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RÉSUMÉ 

La biologie évolutive est régie par des forces écologiques correspondant à des échelles 

géographiques et temporelles différentes. L'interrelation hôte-pathogène constitue une des 

principales forces évolutives, menant à la croissance de la variabilité génétique. Dans cette thèse, 

nous présentons d'abord un nouveau modèle permettant de retrouver des régions génomiques 

fonctionnelles en se basant sur la variabilité des séquences ainsi que sur une analyse de 

regroupement d'espèces faite selon des critères booléens de pathogénicité. Les méthodes et les 

fonctions de regroupement qui en découlent ont été appliquées à des jeux de données réelles 

impliquant la carcinogénicité et l' invasivité des espèces. Ces méthodes et fonctions doivent varier 

dépendamment de la combinaison des mécanismes évolutionnaires (sélection positive et lignée 

spécifique) de même que des types de regroupement variés (monophylétique et polyphylétique). 

Nous utilisons l'index de Rand ajusté pour valider les résultats. Par la suite, nous étudions sur une 

plus grande échelle le phénomène du transfert horizontal de gènes, complet et partiel, chez les 

procaryotes. Cette analyse détaillée est effectuée sur J?lusieurs niveaux taxonomiques, génétiques et 

écologiques pour permettre d'estimer statistiquement l'ampleur de l'acquisition du matériel 

génétique tout au long de l'histoire évolutive des procaryotes. Finalement, nous décrivons une 

nouvelle méthode rapide de détection des transferts horizontaux de gènes complets qui est basée sur 

des fonctions de regroupement, existantes et nouvelles, accompagnée de la procédure de validation 

utilisant les p-values. 

Mots clés : analyse de regroupement; arbre phylogénétique; bipartition; carcinogénicité; détection 

de régions fonctionnelles; invasivité; recombinaison; transfert horizontal de gènes; variabilité 

génétique. 





ABSTRACT 

Evolutionary biology is driven by different ecological forces, acting on the geographical and 

temporal scales. Host-pathogen interaction is one such major evolutionary force, leading to higher 

genetic variability. In this thesis, we first present a new model allowing for recovering fonctional 

genomic regions responsible for a given disease. The new model relies on sequence variability 

cluster analysis and Boolean pathogenicity criteria. The proposed clustering functions and methods 

have been applied to real datasets characterized by carcinogenicity and invasivity of certain species. 

The considered clustering fonctions vary according to the involved evolutionary mechanisms 

(positive selection or lineage specific selection) and phylogenetic relationships between species 

(monophyletic or polyphyletic). Our results were validated by using the adjusted Rand index. Then, 

we carried out a comprehensive study to measure the impact of horizontal gene transfer on the 

evolution of prokaryotes. Complete and partial forms of horizontal gene transfer were studied. This 

detailed analysis was performed on taxonomie, genetic and ecological levels in order to assess 

statistically the rate of horizontal acquisition of genetic material along the evolutionary history of 

prokaryotic species. Moreover, in the final chapter, we introduced a new fast method for detecting 

complete horizontal gene transfer events. The proposed method is based on the above-mentioned 

clustering fonctions and accompanied by a validation procedure using p-values . 

. Keywords : bipartition; carcinogenicity; cluster analysis; functional region detection; genetic 

variability; horizontal gene transfer; invasivity; phylogenetic tree; recombination 
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INTRODUCTION 

Evolutionary biology is best explained by ecological forces acting over different geographic and 

temporal timescales. Biotic factors, such as competition and predation, shape ecosystems locally 

and over short time spans, as assumed by the Red Queen hypothesis. On the contrary, abiotic 

factors, explained by the Court Jester hypothesis, such as climate, oceanographic and tectonic 

events, shape larger-scale patterns regionally and globally over millions ofyears. 

According to this view, hast-parasite relationships stand as the main evolutionary force on the 

microscale, increasing genetic variability. Many parasites, usually prokaryotes and viruses, have the 

advantage of shorter generation time. Hosts, usually eukaryotes, developed sexual reproduction, 

which by the means of recombination speeds up evolution, while also developing an immune 

system capable of generating hypervariable genetic regions. Sequence conservation, a measure of 

negative selection, has been used extensively to detect functional regions, but other forces are 

responsible of driving change in this host-parasite setting. 

In this thesis, we present models and algorithms, using variability clustering to detect the forces, 

active on the parasite side, such as positive selection, lineage specific selection and horizontal gene 

transfer (HGT), followed by recombination. In respect to one such change driving force, namely 

HGT, we cluster prokaryotes in phylogenetic and ecological groups, quantifying its presence and 

extent at gene and subgene detailing level, and also time its distribution at the genomic scale. 

Chapter I discusses the basic notions and models used in bioinformatics, which are necessary for 

understanding the application context of our algorithms. 

Chapter II presents the state of the art of functional sequence detection. It describes efforts made to 

uncover genomic regions under evolutionary forces. We can classify these forces according to the 

degree of change they imply. Most studied of all is negative selection, which is based on 

conservation measures, and uncovers fundamental structures needed by a majority of organisms in 

order to function independently. On the contrary, species need variation among individuals in order 



to escape pathogenic attack, as has been described previously. We focus on positive selection, site 

specific and lineage specific selection methods at first An even higher degree of change is brought 

by HGT and recombination. Finally, we describe genetic association studies and efforts made to 

use this natural clustering around virulence factors defined as a Boolean criterion, such as 

carcinogenicity or invasivity of microorganisms. 

Chapter III describes a navel prediction method for discovering genomic regions associated with a 

disease. This method relies on transfers between groups to optimize bipartitions in order to 

maximize various variability metrics. Using simulations, we showed relations and limits of our 

detection method for each proposed metric, under a combination of evolutionary mechanisms 

(positive selection or lineage specific selection) and clustering types (monophyletic or 

polyphyletic). We then usedAdjusted Rand Index to validate the obtained results. 

Chapter IV presents a large study of the extent of HGT in the prokaryotic world. Here, we consider 

clustering around phylogenetic and ecological groups. Applying the efficient· and highly accurate 

HGT-Detection algorithm, which is backed by a bootstrap-based statistical validation, we first 

quantified the global extent of this phenomenon at the gene level (complete transfers) and then 

detailed this extent at the nucleotide level, acèounting for subgenetic regions (partial transfers). 

Interrelations between groups and important transfer statistics were inferred and discussed in detail. 

The existence of phylogenetic and ecological HGT-related clusters was also revealed. Finally, 

dating ofHGT events was inferred and presented for complete and partial horizontal gene transfers. 

Chapter V describes a new fast method intended to detect complete horizontal gene transfers. We 

show that this method is able to recover a majority of low-confidence and almost all high

confidence transfers found by the well known HGT-Detection algorithm, at the price of a higher, 

but still acceptable, false positive rate. The presented method is based on new aggregation 

fonctions, similar to those presented in chapter III, but using different clustering criteria. P-values 

were estimated in the proposed algorithm using a stochastic Monte Carlo procedure. 

We finally, present a synthesis of our work and some perspective ways for improving our methods. 
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CHAPTERI 

BASIC GENETIC AND EVOLUTIONARY NOTIONS 

AND MODELS OF MICROORGANISMAL 

EVOLUTION 

Bioinfonnatics is a va_st and multidisciplinary field. According to the National Health Institute (NH) 

of the United States of America (Huerta et al. 2000) it includes: "Research, development, or 

application of computational tools and approaches for expanding the use of biological, medical, 

behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize 

such data." Bioinfonnatics is useful in many life sciences, but its primary applications concem 

genetic data, first of all DNA and RNA sequences, stored in large public databases, such as 

GenBank (Benson et al. 2009) and Entrez Gene (Maglott et al. 2005). Arialysis of such data is done 

by a combination of computer science, biology, statistics and mathematics. In this chapter, we 

present basic biological and evolutionary notions and definitions, as well as elementary models used 

in computer science, in order to represent biological data and species evolution. They are all 

essential to the understanding of this thesis. We also present the basic information of the 

microorganisms studied by other chapters including Neisseria Meningitidis and Human Papilloma 

Virus. 

1.1 Microorganisms 

Microorganism is consists of organisms that are observable only under microscope. Antonie Van 

Leeuwenhoek (1632-1723) was amongst the first to build such a microscope. Another 

contemporary of him, Robert Hooke, at 1665 wrote a book describing his observations. He also 

introduced the tenn "cell", as the first organisms seen with such microscope were indeed single 



celled. With the development of the electron microscope, the internai structure of these 

microorganisms has become visible. The existence of a distinct nucleus separated eukaryotes 

( organisms with nucleus) from prokaryotes ( organisms without nucleus). Present day classification 

of all living organisms is based on the work pioneered by Carl Woese and others, who used genetic 

material and cell membrane structure. There are three main lineages, called domains, Bacteria, 

Archaea and Eukarya. First two of them are prokaryotic lineages. Eukarya includes all eukaryotes, 

from the kingdoms Animalia, Plantae, Fungi and Protista. Bacteria, archaea and a set of Eukarya 

( almost all the protozoa, some fungi, algae, and animais) represent the set of microorganisms. Our 

algorithms were developed and tested on Prokaryotes and Viruses. For the scope of this thesis we 

will limit our description to the latter two types of organisms. Viruses are organism-dependent 

entities that are generally not considered as micro-organisms. For practical purposes, they are 

studied in Virology, a subfield of microbiology. 

1.1.1 Prokaryotes 

Prokaryotes are ubiquitous organisni.s, living in all environments, including the most extreme, like 

boiling springs, permanently frozen or extremely salty waters, at the depths of the ocean, or 

environments without oxygen or radioactively contaminated. Prokaryotes also normally reside in 

the human digestive system and skin. They are sometimes responsible for several kind of illnesses, 

but also serve an important role in the preparation of many foods, like yoghourt, vinegar or 

chocolate. Prokaryotes are probably the first inhabitants of Earth, able to withstand harsh conditions 

of very high temperatures, volcanic eruption, mutagenic radiation from the sun and no oxygen 

conditions. There is evidence of a fossilized microbial mat, in Australian sandstone, estimated to 

date over 3 billion years (OpenStax College 2014). These sedimentary rocks are called stromatolites 

(Figure 1.1 ). 
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(a} (b) 

Figure 1.1 Stromatolites 
(a) These living stromatolites are located in Shark Bay, Australia. 

(b) These fossilized stromatolites, found in Glacier National Park, Montana, are nearly 1.5 billion 
years old. (credit a: Robert Young; credit b: P. Carrara, NPS), OpenStax College, Biology. 

OpenStax CNX. 16 Apr 2014 http://cnx.org/contents/ 185cbf87-c72e-48f5-b51e
f14f21 b5eabd@9.43. 

Only a small percentage of all prokaryotes are pathogens. Their role in ecological processes is very 

important. Life would not be possible without them. Human life is also dependent on symbiosis 

with microbes, which help us digest food, produce nutrients, protect from pathogenic microbes and 

train our immune system. 

1.1.2 Viruses 

Viruses constitute another important group of microorganisms. There are non-cellular, lacking most 

of the components of cells, such as organelles, ribosomes, and the plasma membrane. Single virus 

particles are called virions. Each virion consists of a nucleic acid core, an outer protein capsid, and 

sometimes an outer envelope. The envelope is not of its own structures, but rather made of proteins 

and phospholipids derived from the host cell membranes. Sometimes viruses contain enzymes. It is 

important to notice that the complexities of the viruses with their hosts are not related. They are 

obligate intracellular parasites, incapable of replicating themselves outside of a host. This property, 

but also the maintaining of activity after having been crystallized (Stanley et al. 1935), makes their 

consideration as living organisms debatable. They are only visible in the electron microscope, about 

20-250 nanometers in diameter, with some exceptions for some large virions of the poxvirus 

family. The tobacco mosaic virus was the first to be discovered (Figure 1.2). Host and parasite 

5 



complexity usually are not related. Bacteriophages are amongst the most complex virion structures, 

but they infect only bacteria (OpenStax College 2013). 

Figure 1.2 Tobacco mosaic virus 
Transmission electron microscopy (left). 

Sample of orchids affected by disease caused by viruses (right). 

(credit a: USDA ARS; credit b: modification ofwork by USDA Forest Service, Department of Plant 
Pathology Archive North Carolina State University; scale-bar data from Matt Russell). 

OpenStax College, Introduction. OpenStax CNX. 5 Mar 2013 http://cnx.org/contents/ed0fb5c2-
ce30-4a76-8d58-77fb7cf9c7ec@2. 
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1.2 Elementary genetic notions 

1.2.1 DNA 

Deoxyribonucleic acid (DNA) is a high weight macromolecule, a polymer of smaller weight 

nucleotides (Saenger 1984 ). It stores information necessary to normal functioning and development 

of the whole organism. DNA is the basic element that constitutes genes corresponding to the 

support of heredity. It is linear, unbranched polymer in which monomeric subunits are four 

chemically distinct nucleotides that can be linked together. Each nucleotide is constituted of three 

elements: a phosphate group and a monosaccharide (deoxyribose), which belongs to the backbone 

and a nitrogenous base which gives its name to the corresponding nucleotide. There are four types 

of nucleotides composing DNA {Lodish et al. 2000). Adenine {A) and guanine (G) are double

ringed purines, while cytosine (C) and thymine {T) are single-ringed pyrimidines. DNA's form is a 

complementary double helix, as shown in Figure 1.3 (Watson and Crick i953). DNA is present ·in 

the nucleus of eukaryotic cells, in prokaryotic cytoplasm, mitochondrial matrix and also in 

chloroplasts. There are also some viruses containing DNA, placed inside a protein protecting 

structure which is called the capsid. 

U <t. N.1t:~::·,.1! L.it,t.:>:y r•f H':',J:·.::q~ 

Figure 1.3 DNA strands complementarity 

A<knin,i 

;;;;;;;i 
Guanine C11otlno 

Sugar phespilale 
backbone 

Possible interactions are: A-T and T-A, G-C and C-G 

(credit: (National Library of Medicine (US). Genetics Home Reference [Internet]. Bethesda (MD): 
The Library; 2013 ). 

1.2.2 Central dogma of molecular biology 

General protocol of information flow in biological systems is as follows: DNA is copied 

(replication) to DNA, which is transformed (transcription) into messenger RNA (mRNA), which 
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serves as a model for protein synthesis (translation) (Crick et al. 1970). Translation involves the 

use of codons, triplets of nucleotides, each associated with one amino-acid in the proteic primary 

chain (Figure 1.4 ). There are some exceptions to this general rule, known to date as reverse 

transcription and replication of RNA, which will be described subsequently. 

Figure 1.4 Central dogma of molecular biology. 
(Bruce Fouke, 2006). 

1.2.3 Gene 

Gene is a DNA segment containing biological information that corresponds to either coding 

sequences (which gives a protein) or a non-coding sequences corresponding to non-coding RNA 

(see 1.2.4). It is located usually on a chromosome and it is the functional unit of inheritance 

(Johannsen 1911 ). Gene is mainly composed of two parts: the exons that contain the DNA that will 

bé transformed into proteins and introns that are regions containing regulatory elements and 

untralslated DNA. For a given coding gene, the coding sequence is a region of the gene coding for a 
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protein. The coding region of a gene, also known as the coding sequence or CDS (from Coding 

DNA Sequence), is the portion of the gene's DNA or RNA, composed of exons, that codes for a 

protein. 

1.2.4 RNA 

Ribonucleic acid (RNA) is a macromolecule, a polymer of nucleotides, similar to DNA. There are 

however some differences. RNA is single stranded, . and ribose here replaces desoxyribose, while 

Uracil (U) replaces thymine (T). There exist several families of RNA. These are grouped according 

to their fonction or secondary (or tertiary) structure. 

Table 1.1 Main types and functions of RNA 

transfer RNA tRNA 

ribosomal RNA rRNA 

micro RNA miRNA 

Transports an amino-acid corresponding to a 

specific codon. 

Constitutes the ribosome after maturation and 

association to proteins. 

Blocks translation of certain mRNA by 

ribosomes. They can regulate gene expression. 

RNA can have a secondary structure showing base pairing interactions. It results in alpha-helix 

structures and beta-sheets (Doty et al. 1959). RNA could either encode for protein ( coding RNA) or 

not (Non coding RNA). Non-coding RNA principally regulates gene expression (Bimey et al. 

2007). Non-coding RNA genes include highly abundant and functionally important RNAs such as 

transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs, the long non coding RNAs and 

several other classes. 
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1.2.5 Codon 

A codon is a triplet of mRNA nucleotides A, C, U or G. It will be transcribed into one of the 20 

natural amino-acids. Certain codons are synonyms, several of them coding for the same amino-acid 

(Figure 1.5). 

Secondletter 

t CUAJ·.---- CCA.J ~,- CAA}·. ··· .. ·· CGr\J.~•!.:f A t = CUG ··. · CCG ·. CAG Gin CGG G = 
~ ... ·. . . . ~ 

-~4----4------"---4---~-+-----1-~-

~ Auu1···... Acu1·····•·· AAU}· . .. .ô.GUJ···. . u :-g 
Ü: AUC ~ lie ACC Thr AAG Asn AGC Ser C f:. 

AGA 
ACG 

Figure 1.5 Genetie code 
Genetie code is used for translating nucleotide triplets, found in mRNA, into amino acids or a 

termination signal in a nascent protein (credit: modification of work by NIH). OpenStax 
College, The Genetie Code. OpenStax CNX. 24 Feb 2014 http://cnx.org/contents/40489b84-9322-

4 7be-96dc-4 f80079cb868@7. 

Three of the 64 codons are called stop codons. They terminate protein synthesis. Another codon, 

AUG, in addition to specifying the amino acid methionine, also serves as the start codon. The 

reading frame for translation is set by the AUG start codon. The genetic code is almost universal. 

Purified mRNA from one species can be used by another species for protein synthesis. This serves 

of evidence of common origin of life on Earth. Even viruses share the same genetic code. The 

genetic code is also degenerate, or redundant, which makes it fault tolerant. Codons specifying same 

amino acids typically diff~r only by a single nucleotide. Also, similar codons encode chemically 

similar side chains. 

1.2.6 Protein 

A protein is a macromolecule composed of one or many amino acid chains, bounded by peptidic 

bonds (Branden and Tooze 1996). When their molecular weight is under 1 0kDa, they are called 
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peptides (Oliva et al. 2004). Proteins are at the foundation of cellular fonctions. They are 

responsible for the catalysis of chemical reactions, transport, communication, signaling and signal 

recognition. Numerous proteins also have a structural role, for instance, those belonging to the viral 

capsid (Lodish et al. 2000). Following translation, amino acid order constitutes protein's primary 

structure. Then, the molecule folds into itself, with help from hydrogen bonds, to form secondary 

structures, the most important being alpha-helix and beta-sheets. Different secondary structures 

arrange themselves into tertiary structures, govemed by hydrophobie interactions and disulfide 

bonds (Figure 1.6). There is even a quatemary structure with the association of multiple peptidic 

units (Lodish et al. 2000). 

N terminus 

Figure 1.6 Example of a protein structure 
Hypothetical protein comprised of 3 a-helices and 4 P-sheets. 

Reproduced from (Turner et al. 1997), redesigned in (Brown 2006). 

1.2. 7 Chromosome 

In a genome, the DNA is mainly packaged into a complex macromolecule with several genes, 

regulatory elements and non coding DNA. This structure called chromosome, codes most of the 

genetic information. Specific proteins help package and control its fonctions. Sorne prokaryotes also 

store DNA in plasmids. Eukaryotic cells have large linear chromosomes and prokaryotic cells have 

smaller circular ones. 
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1.3 Human papilloma virus (HPV) 

HPV is a DNA virus with a dimension of 8kpb . Its genome is composed of eight genes, coding for 

the same number of proteins, and one regulatory region. Genes are designated by letter E for early 

and L for late, according to their epithelial differentiation. El, E2, ES, E6, and E7 are expressed 

early in the differentiation processes, E4 is expressed all along, while LI and L2 are expressed 

during final stages (Figure 1. 7). Early proteins are expressed at low levels that could explain long 

latency. L1 is a major capsid protein; L2 serves as intermediary with plasmidic DNA (Doorbar 

2006, Schiffinan et al. 2007). E 1 and E2 are regulatory proteins that modulate transcription and 

replication, while ES, E6, and E7 modulate transformation. The role of E4 is not completely 

elucidated; several studies indicate the possibility of facilitating genome replication and activation 

of late functions (Wilson et al. 2007) as well as virus assembly (Prétet et al. 2007). 

First discovered HPV was classified together with polyomaviruses of the Papovaviridae family, due 

to their similar non-enveloped capsid characteristic and analogons double-strained DNA genome. 

The unique common element between these two families is, in fact, a proteic domain of gene E I 

(De Villiers et al. 2004). It codes for a helicase, very similar to simian 40 (SV40) T antigen in a 

polyomavirus, to the NSI protein of parvoviruses and even an extra-chromosomal element in a flat 

worm - Girardia tigrina (Rebrikov et al. 2002). T antigen of SV 40 is ligating the tumoral suppressor 

pS3 and inhibit its transcription (Dobbelstein and Roth 1998). Over 200 papilloma virus genotypes 

exist, and more than 100 have been classified (Büchen-Osmond 2006). 

Traditionally, based on tissue tropism, classification of HPV was made in three groups - cutaneous, 

muquous and mixed (Segondy 2008). Contrary to many viruses the modem HPV classification is 

not based on morphological criteria but rather on genetic similarity (De Villiers et al. 2004 ). A 

classification given by genomic similarity, pathogenicity and potential to determine cancer, <livide 

papillomavirus in Genera such as Alpha, Beta and Gamma-papillomavirus (De Villiers et al. 2004 ). 

HPV is responsible for frequently sexually transmitted diseases. Certain strains infect genital 

mucosa, some other infect skin. Most known clinical manifestation is Condyloma Acuminata. 
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Figure 1. 7 HPVl 6 genome structure 
The genome has length 7904 bp. lt is represented as black circle with early promoters (p97) and late 

(p670) which are depicted by black arrows. Early ORFs (El, E2, E4 and ES) E6 and E7, are 
expressed starting at p97 or p670 at different stages of cellular epithelial differentiation. ORFs LI 

and L2 are also expressed starting at p670, following changes in splicing models and 
polyadenilation sites. Viral genes are encoded on the same strand. Long contrai region (LCR) 
spanning from 7156 to 7184 is in large, for visualization of binding site E2 and TAT A box of 

promoter p97. Binding sites El and SPI are also shown. Reproduced from (Doorbar ). 
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1.3.1 Carcinogenicity of HPV 

Sorne strains of HPV are involved in cervical cancer (Schiffman et al. 2007). Non-carcinogenic 

strains or the absence of infection by HPV do not correlate, or negatively correlate with initial 

modifications, seen in cervical cancer (Castle et al. 2007). However, most of HPV are not 

carcinogenic, especially strains causing common and plantar warts. Over 40 genotypes infect 

mycosis and among them 13 to 18 types belong to the high-risk category. This category is 

considered a precondition to cervical cancer development. It is involved in genesis of part of ano

genital and aero-digestive cancers as well. 

Even low risk strains are still responsible for high morbidity and are source of genital warts 

(Trottier and Franco 2006). A study involving 11 countries and 15 613 women aged 15 to 74 years 

showed a variable prevalence, ranging from 1-4% in Spain to 20 times higher - 25-26% in Nigeria 

(Clifford et al. 2005). This form of cancer is the second most frequent in female populations and 

seventh amongst all. This is a globally public health concem with an estimated 493,000 new cases 

and 274,000 deaths for year 2002, everywhere in the world. 

1.4 N eisseria M eningitidis 

Meningococcus is a Gram-negative bacterium, known for its role in the development of meningitis 

in humans. It has aerial trànsmission, by inhalation. Because of its invasivity the contact with 

patients infected with disease heighten the risk of transmission by 500 to 2000 times (Peltola 1983 ). 

The website «neisseria.org» is one of the best resources serving research community for 

centralizing public available information about N.meningitidis. Until now, 4 invasive strains and 3 

asymptomatic ones have been sequenced. Very subtle differences between them could be 

responsible for their virulence. 

Genome of N.meningitidis is made up of one circular chromosome, with a medium size of 2.2 Mpb 

and a G+C content of around 51 %. There are at average 1971 CDS, with an average 885 bp (Schoen 

et al. 2009). 

Comparative genomics studies showed a broad range of mechanisms that support genomic 

tlexibility. N.meningitidis would be a paradigm for organisms using variability to adapt to a hostile 

and changing environment (Schoen et al. 2009). Its genome abounds of 20% repetitive DNA, being 

ranked among the most repetitive in a study conducted by (Achaz et al. 2002). In another study of 

bacterial families using gene order as a measure of stability, N. meningitidis is ranked among the 
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less stable genomes (Rocha 2006). Intra-genomic recombination is the main mechanism used to 

generate phènotypic diversity (Schoen et al. 2007, Schoen et al. 2009). 

Many horizontal gene transfers, originating in the same or related N.meningitidis species, have been 

identified (Maiden et al. 1996). Their biology is complex, being comprised of minimal mobile 

elements (Saunders and Snyder 2002), DNA islands horizontally transferred (Tettelin et al. 2000), 

canonic genomic islands (Hotopp et al. 2006) and defective phages (Schoen et al. 2009). For 

instance, the only factor proved to be associated to any one pathological type of N.meningitidis is 

the polysacharidic capsule, which has been obtained by horizontal transfer (Elias et al. 2006). 

1.5 Molecular evolution 

The major results of the Darwinian Theory is that species evolve through changes occurring over 

time (Darwin, 1859). The independent changes in the genomic patrimonies of living species lead to 

the rise of new organisms. Evolution happens because of processes that affect individual organisms, 

as primary source of change, and their fate at the population level. Evolution includes genetic 

variability (i.e. genetic code modifications appearing at an individual level), and changing allele 

frequency (i.e. frequency of different versions of same corresponding sequence) in the population 

during time (i.e. impact of individual modifications over the entire population) (Duret 2008). 

1. 5.1 Evolutionary hypotheses 

Two important hypotheses explain at least partially the need for change, namely the Red Queen and 

Court Jester hypotheses. 

1.5.1.1 Red Queen 

It states that survival is equilibrium between co-evolving opposing organisms in a continuously 

changing environment. Under host-parasite coevolutionary relationships (Penn 2001), parasites 

have the advantage of shorter generations, while hosts developed sex, which uses recombination, in 

order to achieve greater genetic variation. Many microorganisms studied in this thesis are parasites, 

expressing coevolutionary relationships, among them being Human Papilloma Virus (HPV) (Lace 

et al. 2009, Schwarz and Leo 2008, Tindle 2002) and Neisseria Meningitidis (Jolley et al. 2005). 

The name of the concept cornes from Lewis Carroll's novel, Through the Looking-Glass, in which 

Red Queen states: "Now, here, you see, it takes all the running you can do, to keep in the same 

place. If you want to get somewhere else, you must run at least twice as fast as that!" (Pearson 
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2001 ). Competition, predation, and other biotic factors seem to exp Iain ecosystems on the short 

temporal time scale (Benton 2009). 

1.5.1.2 Court Jester 

Court Jester model, explains the evolution of ecosystems on a global scales as adaptation to 

geological events, like climate, landscape, or food supply changes. This term is used in opposition 

to the Red Queen philosophical concept, by using a Tarot card, the Fool, or the Joker, as a 

suggestion of the non-correlation between individual efforts and global results (Barnosky 200 l, 

Benton 2009). 

1.5.2 Genetie variability 

Genetie variability consists of the difference between individuals genetic patrimonies due to several 

types of mechanisms such as mutations, recombination and horizontal gene transfer (HGT). These 

evolutionary mechanisms can also lead to translocations, duplications, insertions and deletions that 

modify long genomic regions, generally chromosome-wide. 

1.5.2.1 Mutations 

Mutation constitutes a mechanism in which DNA is altered to give different sequence during _ 

evolution. Genome variability is principally due to different types of mutations. They represent the 

key force of evolution, as they create permanent change to the genetic material. They are originating 

as errors of cellular division, particularly DNA replication, but could also arise as a result of 

radiation, chemical substances or viruses. Sometimes, mutations are g~nerated by controlled 

mechanisms during the course of cellular reproductive lines division (i.e. meiosis ), or the 

hypermutation needed for antibodies production. According to the produced effect, mutations can 

be disfavoring ( e.g. interruption of an important cellular fonction), favoring or neutral. Neutra! ones 

do not modify organism's survival or reproductive capacity, in its particular environment and, 

therefore, can accumulate over time. Mutations affect DNA composition of a short region of a 

genome. Point mutations replace one nucleotide with another, and are called substitutions, while 

insertions or deletions can affect several nucleotides. 
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1.5.2.2 Recombination 

Contrary to mutations, recombination is carried out and regulated by enzymes and other proteins. It 

can be homologous or heterologous, in respect to the relative position, value, or structure of DNA. 

