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RÉSUMÉ

L’une des normes sociales les plus importantes de l’ère moderne est l’équité.

Notre comportement est déterminé par notre expérience personnelle, notre

contexte culturel et notre conscience historique, et ce comportement est

généralement injuste.

Afin de combattre les décisions injustes basées sur la race, le sexe, l’âge,

etc., de nombreuses législations ont été mises en place dans le monde en-

tier.

D’autre part, le processus de prise de décision dans le monde actuel a été

confié à des algorithmes d’apprentissage automatique, et est appliqué au-

tomatiquement dans de nombreux domaines tels que l’admission au crédit

et les primes d’assurance. L’objectif principal de ces algorithmes a toujours

été la précision, comment minimiser notre erreur et créer un programme

qui a la meilleure performance. Et c’est là qu’intervient l’injustice en-

vers les groupes défavorisés, puisque dans ces algorithmes nous essayons

de prédire le comportement humain et donc de prédire un comportement

injuste.

Dans cette optique, notre objectif est de pouvoir quantifier l’équité. Tout

d’abord, comme une notion associative, qui a été proposée par les chercheurs

dans la littérature, certaines de ces notions sont la parité statistique,

l’impact disparate, l’égalité des chances. Ensuite, comme une notion

causale. En fait, nous allons réunir plusieurs méthodes pour détecter la

relation causale entre notre attribut sensible et notre décision.
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Effet spécifique du chemin, Modèle d’équation structurelle, Discrimination
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ABSTRACT

One of the most important social norms in the modern era is fairness. Our

behavior is determined by our personal experience, our cultural context,

and our historical awareness, and that behavior is usually unfair.

In order to combat unfair decisions based on race, gender, age, etc., many

legislations have been implemented around the world. On the other hand,

the process of decision making in the current world has been handed over

to machine learning algorithms and is applied automatically in multiple

areas such as loan admission and insurance premium determination. The

main goal of these algorithms has always been accuracy, how to minimize

our error, and create a program that has the best performance. And this

is where the unfairness towards disadvantaged groups comes in, since in

these algorithms we are trying to predict human behavior and therefore

predict unfair behavior.

With this in mind, our objective is to be able to quantify fairness. First,

as an association-based notion, which has been proposed by researchers

in the literature, some of these notions are statistical parity, disparate im-

pact, and equality of opportunity. Then we will be exploring unfairness as

a causal notion.In fact, we will bring together several methods to detect

the causal relationship between our sensitive attribute and our decision.

Key Words: Race, Sex, Discrimination, Fairness, Causality, d-separation,
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Path specific effect, Structural equation model, Direct discrimination, In-

direct discrimination.
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INTRODUCTION

Machine learning tools have recently become one of the key players in

decision making. And they are designed to make that decision based on

human behaviors that may contain discrimination against certain groups

like women or certain races.

Therefore, regulations have been put in place to combat this discrimina-

tory behavior. It is thus urgent to eliminate this discrimination.

First we define what discrimination is and how it manifests itself in our

decision-making process, and then we quantify discrimination using dif-

ferent concepts.

With this in mind, this report focuses on the different notions of fairness

and how we can test them on a data set.

Next, we will review at the notion of causal fairness, how to quantify it,

and how to test the causal relationship between our protection groups and

the decision we want to make, whether direct or indirect.
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CHAPTER 1

MOTIVATION

1.1 Legal context

Unequal opportunity has been a concern in many areas such as employ-

ment rates and credit scoring. Multiple pieces of legislation have been put

in place to define and ensure non-discrimination against minorities and

disadvantaged groups. Some of these laws include the UK Equality of

Act [Feast and Hand(2015)],which requires non-discriminatory policy de-

cisions by Ministers of the Crown and others, and is an update and consol-

idation of the Disability Discrimination Act, [Merry and Edwards(2002)],

the Sex Discrimination Act [Act(1976)], and the Race Relations Act [Murphy(1976)].

In the United States, the Equal Pay Act of 1963 [Elisburg(1978)] pre-

vents wage disparities based on sex; the Equal Credit Opportunity Act

[Smith(1977)] prohibits discrimination in any aspect of a credit transac-

tion; and the Civil Rights Act [Legislation(1968)] prohibits discrimination

against disadvantaged groups in the workplace. In Canada, numerous laws

have been put in place to ensure the right to fair and non-discriminatory

treatment and prohibit discrimination against minorities and disadvan-

taged groups: the Canadian Human Rights Act [Legislation(1985b)], the

Employment Equity Act [Legislation(1995)], and Canada Labour Code

[Legislation(1985a)]. In the European Union, the legislation in place to

combat discrimination is the Racial Equality Directive [Legislation(2000)],

2



the Employment Equality Framework Directive of 2000 [European Union Legislation(2000)]

and the Equal Treatment Directive of 2006 [European Union Legislation(2006)].

One of the major roles of legislation has been to define protected char-

acteristics. Under the UK Equality Act [Feast and Hand(2015)], the pro-

tected characteristics are:

• age;

• disability;

• gender reassignment;

• marriage and civil partnership;

• pregnancy and maternity;

• race (including color, nationality, ethnic or national origins);

• religion or belief;

• sex;

• sexual orientation.

1.2 Bias is in algorithms

It may seem that turning your decision-making over to an AI system

will prevent you from discriminating, but that’s not the case. In fact,

machine learning algorithms are models designed by humans to conclude

and predict based on an analysis of data related to a question (for ex-

ample, who would get a loan?), and the way they work is simple: it’s

a process in which data is fed to a model, which mathematically pro-

cesses it and creates the desired outcome. As new data is fed to the

algorithm, the process loops around to improve accuracy. Thus, the al-

gorithms are influenced by human behavior, its errors and discrimination,

starting with the collection of data through its analysis and finally the

decision.[Rovatsos et al.(2019)Rovatsos, Mittelstadt, and Koene]
3



1.2.1 Evidence of biased algorithms

Multiple algorithms have been shown to be biased, among the most no-

table:

• There was evidence that Google’s ads showed fewer high-paying jobs

for women[Datta et al.(2014)Datta, Tschantz, and Datta].

• Amazon Prime’s same-day delivery offers were provided by algo-

rithms that reinforced racial bias by not offering the same-day deliv-

ery option in predominantly minority American neighborhoods[Ingold and Soper(2016)].

• U.S. insurance companies provide quotes based more on credit score

than driving record. For example, a customer with a low credit

rating and a good driving record pays more than a customer with a

high credit rating and a poor driving record[O’neil(2016)].

These systems were not set up to discriminate explicitly; in fact, ignor-

ing the sensitive attribute is not enough to achieve non-discriminatory

systems.

1.2.2 Evidence of unfairness in insurance data

1.2.2.1 Racial Discrimination

As Wolff 2006 [Wolff(2006)] reminds us, in 1896, Frederick L. Hoffman, an

actuary with Prudential Life Insurance, published a report demonstrating,

with statistics, that a black American was uninsurable (see Hoffman 1896

[Hoffman(1896)]). Du Bois 1896 [Du Bois(1896)] noted ironically that the

death rate of blacks in the United States was only slightly higher (but com-

parable) to that of white citizens in Munich, Germany, at the same time.

More importantly, the main criticism is that it aggregated all sorts of data,
4



preventing a finer analysis of other causes of (possible) excess mortality

(this is also the argument made by O’Neil 2016 [O’neil(2016)]). At that

time, in the United States, several states were passing anti-discrimination

laws, prohibiting the charging of different premiums based on racial infor-

mation. For example, as Wiggins 2013 [Wiggins(2013)] points out, in the

summer of 1884, the Massachusetts state legislature passed the Act to Pre-

vent Discrimination by Life Insurance Companies Against People of Color.

This law prevented life insurers operating in the state from making any

distinction or discrimination between white persons and colored persons

wholly or partially of African descent, as to the premiums or rates charged

for policies upon the lives of such persons. The law also required insurers

to pay full benefits to African-American policyholders. It is on the basis of

these laws that the argument of uninsurability was made: insuring blacks

at the same rate as white would be statistically inequitable, argued Hoff-

man 1896 [Hoffman(1896)], and not insuring blacks was the only way to

comply with the law (see also Heen 2009 [Heen(2009)]). As Bouk 2015

[Bellhouse(2016)] recounts "Industrial insurers operated a high-volume

business; so to simplify sales they charged the same nickel to everyone.

The home office then calculated benefits according to actuarially defensi-

ble discriminations, by age initially and then by race. In November 1881,

Metropolitan decided to mimic Prudential, allowing policies to be sold

to African Americans once again, but with the understanding that black

policyholders’ survivors only received two-thirds of the standard benefit".

1.2.2.2 Gender Discrimination

The 2004 European Goods and Services Directive, Council of the Euro-

pean Union 2004 [Conseil de l’Union Européenne (2004)()], aimed to re-
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duce gender gaps in access to all goods and services, discussed for example

by Thiery and Van Schoubroeck 2006 [Thiery and Van Schoubroeck(2006)].

A special derogation in Article 5, paragraph 2, allowing insurers to set

gender-based prices for men and women. Indeed, "Member States may

decide (...) to allow proportionate differences in premiums and benefits for

individuals where the use of sex is a determining factor in the assessment of

risk, on the basis of relevant and accurate actuarial and statistical data".

In other words, this clause allowed for an exception for companies, pro-

vided that they provide actuarial and statistical data that establishes that

gender is an objective factor in assessing risk. The European Court of Jus-

tice struck down this legal exception in 2011, in a ruling discussed at length

by Schmeiser et al. 2014 [Schmeiser et al.(2014)Schmeiser, Störmer, and Wagner]

or Rebert and Van Hoyweghen 2015 [Rebert and Van Hoyweghen(2015)],

for example. This regulation, which generated a lot of comment in Europe

in 2007 and then in 2011, had also raised many questions in the United

States, several decades earlier, such as this discussion in the late 1970s,

with Martin 1977[Martin(1977)], Hedges 1977 [Hedges(1977)] and Myers

1977[Myers(1977)]. For example, in City of Los Angeles, Department of

Water and Power v. Manhart, the Supreme Court considered a pension

system in which female employees made higher contributions than males

for the same monthly benefit because of longer life expectancy. The ma-

jority ultimately determined that the plan violated Title VII of the Civil

Rights Act of 1964 because it assumed that individuals would conform to

the broader trends associated with their gender. Such discrimination, the

court suggested, is troubling from a civil rights rights perspective because

it does not treat individuals as individuals, as opposed to merely mem-

bers of the mere members of the groups to which they belong. These laws

6



were motivated, in part, that employment decisions are generally individ-

ual: a specific person is hired, fired, or demoted, based on his or her past

or expected contribution to the to the employer’s mission. In contrast,

stereotypes about individuals based on group characteristics are generally

more tolerated in fields such as insurance, where individualized decision

making does not make sense.

