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RESUME

La biologie évolutive est régie par des forces €cologiques correspondant & des échelles
géographiques et temporelles différentes. L’interrelation hote-pathogéne constitue une des
principales forces évolutives, menant 4 la croissance de la variabilité génétique. Dans cette thése,
nous présentons d'abord un nouveau modele permettant de retrouver des régions génomiques
fonctionnelles en se basant sur la variabilité des séquences ainsi que sur une analyse de
regroupement d'espéces faite selon des critéres booléens de pathogénicité. Les méthodes et les
fonctions de regroupement qui en découlent ont été appliquées 4 des jeux de données réelles
impliquant la carcinogénicité et Pinvasivité des espéces. Ces méthodes et fonctions doivent varier
dépendamment de la combinaison des mécanismes €volutionnaires (sélection positive et lignée
spécifique) de méme que des types de regroupement variés (monophylétique et polyphylétique).
Nous utilisons I’index de Rand ajusté pour valider les résultats. Par la suite, nous étudions sur une
plus grande échelle le phénoméne du transfert horizontal de génes, complet et partiel, chez les
procaryotes. Cette analyse détaillée est effectuée sur plusieurs niveaux taxonomiques, génétiques et
écologiques pour permettre d'estimer statistiquement l'ampleur de I’acquisition du matériel
génétique tout au long de I’histoire évolutive des procaryotes. Finalement, nous décrivons une
nouvelle méthode rapide de détection des transferts horizontaux de génes complets qui est basée sur
des fonctions de regroupement, existantes et nouvelles, accompagnée de la procédure de validation

utilisant les p-values.

Mots clés : analyse de regroupement; arbre phylogénétique; bipartition; carcinogénicité; détection
de régions fonctionnelles; invasivité; recombinaison; transfert horizontal de génes; variabilité

génétique.







ABSTRACT

Evolutionary biology is driven by different ecological forces, acting on the geographical and
temporal scales. Host-pathogen interaction is one such major evolutionary force, leading to higher

genetic variability. In this thesis, we first present a new model allowing for recovering functional

genomic regions responsible for a given disease. The new model relies on sequence variability

cluster analysis and Boolean pathogenicity criteria. The proposed clustering functions and methods
have been applied to real datasets characterized by carcinogenicity and invasivity of certain species.
The considered clustering functions vary according to the involved evolutionary mechanisms
(positive selection or lineage specific selection) and phylogenetic relationships between species
(monophyletic or polyphyletic). Our results were validated by using the adjusted Rand index. Then,
we carried out a comprehensive study to measure the impact of horizontal gene transfer on the
evolution of prokaryotes. Complete and partial forms of horizontal gene transfer were studied. This
detailed analysis was performed on taxonomic, genetic and ecological levels in order to assess
statistically the rate of horizontal acquisition of genetic material along the evolutionary history of
prokaryotic species. Moreover, in the final chapter, we introduced a new fast method for detecting
complete horizontal gene transfer events. The proposed method is based on the above-mentioned

clustering functions and accompanied by a validation procedure using p-values.

_Keywords : bipartition; carcinogenicity; cluster analysis; functional region detection; genetic

variability; horizontal gene transfer; invasivity; phylogenetic tree; recombination







INTRODUCTION

Evolutionary biology is best explained by ecological forces acting over different geographic and
temporal timescales. Biotic factors, such as competition and predation, shape ecosystems locally
and over short time spans, as assumed by the Red Queen hypothesis. On the contrary, abiotic
factors, explained by the Court Jester hypothesis, such as climate, oceanographic and tectonic

events, shape larger-scale patterns regionally and globally over millions of years.

According to this view, host-parasite relationships stand as the main evolutionary force on the
microscale, increasing genetic variability. Many parasites, usually prokaryotes and viruses, have the
advantage of shorter generation time. Hosts, usually eukaryotes, developed sexual reproduction,
which by the means of recombination speeds up evolution, while also developing an immune
system capable of generating hypervariable genetic regions. Sequence conservation, a measure of
negative selection, has been used extensively to detect functional regions, but other forces are

responsible of driving change in this host-parasite setting.

In this thesis, we present models and algorithms, using variability clustering to detect the forces,
active on the parasite side, such as positive selection, lineage specific selection and horizontal gene
transfer (HGT), followed by recombination. In respect to one such change driving force, namely
HGT, we cluster prokaryotes in phylogehetic and ecological groups, quantifying its presence and

extent at gene and subgene detailing level, and also time its distribution at the genomic scale.

Chapter 1 discusses the basic notions and models used in bioinformatics, which are necessary for

understanding the application context of our algorithms.

Chapter II presents the state of the art of functional sequence detection. It describes efforts made to
uncover genomic regions under evolutionary forces. We can classify these forces according to the
degree of change they imply. Most studied of all is negative selection, which is based on
conservation measures, and uncovers fundamental structures needed by a majority of organisms in

order to function independently. On the contrary, species need variation among individuals in order




to escape pathogenic attack, as has been described previouély. We focus on positive selection, site
specific and lineage specific selection methods at first. An even higher degree of change is brought
by HGT and recombination. Finally, we describe genetic association studies and efforts made to
use this natural clustering around virulence factors defined as a Boolean criterion, such as

carcinogenicity or invasivity of microorganisms.

Chapter III describes a novel prediction method for discovering genomic regions associated with a
disease. This method relies on transfers between groups to optimize bipartitions in order to
maximize various variability metrics. Using simulations, we showed relations and limits of our
detection method for each proposed metric, under a combination of evolutionary mechanisms
(positive selection or lineage specific selection) and clustering types (monophyletic or

polyphyletic). We then used Adjusted Rand Index to validate the obtained results.

Chapter IV presents a large study of the extent of HGT in the prokaryotic world. Here, we consider
clustering around phylogenetic and ecological groups. Applying the efficient and highly accurate
HGT-Detection algorithm, which is backed by a bootstrap-based statistical validation, we first
quantified the global extent of this phenomenon at the gene level (complete transfers) and then
detailed this extent at the nucleotide level, accounting for subgenetic regions (partial transfers).
Interrelations between groups and important transfer statistics were inferred and discussed in detail.
The existence of phylogenetic and ecological HGT-related clusters was also revealed. Finally,

dating of HGT events was inferred and presented for complete and partial horizontal gene transfers.

Chapter V describes a new fast method intended to detect complete horizontal gene transfers. We
show that this method is able to recover a majority of low-confidence and almost all high-
confidence transfers found by the well known HGT-Detection algorithm, at the price of a higher,
but still acceptable, false positive rate. The presented method is based on new aggregation
functions, similar to those presented in chapter III, but using different clustering criteria. P-values

were estimated in the proposed algorithm using a stochastic Monte Carlo procedure.

We finally, present a synthesis of our work and some perspective ways for improving our methods.




CHAPTERI

BASIC GENETIC AND EVOLUTIONARY NOTIONS
AND MODELS OF MICROORGANISMAL
EVOLUTION

Bioinformatics is a vast and multidisciplinary field. According to the National Health Institute (NH)
of the United States of America (Huerta etal. 2000) it includes: “Research, development, or
application of computational tools and approaches for expanding the use of biological, medical,
behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize
such data.” Bioinformatics is useful in many life sciences, but its primary applications concern
genetic data, first of all DNA and RNA sequences, stored in large public databases, such as
GenBank (Benson et al. 2009) and Entrez Gene (Maglott et al. 2005). Analysis of such data is done
by a combination of computer science, biology, statistics and mathematics. In this chapter, we
present basic biologidal and evolutionary notions and definitions, as well as elementary models used
in computer science, in order to represent biological data and species evolution. They are all
essential to the understanding of this thesis. We also present the basic information of the
microorganisms studied by other chapters including Neisseria Meningitidis and Human Papilloma

Virus.

1.1 Microorganisms

Microorganism is consists of organisms that are observable only under microscope. Antonie Van
Leeuwenhoek (1632—1723) was amongst the first to build such a microscope. Another
contemporary of him, Robert Hooke, at 1665 wrote a book describing his observations. He also

introduced the term “cell”, as the first organisms seen with such microscope were indeed single




celled. With the development of the electron microscope, the internal structure of these
microorganisms has become visible. The existence of a distinct nucleus separated eukaryotes
(organisms with nucleus) from prokaryotes (organisms without nucleus). Present day classification
of all living organisms is based on the work pioneered by Carl Woese and others, who used genetic
material and cell membrane structure. There are three main lineages, called domains, Bacteria,
Archaea and Eukarya. First two of them are prokaryotic lineages. Eukarya includes all eukaryotes,
from the kingdoms Animalia, Plantae, Fungi and Protista. Bacteria, archaea and a set of Eukarya
(almost all the protozoa, some fungi, algae, and animals) represent the set of microorganisms. Our
algorithms were developed and tested on Prokaryotes and Viruses. For the scope of this thesis we
will limit our description to the latter two types of organisms. Viruses are organism-dependent
entities that are generally not considered as micro-organisms. For practical purposes, they are

studied in Virology, a subfield of microbiology.

1.1.1 Prokaryotes

Prokaryotes are ubiquitous organisms, living in all environments, including the most extreme, like

~ boiling springs, permanently frozen or extremely salty waters, at the depths of the ocean, or

environments without oxygen or radioactively contaminated. Prokaryotes also normally réside in
the human digestive system and skin. They are sometimes responsible for several kind of illnesses,
but also serve an important role in the preparation of many foods, like yoghourt, vinegar or
chocolate. Prokaryotes are probably the first inhabitants of Earth, able to withstand harsh conditions
of very high temperatures, volcanic eruption, mutagenic radiation from the sun and no oxygen
conditions. There is evidence of a fossilized microbial mat, in Australian sandstone, estimated to
date over 3 billion years (OpenStax College 2014). These sedimentary rocks are called stromatolites
(Figure 1.1).









1.2 Elementary genetic notions

1.2.1 DNA

Deoxyribonucleic acid (DNA) is a high weight macromolecule, a polymer of smaller weight
nucleotides (Saenger 1984). It stores information necessary to normal functioning and development
of the whole organism. DNA is the basic element that constitutes genes corresponding to the
support of heredity. It is linear, unbranched polymer in which monomeric subunits are four
chemically distinct nucleotides that can be linked together. Each nucleotide is constituted of three
elements: a phosphate group and a monosaccharide (deoxyribose), which belongs to the backbone
and a nitrogenous base which gives its name to the corresponding nucleotide. There are four types
of nucleotides composing DNA (Lodish et al. 2000). Adenine (A) and guanine (G) are double-
ringed purines, while cytosine (C) and thymine (T) are single-ringed pyrimidines. DNA’s form is a
complementary double helix, as shown in Figure 1.3 (Watson and Crick 1953). DNA is present in
the nucleus of eukaryotic cells, in prokaryotic cytoplasm, mitochondrial matrix and also in
chloroplasts. There are also some viruses containing DNA, placed inside a protein protecting

structure which is called the capsid.

Guanine

Sugar phosphate
backbane

Figure 1.3 DNA strands complementarity
Possible interactions are: A-T and T-A, G-C and C-G

(credit: (National Library of Medicine (US). Genetics Home Reference [Internet]. Bethesda (MD):
The Library; 2013).

1.2.2  Central dogma of molecular biology
General protocol of information flow in biological systems is as follows: DNA is copied

(replication) to DNA, which is transformed (transcription) into messenger RNA (mRNA), which



serves as a model for protein synthesis (translation) (Crick et al. 1970). Translation involves the
use of codons, triplets of nucleotides, each associated with one amino-acid in the proteic primary

chain (Figure 1.4). There are some exceptions to this general rule, known to date as reverse

transcription and replication of RNA, which will be described subsequently.

Figure 1.4 Central dogma of molecular biology.
(Bruce Fouke, 2006).

1.2.3 Gene

Gene is a DNA segment containing biological information that corresponds to either coding
sequences (which gives a protein) or a non-coding sequences corresponding to non-coding RNA
(see 1.2.4). It is located usually on a chromosome and it is the functional unit of inheritance
(Johannsen 1911). Gene is mainly composed of two parts: the exons that contain the DNA that will
be transformed into proteins and introns that are regions containing regulatory elements and

untralslated DNA. For a given coding gene, the coding sequence is a region of the gene coding for a




protein. The coding region of a gene, also known as the coding sequence or CDS (from Coding
DNA Sequence), is the portion of the gene's DNA or RNA, composed of exons, that codes for a

protein.

124 RNA - |

Ribonucleic acid (RNA) is a macromolecule, a polymer of nucleotides, similar to DNA. There are
however some differences. RNA is single stranded, and ribose here replaces desoxyribose, while
Uracil (U) repla;:es thymine (T). There exist several families of RNA. These are grouped according

to their function or secondary (or tertiary) structure.

Table 1.1 Main types and functions of RNA

messenger RNA "mRNA Represents the template for protein assembly.

transfer RNA tRNA Transports an amino-acid corresponding to a

specific codon.

ribosomal RNA rRNA Constitutes the ribosome after maturation and
association to proteins.

micro RNA miRNA Blocks translation of certain mRNA by

ribosomes. They can regulate gene expression.

RNA can have a secondary structure showing base pairing interactions. It results in alpha-helix
structures and beta-sheets (Doty et al. 1959). RNA could either encode for protein (coding RNA) or
not (Non coding RNA). Non-coding RNA principally regulates gene expression (Birney et al.
2007). Non-coding RNA genes include highly abundant and functionally important RNAs such as
transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs, the long non coding RNAs and

several other classes.




1.2.5 Codon
A codon is a triplet of mRNA nucleotides A, C, U or G. It will be transcribed into one of the 20
natural amino-acids. Certain codons are synonyms, several of them coding for the same amino-acid

(Figure 1.5).
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Figure 1.5 Genetic code
Genetic code is used for translating nucleotide triplets, found in mRNA, into amino acids or a
termination signal in a nascent protein (credit: modification of work by NIH). OpenStax
College, The Genetic Code. OpenStax CNX. 24 Feb 2014 http://cnx.org/contents/40489b84-9322-
47be-96dc-4{80079cb868@7.

Three of the 64 codons are called stop codons. They terminate protein synthesis. Another codon,
AUG, in addition to specifying the amino acid methionine, also sérves as the start codon. The
reading frame for translation is set by the AUG start codon. The genetic code is almost universal.
Purified mRNA from one species can be used by another species for protein synthesis. This serves
of evidence of common origin of life on Earth. Even viruses share the same genetic code. The
genetic code is also degenerate, or redundant, which makes it fault tolerant. Codons specifying same
amino acids typically differ only by a single nucleotide. Also, similar codons encode chemically

similar side chains.

1.2.6 Protein
A protein is a macromolecule composed of one or many amino acid chains, bounded by peptidic

bonds (Branden and Tooze 1996). When their molecular weight is under 10kDa, they are called
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peptides (Oliva etal. 2004). Proteins are at the foundation of cellular functions. They are
responsible for the catalysis of chemical reactions, transport, communication, signaling and signal
recognition. Numerous proteins also have a structural role, for instance, those belonging to the viral
capsid (Lodish et al. 2000). Following translation, amino acid order constitutes protein’s primary
structure. Then, the molecule folds into itself, with help from hydrogen bonds, to form secondary
structures, the most important being alpha-helix and beta-sheets. Different secondary structures
arrange themselves into tertiary structures, governed by hydrophobic interactions and disulfide
bonds (Figure 1.6). There is even a quaternary structure with the association of multiple peptidic
units (Lodish et al. 2000).

N rerminus

arhelices

&
Caonnecting loop
Pesheet

Figure 1.6 Example of a protein structure
Hypothetical protein comprised of 3 a-helices and 4 B-sheets.

Reproduced from (Turner et al. 1997), redesigned in (Brown 2006).
1.2.7 Chromosome
In a genome, the DNA is mainly packaged into a complex macromolecule with several genes,
regulatory elements and non coding DNA. This structure called chromosome, codes most of the
genetic information. Specific proteins help package and control its functions. Some prokaryotes also
store DNA in plasmids. Eukaryotic cells have large linear chromosomes and prokaryotic cells have

smaller circular ones.
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‘1.3 Human papilloma virus (HPV)

HPV is a DNA virus with a dimension of 8kpb . Its genome is composed of eight genes, coding for
the same number of proteins, and one regulatory region. Genes are designated by letter E for early
and L for late, according to their epithelial differentiation. E1, E2, E5, E6, and E7 are expressed
early in the differentiation processes, E4 is expressed all along, while L.1 and L2 are expressed
during final stages (Figure 1.7). Early proteins are expressed at low levels that could explain long
latency. L1 is a major capsid protein; L2 serves as intermediary with plasmidic DNA (Doorbar
2006, Schiffman et al. 2007). E1 and E2 are regulatory proteins that modulate transcription and
replication, while E5, E6, and E7 modulate transformation. The role of E4 is not completely
elucidated; several studies indicate the possibility of facilitating genome replication and activation

of late functions (Wilson et al. 2007) as well as virus assembly (Prétet et al. 2007).

First discovered HPV was classified together with polyomaviruses of the Papovaviridae family, due
to their similar non-enveloped capsid characteristic and analogous double-strained DNA genome.
The unique common element between these two families is, in fact, a proteic domain of gene El
(De Villiers et al. 2004). It codes for a helicase, very similar to simian 40 (SV40) T antigen in a
polyomavirus, to the NSI protein of parvoviruses and even an extra-chromosomal element in a flat
worm - Girardia tigrina (Rebrikov et al. 2002). T antigen of SV40 is ligating the tumoral suppressor
p53 and inhibit its transcription (Dobbelstein and Roth 1998). Over 200 papilloma virus genotypes

exist, and more than 100 have been classified (Biichen-Osmond 2006).

Traditionally, based on tissue tropism, classification of HPV was made in three groups — cutaneous,
muquous and mixed (Segondy 2008). Contrary to many viruses the modern HPV classification is
not based on morphological criteria but rather on genetic similarity (De Villiers et al. 2004). A
classification given by genomic similarity, pathogenicity and potential to determine cancer, divide
papillomavirus in Genera such as Alpha, Beta and Gamma-papillomavirus (De Villiers et al. 2004).
HPV is responsible for frequently sexually transmitted diseases. Certain strains infect genital

mucosa, some other infect skin. Most known clinical manifestation is Condyloma Acuminata.
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Figure 1.7 HPV16 genome structure
The genome has length 7904 bp. It is represented as black circle with early promoters (p97) and late
(p670) which are depicted by black arrows. Early ORFs (E1, E2, E4 and E5) E6 and E7, are
expressed starting at p97 or p670 at different stages of cellular epithelial differentiation. ORFs L1
and L2 are also expressed starting at p670, following changes in splicing models and
polyadenilation sites. Viral genes are encoded on the same strand. Long control region (LCR)
spanning from 7156 to 7184 is in large, for visualization of binding site E2 and TATA box of
promoter p97. Binding sites E1 and SP1are also shown. Reproduced from (Doorbar ).



1.3.1 Carcinogenicity of HPV

Some strains of HPV are involved in cervical cancer (Schiffman et al. 2007). Non-carcinogenic
strains or the absence of infection by HPV do not correlate, or negatively correlate with initial
modifications, seen in cervical cancer (Castle etal. 2007). However, most of HPV are not
carcinogenic, especially strains causing common and plantar warts. Over 40 genotypes infect
mycosis and among them 13 to 18 types belong to the high-risk category. This category is
considered a precondition to cervical cancer development. It is involved in genesis of part of ano-

genital and aero-digestive cancers as well.

Even low risk strains are still responsible for high morbidity and are source of genital warts
(Trottier and Franco 2006). A study involving 11 countries and 15 613 women aged 15 to 74 years
showed a variable prevalence, ranging from 1-4% in Spain to 20 times higher - 25-26% in Nigeria
(Clifford et al. 2005). This form of cancer is the second most frequent in female populations and
seventh amongst all. This is a globally public health concern with an estimated 493,000 new cases

and 274,000 deaths for year 2002, everywhere in the world.

1.4  Neisseria Meningitidis

Meningococcus is a Gram-negative bacterium, known for its role in the development of meningitis
in humans. It has aerial transmission, by inhalation. Because of its invasivity the contact with "
patients infected with disease heighten the risk of transmission by 500 to 2000 times (Peltola 1983).
The website «neisseria.org» is one of the best resources serving research community for
centralizing public available information about N.meningitidis. Until now, 4 invasive strains and 3
asymptomatic ones have been sequenced. Very subtle differences between them could be

responsible for their virulence.

Genome of N.meningitidis is made up of one circular chromosome, with a medium size of 2.2 Mpb
and a G+C content of around 51%. There are at average 1971 CDS, with an average 885 bp (Schoen
et al. 2009). '

Comparative genomics studies showed a broad range of mechanisms that support genomic
flexibility. N.meningitidis would be a paradigm for organisms using variability to adapt to a hostile
and changing environment (Schoen et al. 2009). Its genome abounds of 20% repetitive DNA, being
ranked among the most repetitive in a study conducted by (Achaz et al. 2002). In another study of

bacterial families using gene order as a measure of stability, N. meningitidis is ranked among the
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less stable genomes (Rocha 2006). Intra-genomic recombination is the main mechanism used to

generate phenotypic diversity (Schoen et al. 2007, Schoen et al. 2009).

Many horizontal gene transfers, originating in the same or related N.meningitidis species, have been
identified (Maiden et al. 1996). Their biology is complex, being comprised of minimal mobile
elements (Saunders and Snyder 2002), DNA islands horizontally transferred (Tettelin et al. 2000),
canonic genomic islands (Hotopp et al. 2006) and defective phages (Schoen etal. 2009). For
instance, the only factor proved to be associated to any one pathological type of N.meningitidis is

the polysacharidic capsule, which has been obtained by horizontal transfer (Elias et al. 2006).

1.5 Molecular evolution

The major results of the Darwinian Theory is that species evolve through changes occurring over
time (Darwin, 1859). The independent changes in the genomic patrimonies of living species lead to
the rise of new organisms. Evolution happens because of processes that affect individual organisms,
as primary source of change, and their fate at the population level. Evolution includes genetic
variability (i.e. genetic code modifications appearing at an individual level), and changing allele
frequency (i.e. frequency of different versions of same corresponding sequence) in the population

during time (i.e. impact of individual modifications over the entire population) (Duret 2008).

1.5.1 Evolutionary hypotheses
Two important hypotheses explain at least partially the need for change, namely the Red Queen and

Court Jester hypotheses.

1.5.1.1 Red Queen

It states that survival is equilibrium between co-evolving opposing organisms in a continuously
changing environment. Under host-parasite coevolutionary relationships (Penn 2001), parasites
have the advantage of shorter generations, while hosts developed sex, which uses recombination, in
order to achieve greater genetic variation. Many microorganisms studied in this thesis are parasites,
expressing coevolutionary relationships, among them being Human Papilloma Virus (HPV) (Lace
et al. 2009, Schwarz and Leo 2008, Tindle 2002) and Neisseria Meningitidis (Jolley et al. 2005).

The name of the concept comes from Lewis Carrolil's novel, Through the Looking-Glass, in which
Red Queen states: "Now, here, you see, it takes all the running you can do, to keep in the same

place. If you want to get somewhere else, you must run at least twice as fast as that!" (Pearson
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2001). Competition, predation, and other biotic factors seem to explain ecosystems on the short

temporal time scale (Benton 2009).

1.5.1.2 Court Jester

Court Jester model, explains the evolution of ecosystems on a global scales as adaptation to
geological events, like climate, landscape, or food supply changes. This term is used in opposition
to the Red Queen philosophical concept, by using a Tarot card, the Fool, or the Joker, as a
suggestion of the non-correlation between individual efforts and global results (Barnosky 2001,
Benton 2009).

1.5.2  Genetic variability

Genetic variability consists of the difference between individuals genetic patrimonies due to several
types of mechanisms such as mutations, recombination and horizontal gene transfer (HGT). These
evolutionary mechanisms can also lead to translocations, duplications, insertions and deletions that

modify long genomic regions, generally chromosome-wide.

1.5.2.1 Mutations
Mutation constitutes a mechanism in which DNA is altered to give different sequence during
evolution; Genome variability is principally due to different types of mutations. They represent the
key force of evolution, as they create permanent change to the genetic material. They are originating
as errors of cellular division, particularly DNA replication, but could also arise as a result of
radiation, chemical substances or viruses. Sometimes, mutations are generated by controlled
mechanisms during the course of cellular reproductive lihes division (i.e. meiosis), or the
hypermutation needed for antibodies production. According to the produced effect, mutations can
be disfavoring (e.g. interruption of an important cellular function), favoring or neutral. Neutral ones
do not modify organism’s survival or reproductive capacity, in its particular environment and,
therefore, can accumulate over time. Mutations affect DNA composition of a short region of a
genome. Point mutations replace one nucleotide with another, and are called substitutions, while

insertions or deletions can affect several nucleotides.
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1.5.2.2 Recombination
Contrary to mutations, recombination is carried out and regulated by enzymes and other proteins. It
can be homologous o’r heterologous, in respect to the relative position, value, or structure of DNA.
This concept is flexible enough to include alleles at the molecular level or species at the conceptual
one. In each case, genetic material is exchanged between one or more parts of the corresponding

sequences.

