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RÉSUMÉ 

 

Comprendre la diversité de la vie microbienne est crucial pour aborder plusieurs 
questions fondamentales en écologie et en biologie évolutive. Par l’étude des microbes, 
nous commençons à évaluer l’universalité des processus écologiques responsables de 
la distribution des espèces via un beaucoup plus grand spectre de formes et de fonctions 
biologiques que considéré traditionnellement. Nous avons également une meilleure 
appréciation du rôle des interactions biotiques dans la coexistence et l’évolution 
d’espèces cooccurrentes de différents niveaux trophiques. Forte de plusieurs études 
reliant la composition des communautés microbiennes des humains et végétaux à la 
santé et la productivité de leur hôte, la recherche appliquée en écologie microbienne a 
également des impacts importants sur notre conception des phénotypes élargis des 
plantes et des animaux. 

Notre compréhension des processus façonnant la vie microbienne a jusqu’à maintenant 
dépendu principalement de descriptions taxonomiques de populations et de 
communautés microbiennes. En écologie des macro-organismes, les approches de 
recherche basées sur les traits des organismes ont renseigné l’étude de la distribution 
des espèces et de leur évolution en donnant des explications mécanistiques pour les 
patrons observés. Ces approches demeurent toutefois sous-utilisées en écologie 
microbienne. Parmi les défis à surmonter, la très grande diversité des phénotypes 
microbiens rend notamment le choix des traits à l’étude difficile, tout en complexifiant 
leur interprétation fonctionnelle. Une autre frontière majeure dans notre 
compréhension de l’écologie microbienne concerne le rôle des hôtes dans l’assemblage 
de leur communautés microbiennes. Alors que de la variation dans la composition 
taxonomique des microbes a été documentée entre génotypes et espèces d’hôtes, nous 
comprenons encore peu les mécanismes sélectifs responsables de tels patrons. On 
ignore également la façon dont les associations hôte-microbes varient en fonction du 
contexte écologique dans lequel elles prennent place. 

Ma recherche doctorale aborde deux objectifs principaux : 1) améliorer notre 
compréhension de la structure de la diversité microbienne entre les écosystèmes à l’aide 
d’approches basées sur les traits, 2) déterminer les processus écologiques et évolutifs 
responsables des associations entre bactéries et hôtes dans des écosystèmes forestiers. 
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À l’aide d’une revue critique de la littérature, mon premier objectif spécifique était 
d’évaluer les différentes façons dont les approches basées sur les traits pourraient 
contribuer à la science de l’écologie microbienne. Il visait également à souligner les 
défis et opportunités pour continuer de faire avancer l’utilisation et l’adoption de ces 
approches. Mon second objectif spécifique était de déterminer les grands axes de 
variation dans les traits bactériens au niveau mondial. Nous avons utilisé une méta-
analyse de jeux de données métagénomiques et génomiques bactériens pour identifier 
des groupes de gènes fonctionnels expliquant le plus de variation à la fois entre les 
écosystèmes et entre les clades bactériens. Mon troisième objectif spécifique était 
d’évaluer les bases adaptatives du renouvellement taxonomique des bactéries entre 
espèces d’hôtes dans la forêt tropicale. Nous avons caractérisé la diversité fonctionnelle 
des communautés bactériennes des surfaces foliaires (i.e. phyllosphère) de 17 espèces 
d’arbres à l’aide de séquençage métagénomique et évalué la présence d’appariement 
dans les traits des hôtes et des bactéries. Nous avons également déterminé le rôle des 
hôtes comme filtres environnementaux bactériens en fonction de leurs traits et de leur 
phylogénie. Mon dernier objectif spécifique était d’évaluer comment l’assemblage 
bactérien de la phyllosphère sur leur hôte était influencé par la variation 
environnementale à large échelle, l’identité de l’hôte et la composition du voisinage de 
l’arbre hôte. Nous avons abordé cet objectif en collectant et analysant des échantillons 
microbiens de la phyllosphère de plus de 30 espèces d’arbres à travers un gradient 
latitudinal de 5 °C s’étendant le long d’une transition de la forêt de feuillus à la forêt 
boréale. 