1.3 Types and causes of discrimination

1.3.1 Types of discrimination

Discrimination in the literature has been divided into two types, disparate

treatment and disparate impact. [Dwork et al.(2012)Dwork, Hardt, Pitassi, Reingold, and Zemel]

• Disparate treatment is the most straightforward and intuitive form

of discrimination, when an individual is being treated in a different

way based on his or her sensitive attributes. To address disparate

treatment, a used approach is reverse Tokenism, that involves re-

jecting individuals from a minority while also rejecting a qualified

member of the majority.

• For disparate impact, sensitive attributes are not considered in the

decision-making process, but minorities are treated differently from

majorities due to the correlation between sensitive attributes and

other attributes that are not protected under the legislation.

1.3.2 Causes of machine learning bias

As mentioned earlier, discrimination can occur at different stages of the

decision-making process. In fact, biases in machine learning can be caused

by:
7



• Data collection: selected training data may be biased or some-

times incorrect, which may be related to an incorrect distribution of

ground truth. Not all ground truths are objective, some are based

on human decisions that may be biased, and poor data collection

may result in poor or no representation of some groups.

• Selecting the Features: the choice of attributes can be a source of

bias. One problem is disparate impact or redlining, where the pre-

dicted outcome is determined by a surrogate variable, i.e., a variable

that correlates with a sensitive attribute. Another problem will be

incomplete information, i.e., not including useful information due

to confidentiality or difficulty of access, which can have a negative

impact on minorities.

• Wrong Assumptions: two assumptions severely affecting minorities

are usually made: the data is reflective of the population as a whole

and the data is reflective of the future.

• Masking: intentionally applying the practices listed above to mask

the incorporation of bias in the dataset can result in biased machine

learning predictors.

8



CHAPTER 2

NOTIONS OF FAIRNESS

One question that always arises is how to define fairness. For this reason,

in this chapter we will bring together several versions of the notion of

fairness and then apply them to a data set.

2.1 Background

2.1.1 Definition

Before we start presenting the different notions, we will establish some

definitions.

2.1.1.1 Machine Learning Definitions

• Training data and samples: collection of data used to train our

algorithm to make a decision.

• Classifier: a predictor that assigns a class to each individual, binary

when y ∈ {0, 1}.

• Positive and negative class: binary classification where the positive

is relative to the favorable result, and the negative to the unfavorable

result.

• Prediction (Pred.) and Ground Truth (G.T.): differentiate between

9



what the individual belongs to (Ground Truth) and what the algo-

rithm predicts (Prediction).

• True and False Positives:

– True Positives (TP): individual that are correctly classified in

the positive class.

– False Positives (FP): the prediction of an individual is different

then the ground truth with the ground truth being the negative

class.

• True and False Negatives: this definition is analogous to the previous

definition:

– True Negatives (TN): prediction and ground truth are the same

with ground truth being the negative class.

– False Negatives (FN): the prediction is negative class but the

ground truth is positive class.

G.T: Positive G.T: Negative

Pred.: Positive TP FP

Pred.: Negative FN TN

Table 2.1: Tabular definition of TP, FP, FN and TN

2.1.1.2 Fairness Definitions

• Protected attribute: an attribute of an individual that should not

affect decision making, such as gender and race.

10



• Privileged and non-privileged group, by considering a binary pro-

tected attribute, our population is divided into two groups, one of

which will be discriminated against and is called the non-privileged

group and the other the privileged group.

• Favorable and Unfavorable outcome refer respectively to the predic-

tion of belonging to a positive and a negative class.

• Qualified and Unqualified Individuals refer to the ground truth which

is a positive class and a negative class respectively.

2.1.2 Mathematical Notation

First, we need to define the database in which our work will take place.

Consider a finite data set of n individuals D in which each individual

is defined as a triple (X, Y, Z)

• X the attributes used to predict.

• Y the outcome we want to predict

• Z the protected attribute that is binary, Z ∈ {0, 1} could be in-

cluded in X which means is used to predict.

Z =

1 for privileged group

0 for unprivileged group

Y =

1 for favourable group

0 for unfavourable group

11



Then we will set how the classification is defined.

• Assumption:

– Binary classifiers

– Talk about a given fixed classifier.

• Prediction:

– h : X → [0, 1], with S = h(X) score, corresponding to the

predicted probability of an individual to belong to the positive

class.

– For a given threshold σ, Y is predicted to belong to the positive

class, if h(X) > σ.

Ŷ : the final prediction based on σ, Ŷ = 1 if h(X) > σ

– Probability that the favourable outcome will be predicted for

individuals from the privileged group, P (Ŷ = 1|Z = 1) =

P1(Ŷ = 1)

– Probability that a positively classified individual from the un-

privileged group is actually unqualified. P (Y = 0|Z = 0, Ŷ =

1)

2.1.3 The Notions

In order to achieve fairness in an algorithm, the first step is to define a

fairness metric. According to Verma and Rubin [Verma and Rubin(2018)],

we will list the notions of fairness, define them, and quantify them. The

different notions of fairness that will be defined are:

• unawareness;

• group fairness;
12



• predictive parity;

• calibration; and

• individual fairness.

2.1.3.1 Fairness through unawareness

Fairness through unawareness is one of the basic notions of fairness; it is

simply achieved when the sensitive attribute is not used in the classifi-

cation problem. In fact, fairness by unawareness will be achieved when

desperate impact is avoided.

Formally:

P (Ŷ = y|X = x) = P (Ŷ = y|X = x, Z = z) (2.1)

Knowing that other attributes can substitute for a sensible attribute, this

notion is insufficient to achieve fairness.

2.1.3.2 Group fairness

Group fairness, also known as statistical parity, is achieved when an indi-

vidual in a non-privileged group has the same probability of a favorable

outcome as the privileged group.

Formally, statistical parity is achieved if:

P (Ŷ = 1|Z = 1) = P1(Ŷ = 1) = P0(Ŷ = 1) = P (Ŷ = 1|Z = 0) (2.2)

A more relaxed practical form of equation 2.2 is the notion of ε-fairness:

• Let ε > 0, a parity based fairness notion is ε-fair if

13



|P1(Ŷ = 1)− P0(Ŷ = 1)| < ε (2.3)

And a more expanded notion of group fairness is taking into account

legitimate factors L ⊂ X , and require equal decision despite the protected

attribute, is Conditional Statistical Parity

• Formally defined as:

P0(Ŷ = 1|L = l) = P1(Ŷ = 1|L = l) (2.4)

Finally the notion of group can be normalized and defined as Normalised

Difference δ

δ =
P1(Ŷ = 1)− P0(Ŷ = 1)

dmax
(2.5)

where dmax = min

{
P (Ŷ = 1)

P (Z = 1)
,
P (Ŷ = 0)

P (Z = 0)

}
And

δ =

0, indicating complete fairness

1, indicating maximum discrimination

2.1.3.3 Predictive parity

Since statistical parity only evaluates prediction, we introduce the notion

of Predictive parity which takes into account the ground truth of the sam-

ple. To reach this notion, the precision must be equal in all the protection

groups.

In this context precision is the positive predictive value PPV =
TP

(TP + FP )
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that is required to be equal for all demographic groups.

Formally, predictive parity is achieved if

P0(Y = 1|Ŷ = 1) = P1(Y = 1|Ŷ = 1) (2.6)

Instead of comparing PPVs, there is a list of values that can be compared:

1. Predictive Equality: where, if satisfied, the probability of classi-

fying an unqualified individual in the favorable outcome is similar

in the privileged and non-privileged groups, i.e., the false positive

rate FPR =
FP

(TN + FP )
is similar in both groups.

Formally:

P0(Ŷ = 1|Y = 1) = P1(Ŷ = 1|Y = 1) (2.7)

2. Equality of Opportunity: where, if satisfied, the probability of

classifying a qualified individual in the unfavorable outcome is simi-

lar in the privileged and non-privileged groups, i.e. the false negative

rate FNR = FN
(FN+TP ) is similar in both groups.

Formally:

P0(Ŷ = 0|Y = 1) = P1(Ŷ = 0|Y = 1) (2.8)

3. Equality of odds: where, if satisfied, predictive equality and equal

opportunity are met. Formally:

P1(Ŷ = 1|Y = i) = P0(Ŷ = 1|Y = i), i ∈ |0, 1} (2.9)

4. Conditional Use Accuracy Equality: where, if satisfied, both

predictive parity (PPV =
TP

TP + FP
) and equal negative predic-

tion values (NPV =
TN

FN + TN
) are required across both groups
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Formally:

P1(Y = Ŷ |Y = i) = P0(Y = Ŷ |Y = i), i ∈ 0, 1 (2.10)

In summary, when the POSITIVE TRUE RATE and NEGATIVE

TRUE RATE are similar in the two groups. Noting that NPV and

PPV are not required to be equal.

5. Equal overall accuracy: where, if satisfied, the prediction accu-

racy is equal between the preferred and non-preferred groups, focus-

ing on both True Positives and True Negatives.

Formally:

P1(Y = Ŷ ) = P0(Y = Ŷ ) (2.11)

6. Treatment Equality: where, if satisfied, the ratio of false positives

to false negatives is equal for the preferred and non-preferred groups:

FN1

FP1
=
FN0

FP0
⇐⇒ FP1

FN1
=
FP0

FN0
(2.12)

In fact, if the false negatives are higher than the false positives for the

privileged group, there are more unqualified people who score favorably

than qualified people who score unfavorably. And when the non-preferred

group gets an equal ratio, we have misclassification discrimination.

