )) (8)

where `(gKN)
i,T is the generalized claim score, limited by `min and `max, but computed with Ψ(gKN), Υ(gKN)

and γ(gKN)
0 . Figure 9 shows the evolution of the total log-likelihood L(`min, `max) for different values of `max

and `min. A partial-BMS model with `∗max = 125 and `∗min = 85 allows us to obtain a log-likelihood of
L∗ = L(85, 125) = −8, 482.025 (identified by the red dot on the graph).

To obtain `min and `max values that could depend on ω, a simple solution would be to have a unique optimal value
of `max and `min for each value of ω from the portfolio. That means that we take the values of `max and `min that
maximize the log-likelihood for each ω:

3We call it "partial" because the parameters Ψ, Υ and γ0 are not yet estimated with the BMS structure.
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L∗ω = max
`min,`max

Lω(`min, `max), for ω = 1, 2, . . . , 70. (9)

where the maximum number of insured items, W , has been limited to 70, meaning that all insureds with 70 or
more insured items are now grouped together. Figure 10 shows the result based on the number of insured items.
Using this approach significantly improves the fit of the partial-BMS model because a total log-likelihood of∑W
ω=1 L

∗
ω = −8, 462.089 is found.
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Figure 10: Values of `max and `min generating the best log-likelihood for each ω

For this type of solution, the possibility of overfitting should obviously be considered and cross-validation analyses, or
comparisons of the different models with the test database, should be studied. Nevertheless, at this stage of construction
of our model, overfitting is not yet our main concern. The problem with this solution, in which we use different values
of `max and `min for each ω, is similar to our main criticism of the recursive partition model used in Boucher (2022b).
Using different values of `max(ω) and `min(ω) could probably causes serious practical problems where an insured
who could have large variations in premiums simply by adding or removing an item from their insurance policy. For
example, insureds with 23, 24 or 25 insured items, as we can see in Figure 10, could have large variations in their
premiums because `max alternates between 200, 123 and 200.

3.2.2 Finding the Best Path

In order to ensure that the rating structure we are trying to implement is consistent, we need to limit the variation of
`max for insureds with approximately the same number of insured items ω. One solution is to only allow a variation
of plus or minus 1 between the values of `max for successive values of ω. The objective can also be interpreted
as trying to find the optimal path, from ω = 1 to ω = 40, with the constraint that

∣∣`max(ω + 1) − `max(ω)
∣∣ ≤ 1
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for all ω = 1, . . . ,W−1. Even with such a constraint, the total number of paths to verify and compute is much too large.

Instead, we develop an algorithm to find the best path4. The pseudo-code of the Best Path algorithm in described in Al-
gorithm 1. To apply the Best Path algorithm, we first need to compute all the log-likelihoods for `min ∈ {85, . . . , 100},
`max ∈ {100, . . . , 200}, and ω ∈ {1, 2, . . . , 70}. Those values are then stored in L, and we suppose that the
log-likelihood does not exist for other values of `min or `max. The general idea of this algorithm is to work backward
to update L at each step, as explained in Algorithm 1.

Algorithm 1 Best Path

Require: L, the log-likelihoods obtained for all values of `min, `max and ω
for k in {69, 68, . . . , 1} do

for l1 in {85, 86, . . . , 100} do
for l2 in {100, 101, . . . , 200} do

(l∗1, l
∗
2)← arg max

`min,`max

{Lk+1(`min, `max|`min ∈ (l1 − 1, l1 + 1), `max ∈ (l2 − 1, l2 + 1)}

Lk(l1, l2)← Lk(l1, l2) +Lk+1(l∗1, l
∗
2)

p1(k)← l∗1
p2(k)← l∗2

(`∗min, `
∗
max)← arg max

`min,`max

{L1(`min, `max)}

LL← L1(`∗min, `
∗
max)

for k in {1, 2, . . . , 70} do
`1(k)← `∗min
`2(k)← `∗max
`∗min ← p1(k)

`∗max ← p2(k)

return (LL, `1, `2)

The Best Path algorithm has been applied to all observations of the training set. The result obtained is illustrated in
Figure 11. This figure can be compared to Figure 10. Obviously, adding a constraint to the variation of `max and `min
causes the maximum likelihood statistic to change from −8, 462.089 (unconstrained) to −8, 478.756. However, this fit
statistic is still much better than the one obtained using the Generalized Kappa-N model.