1.5.2.3 Horizontal Gene Transfer - HGT
The principle way of acquiring genetical patrimonies is through parent-child inheritance. However,
genetical material could also be transferfed within distant organisms. Often, microorganisms
transfer DNA between individuals that results in strains with beneficial uptakes from more than one
parent. This is sometimes achieved by transformation (first mode of HGT), when release of DNA to
the environment is followed by its uptake and recombination. Homologous recombination is limited
to similar organisms, but recently “homology-facilitated illegitimate recombination” (HFIR) is
being able to extend into areas with little similarity (De Vries et al. 2004, Meier and Wackernagel
2003). Plasmids and conjugation can spread genetic material even beyond species barrier (Figure
1.8). Heterologous recombination, also known as “illegitimate recombination”, is one of the sources
of horizontal gene transfers (Vetsigian and Goldenfeld 2005). Integrative conjugative elements
usually use “site-specific recombination”. Transduction, consisting of DNA transfer by phage, is
yet another mode of HGT. It is able to use “non-homologous recombination” between short repeats
of length 5 to 12bp. Barriers to these mechanisms exist but are limited and thus cannot prevent gene
acquisition in most cases (Thomas and Nielsen 2005). HGT can pose several risks to humans
including antibiotic-resistant genes spreading to pathogenic bacteria, transgenic DNA insertion into
human cells and possible cancer triggering, as well as disease-associated genes spreading and

recombining to create new viruses and bacteria (Boc et al. 2010, David and Alm 2011).
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encoding surface antigens, IgA protease, and antibiotic targets (Hollingshead et al. 2000, Maiden
et al. 1998). A good mosaic gene example resulting from HGT between two different species is the
Penicillin resistance in Streptococcus pneumoniae, mediated by penicillin-binding proteins (PBPs)

(Claverys et al. 2000).

Figure 1.9 Diagram depicting formation of a mosaic gene
White sub-sequence of the new mosaic gene originating from another strain and the blue one from
the original strain (credit: Stanley Maloy, 2002).

1.5.3  Natural selection _

Natural selection is a result of differential mortality and fertility. As such, it is responsible of the
fate of such mutations that modify the adaptive value of organisms. Alleles conferring more value
have the tendency to heighten their proportion, until fixation occurs, by means of positive selection
(i.e. their proportion goes up to 100%, when they beéome fixed, by completely eliminating all other
alleles). On the contrary, alleles that reduce adaptive value are under negative selection, also known
as purifying selection. Between these extremes there is balancing selection, when a group of
selective population processes, actively maintaining frequencies of a pool of genes, above that
of gene mutation. In a host-parasite relationship, for eukaryotic hosts, this selection occurs in the
immune system, where the Major Histocompatibility Complex (MHC) loci are known to be highly
polymorphic (Hughes and Nei 1988). Also it occurs when some alleles give advantages to a
heterozygosis state (i.e. only part of alleles is different for the same genetic locus). They are
maintained in equal proportions in their population by means of balancing selection (Duret 2008).
In a predator-prey relationship, frequency-dependent selection is yet another form of balancing
selection (Endler and Greenwood 1988). Mutations that do not affect adaptive value are not

affected by natural selection but they are left to genetic drift (Duret 2008).
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According to selectionist theory, natural selection is a primordial force of evolution, the influence of
non-adaptive processes being reduced to minor contributions. It explains differences between
species as the effect of positive selection, as a consequence of adaptation to environfnent, and
polymorphism as the work of balancing selection (Duret 2008). Motoo Kimura proposed a different
view of evolution, molecular neutral evolution (Kimura et al. 1968), sustained by King and Jukes,
who introduced their own non-Darwinian type of evolution (King etal. 1969). The latter theory
affirms that the majority of molecular changes are caused by random fixation of mutants (due to
genetic drift of populations of finite sizes) under neutral adaptive value, and continuous flow of
mutations. It also affirms that polymorphism of DNA and proteins, forming variability inside the
same species boundaries are selectively neutral, and are maintained in the species by balance
between mutational entries and random extinction (Kimura 1985). Natural selection may favor
HGT, as a more rapid way of adaptation than the accumulation of numerous point mutations,
leading to alteration of gene functions. Prokaryotes have sophisticated mechanisms for the
acquisition of new genes via HGT, which is considered rampant among various groups of genes in
bacteria (Boc et al. 2010).

1.6 Phylogenetic tree as support of evolution

We described above genetic and evolutionary notions, as they are understood today. The idea of
evolution was first applied to biology, and models have been developed, long before molecular
biology arose as a standard basis for classification. The most popular representation of evolutionary

history is that of a phylogenetic tree.

1.6.1 Phylogenetic trees
1.6.1.1 Definition

Phylogenetic trees are acyclic and connected graphs in which contemporary species are associated

with tree leaves.
Four main components of a phylogenetic tree are as follows (Figure 1.10):
. Roét indicating common ancestry of species or strains represented;
e External nodes — leaves — representing contemporary species, which are also called taxa;

o Internal nodes, representing putative inferred ancestors;
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e Branches, showing the ancestry relations between nodes. They can have length

(representing mutation rate, genomic distance, etc...).

Branch
() Internal Node

Leaf

Figure 1.10 Example of a phylogenetic tree

1.6.1.2 Characteristics
A node’s degree is defined as the number of branches adjacent to it. Nodes having degree higher
than three are called unresolved, otherwise they are resolved. An unrooted phylogenetic tree -

having » leaves and all internal nodes resolved - is composed of:
e 2pn-2 nodes (n-2 internal nodes and » leaves) and
e 2n-3 branches.

Whenever the common ancestor of all species is determined, the tree is rooted. It is oriented
following species evolution. A rooted tree allows for defining an ancestry relation among two
successive nodes. It is impossible to objectively identify the origin (i.e. root) of species
diversification based on the analyzéd species alone. Usually, the root is inferred either using the
midpoint, or using an outgroup. The outgroup technique consist of including in the study a species
known having distant relationships to all of the present taxa. The obtained bifurcation between such
a distant taxon and all other taxa will define the tree root. The midpoint technique consists of

putting the root at the middle of the two distantly related taxa.

21




1.6.2  Evolutionnary biology and the introduction of phylogeny

Charles Darwin initiated this scientific discipline in his seminal work «On the Origin of Species by
Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life», which
was published in 1859. He introduced a theory of population evolution through natural selection. He
illustrated life diversity and presented arguments for branching evolution, based on common
ancestry. His work reflected the observations of his famous voyage around the world on board of
the ship Beagle in 1830, but also his own subsequent work and experimentations. The only figure of

his book is specifically a phylogenetic tree used to classify species. It is reproduced in Figure 1.12.

Ernst Haeckel also relied on phylogenetic trees to describe species evolution, see Figure 1.13. He
represented the organismal evolution using an almost linear progressive model in contrast to

Darwin’s wi‘dely branching one.

Figure 1.11 A species tree
Tree of life image from Darwin's "On the Origin of Species by Natural Selection" (Darwin 1859).
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Figure 1.12 A species tree (including human genealogy)
(Haeckel 1879).
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1.6.3 Lineage in a phylogenetic tree
A lineage in a phylogenetic tree consists of a path including the given species and all its ancestors
up to the tree root. When phylogenies are represented using trees, this becomes a polyline, joining

all ancestors of the existing organism, up to its root (Figure 1.14).

H C P R A

Figure 1.13 Lineage representation inside a phylogenetic tree
This figure depicts a phylogenetic tree, each node standing for a species. Letters represent existent
species. For the species H, the gray rectangle represents its lineage.

1.6.4 Tree of life

Tree of Life is an old and complex metaphor to indicate the evolutionary history of all living
species. It has been the subject of many reviews (Mindell 2013). Charles Darwin presented the first
scientific phylogenetic tree (Darwin 1859). Then, Ernst Haeckel built one universal tree for all
species.-and groups known at that time (Haeckel 1879). For a long time classification was carried
out based on observable traits such as anatomical, physiological or, later, biochemical features.
Woese first produced a classification of living organisms based on 16S ribosomal RNA (Woese and
Fox 1977) prior to discovering the Archaea kingdom (Woese etal. 1978). He then proposed a
widely-accepted phylogeny of the three domains of life including Eukarya, Bacteria and Archaea
(Woese et al. 1990). Today, tendency is more towards phylogenomics, using concatenated genes or
genomes (Pierce 2007). This type of information is useful for long range reconstructions, spanning
geological ages. The phylogenetic reconstruction is still a complex and debatable subject (Lecointre
and Le Guyader 2006). One of the debated subjects is tree rooting (Becerra et al. 2007). To avoid
the influences of HGT or recombination events, ubiquitary genes, core genes, or alternatively 16S

RNA are used to build phylogenies. Several collaborative projects to reconstruct the tree exist. One
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of the most famous is called Tree of Life Web Project (ToL). The latter is the main international

project intended to infer a phylogeny of all currently leaving species (Maddison et al. 2007).

1.7 Approaches for phylogenetfc reconstruction

1.7.1 Phylogenetic classification — Cladistics
This classification is based on observable characteristics, pertaining to species, as a testimony of
ancient history (Lecointre and Le Guyader 2001). It is based on evolutionary proximity relations
between species and is, therefore, tied to the modern vision of evolution. Its schematic
representation is a cladogram, which is a phylogenetic, unrooted tree, containing nodes and leaves
(i.e. species or taxa). Groups including a common ancestor and all its descendents are called
monophyletic. They represent clades (see figure 1.15) (Hennig 1975). A taxon is a classification
entity, grouping together organisms having in common certain well-defined characteristics (Wiley
| etal. 1991). Also, subtle differences between mono-, holo-, and paraphyletic groups make this

subject a very debatable one (Envall 2008).

Sauropsids group is constituted of reptiles and birds. It is considered monophyletic because all its
descendents are present inside this group. Without birds we obtain reptiles. This forms a
paraphyletic group. Mammals and birds form the “warm blood animals” group. This one is

polyphyletic because its members have different ancestors (see Figure 1.1.5).

Modern taxonomy is under control of several International Committees (e.g. International
Committee on Taxonomy of Viruses - ICTV, International Commission on Zoological
Nomenclatu.re - ICZN). A fully phylogenetic classification, called PhyloCode (Cantino and
De Queiroz 2004), failed to become a gold standard in the field.
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Figure 1.14 Differences between monophily, paraphily and polyphily
Image credit TotoBaggins.

1.7.2 Cladistic phylogenetic tree reconstruction

Cladistic reconstruction is based on an evolutionary model, inferring an optimal tree, which is
evaluated at each tree node for optimality. Computational difficulties often arise when a huge
number of trees have to be evaluated. The three main cladistic approaches are maximum likelihood,
Bayesian reconstruction and maximum parsimony (Felsenstein 1981). The maximum likelihood
approach is the most widely used nowadays. Homology is defined as common resemblance between
taxa that can be attributed to common ascendance. Many characters are homologous. Modern tree
reconstructions are almost always based on homologous DNA, RNA or protein sequences (Bear and
Rintoul 2014). Therefore, methods determining which sequences are homologous strongly influence

the quality of phylogenetic inference (e.g. quality of multiple sequence alignments).
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1.7.2.1 Phylogenetic tree inference using maximum parsimony
Maximum parsimony is a principle known as Occam's razor, or in Latin as lex parsimoniae. It was
devised and used for problem-solving by William of Ockham (1287-1347) and states that we
should always select the hypotheses involving the fewest number of assumptions. Stephen Hawking
writes in 4 Brief History of Time: "We could still imagine that there is a set of laws that determines
events completely for some supernatural being, who could observe the present state of the universe
without disturbing it. However, such models of the universe are not of much interest to us mortals.
1t seems better to employ the principle known as Occam's razor and cut out all the features of the
theory that cannot be observed" (Hawking and Jackson 1993). This idea has been used in
phylogenetic reconstruction to recover the tree of the smallest total number of mutations (i.e. the
most parsimonious tree in terms of the number of mutations) (Edwards and Sforza 1963). Fitch
introduced the most known parsimony algorithm (Fitch 1971). Some comparative reviews show that
nonparametric methods, including maximum parsimony, can be resistance to biases in real datasets

(Kolaczkowski and Thornton 2004).

1.7.2.2 Maximum likelihood principle
Given a variable sample, maximum likelihood is a general statistical method allowing for the
inference of the parameters for a probability distribution, which maximize the probability of the
sample. It was first employed in bioinformatics by Edwards and Cavalli-Sforza (1963) in a study of
gene frequencies. First application on molecular sequences was that by statistician Jerzy Neyman
(1971). Given a family of parameterized density functions, where 8 is the parameter and x is the

experiment’s result:

x> f(x|8), the likelihood function is: L(@|x)= f(x|8), where f(x|8) is a function of
probability density, x is the variable, 8 is the model’s parameter and L(€|x) is the likelihood

function.

1.7.2.3 Phylogenetic tree inference using maximum likelihood
Application to phylogenetic trees requires an evolutionary model allowing for the computation of
transition probabilities depending on the evolutionary time. Several evolutionary models for
genomic sequences have been developed. They regularly differ on the way of fixing parameters
such type of mutations, rate of mutations and frequency of nucleotide. The models JC (Jukes and

Cantor 1969), HKY (Hasegawa et al. 1985) and GTR (Tavaré 1986) are the most widely used
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models of DNA evolution. They offer a good compromise between precision and computability. We
suppose that evolution is independent for different sites and lineages. In order to find the most likely
tree, nucleotides of all sequences are separately compared, final probability being the product of
individual probabilities. Theoretically, we have continuous variables, but practically, for
computational reasons, several discrete classes of rate variations are used. If the evolutionary model

is reversible, we obtain an unrooted tree.
There are three main steps in a maximum likelihood inference procedure:
I"' step: Generate tree topologies to be tested

Normally, we should already have a set of tree topologies to be tested. We can start with a
Neighbor-Joining tree topology (Saitou and Nei 1987), and then let a branch-and-bound or greedy
search procedure recover more optimal topologies. Several tree transformation methods have been

developed to search for optimal tree topologies:
¢ Nearest Neighbor Interchange (NNI);
e Subtree Pruning and Regrafting (SPR);
e Tree Bisection and reconnection (TBR).

A maximization-optimization algorithm that guarantees non-diminishing scores has been proposed

(Friedman et al. 2002). Simulated annealing is another heuristic used frequently.
2" step: Branch length optimization

The most widely used method is Newton-Raphson numerical optimization, included in RAXML
(Stamatakis et al. 2005) and PhyML (Guindon and Gascuel 2003). We will use both of these

methods in our experiments with real data described in Chapter IV.
3" step: Calculate the total maximum likelihood of the given tree

ML programs use the Felsenstein pruning algorithm (Felsenstein 1981) for calculating the
Phylogenetic Likelihood Function (PLF). It assumes data interdependence and updates already

calculated values, inferring ancestral states at each tree node.
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Many computer programs using ML approach exist, the most known of them being: DNAML
(DNA maximum likelihood program) from Felsenstein (1981), PHYML (Guindon and Gascuel
2003) and RAXML (Stamatakis etal. 2005). The last algorithm has efficiently vectorized and

parallelized implementations.

1.7.3 Phenetic tree reconstruction: the distance methods

The phenetic category of tree reconstruction methods estimates first evolutionary distances between
each pair of species and then infers the phylogenetic tree that fits best these distances. We obtain the
estimate of the evolutionary distance between two species by summing up branch lengths of the
unique path relating these species in the inferred phylogenetic tree. The obtained distance is a tree
metric (Barthélemy and Guénoche 1991). When the differences between the evolutionary distances
and the obtained tree distances are small, the correct tree is usually inferred (Kim and Warnow
1999). The main advantage of the distance methods is their low algorithmic complexity. This makes
them useful for the analysis of large datasets. One of the first proposed distance-based algorithms is
UPGMA (Unweighted Pair-Group Method using arithmetic Averages) (Sneath et al. 1973). The
most popular distance-based algorithm is certainly Neighbor-Joining (NJ) (Saitou and Nei 1987). Its

output tree often constitutes the starting tree for more advanced tree reconstruction methods.

1.8 Multiple sequence alignment - MSA

Alignment is an operation leading to the identification of homologous elements. Homology is the
concept of character present in extant species to share a common ancestry. Hence alignment
problem can be defined as finding the alignment necessary for all sequence comparisons (see Figure
1.16). Diverse MSA building heuristics have been proposed. Most of them are based on Hidden
Markov Models (HMM) (e.g., see fhe hmmalign program from the HMMER package (Eddy 1998,
Finn etal. 2011) or simulated annealing (Kim et al. 1994). One of the popular approaches is
progressive alignment. It usually starts by aligning the most similar sequences, then by using a
guiding phylogenetic tree. It treats all the sequences one by one. The most known of these
progressive methods is ClustalW (Thompson et al. 1994). However the T-Coffee approach is slower
than ClustalW but yields better results for more distant relations (Notredame et al. 2000). DIALIGN
is based on local alignments (Brudno etal. 2003) and MUSCLE is a more precise MSA
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implementation (Edgar 2004). Another fast MSA method is MAFFT which is based on a fast
Fourier transform technique (Katoh et al. 2002). '
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GAT+CTGTACGLCATTGG+CAAGTTCCCCTOGCTTACCC+GAGH+HT+GAATTGGUGACAAAAT

Figure 1.15 An example of a multiple sequence alignment - MSA
MSA displayed in Jalview (Clamp etal. 2004). Lines represent sequences.

Columns represent homologous nucleotides. Gaps are represented by «-»

characters and stand for inferred indels (insertions or deletions of nucleotides).

1.9 Reticulated evolution and networks

Phylogenetic trees are appropriate models for Darwinian evolution but they lack support for
phenomena such as horizontal gene transfer (see Chapter II), hybridization or genetic recombination
(Sonea 2000). Reticulated networks, instead, can represent relations where an individual inherits

genetic material from multiple ancestors (Legendre and Makarenkov 2002).

In the reticulogram reconstruction, for example, we start with a phylogenetic tree and then add
reticulations (supplementary branches) to the supporting tree structure (Legendre and Makarenkov
2002). The T-Rex server (Boc et al. 2012), (Makarenkov 2001) is one of the most comprehensive

web servers allbwing for inferring phylogenetic trees and networks (see figure 1.17).
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Root

Figure 1.16 A phylogenetic network modelling a scenario of horizontal gene transfers inferred using

the T-Rex web site

(Boc et al. 2012, Makarenkov 2001).
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1.10 Methods for detection of Recombination

Despite more than 20 years of research and a high number of detection methods available,
recombination analysis is still considered imperfect (Maydt and Lengauer 2006). The problem
consisting of determining if sequences belonging to a multiple sequence alignment include elements
originating in recombination is hard. Locating recombination breakpoints is even harder (Posada
and Crandall 2001, Wiuf et al. 2001). The problem complexity is producing an impressive number
of approaches, each standing for a different aspect of recombination. Such studies, evaluating
performance, conclude that we should choose different methods, based on “a priori” knowledge of
our data, especially depending on divergence rate. Scoring methods are faster and have higher
sensitivity, but phylogenetic ones are more precise and do not generate excessive numbers of false
positives. Some methods are described in greater detail in a review chapter (Husmeier and Wright
2005).

First proposed methods for detecting recombination were based on statistical tests verifying noﬁ—
uniformity of substitution distribution, such as the y* test. They were not based on an explicit
evolutionary model, but usually yielded good results (Posada and Crandall 2001). One of the most
widely-used methods remains GENECONV (Sawyer 1989). It searches for the longest conserved
fragment between two sequences and determines whether it is significant. Extensions of this method
allow for including mutations in the fragments. Some methods can detecf signél differences
between adjacent regions of a multiple sequence alignment, including PLATO (Grassly and Holmes
1997), TOPAL (McGuire et al. 1997), (McGuire and Wright 2000), PhyPro and SimPlot. Finally,
there are methods based on coalescence (Brown et al. 2001), minimizing cost of substitution and
topology change following tree-like history. RecPars is probably the most known of them (Hein
1993). It defines optimality in terms of parsimony and is based on a recombination versus

nucleotide substitution cost ratio.

A more accurate statistical framework, including Bayesian Hidden Markov Models and Markov
Chain Monte Carlo (Husmeier and McGuire 2003) was proposed, but the considered tree inference
at each sequence position implied super-exponential complexities. The Recco method (Maydt and
Lengauer 2006) is generally comparable with older methods in terms of results. It is able to improve
detection in certain scenarios, while suffering from some limitations (e.g. mutual masking of similar

recombinant sequences). It uses cost optimization and dynamic programming. Another method

based on sliding window procedure, comparable to RecPars and inspired by DSS (McGuire and



Wright 2000) and PDM (probabilistic divergence measure) (Husmeier and Wright 2001), uses a
clustering pruning scheme. It needs not an a priori recombination to substitution ratio, but an
estimated maximum number of recombination events, in order to pre-establish the number of
clusters (Husmeier et al. 2005). The latter authors used it to detect interspecific recombination. For
all’ fixed size sliding window methods, there is a compromise between the power to detect the

recombination signal and the method’s time complexity.

A study of mitochondrial DNA shows widespread evidence of recombination. An aggregate score
of the overall evidence has been proposed using a total of nine local and global scoring methods
based on p-values. All local methods were present in RDP2 (Tsaousis et al. 2005). The algorithms
such as GARD (Pond et al. 2006) and 3SEQ (Boni etal. 2007) have been used in studies on
homologous recombination in the avian viruses (He et al. 2009) and (Boni et al. 2008), with mixed

results.

1.11 Methods for detecting Horizontal Gene Transfer

There are two main approaches to detect horizontally transferred genes. First, sequence analysis of
the host genome may suggest fragments with different GC content or codon atypical usage patterns
(Lawrence and Ochman 1997). Finding sequences not likely to arise from a selective process means
that they might have been acquired horizontally. An original method to detect such sequences has
been proposed by (Tsirigos and Rigoutsos 2005). The main limitation of this method is the need of
codon boundaries knowledge. The second approach is based on phylogeny reconciliation between
the given species tree, or molecular tree based on a molecule that is assumed not to undergo HGT
(e.g. 16S rRNA or 23S rRNA), and the given gene free defined for the same set of organisms.
Ribosomal genes can be also affected by HGT, but at a seemingly lower rate. Thus, a ribosome tree
can serve as a better approximation to a species phylogeny in the absence. of more reliéble data |
(Acinas et al. 2004). The main limitation of this approach is that its accuracy is strongly dependent

on the reliability of the gene phylogeny (i.e. bootstrap support of the gene tree branches).

Several proposed methods model tree reconciliation by minimizing the subtree prune and regraft
(SPR) distance. Computing the SPR distance for rooted binary trees was shown to be NP-hard
(Bordewich and Semple 2005) as well as for unrooted trees (Hickey etal. 2008). An exact
algorithm, called LatTrans, computing all shortest SPR scenarios is available. However it is

exponential on the number of transfers (Hallett and Lagergren 2001).




Several distance methods have been developed to detect HGT. They rely on heuristics running in
polynomial time. One of the most known is RIATA-HGT based on the divide-and-conquer approach
(Nakhleh etal. 2005). The latest version of RIATA-HGT is considerably faster than LatTrans
providing the almost equally accurate (Than and Nakhleh 2008). An even faster and more accurate
algorithm is HGT-Detection (Boc etal. 2010). It uses an improved distance measure called
bipartition dissimilarity. It is implemented as a package running on the T-Rex web site (Boc et al.
2012). Our study described in chapter IV relies on the results provided by HGT-Detection. Another
well-known HGT detection method is Efficient Evaluation of Edit Paths (EEEP) that uses tree
comparisons and evolutionarily reasonable constraints (Beiko and Hamilton 2006). It achieves
faster speeds than LatTrans but is less accurate. A probabilistic model has also been developed, but
applied only to gene family size problems (Csilirds and Miklés 2006). A combinatorial model
incorporating HGT and duplication events has been proposed as well (Hallett et al. 2004). It
consists of the improvement of LatTrans algorithm (Hallett and Lagergren 2001). Hallett,
Lagergren and Tofigh presented the proof of the NP-completeness of the problem, and gave
tractable and polynomial solutions when cycles are disregarded and restrictive parameterization is

performed. Unfortunately, their algorithms are not publicly available.

An interesting development in handling time constraints was the introduction of dated species trees
(Merkle and Middendorf 2005) in the context of host-parasite coevolution. Its implementation in
CoRe-PA (Merkle et al. 2010) is based on a dynamic programming parameter-adaptive approach.
This approach helps keep polynomial time complexities for all algorithms of this category. Other
methods and implementations using the same idea are AnGST (David and Alm 2011), Mowgli
(Doyon, Scornavacca, Gorbunov, Szoll6si,) and Jane (Conow etal. 2010, Libeskind-Hadas and
Charleston 2009). A general comparison of HGT detection methods is available (Doyon, Ranwez,
Daubin and Berry 2011). It presents some important discrepancies between theoretical results of
AnGST and CoRe-Pa, expected from methods descriptions and their implementations. New
optimization algorithms that treat distance-dependent transfer costs are implemented in the
RANGER-DTL ﬁackage (Bansal et al. 2012). Comparisons with other algorithms are shown only for

the time cost, but not for the quality of individual transfer scenarios.

A precision improvement of parsimony methods has been achieved by including elements of
detection based on population genetics and the coalescent model. This allows for modeling

incomplete lineage sorting (ILS) phenomenon. A new software package, called Notung, has been



applied to phylogenetic datasets in which ILS, HGT and hybridization may be present (Stolzer et al.
2012). Issues with reliability of inferred evolutionary events over multiple transfer scenarios have
been outlined as well as the need of defining support values. As a majority-rule consensus of 50%
support cannot be guaranteed, a median reconciliation has been proposed (Nguyen et al. 2013).
When several HGTs occur between two given species, then these species are considered as being
linked by a highway of gene sharing. A polynomial time algorithm, using parsimony principle and
quartet trees has been designed (Bansal et al. 2011) and, later, a software package called HiDe
(Highway Detection) has been developed (Bansal et al. 2013). HGT modeling has also been used
recently to show that a set of extant species carry information about extinct lineages, and
specifically about the size and dynamics of ancient biodiversity (Szollssi et al. 2013). Another
interesting development is the application of partial gene transfer models to the problem of mosaic
genes detection (Zhaxybayeva etal. 2004) and the development of efficient algorithms and
implementations for inferring partial HGTs (Boc and Makarenkov 2011). The latter method brings
statistical bootstrap confidence to the problem of detecting genetic regions first horizontally
transferred and then affected by intragenic recombination (Boc and Makarenkov 2011, Makarenkov
et al. 2006).