2.1.3.4 Calibration

Calibration is a notion of fairness accompanied by a score S defined by the

predicted probability of an individual with attributes X to be classified in
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Actual-
Positive Actual–Negative

Predicted-Positive

True-
Positive
(TP)
PPV= TP

(TP+FP )

TPR= TP
(TP+FN)

False-
Positive
(FP)
FDR= FP

(TP+FP )

FPR= FP
(FP+TN)

Predicted-Negative

False-
Negative
(FN)
FPV= FN

(TN+FN)

FNR= FN
(TP+FN)

True-
Negative
(TN)
NPV= TN

(TN+FN)

TNR= TN
(TN+FP )

Table 2.2: Confusion matrix

the favorable outcome.

Define S as:

S = P (Ŷ = 1|X) (2.13)

If

P1(Y = 1|S = s) = P0(Y = 1|S = s), ∀s ∈ [0, 1] (2.14)

Then the classifier is calibrated.

We also define extended notions of calibration:

• Well-calibration: this notion requires:

P1(Y = 1|S = s) = s = P0(Y = 1|S = s), ∀s ∈ [0, 1] (2.15)

The purpose of this concept is to ensure that the probability of

awarding the favorable outcome and the percentage of qualified in-

dividuals are approximately equal.
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• Balance for negative class: this notion requires an average of

scores among all unqualified individuals, equal between privileged

and non-privileged groups.

A formal way to define the realization of this notion of fairness.

E1(S|Y = 0) = E0(S|Y = 0) (2.16)

• Balance for positive class: this notion is similar to the notion

of equilibrium for the negative class, and is satisfied if the average

of the qualified individuals is equal between the privileged and non-

privileged groups.

Formaly:

E1(S|Y = 1) = E0(S|Y = 1) (2.17)

2.1.3.5 Individual Fairness

To counter the previous notions, the notion of individual fairness is based

on metrics above the individuals themselves, formulating a (D, d)-Lipschitz

property, the classifier is said to fulfil individual fairness if:

D(h(xi), h(xj)) ≤ d(xi, xj) ∀xi, xj (2.18)

With:

• D: a distance metric over the room of possible classifications

• d: a distance metric over individuals

• xi, xj denote individual
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2.2 Testing Fairness Notion on the German Credit Data-set

In this section we will be testing the different fairness Notion on German

Credit Data-set this data-set is mostly used in fairness literature it has

information about 1000 individuals and has 21 attributes describing each

individual.

This data-set is divided into:

• X : Attributes used for predictions regarding the data sample (19 at-

tributes): Status of existing checking account,Duration of Credit (in

months),Credit history,Purpose of Loan,Credit amount,Savings ac-

count/bonds, Savings account/bonds, Present employment since, In-

stallment rate (%), Guarantors,Present residence since, Most valu-

able available asset, Age in years, Concurrent Credits, Type of hous-

ing, Number of existing credit at this bank, Job, No of dependent,

Telephone, Foreign Worker.

• Y : Corresponding ground-truth of the sample: Loan quality (Bi-

nary).

• Z: Binary protected attribute: Personal status and sex note that

we will transform this attribute into a binary based on sex only.

The classification used to test over our data-set is binomial using logit.

2.2.1 Fairness through unawareness

According to 2.1 two regression will be used.

• The first regression will be over the attributes X and Z:

• The second regression will be over the attributes X :
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To be able to compare between the two component of equation 2.1 we

will be using the Boostrap method i.e. sample the data base multiple times

and then create multiple models so we are able to compare the estimated

amount and plot their difference so we can conclude if the difference is

centered around zero or not.

Figure 2.1: Fairness through unawareness

The figure 2.1 shows the density of the difference between the predic-

tion using the two regressions is not centered around null which indicate

that the gender is playing a big role in our estimation.

2.2.2 Group fairness

According to 2.2:

We calculate the number of privileged and nonprivelegier group of indi-

viduals.
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Then we calculate the number of non-privileged individuals with a favor-

able result and the number of privileged individuals with a favorable result

we consider the result coming from the regression over all the attributes.

And compare the probability for an individual to be assigned the favourable

outcome for each group.

We will use the Boostrap method to compare two component of 2.2.

Figure 2.2: Group fairness Boostrap

The figure 2.2 shows the density of the difference between the two

probability that is not centered around zero indicating an unfaire situa-

tion.

2.2.2.1 Epsilon group fairness

According to 2.3 with epsilon 0.05 the decision is fair.
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2.2.3 Predictive parity

According to 2.6 we have to compare the PPV for both groups:

To be able to compare PPV for both group we will be using the Boostrap

method.

Figure 2.3: Predictive parity Boostrap

The figure 2.3 shows the density of the difference between the two PPV

that is not centered around zero indicating an unfaire situation i.e. more

females were accurately predicted to be part in the positive group then

men.

1. Predictive Equality: According to 2.7 we have to compare the

FPR for both groups.

To be able to do the comparison of FPR for both group we will be

using the Boostrap method i.e sampling multiple time the data to be

able to plot the density of the difference in FPRs so we can deduct
22



if the data is fair according to the predictive parity based on the

mean. The figure 2.4 shows the density of the difference between

Figure 2.4: Predictive Equality Boostrap

the two FPR that is not centered around zero indicating an unfaire

situation i.e. more male were wrongly predicted to be part in the

negative group then women.

2. Equality of Opportunity According to 2.8 we have to compare

the FNR for both groups:

To be able to compare FNR for both group we will be using the

Boostrap method.

The figure 2.5 shows the density of the difference between the two

FNR is centered around zero indicating a faire situation.

3. Equality of odds: According to 2.9 we have to compare the FPR

and FNR for both groups.
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Figure 2.5: Equality of Opportunity Boostrap

The figure 2.4 shows the density of the difference between the two

FPR is not centered around zero indicating an unfaire situation.

4. Conditional Use Accuracy Equality:According to 2.10 we have

to compare the PPV and NPV for both groups:

Bootstrapping:

Since using predictive parity we saw unfaireness than we can deduct

unfairness too.

5. Overall Accuracy Equality: According to 2.11 we have to com-

pare the P1(Y = Ŷ ) and P0(Y = Ŷ )

Bootstrapping:

The figure 2.7 shows the density of the difference between the two

probability that is not centered around zero indicating an unfair

situation.
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Figure 2.6: NPV Boostrap

Figure 2.7: Overall Accuracy Equality Boostrap
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6. Treatment Equality:

According to 2.12 we have to test equal ratio of false positives and

false negatives.

Bootstrapping

Figure 2.8: Treatment Equality Boostrap

The figure 2.8 shows the density of the difference between the two ratio

that is centered around zero indicating an fair situation i.e. female have

a higher prediction accuracy than male.

2.2.4 Calibration

According to 2.14 we have to compare P1(Y = 1|S = s) = P0(Y =

1|S = s), ∀s ∈ [0, 1] Figure 2.9 compare the probability between men

and women.
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Figure 2.9: Calibration
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CHAPTER 3

THE NOTION OF CAUSALITY DISCRIMINATION

One notion of fairness at the individual level is the notion of causality.

3.1 Causal graphs

In order to understand causality, we need to present some key definitions.

Definition 1 Directed graph:

Figure 3.1: Directed graph showing the causal relation between 6 vertices

1. The arrow symbol → will be used to indicate a causal relationship.

2. U and W are causally independent (i.e. if U changes W is not

affected and vice versa)

3. X, Y , Z and V are causally dependent on U and W (i.e. a change

in U and W will cause a change in X, Y , Z and V but the change

in X, Y , Z and V does not affect U and W ):

28



• X is directly caused by U and W (i.e. changes in U and W

will affect X independently of Y , Z or V ).

• Y , Z and V are indirectly caused by U andW (i.e. a change

in U or W will cause a change in Y and Z only by causing

changes in X.

• X is a common direct cause of Y and Z.

• X is an indirect cause of V through Y and Z.

• Y and Z are a direct cause of V .

Definition 2 Type of causal paths, and type of vertix

Path:

1. Directed Path between two vertices, exists if one or more ordered

sequences of vertices that must be crossed in one direction exist be-

tween these two vertices, if this condition is not satisfied, then these

vertices are causally dependent an example of a directed path is the

path between U and V (U → X → Y → V )

2. Undirected path between two vertices, exists, if one or more or-

dered sequences of vertices must be crossed, regardless of the direc-

tion, an example of undirected path is the path between U and W

(U → X ← W )

Vertix:

1. Collider vertix is a vertix that has two arrows pointing in a path

example V in (Y → V ← Z), it is important to note that a collider

is defined in terms of the path.
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2. Unshielded collider vertices is a set of three vertices (X → Y ←

Z) along a path such that Y is a collider and, additionally, there is

no edge between X and Z.

Definition 3 Causal model

M =< U, V > is a causal model with:

• U: exogenous variables determined by factors outside the model.

• V: endogenous variables determined by variables in U ∪V.

This causal models are associated with a directed graph.

3.2 Connecting causal fairness to observational models

Definition 4 Causal conditioning A vertix in a causal path can either

be a non-collider in a path called an active variable, or a collider called

inactive.

Conditioning a vertix means changing its status from active to inactive

and vice versa.

Definition 5 d-separation Our goal in this definition is to explain the

"independence" of vertices or groups of vertices in a causal graph while

conditioning on a set of vertices Q; this property is called direct separation

(d-separation).

For any undirected path between X and Y :

Step 1: If any non-colliding vertix in this path are in Q. Then the path is

blocked and there is no causal influence between X and Y .

Step 2: If ∃ a collider that is not in Q and don’t have a causal descendent

in Q. Then the path is blocked and there is no causal influence

between X and Y .
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If every indirect path between X and Y is blocked. Then X and Y are

d-separated.

Theorem 1 According to [Pearl(1988)] for any directed acyclic Graph if

vertices are d-seperated then the relation in the joint distribution of the

random variable associated is independence.

Corollary 1 If one statistical independency in the data disagree with

what d-separation of the causal graph predict, then the causal model is

assumed to be wrong.

3.2.1 Strategy used to translate from causal model to an observational

model

Step 1: Express a causal hypothesis using a directed graph.

Step 2: Translate, using d-separation, from the directed graph into mathe-

matical language i.e. probability theory

Step 3: Establish the type of independence relationship that must occur in

the resulting joint probability distribution.