This concept is flexible enough to include alleles at the molecular level or species at the conceptual 

one. In each case, genetic material is exchanged between one or more parts of the corresponding 

sequences. 

1.5.2.3 Horizontal Gene Transfer- HGT 

The principle way of acquiring genetical patrimonies is through parent-child inheritance. However, 

genetical material could also be transferred within distant organisms. Often, microorganisms 

transfer DNA between individuals that results in strains with beneficial uptakes from more than one 

parent. This is sometimes achieved by transformation (first mode ofHGT), when release of DNA to 

the environment is followed by its uptake and recombination. Homologous recombination is limited 

to similar organisms, but recently "homology-facilitated illegitimate recombination" (HFIR) is 

being able to extend into areas with little similarity (De Vries et al. 2004, Meier and Wackemagel 

2003). Plasmids and conjugation can spread genetic material even beyond species barrier (Figure 

1.8). Heterologous recombination, also known as "illegitimate recombination", is one of the sources 

of horizontal gene transfers (Vetsigian and Goldenfeld 2005). Integrative conjugative elements 

usually use "site-specific recombination". Transduction, consisting of DNA transfer by phage, is 

yet another mode of HGT. lt is able to use "non-homologous recombination" between short repeats 

of length 5 to 12bp. Barriers to these mechanisms exist but are limited and thus cannot prevent gene 

acquisition in most cases (Thomas and Nielsen 2005). HGT can pose several risks to humans 

including antibiotic-resistant genes spreading to pathogenic bacteria, transgenic DNA insertion into 

human cells and possible cancer triggering, as well as disease-associated genes spreading and 

recombining to create new viruses and bacteria (Boc et al. 2010, David and Alm 2011 ). 
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Figure 1.8 Bacterial transfer using a conjugation plasmid 
Reproduced from Systematic Biology (59)-2, March 2010. Photo credit AJCl Flickr. 

1.5.2.4 Mosaic genes and intragenic recombination 

Following HGT, intragenic recombination occurs, leading to mosaic gene formation (Hollingshead 

et al. 2000). This phenomenon is significant, but sometimes misinterpreted (Zhaxybayeva et al. 

2004 ). Bacteria and Archaea are adapting to changing environments by creation of mosaic genes. 

This term cornes from altemating blocs of sequences that despite having different histories are 

combined in an allele following a recombination event (see Figure 1.9). These recombined 

segments can corne from similar strains or even from very distant species (Gogarten et al. 2002, 

Hollingshead et al. 2000). A mosaic gene is composed of segments identical to the original allele, 

and others derived from recently integrated DNA. When entrant DNA is very different from the 

host DNA, mosaic genes can express new phenotypes. There are biological proofs, for constant 

generation of mosaic genes in transformable populations, and probably in ail genes. Multilocus 

sequence typing (MLST) is useful to evaluate the extent of recombination in a bacterial population 

(Maiden et al. 1998). Non-transformable bacteria exhibit mosaic genes too, but at a lower rate (e.g. 

some Neisseria species). Mosaic alleles have been reported for many genes, including those 
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encoding surface antigens, IgA protease, and antibiotic targets (Hollingshead et al. 2000, Maiden 

et al. 1998). A good mosaic gene example resulting from HGT between two different species is the 

Penicillin resistance in Streptococcus pneumoniae, mediated by penicillin-binding proteins (PBPs) 

(Claverys et al. 2000). 
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Figure 1.9 Diagram depicting formation of a mosaic gene 
White sub-sequence of the new mosaic gene originating from another strain and the blue one from 

the original strain (credit: Stanley Maloy, 2002). 

1.5.3 Natural selection 

Natural selection is a result of differential mortality and fertility. As such, it is responsible of the 

fate of such mutations that modify the adaptive value of organisms. Alleles conferring more value 

have the tendency to heighten their proportion, until fixation occurs, by means of positive selection 

(i.e. their proportion goes up to 100%, when they become fixed, by completely eliminating all other 

alleles). On the contrary, alleles that reduce adaptive value are under negative selection, also known 

as purifying selection. Between these extremes there is balancing selection, when a group of 

selective population processes, actively maintaining frequencies of a pool of genes, above that 

of gene mutation. In a host-parasite relationship, for eukaryotic hosts, this selection occurs in the 

immune system, where the Major Histocompatibility Complex (MHC) loci are known to be highly 

polymorphie (Hughes and Nei 1988). Also it occurs when some alleles give advantages to a 

heterozygosis state (i.e. only part of alleles is different for the same genetic locus). They are 

maintained in equal proportions in their population by means of balancing selection (Duret 2008). 

In a predator-prey relationship, frequency-dependent selection is yet another form of balancing 

selection (Endler and Greenwood 1988). Mutations that do not affect adaptive value are not 

affected by natural selection but they are left to genetic drift (Duret 2008). 
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According to selectionist theory, natural selection is a primordial force of evolution, the influence of 

non-adaptive processes being reduced to minor contributions. It explains differences between 

species as the effect of positive selection, as a consequence of adaptation to environment, and 

polymorphism as the work of balancing selection (Duret 2008). Motoo Kimura proposed a different 

view of evolution, molecular neutral evolution (Kimura et al. 1968), sustained by King and Jukes, 

who introduced their own non-Darwinian type of evolution (King et al. 1969). The latter theory 

affirms that the majority of molecular changes are caused by random fixation of mutants (due to 

genetic drift of populations of fini te sizes) under neutral adaptive value, and continuous flow of 

mutations. It also affirms that polymorphism of DNA and proteins, forming variability inside the 

same species boundaries are selectively neutral, and are maintained in the species by balance 

between mutational entries and random extinction (Kimura 1985). Natural selection may favor 

HGT, as a more rapid way of adaptation than the accumulation of numerous point mutations, 

leading to alteration of gene functions. Prokaryotes have sophisticated mechanisms for the 

acquisition of new genes via HGT, which is considered rampant among various groups of genes in 

bacteria (Boc et al. 2010). 

1.6 Phylogenetic tree as support of evolution 

We described above genetic and evolutionary notions, as they are understood today. The idea of 

evolution was first applied to biology, and models have been developed, long before molecular 

biology arose as a standard basis for classification. The most popular representation of evolutionary 

history is that of a phylogenetic tree. 

1.6.1 Phylogenetic trees 

1.6.1.1 Definition 

Phylogenetic trees are acyclic and connected graphs in which contemporary species are associated 

with tree leaves. 

Four main components of a phylogenetic tree are as follows (Figure 1.10): 

• Root indicating common ancestry of species or strains represented; 

• External nodes - leaves - representing contemporary species, which are also called taxa; 

• Internai nodes, representing putative inferred ancestors; 
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• Branches, showing the ancestry relations between nodes. They can have length 

(representing mutation rate, genomic distance, etc ... ). 

Root 

Leaf 

Figure 1.10 Example of a phylogenetic tree 

1. 6.1.2 Characteristics 

A node's degree is defined as the number of branches adjacent to it. Nodes having degree higher 

than three are called unresolved, otherwise they are resolved. An unrooted phylogenetic tree -

having n leaves and all internai nodes resolved - is composed of: 

• 2n-2 nodes (n-2 internai nodes and n leaves) and 

• 2n-3 branches. 

Whenever the common ancestor of all species is determined, the tree is rooted. It is oriented 

following species evolution. A rooted tree allows for defining an ancestry relation among two 

successive nodes. It is impossible to objectively identify the origin (i.e. root) of species 

diversification based on the analyzed species alone. Usually, the root is inferred either using the 

midpoint, or using an outgroup. The outgroup technique consist of including in the study a species 

known having distant relationships to all of the present taxa. The obtained bifurcation between such 

a distant taxon and all other taxa will define the tree root. The midpoint technique consists of 

putting the root at the middle of the two distantly related taxa. 
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1. 6.2 Evolutionnary biology and the introduction of phylogeny 

Charles Darwin initiated this scientific discipline in bis seminal work «On the Origin of Species by 

Means ofNatural Selection, or the Preservation of Favoured Races in the Struggle for Life», which 

was published in 1859. He introduced a theory of population evolution through natural selection. He 

illustrated life diversity and presented arguments for branching evolution, based on common 

ancestry. His work reflected the observations of bis famous voyage around the world on board of 

the ship Beagle in 1830, but also bis own subsequent work and experimentations. The only figure of 

bis book is specifically a phylogenetic tree used to classify species. It is reproduced in Figure 1.12. 

Ernst Haeckel also relied on phylogenetic trees to describe species evolution, see Figure 1.13. He 

represented the organismal evolution using an almost linear progressive model in contrast to 

Darwin's widely branching one. 
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Figure 1.11 A species tree 
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Tree oflife image from Darwin's "On the Origin ofSpecies by Natural Selection" (Darwin 1859). 
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Figure 1.12 A species tree (including human genealogy) 
(Haeckel 1879). 
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1. 6.3 Lineage in a phylogenetic tree 

A lineage in a phylogenetic tree consists of a path including the given species and all its ancestors 

up to the tree root. When phylogenies are represented using trees, this becomes a polyline, joining 

all ancestors of the existing organism, up to its root (Figure 1.14 ). 

C p R A 

Figure 1.13 Lineage representation inside a phylogenetic tree 
This figure depicts a phylogenetic tree, each node standing for a species. Letters represent existent 

species. For the species H, the gray rectangle represents its lineage. 

1.6.4 Tree of life 

Tree of Life is an old and complex metaphor to indicate the evolutionary history of all living 

species. It has been the subject of many reviews (Mindell 2013). Charles Darwin presented the first 

scientific phylogenetic tree (Darwin 1859). Then, Ernst Haeckel built one universal tree for all 

species and groups known at that time (Haeckel 1879). For a long time classification was carried 

out based on observable traits such as anatomical, physiological or, later, biochemical features. 

Woese first produced a classification of living organisms based on 16S ribosomal RNA (W oese and 

Fox 1977) prior to discovering the Archaea kingdom (Woese et al. 1978). He then proposed a 

widely-accepted phylogeny of the three domains of life including Eukarya, Bacteria and Archaea 

(Woese et al. 1990). Today, tendency is more towards phylogenomics, using concatenated genes or 

genomes (Pierce 2007). This type of information is useful for long range reconstructions, spanning 

geological ages. The phylogenetic reconstruction is still a complex and debatable subject (Lecointre 

and Le Guyader 2006). One of the debated subjects is tree rooting (Becerra et al. 2007). To avoid 

the influences of HGT or recombination events, ubiquitary genes, core genes, or altematively 16S 

RNA are used to build phylogenies. Severa! collaborative projects to reconstruct the tree exist. One 
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of the most famous is called Tree of Life Web Project (ToL). The latter is the main international 

project intended to infer a phylogeny of all currently leaving species (Maddison et al. 2007). 

1. 7 Approaches for phylogenetic reconstruction 

1. 7.1 Phylogenetic classification - Cladistics 

This classification is based on observable characteristics, pertaining to species, as a testimony of 

ancient history (Lecointre and Le Guyader 2001 ). It is based on evolutionary proximity relations 

between species and is, therefore, tied to the modem vision of evolution. Its schematic 

representation is a cladogram, which is a phylogenetic, unrooted tree, containing nodes and leaves 

(i.e. species or taxa). Groups including a common ancestor and all its descendents are called 

monophyletic. They represent clades (see figure 1.15) (Hennig 1975). A taxon is a classification 

entity, grouping together organisms having in common certain well-defined characteristics (Wiley 

et al. 1991). Also, subtle differences between mono-, holo-, and paraphyletic groups make this 

subject a very debatable one (Envall 2008). 

Sauropsids group is constituted of reptiles and birds. It is considered monophyletic because all its 

descendents are present inside this group. Without birds we obtain reptiles. This forms a 

paraphyletic group. Mammals and birds form the "warm blood animais" group. This one is 

polyphyletic because its members have different ancestors (see Figure 1.1.5). 

Modem taxonomy is under contrai of several International Committees ( e.g. International 

Committee on Taxonomy of Viruses - ICTV, International Commission on Zoological 

Nomenclature - ICZN). A fully phylogenetic classification, called PhyloCode (Cantina and 

De Queiroz 2004), failed to become a gold standard in the field. 
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Figure 1.14 Differences between monophily, paraphily and polyphily 
Image credit TotoBaggins. 

1. 7.2 Cladistic phylogenetic tree reconstruction 

Cladistic reconstruction is based on an evolutionary model, inferring an optimal tree, which is 

evaluated at each tree node for optimality. Computational difficulties often arise when a huge 

number of trees have to be evaluated. The three main cladistic approaches are maximum likelihood, 

Bayesian reconstruction and maximum parsimony (Felsenstein 1981 ). The maximum likelihood 

approach is the most widely used nowadays. Homology is defined as common resemblance between 

taxa that can be attributed to common as~endanèe. Many characters are homologous. Modem tree 

reconstructions are almost always based on homologous DNA, RNA or protein sequences (Bear and 

Rintoul 2014). Therefore, methods determining which sequences are homologous strongly influence 

the quality of phylogenetic inference ( e.g. quality of multiple sequence alignments ). 
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1. 7.2.1 Phylogenetic tree inference using maximum parsimony 

Maximum parsimony is a principle known as Occam's razor, or in Latin as /ex parsimoniae. It was 

devised and used for problem-solving by William of Ockham (1287-1347) and states that we 

should always select the hypotheses involving the fewest number of assumptions. Stephen Hawking 

writes in A Brie/ History ofTime: "We could stil/'imagine that there is a set of laws that determines 

events completely for some supernatural being, who could observe the present state of the universe 

without disturbing it. However, such models of the universe are not of much interest to us mortals. 

lt seems better to employ the principle known as Occam 's razor and eut out al! the features of the 

theory that cannot be observed" (Hawking and Jackson 1993). This idea has been used in 

phylogenetic reconstruction to recover the tree of the smallest total number of mutations (i.e. the 

most parsimonious tree in terms of the number of mutations) (Edwards and Sforza 1963). Fitch 

introduced the most known parsimony algorithm (Fitch 1971). Sorne comparative reviews show that 

nonparametric methods, including maximum parsimony, can be resistance to biases in real datasets 

(Kolaczkowski and Thomton 2004 ). 

1. 7.2.2 Maximum likelihood principle 

Given a variable sample, maximum likelihood is a general statistical method allowing for the 

inference of the parameters for a probability distribution, which maximize the probability of the 

sample. lt was first employed in bioinformatics by Edwards and Cavalli-Sforza (1963) in a study of 

gene frequencies. First application on molecular sequences was that by statistician Jerzy Neyman 

( 1971 ). Given a family of parameterized density fonctions, where 0 is the parameter and x is the 

experiment' s result: 

x ~ f(x 10), the likelihood fonction is: L(0 I x) = f(x 10), where f(x 10) is a fonction of 

probability density, x is the variable, 0 is the model's parameter and L(01 x) is the likelihood 

fonction. 

1. 7.2.3 Phylogenetic tree inference using maximum likelihood 

Application to phylogenetic trees requires an evolutionary model allowing for the computation of 

transition probabilities depending on the evolutionary time. Severa! evolutionary models for 

genomic sequences have been developed. They regularly differ on the way of fixing parameters 

such type of mutations, rate of mutations and frequency of nucleotide. The models JC (Jukes and 

Cantor 1969), HKY (Hasegawa et al. 1985) and GTR (Tavaré 1986) are the most widely used 
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models ofDNA evolution. They offer a good compromise between precision and computability. We 

suppose that evolution is independent for different sites and lineages. In order to find the most likely 

tree, nucleotides of all sequences are separately compared, final probability being the product of 

individual probabilities. Theoretically, we have continuous variables, but practically, for 

computational reasons, several discrete classes of rate variations are used. If the evolutionary model 

is reversible, we obtain an unrooted tree. 

There are three main steps in a maximum likelihood inference procedure: 

J5' step: Generate tree topologies to be tested 

Normally, we should already have a set of tree topologies to be tested. We can start with a 

Neighbor-Joining tree topology (Saitou and Nei 1987), and then let a branch-and-bound or greedy 

search procedure recover more optimal topologies. Several tree transformation methods have been 

developed to search for optimal tree topologies: 

• Nearest Neighbor Interchange (NNI); 

• Subtree Pruning and Regrafting (SPR); 

• Tree Bisection and reconnection (TBR). 

A maximization-optimization algorithm that guarantees non-diminishing scores has been proposed 

(Friedman et al. 2002). Simulated annealing is another heuristic used frequently. 

2nd step: Branch length optimization 

The most widely used method is Newton-Raphson numerical optimization, included in RAxML 

(Stamatakis et al. 2005) and PhyML (Guindon and Gascuel 2003). We will use both of these 

methods in our experiments with real data described in Chapter IV. 

3rd step: Calculate the total maximum likelihood of the given tree 

ML programs use the Felsenstein pruning algorithm (Felsenstein 1981) for calculating the 

Phylogenetic Likelihood Function (PLF). It assumes data interdependence and updates already 

calculated values, inferring ancestral states at each tree node. 
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Many computer programs using ML approach exist, the most known of them being: DNAML 

(DNA maximum likelihood program) from Felsenstein (1981), PHYML (Guindon and Gascuel 

2003) and RAxML (Stamatakis et al. 2005). The last algorithm has efficiently vectorized and 

parallelized implementations. 

1. 7.3 Phenetic tree reconstruction: the distance methods 

The phenetic category oftree reconstruction methods estimates first evolutionary distances between 

each pair of spe~ies and then infers the phy logenetic tree that fits best these distances. We obtain the 

estimate of the evolutionary distance between two species by summing up branch lengths of the 

unique path relating these species in the inferred phylogenetic tree. The obtained distance is a tree 

metric (Barthélemy and Guénoche 1991 ). When the differences between the evolutionary distances 

and the obtained tree distances are small, the correct tree is usually inferred (Kim and Wamow 

1999). The main advantage of the distance methods is their low algorithmic complexity. This makes 

them useful for the analysis of large datasets. One of the first proposed distance-based algorithms is 

UPGMA (Unweighted Pair-Group Method using arithmetic Averages) (Sneath et al. 1973). The 

most popular distance-based algorithm is certainly Neighbor-Joining (NJ) (Saitou and Nei 1987). lts 

output tree often constitutes the starting tree for more advanced tree reconstruction methods. 

1.8 Multiple sequence alignment - MSA 

Alignment is an operation leading to the identification of homologous elements. Homology is the 

concept of character present in extant species to share a common ancestry. Hence alignment 

problem can be defined as finding the alignment necessary for all sequence comparisons (see Figure 

1.16). Diverse MSA building heuristics have been proposed. Most of them are based on Hidden 

Markov Models (HMM) ( e.g., see the hmmalign program from the HMMER package (Eddy 1998, 

Finn et al. 2011) or simulated annealing (Kim et al. 1994 ). One of the popular approaches is 

progressive alignment. It usually starts by aligning the most similar sequences, then by using a 

guiding phylogenetic tree. It treats all the sequences one by one. The most known of these 

progressive methods is ClustalW (Thompson et al. 1994 ). However the T-Coffee approach is slower 

than ClustalW but yields better results for more distant relations (Notredame et al. 2000). DIALIGN 

is based on local alignments (Brudno et al. 2003) and MUSCLE is a more precise MSA 
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implementation (Edgar 2004 ). Another fast MSA method is MAFFT which is based on a fast 

Fourier transform technique (Katoh et al. 2002). 
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Figure 1.15 An example of a multiple sequence alignment-MSA 
MSA displayed in Jalview (Clamp et al. 2004). Lines represent sequences. 

Columns represent homologous nucleotides. Gaps are represented by «-» 

characters and stand for inferred indels (insertions or deletions of nucleotides ). 

1.9 Reticulated evolution and networks 

Phylogenetic trees are appropriate models for Darwinian evolution but they lack support for 

phenomena such as horizontal gene transfer (see Chapter II), hybridization or genetic recombination 

(Sonea 2000). Reticulated networks, instead, can represent relations where an_ individual inherits 

genetic material from multiple ancestors (Legendre and Makarenkov 2002). 

In the reticulogram reconstruction, for example, we start with a phylogenetic tree and then add 

reticulations (supplementary branches) to the supporting tree structure (Legendre and Makarenkov 

2002). The T-Rex server (Boc et al. 2012), (Makarenkov 2001) is one of the most comprehensive 

web servers allowing for inferring phylogenetic trees and networks (see figure 1.17). 
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Figure 1.16 A phylogenetfo network modelling a scenario of horizontal gene transfers inferred using 
the T-Rex web site 

(Boc et al. 2012, Makarenkov 2001 ). 
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1.10 Methods for detection of Recombination 

Despite more than 20 years of research and a high number of detection methods available, 

recombination analysis is still considered imperfect (Maydt and Lengauer 2006). The problem 

consisting of determining if sequences belonging to a multiple sequence alignment include_ elements 

originating in recombination is hard. Locating recombination breakpoints is even harder (Posada 

and Crandall 2001, Wiuf et al. 2001). The problem complexity is producing an impressive number 

of approaches, each standing for a different aspect of recombination. Such studies, evaluating 

performance, conclude that we should choose different methods, based on "a priori" knowledge of 

our data, especially depending on divergence rate. Scoring methods are faster and have higher 

sensitivity, but phylogenetic ones are more precise and do not generate excessive numbers of false 

positives. Sorne methods are described in greater detail in a review chapter (Husmeier and Wright 

2005). 

First proposed methods for detecting recombination were based on statistical tests verifying non

uniformity of substitution distribution, such as the x2 test. They were not based on an explicit 

evolutionary model, but usually yielded good results (Posada and Crandall 2001 ). One of the most 

widely-used methods remains GENECONV (Sawyer 1989). It searches for the longest conserved 

fragment between two sequences and determines whether it is significant. Extensions of this method 

allow for including mutations in the fragments. Sorne methods can detect signal differences 

between adjacent regions of a multiple sequence alignment, including PLA TO (Grassly and Holmes 

1997), TOPAL (McGuire et al. 1997), (McGuire and Wright 2000), PhyPro and SimPlot. Finally, 

there are methods based on coalescence (Brown et al. 2001 ), minimizing cost of substitution and 

topology change following tree-like history. RecPars is probably the most known of them (Hein 

1993). It defines optimality in terms of parsimony and is based on a recombination versus 

nucleotide substitution cost ratio. 

A more accurate statistical framework, including Bayesian Hidden Markov Models and Markov 

Chain Monte Carlo (Husmeier and McGuire 2003) was proposed, but the considered tree inference 

at each sequence position implied super-exponential complexities. Th~ Recco method (Maydt and 

Lengauer 2006) is generally comparable with older methods in terms ofresults. It is able to improve 

detection in certain scenarios, while suffering from some limitations ( e.g. mutual masking of similar 

recombinant sequences ). It uses cost optimization and dynamic programming. Another method 

based on sliding window procedure, comparable to RecPars and inspired by DSS (McGuire and 
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Wright 2000) and PDM (probabilistic divergence measure) (Husmeier and Wright 2001), uses a 

clustering pruning scheme. It needs not an a priori recombination to substitution ratio, but an 

estimated maximum number of recombination events, in order to pre-establish the number of 

clusters (Husmeier et al. 2005). The latter authors used it to detect interspecific recombination. For 

all · fixed size sliding window methods, there is a compromise between the power to detect the 

recombination signal and the method's time complexity. 

A study of mitochondrial DNA shows widespread evidence of recombination. An aggregate score 

of the overall evidence has been proposed using a total of nine local and global scoring methods 

based on p-values. All local methods were present in RDP2 (Tsaousis et al. 2005). The algorithms 

such as GARD (Pond et al. 2006) and 3SEQ (Boni et al. 2007) have been used in studies on 

homologous recombination in the avian viruses (He et al. 2009) and (Boni et al. 2008), with mixed 

results. 

1.11 Methods for detecting Horizontal Gene Transfer 

There are two main approaches to detect horizontally transferred genes. First, sequence analysis of 

the host genome may suggest fragments with different GC content or codon atypical usage patterns 

(Lawrence and Ochman 1997). Finding sequences not likely to arise from a selective process means 

that they might have been acquired horizontally. An original method to detect such sequences has 

been proposed by (Tsirigos and Rigoutsos 2005). The main limitation of this method is the need of 

codon boundaries knowledge. The second approach is based on phylogeny reconciliation between 

the given species tree, or molecular tree based on a molecule that is assumed not to undergo HOT 

(e.g. 16S rRNA or 23S rRNA), and the given gene tree defined for the same set of organisms. 

Ribosomal genes can be also affected by HOT, but at a seemingly lower rate. Thus, a ribosome tree 

can serve as a better approximation to a species phylogeny in the absence. of more reliable data 

(Acinas et al. 2004). The main limitation of this approach is that its accuracy is strongly dependent 

on the reliability of the gene phylogeny (i.e. bootstrap support of the gene tree branches). 

Severa! proposed methods model tree reconciliation by minimizing the subtree prune and regraft 

(SPR) distance. Computing the SPR distance for rooted binary trees was shown to be NP-hard 

(Bordewich and Semple 2005) as well as for unrooted trees (Hickey et al. 2008). An exact 

algorithm, called LatTrans, computing all shortest SPR scenarios is available. However it is 

exponential on the number of transfers (Hallett and Lagergren 2001 ). 
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Several distance methods have been developed to detect HOT. They rely on heuristics running in 

polynomial time. One of the most known is RIATA-HGTbased on the divide-and-conquer approach 

(Nakhleh et al. 2005). The latest version of RIATA-HGT is considerably faster than LatTrans 

providing the almost equally accurate (Than and Nakhleh 2008). An even faster and more accurate 

algorithm is HGT-Detection (Boc et al. 2010). lt uses an improved distance measure called 

bipartition dissimilarity. lt is implemented as a package running on the T-Rex web site (Boc et al. 

2012). Our study described in chapter IV relies on the results provided by HGT-Detection. Another 

well-known HOT detection method is Efficient Evaluation of Edit Paths (EEEP) that uses tree 

comparisons and evolutionarily reasonable constraints (Beiko and Hamilton 2006). It achieves 

faster speeds than LatTrans but is less accurate. A probabilistic model has also been developed, but 

applied only to gene family size problems (Csüros and Mikl6s 2006). A combinatorial model 

incorporating HOT and duplication events has been proposed as well (Hallett et al. 2004 ). lt 

consists of the improvement of LatTrans algorithm (Hallett and Lagergren 2001 ). Hallett, 

Lagergren and Tofigh presented the proof of the NP-completeness of the problem, and gave 

tractable and polynomial solutions when cycles are disregarded and restrictive parameterization is 

performed. Unfortunately, their algorithms are not publicly available. 

An interesting development in handling time constraints was the introduction of dated species trees 

(Merkle and Middendorf 2005) in the context of host-parasite coevolution. lts implementation in 

CoRe-PA (Merkle et al. 2010) is based on a dynamic programming parameter-adaptive approach. 

This approach helps keep polynomial time complexities for all algorithms of this category. Other 

methods and implementations using the same idea are AnGST (David and Alm 2011 ), Mowgli 

(Doyon, Scomavacca, Gorbunov, Szollôsi,) and Jane (Conow et al. 2010, Libeskind-Hadas and 

Charleston 2009). A general comparison of HOT detection methods is available (Doyon, Ranwez, 

Daubin and Berry 2011 ). lt presents some important discrepancies between theoretical results of 

AnGST and CoRe-Pa, expected from methods descriptions and their implementations. New 

optimization algorithms that treat distance-dependent transfer costs are implemented in the 

RANGER-DTL package (Bansal et al. 2012). Comparisons with other algorithms are shown only for 

the time cost, but not for the quality of individual transfer scenarios. 

A precision improvement of parsimony methods has been achieved by including elements of 

detection based on population genetics and the coalescent model. This allows for modeling 

incomplete lineage sorting (ILS) phenomenon. A new software package, called Notung, has been 
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applied to phylogenetic datasets in which ILS, HGT and hybridization may be present (Stolzer et al. 

2012). Issues with reliability of inferred evolutionary events over multiple transfer scenarios have 

been outlined as well as the need of defining support values. As a majority-rule consensus of 50% 

support cannot be guaranteed, a median reconciliation has been proposed (Nguyen et al. 2013). 