CHAPTER 11

METHODS FOR DETECTION OF FUNCTIONAL
SEQUENCES AND RETICULATED
- EVOLUTIONARY EVENTS

The algorithms we will present in this thesis are applied to detect functional sequences (i.e. those
parts of the genome whose existence, composition or structure is related to a known molecular
function). There are many functional levels. The gene is certainly the most important one; it has
been studied for many years. Translation into proteins is considered as a proof of biological
function (Brown 2006). Later, the role of non-coding RNA has been emphasized and regulatory
regions became the focus of detection (Macdonald and Long 2005). Interactions between RNA,
DNA and proteins have been included into the functional domain, and have become the scope of

bioinformatics development.

Although functional characterization remains an ultimate molecular biology task, the search for
such candidates remains an important bioinformatics challenge (Huerta et al. 2000), (Wooley et al.
2005). One way to proceed is to find regions that evolve at different speed or follow different
sequence patterns than natural random evolution (Vitti et al. 2013). Many statistical models are in
place for different aspects of evolution, and computational methods have been developed to
evaluate statistical scores, or likelihood related to them (Wooley etal. 2005). Most studied
approaches are related to sequence conservation as a mean to detect negative selecﬁon (Siepel et al.
2005). Many tree-like evolution models have being ‘studied in terms of positive selection (Yang
2007) and lineage specific selection (Hubisz et al. 2011), as well as reticulate evolution models

(Dagan et al. 2008), which include HGT and recombination.




Functional sequence detection “in silico” has also a cost saving benefit, as genome-wide analyses in
molecular “wet lab” are usually very costly. Computational methods usually offer a limited number
of high probability candidates, which are further analyzed by molecular biologists. There are also

following aspects of scope and filtering of the obtained results:
¢ Identification of all functional regions;

¢ Identification of regions responsible for disease or specific pathogenic characteristics, such

as invasivity or carcinogenicity.

2.1 Negative (purifying) selection

Methods belonging to this category have the purpose of finding conserved genomic regions,
evolving under negative selective pressure. This is the case of essential regions for cell functioning.
Once lost, these functions lead to cellular death, or its incapacity to reproduce. BLAST (Altschul
etal. 1990) is one of the first and still widely used tools to rapidly, locally align and identify
sequence similarity between a relatively short query sequence and a large sequence database. The
improvements of the reference implementation at NCBI include better alignment statistics (Schiffer
etal. 2001), usability (Ye etal. 2006), indexing (Morgulis et al. 2008), specialized searches
(Johnson et al. 2008) and programmability (Camacho et al. 2009). The alternative implementation
at EBI has been also improved recently (Flicek etal. 2014). Cross-species comparisons require
alignment of many sequences, and thus global alignment algorithms are needed. There is evidence
that not only coding, but also regulatory sequences, can be also conserved (Pennacchio and Rubin
2001).

More advanced methods to detect “Multi-species Conserved Sequences” have been developed
(Margulies etal. 2003). Two basic methods are available to validate functional sequences,
“Conserved RNA Secondary Structures” obtained with QRNA program (Rivas and Eddy 2001) and
“Transcription Factor—Binding Sites” obtained with TRANSFAC (Matys et al. 2003).

A very popular algorithm to detect conservation patterns is PhastCons, which is based on a two-
state phylogenetic hidden Markov model (phylo-HMM). PhastCons fits a phylo-HMM to the data
by maximum likelihood, adding constraints designed to calibrate across species groups (Siepel et al.
2005). Implementation and programmability techniques have recently been improved (Hubisz et al.

2011). Another algorithm is Sequence CONservation Evaluation (SCONE). 1t uses the Bayes or
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maximum-likelihood estimates of the evolutionary rate. It also defines a probabiiity (p-value) of

neutrality for each site in a MSA. Its applications have been limited to the mammalian genomes

and, specifically, to the human genome (Asthana et al. 2007).

2.2 Positive selection

Methods belonging to this category detect regions under positive selection, which bring new
functions to the cell, giving an advantage‘of survival or reproduction. The widely used criterion is to
highlight abnormal ratios of dy/ds (i.e. between non-synonymous and synonymous codon sites)
(Hubisz et al. 2011, Yang et al. 2000). Non-synonymous sites induce changes in proteins, and are
thus proven functional. Synonymous sites are expected to be distributed along neutral selection.
There are some measures of neutrality such as z-fest — based on normal distribution, or the LRT

(likelihood ratio test), or based on % distribution.

These methods need gene annotations to operate in order to establish scope and reading frame. They
also lack power when positive selection affects a reduced number of sites or when long branches are
saturated with mutations. Also, the most important limitation is that they are not able to detect non-
coding control regions. One of the most popular software packages for detecting positive selection
is PAML (Yang 2007). It includes various models of codon substitution, evaluated using maximum
likelihood. The site-wise log-likelihood score is yet another good predictor of genes under positive

selection (Wang et al. 2013).

Selectome is a database of positive selection, based on variation in selective pressure dN/dS ratio)
over branches and over sites (Moretti et al. 2014). Limits of detection power of such branch-site
tests of positive selection have been investigated, showing robustness but lack of power under
synonymous substitution saturation and high GC content variation (Gharib and Robinson-Rechavi
2013). Bayesian estimates of this ratio appear to have better statistical properties than the ML
estimates. A new computationally efficient method has become available and may be useful for
genome-scale comparisons of protein-coding gene sequences (Angelis etal. 2014). The
implementation optimizations, such as detection of frame-shift mutations and premature stop-

codons, have become of a significant interest for genome-wide applications (Zhang et al. 2013).



2.3  Site specific, lineage specific or signature selection methods

Contrast between conserved and non-conserved regions is not always very sharp. DNA
conservation among diverged species is able to successfully identify noncoding regulatory regions.
At the same time, rapidly evolving regulatory regions will not generally be conserved across species
and fall out of purely conservation-based methods detection resolution. Finer grain methods have
been developed, able to discriminate inside lineages, or gene families. They generally use
previously available models and methods to detect negative or positive selection, but combine them

with phylogenetic analysis and statistical tests in an automated or semi-automated manner.

Automated algorithms are usually time consuming, but are precise. The most commonly known
algorithms are phyloP, which is based on phylogenetic p-values, and DLESS, which is based on a
phylo-HMM model (Siepel et al. 2006). While DLESS determines itself the clade, it is able to find
only “gain” or “lost” events. On the contrary, phyloP is able to cope with “accelerated” events but
needs the phylogenetic subtree of interest be provided. It implements four statistical phylogenetic
tests: a likelihood ratio test, a score test, a test based on exact distributions of numbers of
substitutions, and the genomic evolutionary rate profiling (GEKP) test (Pollard et al. 2010). The
method DivE addresses the latter limitations and allows for the detection of “accelerated” events in

non-coding regions (Pertea et al. 2011).

A genetic algorithm has also been developed, but it has a high computational cost and is largely tied
to prior model assumptions (Pond and Frost 2005). Positive selection detection that allows for
lineage-specific rate variation has been also integrated into the maximum likelihood framework
(Guindon et al. 2004).

A method involving “signatures of nonneutral evolution”, i.e. an examination of the pattern -of
polymorphism both within and between populations as well as divergence with sibling species,
detects several nonneutrally evolving regions not identified by conservation (Macdonald and Long
2005). A pattern referred to ‘‘selective éignature” of a gene is defined by its evolutionary speed and
is associated with gene function and ecology inside specific phylogenetic groups. Such methods,
able to study signatures by combining previously described methods, have been recently designed
(Shapiro and Alm 2008). Signature methods can recover site-specific selective pressure using

machine learning classifiers, including Naive Bayes, k-nearest neighbors and support vector
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machine (SVM). They are usually able to outperform common measures of sequence conservation
(Sadri et al. 2011).

2.4  Scope of this thesis

Detection of functional sequences is a major goal for biology as a whole and bioinfomatics in
particular. It can be achieved on multiple levels, from proteins to genes and genomes. Historically,
the uncovering of functional patterns has switched from direct observation of highly conserved
proteins to DNA and non-coding RNAs, for an ever more abstract and systemic model based
discovery. The advent of genomics era has brought an increasing size for studied datasets, rapidly
extending their scope. This brings the opportunities for developing methods that explore the newly
available genomic regions and discover global patterns of evolution, at high speed and intensive

computation to maintain the high level of detail.

Genomic sequences are under selection of various evolutionary forces. Conservation is one major
and most studied one, accounting for essential molecular structures preservation. We found that
others, like positive selection and lineage speciﬁc selection, are particularly active on the host-
pathogen interaction. The main focus of this thesis is the development of methods able to detect
such regions, evolving at different speed or following different patterns than natural random
evolution. Due to the host-pathogen relationship, these regions have a high probability of being
associated for disease. The main purpose of this thesis is to provide algorithms, methods and
procedures for variability clustering and studies, as a general framework able to take into account,
in addition to the DNA sequence, set of global group classifications, like partial and complete
horizontal gene transfers, variability, epidemiologic categories, phylogenetic families or habitats.

These considerations are explore in three different articles representing chapters III, IV and V.

Chapter III addresses current limitations of the existing algorifhms to effectively use pathogenicity
information, on the pathogen side of the host-pathogen relationship. Genome wide association
studies have addressed this problem, but only on the host side, where algorithms do not address
positive selection or lineage specific selection specifically. We also account for both monophyletic
and polyphyletic studies. We developed an algorithm able to work with, or without previous

external knowledge such as species carcinogenicity or invasivity.

Chapter IV provides a framework to study horizontal gene transfer patterns of evolution, of

different clusters of habitats, occupied by multiple phylogenetic families. We tried to shed more
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light on local and global rate of this phenomenon, adding partial horizontal gene transfer to this
study, as previous studies were limited to complete gene transfers on the genomic level. The current
state of the art attributes low values for this phenomenon when the authors favor advanced
phylogenetic analysis, and follow tree like evolution. On the contrary, when they use pairwise
distance measures, and reticulate evolution, they find much higher levels of interaction. Usually the
first group of researchers use a core set of genes, that exhibit stable behaviour across evolutionary
time, called “core genes”, in order to preserve tree likelihood. The growing sequencing'effort has
shrinked this “core” set of genes. We here reconcile both views, stating that horizontal gene transfer
is a continuous phenomenon, which rarely affects alleles, but accumulates at higher clustering levels
affecting “core” genes many times during their history. Partial gene transfer is more frequent than
complete transfer, showing a gradual integration of complete transfer, by intraspecific
recombination. We also tried to uncover the gradient of values that is linked to different confidence

intervals.

In Chapter V we used sequence variability clustering for horizontal gene transfer or recombination
detection. By introducing new asymmetric operators and variability functions, we developed a fast
algorithm, having same quadratic asymptotic complexity as the Hamming distance measure. It has a
higher constant cost, used to maintain p-values. It is meant to rapidly detect candidates on the
genomic level, used as an alternative to conservation measures, leaving the precise, statistically

proven methods for subsequent validation.
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CHAPTER III

DETECTING GENOMIC REGIONS ASSOCIATED
WITH A DISEASE USING AGGREGATION
FUNCTIONS AND ADJUSTED RAND INDEX

Published in:

BMC Bioinformatics 2011, 12:89 doi:10.1186/1471-2105-12-S9-S9

3.1 Abstract

3.1.1 Background
The identification of functional regions contained in a given multiple sequence alignment
constitutes one of the major challenges of comparative genomics. Several studies have focused on

the identification of conserved regions and motifs. However, most of existing methods ignore the

relationship between the functional genomic regions and the external evidence associated with the

considered group of species (e.g., carcinogenicity of Human Papilloma Virus). In the past, we have
proposed a method that takes into account the prior knowledge on external evidence (e.g.,
carcinogenicity or invasivity of the considered organisms) and identifies genomic regions related to

a specific disease.




3.1.2 Results and conclusion

We present a new algorithm for detecting genomic regions that may be associated with a disease.
Two new aggregation functions and a bipartition optimization procedure are described. We validate
and weigh our results using the Adjusted Rand Index (ARI), and thus assess to what extent the
selected regions are related to carcinogenicity, invasivity, or any other species classification, given
as input. The predictive power of different hit region detection functions was assessed on synthetic
and real data. Our simulation results suggest that there is no a single function that provides the best
results in all practical situations (e.g., monophyletic or polyphyletic evolution, and positive or
negative selection), and that at least three different functions might be useful. The proposed hit
region identification functions that do not benefit from the prior knowledge (i.e., carcinogenicity or
invasivity of the involved organisms) can provide equivalent results than thé existing functions that
take advantage of such a prior knowledge. Using the new algorithm, we examined the Neisseria
meningitidis FrpB gene product for invasivity and immunologic activity, and human papilloma
virus (HPV) E6 onéoprotein for carcinogenicity, and confirmed some well-known molecular

features, including surface exposed loops for N. meningitidis and PDZ domain for HPV.

3.2 Background

Many bacteria and viruses adapt to changing environmental conditions through several evolutionary
mechanisms such as homologous recombination (Posada and Crandall 2001), nucleotide
substitutions, insertions-deletions (Kimura 1985), horizontal gene transfer (Boc etal. 2010),
etc. These mechanisms lead to the formation of different polymorphic strands of the same group of
organisms, in which the variation on the DNA composition is spread randomly throughout the
genomes. The survival of these strands depends on their ability to overcome the environmental
changes (Moran 1962). One of the goals of comparative genomics consists of finding the variation
among aligned genomic sequences in order to identify functional regions. Several comparative
genomic tools allow for the identification of genomic regions in an alignment that have
evolutionary patterns different from the neutral evolution. For instance, PhastCons (Siepel et al.
2005) predicts, from a given alignment and the related phylogenetic tree, the genomic regions under
negative selection. PAML (Yang 1997, Yang 2007, Yang et al. 2000) allows for the comparison of
synonymous versus non-synonymous mutations in an alignment in order to predict regions under
selective pressure. RDP3 (Martinl et al. 2010) and TOPAL (Milne et al. 2004) are software packages

including several methods for detecting recombination. Most of these methods and software do not
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take into consideration external epidemiological evidence associated with many bacterial and virus
strands. Such evidence can allow for the clustering of organisms based not only on the similarity of
their genomic sequences, but also, on their association to different diseases. Hence, intra-specific
and inter-specific variation among carcinogenic and non-carcinogenic human papilloma viruses can
lead to the identification of regions related to carcinogenicity. In our previous works, we introduced
a hit region identification function using prior knowledge information (Badescu et al. 2008) and
described the related validation framework based on Monte-Carlo simulations (Diallo et al. 2009).
Then, we extended the latter study by presenting and testing four variants of the hit region
identification function, still using the available prior knowledge (Badescu etal. 2010). In this
chapter, we present a new algorithm for the identification of specific genomic regions associated
with an external disease. The introduced algorithm uses a bipartition optimization procedure to
maximize a specific clustering function Q, based on inter- and intragroup variability, for each

window position, over the given sequence alignment. It can be applied with or without prior

- knowledge information characterizing species in hand. Hit regions (i.e., putative regions related to a

disease) can be validated using ARI (Hubert and Arabie 1985) - a corrected-for-chance version of
the Rand index (Rand 1971) - and orgahismal bipartitions are constructed using the: available
epidemiological data. The new algorithm has been applied to two independent datasets: The human
papilloma viruses and the Neisseria meningitidis data. The obtained results suggest that genomic
regions with important biological features in both datasets can be associated with either

carcinogenicity or invasivity.

3.3 Dataset description

3.3.1 Neisseria meningitidis dataset

Neisseria meningitidis is a Gram negative bacterium responsible for meningitis énd septicemia. It
has a relatively small genome size of 2.2 Mbp. In March 2011, the PubMLST database listed a total
of 8,793 genetically distinct members of Neisseria organisms (Jolley et al. 2004). All these facts
make N. meningitidis well suited for testing comparative genomics methods (Maiden 2008).
Proteins expressed under iron limitation (e.g. FrpB(FetA)) are considered as potential vaccine
components (Pettersson et al. 1997). Bacteria grown under iron starvation express several proteins,
the most abundant of them being FrpB, a 70kDa outer membrane protein (OMP). It is expressed in
large amounts in all strains, and antibodies against this protein appear to be bactericidal. A putative

FrpB topology was first proposed with a 26-stranded P-barrel (Pettersson et al. 1995), and later
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" reassessed to a plug domain and a 22-stranded fS-barrel with 11 surface-exposed loops (Kortekaas
etal. 2007). These loops are accessible to the host immune system, which produces natural
antibodies against these regions. In general, bacteria express genetic sequence variability in order to

evade this defense mechanism.

The data we considered were classified on the invasivity basis using a list of identified
hyperinvasive meningococci (Urwin et al. 2004). We then built a list of unique FetA sequence tags
carried by the alleles of these organisms. Using local BLAST operations (Altschul et al. 1990), we
searched for the presence of these tags in the distinct sequences belonging to the selected multiple
sequence alignment (MSA), first examined in (Badescu et al. 2010). We classified as belonging to
the invasive category (subset X) any allele that contained at least one of the selected invasive tags.
All the other alleles were put in the non-invasive category (subset Y). We annotated the MSA with
the information regarding surface-exposed loops, beta-sheets and periplasmic loops (Kortekaas
et al. 2007). Translating indexes from the amino-acid sequences to DNA sequences were also
computed. Each single value of the hit region identification function Q (the O-type functions will be
used to identify genetic regions that may be related to a disease) corresponds to an interval of a
certain length (i.e., 9 or 20 nucleotides in this study) and depends on the starting position of the

sliding window used in our algorithm.

3.3.2 Human papilloma virus dataset

Human papilloma viruses (HPV) have a causal role in cervical cancer with almost half a million
new cases occurring each year (Angulo and Carvajal-Rodrguez 2007, Bosch et al. 1995, Munoz
2000). About a hundred of HPV types have been identified, and the whole genomes of more than
eighty of them have been sequenced (see the latest Universal Virus Database report by International
Committee on Taxonomy of Viruses (ICTV)). A typical HPV genome is a double-stranded, circular
DNA genome of size close to 8 Kbp, with a small set of genes (L1, L2, E1, E2, E4, ES, E6 and E7).
In this study, we focused on the gene E6, which is predominantly linked to cancer due to the
binding of its product to the p53 tumor suppressor protein. It contains a PDZ domain-binding motif
(-X-T-X-V) at its carboxy terminus, which is essential for targeting the PDZ proteins for
proteasomal degradation. Such proteins include hDIg, hScrib, MAGI-1, MAGI-2, MAGI-3 and
MUPPI (Lee and Laimins 2004). The interaction between E6 and hDlg, or the other PDZ domain-

containing proteins, may be an underlying mechanism in the development of HPV-associated

cancers (Kiyono et al. 1997). The gene E6 was also shown to contain two stable folded domains,
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E6N and E6C (Lipari et al. 2001, Nominé et al. 2003). Models of these domains have been built in
the absence of complete crystallographic data (Nominé et al. 2006).

~ To define carcinogenic types, we used the epidemiological data from a large international survey on
HPYV in cervical cancer and from a multicenter case-control study conducted on 3,607 women with
histologically confirmed cervical cancer (Munoz et al. 2004, Mufioz et al. 2003). More than 89% of
them had squamous cell carcinoma (i.e., Squam cancer) and about 5% had adenosquamous
carcinoma (i.e., Adeno cancer). More than a half of the infection cases were due to the types 16 and
18 of HPV, which are later referred to as High-Risk HPV (Chan et al. 1995). In this study, we
examined the content of the gene E6 for 83 different HPV types.

We fixed the window size to 20 nucleotides for HPV datasets in order to be consistent with our
previous works (Badescu et al. 2008, Diallo et al. 2009), where we conducted simulations with
windows of different sizes and used the size of 20 bp to present the results. In the same way, we
considered the window size of 9 nucleotides for the N. meningitidis dataset to be consistent with

another our study (Badescu et al. 2010).
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3.4 Methods

3.4.1 Description of the algorithm

The new algorithm takes as input a MSA established for a set of organisms. Assume that this set of
organisms is partitioned into two different subsets according to a Boolean criterion (e.g., invasivity
vs. non-invasivity or carcinogenicity vs. non-carcinogenicity). The corresponding subsets are
denoted X (invasive/carcinogenic) and ¥ (non-invasive/non-carcinogenic), respectively. The region
of interest is scanned using a non-overlapping sliding window, as shown in Figure 3.1, of a fixed
width (20 sites for HPV and 9 sites for N. meningitidis). For each window position, we carry out a
bipartition optimization algorithm in order to search for maximum values of the hit region
identification function. A specific version of the O-type function (see below) can be taken as the
algorithm parameter. We denote by Q' a specific version of the O-type function computed under
condition that the subsets bipartition is unknown (i.e., prior knowledge). The complete algorithmic

scheme is presented in Algorithm A.1 in Additional file 1 (see Appendix A).

, 10 , 0 _—> 30
[—-GTATATGACTTIGCTTTICGGGA
HPV18)- - -GTATTTGAATTTIGCATTT)
HFV-75 -~~~ CTCCTAGAGTTTGATTATA,
‘ HPV-76 -~ ~CTCTTAGAGTTTGATTAT

; HPV-49 -~ ~-TTGTTAGAATTTGACTAT

f Y|HPV-36 -~ -GCTTGTGAGTTTGAGGTT
HPV-5 ---GCTTGTGAATTCGACTACRAA
‘ HPV-47 -~ ~GTTTGTGAATTTGATTATAA
; | |HPY-12 -~ -GTGTGTGATTTTGACAAAA,

Figure 3.1. Sliding window procedure
Sliding window of a fixed width was used to scan the HPV gene E6. The sequences in black belong
to the set X (carcinogenic HPV; in this example HPV 16 and 18), all the other sequences belong to
the set ¥ (non-carcinogenic HPV). The HPV type is indicated in the left column.
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3.4.2 Clustering using the Q-type functions

To perform the clustering of our data into two groups 4 and B, we first calculate the intragroup
variability of the sequences from the group 4, denoted by ¥(A4), the group B, denoted by V(B), and,
finally, the intergroup variability D(d4, B), as described in Equations 3.1, 3.2 and 3.3. These
measures are defined as the means 6f the squared Hamming distances, dist, among the sequence
fragments (bounded by the sliding window position) of the taxa from the group 4 only, from the

group B only, and between the sequence fragments from the distinct groups 4 and B:

Ea’ist,f (a,a,)

_ {a,,aZEA[altaz}
.V(A)"N(A)X(N(A)-l)/z’ G-

> dist?(b,,b,)

_ _fanspen)
V8= N(B)x(N(B)-1)/2° (32)

> dist?(a,b)

_ faetbe8} '
D(4,B)= N ONE (3.3)

In (Badescu etal. 2008, Badescu etal. 2010, Diallo etal. 2009) four different hit region
identification functions, Qi, O, Qs and Qs, which could be summarized by the following equation,

were defined:
Q=D(4,B)-kxV(4)-IxV(B), (3.4)
where the [k, /] combinations are as follows:

0~ 10,0~ OD.Q,» (G.3)and 0, > (00).

The function Q, (Equation 3.5), along with new versions of the hit region identification function,

denoted by Qs (Equation 3.6) and Qs (Equation 3.7), will be tested and discussed in this study:

0, =D(4,B), (3.5)
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O =V (4)-V(B), (3.6)
O, =|V(4)/V(B)|. (3.7)

Measuring the agreement between the reference and the optimal calculated bipartitions using the
Adjusted Rand Index (ARI)

The Adjusted Rand Index (Hubert and Arabie 1985) has become a criterion of choice for measuring
agreement between two partitions in clustering analysis (Milligan and Cooper 1986). Having a
calculated bipartition U'=A4|B and a reference bipartition U'= X|Y, for all ('2') pairs of
elements, one can compute how many of them fall into the same group and how many in different

groups. One can then calculate ARI (Santos and Embrechts 2009) according to Equation 3.8. ARI is

the corrected-for-chance version of the Rand index (Rand 1971). It ranges between -1 and 1, and

. expresses the level of concordance between two bipartitions (Hubert and Arabie 1985). The values

of ARI close to 1 indicate an almost perfect concordance between the two compared biparﬁtions,

whereas the values close to -1 indicate a complete discordance between them:

ARI =

(1ka +d){(a+b)a+c)+(c+d)b+d)]

2 (3.8)
(:f La+b)Xa+c)+(c+d)b+d)]

where (g): a+b+c+d, ais the number of pairs that are in the same group in the bipartitions U"'

and U', b is the number of pairs that are in the same group in the bipartition U'" and in different
groups in the bipartition U', ¢ is the number of pairs that are in different groups in the bipartition
U" and in the same group in U', and d is the number of pairs that are in different groups in the

bipartitions U" and U".
Validation of the obtained hit regions using the Adjusted Rand Index

We define a new function Q" reflecting the quality of the reference bipartition, as follows:

Q"=ARIxQ". . (3.9)

50



The difference between Q' and Q" indicates the level of concordance of the reference bipartition
U' with the selected function Q. Throughout this study, Q will denote the hit identification
function using prior knowledge information, Q' — not using any prior knowledge information and

Q" — using prior knowledge information and based on ARI.