Consequence of d-separation: two causally independent variables will

be correlated if we condition on one of their common children, which can

be a misleading result if we interpret these results as giving information

about causal relationships.

3.3 d-separation tests

Due to the relation between the causal conditional independence and the

probabilistic independence, through d-separation, an intuitive way to be

able to test a causal model:
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Step 1: List all the d-separation statements that are implied by the causal

model

Step 2: Test each of the d-separation using an appropriate test of conditional

independence.

This test has a couple of setbacks:

• Large number of d-separation statements.

• The necessity of a method to combine all the tests of independence

into one test.

• The d-separation statements are not completely independent usu-

ally.

In able to adjust this setbacks a method to find the minimum set of

this d-separation also known as basis set was suggested by [Pearl(1988)]:

Step 1: List all the variables in the causal model that are not linked by an

arrow.

Step 2: List all causal parents of each vertex in the pair.

To be able to illustrate how to find this d-separation we gonna list

them for the directed graph in figure 3.2

All the d-separation in table ?? predict the conditional independence,

according to the variable types.

3.3.1 Testing the German Data set

The Chi-square test indicates if the clusters in a population are mutually

dependent or not. It is important to note, however, that showing a sta-
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Figure 3.2: Acyclique Graph

Not Linked Parent variables of either d-separation

Variable non-adjacent variables statement

P and X1 None P ⊥⊥ X1

X1 and X2 P X1 ⊥⊥ X2|P
Table 3.1: d-separation statements based on Figure 3.2

tistical association using chi-square analysis may not necessarily indicate

a cause-and-effect link between two clusters.

However we will use the Chi-square to test the d-separation statement

for the causal graph based on the German Data set used in the previous

sections.

The variables illustrated in this graph are the gender the credit Risk

and the Property.

• First d-separation statement: Credit Risk ⊥⊥ CreditRisk

Hypotheses :

H0: The Credit score and the gender are independent

H1: The Credit score and the gender are not independent

We have no evidence to suggest that Credit score is related to gender

(χ2(df = 1) = 0.013 p > .05)
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Figure 3.3: Acyclique Graph based on German data set

.

• Second d-separation statement: Credit Risk⊥⊥ CreditRisk|Property

Hypotheses :

H0: The Credit score and the gender are independent under the con-

dition Property

H1: The Credit score and the gender are not independent under the

condition Property

We have no evidence to suggest that Credit score is related to gender

under the condition of property.

End finally we will test the d-separation statement based on the

3.4 graph of the German data-sets and the result is in ??.

3.4 Structural equation model

3.4.1 Testing path models using maximum likelihood

Step 1:

In order to test, we will need to translate the hypothesized causal

system into a path diagram, defining the different types of variables in a

structural equation model (SEM):
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Figure 3.4: Acyclique Graph based on German data set

• Directly observed and measured variables are labelled manifest vari-

ables in a SEM.

• Non-measured variables that are assumed to have a causal role in

the model, designated latent as variables in a SEM circled in the

graph.

• The residual error variables.

And also the type of arrows:

• Straight arrow indicating a cause and effect relationship.

• A double-sided arrow indicating an unknown relationship.

Step 2:

Transform the causal model that we want to test into stuctural equa-

tions, assuming that the variables follow a multivariate normal distribution

and the relationship between them is additive.

This transformation is not perfect since we are turning a directed relation
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d-separation statement Result

Gender ⊥⊥ CreditRisk | Property No evidence of relation

Gender ⊥⊥ CreditRisk | Purpose No evidence of relation

Gender ⊥⊥ CreditRisk | Numberofcredits No evidence of relation

Gender ⊥⊥ CreditRisk | Savings No evidence of relation

Gender ⊥⊥ CreditRisk | Housing No evidence of relation

Gender ⊥⊥ CreditRisk | NumberofCredit No evidence of relation

Table 3.2: d-separation statements based on figure 3.2

into an equivalence relation in the sence will mask the orientation of the

causal relation.

Step 3:

Using covariance algebra, calculate the variance and covariance be-

tween variables.

If two vertices are not d-separated, then the corresponding random vari-

ables are not independently distributed, i.e. the covariance is zero.

Here we actually compare the causal model to a shadow, where the shadow

is fixed but the numerical values are free and can be estimated.

Step 4:

Minimize the gap between observed and predicted variances in order

to estimate the parameters. When using MLE ("maximum likelihood

parameters"), the general idea behind finding the best free parameter

value is to choose it in such a way that the covariates are as close as

possible to the measured covariance of the actual data.

Step 5:

Assuming that the observed covariate is equal to the predicted co-
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variate everywhere except for the sample variables, find P , probability of

observing the minimum measured difference.

Null hypothesis: No difference between the observed and predicted co-

variance. Under this hypothesis, the following statistic (the maximum

likelihood chi-square statistic) will follow a chi-square distribution as fol-

lows:

(N − 1)FML −→ χ2
[v(v+1)/2]−(p+q)

with

• v: number of variables

• q: number of free variances of exogenous variables

• p: the number of free path coefficients in the model

Step 6

The model will be considered false if the probability is sufficiently low

(i.e. less than 0.05), and vice versa the model is rejected if the probability

is sufficiently high (i.e. greater than 0.05), after which lead the conclusion

of the consistency of the data with the process.

• The steps prior to this one are more mathematically complicated

but easily automated.

• The last step requires interpretation.

3.4.2 Modeling non-normally distributed variables

Knowing that the maximum likelihood chi-square statistic is a method

that assumes multi-normality of the variables, but since we are working

on a classification model based on a sensitive attribute that is a discrete
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variable, we need to find a solution to this problem.

The most common solution used in most SEM algorithms is a statis-

tic based on least squares generalization, elliptic estimators as well as

distribution-free estimators.

3.4.3 Simulation

In this simulation we will create a causal graph that is based on credit

scoring and is shown in Figure 3.5:

Figure 3.5: Model to simulate

• P : Sensitive attribute (example gender)

• X : endogenous attribute (example income)

• θ: latent non-measured variable

• Y : decision binary attribute (credit score)

where we will consider P as a binomial distribution X is based of on

P with a normal error, and θ is a linear combination of X and P that can

not be measured as for Y will be affected by θ.

Based on the causal graph in Figure 3.5:

P = B(1, p)
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X = a1P +N(0, σ1)

θ = a2X + a3P

Y =
eθ

(1 + eθ)
+

eP

(1 + eP )

This simulation will be done in R see anexe but can also be done using

tetrad.

Next step is to use the previous method to test the causal relation, this

method as privously indicated can be automated, so using R we gonna

test the model, see anexe and for result, see Figure 3.6.

We can also use tetrad to test our simulated data.

When using tetrad’s algorithm what is the most powerful part is to add

knowledge, and then be able to search from the same data sets multiple

outcome based on this knowledge.

• Testing with tetrad without knowledge:

Based on figure 3.7 we can see that the tetrad algorithm was able

to find the causal indirected relationships between the simulated

variables.

• Now we will test with tetrad while adding multiple tiers based on

this data and we will find a directed relation 3.8:

Tier 1: P

Tier 2: X

Tier 3: θ

Tier 4: Y
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Figure 3.6: R test Output

3.5 Using Path specific effect to quantify causality

3.5.1 Causal inference

Definition 6 Structural causal model

M =< U, V, F, P (U) > is a structural causal model with:

• U: exogenous variables determined by factors outside the model.

• P(U): probability distribution defined over U .

• V: endogenous variables determined by variables in U ∪V.
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Figure 3.7: Tetrad test Output

Figure 3.8: Tetrad test Output with knowlege

• F: set of functions from U ∪ V to

∀v ∈ V ∃fv ∈ F that v = fv(pav, uv) (3.1)

with

– pav one realisation of endogenous variables Pav ∈ V |v that
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determine directly v.

– uv realisation of exogenous variables that determine directly v.

This causal models are associated with a directed graph.

Definition 7 Markovian model: a causal model where all exogenous vari-

ants are independent of each other.

Definition 8 Semi-Markovian model:a causal model where all exogenous

variants are non-independent..

Property 1 A directed acyclic causal graph is associated with a Marko-

vian model.

An acyclic causal graph with dotted bi-directed edges is associated with a

Markovian model.

• Directed Acyclic Graph (DAG)

Figure 3.9: Causal graphs of a Markovian model

• Acyclic Graph (AG)

Figure 3.10: Causal graphs of a semi-Markovian model
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With a Markovian model P (X) joint distribution is decomposed into con-

ditional probability.

P (x) =
∏
xi∈X

P (xi|paXi) (3.2)

whith P (xi|paXi): conditional probability associated with Xi

3.5.1.1 Intervention to a causal model

Consider a causal model M and a graph G related to M, and X an

endogenous variable.

We define d0(X = x) the intervention that will forces the value of X to

become x.

Then after this intervention:

• The original equation 3.1 X = f(Pax, UX) will be substituted with

X = x, ∀X ∈ X

• The causal modelM becomes a sub-modelMx

• Gx, causal graph ofMx,is a variant of G with all the edges coming

toward X are deleted and X is set as x

• Yx in the modelMx is the post-interventional variant of Y ∈ V|X

affected by the intervention

• P (Y = y|d0(X = x)) = P (y|d0(x)) = P (yx) is the distribution of

Yx called post-intervention distribution of Y under d0(x)

3.5.1.2 Causal inference

Definition 9 Causal inference: is the method of estimating a causal

quantities.
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• Post-interventional, from data and causal graph:

For a Markovian model:

P (y|d0(x)) =
∏
Y ∈Y

P (y|paY )δX=x (3.3)

with δX=x: affecting X with the corresponding

For a single variable Y with intervention X:

P (y|d0(x)) =
∑
V′

∏
V ∈V|{X}

P (v|paV )δX=x (3.4)

with V′ = V|{X, Y }

Definition 10 Identifiable Causal quantity:

A causal quantity is identifiable if its estimator is unique knowing

observational data compatible with any causal model.

Definition 11 Total causal effect

A value that measure the effect of a shift of X from x1 to x2 in Y = y

TE(x2, x1) = P (y|do(x2))− P (y|do(x1)) (3.5)

3.5.2 Causal discrimination

Consider a Markovian model.

Definition 12 Direct discrimination

Causal effect transmitted directly from the sensitive attribute to the

decision.