Nous montrons que l’utilisation des approches basées sur les traits représente un pas 
vers l’avant dans notre investigation des mécanismes d’adaptation microbienne aux 
gradients environnementaux, mais également dans la mise en place d’une pratique plus 
intégrative de l’écologie microbienne. Nous révélons ensuite la présence de stratégies 
écologiques majeures expliquant la variation dans les traits bactériens entre clades et 
écosystèmes, suggérant la présence de moteurs écologiques et évolutifs universels de 
la variation fonctionnelle bactérienne dans le monde. Nous apportons également des 
preuves empiriques d’appariement adaptatif entre les bactéries et leurs hôtes dans la 
phyllosphère d’espèces d’arbres tropicales, révélant un rôle significatif pour le 
phénotype des hôtes dans l’assemblage de leurs communautés bactériennes. Notre 
étude en forêt tempérée révèle de surcroît un effet de la composition de la communauté 
d’arbres avoisinante dans l’appariement entre les communautés bactériennes et leurs 
hôtes, menant à une homogénéisation de la composition bactérienne d’espèces d’hôtes 
cooccurrentes. 

Cette thèse pose de robustes fondations pour un meilleur usage des traits bactériens et 
de l’hôte pour comprendre l’origine et le maintien de la diversité bactérienne à 
l’intérieur des écosystèmes et entre eux. Ce faisant, nous identifions un chemin 
pragmatique pour rendre l’écologie microbienne plus généralisable. En identifiant des 
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mécanismes par lesquels les hôtes organisent l’assemblage des communautés 
bactériennes sur leurs feuilles et celles d’autres espèces, nous supportons également 
l’hypothèse que la vie avec les hôtes représente un axe important de variation 
écologique chez les bactéries. Somme toute, par l’usage de diverses méthodologies de 
recherche, incluant une revue conceptuelle, une méta-analyse, et des études de terrain, 
cette recherche contribue des vues nouvelles et approfondies sur les moteurs 
écologiques et évolutifs de la diversité microbienne. 

Mots clés : écologie microbienne, associations hôtes-symbiontes, diversité 
fonctionnelle, phyllosphère, métagénomique 

 

 



ABSTRACT 

Understanding the diversity of microbial life is crucial to addressing several 
fundamental questions in ecology and evolutionary biology. Through the study of 
microbes, we are starting to evaluate the universality of ecological processes driving 
species distributions across a much greater spectrum of biological forms and functions 
than traditionally considered. It has also improved our appreciation of the role for biotic 
interactions in driving coexistence and the evolution of co-occurring species across 
trophic levels. With numerous studies linking the composition of human and plant 
microbial communities to their host health or productivity, applied research in 
microbial ecology is further having tremendous impacts on our conception of plant and 
animal extended phenotypes. 

Our understanding of processes shaping microbial life has so far relied mostly on the 
taxonomic description of microbial populations and communities. Research 
approaches based on the traits of organisms have informed the study of species 
distribution and evolution in macro-organismal ecology by providing mechanistic 
explanations for observed patterns. Still, these approaches remain underused in 
microbial ecology. Challenges to overcome include the extremely large diversity of 
microbial phenotypes, making the choice of study traits difficult and complexifying 
their functional interpretation. Another major frontier in our understanding of microbial 
ecology regards the role of hosts in shaping the assembly of their microbial 
communities. While variation in the taxonomic composition of microbes have been 
reported among host genotypes and species, there is still little understanding of the 
selective mechanisms driving such patterns. We also have little appreciation of the way 
host-microbe associations vary as a function of the ecological context in which they 
take place.  

My thesis research addresses two main objectives: 1) to improve our understanding of 
the structure of microbial diversity across ecosystems using trait-based approaches, 2) 
to determine the ecological and evolutionary processes driving associations between 
bacteria and their hosts in forested ecosystems. Through a critical survey of the 
literature, my first specific objective was to evaluate the different ways in which trait-
based approaches could contribute to the science of microbial ecology. It also aimed to 
outline challenges and opportunities in moving these approaches forward. My second 
specific objective was to determine the main axes of variation in bacterial traits 
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worldwide. We used a meta-analysis of metagenomic and genomic bacterial datasets 
to identify groups of functional genes that explained the most variation both among 
ecosystems and among bacterial clades. My third specific objective addressed the 
adaptive bases of bacterial taxonomic turnover among host species in a tropical forest. 
We characterized functional diversity of bacterial communities from the leaf surfaces 
(i.e. phyllosphere) of 17 tree species using metagenomic sequencing and evaluated the 
presence of trait matching between hosts and bacteria. We also determined the role of 
hosts as environmental filters on the traits of bacteria as a function of their traits and 
phylogeny. My last specific objective was to evaluate how phyllosphere bacterial 
assembly on their hosts was influenced by large-scale environmental variation, host 
identity and the composition of the host tree neighbourhood across the landscape. We 
addressed this objective by collecting and analyzing microbial phyllosphere samples 
from more than 30 tree species across a 5 °C latitudinal gradient spanning a transition 
from deciduous to boreal forest. 