3.4.3 Bipartition optimization
For each window position, we generated a fixed number of random initial bipartitions. For each
such a bipartition, we moved elements from one subset to the other and back again in cycles, each

time accepting the move that maximized the objective function O, until no further improvement

was‘possible. Once a local maximum was reached, we compared it to the best current value
obtained for all starting random bipartitions tested so far. ARI was used to compare the level of

concordance of the obtained bipartition (i.e., the one that was maximizing the given function Q)

with the reference bipartition (carcinogenic vs. non-carcinogenic taxa for HPV and invasive vs.

non-invasive taxa for N. meningitidis) given as a parameter to the algorithm.

3.4.4 Time complexity

The time complexity of the new algorithm carried out with an overlapping sliding window of a
fixed width, and advancing one alignment site by step, is O(I x #* x w x r), where [ is the length of
the MSA, » the number of considered species, » the number of random initial partition generations
and w the window width. In order to ensure this complexity, we have to limit the optimization cycle

to a constant number of iterations.

3.4.5 Simulation study
In order to validate the hit region identification functions Q,",Q;" and Q;', we conducted a Monte-

Carlo simulation study involving two major evolutionary mechanisms: Positive selection (PS) and
Lineage specific selection (LSS). Two cases of group selection were also tested: The cases of the
monophyletic and polyphyletic clustering. An approach involving the computation of p-values was
implemented to asses the predictive ability of each of the three functions for each combination of
evolutionary parameters. The following procedure was carried out. A phylogenetic tree T with 16
leaves was first generated using the algorithm described by (Kuhner and Felsenstein 1994). The
edge lengths of T were generated using an exponential distribution. Followiné the approach of

(Guindon and Gascuel 2002), we added some noise to the tree edges in order to provide a deviation
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from the molecular clock hypothesis. The random trees yielded by this procedure had depth of
O(log(16)). The tree was then rooted by midpoint. For the monophyletic test, the left and right sub-
trees, denoted by T, and T, were determined, depending on the position of the root. For the
polyphyletic test, two sets of leaves were randomly chosen and the corresponding sub-trees, denoted

by T and T, were extracted.

In the PS simulations, we used the original lengths of the edges of the subtrees 7} and T3 (i.e.,
monophyletic case), and 73 and T, (i.e., polyphyletic case), while all edge lengths of T were
gradually multiplied by the scaling factor a, varying from 0.05 to 1 (with the step of 0.05).

In the LSS simulations, all edge lengths of T were multiplied by 0.5 (thus simulating neutral
evolution), while all edge lengths of T and 75 were multiplied by the scaling factor a; = 0.5 +

0.025x, and all edge lengths of T, and T4 by a, = 0.5 — 0.025x, where x was varying from 1 to 19.

Second, we executed the SeqGen program (Rambaut and Grass 1997) to generate random MSAs of
nucleotide sequences along the edges of the phylogenetic trees constructed at the first step. The
SeqGen program was used with the Jukes-Cantor model of sequence evolution. DNA sequences
with 440 bp were generated for each tree 7. In addition, MSAs of the length 20 bp were generated
for each of the trees T, T, T5 and T;. Two different variants of MSA were produced to simulate
monophyletic and polyphyletic evolution. In the sequence alignment generated for the original tree
T, we inserted those generated for the trees T; and T, in the monophyletic case, and those generated
for the trees T3 and Ty in the polyphyletic case. The location of the inserted sequence blocks was

known.

Thus, depending on the scaling factor parameters, for the PS case we simulated a variable
homogeneous region inside a conserved context, and for the LSS case a more divergent region
inside a neutral context. Third, we scanned the resulting sequence alignment using a sliding window
of size 20 bp with the step of 1. We calculated the value of the hit region identification functions

0,',0," and Q,' for each fixed position of the window and assessed the proportion of their values

that were higher than the reference value corresponding to the inserted region.

These steps were repeated over 100 different replicates and the distributions of the best (in each

case) function over each combination of testing parameters were represented using quartiles.
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3.5 Results and discussion

We proposed a new algorithm for finding genomic regions that may be related to a disease along
with two new hit region identification functions Qs and Q. Both new functions along with the best
existing function Q, were tested in simulations. The functions yielding the best results for each case

were illustrated in Figure 3.2: Monophyletic evolution (case a: PS, case b: LSS) and Figure 3.3:
Polyphyletic evolution (case a: PS, case b: LSS). The remaining results for the Q,',Q;' and Q'

functions are presented in Additional file 1 (see Appendix A). Figures 3.2 and 3.3 clearly show that
the hit zone identification in the monophyletic case is much easier than in polyphyletic case. We can
suggest that in order to be recognized, the hit region has to have a different evolutionary speed than
the context in which it resides. The polyphyletic lineage specific case represents the hardest

evolutionary situation. Also, one can notice that different Q-type functions, Q,',Q;' or Q,', should
ry 4 2% 6

be used in different practical situations.
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Figure 3.2. P-values obtained for monophyletic evolution hit region detection
(a) Positive selection - Variable hit region inside conserved context.

Quartile distribution of p-values obtained for the function Q;'. Abscissa represents scaling factor of

the conserved context in which the variable hit region resides. Values close to 0 represent
conservation (maximum discrimination), while values close to 1 represent variability (identical to
context). Variable hit region is always maintained at a scaling factor of 1. Ordinate represents p-
values in log-scale. Horizontal dashed line represents the significance threshold of 0.05.

(b) Lineage specific selection - Heterogeneous hit region inside neutral context.

Quartile distribution of p-values obtained for the function Q;'. Abscissa represents the difference in

scaling factors among the two lineages present in the hit region. Values close to 0 represent
homogeneous evolutionary speed (similar to the neutral context in which it resides), while values
close to I represent divergence among these lineages. Context is always maintained at a scaling
factor of 0.5, simulating neutral evolution. Horizontal dashed line represents the significance
threshold of 0.05. In the case of lineage specific selection, the value of the Q'-type functions

corresponding to 1 on the abscissa scale cannot be computed because it involves a sub-tree with 0
edge lengths.
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Figure 3.3. P-values obtained for polyphyletic evolution hit region detection
(a) Positive selection - Variable hit region inside conserved context.

Quartile distribution of p-valués obtained for the function Q,'. Variable hit region is always

maintained at a scaling factor of 1. Abscissa represents scaling factor of the conserved context in
which the variable hit region resides. Values close to 0 represent conservation (maximum
discrimination), while values close to 1 represent variability (identical to context). Ordinate
represents p-values in log-scale. Horizontal dashed line represents the significance threshold of
0.05.

(b) Lineage specific selection - Heterogeneous hit region inside neutral context. Quartile distribution
of p-values obtained for the function (J;'. Context is always maintained at a scaling factor of 0.5,

simulating neutral evolution. Abscissa represents difference in scaling factors among the two
lineages present in the hit region. Values close to 0 represent homogeneous evolutionary speed
(similar to the neutral context in which it resides), while values close to 1 represent divergence
among these lineages, and from the neutral context. Horizontal dashed line represents significance
threshold of 0.05.
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The procedure for the identification of hit regions was carried out to detect the variability zones in
the FrpB gene of N. meningitidis as well as the regions potentially responsible for cancer in the gene

E6 of HPV. In both cases, we also carried out the ARI validation.

3.5.1 Neisseria meningitidis analysis

We scanned the MSA of the FrpB gene using the new algorithm with a sliding window of size 9
nucleotides. We compared the obtained results to the putative topology model of the FrpB protein
described in (Kortekaas et al. 2007) (see Figure 3.4a). The results are presented in Figure 3.4b and
c. Remarkably, all surface exposéd loops confirmed by enzyme-linked immunosorbent assay (i.e.,
L2? L3, L4, L5 and L10) (Kortekaas et al. 2007) were properly detected using the functions Q,'and
Q;'. It is worth noting that our algorithm was able to find the loop L4, which is hidden between the
loops L5 and L3. The model loops L1, L8 and L9 were found at their predicted positions. The loops
L2 and L11 were found at different positions, while the loops L6 and L7 were missed regardless of
the availability of the prior knowledge information (see Figure 3.4b and c). As protein models
gradually improve and more crystallographic data become available, it will be interesting to
reassess these results in the future. Both presented O'-type functions (Equations 3.5-3.6) overlap
along the alignment, with the exception of the largest loop (L5) and the second largest loop (L3),
where the amino acid variability is largely confined. The function Q,' correlates best with surface
exposed loops structure. This suggests that the divergences in shape between the functions Q,'and
Os' might be used to detect immunologic activity. It is known that bactericidal antibodies are
directed against variable regions situated in the largest loops of proteins (Van Der Ley et al. 1991).
Note that the organisms compared here were strains of the same bacterium; their genetic variant
being alleles and evolutionary distances between them being very small. On such a small timescale,

underlining evolutionary processes are usually not very diverse. It would be also interesting to

verify whether similar conclusions could be made for other outer membrane proteins.

56




Poriplass

£
PYRRIEY
¥

)

IR WM W W ¥ i" L] *

a8

95

82

s 15 - tdsa | fesh ion 200
{b)

B3

Bar-
506
0.5
128
6934

by

R W

80)

200 4&302 e e e e s 2000
)

Figure 3.4. N. meningitidis FrpB protein variability zone detection

(a) Topology model of the FrpB protein of N. meningitidis strain H44/76. Topology of the p-barrel.

Surface-exposed loops (L) and B-strands are numbered. Residues are framed according to their
predicted secondary structure: Amino acid residues in B-strands are depicted by diamonds. Amino
acid residues present in exposed loops and periplasmic turns are depicted by circles - reproduced
from (Kortekaas et al. 2007).

(b)-(c) Variability zone detection by the hit region identification Q'-type functions, achieved without
prior knowledge of invasive taxa (case b), and Q"-type functions, using this prior knowledge along
with the ARI coefficient (case c). Functions Q,' and Q," are depicted by a dashed line and

functions Q,'and ;' are depicted by a continuous line. A non-overlapping sliding window of size

9 nucleotides was used during the scan of the gene FrpB MSA. The abscissa axis represents the
window position along the nucleotide MSA. 11 gray zones correspond to extracellular loops.
Annotations start at the solid vertical line (near the 400 abscissa mark).
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3.5.2 Human Papilloma Virus analysis

We performed a scan of the MSA of the gene E6 for 83 HPV organisms (using non-overlapping
windows of size 20 nucleotides). Each time the species bipartition was known, High-Risk HPV
against all other HPV types in Figure 3.5a, Squam-Risk HPV against all other HPV types in Figure
3.6a, and Adeno-Risk HPV against all other HPV types in Figure 3.6b, it was incorporated in the
computational procedure as shown in Algorithm A.1. The comparative results for the High Risk
HPV subset provided by the new algorithm without prior knowledge of carcinogenic taxa and those
yielded by the former one (Badescu et al. 2008), are presented in Figure 3.5 using annotations for
HPV-16. Figure 3.5a illustrates the results obtained using the functions Q4 and Qs using a prior

kmowledge on the species carcinogenicity.

According to the new algorithm, see Figure 3.5b, the PDZ domain is ranked first in the annotated
part of the alignment. A detailed view of the terminal aligned region, within the index interval 680-
740, shows a small left shift in the peak positions of the function Q,' (3‘.5b), but inside the same C-
terminal tail domain. On the left side, flanking the PDZ domain, one can find the E6C domain
which is related to the DNA binding (Nominé et al. 2006). One can notice that the function peaks
(see Figure 3.5a and 3.5b) of (Q,'are almost in the same positions than those found using Qu,
exception being a region at the beginning of the alignment (i.e., at the beginning of the E6N
domain). As for N. meningitidis loops, it would be interesting to study in greater details the regiéns

recognized by both tested functions, Q,'and Q'.

We can conclude, by comparing Figures 3.5a and 3.5b, that the new functions, Q,"'and Q;', provide

almost identical hit region recovery than the existing functions O, and Qs, which take advantage of

a prior knowledge on the species carcinogenicity.
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Figure 3.5 Hit region identification functions for High-Risk HPV
(a) Functions obtained using prior knowledge on the taxa carcinogenicity.

The hit region identification functions Qs, depicted by a dashed line, Qs, depicted by a continuous
line, and Qs, depicted by a dotted line, for the High-Risk HPV (HPV-16 and 18) (Badescu et al.
2008),(Diallo et al. 2009), during the scan of the gene E6.

(b) Functions computed without prior knowledge on the taxa carcinogeﬁicity. The hit region

identification functions Q,', depicted by a dashed line, ', depicted by a continuous line, and Q;’,

depicted by a dotted line, during the scan of the gene E6. The abscissa axis represents the window

position along the nucleotide multiple sequence alignment. The PDZ-domain is highlighted in gray.

Annotations for the N and C-terminal arms, E6N and E6C domains are represented for HPV 16
coordinates, from (Nominé et al., 2006) (Nominé et al. 2006). Zn**-ligating Cys residues
annotations reproduced from (Lipari et al. 2001).
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Figure 3.6. Q"-type functions, depending on ARI :
(a) Squam HPYV dataset. (b) Adeno HPV dataset.

Variation of the function Q,", depicted by a dashed line, Q;", depicted by a continuous line, and

O;'", depicted by a dotted line, obtained with the non-overlapping sliding window of width 20

nucleotides during the scan of the gene E6. The abscissa axis represents the window position along
the nucleotide MSA. The PDZ-domain is highlighted in gray. Annotations for the N and C-terminal
arms, E6N and E6C domains are represented for HPV 16 coordinates, from (Nominé et al., 2006)
[30]. Zn**-ligating Cys residues annotations reproduced from (Lipari et al. 2001).
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The Q' function validation was also carried out for HPV data. The results are presented in Figure

3.6. Here, the PDZ domain ranks first for both tested datasets, related to the Squam and Adeno
cancers (Figures 3.6a and 3.6b). The peaks were found at almost the same positions as in Figure 3.5,
with the exception that only some of the peaks shown in Figure 3.5 are present here. The function

Q," seems to be less variable than the function Q;'"'. For the Squam dataset, there is one peak in the

E6C domain, absent in the Adeno dataset, with a high monophyletic signal and unknown

annotation.

On the other hand, the peak located at the index 660, and corresponding to the window positions
660-680, includes two putative Zn**-ligating Cys residues whose absence in mutants results in a

dramatic loss in the p53 degradation activity (Lipari et al. 2001).

By analyzing Figures 3.4, 3.5 and 3.6, one can notice that in some situations prior knowledge
information brings an important advantage to the method (see the case of Figure 3.4c when the use
of the prior knowledge along with the ARI coefficient allows for getting rid of some false positive

hits; for instance, the false positive picks found using Q'-fype functions around the indices 1225 and
1500 presented in Figure 3.4b were not found by the Q' -type functions presented in Figure 3.4c as
well as the case of an almost perfect PDZ domain recovery provided by the Q' -type functions as

shown in Figures 3.6a and 3.6b), but in the other cases, the new algorithm is capable of correct
recovering hit regions without any prior knowledge (e.g., see the cases of the loops L1, L3, L5, L8,
L9 and L10 for the N. meningitidis dataset).

3.6 Conclusion

We described a new algorithm for finding genomic regions that may be associated with a disease. It
is capable of detecting hit regions without prior knowledge on the carcinogenicity or invasivity of
related organisms. This is an important improvement over previous works in the field (Badescu
et al. 2010, Diallo et al. 2009). We also showed as the Adjusted Rand Index (Hubert and Arabie
1985, Milligan and Cooper 1986, Santos and Embrechts 2009) can be incorporated in the hit
detection procedure. The discussed algorithm can be directly used to study organisms that have an
ambivalent behavior and are, thus, more difficult to classify. For instance, some strains of Neisseria
Meningitidis show a hyperinvasive behavior during epidemics, but are non—invasive, otherwise. The
behavior of some other organisms, like human papilloma viruses (HPV), is more consistent. Such

organisms can be clearly classified with respect to their level of carcinogenicity. Species
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bipartitions, established according to carcinogenicity or invasivity criterion, suggested in the
literature are important for the identification of genomic regions responsible for a related disease.
We showed, however, that a successful identification of these regions can be accomplished without
any prior knowledge of the spécies classification (Figure 3.5). Considering, in parallel, several hit
region identification functions can provide more insight into the structure of genomic regions
(Figures 3.4, 3.5 and 3.6). Simulation results suggest that there is no a unique function that provides
the best overall results in all practical situations (e.g., the case of monophyletic or polyphyletic
evolution and positive or negative selection), and that at least three different functions might be
useful (Figures 3.2 and 3.3). It is worth noting that the monophyletic scenarios are easier to detect
than the polyphyletic ones. The function Qs allows for a better detection of monophyletic scenarios,
while in the polyphyletic case, the functions Qs and (s provide the best results in the positive
selection context and in the lineage specific selection context, respectively. The application of the
described functions to the HPV gene E6 allows one to retrace the hit regions that are well-known to
be related to carcinogenicity (Lee and Laiminé 2004),(Kiyono etal. 1997),(Lipari etal.
2001),(Nominé et al. 2006).

Furthermore, the results given by these functions while analyzing the FetA sequences of Neisseria
meningitidis suggest a large overlap between the regions with surface-exposed loops and those
detected by the hit region identification functions (Figure 3.4). All these results indicate the ability
of the proposed algorithm to identify regions with bipartite evolutionary signatures according to
different patterns of evolution. Each time the species bipartition was known, High-Risk HPV
against all other HPV types in Figure 3.5a, Squam-Risk HPV against all other HPV types in Figure
3.6a, and Adeno-Risk HPV against all other HPV types in Figure 3.6b, it was incorporated in the
computational procedure as shown in Algorithm A.1. In the future, it will be important to assess the
correlation between different non-overlapping detected hit regions present in the given alignment. It
would be also interesting to compare the performance of the introduced bi-clustering algorithm with
the existing bi-clustering methods currently used in bioinformatics, including SAMBA (Tanay et al.
2004), Crossing Minimization (Abdullah and Hussain 2006) and cMonkey (Reiss et al. 2006).
Aﬁother possibility consists of using a kA-means (MacQueen et al. 1967) type of algorithms that can
suggest partitioning of the given dataset in several, and not necessarily in two, classes when the
exact number of classes is unknown. For instance, in the case of HPV data, one could consider the

three following HPV classes: High-Risk HPV (types 16 and 18), Low-Risk HPV (types 6, 11, 26,
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31, 33, 35, 39, 45, 51, 52, 53, 55, 56, 58, 59, 66, 73, 81, 82 and 83) and No-Risk HPV (all other
HPV types).

It is worth noting that the presented algorithm, like most of the comparative genomics methods,
relies on the assumption of the alignment correctness. Thus, it will be also important to analyze the

impact of alignment errors on the results of the proposed hit detection procedure.

We have provided the complete source code of our épplication allowing one to carry out the
methods presented in this chapter; the application's name is QFUNC v.0.5. A Makefile along with
the examples of the input and output data have been also made available. The ReadMe
documentation file provides an explanation of the main steps to follow for executing the
application. The source code and the accompanying files have been uploaded to the GitHub public
repository (with the BSD licence). It is freely available at the following URL address:
https://github.com/dunarel/dunphd-thesis/tree/master/Chapter3/Main/q_funcb.
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CHAPTER 1V

COMPLETE AND PARTIAL HORIZONTAL GENE
TRANSFERS AT THE CORE OF PROKARYOTIC
ECOLOGY AND EVOLUTION

4.1 Abstract

Horizontal Gene Transfer (HGT) is one of the major evolutionary processes affecting prokaryotic
species. Two known types of horizontal gene transfer are complete and partial HGT. Identifying the
origins and the rates of horizontal gene transfers in the context of complete and partial HGT models,
and this for different phylogenetic families and ecological habitats, is a very relevant and
challengihg problem. In this chapter, we describe a novel bioinformatics framework designed to
estimate and compare the rates of complete and partial HGT at different phylogenetic and
ecological levels. Well-known methods of phylogenetic tree inference (e.g. RAXML) and horizontal
gene transfer detection (e.g. HGT-Detection) will be used in our experiments. We support a
“genome space” view of prokaryotic evolution, in which individual strains interact based on
ecological habitat and phylogenetic similarity. Our results suggest that partial HGTs are almost
twice more frequent than their complete counterparts. Moreover, we show that partial HGTs,
detected by the contemporary HGT detection algorithms, seem to be more recent than complete
HGTs.




At the allele level, HGT seems to be rather a rare event. We estimated, using a 75% confidence
HGT detection threshold, that the average HGT rate is 2.94 x 107 for complete transfers and 8.07 x
107 in overall (complete + partial transfers). This HGT rate is the probability that a contemporar}}
prokaryotic allele or one of its direct ancestors (i.e. species located on the allele's lineage) have been
ever affected by HGT coming from another prokaryotic organism during its evolutionary history.
Thus, the majority of the existing prokaryotic alleles have not been affected by HGT. On the
contrary, the majority of prokaryotic genes (i.e. a gene here is represented by a multiple alignment
of the corresponding alleles) have been affected multiple times by gene transfers during its
evolutionary history: 82.7% of the considered prokaryotic genes have been affected by at least one
complete HGT and 96.3% - by at least one HGT in overall (these results are indicated for the HGT
confidence threshold of 75%). We determined that the accuracy of the HGT age inference, which is
another problem we addressed in this study, is the highest within the most recent 1000 Mya time
period. It decreases progressively according to the time of HGT occurrence. The comparison
between complete and partial HGTs also highlights the fact that the ages of partial HGTs, which are

more recent than complete transfers, can be detected with a better confidence.

4.2 Introduction

Horizontal gene transfer is an important and widespread phenomenon in prokaryotic evolution
(Koonin etal. 2001, Sjdstrand et al. 2014, Wolf etal. 2012). HGT has an important impact on
microbial cooperation and bacterial virulence (Nogueira et al. 2009, Takeuchi etal. 2014). There
exist three well-known HGT mechanisms, including transformation, transduction and conjugation,
which allow DNA sequence acquisition either from the environment or directly from the donor
species (Boc et al. 2010). The facility with which some bacteria develop antibiotic resistance fs
clearly an evidence of traits being transferred among species (Ochman et al. 2000), rather than de
novo multiple mutations in each lineage (Davies and Davies 2010). High prevalence of HGT in
prokaryotes has been demonstrated by the discovery of pathogenicity islands and virulence
attributes (Koonin and Wolf 2008, Ochman et al. 2000). The latter events are relatively recent, and
have a clear ecological component associated with maintenance, éxpansion or change of
microorganism’s ecological habitat (Smillie etal. 2011). Furthermore, bacteriophages, as gene
transfer agents, stand as another compelling evidence of recent HGT (Koonin and Wolf 2008).
Recently, bacterial sequences in cancer samples were found to integrate into the human somatic as
well as into mitochonarial genomes (Riley et al. 2013).
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Thus, gene transfer can be considered a well-established phenomenon on the “microscale”:
numerous biological experiments with bacteria and viruses, direct genome comparisons using
simple heuristics (i.e. BLAST) and detection of anomalous characteristics of certain genomic

sequences provide a compelling evidence of HGT (Smiillie et al. 2011).

According to Koonin and Wolf (2009), in the 6th edition of the Origin of Species Darwin explicitly
introduced the notion of the Tree of Life (TOL), (Darwin, 1872). Since then, phylogenetic tree
thinking in biology became standard. We should mention, however, that the work of Darwin does
not contradict the notion of reticulate evolution which is based on the use of phylogenetic networks
for representing reticulate evolutionary mechanisms. Unfortunately, a phylogenetic tree accounts
only for vertical (i.e. direct) transfer of genetic material and cannot be used for representing
horizontal gene transfer events (Legendre and Makarenkov 2002). For instance, the traditional tree

model is not convenient for studying the evolution of prokaryotic species.

The use of the term >‘prokaryote’ has been recently disapproved by some researchers, because
Archaea and Bacteria do not form a monophyletic clade (Pace 2006). Similar arguments have been
shown to exist for the eukaryotes, underlining the rigidness of the present nomenclature rules and
their ability to deal with HGT (Syvanen 2012). The modern implications of reticulate evolution on
the Tree of Life, and on Prokaryotes in general, have been extensively analyzed in a recent book
(Doolittle and Zhaxybayeva 2013). The latter authors discuss the historic debate opposing Woese
(Woese and Fox 1977) and Mayr (Mayr 1998), involving ‘three’ versus ‘two’ domains of life.

Many researchers have consequently developed a more appropriate concept, known as the “genome
space”, which is supported by phylogenetic networks (Huson and Bryant 2006). Rather than
eliminating HGTSs from the tree reconstruction, some authors used them as a support for the tree of
life (Abby et al. 2012). In order to preserve the notion of phylogeny at the genomic level, the
concept of “core of genes”, has been proposed (Charlebois and Doolittle 2004). The core genes
include a set of genes which are relatively “immune” to HGT and show a slow rate of evolution.
However, the exfent of HGT has been intensely debated, as the discussed HGT rates vary among
different studies and clearly depend on the applied statistical models and HGT detection methods
(Boc et al. 2010). In this vein, the debate opposing “genome space” and “core of genes” models of

evolution has been going on for a long time, each party having its arguments, the former explaining
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for the rapid adaptation of populations to the changing environmental conditions, the latter being

more relevant the traditional view of species evolution (Koonin and Wolf 2008).

Continuing genome sequencing projects constantly contribute to the decrease of the set of core
genes. Confronted to. growing evidence that even the essential function of photosynthesis can be
spread by HGT (Mulkidjanian etal. 2006), researchers struggle to identify core genes that
potentially allow the separation of true (i.e., tree-like) phylogenetic signals from ‘‘noise’’(Shi and
Falkowski 2008). Thus, relaxed measures should be introduced to account for sequencing and
annotation artifacts and some genes’ tendency. to form multidomain proteins when establishing a set

of “core genes” (Charlebois and Doolittle 2004).