Definition 13 Indirect discrimination:
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Causal effect transmitted through the non-direct paths from the sensi-

tive attribute to the decision.

To be able to quantify this two type of discrimination the technique of

path-specific effect was adopted in literature [Wu(2020)]

Note that unidentifiability of the path-specific effect can occur and is

when path-specific effect is not computable from the observational data

this only occurs in the case of indirect paths.

3.5.2.1 Computing techniques for path specific effect

With:

• The effect of X on Y with the intervention transmitted through π

• The effect of X on Y without the intervention transmitted through

π̄

• P (y|do(x2|π, x1|π̄) distribution of Y after the intervention on X from

x1 to x2

Definition 14 Path-specific effect: or π−specific effect measures the

effect of changing X from x1 to x2 on Y:

PSEπ(x2, x1) = P (y|do(x2|π, x1|π̄))− P (y|do(x1)) (3.6)

Property 2 PSEπ(x2, x1) is identifiable ⇐⇒ P (y | do(x2|π, x1|π̄)) is

computable

Definition 15 Recanting Witness Criterion:

Consider:

45



• π path from X to Y

• W a node in G

With:

1. ∃ a segment of a path in π that is a path from X to W

2. ∃ a segment of a path in π that is a path from W to Y

3. ∃ a path from W to Y that is not a segment of a path in π

Then

For the π-specific effect the recanting witness criterion is satisfied

with W witness.

And the causal graph is called "kite".

Theorem 2 P (y|do(x2|π, x1|π̄)) is computable ⇐⇒ the recanting wit-

ness criterion is not satisfied

Computing P (y|do(x2|π, x1|π̄)) steps:

1. Express P (y|do(x1)) as the truncated factorization formula based of

3.4.

2. Divide children of X exept Y on to :

• Sπ={S child of X such as path from X to S is a segment from

π}

• S̄π ={S child of X, that is not included in any path or the path

from X to S is a segment of a path not in π}

with ChX |Y = Sπ ∪ S̄π and Sπ ∩ S̄π = ∅
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3. Replace x1 with x2 for the terms corresponding to nodes in Sπ, and

keep values x1 unchanged for the terms corresponding to nodes in

S̄π

3.5.2.2 Modeling Direct/Indirect Discrimination as Path-Specific Effects

D: data-set with attributes V that include:

• The sensitive attributes

• The decision,

• The non-sensitive attributes

Assumption: The data contains R redlining attributes i.e. non sensitive

that can’t be justified objectively when used in the decision making pro-

cess.

Notation:

• C ∈ {c−, c+}: sensitive attribute

• E ∈ {e−(negative decision), e+(positive decision)}: the decision

Assumption:

(a) C has no parent in a causal graph G

(b) E has no child in a causal graph G

(c) The causal graph G can be built to represent correctly the

data-set D

Considering these assumptions we can model causal effects trans-

mitted along different paths.
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I. Direct Discrimination from C to E

Consider:

πd: the path set that contains only C → E

Then:

PSEπd(c
+, c−): πd-specific effect the causal effect caused by chang-

ing C from c− to c+, which means the expected change in decisions

for individuals of group c− if this individual were from group c+

according to the decision maker, and can be considered as a

measure of direct discrimination.

II. Indirect discrimination

Consider:

πi: the path set that contains all the causal paths from C to E that

path through R.

Then

PSEπi(c
+, c−): πi-specific effect the causal effect transmitted through

indirect paths, which means the expected change in decisions for in-

dividuals of group c− if there redlining attributes were altered as if

they are part of the group c+ according to the decision maker, and

can be considered as a measure of indirect discrimination.

Criterion for discrimination

• Direct discrimination exists if PSEπd(c
+, c−) > τ or PSEπd(c

−, c+) >

τ

• Indirect discrimination exists if PSEπi(c
+, c−) > τ or PSEπi(c

−, c+) >

τ

whith τ > 0 threshold defined by the user depending on laws.
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Theorem 3 Calculating the PSE

PSEπd(c
+, c−) =

∑
Q

(P (e+|c+,q)P (q|c−))− P (e+|c−) (3.7)

with Q = PaE|{C}

If Sπi ∩ S̄πi = ∅ Then

PSEπi(c
+, c−) =

∑
V ′

(P (e+|c−,q)
∏
G∈Sπi

P (g|c+, paG \ {C})

×
∏

H∈S̄πi\{E}

P (h|c−, paH \ {C})
∏
O∈(V )

P (o|paO))− P (e+|c−) (3.8)

where V′ = V \ {C,E}

Proposition 1 If π contains all causal paths from C to E except direct

edge C → E: Then:

PSEπ(c+, c−) = TE(c+, c−) = P (e+|c+)− P (e+|c−) (3.9)

This proposition is not valid for all path πi and πd

PSEπd(c
+, c−) + PSEπi(c

+, c−) = PSEπd∪πi (3.10)

3.5.2.3 Algorithm used to discover discrimination

Based on the criterion for discrimination the path specific effect Discrim-

ination Discovery (PSE-DD) shown in algorithm 1 is built.

Step 1: Build a causal graph from the historical data-set.

Step 2: Compute PSE
d
(.) based on 3.7.

Step 3: Compute PSE
i
(.) based on 3.8.

49



A critical part is to separate the indirect paths between the Sπi and the

S̄πi. An uncomplicated way to achieve this goal is to:

• Find every path in πi

• For every children S of a sensitive attribute C verify whether the

path C → S is contained in any path πi or not

Property 3 The separation method used is based on the paths from S to

E that passes by R:

• S ∈ Sπi ⇐⇒ ∃ a path S → E that passes through R

• S ∈ S̄πi ⇐⇒ there is not an existing path S → E that passes

through R

Property 4 This method can be complex due to the exponential number

of paths between two nodes in a DAG (direct acyclic graph).

Algorithm 1 PSE-DD

Input: D, C, E, R, and τ

Output: judged (direct discrimination), judgei (indirect discrimina-

tion),

G: buildCausalNetwork( D)

judged = judgei = false

Use 3.7 to find PSEπd(·)

If PSEπd(c
+, c−) > τ ||PSEπd(c

−, c+) > τ

Then:judged = true

Call subroutine [Sπi, S̄πi] = DivideChildren(G, C, E,R)

If Sπi ∩ S̄πi = ∅

Then judgei = unknown Return [judged, judgei]
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Compute PSEπi(·) according to 3.8

If PSEπi(c
+, c−) > τ ||PSEπi(c

−, c+) > τ

Then: judgei = true

Return [judged, judgei];

A subroutine presented in algorithm 2 held finding Sπi and S̄πi, through

checking the existence of a node R ∈ R, such as R→ S → E.

Property 5 All the involved nodes can be obtained if we pass the network

starting with C and with O(|ε|) time of travel =⇒ The complexity of the

subroutine is O(|V 2|+ |ε|)

Algorithm 2 : Subroutine DivideChildren

Input: G, C, E, R

Output: Sπi

If R ∈ DeS ∪ {S}E ∈ DeR Then Sπi = Sπi ∪ {S};

Else S̄πi = S̄πi ∪ {S};

Return[Sπi, S̄πi].

3.5.2.4 Algorithm used to remove discrimination

I. Naive Discrimination Removal Approach: Delete sensitive at-

tribute.

By doing that we are removing valuable information, and solving

only direct discrimination.

II. Path-Specific Effect based Discrimination Removal (PSE-

DR) :

51



This method modify the causal and generate new data:

Modify P (e|paE) into P ′(e|paE) such as direct and indirect dis-

crimination are bellow the threshold.

This can be achieved by maximizing the utility for the modified

data-set.

With:

P (v), respectively P ′(v): joint distribution of the original graph re-

spectively modified graph computed according to 3.2 with P (e|paE)

respectively P ′(e|paE),

Maximizing the utility for a modified data-set =⇒minimize
∑

v(P
′(v)−

P (v))2

Under:

• PSE for direct and indirect discrimination are lower or equal

to the threshold τ computed using 3.7 and 3.8

• ∀paE, P ′(e+|paE) + P ′(e−|paE) = 1,

This optimization problem is achieved with the solution of a quadratic

programming problem. And afterward the modified data set is generated

based on our new causal graph.

Algorithm 3 PSE-DR

Input: D, C, E, R,and τ

Output:D’ modified data

[judged, judgei] = PSE −DD(D, C, E,R, τ)

If [judged, judgei] == [false, false] thenReturn D

G = buildCausalNetwork(D)

If judgei == unknown Then Call subroutine GraphPreprocess;

52



Obtain the modified P (e|paE) by solving the quadratic programming

problem;

Calculate P ′(v) according to 3.2 using the modified P (e|paE);

Generate D’ based on P ′(v)

Return D′

A pseudo-code that is added to the algorithm 3 after building to the

causal graph G is called a GraphPreprocess, and is the procedure of mod-

ifying the causal graph to remove the “kite” pattern by:

∀S ∈ Sπi∩ S̄πi cut all causal graph through R then S will be /∈ Sπi ⇒

Sπi ∩ S̄πi = ∅

Algorithm 4 subroutine GraphPreprocess

Input: G, C, E, R

for every S ∈ Sπi ∩ S̄πi:

for every Q ∈ PaE:

for every R ∈ R:

If R∈DeS & Q ∈ DeS then

Remove Q→ E from G

Break

3.5.3 Causal discrimination in an Unidentifiable Situation

In this subsection the main idea is to define an upper and lower bounds

to be able to discover an unidentifiable indirect discrimination.

• If the upper bound < τ , then there is no indirect discrimination,

• If the lower bound > τ , then there is indirect discrimination,

This method is known as the refined removal algorithm, and preserve the

data utility as much as PSE-DR.
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Notation:

• P (yx)
∆
= P (Yx = y)

∆
= P (y|do(x))

With: Yx: Y under intervention do(x) or in other terms the Yx is

interpreted as the counterfactual statement "the value of Y if X was

x" and it’s worth noting that if all U exogenous variable are known

Yx are fixed variables.