This flexible approach to determining `max(ω) and `min(ω), which depend on ω, shares similarities with non-parametric
approaches, where the Best Path algorithm allows us to let the data speak for itself without strictly replicating what has
been observed. Indeed, allowing a change of at most −1/+ 1 on `max and on `min allows us to limit the variation,
and potentially to limit the overfitting. Other variations of the criteria could be studied, for example −y1/ + y2 on
`max and/or `min for different values of y1 and y2. Because we know that models that do not limit the variations
can probably generate better log-likelihoods, several cross-validation analyses could allow us to see which maximum
variations between groups of neighboring ω could be optimal in terms of predictive quality on a series of validation
samples. Transition rules for insureds who add or remove items from their insurance policy could also be analyzed.

3.3 Using the Recursive Algorithm for Ψ,Υ and γ0

Because it limits the variations for similar ω, the algorithm for selecting `max(ω) and `min(ω) yields a flexible pricing
structure for defined values of Ψ(ω),Υ(ω) and γ0(ω). However, when we applied the Best Path algorithm to obtain all
the limits of the claim score, the values of Ψ,Υ and γ0, as well as the β parameters or any overdispersion parameters

4It should be noted that this kind of optimization problem is a textbook dynamic programming applications. We program a small
algorithm to find the best path, but simpler and faster solutions certainly exist (see Needleman and Wunsch (1970) who first used this
solution for protein sequence analysis)
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Figure 11: Values of `max and `min from the best path

used in the count distribution, were all estimated with the Generalized Kappa-N model defined in equation (7). By
adding `max and `min to the model to limit the variation of the claim score for each farm, it becomes clear that many
estimates of the underlying count distribution, particularly the values of Ψ(ω),Υ(ω) and γ0(ω), are no longer correct.

The GAM approach, which was described in Section 3.1, was interesting because it allowed the different parameters of
any BMS model to remain flexible (see Figure 4). However, the estimation procedure was based on the Generalized
Kappa-N model and at no time were the parameters `max and `min involved in the computation of those flexible
estimates. That means that we must develop another method to estimate the parameters of a BMS model that takes into
account the size of the insured.

Like in the estimation approach developed in Section 2.2.2, we can, however, use the described algorithm to estimate all
the parameters Ψ(ω),Υ(ω) and γ0(ω), while using the Best Path algorithm to find `max(ω) and `min(ω). The general
idea of the new estimation method is like to one we used to express equation (6): we have to substitute κi,• with di,•,
and ni,• by ñi,• from the original Generalized Kappa-N model, to develop a Generalized Kappa-N∗ model; its mean is
expressed by:

λi,T = exp(X ′i,Tβ − di,•s1(ωi,T ) + ñi,•s2(ωi,T )) (10)

If we do not have the limits `max(ω) and `min(ω) to compute the generalized claim score, we can use di,• = κi,• and
ñi,• = ni,•. However, when limits are used, ñi,• is not necessarily equal to ni,• for all insureds i, and di,• can also be
different from κi,•.

The different steps of the algorithm of ection 3.1 that has to be used to estimate all the parameters of the generalized
BMS model are similar to what was described in Section 2.2.2, but modifications are included to allow the use of the
Best Path algorithm, which is needed to find `max(ω) and `min(ω). More precisely, the general estimation algorithm is
as follow:

• Initiation: A Generalized Kappa-N model using ni,• and κi,• is estimated to obtain Ψ(0)(ω), Υ(0)(ω) and
γ
(0)
0 (ω). The Best Path algorithm is used to obtain `(0)max(ω) and `(0)min(ω).

Then, for each step k:

• Computation: The values of d(k)i,• and ñ(k)i,• are computed for each insured i using Equation (4), as are the

parameters Ψ(k−1)(ω), Υ(k−1)(ω), `(k−1)max (ω) and `(k−1)min (ω).
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Model Rounded Loglike. (train) Log. Score (test)

Generalized BMS No -8471.739 -2851.839
. Yes (score 1) -8474.552 -2852.022

Table 6: Summary of Generalized BMS models, with and without rounded Ψ(ω) parameters

• Maximization: The log-likelihood of a Generalized Kappa-N∗ model, using ñ(k)i,• and d(k)i,• , is maximized

to estimate all parameters. Updated values for Ψ(k)(ω), Υ(k)(ω) and γ(k)0 (ω) are found and the Best Path
algorithm is used to obtain an updated values of `(k)max(ω) and `(k)min(ω).

The initiation step is performed once, but the computation and the maximization steps are repeated until convergence is
reached. As opposed to the algorithm described Section 2.2.2, the estimation algorithm does not have to be used for all
possible values of the pair (`max, `min). Indeed, because the Best Path algorithm is used in the estimation procedure,
optimal values of `max(ω) and `min(ω) are found directly.