Moreover, the relation between ecology and phylogenetics has been further refined by the
observation that there is a relatively narrow variation in the prokaryotic genome sizes, which leads
to an emerging view of bacterial genomes as samplers and not accumulators of genes. Thus HGT,
which greatly contributes to the diversification of bacterial genomes, redefines the ecological niches
of the microorganisms and promotes bacterial speciation (Ochman et al. 2000, Smillie et al. 2011).
The existence of habitat-specific gene pools and their relationship with the core genome can explain
how prokaryotic populations exhibit both ecological cohesion and high genomic diversity (Polz
et al. 2013). Arguments in favor of an even larger pan-domain gene pool emphasized the role of
HGT in ecologically important processes, ranging from heavy-metal detoxification to glycerol

uptake and metabolism (Schonknecht et al. 2013).

The new emerging view of prokaryotic world is that of a single connected and compartmentalized
gene pool, allowing for a gene exchange at variable rates, with fuzzy boundaries between species
(Gogarten and Townsend 2005, Koonin and Wolf 2008, Smillie et al. 2011). An important study,
based on the assumptions of relative constancy of ancestral prokaryotic genome sizes, estimates a
minimum lower bound of the average rate of complete HGT at 1.1 event per gene family and family
lifespan; the maximum rate can reach 2.1 events per gene family (Dagan and Martin 2007). Using
the median tree method of inferring a species phylogeny (Kim and Salisbury 2001), the average rate
of complete HGT among prokaryotes, estimated at the allele level, was found to be around 2% (Ge
et al. 2005).
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In this study, we propose a computational framework for estimating the rates of complete and

partial types of HGT among prokaryotes. Extending the work of Smillie et al. (2011), who carried
out their experiments for complete HGT only, we explore the impact of habitat and phylogenetic
family affiliation on the exchange of genetic material in the context of both complete and partial
HGT models (the HGT-Detection algorithms of Boc et al. (2010) and Boc and Makarenkov (2011)

were used to detect and statistically validate HGT events).

Smillie and colleagues estimated the rate of the complete recent HGT for bacteria colonizing human
environments at the maximum level of 20%. However, for non-human environments this rate was
much lower, i.e. around 2% (see Fig. 1 in Smillie et al. 2011). On average, for all bacteria, the HGT
rate was around 10%. In the pathogenic genes, this rate was much higher, with a maximum bound
of 40% (see Fig. 4 in Smillie et al. 2011). Another recent study showed that the gut inflammation

can boost pathogenic horizontal gene transfers (Stecher et al. 2012).

Using a directed network analysis Popa and colleagues discovered reliable donor-recipient
relationships leading to a general HGT rate of 7% (Popa et al. 2011). The latter study also found
that Proteobacteria form a highly connected cluster in the inferred HGT network. On the other hand,
Crenarchaeota was found to be one of the groups exhibiting genetic mosaicism due to partial HGT
(Ching et al. 2014).

We also identified the exact ages of the obtained complete and partial HGT events by using the
B.E.A.S.T. v.1.7.5 (Drummond and Rambaut 2007) and TreePL (Sanderson 2002) programs.
Szollosi and colleagues showed that the HGT phylogenetic modeling can contribute to the

reconstruction of the relative speciation timing (Szollosi et al. 2012).
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4.3 Materials and Methods

4.3.1 Data acquisition and classification

In our study, prokaryotic species were selected from the database of completely sequenced species
genomes available at the NCBI Genomes ftp site. All of the completely sequenced prokaryotic
genomes available at this site (1465, as of November 2011) were considered. Among them, we first
selected 100 of the most completé prokaryotic genomes (belonging to the 23 available prokaryotic

families) in terms of the number of genes.

The species selection was made proportionally to the percentage of the family representatives in the
whole set of 1465 prokaryotic species. Then, we added to them 11 additional species to ensure that
our dataset includes at least one representative from each of the 23 prokaryotic families (some
families had less representatives than 1% of the total number of species). This yielded us a total
number of 111 species, denoted throughout this chapter as Species set. Detailed information on the
considered species can be found in Supplementary Table 1. We also identified 110 of the most
complete genes (see Supplementary Table 3) belonging to the selected set of 111 species. The latter
genes were labeled as Ubiquitous gene set. A Core gene set was then defined as its subset including

36 genes previously identified by Charlebois and Doolittle (Charlebois and Doolittle 2004).

The limits that we imposed on the number of considered species and genes was dictated by the high
time complexities of the HGT detection and validation algorithms used in our study (e.g. Partial
HGT detection program with the HGT bootstrap validation of the scanned sequence fragments (Boc
and Makarenkov 2011) and has an exponential time complexity on the number gene transfers). At
the same time, the Bayesian inference of the ages of partial HGTs, carried out over multiple sliding
windows, took more than 3 months for a complete execution. We also tried to run this analysis with
the datasets including 250 and 500 of the most complete prokaryotic genomes, but these
computations were stopped as they should have taken over 12 months with the computational
resources allowed to us at Compute Canada High Performance Cluster. We opted for an
experimental design in which we invested the available computational resources in performing
statistical validation of the inferred transfers by means of bootstrapping. Another valid approach
would be to abandon the idea of statistical validation of transfers in favor of sampling a higher
number of organism/genes. Yet, another approach would be to sample repeatedly different sets of

organisms/genes and then to average the obtained results in order to assess their robustness.
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Afterward, we constituted 110 multiple sequence alignments (MSAs) of amino-acid sequences (one
MSA per selected gene) from which we excluded misclassified paralogs using TribeMCL (Enright
et al. 2002). When multiple alleles of the same species were available, all of them were included in
the corresponding MSA. The TribeMCL program, which implements a Markov Chain Clustering
(MCL) algorithm (van Dongen 2000) on all-to-all BLASTP hits, is known to be conservative in
terms of the number of groups (Li etal. 2012). We carried out the TribeMCL version of the
program, bundled with “mcl” v11.294, with default parameters (I=2.0). In order to obtain more
accurate results of BLASTP, we selected a Smith-Waterman backend and an E-value threshold of
10, About 1% of the ofiginal alleles were identified as potential paralogs, using this procedure, and

thus excluded from the original MSAs.

The nucleotide sequences corresponding to the selected amino-acid sequences were retrieved from
the associated chromosomes available at GenBank. The retrieved nucleotide sequences were
aligned using the MUSCLE tool (v3.8.31, Edgar 2004) and then corrected using the GBlocks
program (v0.91b, Castresana 2000) which eliminates misaligned sequence fragments. In our
analysis, we were less restrictive than the default option of GBlocks, allowing 50% of the sequences
for flank positions (-b2 parameter), a maximum of 10 contiguous nonconserved positions (-b3

parameter), minimum block length of 5 (-b4 parameter) and half gap positions (-b5 parameter).

The 110 multiple sequence alignments analyzed in our study are available at the following URL
address: http://www.info2.ugam.ca/~makarenkov_v/alignments.zip. We also provide Gene IDs (still
available with the new NCBI prpkaryotic genome annotation pipeline, as of November 2015) - for
the considered Ubiquitous dataset (presented in Supplementary table 3), of the amino-acid
sequences considered in this study at the same URL address (Angiuoli et al., 2008), (Tatusova et al.,
2013). The corrected nucleotide MSAs were then used as basis for building gene trees, given as
input to the HGT detection algorithms (Boc et al. 2012). We constructed the gene trees by means of
.thé RAXML method (Stamatakis 2006). Species taxonomy (i.e. species tree in the HGT context)
was retrieved from the NCBI Taxonomy website (Benson et al. 2009). Taxonomic groups (i.e.
families) were those assigned by the NCBI Genome Project. Note that each species was assigned to

one established prokaryotic family.

In this study, we explored the patterns of HGT by considering two different classifications of

prokaryotic species. The first way follows the taxonomic species classification provided by the
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NCBI Genome Project. It is based on the established prokaryotic family classification. The second
way takes into account possible ecological localizations, or habitats, of the selected species. The set
of the available habitats, described by MIGS Field (Field etal. 2008), was extracted from the
Genomes OnLine Database — GOLD (Pagani et al. 2012). It is worth noting that the Extreme habitat
is a heterogeneous collection of habitats corresponding to extreme environmental conditions, (e.g.,
superheated waters, acid-laden streams around old mines, frigid Antarctic ice, super-salty waters of
the Dead Sea). This classification complies with the annotation of the GOLD database. Mention that
many of the organisms belonging to the Extreme habitat also belong to some other habitats. In the
GOLD classification (Pagani et al. 2012) each species could belong either to a unique or to multiple

habitats.
4.3.2. Phylogenetic reconstruction and HGT detection

In order to detect and validate complete and partial horizontal gene transfers using the HGT-
Detection algorithms (Boc et al. 2010; Boc and Makarenkov 2011), we need to have a species tree
and a gene tree (or a gene MSA for the partial HGT inference). These algorithms proceed by
reconciliation of the trees, gradually transforming the species tree into the gene tree in order to infer
horizontal gene transfers. An important advantage of these algorithms is that they allow for

validating the obtained HGTs statistically by estimating their bootstrap support (Boc et al. 2010).

To reconstruct the species tree, representing the traditional taxonomic species pattern, for the
selected set of 111 prokaryotic species, we considered the available NCBI species Taxonomy
(Benson et al. 2009). Then, for each considered multiple sequence alignment, we computed a gene
tree representing the evolutionary history of the given gene. This history may be different from the
classical taxonomic pattern due, for example, to HGT, recombination or hybridization phenomena
(Legendre and Makarenkov 2002). In the case of prokaryotes, complete and partial HGTs (i.e.
partial HGT is a complete HGT followed by intragenic recombination) are the most plausible
explanations for topological discrepancy between the species and gene trees. To infer the gene trees,
the RAXML reconstruction method (the RAXML program v7.2.8 with multithreads; see (Stamatakis
2006) was used with the following parameters: GTR Gamma model, 20 starting random trees, and
100 bootstrap replicates. Then, we reconciled each gene tree with the species tree fo identify
statistically plausible HGT scenarios. To this end, we inferred complete gene transfers using the

HGT-Detection program (v.3.4), (Boc et al. 2010) available on the T-Rex web site (Boc et al.
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2012). Partial gene transfer detection was based on a sliding window procedure described in Boc
and Makarenkov (2011). We implemented this procedure using the KSH, JRuby and Java scripts
and a multilayer approach. Thus, the 110 multiple sequence alignments we considered were scanned
with a sliding window algorithm. Sliding window sizes were equal to 10%, 25% and 50% of the
total alignment length. Partial HGTs were recovered from the overlapping MSA fragments (when
the same HGT was found for multiple consecutive positions of the sliding window) based on a
Jaccard similarity of at least 75%. This allowed us to account for the tree inference instability from
short MSA fragments (Boc and Makarenkov 2011). To gain in computing time, we parallelized the
partial HGT-Detection program and ran it on a parallel Mammoth cluster (Compute Canada High
Performance Cluster), in addition to using the parallel version of the RAXML program. Partial
HGTs spanning to multiple MSA fragments could have several bootstrap support scores in each of
them. We assigned a single value to these multiple-fragment partial HGTs that corresponded to the

maximum bootstrap support of the components.

For the two methods of HGT prediction (complete and partial), we used, in turn, bootstrap

thresholds of 50%, 75% and 90%, respectively, to assess the robustness of the obtained HGT.

Once complete and partial HGTs were predicted for the whole dataset, we computed HGT rates
between the species of the same phylogenetic family (or of the same habitat), and then between the
species of different phylogenetic families (or of different habitats). Formulas (4.1-4.6) below were
used to compute the presented intragroup and intergroup HGT statistics. These formulas normalize
the obtained HGT rates with respect to the number of considered alleles. We also provide a more
general result regarding prokaryotic alleles, which is the average probability estimation that a
prokaryotic allele has been affected by HGT during its evolution (see Formula 4.7). Moreover, we
highlight ten of the most frequent HGT events for each level of confidence we considered (i.e. 50%,
75% and 90% HGT bootstrap thresholds).

As the applied partial HGT-Detection algorithm (Boc and Makarenkov 2011) was inferring both
partial and complete HGTs, the obtained absolute rates were denoted as overall gene transfer rates
(i.e. complete HGT was a particular case of partial HGT in this algorithm; thus, the indicated

overall HGT rates account for both complete and partial transfers; see Tables 4.1-4.3).

73




4.3.3. Computation of HGT statistics

In this section, we bresent the main formulas used to calculate HGT statistics and the corresponding
explanations regarding the computation of the HGT Weights (Figure 4.1). The presented formulas
were used to generate: (a) heat maps of horizontal gene transfer events befween 23 prokaryotic
families (Figures 4.2 and 4.3), (b) heat maps of intragroup HGT rates (Figures 4.2 and 4.3, on the
main diagonal), (c) histograms of outgoing HGT rates (Figure 4.4), (d) histograms of incoming
HGT rates (Figure 4.5), (e) histograms of intragroup HGT rates (Figure 4.6), and, finally, (f) the
overall probability that a prokaryotic allele has been affected by HGT during its evolution (Table
4.1a). We. detailed the probability results by indicating the rates for the three selected HGT
bootstrap thresholds for the entire set of considered genes and for the genes explicitly classified as
core genes. These formulas were then adopted to calculate the HGT rates for the habitat study
(Figures 4.9-4.13).

If several groups were involved in an HGT, the obtained transfers were weighted taking into
account all involved alleles. Figure 4.1 illustrates a possible case: the transfer between the cluster
including alleles belonging to species of families F1 and F4 and the cluster including alleles

belonging to species of families F2 and F3 is accounted for as follows:
W(F1 ->F3)=0.5, W(F1 ->F2)=1.5,
W(F4 ->F3)=0.5, W(F4 -> F2)=1.5.

Thus, the horizontal gene transfer event depicted in Figure 4.1 is decomposed into four weighted

HGTs. The resulting weights depend on the number of affected alleles of each family.
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F1 F4 F3 |

]

F2 F2

Figure 4.1 Example of a horizontal gene transfer event involving alleles belonging to species of four
different families (F1, F2, F3 and F4).

Given the HGT weights calculated for individual transfers, we computed the HGT-related statistics.

First, the HGT rates between families (see Figures 4.2, 4.3 and Tables 4.2, '4.3) were calculated as

follows:
1 GELF2) 1 Npoyr1(8) .
HGT(F2— Fl)= W ), .
( ) G(FLF2) gz=1 (NFl(g)XNFZ(g) ; r2sri(&0) (“.1)

where HGT(F2 — F1) is the HGT rate for the alleles belonging to species of family F1 that were
affected by gene transfers from alleles of family F2, W}, , .,(g,i) is the weight of the i HGT from
F2 to F1 found for gene (i.e., multiple sequence alignment) g, NF2 . (g) is the total number of
detected HGTs for gene g that stemmed from alleles belonging to species of family F2 and affected
species of family F1, N, (g) and N, (g) are the total numbers of alleles belonging to species of

family F1 and F2, respectively, and G(F1,F2) is the number of genes (i.e., multiple sequence

alignments) containing at least one allele of family 1 and one allele of family F2.

Second, the non-normalized HGT rate between the alleles belonging to species of families F2 and

F1 (from F2 to F1) was calculated as follows:
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G(FLF2) Npy,ri(8)

HGT,(F2—>Fl)= Y ( >Wrm(g)), 4.2)
g1 i=

where HGT,,(F2 — F1) is the non-normalized HGT rate from F2 to F1.

The local intragroup HGT rates (Figures 4.2 and 4.3 on the diagonal) were computed as follows:

1 G‘Z”’ ( 2
G(F1) N ()< (N (8)-1

g1

. Neisin(8)

Intra_HGT _ gene(F1)= ) ZWFHFl(g,i)) > 4.3)
i=1

where Intra_HGT _gene(F1) is the internal HGT rate for family F1 (i.e., this rate accounts for

alleles belonging to species of family F1 that were affected by gene transfers from another alleles of

this family), W, _,'Fl( g,i) is the weight of the i HGT from F1 to F1 found for gene (i.e., multiple

sequence alignment) g, Nm e (g) is the total number of detected HGTs for gene g from alleles

belonging to species of family F1 and affecting species of the same family, and G(F1) is the

number of genes (i.e., multiple sequence alignments) containing at least one allele of family F1.

The outgoing HGT rates (Figure 4.4) were computed as follows:

Outg HGT(Fl)= 1 iHGT,,,,(Fl—)Fj), (4.4)

F1 j=1,(F1Fj)
where Outg HGT(F1) is the outgoing HGT rate for family F1, representing the probability that
an allele (or its part for the case of partial HGT) of a species of family F1 was transferred to a
species from another prokaryotic family, HGT,,(F1— Fj) is the non-normalized HGT rate
calculated according to Equation 4.2, Ng; is the total number of considered alleles beloﬁging to

species of family F1 (counted over all 110 MSAs), and P is the total number of considered
prokaryotic families (P =23 in our study).
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The incoming HGT rates (Figure 4.5) were computed as follows:

i
Incom _HGT(F1)= L Y HGT,,(Fj - F1), (4.5)
Npy jar{Gery
where Incom _HGT(F1) is the proportion of alleles belonging to species of family F1 affected by
HGT stemming from alleles belonging to species of the other prokaryotic families,

HGT,

hn

(Fj — F1) is the non-normalized HGT rate calculated according to Equation 4.2.

The global intragroup HGT rates (Figure 4.6) were computed as follows:

1

Intra_HGT(F1)= — HGT,,(F1- F1), | (4.6)

nn
F1

where Intra HGT(F1) is the proportion of alleles belonging to species of family F1 that were

affected by HGT stemming from the same prokaryotic family.

Finally, the average probability that a prokaryotic allele has been affected by HGT was computed as

follows:

»
> (Incom_HGT (Fi)+ Intra_HGT (Fi))x N,
HGT = =l =

average P
2 N
i=1

)
> (Outg_HGT (Fi)+ Intra_HGT (Fi))xN

i=1
P
2. N
i=1

4.7

The average HGT rates for the set of all considered genes, as well as for its subset of core genes, are

reported in Table 4.1a.

We studied ecological habitats using the same statistical measures and formulas as for the 23
phylogenetic families. The number of considered prokaryotic habitats, P, was equal to 8 in the

habitat study.
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The decomposed transfers, shown in Figure 4.1, were further weighted according to the species
habitat membership (note that a species can live in more than one habitat; see Supplementary Table
2 for more details). Let us consider a possible case: an HGT from Allele Al, belonging to species X
which is present in habitats H1 and H2, to Allele A2, belonging to species Y which is present only
in habitat HI. |

The weighted transfer from Allele Al to Allele A2, with the weight W (Al = A42), will be

decomposed as follows:

W(Al—> A2y=W(Hl—> H1)® W(H2A—> Hl);
W(H1—> H1)=0.5xW (Al > 42);

W(H2— H1)=0.5xW (A4l > A42).

The implementation details are available in Appendix B (see Formulas B.3 and B.4). These
formulas and implementation ensures that the average HGT rates computed using Formula 4.7 are
the same regardless the selected species classification (per phylogenetic family or per habitat; see
Table 4.1a).

4.3.4 HGT time estimation

An important part of our study addresses the problem of estimating the age distribution of the
identified complete and partial HGTs. We dated the inferred maximum likelihood gene trees using a
Bayesian method implemented in B.E.A.S.T. v.1.7.5 with “beagle” library v.1.1.0 (Drummond and
Rambaut 2007), and then compared the obtained results with those given by a semi-parametric
method based on penalized likelihood implemented in TreePL v.1.0 (Sanderson 2002). Secondary
constraints were applied to the tree nodes using genomic timescale from a well-known geological
and phylogenetic study of prokaryotic evolution (Battistuzzi et al. 2004). Based on the available
species tree, we established a list of 26 constraints representing prokaryotic groups and their most
recent common ancestor (MRCA) nodes ub to the roots of Bacteria and Archaea (see
Supplementary Table 4). For each node of the species tree multiple values were available, each
corresponding to the different root calibrations (3 root calibrations for Archaea and 4 for Bacteria;

see (Battistuzzi et al. 2004). We aggregated the provided constraints in order to infer the mean age
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and the mean standard deviation for each tree node, besides using the already available confidence
intervals. For each gene tree, the corresponding nodes were found using MRCAs of the present
strains. When multiple constraints existed for the same gene tree node, we sorted them according to
the mean time and chose the most recent one. This generally corresponds to narrower and hence
more precise group classifications, given that dating methods are less précise for remote geological
events. Due to the mechanisms of reticulate evolution, such as HGT and recombination, and to the
absence of representatives of certain families in the gene trees, some incompatibilities could exist
between the applied constraints. We verified the compatibility of each constraint using the time
analysis. The constraints incompatibilities were treated differently in the TreePL and B.E.A.S.T.
analyses. As TreePL uses only discrete constraints in the form of a time interval, we used the
confidence intervals for this purpose. Using a greedy approach, we sorted these constraints in the
ascending order based on the mean age and enabled them progressively, starting by the most recent
ones. We eliminated the constraints that led to the execution errors in TreePL and reran the
program. In the case of B.E.A.S.T., we used the available normal distribution information, defined
by the mean time and the standard deviation. Due to the continuous nature of these probability

functions, there was no incompatibility between the applied constraints.

As B.E.A.S.T. was only needed for the time estimation, and not for phylogenetic inference, we used
similar parameters of nucleotide substitution as in the RAXML gene tree inference (GTR + Gamma)
and disabled the tree operators. Gene trees were rooted using the HGT-Detection program (Boc et
al. 2010), which selects the gene tree root in order to minimize the Robinson and Foulds topological
distance between the species and gene trees. We scaled gene trees using a value of 4290 Mya for the
last common ancestor (LCA) (Sheridan et al. 2003). Besides using this unique value as an initial
starting point, we also bounded LCA between the origin of life on Earth and the origin of aerobic
methanotrophy. This gave us a uniform prior of 2500-4500 Mya, which we used for the root

calibration in the gene trees (we did not consider any other organisms apart from prokaryotes).

We used the inferred RAXML gene trees as input trees. The branch length distributions were
obtained by fitting normal and lognormal distributions to the branch lengths of the gene trees by
means of the R statistical language, v.2.15.1. (R Core Team 2014). We used the birth-death tree
model (Gernhard 2008) and an uncorrelated relaxed clock (Drummond etal. 2006) with a
lognormal distribution model with the parameters “ucld.mean” and “ucld.stdev” set to the mean and

the standard deviation inferred previously from branch lengths. We also defined a lognormal prior
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for “ucld.mean”, based on the location and scale values inferred previously, and an exponential
prior for-“ucld.stdev”. Markov Chain Monte Carlo (MCMC) algorithm with 20 million generations,
burn-in of 5%, sampled each 10,000 iterations, was carried out. Tracer v.1.2 was used to evaluate
the method's convergence and marginal density. Treeannotator with a posterior probability limit of
0.5 was used to transfer estimated tree node ages back to the original tree, with uncertainty in
parameter estimates corresponding to the 95% highest probability density (HPD). We chose to
apply a relaxed molecular clock model (Drummond et al. 2006) in order to address the difficulties

in inferring a strict molecular clock when studying genes affected by HGT (Novichkov et al., 2004).

4.4 Results

4.4.1 Gene transfer rates in complete and ovreall HGT scenarios

The obtained average HGT rates are quite similar for the two considered sets of genes: ubiquitous
genes that represent the entire set of 110 genes examined in this study and core genes that include
36 genes identified by (Charlebois and Doolittle 2004); also see Supplementary Table 3 which
reports both sets of genes. For the 75% bootstrap threshold, our benchmark threshold in this study,
the obtained mean rate of complete HGT was about 3% per allele, whereas the overall (complete -+
partial) mean HGT rate was about 8% per> allele (see Table 4.1a). Note that most of the existing
studies focus on complete and recent HGTs only (Smillie et al. 2011). The mean HGT rates in Table
4.1a are indicated for the three following HGT bootstrap thresholds: 90%, 75% and 50%.
Obviously, the mean HGT rates increase as the value of the bootstrap threshold decreases (low
threshold values can lead to the inclusion of more conflicting or erroneous transfers) for both
complete and overall HGT scenarios. Our findings suggest that core genes are slightly less prone to
complete HGT than ubiquitous genes. However, somewhat surprisingly, core genes show more
partial HGTs. Although complete HGTs have already been found at the heart of the ribosome
(Brochier etal. 2000), partial gene transfers would be more likely to overcome the constraints
imposed by the complexity theory (Jain et al. 1999). Mention that the obtained complete HGT rates
are compatible with those found by (Dagan and Martin 2007).
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Table 4.1a. Mean HGT rates, indicated for 100 comparisons, for complete and overall (complete +
partial) HGT scenarios and three different bootstrap thresholds 90%, 75% and 50%.
Ubiquitous genes represent the entire set of 110 genes considered in this study. Core genes
(assumed to be more resistant to HGT) include 36 genes identified by (Charlebois and Doolittle

2004).
Gene set Complete HGT Overall HGT
[90%, 75%, 50%] [90%, 75%, 50%)]

1545,2944, 6.21 6] .

~ Ubiquitous (110) [
1.471,2.653,5.969]

[3.585, 8.066, 25.949]
Core(38) hea o

 [3.728,8.215,28.349]

Lt

For each considered gene, represented by the corresponding multiple sequence alignment, and for
the three selected bootstrap thresholds of 90%, 75% and 50%, we also identified the exact number
of genes that have been affected at least once during their evolutionary history by the complete and
overall HGTs (see Table 4.1b). The results presented in this table confirm that there is no major
difference in the number of the HGT-affected genes between the core genes and all the genes,
whereas the core genes seem to be more prone to partial HGTs than the ubiquitous genes. The
presented statistics also suggest that a large majority of genes have undergone multiple HGT events
during their evolutionary history. Thus, our results ShO\;V that although HGT events are rather rare at

the allele level, their impact at the gene level is very significant.