• Yx(u) : Yx in the context of U

Property 6 Regarding the counterfactual statement

1. YPaY ⊥⊥ of the counterfactual statements of all Y ’s non-descendants

2. P (ypaY) = P (y|paY )

3. P (ypaY,x) = P (ypaY) with X endogenous disjoint from {Y,PaY}

4. Zx(u) = z⇒ Yx(u) = Yx,z(u) with X,Y,Z endogenous.

Formulas:

P (yx) =
∑

u:Yx(u)=y

P (u) (3.11)

Joint distribution of multiple counterfactual statements

P (yx,y
′
x′) = P (Yx = y,Yx′ = y′) =

∑
{u:Yx(u)=y,Y′x(u)=y′}

P (u)

(3.12)
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If x 6= x′ then Yx and Y′x cannot be computed together and as a

result P (yx,y′x′) is not identifiable, which leads to the unidentifiability of

the path-specific effect satisfying the recanting witness criterion.

In that case: P (yx,y′x′) is bounded by

P (yx) =
∑
y′
P (yx,y

′
x′)

Probability of E = e+ under the mediation of C from c− and c+ trans-

mitted through the path πi: P (e+|do(c+|πi, c−|π̄i)

Computation techniques:

Denote Yc+ respectively Ec+: value of Y and E after intervention c−

to c+ through the path πi, in the sense that if there is no path from C

to Y then the intervention on C will not affect Y and the value of Y will

stay the same as if C = c−.

To get the value of Yc+ for every ancestor W of Y, get the value of the

one affected by the intervention (i.e. path W → Y part of πi) and the

ancestor that the intervention doesn’t affect (i.e. W → Y segment of πi).

Note that when W is part of two edges one part of the path πi and

one that is not a part of πi, get both the value of W affected by the

intervention and not affected by the intervention.

Discerning between the two edges types of W :

Wc+: value former to intervention.

Wc−: value of W after intervention.

W in that case is a witness variable/node.

This analysis forW witness variable between the two sets of realisation

is not the case for Y the non witness variable where we only consider Yc+

Property 7 Consider:
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X, W, Y endogenous variable,

W a witness variable,

x, x′ realisation of X

w,w′ realisation of W

For every π-specific effect of X

Wx(u) = w,W ′
x(u) = w′ ⇒ Yx(u) = Yx,w∗(u)

with

w∗ =

w, if the path W → Y is part of π

w′, otherwise

Property 8 Consider:

• Y : an endogenous variable

• πi-specific effect PSEπi for Y

Then, the realisation of the parents of Y is:

• pa+
Y which means if witness node W or C ⊂ PaY , its value will bew

+or c+, if the path W → Y is part of πi

w−or c−, otherwise

• pa−Y which means if witness node W or C ⊂ PaY , its value will be

w−or c−

And:

If Y is not a witness variable Then

P (yc+, ...), if Y is part of W → Y is part of πi

w−or c−, otherwise

Else P (yc+, ...) = P (ypa+Y , ...) and P (yc−, ...) = P (ypa−Y , ...)
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...: all the other variables.

Theorem 4 Under the recanting witness criterion:

P (e+|do(c+|πi, c−|π̄i)) =
∑

a,b,w+,w−

P (e+|c−, q)
∏
A∈A

P (a|pa+
A)

∏
B∈B

P (b|pa+
B)

∏
W∈W

P (w+
pa+W

, w−
pa−W

)

Theorem 5 • Upper Bound of P (e+|do(c+|πi, c−|π̄i)):

∑
a2,w−

max
a1,w+
{P (e+|c−, q)}

∏
A∈A2

P (a|pa+
A)

∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W )

(3.13)

• Lower Bound

∑
a2,w−

min
a1,w+
{P (e+|c−, q)}

∏
A∈A2

P (a|pa+
A)

∏
B∈B

P (b|pa−B)
∏
W∈W

P (w−|pa−W )

(3.14)

3.5.3.1 Algorithm used to discover discrimination

The algorithm used in that situation, is based on the algorithm 1 PSE-DD

with some slight changes.

Algorithm 5 PSE-DD∗

Input: D, C,E,R,and τ

Output: judged (direct discrimination), judgei (indirect discrimina-

tion),

G: buildCausalNetwork( D)

judged = judgei = false

Use 3.7 to find SEπd(.)

If SEπd(c
+, c−) > τ ||SEπd(c

−, c+) > τ

Then:judged = true
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Call subroutine [Sπi, S̄πi] = DivideChildren(G, C, E,R)

If Sπi ∩ S̄πi = ∅

Then

Use 3.13 and 3.14 to find:

lb(SEπi(c
+, c−), ub(SEπi(c

+, c−), lb(SEπi(c
−, c+) and ub(SEπi(c

−, c+)

If ub(SEπi(c
+, c−) ≤ τ ub(SEπi(c

−, c+) ≤ τ

Then judgei = false

Else

If lb(SEπi(c
+, c−) > τ ||lb(SEπi(c

−, c+) > τ

Then judgei = true

Else judgei = unknown

Return [judged, judgei]

Use 3.8 to find SEπi(.)

If SEπi(c
+, c−) > τ ||SEπi(c

−, c+) > τ

Then:judgei = true

Return [judged, judgei];

3.5.3.2 Algorithm used to remove discrimination

This algorithm is also based on the algorithm used in the identified situ-

ation, with SE being replaced by its upper bound.

Algorithm 6 PSE-DR∗

Input: D, C, E, R, and τ

Output:D∗modifieddata

[judged, judgei] = PSE −DD(D, C, E,R, τ)

If [judged, judgei] == [false, false]

Then Return D
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G = buildCausalNetwork(D)

If judgei == unknown

Then Solve the the adjust quadratic programming problem to find

the modified P (e|paE)

Else Solve the the quadratic programming problem to find the mod-

ified P (e|paE)

Calculate P ∗(v) using the modified P (e|paE), Generate D∗

Return D∗

Note that one of the feasible solutions of the adjusted programming

problem is the the modified P (e|paE) obtained from the quadratic pro-

gramming after performing GraphPreprocess. Which leads to consider

that algorithm 6 will perform, at least as good as algorithm 1.

3.5.4 Experimentation

Using path specific effect to test discrimination on the data set has been

used on the Adult data set in the "Achieving Causal Fairness in Machine

Learning" by Yongkai Wu [Wu(2020)] to summarize these data set it is

a data set extracted from the census data containing 48842 variables and

include 11 attributes including age, education, sex, occupation, income,

marital status, native country, race, relationship, hour, occupation and

work-class.

According to the article, if we take the sex as sensitive attribute, and in-

come as the decision and marital status as our redlining attribute and by

computing the path specific effect we can have that SEπd = 0.025 and

SEπi = 0.175 with πd the direct path between sex and income and πi the

path between sex and income that contains the marital status, thus if take
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the threshold τ = 0.05 we can see no direct discrimination and significant

direct discrimination against women.

This result is an important result because if we drive our insurance pre-

mium from the income and other variables our result will be affected by

the unfairness detected in this data base.

60



CONCLUSION

This report treated the fairness in insurance data and credit scoring. Be-

fore discussing the different notion of fairness, we gave detailed information

about the reasons that motivate us to choose this subject from different

legislation to previous proofs of inequality and the causes of unfairness.

To then move on to the different fairness notions and tested data based

on them.

To finally move to causality where we showcased different way we can cal-

culate causal dependency based already existing algorithm. Starting with

d-separation moving to Structural Equation Model and ending with path

specific effect.

The question at the end will be how can we develop the causal detection

method explained in order to serve fairness detection and how this model

can be compered between each others.
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ANNEXE A

CODING TO TEST

Loading German Data

1 german=read.csv("german.csv")

2 DGerman=german[which

3 (german$personal_status_sex!="female : non -single or male :

single") ,]

4 n=nrow(DGerman)

5 Genre=ifelse(DGerman$personal_status_sex=="female : single","

Female","Male")

• Fairness through unawareness

Creating the regressions:

1 Reg=glm(formula=factor(credit_risk)~. , family = binomial (

link ="logit"),

2 data = DGerman)

3 Predic=predict(Reg ,newdata=DGerman ,type="response")

1 Reg1=glm(formula=factor(credit_risk)~. , family = binomial (

link ="logit"),

2 data =subset(DGerman , select =-c(personal_status_sex) ))

3 Predic1=predict(Reg1 ,newdata=subset(DGerman ,select=-c(personal_

status_sex)),

4 type="response")

Boostrap.

1 ns=200

2 Pre = matrix(NA ,ns ,1)

3 for(i in 1:ns){

4 idx_s = sample (1:n,size=n, replace=TRUE)
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5 Reg=glm(formula=factor(credit_risk)~. , family = binomial (

link ="logit"), data = DGerman[idx_s,])

6 Predic=predict(Reg ,newdata=DGerman[idx_s,],type="response")

7 Reg_s1 = glm(formula=factor(credit_risk)~. , family =

binomial ( link ="logit"), data = subset(DGerman[idx_s,],

select = -c(personal_status_sex) ))

8 Predic1=predict(Reg1 ,newdata=subset(DGerman[idx_s,], select

= -c(personal_status_sex) ),type="response")

9 Pre[i,] = sum((Predic1 -Predic)^2)

10 }

11 plot(density(Pre))

12 abline(v=mean(Pre),lty=2,col="red")

• fairness

First, we calculate the number of privileged and nonprivelegier group

of individuals

1

2 Sum_genre=as.matrix(summary(DGerman$personal_status_sex))

3 (n_male=Sum_genre [3]+ Sum_genre [4])

4 (n_fmale=Sum_genre [1]+ Sum_genre [2])

Then we calculate the number of non-privileged individuals with

a favorable result and the number of privileged individuals with a

favorable result we consider the result coming from Reg:

1 Predic_0= ifelse(Predic >0.5,"bad","good")

2 DGerman_1=data.frame(DGerman ,Genre ,Predic ,Predic_0)

3 FavorableGroup=DGerman_1[which(DGerman_1$Predic_0=="good"),]

4 Sum_genreFG=as.matrix(summary(FavorableGroup$personal_status_sex

))

5 (n_male_FG=Sum_genreFG [3]+ Sum_genreFG [4])

6 (n_fmale_FG=Sum_genreFG [1]+ Sum_genreFG [2])

And compare the probability for an individual to be assigned the

favourable outcome for each group.