3.4 Final BMS model

The estimation procedure described earlier was applied to the farm insurance data. We show and analyze the final
results using only generalized score #1, because it is simpler to explain and apply. Indeed, for the BMS score #1, the
drop parameter Υ is always one, meaning that all insureds are rewarded by a drop of one level for each year without
claim, no matter their size.

The estimation results are shown in Table 6. A model with integer values for Ψ(ω) is also shown, and the result can
be seen in the same table. We can compare the log-likelihood value and logarithmic score of the two Generalized
BMS models with what we had obtained for the Kappa-N model and the Generalized Kappa-N model (see Table
6); and for the standard BMS model (see Table 3). It shows that both Generalized BMS models generate the best
log-likelihood using the training database, and the best logarithmic score using the test database. Rounding the value of
Psi(ω) slightly decreases the quality of the fit and the quality of the prediction, but a BMS model with an integer jump
parameter Ψ(ω) is much easier to use.

Figure 12 shows the final values of `max(ω) and `min(ω) for the Generalized BMS model. We see a major difference
from what was obtained in the first iteration of the Best Path algorithm that was used in the initiation step of the
estimation procedure, i.e. for k = 0, which was already shown in Figure 11. The values of `max(ω) are fairly stable for
all ω; they all fall between 110 and 120. However, significant variations in `min(ω) can be seen. As a new insured
enters level `0 = 100, `min(ω) can be used to compare the best insureds with several years of experience with the new
insureds. We see that the difference is larger for small farms.

Figure 13 compares the parameters Ψ(ω) and γ0(ω) of the generalized BMS model with what was found with the
Generalized Kappa-N model. We can also see the impact of the rounding of the jump parameter Ψ in the left graph of
the same figure. The differences observed between the parameters obtained using the Generalized Kappa-N model and
the Generalized BMS model are significant, especially for the largest farms.

The results obtained using the Generalized BMS model cannot be analyzed by looking independently at each of
the various estimates of the parameters. Indeed, it is often the combination of several parameters that gives a better
understanding of the rating structure of a BMS model.

Figures 14 and 15 probably give a better overview of the rating structure constructed by the Generalized BMS model.
The graph on the left of Figure 14 shows the surcharge for a claim, and the claim-free discount, for each value of ω. We
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Figure 12: Values of `max(ω) and `min(ω) for the Generalized BMS model
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Figure 13: Functions Ψ(ω) and γ0(ω) for the Generalized Kappa-N and the Generalized BMS models

see that the group of insureds that differs the most is small farms. Indeed, for these farms, the surcharge for a single
claim is much higher than for any other sizes of farms. The discount for a claim-free year is also higher for small farms.
A similar conclusion can be drawn from the right-hand graph of Figure 14, which shows the maximum surcharges
and discounts. Indeed, we see that the suggested rating structure for small farms is to have a much larger surcharge
than others, and a higher maximum discount. This seems to suggest a strong heterogeneity between all small farms,
compared to medium and large farms. Finally, the results displayed in Figure 15 show the theoretical number of claims
needed to reach `max, for an insured at the initial `0 level. The curve is relatively stable, but increases for farms with
more than 50 insured items. In practice, because the number of claims is an integer, the curve would be more stable,
varying between 2 and 5 claims.

Previously, when analyzing the curves in Figure 13, it would be tempting to conclude that medium-sized farms, with
10 to 50 insured items, had a different loss experience than other farms. This is not quite the case, as our analysis in
Figure 14 shows. Indeed, the high value of Ψ for the medium-sized farms is offset by the decrease in γ0. In the end, the
surcharges and discounts for these farms are not particularly strange. However, the value of Ψ can also be interpreted
differently. Indeed, the impact of a single claim on the premium is roughly equal to Ψ years without claims. In other
words, if an insured claims, it would take Ψ years without a claim to return to the premium the insured had prior to
the claim. Given the Ψ(ω) function in Figure 14, this could perhaps mean that the rating structure proposed in the
Generalized BMS is less forgiving for medium-sized farms than for small and large farms, as it would take more time
for a medium-sized farm to return to the premium they had before claiming. This observation likely lead to further
modelling work that could be done on other BMS transition rules. Indeed, instead of using a basic BMS model that
only rewards insureds when they do not claim in a given year, or penalizes each claim using the same jump parameter
Ψ, we can study if other rewards or other penalties should be given. For example, three, five or ten consecutive years
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Figure 15: Number of claims needed to reach `max, for an insured at the initial `0 level

without a claim could be rewarded by a greater decrease of levels. Penalties could be different for a second or third
claim in a single year. Lemaire (2012) provides an impressive list of bonus-malus systems, with many different possible
transition rules. This should be considered in future work.