Table 4.1b. Percentages of genes affected by at least one HGT during their evolutionary history,
indicated for complete and overall (complete + partial) HGT scenarios and three different bootstrap
thresholds 90%, 75% and 50%.
Ubiquitous genes represent the entire set of 110 genes considered in this study. Core genes
(assumed to be more resistant to HGT) include 36 genes identified by (Charlebois and Doolittle

2004).
Gene set Complete HGT Overall HGT
[90%, 75%, 50%)] [90%, 75%, 50%)]

© Ubiquitous (110) [

~ Cor:é,(?','_(:‘@’)ié o

64.50, 82.70, 96.30]

- [85.40,96.30,100]
66.66, 80.55, 97.22]

 [94.44, 100, 100]
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4.4.2 General overview of patterns of complete and overall HGT scenarios for the
phylogenetic family study _
Figures 4.2 and 4.3 present the intensity of transfers between the source and destination families for
complete and overall HGTs, respectively. Here, only the results for the 75% HGT bootstrap
threshold are described in detail. Mention that simi.lar trends were observed for the two other HGT
bootstrap thresholds we considered (i.e. 50% and 90%). Even though the intensity of overall, and
partial, HGTs is higher than that of complete HGTs, the corresponding hit maps share most of the
displayed intensity patterns (see Figures 4.2-4.3 and Tables 4.2-4.3).

First, we can notice that the intragroup HGT intensities (see the main diagonal in Tables 4.2-4.3) are
usually higher than intergroup intensities for both complete and overall transfers. Although HGT-
related clusters of prokaryotic families are not very clearly defined, we can observe two meta-
clustering with the Archaea and Proteobaéteria groups, including more transfers within each of
these groups than between them. These patterns are noticeable for both complete and overall HGTs
(Figures 4.2-4.3). They are more perceptible for higher bootstrap confidence levels (i.e. 75%
bootstrap level - presented results and 90% bootstrap level - results not presented here).

Surprisingly, transfers among phylogenetically close prokaryotic families are not necessarily well

supported. On the contrary, several evolutionary remote prokaryotes show transfer affinities, as for

example Spirochaetes and Thermotogae, or Crenarchaeota and Aquificae. The other closely
interacting prokaryotic families are Thermotogae / Epsilonproteobacteria and Planctomycetes /
Verrucomicrobia. Interacting families generally show reciprocal, but rather asymmetrical transfer

intensity. This trend can be observed for both complete and overall HGTs (Figures 4.2-4.3).

Cyanobacteria, for example, exhibit much higher intra vs. intergroup HGT rate, what confirms the
results of the previoﬁs studies (Zhaxybayeva et al. 2006). Some others families exhibiting similar
behavior are Alphaproteobacteria, Betaproteobacteria, Bacteroidetes/Chlorobi and Actinobacteria

(see Figures 4.3¢ and 4.2¢). We also found that the Firmicutes family is the top groups in terms of

the intragroup global HGT rate.
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4.4.3. Source and destination species most commonly affected by HGT

Common sources and destinations of the obtained complete and overall HGTs are not uniformly
distributed among the species of the 23 prokaryotic families considered in our study (see Figures
4.4-4.6). Figures 4.4a (destination HGT) and 4.5a (Source HGT) present the percentage of transfers
that originated from the prokaryotic families whose representatives appeared in at least 5% of the
multiple sequence alignments (i.e. genes) examined here. The obtained results show some
discrepancies between the complete and overall HGT scenarios, as well as between the intragroup
and intergroup relationships. For example, Firmicutes were found to be among the lowest ranking
groups in terms of both outgoing and incoming HGT rates (Figures 4.4a and 4.5a), in a strong

contrast to the top position they occupy in the intragroup ranking (Figure 4.6a).

Other important trends which can be observed in Figures 4.4-4.6 are the following. Fusobacteria are
by far the top HGT donors in both partial and complete scenarios, Deltaproteobacteria being the top
HGT receivers for partial HGT. These families exhibit a very asymmetric behavior, as they rank
much lower in the reverse direction (i.e. receiver vs. donor). Some other prokaryotic families
sharing asymmetric behavior are Crenarchaeota and Planctomycetes. Families more symmetric in

respect to the direction of transfers are Betaproteobacteria and Euryarchaeota.

Figures 4.4b-4.6b present the results for the two families, Nanoarchaeota and Other Archaea, whose
representatives are rarely present in the examined multiple sequence alignments (they are present in
less than 5% of MSAs). Thus, the average HGT rates obtained for these two families are less
significant from the statistical point of view, even though some important incoming HGT rates were
obtained for both of them (see Figure 4.5b). Note that the alleles of the species belonging to the

Nanoarchaeota family are the origin of transfer in only 4% of the considered MSAs.
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4.4.4 Ten most frequent horizontal gene transfer patterns among prokaryotes

Here, we also present the ten most frequent horizontal gene transfers among phylogenetic families
for each selected bootstrap level. This has been done separately for complete and overall HGTs. The
most significant transfers are mapped into the phylogenetic tree of 111 prokaryotic species (see
Figures 4.7-4.8). Circular tree views were selected for this presentation. We put together all of the
10 most significant transfers obtained for the 50%, 75% and 90% bootstrap thresholds. This resulted
in 18 distinct transfers for the complete HGT (Figure 4.7) and 16 distinct transfers for the overall
HGT (Figure 4.8). The large majority of them (i.e. 13) were shared between both HGT scenarios,
but obviously at different HGT rates. One of them was found in the reverse direction (i.e. from
Crenarchaeota to Aquificae). Two of them shared the same source (from Crenarchaeota to
Deinococcus-Thermus and to Euryarchaeota). Two others shared the same destination (from
Acidobacteria and Chloroflexi to Deltaproteobacteria). Only two of them were completely different:

the local intragroup complete transfers for Spirochaetes and Firmicutes.

The obtained results confirm that the intragroup HGTs are very important for the process of the
prokaryotic diversification. A majority of the highly-ranked intragroup HGTs (i.e. top 7 out of 11
intragroup HGTs illustrated in Figure 4.6) are also ranked among the ten most frequent HGTs in’
general (see Figures 4.7-4.8). The only notable exception is Actinobacteria. Further analysis of its
intragroup rates reveals lower local interactions (see Formula 4.3) and higher global ones (see

Formula 4.6).
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prokaryotic families, including 18 most significant complete HGTs.

Here, the HGT rate is given for each of the three following HGT bootstrap confidence levels: 90%,
75% and 50%. Interval format is: [90%, 75%, 50%]. Arrows are colored according to the HGT
source group. Values are boldfaced when they belong to the top 10 list of the corresponding
bootstrap confidence level.
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Figure 4.8 Phylogenetic network inferred for 111 prokaryotic species belonging to 23 different
prokaryotic families, including 16 most significant overall HGTs.

Here, the HGT rate is given for each of the three following HGT bootstrap confidence levels: 90%,
75% and 50%. Interval format is: [90%, 75%, 50%]. Arrows are colored according to the HGT
source group. Values are boldfaced when they belong to the top 10 list of the corresponding
bootstrap confidence level.



4.4.5 General overview of patterns of complete and overall HGT scenarios for the habitat
study

In this work, we also extend the study of Smillie et al. (2011) on defining the clusters of habitats
associated to complete and overall HGTs (see Figures 4.9-4.12 and Tables 4.4 and 4.5). We can
observe a wide range of habitats involved in HGT events for the overall HGT scenarios showing the
presence of interaction between all the habitats, except the Human respiratory habitat (see Figures
4.10). For instance, Marine shows an exchange of genetic material with the Animal and Soil
habitats only for the overall HGT scenarios. The symmetrical aspect of the presented hit maps in
both scenarios can be observed. However, the evidence of mutual exchahge of genetic material
within the cluster of Human others, Plant, Animal and Soil habitats, first, as well as within the
cluster of Marine, Fresh water and Extreme habitats, second, is also clearly visible. This finding is
coherent with two classes of habitat relationships of the water and non-water-related habitats.
Mention that these two habitat HGT interaction clusters are much more clearly defined compared to
the phylogenetic family interaction clusters, underlining the paramount role played by ecological

habitats in shaping HGT patterns.

Detailed analysis of Figures 4.9 and 4.10 suggests that the Human respiratory habitat involves a
group of species that mutually exchange genetic material at a much higher rate than they do it with
the species from the other habitats. This could be related to the fact that the only mechanism of
acquisition of genetic material for this habitat is through the air, which have less probability to
happen in the exchange with the solid-based habitats. This trend is opposite to the Human others
habitat, which entails intestinal and skin host species having the propensity to exchange genetic
material with the other habitats through direct contact and food vectors. In fact, the species from the
Human others habitat constitute the most frequent source as well as the most frequent destination of

HGT events (see Figures 4.11 and 4.12).

A previous HGT-based study showed the existence of such a network connecting the human
microbiome (Smillie et al. 2011), and underlined the role of ecology in its definition. Here, we
extend those findings, revealing an even larger HGT-related cluster of habitats, comprising Humans
(including digestive system), Plants, Animals and Soil. Prokaryotes colonizing human respiratory
sysfem apparently have their own HGT-related habitat. This habitat has the lowest global HGT rate,
totaling the outgoing, incoming and intragroup HGTSs, thus suggesting that the immediately

acquired advantages (i.e. new genes allowing species to survive in the changing environment) could
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be also rapidly lost. Moreover, we can observe the existence of another HGT-related cluster of
habitats, constituted by the three water-based environments, Marin, Fresh water and Extreme. This
cluster is particularly well separated from the other environments in the case of the complete HGTs

(Figure 4.9). For overall gene transfer scenarios, the water-based habitat tends to merge with the

other prokaryotic habitats (Figure 4.10).
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Table 4.4 Complete HGT rates among prokaryotic habitats for 75% bootstrap confidence level,

indicated for 100 comparisons.

a) Source group is represented by row (left) and destination by column (top). Group cardinality in
terms of the number of species is indicated between parentheses and the number of alleles (counted
over all considered MSAs) in square brackets; 10 highest values are highlighted in red. Intragroup
HGT rates are underlined. Incoming (Inc) and outgoing (Out) HGT rates are highlighted in dark
green and green, respectively. Grand total, highlighted in violet, represents the average complete

HGT rate among prokaryotes.

Group Name \ 1
Human Respiratory
(25),[2365] 1 0.05
Human Others (15),[1082] 2 0.01
Plant (11),[992] 3 0.01
Animal (11),[907] 4 0.02
Soil (34),[2592] 5 0.01
Marine (13),[866] 6 0.01
Fresh water (29),[1767] 7 0.01
Extreme (12),[370] 8 0
Inc 0.75

0
0.68
0.01
0.04
0.09

2.78

0
0.03
03
0.01
0.04
0.01
0.05
0.01
2.69

0.02
0.06

0.17

0.04
0.03
0.01
0.02
2.68

0.01
0.09
0.04
0.05
0.12
0.01
0.01
0.01
2.15

0
0.01

0.01

0.01
0.09
0.05
0.06
1.56

0
0.01
0.04
0.02
0.02
0.07
0.06
0.04
1.74

Out

0.48
3.13
2.09
3.07
2.08
2.19
1.63

294

Table 4.5 Overall (complete + partial) HGT rates among prokaryotic habitats for 75% bootstrap
confidence level, indicated for 100 comparisons.
a) Source group is represented by row (left) and destination by column (top). Group cardinality in
terms of the number of species is indicated between parentheses and the number of alleles (counted
over all considered MSAs) in square brackets; 10 highest values are highlighted in red. Intragroup
HGT rates are underlined. Incoming (Inc) and outgoing (Out) HGT rates are highlighted in dark
green and green, respectlvely Grand total, highlighted in violet, represents the average complete

HGT rate among prokaryotes.

Group Name \ 1

Human Respiratory (25),[2365] 1  0.08
Human Others (15),[1082] 2 0.01
Plant (11),[992] 3 0.02
Animal (11),[907] 4 0.04
Soil (34),[2592] 5  0.01
Marine (13),[866] 6 0.01
Fresh water (29),[1767] 7  0.02
Extreme (12),[370] 8 0.01

Inc 1.43

2

53

o
0.01
0.11

0.3
0.05
0.12
0.03
0.18
0.02

8.4

98

4
0.03
0.13
0.01

0.21

0.1
0.08
0.05
0.08
6.31

5
0.02
0.22
0.12
0.12

0.47

0.08
0.05
0.06
6.27

0
0.02
0.01
0.04
0.03

0.39

0.16
0.15
4.44

0
0.01
0.16
0.04
0.04
0.18

0.13

0.11
4.59

0
0.01
0.01
0.01
0.01

0.2
0.12

0.52

4.18

Out
0.9
7.9
6.8
6.97
5.98

6.8
5.61
6.03
8.07
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4.4.6 Prediction of the HGT ages

Here, we discuss the results of our study aimed at the prediction of ages of the identified
complete and overall HGT events (Figures 4.14-4.17). The experimental setup and the
methods used in our analysis are described in Section 4.3.4 above. We compare the HGT
age predictions obtained by two different maximum likelihood prediction methods (TreePL
and B.E.A.S.T). The predictions were made for both complete and overall HGT events. We
can observe a multimodal curve, corresponding to the general division of geological time
(Figure 4.14). It shows a very low HGT rate during the Archaean period (before 2500 Mya),
then a progressively higher HGT rate during the Proterozoic period (500 Mya — 2500 Mya),
and finally a very high HGT rate during the most recent Phanerozoic period (under 500
Mya). These results suggest that partial transfers, at least as they can be detected by the
modern HGT-Detection methods (Boc etal. 2012), are generally more recent than the
complete ones. Our findings contrasts with another recent study, addressing the age
recovery of complete gene transfers only, that argue that the HGT rate might be constant

across the time scale (David and Alm 2011).
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Horizontal gene transfer relative frequency
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Figure 4.14 Frequency of complete (red and blue circles) and overall HGTs (red and blue squares)
according to the time period.
Each represented value is drawn in the middle of the corresponding 250 Mya {million of years) time
interval. The neighbor points are connected using natural smoothing Grnuplot splines. TreePL and
B.E.A.S.T. software were used to infer both complete and overall HGT ages. The sum of all
represented values for each of the four curves is 1.0.

Figures 4.15 and 4.16 compare the results obtained by using TreePL and B.E.A.S.T. Figure
4.15 illustrates the general traits of the time distribution of the detected complete (case a)
and overall (case b) HGT events by using a boxplot representation. It shows that relative
differences in the results provided by TreePL and B.E.A.S.T. are more important for the
complete than for the partial HGTs. Mention that the central value of the presented

distribution (i.e. its median value) is almost identical for the two time inference methods.

Figure 4.16 estimates the distributions obtained with TreePL and B.E.A.S.T by using
Gaussian kernels. It also depicts the limits of the 95% High Probability Density interval of
B.E.AS.T (i.e. for the 5% and the 95% boundary). The TreePL curve is almost completely

bound by this interval. Not being the optimal one (i.e. from the Bayesian point of view), the
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TreePL estimation can be viewed as an acceptable outcome of B.E.A.S.T. Thus, the results

provided by the two methods can be seen as compatible.

The curves in Figure 4.17 confirm the previous trends, while representing the correlation
via a Quantile-Quantile plot. These results show very little divergence of the prediction of
the transfer ages between the partial and overall HGT scenarios for the most recent period
of 1000 Mya. Then, the two predictors diverge slightly until 2000 Mya. Older than the latter
period, the results provided by TreePL and B.EAS.T. tend to be different. It is worth
noﬁng that more than three-quarters of the transfers fall into the most recent time interval
(i.e. less than 1000 Mya). Mention than the latter result is consistent with the findings of
(David and Alm 2011).
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Figure 4.15 Boxplot of time distribution of the detected HGT events.

a) Boxplot for complete HGT events; b) Boxplot for overall (complete + partial) HGT events.

Time scale represents HGT ages in Mya (million of years).
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Figure 4.16 Gaussian kernel graphs of time distribution of the detected HGT events.
The curves represent: TreePL mean value, B.E.A.S.T. median value, B.E.A.S.T high probability
density 5% and B.E.A.S.T high probability density 95%. a) Gaussian kernels for complete HGT
events; b) Gaussian kernels for overall (complete + partial) HGT events.
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Figure 4.17 Q-Q (Quantile-Quantile) Plot of TreePL mean values vs. B.E.A.S.T. median values.
Q-Q plot in which 25%, 50% and 75% percentiles are represented by dashed lines; interquantile
lines are dotted and 45 degree lines are solid. a) Q-Q plot for complete HGT events; b) Q-Q plot for
overall (complete + partial) HGT events.
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4.5 Conclusion

In this chapter, we presented a comprehensive comparative study of complete and partial HGTs
affecting the evolution of prokaryotic species. All the methods we applied in the framework of our
analysis included a statistical validation step. We started by showing that the rate of HGT among
core genes (Charlebois and Doolittle 2004) is generally comparable to that among ubiquitous genes
(i.e. all the genes). Precisely, core genes undergo slightly more partial and slightly less complete
HGTs than ubiquitous genes. Our results are generally compatible with previous analyses éonducted
for complete HGTs only (Ge et al. 2005); Smillie et al. 2011), showing that most of the prokaryotic
genes have been affected by HGT multiple times during their evolutionary history, but for a reduced
number of alleles. According to our estimation, the percentage of prokaryotic genes affected by at
least one complete HGT during their evolutionary history varies between 64.5% (for the 90% HGT
bootstrap threshold) and 96.3% (for the 50% HGT bootstrap threshold), while the percentage of
genes affected by at least one overall (complete + partial) HGT varies between 85.4% (for the 90%
HGT bootstrap threshold) and 96.3% (for the 100% HGT bootstrap threshold); see Table 4.1b.

Moreover, our findings suggest that depending on the selected bootstrap confidence level, the ratio
between the overall and complete HGT rates is between 2.3 (for the 90% HGT bootstrap threshold)
and 4.7 (for the 50% HGT bootstrap threshold) - see Table 4.1a. We highlighted the main
differences in the HGT rates between the two scenarios for different groups of taxa. Thus, we
showed that Archaea and Proteobacteria are the highest-level phylogenetic clusters regarding HGT.
On the individual group level, the Firmicutes family is exhibiting a high intragroup and a very low
intergroup HGT interactions. Most of the prokafyotic families show an asymmetric behavior in

regards to the incoming and outgoing HGTs.

Furthermore, we depicted and compared the ten most common complete and partial HGTs (see
Figures 4.7-4.8) characterizing the evolution of the selected set of the most frequent prokaryotic
genes. The presented comparisons emphésize the fact that the complete HGT patterns are very
similar to the partial ones, especially in the case of the family analysis (i.e. phylogenetic
classification). In addition; we compared the patterns of complete and overall HGTs within different
ecological habitats (i.e. ecological classification). The obtained results show some disagreement
between the two HGT scenarios. For instance, unlike complete HGTs, overall (and respectively
partial) HGTs favor a more reciprocal exchange of genetic material between prokaryotes. Except

the Extreme habitat, all the other considered habitats include the species that share at least one HGT
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with the species of any other considered ecological habitat. Two major ecological clusters of
habitats, regarding HGT exchange, can be easily identified from the presented hit maps (see Figures
4.9-4.10): the cluster including Human others, Plant, Animal and Soil habitats and that including the
Marine, Fresh water and Extreme habitats. Mention that our habitat findings are coherent with the
results of Smillie et al. (2011).

Finally, the comparison of the ages of the inferred complete and partial HGTs underlines a high
correlation between the results provided by the B.E.A.S.T. and TreePL methods for the HGTs
falling within the most recent period of 1000 Mya; the two predictions diverge slightly until 2000
Mya; after this date, the results provided by TreePL and B.E.A.S.T. tend to be different. Our
analysis also indicates that the ages of the recent HGTs can be predicted with a much higher

confidence than those of the ancient ones.

Our results emphasize the importance of considering partial HGTs in the process of phylogenetic or
ecological classification of prokaryotic species. A detailed study of overall HGT scenarios in
prokaryotes, including both complete and partial HGTs, was one of the main original contributions
of our work. We also showed that both complete and overall HGT rates are not the unique, and
well-established, values but should be rather estimated by means of intervals of possible values. The
boundaries of such intervals depend on the selected minimum and maximum HGT bootstrap
acceptance thresholds (Boc et al. 2010). Thus, in the future, it would be important to design further
téchniques for statistical validation of the obtained complete and partial horizontal gene transfer
events. For instance, it would be interesting to verify whether the flow of genetic material across
habitats is not a reflection of the distribution of strains and their probability of exchanging genetic
material. A hypergeometric test (Rice and John 2007), based on the p-value calculation, could be
carried out for addressing this issue. However, such a computation should be very lengthy as the

identification of complete and partial HGTs should be done for various data samples.

We have provided the complete source code of our application allowing one to carry out the
methods for detecting and validating horizontal gene transfer events discussed in this chapter; the
application's name is HGT-QFCLUST v.0.2. The related scripts written in the Python programming
language have been also made available. The ReadMe documentation file provides an explanation
of the main steps to follow for executing the application. The source code and the accompanying

files have been uploaded to the GitHub public repository (with the BSD licence).
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It is freely available at the following URL address:
https://github.com/dunarel/dunphd-thesis/tree/master/Chapter4/Main/linalgebra_impl.

We also supplied the original scripts allowing one to carry out the whole computational pipeline of
the project presented in this chapter; these scripts are freely available in different directories at the

following URL address: https://github.com/dunarel/dunphd-thesis.
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Supplementary Table 2. Habitat membership of sampled species: species-family presence-absence
matrix.

Columns represent: Taxon ID from the NCBI Taxonomy database, abbreviated species names used
in tree representation; it is followed by 1 if species is present in the corresponding habitat or by 0 if
it is absent in it -according to the GOLD database (also see Appendix B, Formula B.3).

228908  N.equitans
374847  Ca.K.cryptofil.
272557 Apernix
273057  S.solfataricus
768679 - T.tenax

188937  M.acetivorans
362976  H.walsbyi
309800  H.volcanii
348780  N.pharaonis
634497  H.hispanica
272569  H.marismortui
243090  R.baltica
190304  F.nucleatum
240015  A.capsulatum
743525  T.scotoductus
224324 A.aeolicus
484019  Tafricanus
255470  Dehaloc.sp. C
311424  Dehaloc.sp. V
330214  Ca.N.defluvii
379066  G.aurantiaca
267671  L.interrogans
759914  B.pilosicoli
565034  B.hyodysenter.
167539  P.marinus
1148 Synech.sp.
43989  Cyanoth.sp.
481448  M.infernorum
716544  W.chondrophila
765952  ‘P.acanthamoeb.
194439  C.tepidum
269798  C.hutchinsonii
411154 G forsetii
402612  F.psychrophilum
1034807  F.branchioph.
405948  S.erythraea
227882 S.avermitilis
216594  M.marinum
1048245  M.canettii
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572418
419947
83332
233413
410289
561275
991791
208596
684738
272623
543734
568704
568703
358681
398511
315750
592022
545693
281309
288681
637380
361100
279010
224308
655816
326423
692420
177437
448385
404380
273121
382638
693745
62928
266264
1042878
381666
375286
757424
1005048
452662
272942
375451
272568
414684

M.africanum

M.tuberculosis a
M.tuberculosis v
M.bovis 2122
M.bovis 1173
M.bovis 172
C.acetobut.
Carnobact.sp.
L.lactis K
L.lactis 1
L.casei
L.rhamnosus L
L.rhamnosus G
B.brevis
B.pseudofirmus
B.pumilus
B.megaterium D
B.megaterium Q
B.thuringiensis
B.cereus E
B.cereus C
B.cereus Q
B.licheniformis
B.subtilis 1
B.subtilis W
B.amyloliquef. F
B.amyloliquef. D
D.autotroph.
S.cellulosum
G.bemidjiensis
W.succinog.
H.acinonychis
H.pylori
zoarc.sp.
C.metallidurans
C.necator
R.eutropha
Janthin.sp.
H.seropedicae
C.fungivorans
S.japonicum
R capsulatus
R.denitrificans
G.diazotroph.
R.centenum
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258594
224911
288000
311403
347834
491916
706191
321314
585035
585395
585055
573235
585397
585034
405955
364106
585056
544404
585396
199310
701177
413997
585057
574521
511145
316385
595496

R.palustris

B japonicum
Bradyrh.sp.
A.radiobacter
Retli CFN
Reetli CIAT
P.ananatis
S.enterica
E.coli S88
E.coli 0103
E.coli 55989
E.coli 026
E.coliEDIla
E.coli IAll
E.coli APEC
E.coli UTI
E.coli UMN
E.coli 0157
E.coliOl11
E.coli CFT
E.coli 055
E.coli BREL
E.coli 4139
E.coliO127
E.coli K-12 M
E.coliK-12D
E.coli BW
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Supplementary Table 3. Genes sampled.

a) Core genes (36 in total) according to (Charlebois and Doolittle 2004).

alaS argS atpD c¢ysS dnaG eno gltxX glyA  groEL
guaA hisS ileS infB ksgA  leuS lysS map  nusA
nusG pheS pheT proS pyrG pyrH recA plB plC
plX moB  msN  secY  serS thrS trpS trxB valS
b) Rest of the genesv(74 in total) considered in this study.
adk argD aroA aroE asd aspS atpA atpB atpC
; carB clpP clpX dapA def dnad dnaK fabG galE
| gatA gatB glmS alyS grpE gyrA gyrB hemA hisB
hisD hisH ilvC ilvD metK nadD nadE OppA pgk
proA proC purA purB purD purE purF purl purM
pyrB pyrC pyrD pyrE pyrF ribH mhB plF - plP
rpiW romB romG rpoA rpoD ruvB sdhA secE serA
thrC trpA trpB trpC trpD truA IrxA tyrS uvrA

uvrB uvrC
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Supplementary Table 4. Time constraints applied to the gene tree nodes, corresponding to the
considered phylogenetic families and some of their Most Recent Common Ancestors (MRCA), up

to their Last Common Ancestor (LCA).