1 (P_0_Yhat1=n_fmale_FG/n_fmale)
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2 (P_1_Yhat1=n_male_FG/n_male)

3 P_0_Yhat1==P_1_Yhat1

Boostrap method.
1 ns=200

2 P = matrix(NA,ns ,2)

3 for(i in 1:ns){

4 idx_s = sample (1:n,size=n, replace=TRUE)

5 Reg_s=glm(formula=credit_risk~., family=binomial(link ="

logit"),data= DGerman[idx_s,])

6 S_s = predict(Reg_s,type="response")

7 P[i,] = c(mean(S_s[DGerman[idx_s,"personal_status_sex"]=="

female :

8 single"]),mean(S_s[DGerman[idx_s,"personal_status_sex"]!="female

:

9 single"]))

10 }

11 plot(density(P[,2]-P[,1]))

12 abline(v=0,lty=2,col="red")

Epsilon group fairness
1 epsilon =0.05

2 abs(P_0_Yhat1 -P_1_Yhat1)<epsilon

Normalised Difference
1 d_max=min(nrow(FavorableGroup)/n_male ,(n-nrow(FavorableGroup))/n

_fmale)

2 (delta1 =(P_0_Yhat1 -P_1_Yhat1)/d_max)

• Predictive parity We have to compare the PPV for both groups:
1 TP_ind=( DGerman_1[ which(DGerman_1$credit_risk=="good" &

2 DGerman_1$Predic_0=="good") ,])

3 FP_ind=( DGerman_1[ which(DGerman_1$credit_risk=="bad" &

4 DGerman_1$Predic_0=="good") ,])

5 FN_ind=( DGerman_1[ which(DGerman_1$credit_risk=="good" &

6 DGerman_1$Predic_0=="bad") ,])

7 TN_ind=( DGerman_1[ which(DGerman_1$credit_risk=="bad" &

8 DGerman_1$Predic_0=="bad") ,])
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1 Sum_genrePvA=cbind(as.matrix(summary(TP_ind$personal_status_sex)

),

2 as.matrix(summary(FP_ind$personal_status_sex)),

3 Sum_FNgenre=as.matrix(summary(FN_ind$personal_status_sex)),

4 Sum_TNgenre=as.matrix(summary(TN_ind$personal_status_sex)))

5 colnames(Sum_genrePvA)=c("TP","FP","FN","TN")

6 Sum_genrePvA

7 PPV_male=(Sum_genrePvA["male : divorced/separated","TP"]+

8 Sum_genrePvA["male : married/widowed","TP"])/

9 (Sum_genrePvA["male : divorced/separated","TP"]+

10 Sum_genrePvA["male : married/widowed","TP"]+

11 Sum_genrePvA["male : divorced/separated","FP"]+

12 Sum_genrePvA["male : married/widowed","FP"])

13 PPV_Fmale =(Sum_genrePvA["female : single","TP"])/

14 (Sum_genrePvA["female : single","TP"]+Sum_genrePvA["female :

single","FP"])

15 PPV_male==PPV_Fmale

Epsilon predictive parity

1 abs(PPV_male -PPV_Fmale)<epsilon

To be able to do the comparison of PPV for both group we will be

using the Boostrap method.

1 ns=200

2 PPV_S=matrix(NA,ns ,2)

3 colnames(PPV_S)=c("Male","Female")

4 Sum_genrePvAS=array(dim = c(4,4,ns))

5 colnames(Sum_genrePvAS)=c("TP","FP","FN","TN")

6 row.names(Sum_genrePvAS)=row.names(Sum_genrePvA)

7 P = matrix(NA,ns ,2)

8 for(i in 1:ns){

9 idx_s = sample (1:n,size=n, replace=TRUE)

10 Reg_s=glm(formula=credit_risk~. , family = binomial ( link

="logit"), data = DGerman[idx_s,])

11 S_s = predict(Reg_s,type="response")

12 Predic_s=ifelse(S_s>0.5,"bad","good")

13
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14 TP_inds=( DGerman[idx_s,][ which(DGerman[idx_s,]$credit_risk==

"good" & Predic_s[idx_s]=="good") ,])

15 FP_inds=( DGerman[idx_s,][ which(DGerman[idx_s,]$credit_risk==

"bad" & Predic_s[idx_s]=="good") ,])

16 FN_inds=( DGerman[idx_s,][ which(DGerman[idx_s,]$credit_risk==

"good" & Predic_s[idx_s]=="bad") ,])

17 TN_inds=( DGerman[idx_s,][ which(DGerman[idx_s,]$credit_risk==

"bad" & Predic_s[idx_s]=="bad") ,])

18 Sum_genrePvAS[,,i]= cbind(as.matrix(summary(TP_inds$personal_

status_sex)),as.matrix(summary(FP_inds$personal_status_sex))

,Sum_FNgenre=as.matrix(summary(FN_inds$personal_status_sex))

,Sum_TNgenre=as.matrix(summary(TN_inds$personal_status_sex))

)

19 }

20 PPV_S[,"Male"]=(Sum_genrePvAS["male : divorced/separated","TP"

,]+Sum_genrePvAS["male : married/widowed","TP" ,])/(Sum_

genrePvAS["male : divorced/separated","TP" ,]+Sum_genrePvAS["

male : married/widowed","TP" ,]+Sum_genrePvAS["male :

divorced/separated","FP" ,]+Sum_genrePvAS["male : married/

widowed","FP" ,])

21 PPV_S[,"Female"]=(Sum_genrePvAS["female : single","TP" ,])/(Sum_

genrePvAS["female : single","TP" ,]+Sum_genrePvAS["female :

single","FP" ,])

22

23 plot(density(PPV_S[,"Male"]-PPV_S[,"Female"]))

24 abline(v=0,lty=2,col="red"

1. Predictive Equality: We have to compare the FPR for both

groups:

1 FPR_male=(Sum_genrePvA["male : divorced/separated","FP"]+

2 Sum_genrePvA["male : married/widowed","FP"])/

3 (Sum_genrePvA["male : divorced/separated","FP"]+

4 Sum_genrePvA["male : married/widowed","FP"]+

5 Sum_genrePvA["male : divorced/separated","TN"]+

6 Sum_genrePvA["male : married/widowed","TN"])

7 FPR_Fmale =(Sum_genrePvA["female : single","FP"])/

8 (Sum_genrePvA["female : single","TP"]+

9 Sum_genrePvA["female : single","TN"])
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10 FPR_male

11 FPR_Fmale

Epsilon Predictive Equality

1 abs(FPR_male -FPR_Fmale)<epsilon

To be able to do the comparison of FPR for both group we will

be using the Boostrap method.

1 FPR_S=matrix(NA,ns ,2)

2 colnames(FPR_S)=c("Male","Female")

3 FPR_S[,"Male"]=(Sum_genrePvAS["male : divorced/separated","

FP" ,]+Sum_genrePvAS["male : married/widowed","FP" ,])/(

Sum_genrePvAS["male : divorced/separated","FP" ,]+Sum_

genrePvAS["male : married/widowed","FP" ,]+Sum_genrePvAS

["male : divorced/separated","TN" ,]+Sum_genrePvAS["male

: married/widowed","TN" ,])

4 FPR_S[,"Female"]=(Sum_genrePvAS["female : single","FP" ,])/(

Sum_genrePvAS["female : single","FP" ,]+Sum_genrePvAS["

female : single","TN" ,])

5

6 plot(density(FPR_S[,"Male"]-FPR_S[,"Female"]))

7 abline(v=0,lty=2,col="red")

2. Equality of Opportunity We have to compare the FNR for both

groups:

1 FNR_male=(Sum_genrePvA["male : divorced/separated","FN"]+

2 Sum_genrePvA["male : married/widowed","FN"])/

3 (Sum_genrePvA["male : divorced/separated","FN"]+

4 Sum_genrePvA["male : married/widowed","FN"]+

5 Sum_genrePvA["male : divorced/separated","TP"]+

6 Sum_genrePvA["male : married/widowed","TP"])

7 FNR_Fmale =(Sum_genrePvA["female : single","FN"])/

8 (Sum_genrePvA["female : single","FN"]+

9 Sum_genrePvA["female : single","TP"])

10 FNR_male

11 FNR_Fmale

Epsilon Equality of Opportunity
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1 abs(FNR_male -FNR_Fmale)<epsilon

To be able to do the comparison of FNR for both group we will

be using the Boostrap method.

1 FNR_S=matrix(NA,ns ,2)

2 colnames(FNR_S)=c("Male","Female")

3 FNR_S[,"Male"]=(Sum_genrePvAS["male : divorced/separated","

FN" ,]+Sum_genrePvAS["male : married/widowed","FN" ,])/(

Sum_genrePvAS["male : divorced/separated","FN" ,]+Sum_

genrePvAS["male : married/widowed","FN" ,]+Sum_genrePvAS

["male : divorced/separated","TP" ,]+Sum_genrePvAS["male

: married/widowed","TP" ,])

4 FNR_S[,"Female"]=(Sum_genrePvAS["female : single","FN" ,])/(

Sum_genrePvAS["female : single","FN" ,]+Sum_genrePvAS["

female : single","TP" ,])

5

6 plot(density(FNR_S[,"Male"]-FNR_S[,"Female"]))

7 abline(v=0,lty=2,col="red")

3. Equality of odds: We have to compare the FPR and FNR for

both groups:

1 abs(FPR_male -FPR_Fmale)<epsilon && abs(FNR_male -FNR_Fmale)<

epsilon

4. Conditional Use Accuracy Equality:

We have to compare the PPV and NPV for both groups:

1 Sum_genrePvA

2 (NPV_male=(Sum_genrePvA["male : divorced/separated","TN"]+

3 Sum_genrePvA["male : married/widowed","TN"])/

4 (Sum_genrePvA["male : divorced/separated","TN"]+

5 Sum_genrePvA["male : married/widowed","TN"]+

6 Sum_genrePvA["male : divorced/separated","FN"]+

7 Sum_genrePvA["male : married/widowed","FN"]))

8 (NPV_Fmale=(Sum_genrePvA["female : single","TN"])/

9 (Sum_genrePvA["female : single","TN"]+

10 Sum_genrePvA["female : single","FN"]))

11 \begin{lstlisting }[ language=R]
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12 abs(PPV_male -PPV_Fmale)<epsilon && abs(NPV_male -NPV_Fmale)<

epsilon

Boostraping:

1 NPV_S=matrix(NA,ns ,2)

2 colnames(NPV_S)=c("Male","Female")

3 NPV_S[,"Male"]=(( Sum_genrePvAS["male : divorced/separated",

"TN" ,]+Sum_genrePvAS["male : married/widowed","TN" ,])/(

Sum_genrePvAS["male : divorced/separated","TN" ,]+Sum_

genrePvAS["male : married/widowed","TN" ,]+Sum_genrePvAS

["male : divorced/separated","FN" ,]+Sum_genrePvAS["male

: married/widowed","FN" ,]))

4 NPV_S[,"Female"]=(( Sum_genrePvAS["female : single","TN" ,])/

(Sum_genrePvAS["female : single","TN" ,]+Sum_genrePvAS["

female : single","FN" ,]))

5 plot(density(NPV_S[,"Male"]-NPV_S[,"Female"]))

6 abline(v=0,lty=2,col="red")

5. Overall Accuracy Equality: We have to compare the P1(Y =

Ŷ ) and P0(Y = Ŷ )

1 P_mal=(Sum_genrePvA["male : divorced/separated","TN"]+

2 Sum_genrePvA["male : divorced/separated","TP"]+

3 Sum_genrePvA["male : married/widowed","TN"]+

4 Sum_genrePvA["male : married/widowed","TP"])/n_male

5 P_Fmal=(Sum_genrePvA["female : single","TN"]+

6 Sum_genrePvA["female : single","TP"])/n_fmale

7 abs(P_Fmal -P_mal)<epsilon

Boostraping:

1 P_Y_Yh=matrix(NA,ns ,2)

2 colnames(P_Y_Yh)=c("Male","Female")

3 P_Y_Yh[,"Male"]=(( Sum_genrePvAS["male : divorced/separated"

,"TN" ,]+Sum_genrePvAS["male : divorced/separated","TP"

,]+Sum_genrePvAS["male : married/widowed","TN" ,]+Sum_

genrePvAS["male : married/widowed","TP" ,])/(Sum_

genrePvAS["male : divorced/separated","TP" ,]+Sum_

genrePvAS["male : divorced/separated","FP" ,]+Sum_

genrePvAS["male : divorced/separated","FN" ,]+Sum_
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genrePvAS["male : divorced/separated","TN" ,]+Sum_

genrePvAS["male : married/widowed","TP" ,]+Sum_genrePvAS

["male : married/widowed","FP" ,]+Sum_genrePvAS["male :

married/widowed","FN" ,]+Sum_genrePvAS["male : married/

widowed","TN" ,]))

4 P_Y_Yh[,"Female"]=(( Sum_genrePvAS["female : single","TN" ,]+

Sum_genrePvAS["female : single","TP" ,])/(Sum_genrePvAS[

"female : single","TP" ,]+Sum_genrePvAS["female : single

","FP" ,]+Sum_genrePvAS["female : single","FN" ,]+Sum_

genrePvAS["female : single","TN" ,]))

5 plot(density(P_Y_Yh[,"Male"]-P_Y_Yh[,"Female"]))

6 abline(v=0,lty=2,col="red")

6. Treatment Equality:

We have to test equal ratio of false positives and false negatives.

1 FN1_FP1=(Sum_genrePvA["male : divorced/separated","FN"]+

2 Sum_genrePvA["male : married/widowed","FN"])/

3 (Sum_genrePvA["male : divorced/separated","FP"]+

4 Sum_genrePvA["male : married/widowed","FP"])

5 FN0_FP0=(Sum_genrePvA["female : single","FN"])/

6 (Sum_genrePvA["female : single","FP"])

7 abs(FN1_FP1 -FN0_FP0)<epsilon

Booatraping

1 FN_FP_s=matrix(NA ,ns ,2)

2 colnames(FN_FP_s)=c("Male","Female")

3 FN_FP_s[,"Male"]=( Sum_genrePvAS["male : divorced/separated"

,"FN" ,]+Sum_genrePvAS["male : married/widowed","FN" ,])/

(Sum_genrePvAS["male : divorced/separated","FP" ,]+Sum_

genrePvAS["male : married/widowed","FP" ,])

4 FN_FP_s[,"Female"]=( Sum_genrePvAS["female : single","FN" ,])

/(Sum_genrePvAS["female : single","FP" ,])

5 plot(density(FN_FP_s[,"Male"]-FN_FP_s[,"Female"]))

6 abline(v=0,lty=2,col="red")

• Calibration We have to compare P1(Y = 1|S = s) = P0(Y = 1|S =

s), ∀s ∈ [0, 1
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1 DF_Ger=subset(DGerman , select = -c(personal_status_sex ,credit_

risk) )

2 Y = ifelse(DGerman$credit_risk=="good" ,1,0)

3 DGerman2=data.frame(Y,DF_Ger)

4 install.packages(locfit)

5 Reg2=glm(formula=Y~. , family = binomial ( link ="logit"), data

= DGerman2)

6 S = predict(Reg2 ,type="response")

7 Loc_F = locfit.raw(x=S[DGerman$personal_status_sex == "female :

single"],

8 y=DGerman2$Y[DGerman$personal_status_sex == "

female : single"],

9 family="binomial",

10 kern="rect",deg=0)

11 vs =(0:100)/100

12 probaF = predict(Loc_F,newdata=vs)

13 Loc_M = locfit.raw(x=S[DGerman$personal_status_sex != "female :

single"],

14 y=DGerman2$Y[DGerman$personal_status_sex != "

female : single"],

15 family="binomial",

16 kern="rect",deg=0)

17 probaM = predict(Loc_M,newdata=vs)

18 plot(vs,probaF ,col="red",ylim =0:1, type="l")

19 lines(vs ,probaM ,col="blue")

• Testing d-seperation statemnents

1 german=read.csv("german.csv")

2 DF_German=german[which

3 (german$personal_status_sex!="female : non -single or male :

single") ,]

4 Genre=ifelse(DF_German$personal_status_sex=="female : single","

Female","Male")

5 DF_German=data.frame(DF_German ,Genre)

1 CreditGender=table(DF_German$credit_risk ,DF_German$Genre)

2 chisq.test(CreditGender)$expected

3 chisq.test(CreditGender)
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1

2 CreditGenderProp=table(DF_German$credit_risk ,

3 DF_German$Genre ,DF_German$property)

4 CreditGenderProp [,,1]

5 chisq.test(CreditGenderProp [,,1])$expected

6 chisq.test(CreditGenderProp [,,2])$expected

7 chisq.test(CreditGenderProp [,,3])$expected

8 chisq.test(CreditGenderProp [,,4])$expected

1 chisq.test(CreditGenderProp [,,1])

2 chisq.test(CreditGenderProp [,,2])

3 chisq.test(CreditGenderProp [,,3])

4 chisq.test(CreditGenderProp [,,4])

1 CreditGendersaving=table(DF_German$credit_risk ,DF_German$Genre ,

DF_German$savings)

1 chisq.test(CreditGendersaving [,,1])$expected

2 chisq.test(CreditGendersaving [,,2])$expected

3 chisq.test(CreditGendersaving [,,3])$expected

4 chisq.test(CreditGendersaving [,,4])$expected

5 chisq.test(CreditGendersaving [,,5])$expected

1 chisq.test(CreditGendersaving [,,1])

2 chisq.test(CreditGendersaving [,,2])

3 chisq.test(CreditGendersaving [,,3])

4 chisq.test(CreditGendersaving [,,4])

5 chisq.test(CreditGendersaving [,,5])

1 CreditGenderpurpose=table(DF_German$credit_risk ,DF_German$Genre ,

2 DF_German$purpose)

3 CreditGenderpurpose=table(DF_German$credit_risk ,DF_German$Genre ,

4 DF_German$purpose)

5 purposeG=ifelse(DF_German$purpose =="others","others",

6 ifelse(DF_German$purpose =="furniture/equipment","househld",

7 ifelse(DF_German$purpose =="radio/television","househld",

8 ifelse(DF_German$purpose =="domestic appliances",

9 "househld","persona"))))

10 dim(CreditGenderpurpose)

11 DF_German=data.frame(DF_German ,purposeG)

12 summary(DF_German$purposeG)
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13 TBLE=table(DF_German$credit_risk ,DF_German$Genre ,DF_German$

purposeG)

1 chisq.test(TBLE[,,1])$expected

2 chisq.test(TBLE[,,2])$expected

3 chisq.test(TBLE[,,3])$expected

1 chisq.test(TBLE[,,1])

2 chisq.test(TBLE[,,2])

3 chisq.test(TBLE[,,3])

1 TBLE2=table(DF_German$credit_risk ,DF_German$Genre ,DF_German$

housing)

2 chisq.test(TBLE2 [,,1])

3 chisq.test(TBLE2 [,,2])

4

5 chisq.test(TBLE2 [,,3])

1 nbcr=ifelse(DF_German$number_credits =="1","1"," >1")

2 DF_German=data.frame(DF_German ,nbcr)

3

4 TBLE3=table(DF_German$credit_risk ,DF_German$Genre ,DF_German$nbcr

)

5 chisq.test(TBLE3 [,,1])

6 chisq.test(TBLE3 [,,2])

1 TBLE5=table(DF_German$credit_risk ,DF_German$Genre ,DF_German$

people_liable)

2 chisq.test(TBLE5 [,,1])

3 chisq.test(TBLE5 [,,2])

• Simulating credit score data

1 n <- 1000

2 set.seed (10)

3 #exogenous variables

4 p <- rbinom(size=1, n=1000, prob =0.5)

5 #endogenous variables

6 x <- 5*p+rnorm(n,0,sqrt (1 -0.5^2))

7 theta <- 0.35*x+0.5*p

8 y <- exp(theta)/(1+exp(theta))+exp(p)/(1+exp(p))
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9 #We create a data.frame without the latent variable (theta)

10 dat <- data.frame(x,p,y)

11 #We made the model save lavaan

• Testing the simulated data

1 library(lavaan)

2 mod <-"

3 x~p

4 theta~x+p

5 theta=~y

6 "

7 fit <-sem(model=mod ,data=dat)

8 summary(fit)
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