3.4.1 Practical Considerations

To conclude our paper, and to show the advantages of the BMS approach, we will give a simple example that
summarizes the important elements of an experience rating structure that uses the Generalized BMS. Table 7 shows
four insureds of different sizes. For each insured, we see all the structural parameters that come from the Generalized
BMS. The table also shows some characteristics of the BMS model, such as the surcharge per claim, the claim-free
discount, the maximum surcharge and the maximum discount, and finally the number of claims needed to reach `max,
for an insured at the initial level `0. When the BMS model has been adjusted, even though they are easy to compute, all

Surcharge Claim-free Maximum Maximum Maximum
Insured ω Ψ γ0 `max `min by claim Discount Surcharge Discount nb. of claims

1 1 4 0.0731 115 86 33.9% 7.1% 199.4% 64.1% 3.750
2 12 8 0.0253 118 87 22.4% 2.5% 57.8% 28.1% 2.250
3 33 5 0.0396 114 94 21.9% 3.9% 74.1% 21.1% 2.800
4 70 3 0.0579 110 99 19.0% 5.6% 78.4% 5.6% 3.333

Table 7: Parameters for the Generalized Kappa-N model for both insureds

21



A PREPRINT - JULY 24, 2022

of those characteristics of the BMS model deeply explain the way experience rating works, and how it can impact each
insured.

For the purpose of practically applying the BMS to rate policyholders, we see that the values of Ψ, `max and `min are
readily available and can be given to policyholders, brokers or regulators. With this level of transparency, policyholder
# 1, for example, will know that he/she would move up 4 levels for each claim he/she makes, and will know that he/she
would move down one level for each year without a claim. Insured #1 also knows that the maximum score is 115, and
the lowest score is 86. All of this information can easily be given and explained to all insureds, as Table 7 shows. The
relativity parameter γ0, which also depends on the size of the insured, is a bit more difficult to explain and share with
the insureds. Most of the β relativities, which are associated with risk characteristics such as the age or the territory
of the insured, are also difficult to explain. If the insurer wanted to be completely transparent, a table of relativities
arranged by BMS level for each ω, could also be a solution to this problem.

Finally, knowing that it is very possible that an insured with a certain number of insured items ω will add or remove an
item from his or her policy, it might be worthwhile to measure the potential impact of such a change on the experience
rating structure. The Best Path algorithm, which limits the variation of `min(ω) and `min(ω) for similar ω, combined
with the use of a GAM to smooth the values of Ψ(ω) and γ0(ω) suggests that the impact will be limited. However,
more rigorous analyses would be interesting.

4 Conclusion

Recent BMS models have proven to be both accurate and easy to use. However, BMS models could appear unfair to
many insureds and regulators because they do not seem to recognize the initial risk of the insured. Historically, to avoid
double penalizing high frequency insureds, many authors proposed the creation of several separate BMS systems for
each group of insureds. As shown by Boucher (2022b), this approach cannot be used in all circumstances. Moreover, it
has been shown that it creates serious problems when there are insureds that can move from one BMS system to another
at any moment.

In this paper, we have thus developed a new BMS model that takes into account the a priori risk of the insured.
In our numerical application, which uses data from the machinery insurance product for farms, we used the size
of the insured as an a priori measure of risk, defined as a function of the number of insured items. By using a
Generalized Kappa-N model that includes an interaction between the size of the insured and the past claims history,
we were able to use the GAM theory to determine smooth functions for all parameters Ψ(ω),Υ(ω) and γ0(ω) so
that they depend directly on ω. Then, with the objective of limiting the variations between policyholders of similar
size, we develop an algorithm to identify the best values of `max(ω) and `min(ω). Finally, by generalizing the
previously introduced estimation algorithm to efficiently estimate the parameters of a BMS model, we explained
how a Generalized BMS model could be estimated. The final BMS model produces both the best log-likelihood for
the training databaset, and the best logarithmic score for the test database, compared to the other models used in the paper.

We believe that the development of a generalized BMS model could greatly facilitate experience-based pricing, but it
can be generalized in several ways:

1. Only the Poisson distribution has been used as a count distribution for all models in this paper. As in Boucher
(2022a), other count distributions could easily be implemented with the BMS model. Various forms of negative
binomial distributions or any zero-inflated distributions could yield interesting results.

2. As shown in Lemaire (2012), many different transition rules could be used with a BMS.

3. Multiple scope variables and multiple target variables (see Section 2.1 for definitions of those variables) could
be tried in order to create a multivariate BMS model, or a BMS model where the BMS levels are calculated
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based on the cost of past claims. Using BMS to model the loss cost or to model the severity of a claim could
also be studied.
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