Confidence Confidence

Node interval interval

Mean

Standard

1D name  Minimum Maximum time deviation Node name (or MRCA)
time time
0 34 3417 4482 4149 289 Archaea
1 106 - 3437 . 4391 3917 272 Bacteria
2 105 3181 4038 3590 244 76 Thermotogae
3 104 2815 3530 3139 207 76 103
4 103 2738 3434 3051 201 102 Bacteroidetes/Chlorobi
5 102 2658 3339 2963 196 101 Chlamydiae Spirochaetes
6 101 2460 3128 2761 189 100 Epsilonproteobacteria
7 100 2156 2844 2476 187 a99 Alphaproteobacteria
8 99 1569 2310 1924 192 Gamaproteobacteria Betaproteobacteria
9 80 2438 3115 2744 191 Chlamydiae Spirochaetes
10 76 2713 3382 3009 196 75 Fusobacteria Firmicutes
11 75 2512 3076 2743 173 71 Actinobacteria
12 71 2342 2814 2519 159 Deinococcus-Thermus Cyanobacteria
13 68 2602 3242 2880 210 Fusobacteria Firmicutes
14 33 3154 4168 3826 270 Euryarchaeota
15 20 3046 3919 3617 229 ~ Crenarchaeota
16 98 1382 2113 1732 189 Gammaproteobacteria
17 87 1107 1837 1455 187 Betaproteobacteria
18 86 1650 2390 2007 192 Alphaproteobacteria
19 81 858 1666 1236 207 Epsilonproteobacteria
20 79 1423 2254 1839 213 Spirochaetes
21 78 320 1042 592 187 Chlamidia
22 74 1032 1727 1357 179 Actinobacteria
23 70 706 1355 1020 169 Cyanobacteria
24 67 2367 3013 2650 181 Firmicutes
25 Ica 2500 4500 4290 0 LCA

Node names and numbers, confidence intervals and standard deviations were those provided by
(Battistuzzi et al. 2004).
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CHAPTER YV

A NEW FAST ALGORITHM FOR DETECTING AND
VALIDATING HORIZONTAL GENE TRANSFER
EVENTS USING PHYLOGENETIC TREES AND
AGGREGATION FUNCTIONS

5.1 Abstract

5.1.1 Background

Until recently, the traditional view of prokaryotic evolution has been based on divergence and
periodic selection. Mutation has been assumed to be the main diversifying force and selection was
the unifying one, until accumulation of mutations led to a speciation event. A new evolutionary
model has slowly emerged, in which Horizontal Gene Transfer (HGT) is the main diversifying force
and recombination is the main unifying one, speciation being an ecological adaptation. Negative
selection has been the most studied evolutionary force, for which simple and efficient detection
methods, based on sequence conservation (see chapters I and II), exist. In chapter 3 we described an
efficient algorithm, applied to the strains based on distinct pathogenic populations, for detecting
functional genomic regions associated with positive and lineage specific selection (in both variants,

monophyletic or polyphyletic).




5.1.2 Results and conclusion

In this chapter, we present a new algorithm, called HGT-QFUNC, for detecting genomic regions
that can be associated with complete HGT events. The aggregation functions described in chapter
III, which yielded good results in detecting selection, will be tested in the context of HGT
identification. New clustering functions which perform better in presence of HGT and

recombination will be also introduced.

We will validate our results using p-values estimated by means of a Monte Carlo approach. To
estimate the rates of complete HGT among prokaryotes, we will compare our results to the highly
accurate but slower HGT-Detection algorithm based on the calculation of bootstrap support of
considered gene trees (see chapter IV). We will also compare the results provided by HGT-QFUNC
and HGT-Detection using simulated data, which will be representative of the prokaryotic landscape.
We will show that the proposed new functions and algorithm are capable of providing good
detection rates for most of the highly probable HGT events. The main advantage of the proposed
algorithm is its quadratic time complexity on the number of considered species. This makes it
applicable to the study of large genomic datasets. Note that the proposed HGT-QFUNC algorithm
yields better performances than a simple conservation approach, running at the same quadratic
asymptotic time. The obtained results confirm the prime importance of HGT in the light of

prokaryotic evolution.

5.2 Background

The mechanisms by which bacteria and viruses adapt to changing environmental conditions are well
known. These mechanisms include homologous recombination (Posada and Crandall 2001),
nucleotide substitutions, insertions-deletions (Kimura 1985) and horizontal gene transfer (Boc et al.
2010). The variation of the DNA composition is spread throughout prokaryotic genomes leading to
the formation of different polymorphic strands of the same group of organisms. The survival of
these strands depends on their ability to overcome environmental changes (Moran 1962). Multiple
mechanisms can overlap, and limits between groups are sometimes “fuzzy” (Hanage et al. 2005).
The classical Linnaean paradigm of biological classification is that of a hierarchical organization of
species into increasingly narrower groups based on their shared characteristics. It is the most used
framework for interpreting Darwinian evolution. According to it, the most narrowly defined
biological group is the species, and the formation of a new lineage is a speciation, which entails the

diversification of one species into two different species. Inside the species, a free exchange of
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genetic information is allowed, but outside the species boundaries, genetic information is passed

solely to descendant individuals.

This model of evolution is challenged on the prokaryotic level, where there exists experimental
evidence of massive transfer of genetic material between different organisms (Fraser et al. 2007).
Such a transfer can occur by two distinct routes: homologous recombination and HGT (Thomas and
Nielsen 2005). Homologous recombination is often limited to closely related organisms, having
sufficient sequence similarly to allow for efficient integration of genetic material (Ochman et al.

2000). HGT can occur between both closely related and genetically distinct organisms.

5.3 Data description

5.3.1 Real prokaryotic (genomic) data -

We assembled a real-world dataset, representative of the prokaryotic genomic landscape, to serve as
a basis for testing our algorithm against a well-known HGT-Detection (v.3.4) algorithm (Boc et al.
2010) available on the T-Rex web site (Boc et al. 2012). A complete description of this dataset is
available in chapter IV. Here we outline the most important features of the dataset that we

examined.

All of the completely sequenced prokaryotic genomes available at the NCBI Genomes ftp site (1465

as of November 2011) were considered. Among them, we first selected 100 of the most complete
genomes in terms of the number of genes. Then, we added to them 11 additional species to ensure
that our dataset includes at least one representative from each of the 23 available prokaryotic
families. This yielded us a total number of 111 species. Detailed information on the considered
species can be found in Supplementary Table 1. We also identified 110 of the most complete genes
(Supplementary Table 3) from the selected set of 111 species (see also chapter IV for more details).

Multiple sequence alignments could contain multiple alleles of the same species.

Afterward, we constructed 110 multiple sequence alignments (one MSA per selected gene) from
which we excluded misclassified paralogs using TribeMCL (Enright et al. 2002). The latter tool,
which uses a Markov Chain Clustering (MCL) algorithm (van Dongen 2000) on all-to-all BLASTP
hits, is known to be conservative in the number of groups (Li etal. 2012). We carried out the
TribeMCL version bundled with “mcl” v11.294, with default parameters (I=2.0). In order to obtain

more accurate results of BLASTP, we set a Smith-Waterman backend and an E-value threshold of
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10", Using this procedure, 1% of initial alleles were identified as paralogs and excluded from the

original MSA.

Nucleotide sequences were retrieved from protein sequences identified above. They were aligned
using MUSCLE v3.8.31 (Edgar 2004), with default parameters, and trimmed with GBlocks v0.91b
(Castresana 2000). In our analysis, we were less restrictive than the default option of GBlocks,
allowing 50% of the sequences for flank positions (-b2 parameter), a maximum of 10 contiguous
nonconserved positions (-b3 parameter), minimum block length of 5 (-b4 parameter) and half gap

positions (-b5 parameter).

The obtained MSAs were then used as a basis for the detection of complete HGT. Species
taxonomy (i.e. species tree in the HGT context) was retrieved from the NCBI Taxonomy website
(Benson et al. 2009). Taxonomic groups were those assigned by the NCBI Genomes Project. Each

species was then assigned to one established prokaryotic family.

We constructed the gene trees using the RAXML method (Stamatakis 2006). We used the RAXML
v.7.2.8 - multithreaded implementation, and GTR Gamma model, 20 starting random trees and 100

bootstrap trees as RAXML input options.

5.3.2 Synthetic data

For a simulation study conducted with synthetic data, we used the real prokaryotic dataset as a
basis, in order to maintain the same real-world relationships between sequences, and the same
limitations for our detection.algorithm as it would be in a real-world situation. To simulate our data,
we chose as benchmark the gene hisH, which is the gene with the highest number of different
prokaryotic strains (i.e. 99) in which the HGT-Detection algorithm did not find any HGT at the
bootstrap level of 50%. This threshold was considered as a minimum quality requirement in our
study. The detailed description of the sirhulated synthetic data and the corresponding simulation

study can be found in section 5.4.7.

5.4 Methods

5.4.1 Clustering using aggregation functions
Considering a collection of different prokaryotes, classified as belonging to different taxonomic
groups, we can model the simplest case of HGT as the transfer of one single gene sequence between

two different species (e.g. xo and yp) belonging to two different monophyletic groups (e.g. X and ).
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If there was a genetic transfer from source strain y, to destination species xo, then species xo would
have the same or very similar genetic sequence as the source species yo. This would lead to an
inverse direction shift in phylogenetic classification. HGT can involve either heterologous (e.g. site-
specific) or homologous recombination, or direct host gene replacement followed by intragenic
recombination. The end result at the phylogenetic level is the integration of species x, into the group
Y closely to source species yo. This situation is depicted in Figure 5.1. Genetic transfer direction and
resulting phylogenetic neighborhood are dependent on the relative fractions of species xo and yo
involved in the process of recombination. In this chapter, we consider the case of complete HGT
when source species is integrated into the host genome without intragenic recombination (i.e.

without formation of a mosaic gene).

X1~ X2 X3!

|
______ - S

Figure 5.1. Intragroup and intergroup phylogenetic relationships following an HGT
A horizontal gene transfer from species yy of the group ¥ to species xy of the group X is shown by an
arrow; dotted line shows the position of species xp in the tree after the transfer; X,., denotes the rest
of the species of the X group, and Y, denotes the rest of the species of the group ¥. Each species
corresponds to a unique nucleotide sequence in this example.
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Here we describe the HGT detection problem mathematically. To perform the clustering of our

data, we first define the following sets, involving the HGT-related species xo and yy:

R={xoU.)’o}’ G.1)
X, =X\x,, , : (5.2)
Yresl=Y\y0‘ (5'3)

Note that in a general case, x, and y can be clusters (i.e. sub-trees) including several species. We
define the intergroup and intragroup variability. Consider two groups of species 4 and B not having
common members. The measures in question are calculated as the means of the Hamming distances
(any other evolutionary distance can be used instead), dist,, among the sequences of the same group

A (or B) only, and among the sequences from the distinct groups 4 and B.

First, the intragroup variability of the group 4, denoted by ¥(4), is defined by equation 5.4:

V(A= D.dist,(apa,). ' (5.4)

{31,32 eAla *az}
We then normalize /(4) by the number of possible different pairs of elements in 4 (equation 5.5):

_ V(4)
T N(A)x(N(A)-1)/2°

Visorm(A) (5.5)

where N(4) is the number of elements in the group 4.

The intergroup variability of the groups A and B, denoted by D(4,B), is defined as follows:

D(4,B)= > dist,(a,b). (5.6)

{aeA,beB}
We then normalize D(4,B) by the number of possible pairs of species:

__ DB
Dnorm(A'B)_ N(A)XN(B) . . (5'7)

Using previously described groups and functions, we define a new function Q7 as follows:
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Q7 (R) = Max(Dnorm (R'chsl ); ‘Dnorm (R’ ),I'e.ﬂ )) - I/norm (R) ’ (5'8)

where R is defined by equation 5.1.

When a complete HGT happens (Figure 5.1), the transferred gene is assumed to replace a
homologous gene in the host genomes. As a result of this event, destination species x, migrates
close to source species yj into the phylogenetic network representing the evolution of the given gene
(Figure 5.1). Thus, in the obtained gene tree destination species x, will be a part of the group ¥ to
which belongs source species yo. Formula 5.8 reflects such a principle. Also V,,..(R), in this

particular case, defines the distance between species x, and y.

We also introduce the aggregation function, Os, similar to the function that provided good results in

detecting lineage specific selection in (Badescu et al. 2010), (i.e. Qs =|V(4)/V(B)|):

DH()I‘IN ( R"X}””L’Sl )

v,

R —
AR o (R)

(5.9)

Because this function uses the division instead of the summation, such a function underlines the
asymmetry between the two groups. Note that both HGT and lineage specific selection exhibit

asymmetrical properties.
Finally, we define the function Q,(R) as follows:
Q(R)=-V,orm(R) - (5.10)

Another clustering option would be to consider both interacting species as a destination group and

merge the rest of the sequences into the source group:
XY,,={XUY\R}. (5.11)

5.4.2 Other variants of clustering functions as implemented in the algorithm
Here we describe particular cases of formulas used in our implementation when the HGT occurred

between the tree leaves (i.e. individual species of X and Y; see formulas 5.12-5.18). Let us define:

D(xy,y,) = dist,,(x0,%,) » . (5.12)
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D(xp.X,p)= Y. dist,(xp,%,) = D(x0,X), (5.13)

{x e Xex; %o}

Do Y)= D disty(¥oy;)=D(¥sY), (5.14)
{)’.'EY-'}’.'*)’U}
D(xp V)= 3 dist,(xo3,), | (5.15)
{)’.‘EY}
D(yo,X)={Zc}ﬁsr,,(yo,x,>, : | (5.16)
x;€X
D(xp, Y, )= Y. dist, (x03) = D(%0, Y) = D(x0, ) , (5.17)
{yiEY:yl ‘)’o}
DoXpe)= . disty(yox,)= D(y0.X) = D(xy,¥,), (5.18)

{xieX;x,:txo}
n = N(X), o (5.19)
m = N(¥). _ (5.20)

We also introduced an epsilon (&) value (i.e. in our implementation we set the value of ¢ equal to

0.00001) to avoid the division by zero. Some other constants were also added to formulas (5.9) —

_(5.22) in order to normalize the results and to obtain the same minimum value.

Q7a (xO’yO) = Max( D(xO'chsl) + D(yO!Xrest)'D(xO' Yresl) + D(yOr Y;'ext)) - D(xovyo) + 2 s and (5'21)
2(n-1) 2m-1)

D(xO’Xresr) + D(yO’Xre:l) + D(xO’ Yresl ) + D(yo’ Yresl) +e A

(5.22)
2(xy +¢&)(n+m-2)

Oy (X0.¥0) =

In our implementation, we used the following variants of the functions Qg and Qs as well:

D(x0,X)+ D(yp,X) " D(xp, ¥)+ D(y, Y) te

n-l m-1 o
Vo) = ,and 5.2
st (xo yo) 2(D(x0,y0)+a) an ( _))

Osa(X0,¥0) =-D(x0,y0) + 2. (5.24)
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For each pair of species (x,y) belonging to two different groups, we maximize Qy,, Oz, and Qgp, Over
all possible sets R in order to identify the best HGT candidates. At the same time, maximizing Qs, is

equivalent to minimizing the distance between xo and yy.

5.4.3 Description of the algorithm

Here we present a new algorithm allowing one to estimate the values of functions Q5, (called later
07), Osas Osp and QOs, (called later Qo) and to validate the results using the p-value estimation
procedure. Our algorithm takes as input a multiple sequence alignment (MSA) of # species, a set of
groups (e.g. species families) and a unique association of each species to one of these groups. The
algorithm's output consists of pairs of clusters that could be involved in horizontal gene transfers.

The detailed algorithmic scheme is presented in Algorithm 5.1.

The p-value estimation is done by carrying out a Monte Carlo procedure with a fixed p-value
threshold. For a constant number of steps, this procedure simulates permuted MSAs. A constant
number of nucleotides are permuted within each of the original sequences. Then, we compare the
obtained values of the selected function Q to the reference value obtained with the original data.

The detailed p-value estimation scheme is presented in Algorithm 5.2.

The main algorithm consists of the three major steps. First, it calculates the pairwise distance matrix
between all given species. Second, it calculates the distance between each species and all other
species belonging to the other groups. Third, it estimates the’ intergroup and intragroup distances

and aggregation solutions by using the formulas (5.12)-(5.24).

There is one more step needed to complete the detection of HGT. The obtained potential HGTs are
ranked according to the value of the corresponding Q-function, first, then p-value, second. Those
HGTs whose Q-function values were greater than a fixed threshold are considered as valid. This
threshold can be set based on the p-values or a fixed percentage of the total number of species
(called here pefcentage of positive values). We also considered an alternative results ranking: by p-
value, first, and by the Q-function value, second. Such a ranking strategy allowed us to better
emphasize the strength of statistical signal. All the tests of the new HGT detection algorithm were

carried out in parallel with both ranking strategies.
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5.4.4 Implementation

The presented algorithm can be parallelized to improve its performances. At least three different
parallelization schemes exist. The first one uses fine grained parallelism with global atomic
reductions that would be better suited for graphic cards. The second one involves the parallelization
of higher granularity, implying the p-value estimation steps. It would be better suited to multicore
processors. The third one, which we implemented in our program, proceeds by mapping each group
into a CPU core. Although this is not the most efficient scheme, it has the advantage to accelerate
calculations even in the absence of the p-value estimation step. We developed a C++ code for this
algorithm for multicore CPUs, parallelizing using OpenMP, and SIMD vectorizing using SSE3

instructions.

Our implementation is available at the following URL address:

http://www.info2.uqam.ca/~makarenkov_v/fastHGT.zip.
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Algorithm S5.1.

HGT-QFUNC algorithm for detecting species related to each other by the way of complete
horizontal gene transfer (HGT)

Require:

MSA : Multiple sequence alignment,

FI: Aggregation function to be optimized Q7, Os,, Os, or O,

GR : Groups,

SG : Unique association of each sequence in the MSA to one group (G),
Ensure:

QVAL: Matrix of Qg values for each pair of sequences € MSA

: MSA_N < Number of sequences in MSA

: GR_N < Number of groups

: N_SEQS [GR_N] « Number of sequences (i.e. species) in each group

: D_SEQ_SEQ « Matrix[MSA_N][MSA_N] // sequence to sequence distance matrix
:for all seq _ie MSA do

: forall seq je MSA do

D_SEQ_SEQ [seq _i]l[seq_ j1= D(seq_i,seq _j)=dist,(seq _i,seq_j)
end for
: end for
10: D_SEQ _GR « Matrix[MSA N] [GR_N] // sequence to group distance matrix
11: for all seq i€ MSA do

12: for all seq_ j € MSAdo

13: gr j <« SG [seq j]

14: D_SEQ_GR [seq_i] [gr_j] += D_SEQ_SEQ [seq_i] [seq_j]
15: end for

16: end for

=g R Y T N

...(continued on next page)...
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...(continued from previous page)...

17: QVAL « Matrix [MSA_N] [MSA_N]

18: for all seq _ie MSA do

19: for all seq je MSA do

20: gr i<« SG[seq i]

21: gr j <« SG[seq j]

22: n+« N_SEQS [gr i]

23: m <« N_SEQS [gr /]

24: goto37if(seq i >=seq j)or(n<2)or(m<2)
25:  D(x,y,)=D_SEQ SEQ[seq_i][seq_ j]

26 D(x0,X,.) = D(x5,X)=D_SEQ _GR[seq i][gr i]
27: D(y0,Y,.q)=D(yo,¥)=D_SEQ_GR [seq j][gr_j]
28: D(x,Y)=D_SEQ GR/[seq i][gr j]

291 D(xy,Y,.5) = D(x, Y)— D(x0,%)

30:  D(yy,X)=D_SEQ_GR[seq jl[gr i]

3L D(yO’Xresr)=D(y0’X)_D(x0'y0)

32: Q7 (xoyyo) = Max D(xo"Yrcsl) + D(yo"\,rcxt ) , D(xO' Yrest) + D(yo’ Yrcsl) _ D(xo'yo) +2
2(n-1) 2(m-1)

D(xO’Xrest) + D(yO'Xresl) + D(xo’ Yre.rl) + D(J’o’ Yrext) +e
2(xy +¢&)(n+ m-2)
D(xp,X) + D(y0,X) + D(xy, Y)+ D(yp, Y) te

34: XoVo) = -l -
3 Oy (X, ¥0) 2(D(xy,¥0) +€)

33: QSa(xO’y0)=

35: Oy(xp.yp) =-D(xp, ) +2

36: QVAL [seq i] [seq j] < O (x0.30)
37: end for

38: end for

39: return QVAL




Algorithm 5.2

P-value validation for HGT-QFUNC algorithm (see Algorithm 5.1.) using Monte Carlo estimation

Require:

MSA : Multiple sequence alignment,

FI: Aggregation function to be optimized Qy, Os,, Osy, or Qo,

GR : Groups, : _

SG : Unique association of each sequence in the MSA, to one group (G),
PVST : Constant number of p-value steps,

PERM: Nucleotide permutation percentage.

Ensure:

PQVAL: Matrix of Qr p-values for each pair of sequences € MSA

1: PQVAL « Matrix [MSA_N] [MSA_N]
2: QVAL « call Algorithm 5.1(MSA and FI,GR,SG)
3:forie (1..PVST) do

4: MSA_PERM «— MSA
5: //introduce a level of uncertainty

6: forall seq i € MSA do

7: permute PERM nucleotides

8: end for

9: //calculate regular values with permuted MSA

10: QVAL_PERM <« call Algorithm 5.1(MSA_PERM and FI,GR,SG)

11: /itest if the obtained values are at least as good as those obtained without permutation

12: for all seq i € MSA do

13: forall seq j € MSA do

14: ifQVAL_PERM [seq_i] [seq j1>=QVAL [seq i][seq j] then
15: PQVAL [seq _i] [seq j]++

16: . end if

17: end for

18: end for

19: end for //end permutations

20: //update p-value

21: for all seq_i € MSA do

22: for all seq j € MSA do

23:  PQVAL [seq_i] [seq j]++

24: PQVAL [seq _i] [seq j]1/= (PVST +1)
25: end for

26: end for

27: return QVAL, PQVAL
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5.4.5 Time complexity

The time complexity of the new algorithm in a general case, carried out over a MSA of » species
and DNA or amino acid sequences of size /, is O(ln*+n"). Whe‘n we consider only HGT between
individual species (i.e. leaves) — the most common case in HGT analysis — the time complexity is
O(In*) only (see Algorithm 5.1). The p-value estimation procedure (see Algorithm 5.2) adds a
constant overhead to the algorithm's funning time in order to maintain the desired p-value precision.

This constant is usually 100, 1000 or 10000, for a precision of 0.01, 0.001 or 0.0001, respectively.

5.4.6 Simulation with the real prokaryotic dataset and comparison to HGT-Detection

We tested the ability of the described HGT-QFUNC algorithm to detect complete HGT events by
comparing it to a highly accurate but much slower HGT-Detection algorithm (Boc et al. 2010). We
used the presented functions Q7, Oz, Os, and Oy, side by side, in order to identify their strengths
and limitations in general use-case scenarios on the real prokaryotic data described in detail in
chapter IV. We used the Sensitivity measure to compare the performances of HGT-QFUNC and
HGT-Detection. Sensitivity, which reflects the ability to detect true positives is defined as follows:

number of true positives
Sensitivity = _of =P

. 5.25
number _of true positives + number _of _ false _negatives (5.25)

The true positive and false negative HGTs were determined by comparing the obtained results to
those provided by the HGT-Detection algorithm (i.e. the transfers found by HGT-Detection were
considered as true positives). We excluded from the analysis the alignments where HGT-Detection

did not return any HGT to avoid the division by zero in the Sensitivity formula.

We assured comparability of the output formats between the two compared algorithms. HGT-
Detection provides its results as a list of pairs of HGT-related source and destination branches
defined by the corresponding nodes of the species tree. We decomposed HGT-Detection transfer
scenarios into a list of all affected leave pairs between respective source and ‘destination subtrees.
As the species tree was not always completely resolved in our case, some trivial transfers (i.e.
transfers amongst branches of the same multifurcating node) could occur (see chapter IV for more

details). For quality reasons, we discarded such trivial transfers in this simulation study.

HGT-Detection first applies sophisticated phylogenetic tree-based manipulations and then filters

results by HGT bootstrap values. The output of the HGT-Detection program usually contains a very




small number of transfers due to the applied evolutionary constraints and imposed bootstrap
threshold. We tried to mimic this behavior by limiting the HGT-QFUNC algorithm to a restrictive
p-value threshold of 0.001, but still had too many (compared to HGT-Detection) HGT events
identified in the end. Therefore, we limited the number of detected HGT events by imposing a fixed
threshold (as described below).