When several HGTs occur between two given species, then these species are considered as being 

linked by a highway of gene sharing. A polynomial time algorithm, using parsimony principle and 

quartet trees has been designed (Bansal et al. 2011) and, later, a software package called HiDe 

(Highway Detection) has been developed (Bansal et al. 2013). HGT modeling has also been used 

recently to show that a set of extant species carry information about extinct lineages, and 

specifically about the size and dynamics of ancient biodiversity (Szollosi et al. 2013). Another 

interesting development is the application of partial gene transfer models to the problem of mosaic 

genes detection (Zhaxybayeva et al. 2004) and the development of efficient algorithms and 

implementations for inferring partial HGTs (Boc and Makarenkov 2011 ). The latter method brings 

statistical bootstrap confidence to the problem of detecting genetic regions first horizontally 

transferred and then affected by intragenic recombination (Boc and Makarenkov 2011, Makarenkov 

et al. 2006). 
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CHAPTERII 

METHODS FOR DETECTION OF FUNCTIONAL 

SEQUENCES AND RETICULATED 

EVOLUTIONARY EVENTS 

The algorithms we will present in this thesis are applied to detect fonctional sequences (i.e. those 

parts of the genome whose existence, composition or structure is related to a known molecular 

fonction). There are many fonctional levels. The gene is certainly the most important one; it has 

been studied for many years. Translation into proteins is considered as a proof of biological 

fonction (Brown 2006). Later, the role of non-coding RNA has been emphasized and regulatory 

regions became the focus of detection (Macdonald and Long 2005). Interactions between RNA, 

DNA and proteins have been included into the fonctional domain, and have become the scope of 

bioinformatics development. 

Although fonctional characterization remains an ultimate molecular biology task, the search for 

such candidates remains an important bioinformatics challenge (Huerta et al. 2000), (Wooley et al. 

2005). One way to proceed is to find regions that evolve at different speed or follow different 

sequence patterns than natural random evolution (Vitti et al. 2013). Many statistical models are in 

place for different aspects of evolution, and computational methods have been developed to 

evaluate statistical scores, or likelihood related to them (Wooley et al. 2005). Most studied 

approaches are related to sequence conservation as a mean to detect negative selection (Siepel et al. 

2005). Many tree-like evolution modèls have being ·studied in terms of positive selection (Yang 

2007) and lineage specific selection (Hubisz et al. 2011 ), as well as reticulate evolution models 

(Dagan et al. 2008), which include HGT and recombination. 



Functional sequence detection "in silico" has also a cost saving benefit, as genome-wide analyses in 

molecular "wet lab" are usually very costly. Computational methods usually offer a limited number 

of high probability candidates, which are further analyzed by molecular biologists. There are also 

following aspects of scope and filtering of the obtained results: 

• Identification of all functional regions; 

• Identification of regions responsible for disease or specific pathogenic characteristics, such 

as invasivity or carcinogenicity. 

2.1 N egative (purifying) selection 

Methods belonging to this category have the purpose of finding conserved genomic regions, 

evolving under negative selective pressure. This is the case of essential regions for cell functioning. 

Once lost, these fonctions lead to cellular death, or its incapacity to reproduce. BLAST (Altschul 

et al. 1990) is one of the first and still widely used tools to rapidly, locally align and identify 

sequence similarity between a relatively short query sequence and a large sequence database. The 

improvements of the reference implementation at NCBI include better alignment statistics (Schaffer 

et al. 2001 ), usability (Y e et al. 2006), indexing (Morgulis et al. 2008), specialized searches 

(Johnson et al. 2008) and programmability (Camacho et al. 2009). The alternative implementation 

at EBI has been also improved recently (Flicek et al. 2014). Cross-species comparisons require 

alignment of many sequences, and thus global alignment algorithms are needed. There is evidence 

that not only coding, but also regulatory sequences, can be also conserved (Pennacchio and Rubin 

2001). 

More advanced methods to detect "Multi-species Conserved Sequences" have been developed 

(Margulies et al. 2003). Two basic methods are available to validate functional sequences, 

"Conserved RNA Secondary Structures" obtained with QRNA program (Rivas and Eddy 2001) and 

"Transcription Factor-Binding Sites" obtained with TRANSFAC (Matys et al. 2003). 

A very popular algorithm to detect conservation patterns is PhastCons, which is based on a two

state phylogenetic hidden Markov model (phylo-HMM). PhastCons fits a phylo-HMM to the data 

by maximum likelihood, adding constraints designed to calibrate across species groups (Siepel et al. 

2005). Implementation and programmability techniques have recently been improved (Hubisz et al. 

2011 ). Another algorithm is Sequence CONservation Evaluation (SCONE). It uses the Bayes or 
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maximum-likelihood estimates of the evolutionary rate. It also defines a probability (p-value) of 

neutrality for each site in a MSA. lts applications have been limited to the mammalian genomes 

and, specifically, to the human genome (Asthana et al. 2007). 

2.2 Positive selection 

Methods belonging to this category detect regions under positive selection, which bring new 

functions to the cell, giving an advantage of survival or reproduction. The widely used criterion is to 

highlight abnormal ratios of dN/ds (i.e. between non-synonymous and synonymous codon sites) 

(Hubisz et al. 2011, Yang et al. 2000). Non-synonymous sites induce changes in proteins, and are 

thus proven functional. Synonymous sites are expected to be distributed along neutral selection. 

There are some measures of neutrality such as z-test - based on normal distribution, or the LR T 

(likelihood ratio test), or based on x2 distribution. 

These methods need gene annotations to operate in order to establish scope and reading frame. They 

also lack power when positive selection affects a reduced number of sites or when long branches are 

saturated with mutations. Also, the most important limitation is that they are not able to detect non

coding control regions. One of the most popular software packages for detecting positive selection 

is P AML (Yang 2007). It includes various models of codon substitution, evaluated using maximum 

likelihood. The site-wise log-likelihood score is yet another good predictor of genes under positive 

selection (Wang et al. 2013). 

Selectome is a database of positive selection, based on variation in selective pressure dN/dS ratio) 

over branches and over sites (Moretti et al. 2014 ). Limits of detection power of such branch-site 

tests of positive selection have been investigated, showing robustness but lack of power under 

synonymous substitution saturation and high GO content variation (Gharib and Robinson-Rechavi 

2013). Bayesian estimates of this ratio appear to have better statistical properties than the ML 

estimates. A new computationally efficient method has become available and may be useful for 

genome-scale comparisons of protein-coding gene sequences (Angelis et al. 2014). The 

implementation optimizations, such as detection of frame-shift mutations and premature stop

codons, have become of a significant interest for genome-wide applications (Zhang et al. 2013 ). 
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2.3 Site specific, lineage specific or signature selection methods 

Contrast between conserved and non-conserved regions is not always very sharp. DNA 

conservation among diverged species is able to successfully identify noncoding regulatory regions. 

At the same time, rapidly evolving regulatory regions will not generally be conserved across species 

and fall out of purely conservation-based methods detection resolution. Finer grain methods have 

been developed, able to discriminate inside lineages, or gene families. They generally use 

previously available models and methods to detect negative or positive selection, but combine them 

with phylogenetic analysis and statistical tests in an automated or semi-automated manner. 

Automated algorithms are usually time consuming, but are precise. The most commonly known 

algorithms are phyloP, which is based on phylogenetic p-values, and DLESS, which is based on a 

phylo-HMM model (Siepel et al. 2006). While DLESS determines itself the clade, it is able to find 

only "gain" or "lost" events. On the contrary, phyloP is able to cope with "accelerated" events but 

needs the phylogenetic subtree of interest be provided. It implements four statistical phylogenetic 

tests: a likelihood ratio test, a score test, a test based on exact distributions of numbers of 

substitutions, and the genomic evolutionary rate profiling (GERP) test (Pollard et al. 2010). The 

method DivE addresses the latter limitations and allows for the detection of "accelerated" events in 

non-coding regions (Pertea et al. 2011 ). 

A genetic algorithm has also been developed, but it has a high computational cost and is largely tied 

to prior model assumptions (Pond and Frost 2005). Positive selection detection that allows for 

lineage-specific rate variation has been also integrated into the maximum likelihood framework 

( Guindon et al. 2004 ). 

A method involving "signatures of nonneutral evolution", i.e. an examination of the pattern of 

polymorphism both within and between populations as well as divergence with sibling species, 

detects several nonneutrally evolving regions not identified by conservation (Macdonald and Long 

2005). A pattern referred to "selective signature" ofa gene is defined by its evolutionary speed and 

is associated with gene fonction and ecology inside specific phylogenetic groups. Such methods, 

able to study signatures by combining previously described methods, have been recently designed 

(Shapiro and Alm 2008). Signature methods can recover site-specific selective pressure using 

machine leaming classifiers, including Naïve Bayes, k-nearest neighbors and support vector 
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machine (SVM). They are usually able to outperform common measures of sequence conservation 

(Sadri et al. 2011 ). 

2.4 Scope of this thesis 

Detection of functional sequences is a major goal for biology as a whole and bioinfomatics in 

particular. It can be achieved on multiple levels, from proteins to genes and genomes. Historically, 

the uncovering of functional patterns has switched from direct observation of highly conserved 

proteins to DNA and non-coding RNAs, for an ever more abstract and systemic model based 

discovery. The advent of genomics era has brought an increasing size for studied datasets, rapidly 

extending their scope. This brings the opportunities for developing methods that explore the newly 

available genomic regions and discover global patterns of evolution, at high speed and intensive 

computation to maintain the high level of detail. 

Genomic sequences are under selection of various evolutionary forces. Conservation is one major 

and most studied one, accounting for essential molecular structures preservation. We found that 

others, like positive selection and lineage specific selection, are particularly active on the host

pathogen interaction. The main focus of this thesis is the development of methods able to detect 

such regions, evolving at different speed or following different patterns than nàtural random 

evolution. Due to the host-pathogen relationship, these regions have a high probability of being 

associated for disease. The main purpose of this thesis is to provide algorithms, methods and 

procedures for variability clustering and studies, as a general framework able to take into account, 

in addition to the DNA sequence, set of global group classifications, like partial and complete 

horizontal gene transfers, variability, epidemiologic categories, phylogenetic families or habitats. 

These considerations are explore in three different articles representing chapters III, IV and V. 

Chapter III addresses current limitations of the existing algorithms to effectively use pathogenicity 

information, on the pathogen side of the host-pathogen relationship. Genome wide association 

studies have addressed this problem, but only on the host side, where algorithms do not address 

positive selection or lineage specific selection specifically. We also account for both monophyletic 

and polyphyletic studies. We developed an algorithm able to work with, or without previous 

external knowledge such as species carcinogenicity or invasivity. 

Chapter IV provides a framework to study horizontal gene transfer patterns of evolution, of 

different clusters of habitats, occupied by multiple phylogenetic families. We tried to shed more 
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light on local and global rate of this phenom~non, adding partial horizontal gene transfer to this 

study, as previous studies were limited to complete gene transfers on the genomic level. The current 

state of the art attributes low values for this phenomenon when the authors favor advanced 

phylogenetic analysis, and follow tree like evolution. On the contrary, when they use pairwise 

distance measures, and reticulate evolution, they find much higher levels of interaction. Usually the 

first group of researchers use a core set of genes, that exhibit stable behaviour across evolutionary 

time, called "core genes", in order to preserve tree likelihood. The growing sequencing effort has 

shrinked this "core" set of genes. W e here reconcile both views, stating that horizontal gene transfer 

is a continuous_phenomenon, which rarely affects alleles, but accumulates at higher clustering levels 

affecting "core" genes many times during their history. Partial gene transfer is more frequent than 

complete transfer, showing a graduai integration of complete transfer, by intraspecific 

recombination. W e also tried to uncover the gradient of values that is linked to different confidence 

intervals. 

In Chapter V we used sequence variability clustering for horizontal gene transfer or recombination 

detection. By introducing new asymmetric operators and variability functions, we developed a fast 

algorithm, having same quadratic asymptotic complexity as the Hamming distance measure. It has a 

higher constant cost, used to maintain p-values. It is meant to rapidly detect candidates on the 

genomic level, used as an alternative to conservation measures, leaving the precise, statistically 

proven methods for subsequent validation. 
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CHAPTERIII 

DETECTING GENOMIC REGIONS ASSOCIATED 

WITH A DISEASE USING AGGREGATION 

FONCTIONS AND ADJUSTED RAND INDEX 

Published in: 

BMC Bioinformatics 2011, 12:S9 doi:10.1186/1471-2105-12-S9-S9 

3.1 Abstract 

3.1.1 Background 

The identification of functional regions contained in a given multiple sequence alignment 

constitutes one of the major challenges of comparative genomics. Severa! studies have focused on 

the identification of conserved regions and motifs. However, most of existing methods ignore the 

relationship between the functional genomic regions and the extemal evidence associated with the · 

considered group of species ( e.g., carcinogenicity of Human Papilloma Virus). In the past, we have 

proposed a method that takes into account the prior knowledge on extemal evidence ( e.g., 

carcinogenicity or invasivity of the considered organisms) and identifies genomic regions related to 

a specific disease. 



3.1.2 Results and conclusion 

We present a new algorithm for detecting genomic regions that may be associated with a disease. 

Two new aggregation fonctions and a bipartition optimization procedure are described. We validate 

and weigh our results using the Adjusted Rand Index (ARI), and thus assess to what extent the 

selected regions are related to carcinogenicity, invasivity, or any other species classification, given 

as input. The predictive power of different hit region detection fonctions was assessed on synthetic 

and real data. Our simulation results suggest that there is no a single fonction that provides the best 

results in ail practical situations (e.g., monophyletic or polyphyletic evolution, and positive or 

negative selection), and that at least three different fonctions might be usefol. The proposed hit 

region identification fonctions that do not benefit from the prior knowledge (i.e., carcinogenicity or 

invasivity of the involved organisms) can provide equivalent results than the existing functions that 

take advantage of such a prior knowledge. Using the new algorithm, we examined the Neisseria 

meningitidis FrpB gene product for invasivity and immunologie activity, and human papilloma 

virus (HPV) E6 oncoprotein for carcinogenicity, and confirmed some well-known molecular 

features, including surface exposed loops for N. meningitidis and PDZ domain for HPV. 

3.2 Background 

Many bacteria and viruses adapt to changing environmental conditions through several evolutionary 

mechanisms such as homologous recombination (Posada and Crandall 2001), nucleotide 

substitutions, insertions-deletions (Kimura 1985), horizontal gene transfer (Boc et al. 2010), 

etc. These mechanisms lead to the formation of different polymorphie strands of the same group of 

organisms, in which the variation on the DNA composition is spread randomly throughout the 

genomes. The survival of these strands depends on their ability to overcome the environmental 

changes (Moran 1962). One of the goals of comparative genomics consists of finding the variation 

among aligned genomic sequences in order to identify fonctional regions. Several comparative 

genomic tools allow for the identification of genomic regions in an alignment that have 

evolutionary patterns different from the neutral evolution. For instance, PhastCons (Siepel et al. 

2005) predicts, from a given alignment and the related phylogenetic tree, the genomic regions under 

negative selection. PAML (Yang 1997, Yang 2007, Yang et al. 2000) allows for the comparison of 

synonymous versus non-synonymous mutations in an alignment in order to predict regions under 

selective pressure. RDP3 (Martin et al. 2010) and TOPAL (Milne et al. 2004) are software packages 

including several methods for det_ecting recombination. Most of these methods and software do not 
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take into consideration external epidemiological evidence associated with many bacterial and virus 

strands. Such evidence can allow for the clustering of organisms based not only on the similarity of 

their genomic sequences, but also, on their association to different diseases. Hence, intra-specific 

and inter-specific variation among carcinogenic and non-carcinogenic human papilloma viruses can 

lead to the identification of regions related to carcinogenicity. In our previous works, we introduced 

a hit region identification fonction using prior knowledge information (Badescu et al. 2008) and 

described the related validation framework based on Monte-Carlo simulations (Diallo et al. 2009). 

Then, we extended the latter study by presenting and testing four variants of the hit region 

identification fonction, still using the available prior knowledge (Badescu et al. 2010). In this 

chapter, we present a new algorithm for the identification of specific genomic regions associated 

with an external disease. The introduced algorithm uses a bipartition optimization procedure to 

maximize a specific clustering fonction Q, based on inter- and intragroup variability, for each 

window position, over the given sequence alignment. It can be applied with or without prior 

knowledge information characterizing species in hand. Hit regions (i.e., putative regions related to a 

disease) can be validated using ARI (Hubert and Arabie 1985) - a corrected-for-chance version of 

the Rand index (Rand 1971) - and organismal bipartitions are constructed using the· available 

epidemiological data. The new algorithm has been applied to two independent datasets: The human 

papilloma viruses and the Neisseria meningitidis data. The obtained results suggest that genomic 

regions with important biological features in both datasets can be associated with either 

carcinogenicity or invasivity. 

3.3 Dataset description 

3. 3.1 Neisse ria meningitidis dataset 

Neisseria meningitidis is a Gram negative bacterium responsible for meningitis and septicemia. It 

has a relatively small genome size of 2.2 Mbp. In March 2011, the PubMLST database listed a total 

of 8,793 genetically distinct members of Neisseria organisms (Jolley et al. 2004). All these facts 

make N. meningitidis well suited for testing comparative genomics methods (Maiden 2008). 

Pro teins expressed un der iron limitation ( e.g. FrpB(F etA)) are considered as potential vaccine 

components (Pettersson et al. 1997). Bacteria grown under iron starvation express s~veral proteins, 

the most abundant of them being FrpB, a 70kDa outer membrane protein (OMP). It is expressed in 

large amounts in all strains, and antibodies against this protein appear to be bactericidal. A putative 

FrpB topology was first proposed with a 26-stranded P-barrel (Pettersson et al. 1995), and later 
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reassessed to a plug domain and a 22-stranded /3-barrel with 11 surface-exposed loops (Kortekaas 

et al. 2007). These loops are accessible to the host immune system, which produces natural 

antibodies against these regions. In general, bacteria express genetic sequence variability in order to 

evade this defense mechanism. 

The data we considered were classified on the invasivity basis using a list of identified 

hyperinvasive meningococci (Urwin et al. 2004). We then built a list of unique FetA sequence tags 

carried by the alleles of these organisms. Using local BLAST operations (Altschul et al. 1990), we 

searched for the presence of these tags in the distinct sequences belonging to the selected multiple 

sequence alignment (MSA), first examined in (Badescu et al. 2010). We classified as belonging to 

the invasive category (subset X) any allele that contained at least one of the selected invasive tags. 

All the other alleles were put in the non-invasive category (subset Y). We annotated the MSA with 

the information regarding surface-exposed loops, beta-sheets and periplasmic loops (Kortekaas 

et al. 2007). Translating indexes from the amino-acid sequences to DNA sequences were also 

computed. Each single value of the hit region identification fonction Q (the Q-type fonctions will be 

used to identify genetic regions that may be relaied to a disease) corresponds to an interval of a 

certain length (i.e., 9 or 20 nucleotides in this study) and depends on the starting position of the 

sliding window used in our algorithm. 

3.3.2 Human papi/lama virus dataset 

Human papilloma viruses (HPV) have a causal role in cervical cancer with almost half a million 

new cases occurring each year (Angulo and Carvajal-Rodrguez 2007, Bosch et al. 1995, Munoz 

2000). About a hundred of HPV types have been identified, and the whole genomes of more than 

eighty ofthem have been sequenced (see the latest Universal Virus Database report by International 

Committee on Taxonomy ofViruses (ICTV)). A typical HPV genome is a double-stranded, circular 

DNA genome of size close to 8 Kbp, with a small set of genes (L 1, L2, E 1, E2, E4, E5, E6 and E7). 

In this study, we focused on the gene E6, which is predominantly linked to cancer due to the 

binding of its product to the p53 tumor suppressor protein. It contains a PDZ domain-binding motif 

(-X-T-X-V) at its carboxy terminus, which is essential for targeting the PDZ proteins for 

proteasomal degradation. Such proteins include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3 and 

MUPP 1 (Lee and Laimins 2004 ). The interaction between E6 and hDlg, or the other PDZ domain

containing proteins, may be an underlying mechanism in the development of HPV-associated 

cancers (Kiyono et al. 1997). The gene E6 was also shown to contain two stable folded domains, 
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E6N and E6C (Lipari et al. 2001, Nominé et al. 2003). Models of these domains have been built in 

the absence of complete crystallographic data (Nominé et al. 2006). 

To define carcinogenic types, we used the epidemiological data from a large international survey on 

HPV in cervical cancer and from a multicenter case-control study conducted on 3,607 women with 

histologically confirmed cervical cancer (Munoz et al. 2004, Mufioz et al. 2003). More than 89% of 

them had squamous cell carcinoma (i.e., Squam cancer) and about 5% had adenosquamous 

carcinoma (i.e., Adeno cancer). More than a half of the infection cases were due to the types 16 and 

18 of HPV, which are later referred to as High-Risk HPV (Chan et al. 1995). In this study, we 

examined the content of the gene E6 for 83 different HPV types. 

We fixed the window size to 20 nucleotides for HPV datasets in order to be consistent with our 

previous works (Badescu et al. 2008, Diallo et al. 2009), where we conducted simulations with 

windows of different sizes and used the size of 20 bp to present the results. In the same way, we 

considered the window size of 9 nucleotides for the N. meningitidis dataset to be consistent with 

another our study (Badescu et al. 2010). 
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3.4 Methods 

3. 4.1 Description of the algorithm 

The new algorithm takes as input a MSA established for a set of organisms. Assume that this set of 

organisms is partitioned into two different subsets according to a Boolean criterion ( e.g., invasivity 

vs. non-invasivity or carcinogenicity vs. non-carcinogenicity). The corresponding subsets are 

denoted X (invasive/carcinogenic) and Y (non-invasive/non-carcinogenic), respectively. The region 

of interest is scanned using a non-overlapping sliding window, as shown in Figure 3 .1, of a fixed 

width (20 sites for HPV and 9 sites for N. meningitidis). For each window position, we carry out a 

bipartition optimization algorithm in order to search for maximum values of the hit region 

identification fonction. A specific version of the Q-type fonction (see below) can be taken as the 

algorithm · parameter. W e denote by Q' a specific version of the Q-type function computed under 

condition that the subsets bipartition is unknown (i.e., prior knowledge ). The complete algorithmic 

scheme is presented in Algorithm A.1 in Additional file 1 (see Appendix A). 

10 20 ---► 30 

-- - GT ATA TGACTTTGCTTTTl([.:.Çi.·.,P.• .. ··.•··•.\ij'..~.··•··•.'.··••.{P.i[IT ATG 
-- - GTATTTG.AATTTGCATTTAAAGî«l:\TT ATT 

HP\f:...75 -- - CTCCT AGAGTTTGATT AT :.· ... ·;,,,.t..••;:;..~;,.i· .••.. :-... ·:,..,", CCA 
HPV-76--·-CTCTTAGAGTTTGATTAT ="'~··x:: .. •r~~vcx... CCA 
HPV-49 -- -TTGTTAGAATTTGACTAT•L••"-'• L>>·I· T AA 

YIHP\l-36 -- - GCTT GTGAGTTTGAGG TTIAJ.l'(AJO..Al.i T AG 
HP\f;,,.5 -- -GCTTGTGAATTCGACT AC,...,,f'".,.1 .... .,.$ T AG 
HPV-47 -- -GTTTGTGAATTTGATTAT TAC 
HPV-12 - - - G TG TG T GAT TT T GA CAr"'lr'\l!::l:!;~~~::::::.1T AAC 

Figure 3.1. Sliding window procedure 
Sliding window of a fixed width was used to scan the HPV gene E6. The sequences in black belong 
to the set X ( carcinogenic HPV; in this example HPV 16 and 18), all the other sequences belong to 

the set Y (non-carcinogenic HPV). The HPV type is indicated in the left column. 
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3.4.2 Clustering using the Q-type functions 

To perform the clustering of our data into two groups A and B, we first calculate the intragroup 

variability of the sequences from the group A, denoted by V(A), the group B, denoted by V(B), and, 

finally, the intergroup variability D(A, B), as described in Equations 3.1, 3.2 and 3.3. These 

measures are defined as the means of the squared Hamming distances, dist, among the sequence 

fragments (bounded by the sliding window position) of the taxa from the group A only, from the 

group B only, and between the sequence fragments from the distinct groups A and B: 

Ldistl(a1,a2 ) 

V(A) = {a1,a2EAla1*a2} 
N(A)x(N(A)-1)/2' 

Ldistl(b1,b2 ) 

V(B)- {1Ji,b2E:BI/Ji*b2} 
- N(B)x(N(B)-1)/2' 

Ldistl(a,b) 
{aEA,bE:8} 

D(A,B)= N(A)xN(B) 

(3.1) 

(3.2) 

(3.3) 

In (Badescu et al. 2008, Badescu et al. 2010, Diallo et al. 2009) four different hit region 

identification fonctions, Q1, Q2, Q3 and Q4, which could be summarized by the following equation, 

were defined: 

Q = D(A,B)-kx V(A)-lx V(B), 

where the [k, l] combinations are as follows: 

1 1 
Q1 - (1,0),Q2 - (0,1),Q3 - (-,-),andQ4 - (0,0). 

2 2 

(3.4) 

The fonction Q4 (Equation 3.5), along with new versions of the hit region identification fonction, 

denoted by Qs (Equation 3.6) and Q6 (Equation 3.7), will be tested and discussed in this study: 

Q4 =D(A,B), (3.5) 
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Q5 = IV(A)-V(B)I, (3.6) 

Q6 = IV(A)/V(B)I . (3.7) 

Measuring the agreement between the reference and the optimal calculated bipartitions using the 

Adjusted Rand Index (ARI) 

The Adjusted Rand Index (Hubert and Arabie 1985) has become a criterion of choice for measuring 

agreement between two partitions in clustering analysis (Milligan and Cooper 1986). Having a 

calculated bipartition U'' = A I B and a reference bipartition U' = X I Y , for all (;) pairs of 

elements, one can compute how many of them fall into the sâme group and how many in different 

groups. One can then calculate ARI (Santos and Embrechts 2009) according to Equation 3.8. ARI is 

the corrected-for-chance version of the Rand index (Rand 1971 ). It ranges between -1 and 1, and 

expresses the level of concordance between two bipartitions (Hubert and Arabie 1985). The values 

of ARI close to 1 indicate an almost perfect concordance between the two compared bipartitions, 

wher~as the values close to -1 indicate a complete discordance between them: 

ARI faxa+ d)-[(a + b)(a + c) + (c + d)(b + d)] 

(;)
2
-[(a+b)(a+c)+(c+d)(b+d)] ' 

(3.8) 

where (;) = a+ b + c + d , a is the number of pairs that are in the same group in the bipartitions U'' 

and U', b is the number of pairs that are in the same group in the bipartition U" and in different 

groups in the bipartition U', c is the number of pairs that are in different groups in the bipartition 

U" and in the same group in U' , and d is the number of pairs that are in different groups in the 

bipartitions U" and U'. 

Validation of the obtained hit regions using the Adjusted Rand Index 

We define a new fonction Q" reflecting the quality of the reference bipartition, as follows: 

Q"=ARlxQ'. (3.9) 
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The difference between Q' and Q'' indicates the level of concordance of the reference bipartition 

U' with the selected fonction Q. Throughout this study, Q will denote the hit identification 

fonction using prior knowledge information, Q' - not using any prior knowledge information and 

Q'' - using prior knowledge information and based on ARI. 

3.4.3 Bipartition optimization 

For each window position, we generated a fixed number of random initial bipartitions. For each 

such a bipartition, we moved elements from one subset to the other and back again in cycles, each 

time accepting the move that maximized the objective fonction Q , until no forther improvement 

was possible. Once a local maximum was reached, we compared it to the best current value 

obtained for all starting random bipartitions tested so far. ARI was used to compare the level of 

concordance of the obtained bipartition (i.e., the one that was maximizing the given fonction Q ) 

with the reference bipartition ( carcinogenic vs. non-carcinogenic taxa for HPV and invasive vs. 

non-invasive taxa for N. meningitidis) given as a parameter to the algorithm. 

3.4.4 Time complexity 

The time complexity of the new algorithm carried out with an overlapping sliding window of a 

fixed width, and advancing one alignment site by step, is 0(/ x n2 x w x r), where / is the length of 

the MSA, n the number of considered species, r the number of random initial partition generations 

and w the window width. In order to ensure this complexity, we have to limit the optimization cycle 

to a constant number of iterations. 