We show that the use of trait-based approaches represents a promising way forward in 
investigating mechanisms of microbial adaptation to environmental gradients, but also 
in attempting to build a more integrative practice of microbial ecology. We next 
uncover major bacterial ecological strategies across bacterial clades and ecosystems, 
suggesting the presence of universal ecological and evolutionary drivers of bacterial 
trait variation worldwide. We also provide empirical evidence for adaptive matching 
between bacteria and their hosts in the phyllosphere of tropical tree species, revealing 
a significant role of host phenotypes in structuring bacterial community assembly. Our 
study in the temperate forest further reveals an effect of the neighbouring host 
community in determining the match between bacterial communities and their hosts, 
observed as an homogenization of bacterial composition between co-occurring host 
species.  

This thesis lays a strong foundation for an improved use of bacterial and host traits in 
understanding the origin and maintenance of bacterial diversity within and among 
ecosystems. By doing so, we point a much-needed way forward to making microbial 
ecology more generalizable. By identifying mechanisms by which hosts structure 
bacterial community assembly on their leaves and those of other tree species, we also 
provide evidence supporting life with hosts as an important axis of ecological variation 
in bacteria. Overall, through the use of diverse research methodologies, including a 
conceptual review, a meta-analysis, and field-based studies, this research contributes 
novel and comprehensive insights into the ecological and evolutionary drivers of 
microbial diversity. 

Keywords : microbial ecology, host-symbiont associations, functional diversity, 
phyllosphere, metagenomics 



INTRODUCTION 

0.1 Making sense of microbial diversity 

Microbes account for about 20 percent of the world’s biomass and colonize 

practically all habitats on Earth (Bar-On et al. 2018). Their diversification over the 

course of billions of years of evolution is now reflected in the very large taxonomic 

and phylogenetic diversity of microbes observed both within and among ecosystems 

(Haggerty and Dinsdale 2017, Delgado-Baquerizo et al. 2018). Despite a recent 

accumulation of genetic data characterizing microbial life worldwide, we still have 

little understanding of the structure of that functional diversity and more generally how 

to use this functional data to address ecological questions. Particularly, much remains 

to be understood about the drivers of functional variation among microbial clades and 

taxa, and how this diversity contributes to microbial sorting across habitat types. These 

questions are especially prominent for host-associated microbial communities. While 

microbial taxa have been found in association with hosts and appear to interact with 

them in a way that affects either the symbiont or the host fitness or both (Provorov and 

Vorobyov 2009), the study of host-associated microbes is still largely restricted to 

single host species (e.g. humans, crops, livestock) and microbial species (e.g. 

pathogens) of economic importance. As a result, we are still mostly unable to evaluate 

to what extent hosts are contributing to the generation and maintenance of microbial 

diversity both within host communities and across the landscape.  

In this thesis, I will be addressing two main objectives: 1) to improve our 

understanding of the structure of microbial diversity across ecosystems using trait-
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based approaches, and 2) to determine the ecological and evolutionary processes 

driving associations between bacteria and their hosts in forested ecosystems. I 

specifically address the following questions. First, how can we use the study of 

microbial functions to better understand the structure of microbial diversity worldwide? 

Second, what are the adaptive mechanisms underlying microbial taxonomic variation 

among microbial clades and ecosystems? Third, what is the role of hosts in structuring 

functional diversity of bacterial communities in the tree phyllosphere? Fourth, how do 

host-symbiont associations vary across spatial scales and how are they determined by 

the abiotic and biotic features of their habitat? I will concentrate on the bacterial portion 

of microbial diversity in addressing these questions. With important roles in global 

nutrient cycling, bacteria represent especially valuable study organisms. The relative 

ease through which to describe their diversity using universal sequencing primers and 

the growing databases of bacterial gene sequences facilitating their identification also 

makes them a particularly tractable microbial group to study. 