We carried out the HGT-Detection algorithm over our prokaryotic dataset with minimum bootstrap
supports of 50%, 75% and 90%, respectively. The obtained results are shown in Figure 5.2, while
the corresponding results of HGT-QFUNC, based on the p-value ordering, are shown in Figure 5.6.
Corresponding runs of HGT-QFUNC had a maximum allowed number of HGTs per alignment of
300, 200 and 100 events, respectively. How restrictive these thresholds are, in terms of possible

number of detected HGT events for each considered gene, is shown in figure 5.3.

5.4.7 Simulation with artificial data and comparison to HGT-Detection

After we have explored the real-life detection performances of the HGT-QFUNC algorithm, we
tested its ability to recover correct HGT events by simulating different HGT rates in artificially
generated multiple sequence alignments. We performed a series of tests involving random
nonreciprocal sequence transfers between the -species of different prokaryotic groups. Both
complete (involving only gene replacement) and partial (involving intragenic recombination and

creation of mosaic genes) horizontal gene transfer cases were considered in this simulation.

All simulated transfers were supposed to occur between single species of-the considered MSA (a
single species always corresponds to a tree leave in a phylogenetic tree). From an evolutionary
standpoint such transfers are the most recent, and also the most recoverable ones (Boc et al. 2010).

Therefore, they are also the most reported ones.

We considered the cases with 1 to 128 simulated transfers, following the logarithmic scale (i.e. 1, 2,
4, 8, 16, 32, 64 and 128 transfers). One of our goals in this simulation was to discriminate between
the functions Q7, QOsa, O and Oy when detecting different numbers of complete HGT. We set a
maximum allowed number of positive values as the double of the number of transfers (i.e. 2, 4 ,8,
16, 32, 64, 128 and 256 transfers, respectively). Note that in the above-described real-life
experiments, we allowed 100, 200 and 300 transfers, depending on the bootstrap support fixed for

the HGT-Detection algorithm. Mention that for the artificial data the algorithm was carried out




under more restrictive conditions (lower number of positive values) than those imposed in the

experiments with real-life prokaryotic data.

We first simulated gene transfers without recombination (i.e. complete HGT), as a simple
replacement of the source sequence by the destination sequence. Second, we added an average
percent of recombination of 25% to the data (i.e. partial HGT). This process was simulated as a
random recombination between the source and destination sequences. The new resulting sequence
(i.e. mosaic gene) contained 75% of the source sequence and 25% of the destination sequence. We
also considered the case of a maximum recombination rate of 50%, where the resulting mosaic

sequence was a hybrid of 50% source and 50% destination sequence.

Every combination of the simulation parameters was tested with 50 replicates. The distribution of
the obtained average results based on the O functions ordering is shown in Figures 5.4 and 5.5. The
additional results based on the p-value ordering, with a maximum threshold of 0.05, are shown in
Figures 5.7 and 5.8.

5.5 Results and discussion

In this chapter we described a new algorithm for determining genomic regions that may be related
to HGT and recombination, and introduced three new clustering functions Q;, QOsa, QOs,. We
compared the performances of these functions to those yielded by a simple distance measure Qs. All
of the considered aggregation functions were tested on the real-life genomic data (see figures 5.2

and 5.3) as well as on the synthetic data (see figures 5.4 and 5.5).

5.5.1 Analysis of prokaryotic data

For all the functions we introduced in this study, i.e. 07 Qs QOsy, and Qo, we can observe the
following trend: better detection sensitivity corresponds to higher HGT bootstrap confidence
thresholds. The function Q; always provided better results than Qs while QOg, and Qg, were better
than QO only for 75% and 90% bootstrap thresholds (based on the median values shown by a

vertical black line on each of the boxes in Figure 5.2).
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Figure 5.2 HGT-QFUNC sensitivity results for functions Q;, Qs,, Os, and Qy
when detecting complete HGT in prokaryotic dataset based on Q-value
ordering — boxplot representation
Abscissa represents the sensitivity percentage and ordinate represents the tested
function. The median value is shown by a vertical black line within each box. The
HGT-QFUNC algorithm was limited to the following maximum numbers of positive
values:
(a) 300 HGTs (corresponds to 50% bootstrap support in the HGT-Detection algorithm);
(b) 200 HGTs (corresponds to 75% bootstrap support in the HGT-Detection algorithm);
(c) 100 HGTs (corresponds to 90% bootstrap support in the HGT-Detection algorithm).



The p-value based ordering, established with the thréshold of 0.05, yields very good detection
resulfs for all of the tested functions Q7 Os., Osyand Qs (see Figure 5.6). The functions Oz, and QOgy
provided better results than Qy for the HGT detection threshold of 50% bootstrap support.
Moreover, the presented results suggest that the function Qs, is able to detect almost all of high
confidence HGT (90% bootstrap support). The main differences can be observed in the tail of the
distribution, for the lower 25% quartile, as the median and high quartile are already at the same
maximum value (of 100%). It should be noticed that for the 75% HGT detection threshold, which
was our benchmark threshold throughout this thesis, the best average results were provided by the
function Q.

One of the limitations of the HGT-QFUNC algorithm, compared to the HGT-Detection algorithm
(Boc et al. 2010), is that our new algorithm imposes a fixed number of positive values (100, 200 or
300 in our case) regardless the number of species in the given multiple sequence alignment. These
constant values were selected in order to find on average less than 2%, 4% and 6% of the maximum
possible number of transfers between individual species for, respectively, 90%, 75% and 50%

bootstrap support levels adopted by the HGT-Detection algorithm (see Figure 5.3).

90% — o c}»-mfmommo oo o

75% 4 © g l ----- Joow ooo o o oo o

50% 4 © q -------- -------- {o ©0 0 00 ©00 O © o o [
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Figure 5.3 Distribution of the HGT-QFUNC maximum percentages of positive values chosen
for prokaryotic data

Abscissa represents the percentage of the maximum possible number of HGTs between individual
species. Ordinate represents the corresponding HGT-Detection bootstrap confidence level. Average
values correspond to less than 6%, 4% and 2% of the maximum possible number of HGTs for the
50%, 75% and 90% bootstrap confidence levels, respectively.

134



5.5.2 Analysis of synthetic data

We also tested the detection sensitivity of our method for randomly generated HGTs between
terminal tree branches using synthetically generated data and different levels of recombination. In
the case of artificial data, the functions Q;, Os, and Qg provided better performances than the
function Oy only when recombination was considered. The results obtained for the O-function
ordering are shown in Figure 5.4 (for the 25% recombination level in the left column and for the
50% recombination level in the right one). Figure 5.5 presents in the left panel the results for HGT
with no recombination (i.e. 0%) and in the right panel, the limits of our simulation, where there is

no difference between the functions involved.

The p-value-based ordering, with the threshold of 0.05, shoWs only minor improvements, especially
when the number of simulated transfers is low (i.e. 2, 4 and 8) (see Figures 5.7 and 5.8).
Specifically, for 1 simulated transfer we obtained an almost perfect detection rate, while for 128

transfers we obtained the worst HGT recovery rates that were around 40%.

Thus, the following general trend can be observed: the higher number of transfers we have, the
lower detection rates are. Higher degrees of recombination also lead to a }ower detection rate for all
the functions, but favor the functions Qs, and Qss, as their performance degrades less, especially in
the middle range. The function Q; which showed very good performances for the real-life
prokaryotic data, does not outperform the function Qs in this particular testing framework. It is
important to notice that even without recombination the functions Oz, and Qg, can be also used as

they yield almost the same detection rates as the function Q.
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Figure 5.4 HGT-QFUNC sensitivity results for functions @7, Os.,, Os, and @y when detecting partial HGT in
synthetic dataset based on Q-value ordering — boxplot representation

Abscissa represents the sensitivity percentage and ordinate represents the tested function. The median value is shown by a
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers
between prokaryotic species (first value between parentheses) were carried out. Average simulation results under the
medium degree of recombination (when 25% of the resulting sequence belong to one of the parent sequences) are
depicted in the left panel. Average simulation results under the highest level of recombination (when 50% of the resulting
sequence belong to the source sequence and 50% to the destination sequence) is depicted in the right panel. For each
dataset, the maximum allowed number of positive values was the double of the number of transfers (i.e. 4, 8, 16, 32, 64
and 128, respectively). Calculations were done over 50 replicates for each parameters combination.
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Figure 5.5 Remaining HGT-QFUNC sensitivity results for functions @7, Qs,, Qs, and Oy when detecting complete
and partial HGT in synthetic dataset based on O-value ordering — boxplot representation
Abscissa represents the sensitivity percentage and ordinate represents the tested function. The median value is shown by a
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers
between prokaryotic species (first value between parentheses) were carried out. Average simulation results for data
without recombination are depicted in the left panel. Right panel depicts the results of the same simulations, for the cases
of 1 and 128 transfers, with recombination levels of 0% (no recombination), 25% and 50%. Average simulation results
under the highest level of recombination (when 50% of the resulting sequence belong to the source sequence and 50% to
the destination sequence) is depicted in the right panel. For each dataset, the maximum allowed number of positive values
was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 and 128, respectively). Calculations were done over 50
replicates for each parameters combination.
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Figure 5.6 HGT-QFUNC sensitivity results for functions Q;, Os., Qs, and Qy
when detecting complete HGT in prokaryotic dataset based on p-value ordering
(maximum p-value of 0.05) — boxplot representation
Abscissa represents the sensitivity percentage and ordinate represents the tested
function. The median value is shown by a vertical black line within each box. The
HGT-QFUNC algorithm was limited to the following maximum numbers of positive
values:
(a) 300 HGTs (corresponds to 50% bootstrap support in the HGT-Detection algorithm);
(b) 200 HGTs (corresponds to 75% bootstrap support in the HGT-Detection algorithm);
(c) 100 HGTs (corresponds to 90% bootstrap support in the HGT-Detection algorithm).
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Figure 5.7 HGT-QFUNC sensitivity results for functions @7, Qs., Qs, and Qo when detecting partial HGT in
synthetic dataset based on p-value ordering (maximum p-value of 0.05) — boxplot representation

Abscissa represents the sensitivity percentage and ordinate represents the tested function. The median value is shown by a
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers
between prokaryotic species (first value between parentheses) were carried out. Average simulation results under the
medium degree of recombination (when 25% of the resulting sequence belong to one of the parent sequences) are
depicted in the left panel. Average simulation results under the highest level of recombination (when 50% of the resulting
sequence belong to the source sequence and 50% to the destination sequence) is depicted in the right panel. For each
dataset, the maximum allowed number of positive values was the double of the number of transfers (i.e. 4, 8, 16, 32, 64
and 128, respectively). Calculations were done over 50 replicates for each parameters combination.
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Figure 5.8 Remaining HGT-QFUNC sensitivity results for functions 07, Qs,, Qsp and Qy when detecting complete
and partial HGT in synthetic dataset based on p-value ordering (maximum p-value of 0.05) — boxplot
representation

Abscissa represents the sensitivity percentage and ordinate represents the tested function. The median value is shown by a
vertical black line within each box. Simulations for 2, 4, 8, 16, 32 and 64 random nonreciprocal sequence transfers
between prokaryotic species (first value between parentheses) were carried out. Average simulation results for data
without recombination are depicted in the left panel. Right panel depicts the results of the same simulations, for the cases
of 1 and 128 transfers, with recombination levels of 0% (no recombination), 25% and 50%. Average simulation results
under the highest level of recombination (when 50% of the resulting sequence belong to the source sequence and 50% to
the destination sequence) is depicted in the right panel. For each dataset, the maximum allowed number of positive values
was the double of the number of transfers (i.e. 4, 8, 16, 32, 64 and 128, respectively). Calculations were done over 50
replicates for each parameters combination.
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5.6 Conclusion

Horizontal gene transfer is a well-structured evolutionary paradigm as the recent studies show
higher levels of transfers between certain prokaryotic groups (Beiko etal. 2005) or certain
ecological habitats (Smillie et al. 2011). The impact of horizontal transfers on the creation of many
prokaryotes and viruses, as well as the cumulative effect of recombination over multiple

generations, remains to be investigated in greater detail.

Despite the general availability of quality controlling HGT detection methods based on complex
phylogenetic analyses, simple distance measures can still be useful for recovering HGT events. The
computational complexity of more precise HGT detection methods as well as the high volume of
considered genomic data are the main motivations behind the development of fast and effective

HGT detection algorithms.

In this chapter we described a new fast HGT detection algorithm which runs in quadratic time when
HGTs between terminal branches are considered. It allows for an efficient parallel implementation.
The discussed method also benefits from a Monte Carlo p-value validation procedure, obviously at
the cost of the associated validation constant needed for maintaining precision. Because of its low
time complexity, the new algorithm can be used in complex phylogenetic and genomic stﬁdies
involving thousands of species. Mention ihat the Hanssen-Kuipers Skill Score (Hanssen and
Kuipers 1965), allowing for decomposing different sources of error, could be used instead of

sensitivity for measuring the performances of our algorithm.

Even though the presented method is designed to identify complete HGT, we investigated how it
copes with partial HGT (i.e. HGT followed by the intragenic sequence recombination) and showed

that in many cases it can be used to identify both complete and partial HGT.

The new variability clustering functions @,, Os., s, and Qs were introduced and tested in our
simulations. We also tested the function in the context of complete and partial HGT recovery. In

overall, the functions Q; and Qg, provided the best HGT detection performances.

We have provided the complete source code of our application allowing one to carry out the new
method for detecting complete horizontal gene transfer events discussed in this chapter; the
application's name is HGT-QFUNC.v.0.5.2. A Makefile along with the examples of the input and

output data have been also made available. The ReadMe documentation file provides an explanation
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of the main steps to follow for executing the application. The source code and the accompanying
files have been uploaded to the GitHub public repository (with the BSD licence). It is freely
available at the following URL address:
https://github.com/dunarel/dunphd-thesis/tree/master/Chapter5/Main/hgt-qfunc.v.0.5.2.
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CONCLUSION AND PERSPECTIVES

The detection of functional genomic regions is a fundamental goal of genetic research. Our -

understanding of relations between genetic structure and biological function is instrumental for
developing new drug targets, genetic treatments as well as for improving biotechnological

engineering (e.g. for better livestock management or better productivity of food microorganisms).

Neutral theory of DNA evolution has provided a theoretical basis for the development of a wealth
of methods aimed at detecting selection and its multiples modes, by using statistical significance
tests against neutrality. Negative selection, which is associated with essential biological functions
common to all individuals of the same family, is very well studied and can be detected by studying

sequence conservation patterns.

On the other hand, organisms engaging in host-parasite relationships are subject to accelerated
evolution, where they are forced to develop variability of their populations in order to survive.
Eukaryotes usually play the role of hosts, while prokaryotes and viruses play the role of parasites in

this relationship.

Many statistical methods exist for the detection of regions evolving under a different pattern than
that of neutral evolution (see chapters I-1I). On the host side, many methods have been designed to
take advantage of the particular diploid nature of human DNA. On the parasite side, phylogenetic
models have been extensively used. Mathematical modeling of these concepts usually results in
formulating NP-complete problems. Moreover, the heuristics developed for solving these problems

involve high computational costs.

We dedicated our thesis to the development of new computational methods taking advantage of
several well-known classification criteria, such as pathogenic factors (carcinogenicity, invasivity),

phylogenetic families or ecological habitats (i.e. working at both taxonomic and ecological levels).




As we could see in chapter 111, the combination of sequence analysis with aggregation functions can
allow for fast detection of major differences across known groups as well as for discovering general
data patterns. The modern comparative genomics has introduced huge real-life datasets. This
explosion of data means that only a limited number of computational biology methods can be used

at a large scale, namely those with low computational complexity.

In chapter III, we described a novel algorithm intended for optimizing species clustering into two
groups. This methodology could be further improved to account for three or more species groups
(i.e. considering three or more clustering criteria). Our algorithm uses a k-means-like principle to
move elements between groups. A possible future development could include the use of a fuzzy c-
means clustering criterion to allow for elements belonging to several distinct groups. Another
bossible improvement of the presented algorithm could consist of an alternate bipartition

optimization using those bipartitions that are already present in reference trees.

In chapter IV, we presented a comprehensive genomic study of prokaryotes in order to detect both
complete and partial horizontal gene transfer events between the contemporary prokaryotic
organisms as well as between their ancestors. To the best of our knowledge, we first applied the
HGT bootstrap validétion methods on such a large genomic scale. We put in place a weighted
statistical scheme to account for individual HGT events as well as for the selected species clusters
(i.e. species classifications). In our study, we considered species classifications according to
phylogenetic families and ecological habitats, but this methodology could be easily expanded in the
future to other readily available classifications, such as molecular functions, protein structures or
cellular locations. It is worth noting that when the habitat classification was considered, one
individual prokaryotic strain could belong to one or multiple habitats. Thus, in the future, we could

consider fuzzy classifiers, which are able to take into account such combined classifications.

We also carried out local and global HGT interaction rate analysis using different normalization
schemes. In the future, we plan to develop these ideas in the context of a comprehensive

probabilistic framework.

Mention that we not only estimated a global HGT rate characterizing the evolution of prokaryotes,
but also provided a good level of detail, using taxonomic clustering by strain and by species.
Another level of detail was provided by detecting the size of the transferred genetic material: a

whole gene (i.e. complete HGT) or a part of the gene (i.e. partial HGT, which an HGT followed by
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intragenic recombination and leading to formation of mosaic genes). Our results confirm the
arguments in favor of the continuous nature of the HGT phenomenon and its ubiquity even at the
coré genes, the most conserved and-restrictive to horizontal transfers according to some works. A
similar type of study could be conducted in the future on viruses and bacteriophages in order to

compare their respective HGT rates with those obtained in the case of prokaryotes.

We also presented for the first time at a large scale the intergroup relationships and dating results
for partial horizbntal transfers between prokaryotes and compared the overall (complete + partial)
HGT rates to the complete gene transfer rates (a common case of HGT analysis). In the future, it
would be interesting to compare the partial HGT results with those obtained by the methods used to

detect recombination.

We estimated the precise timing of the detected complete and overall HGTs by using dated gene
trees. In the future, it would be interesting to integrate our fast distance-Based HGT detection
method (see chapter V) into the HGT-timing framework in order to reduce the algorithmic
complexity of the HGT age estimation. The HGT detection algorithm introduced in chapter V can
be also used in complex phylogenetic and genomic studies involving thousands of species because

of its quadratic time complexity, on the number of species, in most of the practical situations.

In two chapters of this thesis (III and V), we considered new sequence aggregation functions.
Chapter III corresponds to the classic view of mutation as the main diversifying force, paired with
selection as the unifying one. There, we focused on the study of positive selection and lineage
specific selection processes. On the contrary, in chapter V, we brought arguments in favor of the
new emerging view of evolution in the prokaryotic world, in which HGT is considered as the main
diversifying force. In chapter IV, we also explored the relation of HGT to speciation through

clusters of HGT-related habitats.

In the future, it would be interesting to investigate other existing evolutionary events such as small
insertions and deletions, for example. They are usually overlooked and deleted from multiple
sequence alignments, as a part of quality assurance steps, because they can be easily confounded

with alignment errors.

We showed that the introduced aggregation functions (see chapters III and V) have different

sensitivities in presence of different modes of evolution but also different species clustering types
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(monophyletic or polyphyletic). We suggested that several aggregation functions should be used in
combination for detecting genetic regions responsible for pathogenicity. They could be also used in
order to detect signatures of immunological features. This conclusions comes together with the
observation that the new algorithm presented in chapter III could be used to detect linear epitopes,

and thus be useful to vaccine design.
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APPENDIX A

FULL CONTENTS OF THE CHAPTER III
SUPPLEMENT (ADDITIONAL FILE 1)

Algorithm A.1.

Algorithm for computing genomic regions responsible for carcinogenicity or invasivity

Require: FI: Hit region identification function to be optimized Qa, Qs or Qg,
MSA : Multiple sequence alignment,

X : Subset of carcinogenic or invasive taxa,

Y : Subset of non-carcinogenic or non-invasive taxa,

WIN _MIN : Minimum sliding window width,

WIN MAX : Maximum sliding window width,

S : Sliding window step,

RPG : Constant number of random bipartition generations.
Ensure: Set of Hit Regions: (win_width,idx,Q',ARI,Q"), where
win_width : Current sliding window width,

idx : Hit Index (i.e., its genomic position),

Q' : Hit region identification function without knowledge of X
and Y,

ARI : Adjusted Rand index,

Q" : Validation function depending on ARI.




1: MSA_L « Length of MSA
2: for win_width from WIN_MIN to WIN_MAX do

3: for idx from 0 to MSA_L—win_width with step S do

4 for all r such that 1 <r < RPG do

5 Randomly select a bipartition A|B

6: MSA, < MSA[A][idx..idx + win_width)

7 MSAg « MSA[BI][idx..idx + win_width]

8 Oparition = Calculate Q(FI, A, B, MSAA, MSAg)

9 Update Q' = Max(Qpariition » ¥)

10: repeat

11: for all i € A do /i is randomly chosen

12: A—A\iB<—BuUj

13: Update Qpariition

14: MaxQpartition = Max(MaxQparisions Qpariitions ¥)
15: keep old A and B if MaxQpaision is unchanged
16: end for

17: Swap(A,B)

18: until No improvement of MaxQpapion i possible

19: Q'[win_width,idx] = Max(Q', MaxQparision)
20: ARI[win_width,idx] = Calculate ARI(A|B, X|Y)
21: Q"[win_width, idx] = ARI x Q'

22: end for

23: end for

24: end for

25: return Q', ARI, Q"
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Figure A.l. p-values obtained for hit region detection using the remaining (i.e., not presented in

Figures 3.2 and 3.3) Q'-type functions

(a),(b),(c),(d) Monophyletic evolution - (e),(f),(g),(h) Polyphyletic evolution
(a),(c),(e),(g) Positive selection - Variable hit region inside conserved context.

Quartile distribution of p-values obtained for the functions Q4 (a), Qs (c), Qs (¢), and Qs ().
Abscissa represents scaling factor of the conserved context in which the variable hit region resides.
Values close to 0 represent conservation (maximum discrimination), while values close to 1
represent variability (identical to context). Variable hit region is always maintained at a scaling
factor of 1. Ordinate represents p-values in log-scale. Horizontal dashed line represents the
significance threshold of 0.05.

(b),(d),(H),(h) Lineage specific selection - Heterogeneous hit region inside neutral context.

Quartile distribution of p-values obtained for the functions Q4 (b), Qs (d), Qs (f), and Q4 (h).
Abscissa represents the difference in scaling factors among the two lineages present in the hit
region. Values close to 0 represent homogeneous evolutionary speed (similar to the neutral context
in which it resides), while values close to 1 represent divergence among these lineages. Context is
always maintained at a scaling factor of 0.5, simulating neutral evolution. Horizontal dashed line
represents the significance threshold of 0.05. In the case of lineage specific selection, the value of
the Q'-type functions corresponding to 1 on the abscissa scale cannot be computed because it
involves a sub-tree with 0 edge lengths.

149




Figure A.1 (a), (b) — Remaining monophyletic evolution hit detection p-values
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Figure A.1 (c), (d) — Remaining monophyletic evolution hit detection p-values
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Figure A.1 (e), (f) — Remaining polyphyletic evolution hit detection p-values
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Figure A.1 (g), (h) - Remaining polyphyletic evolution hit detection p-values
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APPENDIX B

IMPLEMENTATION DETAILS OF CHAPTER IV
CLUSTERING

Let T(g) be the total number of HGT detected for the gene g. Each transfer is occurring
between two branches of the associated Gene Tree. We define U and V, as the set of alleles
of the associated subtrees. Accordingly, the traﬁsfer is considered between the most recent
common ancestors (MRCA) of the associated node of the source and respectively

destination branches.

We represent the i HGT of gene g, as a transfer matrix called K, defined over the
Cartesian product of the source and destination alleles. 4 is the vector of alleles present in

|
all multiple sequence alignments. G is the vector of genes.

K(g,i)=[| A|x| 4[], where ge G, anda,be 4. Its values are defined with following
formula:

VIU|-|V|ifacUAbeV,

Kop(g0) = (B.1)
0, otherwise,




W =[| P|x|P|], where P is the vector of prokaryotic families. We can calculate its values

using following formula:

W, ,)=RxZxK(g,)xZ" xR"
F2-sr1(851) (g,9) (B.2)

For the same HGT, we define an associated matrix W, between prokaryotic families.
This matrix is obtained by weighting the previous transfer matrix by two other matrices,
|
\
|

corresponding to classifications. These are the allele membership to the species (Z) and the

species membership to the prokaryotic families (R). These matrices are defined as follow:
Let S be the vector of species.
LetV[| P|x|S|] be the family-species presence matrix.

Lif s is classified as belonging to p

VpePaseS,V, =
p P {0,0therwise (B.3)
We obtain the weighted matrix R=[| P|x|S|], by dividing each element by the number of

groups to which each corresponding species belong:

1P|
Rp,s = Vp,s /z Vi,s

iel

(B.4)
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Let M =[1...| P|] be the row vector of number of species belonging to each family p

of P. See equations (10)-(15).

Let Z[| S|x| 4[] be the species-alleles association matrix:

Lif aisan allele of s
VseSnaedZ = :
’ 0,otherwise

Let L[| 4|x|G|] be the alleles-genes association matrix:

1,if ae MSA(g)

VaeA/\‘v’geGandLa,g={0 e
,otherwise

(B.5)

(B.6)

(B.7)

Let H =[| P|x|G|] be the family-gene weight-count matrix: H = Rx Z x L. Using a different

notation, N, (g)= H,, that is used in equations (4.1) and (4.3).

Let N =[l...] P|] be the row vector of number of alleles belonging to group p. See

equations (4),(6),(8) and (9).
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