3.4.5 Simulation study 

In order to validate the hit region identification fonctions Q4 ', Q5 ' and Q6 ' , we conducted a Monte

Carlo simulation study involving two major evolutionary mechanisms: Positive selection. (PS) and 

Lineage specific selection (LSS). Two cases of group selection were also tested: The cases of the 

monophyletic and polyphyletic clustering. An approach involving the computation of p-values was 

implemented to asses the predictive ability of each of the three fonctions for each combination of 

evolutionary parameters. The follQwing procedure was carried out. A phylogenetic tree T with 16 

leaves was first generated using the algorithm described by (Kuhner and Felsenstein 1994 ). The 

edge lengths of T were generated using an exponential distribution. Following the approach of 

(Guindon and Gascuel 2002), we added some noise to the tree edges in order to provide a deviation 
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from the molecular clock hypothesis. The random trees yielded by this procedure had depth of 

O(log(I6)). The tree was then rooted by midpoint. For the monophyletic test, the left and right sub

trees, denoted by T1 and T2, were determined, depending on the position of the root. For the 

polyphyletic test, two sets of leaves were randomly chosen and the corresponding sub-trees, denoted 

by T3 and T4, were extracted. 

In the PS simulations, we used the original lengths of the edges of the subtrees T1 and T2 (i.e., 

monophyletic case), and T3 and T4 (i.e., polyphyletic case), while all edge lengths of T were 

gradually multiplied by the scaling factor a, varying from 0.05 to 1 (with the step of 0.05). 

In the LSS simulations, all edge lengths of T were multiplied by 0.5 (thus simulating neutral 

evolution), while all edge lengths of T1 and T3 were multiplied by the scaling factor a 1 = 0.5 + 

0.025x, and all edge lengths of T2 and T4 by a2 = 0.5 - 0.025x, where x was varying from 1 to 19. 

Second, we executed the SeqGen program (Rambaut and Grass 1997) to generate random MSAs of 

nucleotide sequences along the edges of the phylogenetic trees constructed at the first step. The 

SeqGen program was used with the Jukes-Cantor model of sequence evolution. DNA sequences 

with 440 bp were generated for each tree T. In addition, MSAs of the length 20 bp were generated 

for each of the trees Ti, T2, T3 and T4 • Two different variants of MSA were produced to simulate 

monophyletic and polyphyletic evolution. In the sequence alignment generated for the original tree 

T, we inserted those generated for the trees T1 and T2 in the monophyletic case, and those generated 

for the trees T3 and T4 in the polyphyletic case. The location of the inserted sequence blocks was 

known. 

Thus, depending on the scaling factor parameters, for the PS case we simulated a variable 

homogeneous region inside a conserved context, and for the LSS case a more divergent region 

inside a neutral context. Third, we scanned the resulting sequence alignment using a sliding window 

of size 20 bp with the step of 1. We calculated the value of the hit region identification fonctions 

Q4 ' , Q5 ' and Q6 ' for each fixed position of the window and assessed the proportion of their values 

that were higher than the reference value corresponding to the inserted region. 

These steps were repeated over 100 different replicates and the distributions of the best (in each 

case) fonction over each combination of testing parameters were represented using quartiles. 
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3.5 Results and discussion 

We proposed a new algorithm for finding genomic regions that may be related to a disease along 

with two new hit region identification fonctions Q5 and Q6• Both new fonctions along with the best 

existing fonction Q4 were tested in simulations. The fonctions yielding the best results for each case 

were illustrated in Figure 3.2: Monophyletic evolution (case a: PS, case b: LSS) and Figure 3.3: 

Polyphyletic evolution ( case a: PS, case b: LSS). The remaining results for the Q4 ', Q5 ' and Q6 ' 

fonctions are presented in Additional file 1 (see Appendix A). Figures 3.2 and 3.3 clearly show that 

the hit zone identification in the monophyletic case is much easier than in polyphyletic case. We can 

suggest that in order to be recognized, the hit region has to have a different evolutfonary speed than 

the context in which it resides. The polyphyletic lineage specific case represents the hardest 

evolutionary situation. Also, one can notice that different Q-type functions, Q4 ', Q5 ! or Q6 ', should 

be used in different practical situations. 
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Figure 3.2. P-values obtained for monophyletic evolution hit region detection 
(a) Positive selection - Variable hit region inside conserved context. 

Quartile distribution of p-values obtained for the fonction Q5 ' • Abscissa represents scaling factor of 

the conserved context in which the variable hit region resides. Values close to O represent 
conservation (maximum discrimination), while values close to 1 represent variability (identical to 
context). Variable hit region is always maintained at a scaling factor of 1. Ordinate represents p

values in log-scale. Horizontal dashed line represents the significance threshold of 0.05. 

(b) Lineage specific selection - Heterogeneous hit region inside neutral context. 

Quartile distribution of p-values obtained for the fonction Q5 '. Abscissa represents the difference in 

scaling factors among the two lineages present in the hit region. Values close to O represent 
homogeneous evolutionary speed (similar to the neutral context in which it resides), while values 
close to 1 represent divergence among these lineages. Context is always maintained at a scaling 

factor of 0.5, simulating neutral evolution. Horizontal dashed line represents the significance 
threshold of0.05. In the case oflineage specific selection, the value of the Q'-type fonctions 

corresponding to 1 on the abscissa scale cannot be computed because it involves a sub-tree with 0 
edge lengths. 
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Figure 3.3. P-values obtained for polyphyletic evolution bit region detèction 
(a) Positive selection - Variable hit region inside conserved context. 

Quartile distribution of p-values obtained for the fonction Q4 ' • Variable hit region is always 

maintained at a scaling factor of 1. Abscissa represents scaling factor of the conserved context in 
which the variable hit region resides. Values close to O represent conservation (maximum 

discrimination), while values close to 1 represent variability (identical to context). Ordinate 
represents p-values in log-scale. Horizontal dashed line represents the significance threshold of 

0.05. 

(b) Lineage specific selection - Heterogeneous hit region inside neutral context. Quartile distribution 
of p-values obtained for the function Q6 '. Context is always maintained at a scaling factor of 0.5, 

simulating neutral evolution. Abscissa represents difference in scaling factors among the two 
lineages present in the hit region. Values close to O represent homogeneous evolutionary speed 
(similar to the neutral context in which it resides), while values close to 1 represent divergence 

among these lineages, and from the neutral context. Horizontal dashed line represents significance 
threshold of0.05. 
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The procedure for the identificatiori of hit regions was carried out to detect the variability zones in 

the FrpB gene of N. meningitidis as well as the regions potentially responsible for cancer in the gene 

E6 ofHPV. ln bath cases, we also carried out the ARI validation. 

3.5.1 Neisseria meningitidis analysis 

W e scanned the MSA of the FrpB gene using the new algorithm with a sliding window of size 9 

nucleotides. W e compared the obtained results to the putative topology model of the FrpB protein 

described in (Kortekaas et al. 2007) (see Figure 3.4a). The results are presented in Figure 3.4b and 

c. Remarkably, all surface exposed loops confirmed by enzyme-linked immunosorbent assay (i.e., 

L2, L3, L4, L5 and L 10) (Kortekaas et al. 2007) were properly detected using the fonctions Q4 ' and 

Q5' • It is worth noting that our algorithm was able to find the loop L4, which is hidden between the 

loops L5 and L3. The model loops L 1, L8 and L9 were found at their predicted positions. The loops 

L2 and L 11 were found at different positions, while the loops L6 and L 7 were missed regardless of 

the availability of the prior knowledge information (see Figure 3.4b and c). As protein models 

gradually improve and more crystallographic data become available, it will be interesting to 

reassess these results in the future. Bath presented Q' -type functions (Equations 3 .5-3 .6) overlap 

along the alignment, with the exception of the largest loop (L5) and the second largest loop (L3 ), 

where the amino acid variability is largely confined. The fonction Q4 ' correlates best with surface 

exposed loops structure. This suggests that the divergences in shape between the fonctions Q4 ' and 

Qs' might be used to detect immunologie activity. It is known that bactericidal antibodies are 

directed against variable regions situated in the largest loops of proteins (Van Der Ley et al. 1991 ). 

Note that the organisms compared here were strains of the same bacterium; their genetic variant 

being alleles and evolutionary distances between them being very small. On such a small timescale, 

underlining evolutionary processes are usually not very diverse. lt would be also interesting to 

verify whether similar conclusions could be made for other outer membrane proteins. 
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Figure 3.4. N. meningitidis FrpB protein variability zone detection 
(a) Topology rnodel of the FrpB protein ofN. rneningitidis strain H44/76. Topology of the P-barrel. 

Surface-exposed loops (L) and P-strands are numbered. Residues are framed according to their 
predicted secondary structure: Amino acid residues in P-strands are depicted by diamonds. Arnino 
acid residues present in exposed loops and periplasmic tums are depicted by circles - reproduced 

from (Kortekaas et al. 2007). 

(b )-( c) Variability zone detection by the hit region identification Q' -type fonctions, achieved without 
prior knowledge of invasive taxa (case b), and Q"-type functions, using this prior knowledge along 

with the ARI coefficient ( case c ). Functions Q4 
1 and Q4 

11 are depicted by a dashed line and 

fonctions Q5 ' and Q5 '' are depicted by a continuous line. A non-overlapping sliding window of size 

9 nucleotides was used during the scan of the gene FrpB MSA. The abscissa axis represents the 
window position along the nucleotide MSA. 11 gray zones correspond to extracellular loops. 

Annotations start at the solid vertical line (near the 400 abscissa mark). 
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3.5.2 Human Papilloma Virus analysis 

We performed a scan of the MSA of the gene E6 for 83 HPV organisms (using non-overlapping 

windows of size 20 nucleotides). Each time the species bipartition was known, High-Risk HPV 

against all other HPV types in Figure 3.Sa, Squam-Risk HPV against all other HPV types in Figure 

3.6a, and Adeno-Risk HPV against all other HPV types in Figure 3.6b, it was incorporated in the 

computational procedure as shown in Algorithm A. l. The comparative results for the High Risk 

HPV subset provided by the new algorithm without prior knowledge of carcinogenic taxa and those 

yielded by the former one (Badescu et al. 2008), are presented in Figure 3.5 using annotations for 

HPV-16. Figure 3 .Sa illustrates the results obtained using the functions Q4 and Q5 using a prior 

knowledge on the species carcinogenicity. 

According to the new cilgorithm, see Figure 3 .Sb, the PDZ domain is ranked first in the annotated 

part of the alignment. A detailed view of the terminal aligned region, within the index interval 680-

7 40, shows a small left shift in the peak positions of the function Q4 ' (3 .Sb), but inside the same C-

terminal tail domain. On the left side, flanking the PDZ domain, one can find the E6C domain 

which is related to the DNA binding (Nominé et al. 2006). One can notice that the function peaks 

(see Figure 3.Sa and 3.Sb) of Q/ are almost in the same positions than those found using Q4, 

exception being a region at the beginning of the alignment (i.e., at the beginning of the E6N 

domain). As for N. meningitidis loops, it would be interesting to study in greater details the regions 

recognized by both tested functions, Q4 ' and Q5 ' • 

W e can conclude, by comparing Figures 3 .Sa and 3 .Sb, that the new fonctions, Q4 ' and Q5', provide 

almost identical hit region recovery than the existing fonctions Q4 and Q5, which take advantage of 

a prior knowledge on the species carcinogenicity. 

58 



M 

0,6 

0.4 

,, 1,8 
Q~(High) - - - t l 
Q~{High) -· .. -·,= ~ P~Z 
Oi(High) ••••• ~ J: ! j 

♦: :- y 

~H<lnn atm ECN èoiMin r~Jte, 1:fiC éoir.uin : :,C·l;,~ t~4 

1.6 

1,4 

.....,_~ ···...--::;'--~ 
: : ~ • -: : ·,; "'I 1.2 

CJO..C~ CSJ-Cœ cpc-!ctl, ~j - :: .... : ·:: ;:a~ 
,~ :! : :f;}~ ::r, :: : ~ ::::~ 

: , ~ , ~ : ! -~ -··· : :, ':.N 
:: tb~, I l4\: t ;t, :\ / \ i '· 1 

• tt; 

·• ·1 

0,8 

(),0 

!' i\l··~'\♦.: ! ..... , \:-\:~ \., .. !f~' l::'..tt 
02-3 . ., '''i ,, ... ,.._ .. , t ... _ .. _;., /•';! 10,4 
, _/ . .,~,;' J;/ L.-.,_,__ ;j·x., )·: f\ /\ f-.:\ .··,, j !-) 

./ _ ,.\_ J \,---.____ ! \ "'--' \ •• v \ Jr \./ -:,,,.,,, ~i:? 02 

o 1 =·-f--,;;:<:'""::··:-:~ .. J l \I \/ ··/ "~" , ;:·•} ..... -;;.-, 

o.a 

0,6 

0.4 

0.2 

0 100 200 3()0 400 500 600 700 

(a) 

..... r~t~: __ : .. =.--,~ _ .... \ 0 ~ _ _ _ . , r 4000 

! 1 \ ' 05 .,, ... --... FRf 
::: ,, .... \ \ o~ ..... ,._. ,-- r! 
• :, ' , , ~ r 
f ~ N1t~:"1· f.GNOO!!',A>A ""~ ESCdomain ;~f.{:::;fJ . . ~ \ }. ' \ ( 
: ~ \ , c:io-c~ C$3,<:tA h ci:»-9131, r: 
f :: \ ~, .. :::,, / \ ,', -.f \;:.t, 
, • \ \ ,-, / t, ,. '- \ I \ l '. t - -: I: \,.,v•e•·""~----'\_.,,_'\ / "-~ I \\\ If \. } / f /' f 
;: .. ,

1 .,.'~--ef' \~✓ \\,,) 1./lf 
: : ' I , V X \ ; ... ; , ~ i,i 
! : ,, .. . . . . . . . . .. . . . . . . . . 
• • > 

lSOO 

3000 

·• 2500 

~000 

1500 

·• 1000 

500 . . :::.~ 
Ol : ;,,, ;• 0 

o 100 200 3CO 400 soo soo 10-0 eao 

(b) 

Figure 3.5 Hit region identification functions for High-Risk HPV 
(a) Functions obtained using prior knowledge on the taxa carcinogenicity. 

The hit region identification fonctions Q4 , depicted by a dashed line, Q5, depicted by a continuous 
line, and Q6, depicted by a dotted line, for the High-Risk HPV (HPV-16 and 18) (Badescu et al. 

2008),(Diallo et al. 2009), during the scan of the gene E6. 

(b) Functions computed without pr:ior knowledge on the taxa carcinogenicity. The hit region 
identification functions Q4 ' , depicted by a dashed line, Q5', depicted by a continuous line, and Q6 ', 

depicted by a dotted line, during the scan of the gene E6. The abscissa axis represents the window 
position along the nucleotide multiple sequence alignment. The PDZ-domain is highlighted in gray. 

Annotations for the N and C-terminal arms, E6N and E6C domains are represented for HPV16 
coordinates, from (Nominé et al., 2006) (Nominé et al. 2006). Zn2+-ligating Cys residues 

annotations reproduced from (Lipari et al. 2001 ). 
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Figure 3.6. Q"-type functions, depending on ARI 
(a) Squam HPV dataset. (b) Adeno HPV dataset. 

Variation of the fonction Q4 '' , depicted by a dashed line, Q5 '', depicted by a continuo us line, and 

Q6", depicted by a dotted line, obtained with the non-overlapping sliding window of width 20 

nucleotides during the scan of the gene E6. The abscissa axis represents the window position along 
the nucleotide MSA. The P DZ-domain is highlighted in gray. Annotations for the N and C-terminal 

arms, E6N and E6C domains are represented for HPV16 coordinates, from (Nominé et al., 2006) 
[30]. Zn2

+ -ligating Cys residues annotations reproduced from (Lipari et al. 2001 ). 
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The Q" fonction validation was also carried out for HPV data. The results are presented in Figure 

3 .. 6. Here, the PDZ domain ranks first for bath tested datasets, related to the Squam and Adeno 

cancers (Figures 3.6a and 3.6b). The peaks were found at almost the same positions as in Figure 3.5, 

with the exception that only some of the peaks shown in Figure 3 .5 are present here. The function 

Q4 '' seems to be less variable than the fonction Q5 '' • For the Squam dataset, there is one peak in the 

E6C domain, absent in the Adeno dataset, with a high monophyletic signal and unknown 

annotation. 

On the other hand, the peak located at the index 660, and corresponding to the window positions 

660-680, includes two putative Zn2
+ -ligating Cys residues whose absence in mutants results in a 

dramatic loss in the p53 degradation activity (Lipari et al. 2001 ). 

By analyzing Figures 3.4, 3.5 and 3.6, one can notice that in some situations prior knowledge 

information brings an important advantage to the method (see the case of Figure 3.4c when the use 

of the prior knowledge along with the ARI coefficient allows for getting rid of some false positive 

hits; for instance, the false positive picks found using Q' -type fonctions around the indices 1225 and 

1500 presented in Figure 3.4b were not found by the Q" -type functions presented in Figure 3.4c as 

well as the case of an almost perfect PDZ domain recovery provided by the Q" -type fonctions as 

shown in Figures 3.6a and 3.6b), but in the other cases, the new algorithm is capable of correct 

recovering hit regions without any prior knowledge (e.g., see the cases of the loops Ll, L3, L5, L8, 

L9 and LIO for the N meningitidis dataset). 

3.6 Conclusion 

W e described a new algorithm for finding genomic regions that may be associated with a disease. It 

is capable of detecting hit regions without prior knowledge on the carcinogenicity or invasivity of 

related organisms. This is an important improvement over previous works in the field (Badescu 

et al. 2010, Diallo et al. 2009). We also showed as the Adjusted Rand Index (Hubert and Arabie 

1985, Milligan and Cooper 1986, Santos and Embrechts 2909) can be incorporated in the hit 

detection procedure. The discussed algorithm can be directly used to study organisms that have an 

ambivalent behavior and are, thus, more difficult to classify. For instance, some strains of Neisseria 

Meningitidis show a hyperinvasive behavior during epidemics, but are non-invasive, otherwise. The 

behavior of some other organisms, like human papilloma viroses (HPV), is more consistent. Such 

organisms can be clearly classified with respect to their level of carcinogenicity .. Species 
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bipartitions, established aécording to carcinogenicity or invasivity criterion, suggested in the 

literature are important for the identification of genomic regions responsible for a related disease. 

We showed, however, that a successfol identification of these regions can be accomplished without 

any prior knowledge of the species classification (Figure 3.5). Considering, in parallel, several hit 

region identification fonctions can provide- more insight into the structure of genomic regions 

(Figures 3.4, 3.5 and 3.6). Simulation results suggest that there is no a unique fonction that provides 

the best overall results in all practical situations ( e.g., the case of monophyletic or polyphyletic 

evolution and positive or negative selection), and that at least three different fonctions might be 

useful (Figures 3.2 and 3.3). It is worth noting that the monophyletic scenarios are easier to detect 

than the polyphyletic ones. The fonction Q5 allows for a better detection of monophyletic scenarios, 

while in the polyphyletic case, the fonctions Q4 and Q6 provide the best results in the positive 

selection context and in the lineage specific selection context, respectively. The application of the 

described fonctions to the HPV gene E6 allows one to retrace the hit regions that are well-known to 

be related to carcinogenicity (Lee and Laimins 2004),(Kiyono et al. 1997),(Lipari et al. 

2001 ),(Nominé et al. 2006). 

Furthermore, the results given by these fonctions while analyzing the FetA sequences of Neisseria 

meningitidis suggest a large overlap between the regions with surface-exposed loops and those 

detected by the hit region identification fonctions (Figure 3.4). All these results indicate the ability 

of the proposed algorithm to identify regions with bipartite evolutionary signatures according to 

different patterns of evolution. Each time the species bipartition was known, High-Risk HPV 

against all other HPV types in Figure 3.5a, Squam-Risk HPV against all other HPV types in Figure 

3.6a, and Adeno-Risk HPV against all other HPV types in Figure 3.6b, it was incorporated in the 

computational procedure as shown in Algorithm A. l. In the future, it will be important to assess the 

correlation between different non-overlapping detected hit regions present in the given alignment. It 

would be also interesting to compare the performance of the introduced bi-clustering algorithm with 

the existing bi-clustering methods currently used in bioinformatics, including SAMBA (Tanay et al. 

2004 ), Crossing Minimization (Abdullah and Hussain 2006) and cMonkey (Reiss et al. 2006). 

Another possibility consists of using a k-means (MacQueen et al. 1967) type of algorithms that can 

suggest partitioning of the given dataset in several, and not necessarily in two, classes when the 

exact number of classes is unknown. For instance, in the case of HPV data, one could consider the 

three follo.wing HPV classes: High-Risk HPV (types 16 and 18), Low-Risk HPV (types 6, 11, 26, 
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31, 33, 35, 39, 45,.51, 52, 53, 55, 56, 58, 59, 66, 73, 81, 82 and 83) and No-Risk HPV (all other 

HPV types). 

It is worth noting that the presented a]gorithm, like most of the comparative genomics methods, 

relies on the assumption of the alignment correctness. Thus, it will be also important to analyze the 

impact of alignment errors on the results of the proposed hit detection procedure. 

We have provided the complete source code of our application allowing one to carry out the 

methods presented in this chapter; the application's name is QFUNC v.0.5. A Makefile along with 

the examples of the input and output data have been also made available. The ReadMe 

documentation file provides an explanation of the main steps to follow for executing the 

application. The source code and the accompanying files have been uploaded to the GitHub public 

repository (with the BSD licence). It is freely available at the following URL address: 

https://github.com/dunarel/dunphd-thesis/tree/master/Chapter3/Main/q_funcb. 
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CHAPTERIV 

COMPLETE AND PARTIAL HORIZONTAL GENE 

TRANSFERS AT THE CORE OF PROKARYOTIC 

ECOLOGY AND EVOLUTION 

4.1 Abstract 

Horizontal Gene Transfer (HOT) is one of the major evolutionary processes affecting prokaryotic 

species. Two known types of horizontal gene transfer are complete and partial HGT. ldentifying the 

origins and the rates of horizontal gene transfers in the context of complete and partial HOT models, 

and this for different phylogenetic families and ecological habitats, is a very relevant and 

challenging problem. In this chapter, we describe a navel bioinformatics framework designed to 

estimate and compare the rates of complete and partial HGT at different phylogenetic and 

ecological levels. Well-known methods of phylogenetic tree inference ( e.g. RAxML) and horizontal 

gene transfer detection ( e.g. HGT-Detection) will be used in our experiments. We support a 

"genome space" view of prokaryotic evolution, in which individual strains internet based on 

ecological habitat and phylogenetic similarity. Our results suggest that partial HGTs are almost 

twice more frequent than their complete counterparts. Moreover, we show that partial HGTs, 

detected by the contemporary HOT detection algorithms, seem to be more recent than complete 

HGTs. 



At the allele level, HGT seems to be rather a rare event. We estimated, using a 75% confidence 

HGT detection threshold, that the average HGT rate is 2.94 x 10-2 fo~ complete transfers and 8.07 x 

10·2 in overall (complete + partial transfers). This HGT rate is the probability that a contemporary 

prokaryotic allele or one of its direct ancestors (i.e. species located on the allele's lineage) have been 

ever affected by HGT coming from another prokaryotic organism during its evolutionary history. 

Thus, the majority of the existing prokaryotic alleles have not been affected by HGT. On the 

contrary, the majority of prokaryotic genes (i.e. a gene here is represented by a multiple alignment 

of the corresponding alleles) have been affected multiple times by gene transfers during its 

evolutionary history: 82.7% of the considered prokaryotic genes have been affected by at least one 

complete HGT and 96.3% - by at least one HGT in overall (these results are indicated for the HGT 

confidence threshold of 75%). We determined that the accuracy of the HGT age inference, which is 

another problem we addressed in this study, is the highest within the most recent 1000 Mya time 

period. It decreases progressively according to the time of HGT occurrence. The comparison 

between complete and partial HGTs also highlights the fact that the ages of partial HGTs, which are 

more recent than complete transfers, can be detected with a better confidence. 

4.2 Introduction 

Horizontal gene transfer is an important and widespread phenomenon in prokaryotic evolution 

(Koonin et al. 2001, Sjostrand et al. 2014, Wolf et al. 2012). HGT has an important impact on 

microbial cooperation and bacterial· virulence (Nogueira et al. 2009, Takeuchi et al. 2014). There 

exist three well-known HGT mechanisms, including transformation, transduction and conjugation, 

which allow DNA sequence acquisition either from the enviroµment or directly from the· donor 

species (Boc et al. 2010). The facility with which some bacteria develop antibiotic resistance is 

clearly an evidence of traits being transferred among species (Ochman et al. 2000), rather than de 

nova multiple mutations in each lineage (Davies and Davies 2010). High prevalence of HGT in 

prokaryotes has been demonstrated by the discovery of pathogenicity islands and virulence 

attributes (Koonin and Wolf 2008, Ochman et al. 2000). The latter events are relatively recent, and 

have a clear ecological component associated with maintenance, expansion or change of 

microorganism's ecological habitat (Smillie et al. 2011). Furthermore, bacteriophages, as gene 

transfer agents, stand as another compelling evidence of recent HGT (Koonin and Wolf 2008). 

Recently, bacterial sequences in cancer sampi es were found to integrate into the human somatic as 

well as into mitochondrial genomes (Riley et al. 2013). 
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Thus, gene transfer can be considered a well-established phenomenon on the "microscale": 

numerous biological experiments with bacteria and viroses, direct genome comparisons using 

simple heuristics (i.e. BLAST) and detection of anomalous characteristics of certain genomic 

sequences provide a compelling evidence ofHGT (Smillie et al. 2011). 

According to Koonin and Wolf (2009), in the 6th edition of the Origin of Species Darwin explicitly 

introduced the notion of the Tree of Life (TOL), (Darwin, 1872). Since then, phylogenetic tree 

thinking in biology became standard. W e should mention, however, that the work of Darwin does 

not contradict the notion of reticulate evolution which is based on the use of phylogenetic networks 

for representing reticulate evolutionary mechanisms. Unfortunately, a phylogenetic tree accounts 

only for vertical (i.e. direct) transfer of genetic material and cannot be used for representing 

horizontal gene transfer events (Legendre and Makarenkov 2002). For instance, the traditional tree 

model is not convenient for studying the evolution of prokaryotic species. 

The use of the term 'prokaryote' has been recently disapproved by some researchers, because 

Archaea and Bacteria do not form a monophyletic clade (Pace 2006). Similar arguments have been 

shown to exist for the eukaryotes, underlining the rigidness of the present nomenclature rules and 

their ability to deal with HGT (Syvanen 2012). The modern implications of reticulate evolution on 

the Tree of Life, and on Prokaryotes in general, have been extensively analyzed in a recent book 

(Doolittle and Zhaxybayeva 2013). The latter authors discuss the historie debate opposing Woese 

(Woese and Fox 1977) and Mayr (Mayr 1998), involving 'three' versus 'two' domains oflife. 

Many researchers have consequently developed a more appropriate concept, known as the "genome 

space", which is supported by phylogenetic networks (Huson and Bryant 2006). Rather than 

eliminating HGTs from the tree reconstruction, some authors used them as a support for the tree of 

life (Abby et al. 2012). In order to preserve the notion of phylogeny at the genomic level, the 

concept of "core of genes", has been proposed (Charlebois and Doolittle 2004). The core genes 

include a set of genes which are relatively "immune" to HGT and show a slow rate of evolution. 

However, the extent of HGT has been intensely debated, as the discussed HGT rates vary among 

different studies and clearly depend on the applied statistical models and HGT detection methods 

(Boc et al. 2010). In this vein, the debate opposing "genome space" and "core of genes" models of 

evolution has been going on for a long time, each party having its arguments, the former explaining 
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for the rapid adaptation of populations to the changing environmental conditions, the latter being 

more relevant the traditional view of species evolution (Koonin and Wolf 20Q8). 

Continuing genome sequencing projects constantly contribute to the decrease of the set of core 

genes. Confronted to. growing evidence that even the essential function of photosynthesis can be 

spread by HOT (Mulkidjanian et al. 2006), researchers struggle to identify core genes that 

potentially allow the separation of true (i.e., tree-like) phylogenetic signais from "noise"(Shi and 

Falkowski 2008). Thus, relaxed measures should be introduced to account for sequencing and 

annotation artifacts and some genes' tendency to form multidomain proteins when establishing a set 

of "core genes" (Charlebois and Doolittle 2004). 

Moreover, the relation between ecology and phylogenetics has been further refined by the 

observation that there is a relatively narrow variation in the prokaryotic genome sizes, which leads 

to .an emerging view of bacterial genomes as samplers and not accumulators of genes. Thus HOT, 

which greatly contributes to the diversification of bacterial genomes, redefines the ecological niches 

of the microorganisms and promotes bacterial speciation (Ochman et al. 2000, Smillie et al. 2011 ). 

The existence of habitat-specific gene pools and their relationship with the core genom~ can explain 

how prokaryotic populations exhibit both ecological cohesion and high genomic diversity (Polz 

et al. 2013). Arguments in favor of an even larger pan-domain gene pool emphasized the role of 

HOT in ecologically important processes, ranging from heavy-metal detoxification to glycerol 

uptake and metabolism (Schonknecht et al. 2013). 

The new emerging view of prokaryotic world is that of a single connected and compartmentalized 

gene pool, allowing for a gene exchange at variable rates, with fuzzy boundaries between species 

(Oogarten and Townsend 2005, Koonin and Wolf 2008, Smillie et al. 2011). An important study, 

based on the assumptions of relative constancy of ancestral prokaryotic genome sizes, estimates a 

minimum lower bound of the average rate of complete HOT at 1.1 event per gene family and family 

lifespan; the maximum rate can reach 2.1 events per gene family (Dagan and Martin 2007). U sing 

the median tree method of inferring a species phylogeny (Kim and Salisbury 2001 ), the average rate 

of complete HOT among prokaryotes, estimated at the allele level, was found to be around 2% (Ge 

et al. 2005). 
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In this study, we propose a computational framework for estimating the rates of complete and 

partial types of HGT among prokaryotes. Extending the work of Smillie et al. (2011), who carried 

out their experiments for complete HGT only, we explore the impact of habitat and phylogenetic 

family affiliation on the exchange of genetic material in the context of both complete and partial 

HGT models (the HGT-Detection algorithms of Boc et al. (2010) and Boc and Makarenkov (2011) 

were used to detect and statistically validate HGT events). 

Smillie and colleagues estimated the rate of the complete recent HGT for bacteria colonizing human 

environments at the maximum level of 20%. However, for non-human environments this rate was 

much lower, i.e. around 2% (see Fig. 1 in Smillie et al. 2011 ). On average, for all bacteria, the HGT 

rate was around 10%. In the pathogenic genes, this rate was much higher, with a maximum bound 

of 40% (see Fig. 4 in Smillie et al. 2011). Another recent study showed that the gut inflammation 

can boost pathogenic horizontal gene transfers (Stecher et al. 2012). 

Using a directed network analysis Popa and colleagues discovered reliable donor-recipient 

relationships leading to a general HGT rate of 7% (Popa et al. 2011). The latter study also found 

that Proteobacteria forma highly connected cluster in the inferred HGT network. On the other hand, 

Crenarchaeota was found to be one of the groups exhibiting genetic mosaicism due to partial HGT 

( Ching et al. 2014 ). 

We also identified the exact ages of the obtained complete and partial HGT events by using the 

B.E.A.S.T. v.1.7.5 (Drummond and Rambaut 2007) and TreePL (Sanderson 2002) programs. 

Szollosi and colleagues showed that the HGT phylogenetic modeling can contribute to the 

reconstruction of the relative speciation timing (Szollosi et al. 2012). 
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4.3 Materials and Methods 

4. 3.1 Data acquisition and classification 

In our study, prokaryotic species were selected from the database of completely sequenced species 

genomes available at the NCBI Genomes ftp site. All of the completely sequenced prokaryotic 

genomes available at this site (1465, as ofNovember 2011) were considered. Among them, we first 

selected 100 of the most complete prokaryotic genomes (belonging to the 23 available prokaryotic 

families) in terms of the number of genes. 

The species selection was made proportionally to the percentage of the family representatives in the 

whole set of 1465 prokaryotic species. Then, we added to them 11 additional species to ensure that 

our dataset includes at least one representative from each of the 23 prokaryotic families (some 

families had less representatives than 1 % of the total number of species). This yielded us a total 

number of 111 species, denoted throughout this chapter as Species set. Detailed information on the 

considered species can be found in Supplementary Table 1. We also identified 110 of the most 

complete genes (see Supplementary Table 3) belonging to the selected set of 111 species. The latter 

genes were labeled as Ubiquitous gene set. A Core gene set was then defined as its subset including 

36 genes previously identified by Charlebois and Doolittle (Charlebois and Doolittle 2004). 

The limits that we imposed on the number of considered species and genes was dictated by the high 

time complexities of the HGT detection and validation algorithms used in our study ( e.g. Partial 

HGT detection program with the HGT bootstrap validation of the scanned sequence fragments (Boc 

and Makarenkov 2011) and has an exponential time complexity on the number gene transfers ). At 

the same time, the Bayesian inference of the ages of partial HGTs, carried out over multiple sliding 

windows, took more than 3 months for a complete execution. We also tried to run this analysis with 

the datasets including 250 and 500 of the most complete prokaryotic genomes, but these 

computations were stopped as they should have taken over 12 months with the computational 

resources allowed to us at Compute Canada High Performance Cluster. We opted for an 

experimental design in which we invested the available computational resources in performing 

statistical validation of the inferred transfers by means of bootstrapping. Another valid approach 

would be to abandon the idea of statistical validation of transfers in favor of sampling a higher 

number of organism/genes. Yet, another approach would be to sample repeatedly different sets of 

organisms/genes and then to average the obtained results in order to assess their robustness. 
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Afterward, we constituted 110 multiple sequence alignments (MSAs) of amino-acid sequences (one 

MSA per selected gene) from which we excluded misclassified paralogs using TribeMCL (Enright 

et al. 2002). When multiple alleles of the same species were available, all of them were included in 

the corresponding MSA. The TribeMCL program, which implements a Markov Chain Clustering 

(MCL) algorithm (van Dongen 2000) on all-to-all BLASTP hits, is known to be conservative in 

terms of the number of groups (Li et al. 2012). We carried out the TribeMCL version of the 

program, bundled with "mcl" vl 1.294, with default parameters (1=2.0). In order to obtain more 

accurate results of BLASTP, we selected a Smith-Waterman backend and an E-value threshold of 

104
• About 1 % of the original alleles were identified as potential paralogs, using this procedure, and 

thus excluded from the original MSAs. 

The nucleotide sequences corresponding to the selected amino-acid sequences were retrieved from 

the associated chromosomes available at GenBank. The retrieved nucleotide sequences were 

aligned using the MUSCLE tool (v3.8.31, Edgar 2004) and then corrected using the GBlocks 

program (v0.91 b, Castresana 2000) which eliminates misaligned sequence fragments. In our 

analysis, we were less restrictive than the default option of GBlocks, allowing 50% of the sequences 

for flank positions (-b2 parameter), a maximum of 10 contiguous nonconserved positions (-b3 

parameter), minimum block length of 5 (-b4 parameter) and half gap positions (-b5 parameter). 

The 110 multiple sequence alignments analyzed in our study are available at the following URL 

address: http://www.info2.uqam.ca/~makarenkov_v/alignments.zip. We also provide Gene IDs (still 

available with the new NCBI pr?karyotic genome annotation pipeline, as of November 2015) - for 

the considered Ubiquitous dataset (presented in Supplementary table 3), of the amino-acid 

sequences considered in this study at the same URL address (Angiuoli et al., 2008), {Tatusova et al., 

2013). The corrected nucleotide MSAs were then used as basis for building gene trees, given as 

input to the HGT detection algorithms (Boc et al. 2012). We constructed the gene trees by means of 

the RAxML method (Stamatakis 2006). Species taxonomy (i.e. species tree in the HGT context) 

was retrieved from the NCBI Taxonomy website (Benson et al. 2009). Taxonomie groups (i.e. 

families) were those assigned by the NCBI Genome Project. Note that each species was assigned to 

one established prokaryotic family. 

In this study, we explored the patterns of HGT by considering two different classifications of 

prokaryotic species. The first way follows the taxonomie species classification provided by the 

71 



NCBI Genome Project. It is based on the established prokaryotic family classification. The second 

way takes into account possible ecological localizations, or habitats, of the selected species. The set 

of the available habitats, described by MIGS Field (Field et al. 2008), was extracted from the 

Genomes OnLine Database - GOLD (Pagani et al. 2012). It is worth noting that the Extreme habitat 

is a heterogeneous collection of habitats corresponding to extreme environmental conditions, ( e.g., 

superheated waters, acid-laden streams around old mines, frigid Antarctic ice, super-salty waters of 

the Dead Sea). This classification complies with the annotation of the GOLD database. Mention that 

many of the organisms belonging to the Extreme habitat also be long to some other habitats. In the 

GOLD classification (Pagani et al. 2012) each species could belong either to a unique or to multiple 

habitats. 

4.3.2. Phylogenetic reconstruction and HGT detection 

In order to detect and validate complete and partial horizontal gene transfers using the HGT

Detection algorithms (Boc et al. 201 O; Boc and Makarenkov 2011 ), we need to have a species tree 

and a gene tree (or a gene MSA for the partial HGT inference). These algorithms proceed by 

reconciliation of the trees, gradually transforming the species tree into the gene tree in order to infer 

horizontal gene transfers. An important advantage of these algorithms is that they allow for 

validating the obtained HGTs statistically by estimating their bootstrap support (Boc et al. 2010). 

To reconstruct the species tree, representing the traditional taxonomie species pattern, for the 

selected set of 111 prokaryotic species, we considered the available NCBI species Taxonomy 

(Benson et al. 2009). Then, for each considered multiple sequence alignment, we computed a gene 

tree representing the evolutionary history of the given gene. This history may be different from the 

classical taxonomie pattern due, for example, to HGT, recombination or hybridization phenomena 

(Legendre and Makarenkov 2002). In the case of prokaryotes, complete and partial HGTs (i.e. 

partial HGT is a complete HGT followed by intragenic recombination) are the most plausible 

explanations for topological discrepancy between the species and gene trees. To infer the gene trees, 

the RAxML reconstruction method (the RAxML program v7.2.8 with multithreads; see (Stamatakis 

2006) was used with the following parameters: GTR Gamma model, 20 starting random trees, and 

100 bootstrap replicates. Then, we reconciled each gene tree with the species tree to identify 

statistically plausible HGT scenarios. To this end, we inferred complete gene transfers using the 

HGT-Detection program (v.3A), (Boc et al. 2010) available on the T-Rex web site (Boc et al. 
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2012). Partial gene transfer detection was based on a sliding window procedure described in Boc 

and Makarenkov (2011 ). We implemented this procedure using the KSH, JRuby and Java scripts 

and a multilayer approach. Thus, the 110 multiple sequence alignments we considered were scanned 

with a sliding window algorithm. Sliding window sizes were equal to 10%, 25% and 50% of the 

total alignment length. Partial HGTs were recovered from the overlapping MSA fragments (when 

the same HGT was found for multiple consecutive positions of the sliding window) based on a 

Jaccard similarity of at least 75%. This allowed us to account for_ the tree inference instability from 

short MSA fragments (Boc and Makarenkov 2011 ). To gain in computing time, we parallelized the 

partial HGT-Detection program and ran it on a parallel Mammoth cluster (Compute Canada High 

Performance Cluster), in addition to using the parallel version of the RAxML program. Partial 

HGTs spanning to multiple MSA fragments could have several bootstrap support scores in each of 

them. We assigned a single value to these multiple-fragment partial HGTs that corresponded to the 

maximum bootstrap support of the components. 

For the two methods of HGT prediction ( complete and partial), we used, in turn, bootstrap 

thresholds of 50%, 75% and 90%, respectively, to assess the robustness of the obtained HGT. 

Once complete and partial HGTs were predicted for the whole dataset, we computed HGT rates 

between the species of the same phylogenetic family (or of the same habitat), and then between the 

species of different phylogenetic families ( or of different habitats). Formulas ( 4.1-4.6) below were 

used to compute the presented intragroup and intergroup HGT statistics. These formulas normalize 

the obtained HGT rates with respect to the number of considered alleles. We also provide a more 

general result regarding prokaryotic alleles, which is the average probability estimation that a 

prokaryotic allele has been affected by HGT during its evolution (see Formula 4.7). Moreover, we 

highlight ten of the most frequent HGT events for each level of confidence we considered (i.e. 50%, 

75% and 90% HGT bootstrap thresholds). 

As the applied partial HGT-Detection algorithm (Boc and Makarenkov 2011) was inferring both 

partial arid complete HGTs, the obtained absolute rates were denoted as overall gene transfer rates 

(i.e. complete HGT was a particular case of partial HGT in this algorithm; thus, the indicated 

overall HGT rates account for both complete and partial transfers; see Tables 4.1-4.3 ). 
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4.3.3. Computation of HGT statistics 

In this section, we present the main formulas used to calculate HGT statistics and the corresponding 

explanations regarding the computation of the HGT weights (Figure 4.1 ). The presented formulas 

were used to generate: (a) heat maps of horizontal gene transfer events between 23 prokaryotic 

families (Figures 4.2 and 4.3), (b) heat maps of intragroup HGT rates (Figures 4.2 and 4.3, on the 

main diagonal), (c) histograms of outgoing HGT rates (Figure 4.4), (d) histograms of incoming 

HGT rates (Figure 4.5), (e) histograms of intragroup HGT rates (Figure 4.6), and, finally, (f) the 

overall probability that a prokaryotic allele has been affected by HGT during its evolution (Table 

4.la). We. detailed the probability results by indicating the rates for the three selected HGT 

bootstrap thresholds for the entire set of considered genes and for the genes explicitly classified as 

core genes. These formulas were then adopted to calculate the HGT rates for the habitat study 

(Figures 4.9-4.13). 

If several groups were involved in an HGT, the obtained transfers were weighted taking into 

account all involved alleles. Figure 4.1 illustrates a possible case: the transfer between the cluster 

including alleles belonging to species of families Fl and F4 and the cluster including alleles 

belonging to species of families F2 and F3 is accounted for as follows: 

W(Fl -> F3) = 0.5, W(Fl -> F2) = 1.5, 

W(F4 -> F3) = 0.5, W(F4 -> F2) = 1.5. 

Thus, the horizontal gene transfer event depicted in Figure 4.1 is decomposed ~nto four weighted 

HGTs. The resulting weights depend on the number of affected alleles of each family. 
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F1 F4 F3 

F2 

F2 F2 

Figure 4.1 Example of a horizontal gene transfer event involving alleles belonging to species of four 
different families (Fl, F2, F3 and F4). 

Given the HGT weights calculated for individual transfers, we computed the HGT-related statistics. 

First, the HGT rates between families (see Figures 4.2, 4.3 and Tables 4.2, 4.3) were calculated as 

follows: 

1 G(Fl,F2) 1 N F2--+Fl (g) 

HGT(F2 ➔ FI) (FIF2) L (N ( )xN () ~WF2➔Fl(g,i)), 
G , g=l FI g F2 g l=I 

(4.1) 

where HGT(F2 ➔ FI) is the HGT rate for the alleles belonging to species of family FI that were 

affected by gene transfers from alleles of family F2, WF2➔FI(g,i) is the weight of the j1h HGT from 

F2 to FI found for gene (i.e., multiple sequence alignment) g, N (g) is the total number of 
F2 ➔ Fl 

detected HGTs for gene g that stemmed from alleles belonging to species of family F2 and affected 

species of family FI, N FI (g) and N F 2 (g) are the total numbers of alleles belonging to species of 

family FI and F2, respectively, and G(Fl ,F2) is the number of genes (i.e., multiple sequence 

alignments) containing at least one allele of family Fl and one allele of family F2. 

Second, the non-normalized HGT rate between the alleles belonging to species of families F2 and 

FI (from F2 to FI) was calculated as follows: 
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G(Fl,F2) NF2➔F1 (g) 

HGTnn(F2 ➔ F1)= L ( LWF2➔Fl(g,i)), (4.2) 
g=l i=l 

where HGTnn(F2 ➔ Fl) is the non-normalized HOT rate from F2 to Fl. 

The local intragroup HOT rates (Figures 4.2 and 4.3 on the diagonal) were computed as follows: 

. } G(Fl) 2 NFl➔FI (g) 

lntra_HGT _gene(FI)=-- L (------ LWF1➔FI(g,i)), (4.3) 
G(FI) g=l NF1(g)x(NFI(g)-I) i=l 

where Infra_ HGT _ gene(Fl) is the internai HOT rate for family FI (i.e., this rate accounts for 

alleles belonging to species of family FI that were affected by gene transfers from another alleles of 

this family), WFI➔FI(g,i) is the weight of the th HOT from FI to FI found for gene (i.e., multiple 

sequence alignment) g, N (g) is the total number of detected HOTs for gene g from alleles 
Fl ➔ Fl 

belonging to species of family Fl and affecting species of the same family, and G(Fl) is the 

number of genes (i.e., multiple sequence alignments) containing at least one allele of family Fl. 

The outgoing HOT rates (Figure 4.4) were computed as follows: 

1 p 

Outg_HGT(FI)= - LHGT,m(Fl ➔ FJ), 
N Fl J=l,(flt,Fj) 

(4.4) 

where Outg _HGT(FI) is the outgoing HOT rate for family Fl, representing the probability that 

an allele ( or its part for the case of partial HOT) of a species of family FI was transferred to a 

species from another prokaryotic family, HGT,m(FI ➔ Fj) is the non-normalized HOT rate 

calculated according to Equation 4.2, NFJ is the total number of considered alleles belonging to 

species of family FI ( counted over all 110 MSAs ), and P is the total number of considered 

prokaryotic families (P = 23 in our study). 
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The incoming HGT rates (Figure 4.5) were computed as follows: 

I P 

Incom HGT(FI)= - LHGT,m(Fj ➔ FI), 
N Fl j=l,(F/#Fl) 

(4.5) 

where Incom _ HGT(FI) is the proportion of alleles belonging to species of family FI affected by 

HGT stemming from alleles belonging to species of the other prokaryotic families, 

HGT,m(Fj ➔ FI) is the non-normalized HGT rate calculated according to Equation 4.2. 

The global intragroup HGT rates (Figure 4.6) were computed as follows: 

1 
Intra_HGT(FI)= -HGTnn(FI ➔ FI), 

NFI 
(4.6) 

where Intra _ HGT(FI) is the proportion of alleles belonging to species of family FI that were 

affected by HGT stemming from the same prokaryotic family. 

Finally, the average probability that a prokaryotic allele has been affected by HGT was computed as 

follows: 

HGTaverage 

p 

p 

L (Jncom_HGT (Fi)+ Intra_HGT (Fi))x N Fi 
_ i=I 

p 

LNFi 
i=I 

L (Outg_HGT (Fi)+ Intra_HGT (Fi)) xN Fi 
i=I 

p 

LNFi 
i=l 

(4.7) 

The average HGT rates for the set of all considered genes, as well as for its subset of core genes, are 

reported in Table 4.1 a. 

W e studied ecological habitats using the same statistical measures and formulas as for the 23 

phylogenetic families. The number of considered prokaryotic habitats, P, was equal to 8 in the 

habitat study. 
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The decomposed transfers, shown in Figure 4.1, were further weighted according to the species 

habitat membership (note that a species can live in more than one habitat; see Supplementary Table 

2 for more details). Let us consider a possible case: an HGT from Allele Al, belonging to species X 

which is present in habitats Hl and H2, to Allele A2, belonging to species Y which is present only 

in habitat Hl. 

The weighted transfer from Allele Al to Allele A2, with the weight W(AI ➔ A2), will be 

decomposed as follows: 

W(Al ➔ A2) = W(Hl ➔ Hl) EB W(H2 ➔ Hl); 

W(Hl ➔ Hl)= 0.5 x W(Al ➔ A2); 

W(H2 ➔ Hl)= 0.5 x W(Al ➔ A2). 

The implementation details are available in Appendix B (see Formulas B.3 and B.4). These 

formulas and implementation ensures that the average HGT rates computed using Formula 4.7 are 

the same regardless the selected species classification (per phylogenetic family or per habitat; see 

Table 4. la). 

4.3.4 HGT lime estimation 

An important part of our study addresses the problem of estimating the age distribution of the 

identified complete and partial HGTs. We dated the inferred maximum likelihood gene trees using a 

Bayesian method implemented in B.E.A.S.T. v.1.7.5 with "beagle" library v.1.1.0 (Drummond and 

Rambaut 2007), and then compared the obtained results with those given by a semi-parametric 

method based on penalized likelihood implemented in TreePL v.1.0 (Sanderson 2002). Secondary 

constraints were applied to the tree nodes using genomic timescale from a well-known geological 

and phylogenetic study of prokaryotic evolution (Battistuzzi et al. 2004). Based on the available 

species tree, we established a list of 26 constraints representing prokaryotic groups and their most 

recent common ancestor (MRCA) nodes up to the roots of Bacteria and Archaea (see 

Supplementary Table 4). For each node of the species tree multiple values were available, each 

corresponding to the different root calibrations (3 root calibrations for Archaea and 4 for Bacteria; 

see (Battistuzzi et al. 2004 ). We aggregated the provided constraints in order to infer the mean age 
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and the mean standard deviation for each tree node, besicles using the already available confidence 

intervals. For each gene tree, the corresponding nodes were found using MRCAs of the present 

strains. When multiple constraints existed for the same gene tree node, we sorted them according to 

the mean time and chose the most recent one. This generally corresponds to narrower and hence 

more precise group classifications, given that dating methods are less precise for remote geological 

events. Due to the mechanisms of reticulate evolution, such as HOT and recombination, and to the 

absence of representatives of certain families in the gene trees, some incompatibilities could exist 

between the applied constraints. We verified the compatibility of each constraint using the time 

analysis. The constraints incompatibilities were treated differently in the TreePL and B.E.A.S.T. 

analyses. As TreePL uses only discrete constraints in the form of a time interval, we used the 

confidence intervals for this purpose. Using a greedy approach, we sorted these constraints in the 

ascending order based on the mean age and enabled them progressively, starting by the most recent 

ones. W e eliminated the constraints that led to the execution errors in TreePL and reran the 

program. In the case of B.E.A.S.T., we used the available normal distribution information, defined 

by the mean time and the standard deviation. Due to the continuous nature of these probability 

fonctions, there was no incompatibility between the applied constraints. 

As B.E.A.S.T. was only needed for the time estimation, and not for phylogenetic inference, we used 

similar parameters of nucleotide substitution as in the RAxML gene tree inference (GTR + Gamma) 

and disabled the tree operators. Gene trees were rooted using the HGT-Detection program (Boc et 

al. 2010), which selects the gene tree root in order to minimize the Robinson and Foulds topological 

distance between the species and gene trees. We scaled gene trees using a value of 4290 Mya for the 

last common ancestor (LCA) (Sheridan et al. 2003). Besicles using this unique value as an initial 

starting point, we also bounded LCA between the origin of life on Earth and the origin of aerobic 

methanotrophy. This gave us a uniform prior of 2500-4500 Mya, which we used for the root 

calibration in the gene trees (we did not consider any other organisms apart from prokaryotes). 

W e used the· inferred RAxML gene trees as input trees. The branch length distributions were 

obtained by fitting normal and lognormal distributions to the branch lengths of the gene trees by 

means of the R statistical language, v.2.15.1. (R Core Team 2014). We used the birth-death tree 

model (Gernhard 2008) and an uncorrelated relaxed clock (Drummond et al. 2006) with a 

lognormal distribution model with the parameters "ucld.mean" and "ucld.stdev" set to the mean and 

the standard deviation inferred previously from branch lengths. W e also defined a lognormal prior 
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for "ucld.mean", based on the location and scale values inferred previously, and an exponential 

prior for-"ucld.stdev". Markov Chain Monte Carlo (MCMC) algorithm with 20 million generations, 

burn-in of 5%, sampled each l°o,000 iterations, was carried out. Tracer v.1.2 was used to evaluate 

the method's convergence and marginal density. Treeannotator with a posterior probability limit of 

0.5 was used to transfer estimated tree node ages back to the original tree, with uncertainty in 

parameter estimates corresponding to the 95% highest probability density (HPD). We chose to 

apply a relaxed molecular clock model (Drummond et al. 2006) in order to address the difficulties 

in inferring a strict molecular clock when studying genes affected by HGT (Novichkov et al., 2004 ). 

4.4 Results 

4. 4.1 Gene transfer rates in complete and ovreall HGT scenarios 

The obtained average HGT rates are quite similar for the two considered sets of genes: ubiquitous 

genes that represent the entire set of 110 genes examined in this study and core genes that include 

36 genes identified by (Charlebois and Doolittle 2004); also see Supplementary Table 3 which 

reports both sets of genes. For the 75% bootstrap threshold, our benchmark threshold in this study, 

the obtained mean rate of complete HGT was about 3% per allele, whereas the overall ( complete + 

partial) mean HGT rate was about 8% per allele (see Table 4. la). Note that most of the existing 

studies focus on complete and recent HGTs only (Smillie et al. 2011 ). The mean HGT rates in Table 

4.1 a are indicated for the three following HGT bootstrap thresholds: 90%, 75% and 50%. 

Obviously, the mean HGT rates increase as the value of the bootstrap threshold decreases (low 

threshold values can lead to the inclusion of more conflicting or erroneous transfers) for both 

complete and overall HGT scenarios. Our findings suggest that core genes are slightly less prone to 

complete HGT than ubiquitous genes. However, somewhat surprisingly, core genes show more 

partial HGTs. Although complete HGTs have already been found at the heart of the ribosome 

(Brochier et al. 2000), partial gene transfers would be more likely to overcome the constraints 

imposed by the complexity theory (Jaïn et al. 1999). Mention that the obtained complete HGT rates 

are compatible with those found by (Dagan and Martin 2007). 
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Table 4.la. Mean HGT rates, indicated for 100 comparisons, for complete and overall (complete + 
partial) HGT scenarios and three different bootstrap thresholds 90%, 75% and 50%. 

Ubiquitous genes represent the entire set of 110 ·genes considered in this study. Core genes 
(assumed to be more resistant to HGT) include 36 genes identified by (Charlebois and Doolittle 

2004). 

Gene set 

Ubiqüitoüs (110) 

Core (36) 

Complete HGT 

[90%, 75%, 50%] 

[1.545,2.94-4, 6.216] 

Overall HGT 

[90%, 75%, 50%] 

[3.585, R066; 25;949] 

[3.728, 8.215, 28;349] 

For each considered gene, represented by the corresponding multiple sequence alignment, and for 

the three selected bootstrap thresholds of 90%, 75% and 50%, we also identified the exact number 

of genes that have been affected at least once during their evolutionary history by the complete and 

overall HGTs (see Table 4.lb). The results presented in this table confirm that there is no major 

difference in the number of the HGT-affected genes between the core genes and ail the genes, 

whereas the core genes seem to be more prone to partial HGTs than the ubiquitous genes. The 

presented statistics also suggest that a large majority of genes have undergone multiple HGT events 

during their evolutionary history. Thus, our results show that although HGT events are rather rare at 

the allele level, their impact at the gene level is very significant. 

Table 4.1 b. Percentages of genes affected by at least one HGT during their evolutionary history, 
indicated for complete and overall ( complete + partial) HGT scenarios and three different bootstrap 
thresholds 90%, 75% and 50%. 

Ubiquitous genes represent the entire set of 110 genes considered in this_ study. Core genes 
(assumed to be more resistant to HGT) include 36 genes identified by (Charlebois and Doolittle 

2004). 

Gene set 

Ubiquitous (110) 

Core (36) 

Complete HGT 

[90%, 75%, 50%] 

[64.50, 82. 70, 96.30] 

[66~66, 80.55, 97;22] 

81 

Overall HGT 

[90%, 75%, 50%] 

[85.40, 96.30, 100] 

[94.44, 100, 100] 



4.4.2 General overview of patterns of complete and overall HGT scenarios for the 

phylogenetic family study 

Figures 4.2 and 4.3 present the intensity of transfers between the source and destination families for 

complete and overall HGTs, respectively. Here, (?nly the results for the 75% HGT bootstrap 

threshold are described in detail. Mention that similar trends were observed for the two other HGT 

bootstrap thresholds we considered (i.e. 50% and 90%). Even though the intensity of overall, and 

partial, HGTs is higher than that of complete HGTs, the corresponçling hit maps share most of the 

displayed intensity patterns (see Figures 4.2-4.3 and Tables 4.2-4.3). 

First, we can notice that the intragroup HGT intensities (see the main diagonal in Tables 4.2-4.3) are 

usually higher than intergroup intensities for both complete and overall transfers. Although HGT

related clusters of prokaryotic families are not very clearly defined, we can observe two meta

clustering with the Archaea and Proteobacteria groups, including more transfers within each of 

these groups than between them. These patterns are noticeable for both complete and overall HGTs 

(Figures 4.2-4.3). They are more perceptible for higher bootstrap confidence levels (i.e. 75% 

bootstrap level - presented results and 90% bootstrap level - results not presented here ). 

Surprisingly, transfers among phylogenetically close prokaryotic families are not necessarily well 

supported. On the contrary, several evolutionary remote prokaryotes show transfer affinities, as for 

example Spirochaetes and Thermotogae, or Crenarchaeota and Aquificae. The other closely 

interacting prokaryotic families are Thermotogae / Epsilonproteobacteria and Planctomycetes / 

Verrucomicrobia. Interacting families generally show reciprocal, but rather asymmetrical transfer 

intensity. This trend can be observed for both complete and overall HGTs (Figures 4.2-4.3). 

Cyanobacteria, for example, exhibit much higher intra vs. intergroup HGT rate, what confirms the 

results of the previous studies (Zhaxybayeva et al. 2006). Sorne others families exhibiting similar 

behavior are Alphaproteobacteria, Betaproteobacteria, Bacteroidetes/Chlorobi and Actinobacteria 

(see Figures 4.3c and 4.2c). We also found that the Firmicutes family is the top groups in terms of 

the intragroup global HGT rate. 
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Figure 4.2 Complete HGT rates among prokaryotic phylogenetic groups, indicated for 100 
comparisons, obtained for 75% bootstrap confidence level. This hit map corresponds to the results 
from Table 4.2. 

a) HGT source group is represented by row (left) and HGT destination group is represented by 
column (top). Color scale on the right is natural log scale; b) Ratio of source (black squares) vs. 

destination (gray squares) HGT rate for a phylogenetic group indicated on the left; c) Intra- (black 
squares) vs: intergroup (gray squares) ratio for a phylogenetic group indicated on top. 
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Figure 4.3 Overall (complete + partial) HGT rates among prokaryotic phylogenetic groups, 
indicated for 100 comparisons, obtained for 75% bootstrap confidence level. This bitmap 
corresponds to the results from Table 4.3. 

a) HGT source group is represented by row (left) and HGT destination group is represented by 
column (top). Color scale on the right is natural log scale; b) Ratio of source (black squares) vs. 

destination (gray squares) HGT rate for a phylogenetic group indicated on the left; c) Intra- (black 
squares) vs. inter-group (gray squares) ratio for a phylogenetic group indicated on top. 
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4.4.3. Source and destination species most commonly affected by HGT 

Common sources and destinations of the obtained complete and overall HGTs are not uniformly 

distributed among the species of the 23 prokaryotic families considered in our study (see Figures 

4.4-4.6). Figures 4.4a (destination HGT) and 4.5a (source HGT) present the percentage of transfers 

that originated from the prokaryotic families whose representatives appeared in at least 5% of the 

multiple sequence alignments (i.e. genes) examined here. The obtained results show some 

discrepancies between the complete and overall HGT scenarios, as well as between the intragroup 

and intergroup relationships. For example, Firmicutes were found to be among the lowest ranking 

groups in terms of both outgoing and incoming HGT rates (Figures 4.4a and 4.5a), in a strong 

contrast to the top position they occupy in the intragroup ranking (Figure 4.6a). 

(?ther important trends which can be observed in Figures 4.4-4.6 are the following. Fusobacteria are 

by far the top HGT donors in both partial and complete scenarios, Deltaproteobacteria being the top 

HGT receivers for partial HGT. These families exhibit a very asymmetric behavior, as they rank 

much lower in the reverse direction (i.e. receiver vs. donor). Sorne other prokaryotic families 

sharing asymmetric behavior are Crenarchaeota and Planctomycetes. Families more symmetric in 

respect to the direction of transfers are Betaproteobacteria and Euryarchaeota. 

Figures 4.4b-4.6b present the results for the two families, Nanoarchaeota and Other Archaea, whose 

representatives are rarely present in the examined multiple sequence alignments (they are present in 

less than 5% of MSAs). Thus, the average HGT rates obtained for these two families are less 

significant from the statistical point ofview, even though some important incoming HGT rates were 

obtained for both of them (see Figure 4.5b ). Note that the alleles of the species belonging to the 

Nanoarchaeota family are the origin oftransfer in only 4% of the considered MSAs. 
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4. 4. 4 Ten most frequent horizontal gene transfer patterns among prokaryotes 

Here, we also present the ten most frequent horizontal gene transfers among phylogenetic families 

for each selected bootstrap level. This has been done separately for complete and overall HGTs. The 

most significant transfers are mapped into the phylogenetic tree of 111 prokaryotic species (see 

Figures 4.7-4.8). Circular tree views were selected for this presentation. We put together all of the 

10 most significant transfers obtained for the 50%, 75% and 90% bootstrap thresholds. This resulted 

in 18 distinct transfers for the complete HGT (Figure 4. 7) and 16 distinct transfers for the overall 

HGT (Figure 4.8). The large majority of them (i.e. 13) were shared between both HGT scenarios, 

but obviously at different HGT rates. One of them was found in the reverse direction (i.e. from 

Crenarchaeota to Aquificae ). Two of them shared the same source ( from Crenarchaeota to 

Deinococcus-Thermus and to Euryarchaeota). Two others shared the same destination (from 

Acidobacteria and Chloroflexi to Deltaproteobacteria). Only two ofthem were completely different: 

the local intragroup complete transfers for Spirochaetes and Firmicutes. 

The obtained results confirm that the intragroup HGTs are very important for the process of the 

prokaryotic diversification. A majority of the highly-ranked intragroup HGTs (i.e. top 7 out of 11 

intragroup HGTs illustrated in Figure 4.6) are also ranked among the ten most frequent HGTs in· 

general (see Figures 4.7-4.8). The only notable exception is Actinobacteria. Further analysis of its 

intragroup rates reveals lower local interactions (see Formula 4.3) and higher global ones (see 

Formula 4.6). 
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Figure 4. 7 Phylogenetic network inferred for 111 prokaryotic species belonging to 23 different 
prokaryotic families, including 18 most significant complete HGTs. 
Here, the HGT rate is given for each of the three following HGT bootstrap confidence levels: 90%, 

75% and 50%. Interval format is: [90%, 75%, 50%]. Arrows are colored according to the HGT 
source group. Values are boldfaced when they belong to the top 10 list of the corresponding 

bootstrap confidence level. 
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Figure 4.8 Phylogenetic network inferred for 111 prokaryotic species belonging to 23 different 
prokaryotic families, including 16 most significant overa/1 HGTs. 
Here, the HGT rate is given for each of the three following HGT bootstrap confidence levels: 90%, 

75% and 50%. Interval format is: [90%, 75%, 50%]. Arrows are colored according to the HGT 
source group. Values are boldfaced when they belong to the top 10 list of the corresponding 

bootstrap confidence level. 
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4.4.5 General overview of patterns of complete and overall HGTscenariosfor the habitat 

study 

In this work, we also extend the study of Smillie et al. (2011) on defining the clusters of habitats 

associated to complete and overall HGTs (see Figures 4.9-4.12 and Tables 4.4 and 4.5). We can 

observe a wide range of habitats involved in HGT events for the overall HGT scenarios showing the 

presence of interaction between all the habitats, except the Human respiratory habitat (see Figures 

4.10). For instance, Marine shows an exchange of genetic material with the Animal and Sail 

habitats only for the overall HGT scenarios. The symmetrical aspect of the presented hit maps in 

both scenarios can be observed. However, the evidence of mutual exchange of genetic material 

within the cluster of Human others, Plant, Animal and Soil habitats, first, as well as within the 

cluster of Marine, Fresh water and Extreme habitats, second, is also clearly visible. This finding is 

coherent with two classes of habitat relationships of the water and non-water-related habitats. 

Mention that these two habitat HGT interaction clusters are much more clearly defined compared to 

the phylogenetic family interaction clusters, underlining the paramount rote played by ecological 

habitats in shaping HGT patterns. 

Detailed analysis of Figures 4.9 and 4.10 suggests that the Human respiratory habitat involves a 

group of species that mutually exchange genetic material at a much higher rate than they do it with 

the species from the other habitats. This could be related to the fact that the only mechanism of 

acquisition of genetic material for this habitat is through the air, which have less probability to 

happen in the exchange with the solid-based habitats. This trend is opposite to the Human others 

habitat, which entails intestinal and·· skin host species having the propensity to exchange genetic 

material ~ith the other habitats through direct contact and food vectors. In fact, the species from the 

Human others habitat constitute the most frequent source as well as the most frequent destination of 

HGT events (see Figures 4.11 and 4.12). 

A previous HGT-based study showed the existence of such a network connecting the human 

micro biome (Smillie et al. 2011 ), and underlined the role of ecology in its definition. Here, we 

extend those findings, revealing an even larger HGT-related cluster of habitats, compr;ising Humans 

(including digestive system), Plants, Animais and Soil. Prokaryotes colonizing human respiratory 

system apparently have their own HGT-related habitat. This habitat has the lowest global HGT rate, 

totaling the outgoing, incoming and intragroup HGTs, thus suggesting that the immediately 

acquired advantages (i.e. new genes allowing species to survive in the changing environment) could 
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be also rapidly lost. Moreover, we can observe the existence of another HGT-related cluster of 

habitats, constituted by the three water-based environments, Marin, Fresh water and Extreme. This 

cluster is particularly well separated from the other environments in the case of the complete HGTs 

(Figure 4.9). For overall gene transfer scenarios, the water-based habitat tends to merge with the 

other prokaryotic habitats (Figure 4.10). 
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Figure 4.9 Complete HGT rates among prokaryotic habitats (indicated for 100 comparisons) 
obtained for 75% bootstrap confidence level. This bit map corresponds to the results from Table 
4.4. 

a) HGT source group is represented by row (left) and HGT destination group is represented by 
column (top). Col or scale on the right is a natural log scale; b) Ratio of source (black squares) vs. 
destination (gray squares) HGT rate for a habitat il)dicated on the left; c) Intra- (black squares) vs. 

inter-group (gray squares) ratio for a habitat indicated on top; Habitat called Human Others includes 
Digestive and Urogenital habitats. 
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Figure 4.10 Overall (complete + partial) HGT rates among prokaryotic habitats (indicated for 100 
comparisons}obtained for 75% bootstrap confidence level. This bitmap corresponds to the results 
from Table 4.5. 

a) HGT source group is represented by row (left) and HGT destination group is represented by 
column (top). Color scale on the right is a natural log scale; b) Ratio of source (black squares) vs. 
destination (gray squares) HGT rate for a habitat indicated on the left; c) Intra- (black squares) vs. 

inter-group (gray squares) ratio for a habitat indicated on top; Habitat called Human Others includes 
Digestive and Urogenital habitats. 
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Table 4.4 Complete HGT rates among prokaryotic habitats for 75% bootstrap confidence level, 
indicated for 100 comparisons. 

a) Source group is represented by row (left) and destination by column (top). Group cardinality in 
terms of the number of species is indicated between parentheses and the number of alleles ( counted 
over all considered MSAs) in square brackets; 10 highest values are highlighted in red. Intragroup 
HGT rates are underlined. Incoming (Inc) and outgoing (Out) HGT rates are highlighted in dark 
green and green, respectively. Grand total, highlighted in violet, represents the average complete 

HGT rate among prokaryotes. 

GroupName \ 1 2 3 4 5 6 7 8 
Human Respiratory 
(25),[2365] 1 0.05 0 0 0.02 0.01 0 0 0 
Hmnan Others (15),[1082] 2 0.01 0.68 0.03 0.06 0.09 0.01 0.01 0.01 
Plant (1 l),[992] 3 0.01 0.01 0.3 0 0.04 0 0.04 0 
Animal (11),[907] 4 0.02 0.04 0.01 0.17 0.05 0.01 0.02 0 
Soi/ (34),[2592] 5 0.01 0.09 0.04 0.04 0.1_2 0.01 0.02 0 
Marine (13),[866] 6 0.01 0 0.01 0.03 0.01 0.09 0.07 0.05 
Fresh water (29),[1767] 7 0.01 0 0.05 0.01 0.01 0.05 0.06 0.02 
Extreme (12),[370] 8 0 0 0.01 0.02 0.01 0.06 0.04 0.25 

Inc 0.75 2.78 2.69 2.68 2.15 1.56 1.74 1.12 

Out 

0.48 
3.13 
2.09 
3.07 
2.08 
2.19 
1.63 

2 
2.94 

Table 4.5 Overall (complete + partial) HGT rates among prokaryotic habitats for 75% bootstrap 
confidence level, indicated for 100 corn parisons. 

a) Source group is represented by row (left) and destination by column (top). Group cardinality in 
terms of the number of species is indicated between parentheses and the number ofalleles ( counted 
over all considered MSAs) in square brackets; 10 highest values are highlighted in red. Intragroup 
HGT rates are underlined. Incoming (Inc) and outgoing (Out) HGT rates are highlighted in dark 
green and green, respectively. Grand total, highlighted in violet, represents the average complete 

HGT rate among prokaryotes. 

Group Name \ 1 2 
,., 

4 5 6 7 8 Out .) 

Human Respiratory (25),[2365] 1 0.08 0 0.01 0.03 0.02 ·o 0 0 0.9 
Human Others (15),[1082] 2 0.01 l.19 0.11 0.13 0.22 0.02 0.01 0.01 7.9 
Plant (11 ),[992] 3 0.02 0.17 0.8 0.01 0.12 0.01 0.16 0.01 6.8 
Animal (11 ),[907] 4 0.04 0.13 0.05 0.21 0.12 0.04 0.04 0.01 6.97 
Soi/ (34),[2592] 5 0.01 0.27 0.12 0.1 0.47 0.03 0.04 0.01 5.98 
Marine (13),[866] 6 0.01 0.04 0.03 0.08 0.08 0.39 0.18 0.2 6.8 
Fresh water (29),[1767] 7 0.02 0.01 0.18 0.05 0.05 0.16 0.13 0.12 5.61 
Extreme (12),[370] 8 0.01 0.02 0.02 0.08 0.06 0.15 0.11 0.52 6.03 

Inc 1.43 9.3 8.4 6.31 6.27 4.44 4.59 4.18 8.07 
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4. 4. 6 Pre diction of the HGT ages 

Here, we discuss the results of our study aimed at the prediction of ages of the identified 

complete and overall HGT events (Figures 4.14-4.17). The experimental setup and the 

methods used in our analysis are described in Section 4.3.4 above. We compare the HGT 

age predictions obtained by two different maximum likelihood prediction methods (TreePL 

and B.E.A.S.T). The predictions were made for both complete and overall HGT events. We 

can observe a multimodal curve, corresponding to the general division of geological time 

(Figure 4.14). It shows a very low HGT rate during the Archaean period (before 2500 Mya), 

then a progressively higher HGT rate during the Proterozoic period (500 Mya- 2500 Mya), 

and finally a very high HGT rate during the most recent Phanerozoic period ( under 500 

Mya). These results suggest that partial transfers, at least as they can be detected by the 

modern HGT-Detection methods (Boc et al. 2012), are generally more recent than the 

complete ones. Our findings contrasts with another recent study, addressing the age 

recovery of complete gene transfers only, that argue that the HGT rate might be constant 

across the time scale (David and Alm 2011 ). 
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2000 2500 3000 3500 

Figure 4.14 Frequency of complete (red and blue circles) and overall HGTs (red and blue squares) 
according to the time period. 
Each represented value is drawn in the middle of the corresponding 250 Mya (million ofyears) time 

interval. The neighbor points are connected using natural smoothing Gnuplot splines. TreePL and 
B.E.A.S.T. software were used to infer both complete and overall HGT ages. The sum of all 

represented values for each of the four curves is 1.0. 

Figures 4.15 and 4.16 compare the results obtained by using TreePL and B.E.A.S.T. Figure . 

4.15 illustrates the general traits of the time distribution of the detected complete ( case a) 

and overall ( case b) HGT events by using a boxplot representation. It shows that relative 

differences in the results provided by TreePL and B.E.A.S.T. are more important for the 

complete than for the partial HGTs. Mention that the central value of the presented 

distribution (i.e. its median value) is almost identical for the two time inference methods. 

Figure 4.16 estimates the distributions obtained with TreePL and B.E.A.S.T by using 

Gaussian kernels. It also depicts the limits of the 95% High Probability Density interval of 

B.E.A.S.T (i.e. for the 5% and the 95% boundary). The TreePL curve is almost completely 

bound by this interval. Not being the optimal one (i.e. from the Bayesian point of view), the 
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TreePL estimation can be viewed as an acceptable outcome of B.E.A.S.T. Thus, the results 

provided by the two methods can be seen as compatible. 

The curves in Figure 4.17 confirm the previous trends, while representing the correlation 

via a Quantile-Quantile plot. These results show very little divergence of the prediction of 

the transfer ages between the partial and overall HGT s_cenarios for the most recent period 

of 1000 Mya. Then, the two predictors diverge slightly until 2000 Mya. Older than the latter 

period, the results provided by TreePL and B.E.A.S.T. tend to be different. It is worth 

noting that more than three-quarters of the transfers fall into the most recent time interval 

(i.e. less than 1000 Mya). Mention than the latter result is consistent with the findings of 

(David and Alm 2011 ). 

104 



I'.'.? 
Ill 
Q) 
>, 
C 

~ 
~ 
Q) 

E 
i= 

I'.'.? 
Ill 
Q) 
>, 
C 

~ 
~ 
Q) 

E 
i= 

3500 

3000 

2500 

2000 

1500 

1000 

500 

0 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

0 

TreePC r,, ,, 
B.E.A.S.T. 1 > > 1 

Time Distribution - boxplot 

TreeP[ f.u ,J 
B.E.A.S.T. 1, > J . 

Time Distribution - boxplot 

Figure 4.15 Boxplot of time distribution of the detected HGT events. 
Time scale represents HGT ages in Mya (million of years). 

a) Boxplot for complete HGT events; b) Boxplot for overall ( complete + partial) HGT events. 
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Figure 4.16 Gaussian kernel graphs oftime distribution of the detected HGT events. 
The curves represent: TreePL mean value, B.E.A.S.T. median value, B.E.A.S.T high probability 
density 5% and B.E.A.S.T high probability density 95%. a) Oaussian kemels for complete HOT 

events; b) Oaussian kernels for overall ( complete + partial) HOT events. 
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overall ( complete + partial) HGT events. 
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4.5 Conclusion 

In this chapter, we presented a comprehensive comparative study of complete and partial HGTs 

affecting the evolution of prokaryotic species. All the methods we applied in the framework of our 

analysis included a statistical validation step. We started by showing that the rate of HGT among 

core genes (Charlebois and Doolittle 2004) is generally comparable to that among ubiquitous genes 

(i.e. all the genes). Precisely, core genes undergo slightly more partial and slightly less complete 

HGTs than ubiquitous genes. Our results are generally compatible with previous analyses conducted 

for complete HGTs only (Ge et al. 2005); Smillie et al. 2011), showing that most of the prokaryotic 

genes have been affected by HGT multiple times during their evolutionary history, but for a reduced 

number of alleles. According to our estimation, the percentage of prokaryotic genes affected by at 

least one complete HGT during their evolutionary history varies between 64.5% (for the 90% HGT 

bootstrap threshold) and 96.3% (for the 50% HGT bootstrap threshold), while the percentage of 

genes affected by at least one overall (complete + partial) HGT varies between 85.4% (for the 90% 

HGT bootstrap threshold) and 96.3% (for the 100% HGT bootstrap threshold); see Table 4.1 b. 

Moreover, our findings suggest that depending on the selected bootstrap confidence level, the ratio 

between the overall and complete HGT rates is between 2.3 (for the 90% HGT bootstrap threshold) 

and 4.7 (for the 50% HGT bootstrap threshold) - see Table 4.la. We highlighted the main 

differences in the HGT rates between the two scenarios for different groups of taxa. Thus, we 

showed that Archaea and Proteobacteria are the highest-level phylogenetic clusters regarding HGT. 

On the individual group level, the Firmicutes family is exhibiting a high intragroup and a very low 

intergroup HGT interactions. Most of the prokaryotic families show an asymmetric behavior in 

regards to the incoming and outgoing HGTs. 

Furthermore, we depicted and compared the ten most common complete and partial HGTs (see 

Figures 4.7-4.8) characterizing the evolution of the selected set of the most frequent prokaryotic 

genes. The presented comparisons emphasize the fact that the complete HGT patterns are very 

similar to the partial ones, especially in the case of the family analysis (i.e. phylogenetic 

classification). In addition, we compared the patterns of complete and overall HGTs within different 

ecological ha~itats (i.e. ecological classification). The obtained results show some disagreement 

between the two HGT scenarios. For instance, unlike complete HGTs, overall (and respectively 

partial) HGTs favor a more reciprocal exchange of genetic material between prokaryotes. Except 

the Extreme habitat, all the other considered habitats include the species that share at least one HGT 
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with the species of any other considered ecological habitat. Two major ecological clusters of 

habitats, regarding HOT exchange, can be easily identified from the presented hit maps (see Figures 

4.9-4.10): the cluster including Human others, Plant, Animal and Soil habitats and that including the 

Marine, Fresh water and Extreme habitats. Mention that our habitat findings are coherent with the 

results of Smillie et al. (2011 ). 

Finally, the comparison of the ages of the inferred complete and partial HOTs underlines a high 

correlation between the results provided by the B.E.A.S.T. and TreePL methods for the HOTs 

falling within the most recent period of 1000 Mya; the two predictions diverge slightly until 2000 

Mya; after this date, the results provided by TreePL and B.E.A.S.T. tend to be different. Our 

analysis also indicates that the ages of the recent HOTs can be predicted with a much higher 

confidence than those of the ancient ones. 

Our results emphasize the importance of considering partial HOTs in the process of phylogenetic or 

ecological classification of prokaryotic species. A detailed study of overall HOT scenarios in 

prokaryotes, including both complete and partial HOTs, was one of the main original contributions 

of our work. We also showed that both complete and overall HOT rates are not the unique, and 

well-established, values but should be rather estimated by means of intervals of possible values. The 

boundaries of such intervals depend on the selected minimum and maximum HOT bootstrap 

acceptance thresholds (Boc et al. 2010). Thus, in the future, it would be important to design further 

techniques for statistical validation of the obtained complete and partial horizontal gene transfer 

events. For instance, it would be interesting to verify whether the flow of genetic material across 

habitats is not a reflection of the distribution of strains and their probability of exchanging genetic 

material. A hypergeometric test (Rice and John 2007), based on the p-value calculation, could be 

carried out for addressing this issue. However, such a computation should be very lengthy as the 

identification of complete and partial HOTs should be done for various data samples. 

W e have provided the complete source code of our application allowing one to carry out the 

methods for detecting and validating horizontal gene transfer events discussed in this chapter; the 

application's name is HOT-QFCLUST v.0.2. The related scripts written in the Python programming 

language have been also made available. The ReadMe doculllentation file provides an explanation 

of the main steps to follow for executing the application. The source code and the accompanying 

files have been uploaded to the GitHub public repository (with the BSD licence). 

109 



It is freely available at the following URL address: 

https://github.com/dunarel/dunphd-thesis/tree/master/Chapter4/Main/linalgebra_impl. 

We also supplied the original scripts allowing one to carry out the whole computational pipeline of 

the project presented in this chapter; these scripts are freely available in different directories at the 

following URL address: https://github.com/dunarel/dunphd-thesis. 
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Supplementary Table 2. Habitat membership of sampled species: species-family presence-absence 
matrix. 
Columns represent: Taxon ID from the NCBI Taxonomy database, abbreviated species names used 
in tree representation; it is followed by 1 if species is present in the corresponding habitat or by 0 if 
it is absent in it -according to the GOLD database (also see Appendix B, Formula 8.3). 

228908 N.equitans 0 0 0 0 0 1 0 

374847 Ca.K.cryptofil. 0 0 0 0 0 0 1 

272557 A.pernix 0 0 0 0 0 1 0 

273057 S.solfataricus 0 0 0 0 0 0 1 

768679· T.tenax 0 0 0 0 0 0 1 

188937 Af.acetivorans 0 0 0 0 0 1 0 

362976 H.walsbyi 0 0 0 0 0 0 1 

309800 H. volcanii 0 0 0 0 0 0 1 

348780 N.pharaonis 0 0 0 0 0 0 1 

634497 H.hispanica 0 0 0 0 0 1 0 

272569 H. marismortui 0 0 0 0 0 1 0 

243090 R.baltica 0 0 0 0 0 1 0 

190304 F.nucleatum 1 0 0 0 0 0 0 

240015 A.capsulatum 0 0 0 0 1 0 

743525 T.scotoductus 0 0 1 0 1 0 1 

224324 A.aeolicus 0 0 0 0 0 1 0 

484019 T.africanus 0 0 0 0 0 0 1 

255470 Dehaloc.sp. C 0 0 0 0 1 0 1 

311424 Dehaloc.sp. V 0 0 0 0 0 0 1 

330214 Ca.N.defluvii 0 0 0 0 0 0 1 

379066 G.aurantiaca 0 0 0 0 0 0 1 

267671 L.interrogans 0 1 0 0 1 0 1 

759914 B.pilosicoli 0 0 0 1 0 0 0 

565034 B. hyodysenter. 0 0 0 1 0 0 0 
167539 P.marinus 0 0 0 0 0 1 0 

1148 Synech.sp. 0 0 0 0 0 0 1 

43989 Cyanoth.sp. 0 0 0 0 0 1 0 

481448 M infernorum 0 0 0 0 0 0 

716544 W.chondrophila 0 0 0 1 0 0 0 

765952 'P.acanthamoeb. 0 1 0 0 0 0 0 
194439 C.tepidum 0 0 0 0 0 0 1 

269798 C.hutchinsonii 0 0 0 0 1 1 1 

411154 Gforsetii 0 0 0 0 0 1 0 

402612 F.psychrophilum 0 0 0 1 0 0 1 

1034807 F. branchioph. 0 0 0 0 0 0 1 

405948 S.erythraea 0 0 0 0 1 0 0 

227882 S.avermitilis 0 0 0 0 1 0 0 

216594 lvlmarinum 0 1 0 0 0 0 0 

1048245 Mcanettii 0 1 0 0 0 0 0 
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572418 Mafricanwn 0 1 0 0 0 0 0 0 

419947 Mtuberculosis a 0 1 0 0 0 0 0 0 

83332 Mtuberculosis v 0 1 0 0 0 0 0 0 

233413 Mbovis 2122 0 1 0 1 0 0 0 0 

410289 Mbovis 1173 0 0 0 1 0 0 0 0 

561275 Mbovis 172 0 1 0 ü' 0 0 0 0 

991791 C.acetobut. 0 0 0 0 1 0 0 0 

208596 Carnobact.sp. 0 0 0 0 0 1 0 0 

684738 L.lactis K 0 0 1 0 0 0 0 0 

272623 L.lactis 1 0 0 0 1 0 0 0 0 

543734 L.casei 1 0 0 0 0 0 0 0 

568704 L.rhamnosus L 1 0 0 1 0 0 0 0 

568703 L.rhamnosus G 1 0 0 0 0 0 0 0 

358681 B.brevis 0 0 0 0 1 0 0 0 

398511 B.pseudojirmus 0 0 0 0 1 0 0 0 

315750 B.pumilus 0 0 0 0 1 0 0 0 

592022 B.megaterium D 0 0 0 0 1 0 0 0 

545693 B.megaterium Q 0 0 0 0 1 0 0 0 

281309 B.thuringiensis o· 1 0 0 1 0 0 0 

288681 B.cereus E 0 1 0 1 1 0 0 0 

637380 B.cereus C 0 1 0 0 1 0 0 0 

361100 B.cereus Q 0 0 0 0 1 0 0 0 

279010 B. licheniform is 1 0 0 0 1 0 0 0 

224308 B.subtilis 1 0 0 0 0 1 0 0 0 

655816 B.subtilis W 0 0 0 0 1 0 0 0 

326423 B.amyloliquef F 0 0 0 0 1 0 0 0 

692420 B.amyloliquef D 0 0 0 0 1 0 0 0 

177437 D.autotroph. 0 0 0 0 0 1 0 0 

448385 S.celluloswn 0 0 0 0 1 0 0 0 

404380 G.bemidjiensis 0 0 0 0 1 0 1 0 

273121 W.succinog. 0 0 0 1 0 0 0 0 

382638 H.acinonychis 0 0 0 1 0 0 0 0 

693745 Hpylori 1 0 0 0 0 0 0 0 

62928 Azoarc.sp. 0 0 1 0 0 0 0 0 

266264 C.metallidurans 0 0 0 0 1 0 1 0 

1042878 C.necator 0 0 0 0 1 0 1 0 

381666 R.eutropha 0 0 0 0 1 0 1 0 

375286 Janthin.sp. 0 0 0 0 0 0 1 0 

757424 H.seropedicae 0 0 1 0 1 0 0 0 

1005048 C.fimgivorans 0 0 0 0 1 0 0 0 

452662 Sjaponicum 0 0 0 0 1 0 0 1 

272942 R.capsulatus 0 0 0 0 1 0 0 0 

375451 R. denitrificans 0 0 0 0 0 0 1 . 0 

272568 G. diazotroph. 0 0 1 0 0 0 0 0 

414684 R.centenum 0 0 0 0 0 0 1 0 
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258594 R.palustris 0 0 0 0 1 0 1 0 

224911 B.japonicum 0 0 1 0 0 0 0 0 

288000 Bradyrh.sp. 0 0 1 0 1 0 0 0 

311403 A.radiobacter 0 1 1 0 0 0 0 0 

347834 R.etli CFN 0 0 1 0 0 0 0 0 

491916 R.et(i CIAT 0 0 1 0 0 0 0 0 

706191 P.ananatis 0 0 1 0 0 0 0 0 

321314 S.enterica 0 1 0 0 1 0 1 0 

585035 E.coli S88 1 0 0 0 0 0 0 0 

585395 E.coli 0103 1 0 0 0 0 0 0 0 

585055 E.coli 55989 1 0 0 0 0 0 0 0 

573235 E.coli 026 1 0 0 0 0 0 0 0 

585397 E.coli EDia 1 0 0 0 0 0 0 0 

585034 E.coli !Ali 1 0 0 0 0 0 0 0 

405955 E.coliAPEC 1 0 0 0 0 0 0 0 

364106 E.coli UT! 1 0 0 0 0 0 0 o. 
585056 E.coli UMN 1 0 0 0 0 0 0 0 

544404 E.coli 0157 1 0 0 0 0 0 0 0 

585396 E.coli 0111 1 0 0 0 0 0 0 0 

199310 E.coli CFT 1 0 0 0 0 0 0 0 

701177 E.coli 055 1 0 0 0 0 0 0 0 

413997 E.coli BREL 1 0 0 0 0 0 0 0 

585057 E.coli IA/39 1 1 0 0 0 0 0 0 

574521 E.coli 0127 1 0 0 0 0 0 0 0 

511145 E.coli K-12 M 1 0 0 0 0 0 0 0 

316385 E.coli K-12 D 1 0 0 0 0 0 0 0 

595496 E.coli BW 1 0 0 0 0 0 0 0 
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Supplementary Table 3. Genes sampled. 

a) Core genes (36 in total) according to (Charlebois and Doolittle 2004). 

alaS argS atpD cysS dnaG eno g/tX glyA groEL 

guaA hisS ileS infB ksgA feus /ysS map nusA 

nusG pheS pheT pros pyrG pyrH recA rp/B rp/C 

rp/X rpoB rpsN secY sers thrS trpS trxB vals 

b) Rest of the genes (74 in total) considered in this study. 

adk argD aroA aroE asd aspS atpA atpB atpC 

carB c/pP clpX dapA def dnaJ dnaK fabG ga/E 

gatA gatB glmS g/yS grpE gyrA gyrB hemA hisB 

hisD hisH ilvC ilvD metK nadD nadE oppA pgk 

proA proC purA purB purD purE purF purL purM 

pyrB pyrC pyrD pyrE pyrF ribH mhB rp/F. rp/P 

rp/W rpmB rpmG rpoA rpoD ruvB sdhA secE serA 

thrC trpA trpB trpC trpD truA trxA tyrS uvrA 

uvrB uvrC 
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Supplementary Table 4. Time constraints applied to the gene tree nodes, corresponding to the 
considered phylogenetic families and some of their Most Recent Common Ancestors (MRCA), up 
to their Last Common Ancestor (LCA). 

Confidence Confidence 

ID 
Node interval interval Mean Standard 

Node name (or MRCA) name Minimum Maximum time deviation 
time time 

0 34 3417 4482 4149 289 Archaea 
1 106 3437. 4391 3917 272 Bacteria 
2 105 3181 4038 3590 244 76 Thermotogae 
3 104 2815 3530 3139 207 76103 
4 103 2738 3434 3051 201 102 Bacteroidetes/Chlorobi 
5 102 2658 3339 2963 196 101 Chlamydiae Spirochaetes 
6 101 2460 3128 2761 189 100 Epsilonproteobacteria 
7 100 2156 2844 2476 187 a99 Alphaproteobacteria 
8 99 1569 2310 1924 192 Gamaproteobacteria Betaproteobacteria 
9 80 2438 3115 2744 191 Chlamydiae Spirochaetes 
10 76 2713 3382 3009 196 75 Fusobacteria Firmicutes 
11 75 2512 3076 2743 173 71 Actinobacteria 
12 71 2342 2814 2519 159 Deinococcus-Thermus Cyanobacteria 
13 68 2602 3242 2880 210 Fusobacteria Firmicutes 
14 33 3154 4168 3826 270 Euryarchaeota 
15 20 3046 3919 3617 229 Crenarchaeota 
16 98 1382 2113 1732 189 Gammaproteobacteria 
17 87 1107 1837 1455 187 Betaproteobacteria 
18 86 1650 2390 2007 192 Alphaproteobacteria 
19 81 858 1666 1236 207 Epsilonproteobacteria 
20 79 1423 2254 1839 213 Spirochaetes 
21 78 320 1042 592 187 Chlamidia 
22 74 1032 1727 1357 179 Actinobacteria 
23 70 706 1355 1020 169 Cyanobacteria 
24 67 2367 3013 2650 181 Firmicutes 
25 Ica 2500 4500 4290 0 LCA 

Node names and numbers, confidence intervals and standard deviations were those provided by 
(Battistuzzi et al. 2004 ). 
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CHAPTERV 

A NEW FAST ALGORITHM FOR DETECTING AND 

V ALIDA TING HORIZONTAL GENE TRANSFER 

EVENTS USING PHYLOGENETIC TREES AND 

AGGREGATION FONCTIONS 

5.1 Abstract 

5.1.1 Background 

Until recently, the traditional view of prokaryo"tic evolution has been based on divergence and 

periodic selection. Mutation has been assumed to be the main diversifying force and selection was 

the unifying one, until accumulation of mutations led to a speciation event. A new evolutionary 

model has slowly emerged, in which Horizontal Gene Transfer (HGT) is the main diversifying force 

and recombination is the main unifying one, speciation being an ecological adaptation. Negative 

selection has been the most studied evolutionary force, for which simple and efficient detection 

methods, based on sequence conservation (see chapters I and II), exist. In chapter 3 we described an 

efficient algorithm, applied to the strains based on distinct pathogenic populations, for detecting 

functional genomic regions associated with positive and lineage specific selection (in both variants, 

monophyletic or polyphyletic). 



5.1.2 Results and conclusion 

In this chapter, we present a new algorithm, called HGT-QFUNC, for detecting genomic regions 

that can be associated with complete HGT events. The aggregation functions described in chapter 

III, which yielded good results in detecting selection, will be tested in the context of HGT 

identification. New clustering functions which perform better in presence of HGT and 

recombination will be also introduced. 

We will validate our results using p-values estimated by means of a Monte Carlo approach. To 

estimate the rates of complete HGT among prokaryotes, we will compare our results to the highly 

accurate but slower HGT-Detection algorithm based on the calculation of bootstrap support of 

considered gene trees (see chapter IV). We will also compare the results provided by HGT-QFUNC 

and HGT-Detection using simulated data, which will be representative of the prokaryotic landscape. 

W e will show that the proposed new functions and algorithm are capable of providing good 

detection rates for most of the highly probable HGT events. The main advantage of the proposed 

algorithm is its quadratic time complexity on the number of considered species. This makes it 

applicable to the study of large genomic datasets. Note that the proposed HGT-QFUNC algorithm 

yields better performances than a simple conservation approach, running at the same quadratic 

asymptotic time. The obtained results confirm the prime importance of HGT in the light of 

prokaryotic evolution. 

5.2 Background 

The mechanisms by which bacteria and viruses adapt to changing environmental conditions are well 

known. These mechanisms include homologous recombination (Posada and Crandall 2001 ), 

nucleotide substitutions, insertions-deletions (Kimura 1985) and horizontal gene transfer (Boc et al. 

2010). The variation of the DNA composition is spread throughout prokaryotic genomes leading to 

the formation of different polymorphie strands of the same group of organisms. The survival of 

these strands depends on their ability to overcome environmental changes (Moran 1962). Multiple 

mechanisms can overlap, and limits between groups are sometimes "fuzzy" (Hanage et al. 2005). 

The classical Linnaean paradigm of biological classification is that of a hierarchical organization of 

species into increasingly narrower groups based on their shared characteristics. It is the most used 

framework for interpreting Darwinian evolution. According to it, the most narrowly defined 

biological group is the species, and the formation of a new lineage is a speciation, which entails the 

diversification of one species into two different species. Inside the species, a free exchange of 
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genetic information is allowed, but outside the species boundaries, genetic information is passed 

solely to descendant individuals. 

This model of evolution is challenged on the prokaryotic level, where there exists experimental 

evidence of massive transfer of genetic material between different organisms (Fraser et al. 2007). 

Such a transfer can occur by two distinct routes: homologous recombination and HGT (Thomas and 

Nielsen 2005). Homologous recombination is often limited to closely related organisms, having 

sufficient sequence similarly to allow for efficient integration of genetic material (Ochman et al. 

2000). HGT can occur between both closely related and genetically distinct organisms. 

5.3 Data description 

5.3.1 Real prokaryotic (genomic) data 

We assembled a real-world dataset, representative of the prokaryotic genomic landscape, to serve as 

a basis for testing our algorithm against a well-known HGT-Detection (v.3.4) algorithm (Boc et al. 

2010) available on the T-Rex web site (Boc èt al. 2012). A complete description of this dataset is 

available in chapter IV. Here we outline the most important features of the dataset that we 

examined. 

All of the completely sequenced prokaryotic genomes available at the NCBI Genomes ftp site (1465 

as of November 2011) were considered. Among them, we first selected 100 of the most complete 

genomes in terms of the number of genes. Then, we added to them 11 additional species to ensure 

that our dataset includes at least one representative from each of the 23 available prokaryotic 

families. This yielded us a total number of 111 species. Detailed information on the considered 

species can be found in Supplementary Table 1. W e also identified 110 of the most complete genes 

(Supplementary Table 3) from the selected set of 111 species (see also chapter IV for more details). 

Multiple sequence alignments could contain multiple alleles of the same species. 

Afterward, we constructed 110 multiple sequence alignments ( one MSA per selected gene) from 

which we excluded misclassified paralogs using TribeMCL (Enright et al. 2002). The latter tool, 

which uses a Markov Chain Clustering (MCL) algorithm (van Dongen 2000) on all-to-all BLASTP 

hits, is known to be conservative in the number of groups (Li et al. 2012). We carried out the 

TribeMCL version bundled with "mcl" vl 1.294, with default parameters (!=2.0). In order to obtain 

more accurate results of BLASTP, we set a Smith-Waterman backend and an E-value threshold of 
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10·4_ Using this procedure, 1 % of initial alleles were identified as paralogs and excluded from the 

original MSA. 

Nucleotide sequences were retrieved from protein sequences identified above. They were aligned 

using MUSCLE v3.8.31 (Edgar 2004), with default parameters, and trimmed with GBlocks v0.91 b 

(Castresana 2000). In our analysis, we were less restrictive than the default option of GBlocks, 

allowing 50% of the sequences for flank positions (-b2 parameter), a maximum of 10 contiguous 

nonconserved positions (-b3 parameter), minimum block length of 5 (-b4 parameter) and half gap 

positions (-b5 parameter). 

The obtained MSAs were then used as a basis for the detection of complete HGT. Species 

taxonomy (i.e. species tree in the HGT context) was retrieved from the NCBI Taxonomy website 

(Benson et al. 2009). Taxonomie groups were those assigned by the NCBI Genomes Project. Each 

species was then assigned to one established prokaryotic family. 

W e constructed the gene trees using the RAxML method (Stamatakis 2006). We used the RAxML 

v.7.2.8 - multithreaded implementation, and GTR Gamma model, 20 starting random trees and 100 

bootstrap trees as RAxML input options. 

5.3.2 Synthetic data 

For a simulation study conducted with synthetic data, we used the real prokaryotic dataset as a 

basis, in order to maintain the same real-world relationships between sequences, and the same 

limitations for our detection.algorithm as it would be in a real-world situation. To simulate our data, 

we chose as benchmark the gene hisH, which is the gene with the highest number of different 

prokaryotic strains (i.e. 99) in which the HGT-Detection algorithm did not find any HGT at the 

bootstrap level of 50%. This threshold was considered as a minimum quality requirement in our 

study. The detailed description of the simulated synthetic data and the corresponding simulation 

study can be found in section 5.4.7. 

5.4 Methods 

5. 4.1 Clustering using aggregation functions 

Considering a collection of different prokaryotes, classified as belonging to different taxonomie 

groups, we can model the simplest case ofHGT as the transfer of one single gene sequence between 

two different species (e.g. x0 andy0) belonging to two different monophyletic groups (e.g. X and Y). 
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If there was a genetic transfer from source strain y 0 to destination species x0, then species x0 would 

have the same or very similar genetic sequence as the source species y0 • This would lead to an 

inverse direction shift in phylogenetic classification. HGT can involve either heterologous ( e.g. site

specific) or homologous recombination, or direct host gene replacement followed by intragenic 

recombination. The end result at the phylogenetic level is the integration of species x0 into the group 

Y closely to source species y0• This situation is depicted in Figure 5.1. Genetie transfer direction and 

resulting phylogenetic neighborhood are dependent on the relative fractions of species x0 and y0 

involved in the process of recombination. In this chapter, we consider the case of complete HGT 

when source species is integrated into the host genome without intragenic recombination (i.e. 

without formation of a mosaic gene ). 

r-:------

1Y2 v1: xo vo 
I_ - - - - - _. 

Xo 1X1 X2 X3 1 
L--------1 

Yrest Xrest 

Figure 5.1. Intragroup and intergroup phylogenetic relationships following an HGT 
A horizontal gene transfer from species y 0 of the group Y to species xo of the group Xis shown by an 
arrow; dotted line shows the position of species x 0 in the tree after the transfer; Xrest denotes the rest 
of the species of the X group, and Yrest denotes the rest of the species of the group Y. Each species 

corresponds to a unique nucleotide sequence in this example. 
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Here we describe the HGT detection problem mathematically. To perform the clustering of our 

data, we first define the following sets, involving the HGT-related species x0 andy0: 

R={x0 Uyo}, (5.1) 

Xrest = X\xo, (5.2) 

Y,.est = Y\ Yo · (5.3) 

Note that in a general case, x0 and y0 can be clusters (i.e. sub-trees) including several' species. We 

define the intergroup and intragroup variability. Consider two groups of species A and B not having 

common members. The measures in question are calculated as the means of the Hamming distances 

(any other evolutionary distance can be used instead), disth, among the sequences of the same group 

A (or B) only, and among the sequences from the distinct groups A and B. 

First, the intragroup variability of the group A, denoted by V(A), is defined by equation 5.4: 

V(A) = Ldisth(a1,a2 ). (5.4) 
{a 1 ,a 2 EAla1 =::a 2 } 

W e then normalize V(A) by the number of possible different pairs of elements in A ( equation 5 .5): 

V(A) 
v,10rmCA) N(A)x (N(A)-1)/2 

where N(A) is the number of elements in the group A. 

(5.5) 

The intergroup variability of the groups A and B, denoted by D(A,B), is defined as follows: 

D(A,B) = Ldisth(a,b). 
{aeA,beB} 

We then normalize D(A,B) by the number of possible pairs of species: 

D(A,B) 
D,10rm(A,B) = N(A)x N(B) 

(5.6) 

(5.7) 

Using previously described groups and fonctions, we define a new fonction Q7 as follows: 
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Q7(R) = Max(Dnorm (R,Xrest); Dnorm (R,Y,.es,))-V,,orm(R), (5.8) 

where Ris defined by equation 5.1. 

When a complete HGT happens (Figure 5.1), the transferred gene is assumed to replace a 

homologous gene in the host genomes. As a result of this event, destination species x0 migrates 

close to source species y0 into the phylogenetic network representing the evolution of the given gene 

(Figure 5 .1 ). Thus, in the obtained gene tree destination species x0 will be a part of the group Y to 

which belongs source species y0• Formula 5.8 reflects such a principle. Also V,10rm(R), in this 

particular case, defines the distance between species x0 and y0• 

We also introduce the aggregation fonction, Q8, similar to the fonction that provided good results in 

detecting lineage specific selection in (Badescu et al. 2010), (i.e. Q6 = IV(A)IV(B)I ): 

Qg(R) = Dnorm(R,XY,.est) 
Vnorm(R) 

(5.9) 

Because this fonction uses the division instead of the summation, such a fonction underlines the 

asymmetry between the two groups. Note that both HGT and lineage specific selection exhibit 

asymmetrical properties. 

Finally, we define the fonction Q9 (R) as follows: 

Q9(R) = -V,wrm(R) • (5.10) 

Another clustering option would be to consider both interacting species as a destination group and 

merge the rest of the sequences into the source group: 

XY,.est = {XU Y\ R}. (5.11) 

5.4.2 Other variants of clusteringfunctions as implemented in the algorithm 

Here we describe particular cases of formulas used in our implementation when the HGT occurred 

between the tree leaves (i.e. individual species of X and Y; see formulas 5.12-5.18). Let us define: 

D(x0,y0 ) = dist11 (x0,y0 ), . (5.12) 
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D(x0,X,est) = Ldisth(x0,x;) = D(x0,X), 
{x; eX:x; ;t,x0 } 

D(yo, Y,.est) = L dist,, (Yo,Y;) = D(yo, Y), 
{y; eY:y; * Yo} 

D(x0,Y) = Ldisth(x0,Y;), 
{y;eY} 

D(y0,X) = L dist,, (y0,x;) , 
{x;eX} 

D(x0, Y,.est) = L dist h (x0,Y;) = D(x0, Y)- D(x0,y0 ), 

{y; eY:y; * Yo} 

D(yo.Xrest) = Ldisth(Yo,X;) = D(yo.X)-D(xo,Yo), 
{x; e.X,·x; *-"o} 

n = N(X), 

m = N(Y). 

(5.13) 

(5.14) 

. (5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

We also introduced an epsilon (e) value (i.e. in our implementation we s_et the value of E equal to 

0.00001) to avoid the division by zero. Sorne other constant~ were also added to formulas (5.9) -

. (5.22) in order to normalize the results and to obtain the same minimum value. 

_ (D(x0.Xres,) + D(yo.Xres,) D(Xo, Y,.es,) + D(Yo, Y,·es,)J- D(Xo,Yo) + 2, and (5.21) 
Q1a(Xo,Yo)- Max 2(n-1) ' 2(m-l) 

Q ( ) 
_ D(Xo,Xrest) + D(yo,Xrest) + D(Xo, Y,.est) + D(yo, Y,.est) + 8 

8a Xo,Yo - -----------------~-. 
2(xy + e )(n + m-2) 

(5.22) 

In our implementation, we used the following variants of the fonctions Q8 and Q9 as well: 

D(x0,X) + D(y0,X) D(x0, Y)+ D(y0, Y) 
---'-----'--+--'-----+8 

Qsb(xo,Yo) n -1 n1-l d , an 
2(D(x0,y0 ) + 8) 

Q9a(xo,Yo) = -D(xo,Yo)+ 2 • 
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For each pair of species (x,y) belonging to two different groups, we maximize Q1a, Qsa and Qsb, over 

all possible sets R in order to identify the best HGT candidates. At the same time, maximizing Q9a is 

equivalent to minimizing the distance between x0 and y 0• 

5.4.3 Description of the algorithm 

Here we present a new algorithm allowing one to estimate the values of fonctions Q7a (called later 

Q1), Qsa, Qsb and Q9a (called later Q9) and to validate the results using the p-value estimation 

procedure. Our algorithm takes as input a multiple sequence alignmént (MSA) of n species, a set of 

groups ( e.g. species families) and a unique association of each species to one of these groups. The 

algorithm's output consists of pairs of clusters that could be involved in horizontal gene transfers. 

The detailed algorithmic scheme is presented in Algorithm 5.1. 

The p-value estimation is clone by carrying out a Monte Carlo procedure with a fixed p-value 

threshold. For a constant number of steps, this procedure simulates permuted MSAs. A constant 

number of nucleotides are permuted within each of the original sequences. Then, we compare the 

obtained values of the selected fonction Q to the reference value obtained with the original data. 

The detailed p-value estimation scheme is presented in Algorithm 5.2. 

The main algorithm consists of the three major steps. First, it calculates the pairwise distance matrix 

between all given species. Second, it calculates the distance between each species and all other 

species belonging to the other groups. Third, it estimates the· intergroup and intragroup distances 

and aggregation solutions by using the formulas (5.12)-(5.24). 

There is one more step needed to complete the detection of HGT. The obtained potential HGTs are 

ranked according to the value of the corresponding Q-function, first, then p-value, second. Those 

HGTs whose Q-function values were greater than a fixed threshold are considered as valid. This 

threshold can be set based on the p-values or a fixed percentage of the total number of species 

(called here percentage of positive values). We also considered an alternative results ranking: by p

value, first, and by the Q-function value, second. Such a ranking strategy allowed us to better 

emphasize the strength of statistical signal. All the tests of the new HGT detection algorithm were 

carried out in parallel with both ranking strategies. 
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5. 4. 4 lmplementation 

The presented algorithm can be parallelized to improve its performances. At least three different 

parallelization schemes exist. The first one uses fine grained parallelism with global atomic 

reductions that would be better suited for graphie cards. The second one involves the parallelization 

of higher granularity, implying the p-value estimation steps. It would be better suited to multicore 

processors. The third one, which we implemented in our program, proceeds by mapping each group 

into a CPU core. Although this is not the most efficient scheme, it has the advantage to accelerate 

calculations even in the absence of the p-value estimation step. We developed a C++ code for this 

algorithm for multicore CPUs, parallelizing using OpenMP, and SIMD vectorizing using SSE3 

instructions. 

Our implementation is available at the following URL address: 

http://www.info2.uqam.ca/~makarenkov _ v/fastHGT.zip. 
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Algorithm 5.1. 

HGT-QFUNC algorithm for detecting species related to each other by the way of complete 
horizontal gene transfer (HGT) 

Require: 
MSA : Multiple sequence alignment, 
FI: Aggregation fonction to be optimized Q1, Qsa, Qsb or Q9, 
GR: Groups, 
SG : Unique association of each sequence in the MSA to one group (G), 

Ensure: 

QVAL: Matrix of QFI values for each pair of sequences E MSA 

1: MSA _ N ~ N umber of sequences in MSA 
2: GR_N ~ Number of groups 
3: N_SEQS [GR_N] ~ Number of sequences (i.e. species) in each group 
4: D_SEQ_SEQ +-- Matrix[MSA_N] [MSA_N] Il sequence to sequence distance matrix 

5: for ail seq _i E MSA do 
6: for.ail seq _j E MSA do 

7: D_SEQ_SEQ [seq _i] [seq _j] = D(seq _i,seq _j) = dist,,(seq _i,seq _j) 

8: end for 
9: end for 
10: D_SEQ_GR ~ Matrix [MSA_N] [GR_N] Il sequence to group distance matrix 

11: for ail seq _i E MSA do 

12: for ail seq _j E MSA do 
13: gr _j ~ SG [seq_j] 
14: D_SEQ_GR [seq_i] [gr _j] += D_SEQ_SEQ [seq_i] [seq_j] 
15: end for 
16: end for 

... (continued on next page) ... 
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... (continued from previous page) ... 

17: QVAL ~ Matrix [MSA_N] [MSA_N] 
18: for ail seq _i E MSA do 

19: for ail seq _j E MSA do 

20: gr _i ~ SG [seq_i] 
21: gr _j ~ SG [seq_j] 
22: n ~ N_SEQS [gr_i] 
23: m ~ N_SEQS [gr _j] 
24: go to 37 if (seq_i >= seq_j) or (n < 2) or (m < 2) 
25: D(x0 ,y0 ) = D _SEQ_SEQ[seq _i][seq _j] 

26: D(x0,Xrest) = D(x0,X) = D_SEQ_GR[seq_i][gr_i] 

27: D(y0,Y,.es,) = D(y0,Y) = D_SEQ_GR[seqj][grj] 

28: D(x0,Y) = D_SEQ_GR[seq_i][grj] 

29: D(x0 , Yre.st) = D(x0 , Y)- D(x0,y0 ) 

30: D(y0,X) = D_SEQ_GR[seqj][gr_i] 

31: D(yo.Xrest) = D(yo.X)- D(xo,Yo) 

"'2· Q ( ) Lr (D(Xo,Xrcs1)+D(yo,Xm,) D(xo,Yres,)+D(yo,Yres,)) D( ) 2 .) • X V =1nax . . ------- - X V + 7 0
'· 

0 2(n-l) ' 2(m-l) 0
'· 

0 

,., ,., . Q ( ) D(Xo,X rest) + D(y o.X rest) + D( Xo, Y,.est) + D(y O• Y,.est) + ê 
.,., • s Xo,Y o = 

a 2(xy+c)(n+m-2) 

D(x0,X) + D(y0,X) D(x0, Y)+ D(y0 , Y) 
-----'---------C...-+-----'---------'---+ê 

34· Q (x y ) = n -1 m-1 
• Sb O• 0 2(D( ) ) Xo,Yo +e 

35: Qixo,Yo) = -D(xo,Yo)+ 2 

36: QV AL [seq_i] [seqj] ~ QFr (x0,y0 ) 

37: end for 
38: end for 
39: return QV AL 
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Algorithm 5.2 

P-value validation for HGT-QFUNC algorithm (see Algorithm 5.1.) using Monte Carlo estimation 

Require: 
MSA : Multiple sequence alignment, 
FI: Aggregation fonction to be optimized Q1, Qsa, Qsb or Q9, 
GR: Groups, 
SG: Unique association of each sequence in the MSA, to one group (G), 
PVST : Constant number of p-value steps, 
PERM: Nucleotide permutation percentage. 

Ensure: 

PQV AL: Matrix of QF1 p-values for each pair of sequences E MSA 

1: PQVAL ~ Matrix [MSA_N] [MSA_N] 
2: QVAL ~ call Algorithm 5.l(MSA and Fl,GR,SG) 

3: for i E (l ... PVST) do 

4: MSA PERM ~ MSA 
5: //introduce a level of uncertainty 

6: for ail seq_i E MSA do 

7: permute PERM nucleotides 
8: end for 
9: //calculate regular values with permuted MSA · 
10: QVAL_PERM ~ call Algorithm 5.l(MSA-'-PERM and Fl,GR,SG) 
11: //test if the obtained values are at least as good as those obtained without permutation 

12: for ail seq_i E MSA do 

13: for ail seq_j E MSA do 

14: if QVAL_PERM [seq_i] [seq_j] >= QVAL [seq_i] [seq_j] then 
15: PQV AL [seq_i] [seq_j] ++ 
16: . end if 
17: end for 
18: end for 
19: end for //end permutations 
20: //update p-value 

21: for ail seq_i E MSA do 

22: for ail seq_j E MSA do 

23: PQVAL [seq_i] [seq_j] ++ 
24: PQV AL [seq_i] [seq_j] /= (PVST + 1) 
25: end for 
26: end for 
27: return QVAL, PQV AL 
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5.4.5 Time complexity 

The time complexity of the new algorithm in a general case, carried out over a MSA of n species 

and DNA or amino acid sequences of size /, is O(ln2+n4
). When we consider only HGT between 

individual species (i.e. leaves) - the most common case in HGT analysis - the time complexity is 

O(/n2
) only (see Algorithm 5.1). The p-value estimation procedure (see Algorithm 5.2) adds a 

constant overhead to the algorithm's iunning time in order to maintain the desired p-value precision. 

This constant is usually 100, 1000 or 10000, for a precision of 0.01, 0.001 or 0.0001, respectively. 

5.4.6 Simulation with the real prokaryotic dataset and comparison to HGT-Detection 

We tested the ability of the described HGT-QFUNC algorithm to detect complete HGT events by 

comparing it to a highly accurate but much slower HGT-Detection algorithm (Boc et al. 2010). We 

used the presented functions Q7, Q8a, Q8b and Q9, sicle by sicle, in order to identify their strengths 

and limitations in general use-case scenarios on the real prokaryotic data described in detail in 

chapter IV. We used the Sensitivity measure to compare the performances of HGT-QFUNC and 

HGT-Detection. Sensitivity, which retlects the ability to detect true positives is defined as follows: 

S 
. . . number oif true positives 

ens1flv1ty = - - -
number _of_ true _ positives + number _of_ fa/se_ negatives 

(5.25) 

The true positive and false negative HGTs were determined by comparing the obtained results to 

those provided by the HGT-Detection algorithm (i.e. the transfers found by HGT-Detection were 

considered as true positives). We excluded from the analysis the alignments where HGT-Detection 

did not return any HGT to avoid the division by zero in the Sensitivity formula. 

We assured comparability of the output formats between the two compared algorithms. HGT

Detection provides its results as a list of pairs of HGT-related source and destination branches 

defined by the corresponding nodes of the species tree. We decomposed HGT-Detection transfer 

scenarios into a list of all affected leave pairs between respective source and 'destination subtrees. 

As . the species tree was not always completely resolved in our case, some trivial transfers (i.e. 

transfers amongst branches of the same multifurcating node) could occur (see chapter IV for more 

details). For quality reasons, we discarded such trivial transfers in this simulation study. 

HGT-Detection first applies sophisticated phylogenetic tree-based manipulations and then filters 

results by HGT bootstrap values. The output of the HGT-Detection program usually contains a very 
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small number of transfers due to the applied evolutionary constraints and imposed bootstrap 

threshold. We tried to mimic this behavior by limiting the HGT-QFUNC algorithm to a restrictive 

p-value threshold of 0.001, but still had too many (compared to HGT-Detection) HGT events 

identified in the end. Therefore, we limited the number of detected HGT events by imposing a fixed 

threshold (as described below). 

We carried out the HGT-Detection algorithm over our prokaryotic dataset with minimum bootstrap 

supports of 50%, 75% and 90%, respectively. The obtained results are shown in Figure 5.2, while 

the corresponding results ofHGT-QFUNC, based on the p-value ordering, are shown in Figure 5.6. 

Corresponding runs of HGT-QFUNC had a maximum allowed number of HGTs per alignment of 

300, 200 and 100 events, respectively. How restrictive these thresholds are, in terms of possible 

number of detected HGT events for each considered gene, is shown in figure 5.3. 

5.4. 7 Simulation with artificial data and comparison to HGT-Detection 

After we have explored the real-life detection performances of the HGT-QFUNC algorithm, we 

tested its ability to recover correct HGT events by simulating different HGT rates in artificially 

generated multiple sequence alignments. W e performed a series of tests involving random 

nonreciprocal sequence transfers between the species of different prokaryotic groups. Both 

complete (involving only gene replacement) and partial (involving intragenic recombination and 

creation of mosaic genes) horizontal gene transfer cases were considered in this simulation. 

Ail simulated transfers were supposed to occur between single species of-the considered MSA (a 

single species always corresponds to a tree leave in a phylogenetic tree). From an evolutionary 

standpoint such transfers are the most recent, and also the most recoverable ones (Boc et al. 2010). 

Therefore, they are also the most reported ones. 

We considered the cases with 1 to 128 simulated transfers, following the logarithmic scale (i.e. 1, 2, 

4, 8, 16, 32, 64 and 128 transfers). One of our goals in this simulation was to discriminate between 

the fonctions Q7, Q8a, Qsb and Q9 when detecting different numbers of complete HGT. We set a 

maximum allowed number of positive values as the double of the number of transfers (i.e. 2, 4 ,8, 

16, 32, 64, 128 and 256 transfers, respectively). Note that in the above-described real-life 

experiments, we allowed 100, 200 and 300 transfers, depending on the bootstrap support fixed for 

the HGT-Detection algorithm. Mention that for the artificial data the algorithm was carried out 
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under more restrictive conditions (lower number of positive values) than those imposed in the 

experiments with real-life prokaryotic data. 

We first simulated gene transfers without recombination (i.e. complete HGT), as a simple 

replacement of the source sequence by the destination sequence. Second, we added an average 

percent of recombination of 25% to the data (i.e. partial HGT). This process was simulated as a 

random recombination between the source and destination sequences. The new resulting sequence 

(i.e. mosaic gene) contained 75% of the source sequence and 25% of the destination sequence. We 

also considered the case of a maximum recombination rate of 50%, where the resulting mosaic 

sequence was a hybrid of 50% source and 50% destination sequence. 

Every combination of the simulation parameters was tested with 50 replicates. The distribution of 

the obtained average results based on the Q fonctions ordering is shown in Figures 5.4 and 5.5. The 

additional results based on the p-value ordering, with a maximum threshold of 0.05, are shown in 

Figures 5.7 and 5.8. 

5.5 Results and discussion 

In this chapter we described a new algorithm for determining genomic regions that may be related 

to HGT and recombination, and introduced three new clustering functions Q7, Q8a, Qsb• We 

compared the performances ofthese functions to those yielded by a simple distance measure Q9• All 

of the considered aggregation fonctions were tested on the real-life genomic data (see figures 5.2 

and 5.3) as well as on the synthetic data (see figures 5.4 and 5.5). 

5.5.1 Analysis of prokaryotic data 

For all the functions we introduced in this study, i.e .. Q7, Qsa, Qsb and Q9, we can observe the 

following trend: better detection sensitivity corresponds to higher HGT bootstrap confidence 

thresholds. The fonction Q7 always provided better results than Q9, while Q8a and Qsb were better 

than Q9 only for 75% and 90% bootstrap thresholds (based on the median values shown by a 

vertical black line on each of the boxes in Figure 5.2). 
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Figure 5.2 HGT-QFUNC sensitivity results for functions Q1, Qsa, Qsb and Q9 
when detecting complete HGT in prokaryotic dataset based on Q-value 
ordering - boxplot representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested 
fonction. The median value is shown by a vertical black line within each box. The 
HGT-QFUNC algorithm was limited to the following maximum numbers of positive 
values: 
(a) 300 HGTs (corresponds to 50% bootstrap support in the HGT-Detection algorithm); 
(b) 200 HGTs (corresponds to 75% bootstrap support in the HGT-Detection algorithm); 
(c) 100 HGTs (corresponds to 90% bootstrap support in the HGT-Detection algorithm). 
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The p-value based ordering, established with the threshold of 0.05, yields very good detection 

results for all of the tested functions Q7, Q8a, Qsb and Q9 (see Figure 5.6). The functions Q8a and Qsb 

provided better results than Q9 for the HGT detection threshold of 50% bootstrap support. 

Moreover, the presented results suggest that the function Q8a is able to detect almost · all of high 

confidence HGT (90% bootstrap support). The main differences can be observed in the tail of the 

distribution, for the lower 25% quartile, as the median and high quartile are already at the same 

maximum value (of 100%). It should be noticed that for the 75% HGT detection threshold, which 

was our benchmark threshold throughout this thesis, the best average results were provided by the 

function Q1. 

One of the limitations of the HGT-QFUNC algorithm, compared to the HGT-Detection algorithm 

(Boc et al. 2010), is that our new algorithm imposes a fixed number of positive values (100, 200 or 

300 in our case) regardless the number of species in the given multiple sequence alignment. These 

constant values were selected in order to find on average less than 2%, 4% and 6% of the maximum 

possible number of transfers between individual species for, respectively, 90%, 75% and 50% 

bootstrap support levels adopted by the HGT-Detection algorithm (see Figure 5.3). 

90% -j O t-~··fi3l)CXD CIDO O 00 0 

75% -, o q·····ill·····Jo co o o o ro o o o o 0 

50% .., o c:t--------1--------~ o 00 o o o o o o o 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 

0 ) 5 G 10 15 20 25 30 

Figure 5.3 Distribution of the HGT-QFUNC maximum percentages of positive values chosen 
for prokaryotic data 

Abscissa represents the percentage of the maximum possible number ofHGTs between individual 
species. Ordinate represents the corresponding HGT-Detection bootstrap confidence level. Average 
values correspond to less than 6%, 4% and 2% of the maximum possible number ofHGTs for the 

50%, 75% and 90% bootstrap confidence levels, respectively. 
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5.5.2 Analysis of synthetic data 

We also tested the detection sensitivity of our method for randomly generated HGTs between 

terminal tree branches using synthetically generated data and different levels of recombination. In 

the case of artificial data, the functions Q7, Qsa and Qsb provided better performances than the 

function Q9 only when recombination was considered. The results obtained for the Q-function 

ordering are shown in Figure 5.4 (for the 25% recombination level in the left column and for the 

50% recombination level in the right one). Figure 5.5 presents in the left panel the results for HGT 

with no recombination (i.e. 0%) and in the right panel, the limits of our simulation, where there is 

no difference between the functions involved. 

The p-value-based ordering, with the threshold of 0.05, shows only minor improvements, especially 

when the number of simulated transfers is low (i.e. 2, 4 and 8) (see Figures 5.7 and 5.8). 

Specifically, for 1 simulated transfer we obtained an almost perfect detection rate, while for 128 

transfers we obtained the worst HGT recovery rates that were around 40%. 

Thus, the following general trend can be observed: the higher number of transfers we have, the 

lower detection rates are. Higher degrees of recombination also lead to a lower detection rate for all 

the functions, but favor the functions Qsa and Qsb, as their performance degrades less, especially in 

the middle range. The function Q7, which showed very good performances for the real-life 

prokaryotic data, does not outperform the function Q9 in this particular testing framework. It is 

important to notice that even without recombination the fonctions Q8a and Qsb can be also used as 

they yield almost the same detection rates as the function Q9• 
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Figure 5.4 HGT-QFUNC sensitivity results for fonctions Q7, Q8a, Q8h and Q9 when detecting partial HGT in 
synthetic dataset based on Q-value ordering - boxplot representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested fonction. The median value is shown by a 
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers 
between prokaryotic species (first value between parentheses) were carried out. Average simulation results under the 
medium degree of recombination (when 25% of the resulting sequence belong to one of the parent sequences) are 
depicted in the left panel. Average simulation results under the highest level of recombination (when 50% of the resulting 
sequence belong to the source sequence and 50% to the destination sequence) is depicted in the right panel. For each 
dataset, the maximum allowed number of positive values was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 
and 128, respectively). Calculations were done over 50 replicates for each parameters combination. 
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Figure 5.5 Remaining HGT-QFUNC sensitivity results for functions Q7, Q8a, Q8b and Q9 when detecting complete 
and partial HGT in synthetic dataset based on Q-value ordering - boxplot representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested fonction. The median value is shown by a 
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers 
between prokaryotic species (first value between parentheses) were carried out. Average simulation results for data 
without recombination are depicted in the left panel. Right panel depicts the results of the same simulations, for the cases 
of 1 and 128 transfers, with recombination levels of 0% (no recombination), 25% and 50%. Average simulation results 
under the highest level of recombination (when 50% of the resulting sequence belong to the source sequence and 50% to 
the destination sequence) is depicted in the right panel. For each dataset, the maximum allowed number of positive values 
was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 and 128, respectively). Calculations were done over 50 
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Figure 5.6 HGT-QFUNC sensitivity results for fonctions Q7, Qsa, Qsb and Q9 

when detecting complete HGT in prokaryotic dataset based on p-value ordering 
(maximum p-value of 0.05) - boxplot representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested 
fonction. The median value is shown by a vertical black line within each box. The 
HGT-QFUNC algorithm was limited to the following maximum numbers of positive 
values: 
(a) 300 HGTs (corresponds to 50% bootstrap support in the HGT-Detection algorithm); 
(b) 200 HGTs (corresponds to 75% bootstrap support in the HGT-Detection algorithm); 
(c) 100 HGTs (corresponds to 90% bootstrap support in the HGT-Detection algorithm). 
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Figure 5.7 HGT-QFUNC sensitivity results for fonctions Q7, Q8a, Q8b and Q9 when detecting partial HGT in 
synthetic dataset based on p-value ordering (maximum p-value of 0.05) - boxplot representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested fonction. The median value is shown by a 
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers 
between prokaryotic species (first value between parentheses) were carried out. Average simulation results under the 
medium degree of recombination (when 25% of the resulting sequence belong to one of the parent sequences) are 
depicted in the left panel. Average simulation results under the highest level of recombination (when 50% of the resulting 
sequence belong to the source sequence and 50% to the destination sequence) is depicted in the right panel. For each 
dataset, the maximum allowed number of positive values was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 
and 128, respectively). Calculations were done over 50 replicates for each parameters combination. 
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Figure 5.8 Remaining HGT-QFUNC sensitivity re~ults for fonctions Q7, Qsa, Qsb and Q9 when detecting complete 
and partial HGT in synthetic dataset based on p-value ordering (maximum p-value of 0.05) - boxplot 
representation 
Abscissa represents the sensitivity percentage and ordinate represents the tested fonction. The median value is shown by a 
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers 
between prokaryotic species (first value between parentheses) were carried out. Average simulation results for data 
without recombination are depicted in the left panel. Right panel depicts the results of the same simulations, for the cases 
of 1 and 128 transfers, with recombination levels of 0% (no recombination), 25% and 50%. Average simulation results 
under the highest level of recombination (when 50% of the resulting sequence belong to the source sequence and 50% to 
the destination sequence) is depicted in the right panel. For each dataset, the maximum allowed number of positive values 
was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 and 128, respectively). Calculations were done over 50 
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5.6 Conclusion 

Horizontal gene transfer is a well-structured evolutionary paradigm as the recent studies show 

higher levels of transfers between certain prokaryotic groups (Beiko et al. 2005) or certain 

ecological habitats (Smillie et al. 2011 ). The impact of horizontal transfers on the creation of many 

prokaryotes and viruses, as well as the cumulative effect of recombination over multiple 

generations, remains to be investigated in greater detail. 

Despite the general availability of quality controlling HGT detection methods based on complex 

phylogenetic analyses, simple distance measures can still be useful for recovering HGT events. The 

computational complexity of more precise HGT detection methods as well as the high volume of 

considered genomi~ data are the main motivations behind the development of fast and effective 

HGT detection algorithms. 

In this chapter we described a new fast HGT detection algorithm which runs in quadratic time when 

HGTs between terminal branches are considered. It allows for an efficient parallel implementation. 

The discussed method also benefits from a Monte Carlo p-value validation procedure, obviously at 

the cost of the associated validation constant needed for maintaining precision. Because of its low 

time complexity, the new algorithm can be used in complex phylogenetic and genomic studies 

involving thousands of species. Mention that the Hanssen-Kuipers Skill Score (Hanssen and 

Kuipers 1965), allowing for decomposing different sources of error, could be used instead of 

sensitivity for measuring the performances of our algorithm. 

Even though the presented method is designed to identify complete HGT, we investigated how it 

copes with partial HGT (i.e. HGT followed by the intragenic sequence recombination) and showed 

that in many cases it can be used to identify both complete and partial HGT. 

The new variability clustering fonctions Q7, Q8a, Qsb and Q9 were introduced and tested in our 

simulations. We also tested the function in the context of complete and partial HGT recovery. In 

overall, the fonctions Q7 and Qsa provided the best HGT detection performances. 

We have provided the complete source code of our application allowing one to carry out the new 

method for detecting complete horizontal gene transfer events discussed in this chapter; the 

application's name is HGT-QFUNC.v.0.5.2. A Makefile along with the examples of the input and 

output data have been also made available. The ReadMe documentation file provides an explanation 
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of the main steps to follow for executing the application. The source code and the accompanying 

files have been uploaded to the GitHub public repository (with the BSD licence). It is freely 

available at the following URL address: 

https:/ / github.com/ dunarel/ dunphd-thesis/tree/master/Chapter5/Main/hgt-qfunc. v .0 .5 .2. 
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CONCLUSION AND PERSPECTIVES 

The detection of functional genomic regions is a fundamental goal of genetic research. Otir 

understanding of relations between genetic structure and biological fonction is instrumental for 

developing new drug targets, genetic treatments as well as for improving biotechnological 

engineering (e.g. for better livestock management or better productivity of food microorganisms). 

Neutral theory of DNA evolution has provided a theoretical basis for the development of a wealth 

of methods aimed at detecting selection and its multiples modes, by using statistical significance 

tests against neutrality. Negative selection, which is associated with essential biological fonctions 

common to all individuals of the same family, is very well studied and can be detected by studying 

sequence conservation patterns. 

On the other hand, organisms engaging in host-parasite relationships are subject to accelerated 

evolution, where they are forced to develop variability of their populations in order to survive. 

Eukaryotes usually play the role of hosts, while prokaryotes and viruses play the role of parasites in 

this relationship. 

Many statistical methods exist for the detection of regions evolving under a different pattern than 

that of neutral evolution (see chapters 1-II). On the host side, many methods have been designed to 

take advantage of the particular diploid nature of human DNA. On the parasite side, phylogenetic 

models have been extensively used. Matl)ematical modeling of these conc~pts usually results in 

formulating NP-complete problems. Moreover, the heuristics developed for solving these problems 

involve high computational costs. 

We dedicated our thesis to the development of new computational methods taking advantage of 

several well-known classification criteria, such as pathogenic factors (carcinogenicity, invasivity), 

phylogenetic families or ecological habitats (i.e. working at both taxonomie and ecological levels). 



As we could see in chapter III, the combination of sequence analysis with aggregation functions can 

allow for fast detection of major differences across known groups as well as for discovering general 

data patterns. The modem comparative genomics has introduced huge real-life datasets. This 

explosion of data means that only a limited number of computational biology methods can be used 

at a large scale, namely those with lo\V computational complexity. 

In chapter III, we described a navel algorithm intended for optimizing species clustering into two 

groups. This methodology could be further improved to account for three or more species groups 

(i.e. considering three or more clustering criteria). Our algorithm uses a k-means-Iike principle to 

move elements between groups. A possible future development could include the use of a fuzzy c

means clustering criterion to allow for elements belonging to several distinct groups. Another 

possible improvement of the presented algorithm could consist of an altemate bipartition 

optimization using those bipartitions that are already present in reference trees. 

In chapter IV, we presented a comprehensive genomic study of prokaryotes in order to detect bath 

complete and partial horizontal gene transfer events between the contemporary prokaryotic 

organisms as well as between their ancestors. To the best of our knowledge, we first applied the 

HGT bootstrap validation methods on such a large genomic scale. W e put in place a weighted 

statistical scheme to account for individual HGT events as well as for the selected species clusters 

(i.e. species classifications). In our study, we considered species classifications according to 

phylogenetic families and ecological habitats, but this methodology could b~ easily expanded in the 

future to other readily available classifications, such as molecular fonctions, protein structures or 

cellular locations. It is worth noting that when the habitat classification was considered, one 

individual prokaryotic strain could belong to one or multiple habitats. Thus, in the future, we could 

consider fuzzy classifiers, which are able to take into account such combined classifications. 

We also carried out local and global HGT interaction rate analysis using different normalization 

schemes. In the future, we plan to develop these ideas in the context of a comprehensive 

probabilistic framework. 

Mention that we not only estimated a global HGT rate characterizing the evolution of prokaryotes, 

but also provided a good level of detail, using taxonomie clustering by strain and by species. 

Another level of detail was provided by detecting the size of the transferred genetic material: a 

whole gene (i.e. complete HGT) or a part of the gene (i.e. partial HGT, which an HGT followed by 
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intragenic recombination and leading to formation of mosaic genes ). Our results confirm the 

arguments in favor of the continuous nature of the HGT phenomenon and its ubiquity even at the 

core genes, the most conserved and restrictive to horizontal transfers according to some works. A 

similar type of study could be conducted in the future on viruses and bacteriophages in order to 

compare their respective HGT rates with those obtained in the case of prokaryotes. 

We also presented for the first time at a large scale the intergroup relationships and dating results 

for partial horizontal transfers between prokaryotes and compared the overall ( complete + partial) 

HGT rates to the complete gene transfer rates (a common case of HGT analysis). In the future, it 

would be interesting to compare the partial HGT results with those obtained by the methods used to 

detect recombination. 

We estimated the precise timing of the detected complete and overall HGTs by using dated gene 

trees. In the future, it would be interesting to integrate our fast distance-based HGT detection 

method (see chapter V) into the HOT-timing framework in order to reduce the algorithmic 

complexity of the HGT age estimation. The HGT detection algorithm introduced in chapter V can 

be also used in complex phylogenetic and genomic studies involving thousands of species because 

of its quadratic titne complexity, on the number of species, in most of the practical situations. 

In two chapters of this thesis (III and V), we considered new sequence aggregation fonctions. 

Chapter III corresponds to the classic view of mutation as the main diversifying force, paired with 

selection as the unifying one. There, we focused on the study of positive selection and lineage 

specific selection processes. On the contrary, in chapter V, we brought arguments in favor of the 

new emerging view of evolution in the prokaryotic world, in which HGT is considered as the main 

diversifying force. In chapter IV, we also explored the relation of HGT to speciation through 

clusters of HGT-related habitats. 

In the future, it would be interesting to investigate other existing evolutionary events such as small 

insertions and deletions, for example. They are usually overlooked and deleted from multiple 

sequence alignments, as a part of quality assurance steps, because they can be easily confounded 

with alignment errors. 

We showed that the introduced aggregation fonctions (see chapters III and V) have different 

sensitivities in presence of different modes of evolution but also different species clustering types 
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(monophyletic or polyphyletic ). We suggested that several aggregation fonctions should be used in 

combination for detecting genetic regions responsible for pathogenicity. They could be also used in 

order to detect signatures of immunological features. This conclusions cornes together with the 

observation that the new algorithm presented in chapter III could be used to detect linear epitopes, 

and thus b~ useful to vaccine design. 
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APPENDIXA 

FULL CONTENTS OF THE CHAPTER III 

SUPPLEMENT (ADDITIONAL FILE 1) 

Algorithm A.1. 

Algorithm for computing genomic regions responsible for carcinogenicity or invasivity 

Require: FI: Hit region identification function to be optimized Q4, Q5 or Q6, 

MSA : Multiple sequence alignment, 

X: Subset of carcinogenic or invasive taxa, 

Y: Subset of non-carcinogenic or non-invasive taxa, 

WIN_ MIN : Minimum sliding window width, 

WIN_ MAX: Maximum sliding window width, 

S : Sliding window step, 

RPG : Constant number of random bipartition generations. 

Ensure: Set ofHit Regions: (win_width,idx,Q',ARI,Q''), where 

win _ width : Current sliding window width, 

idx : Hit Index (i.e., its genomic position), 

Q': Hit region identification function without knowledge of X 

and Y, 

ARI: Adjusted Rand index, 

Q" : Validation function depending on ARI. 



1: MSA _ L ~ Length of MSA 

2: for win width from WIN MIN to WIN MAX do - - -
3: for idx from O to MSA_L-win_width with step S do 

4: for ail r such that 1 :Sr :S RPG do 

5: Randomly select a bipartition AIB 

6: MSAA ~ MSA[A][idx .. idx + win_width] 

7: MSA8 ~ MSA[B][idx .. idx + win_width] 

8: QParlition = Calculate Q(FI, A, B, MSAA, MSAa) 

9: Update Q' = Max(QParlition , r) 

10: repeat 

11: for ail i E A do // i is randomly chosen 

12: A~ A\ i, B ~Bu i 

13: Update QParlilion 

14: MaxQPartition = Max(MaxQPartilion, QPar/ilion, r) 

15: keep old A and B if MaxQPa,lilion is unchanged 

16: end for 

17: Swap(A,B) 

18: until No improvement of MaxQPartition is possible 

19: Q'[win_width,idx] = Max(Q', MaxQParlilion) 

20: . ARI[win_width,idx] = Calculate ARI(AIB, XIY) 

21: Q"[win_width, idx] = ARI x Q' 

22: end for 

23: end for 

24: end for 

25: return Q', ARI, Q" 
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Figure A. l. p-values obtained for hit region detection using the remaining (i.e., not presented in 

Figures 3.2 and 3.3) Q'-type fonctions 

(a),(b),(c),(d) Monophyletic evolution - (e),(f),(g),(h) Polyphyletic evolution 

(a),(c),(e),(g) Positive selection - Variable hit region inside conserved context. 

Quartile distribution of p-values obtained for the fonctions Q4'(a), Q6'(c), Q5'(e), and Q6'(g). 
Abscissa represents scaling factor of the conserved context in which the variable hit region resides. 

Values close to O represent conservation (maximum discrimination), while values close to 1 
represent variability (identical to context). Variable hit region is always maintained at a scaling 

factor of 1. Ordinate represents p-values in log~scale. Horizontal dashed line represents the 
significance threshold of 0.05. 

(b),(d),(f),(h) Lineage specific selection - Heterogeneous hit region inside neutral context. 

Quartile distribution of p-values obtained for the fonctions Q4'(b), Q6.(d), Q5.(f), and Q4.(h). 
Abscissa represents the difference in scaling factors among the two lineages present in the hit 

region. Values close to O represent homogeneous evolutionary speed (similar to the neutral context 
in which it resides ), while values close to 1 represent divergence among these lineages. Context is 
always maintained at a scaling factor of0.5, simulating neutral evolution. Horizontal dashed line 
represents the significance threshold of0.05. In the case of lineage specific selection, the value of 

the Q'-type fonctions corresponding to 1 on the abscissa scale cannot be computed because it 
involves a sub-tree with O edge lengths. 
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Figure A.1 (a), (b)- Remaining monophyletic evolution bit detection p-values 
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Figure A.1 (c), (d)- Remaining monophyletic evolution bit detection p-values 
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Figure A.1 (e), (f)- Remaining polyphyletic evolution hit detection p-values 
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Figure A.1 (g), (h)- Remaining polyphyletic evolution bit detection p-values 
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APPENDIXB 

IMPLEMENTATION DETAILS OF CHAPTER IV 

CLUSTERING 

Let T(g) be the total number of HOT detected for the gene g. Each transfer is occurring 

between two branches of the associated Gene Tree. We define U and V, as the set of alleles 

of the associated subtrees. Accordingly, the transfer is considered between the most recent 

common ancestors (MRCA) of the associijted node of the source and respectively 

destination branches. 

We represent the lh HOT of gene g, as a transfer matrix called K, defined over the 

Cartesian product of the source and destination alleles. A is the vector of alleles present in 

all multiple sequence alignments. G is the vector of genes. 

K(g,i) = [I AI x I AI], where g E G, anda,b E A. Its values are defined with following 

formula: 

. _ 11/ 1 U 1 · IV l,if a EU Ab EV, 
Ka➔b(g,1) -

0, otherwise, 
(B.l) 



For the same HOT, we define an associated matrix W, between prokaryotic families. 

W = [I PI x I PI], where Pis the vector of prokaryotic families. We can calculate its values 

using following formula: 

WF2➔FI(g,i) = Rx Zx K(g,i)x zT X RT 
(B.2) 

This matrix is obtained by weighting the previous transfer matrix by two other matrices, 

corresponding to classifications. These are the allele membership to the species (Z) and the 

species membership to the prokaryotic families (R). These matrices are defined as follow: 

Let S be the vector of species. 

Let V[I P I x I S I] be the family-species presence matrix. 

{
I, ifs is classi.fied as belonging top 

VpEP/\sES,Vps= . . 
· 0, othenv1se 

We obtain the weighted matrix R = [I PI x I SI], by dividing each element by the number of 

groups to which each corresponding species belong: 

JPI 

Rp,s = vp,s / L v;,s 
iel 
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(B.3) 

(B.4) 



Let M = [l ... 1 PI] be the row vector of number of species belonging to each family p 

of P. See equations (10)-(15). 

ISI 

Mp= Ivp,s 
s=l 

Let Z[I SI x I AI] be the species-alleles association matrix: 

Vs E SA a E A, zs,a = {1, if ais an aile le of s 
0, otherwise 

Let L[I A I x I G I] be the alleles-genes association matrix: 

Va E ÂA VgE Gand L ={1,if aEMSA(g) 
a,g 0 ,otherwise 

(B.5) 

(B.6) 

(B.7) 

Let H = [I PI x I G I] be the family-gene weight-count matrix: H = R x Z x L. Using a different 

notation, N FI (g) = H FJ,g, that is used in equations ( 4.1) and ( 4.3). 

Let N = [l ... 1 P I] be the row vector of number of alleles belonging to group p. See 

equations (4),(6),(8) and (9). 

IGI 

Np= LHp,g 
g=l 
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