0.2 On the use of trait-based approaches in microbial ecology 

As tokens of past and current selective constraints on the survival of organisms 

across spatially and temporally variable environments, phenotypes are instrumental to 

our understanding of species ecology (and evolution). The study of functional traits - 

the morphological, physiological or phenological characteristics of individuals that 

have consequences on their fitness (sensu Violle et al. 2007) – has been important for 

decades in other ecological fields such as plant ecology to inform our understanding of 

species distributions and interactions (McGill et al. 2006). Functional perspectives on 

the study of ecology have supplemented traditional approaches focusing on species 

identity as the primary unit of observation by improving the mechanistic understanding 

of species-environmental associations (Keddy 1992), refining predictions of species 

responses to environmental change across different ecosystems (e.g. Frenette-Dussault 

et al. 2013), and by facilitating comparison and generalization of ecological dynamics 
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across study species and systems (Westoby 1998, Cornwell et al. 2008, Handa et al. 

2014). While phenotype-oriented studies of organismal distributions and interactions 

are common now in fields such as plant ecology, trait-based approaches to ecological 

questions are still largely underused in microbial ecology.  

0.2.1 Challenges related to defining microbial phenotypes 

Delays in the adoption of trait-based approaches for microbes may stem from 

unresolved questions regarding the choice of microbial traits that should be studied and 

the way these should be measured. Challenges that have impeded progress on these 

questions include the lack of a working definition of microbial functional traits, the 

diverging methodological traditions of microbial physiologists and geneticists, and the 

large diversity of forms and life habits of microbes. The definition and identification 

of ecologically and evolutionarily relevant microbial phenotypes brings about 

conceptual issues that did not pose as much of an issue in macro-organismal ecology. 

For example, in a biological domain where lateral gene transfer may occur between co-

occurring species, and where complex aggregates of organisms may acquire emergent 

properties (e.g. biofilms), should phenotypes be considered properties of genes, 

individual cells, or communities? At which level should they be measured? The 

definition and quantification of fitness in microbes remains a challenge, particularly 

regarding the metrics that should be used and the biological scale at which it should be 

measured. 

The diversity of microbial lifestyles is another facet of the challenge to the 

standardized use of functional trait approaches. It encompasses three distinct issues. 

First, a large diversity of traits may be of potential adaptive significance. Second, many 

potentially important microbial traits may not have been documented yet (Sberro et al. 

2019). This problem is especially evident when trying to attribute functions to gene 

sequences for which associated proteins are rarely experimentally characterized, and 

in many cases do not sufficiently match any characterized protein to allow their 
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function to be predicted by homology (Danchin and Fang 2016, Price et al. 2018). Third, 

this diversity of traits has led to a diversity of ways by which researchers select traits 

to study (Ramírez-Flandes et al. 2019), leading to the study of potentially distinct gene 

families depending on the specific interests and expertise of a research group; examples 

include methane oxidation (Krause et al. 2014), glucose utilization (Morrissey et al. 

2016), and nitrogen cycling (Nelson et al. 2016). In turn, we are witnessing a diversity 

of ways in which microbial traits are studied by different microbial scientists, from 

culture-based to gene-based approaches, among which direct correspondences have not 

often been established. 

0.2.2 Next steps for trait-based approaches in microbial ecology: functional 
classifications 

Ecological classification systems have been developed over several decades in 

ecology as a way to explain the evolution of life histories and think about fundamental 

constraints on the distribution of organisms. Among the first, the r-K selection 

spectrum distinguished between species that reproduce quickly and invest less in each 

offspring (r-selected), and species reproducing more slowly but with more investment 

in the success of each reproductive unit (K-selected) (Dobzhansky 1950). This 

framework for defining major trade-offs in life-history strategies was later used for 

building models of population dynamics which contributed to the development of the 

theory of island biogeography (MacArthur and Wilson 1967), and in understanding the 

role of density-dependent regulation in driving the evolution of resource-use and life-

history traits (Reznick et al. 2002). Expanding on the r-K spectrum, plant ecologists 

later proposed the competitor – stress-tolerant – ruderal (CSR) classification system to 

explain species response to environmental variation (Grime 1977). The classification 

is based on the response to two types of environmental gradients, stress and disturbance, 

with (i) competitive species growing best in low-stress and low-disturbance habitats, 

(ii) stress-tolerant species thriving better under high stress and low disturbance, and (iii) 

ruderals being best adapted to low stress and high-disturbance habitats. While useful 
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conceptually, this framework has faced criticism for the difficulty with which plants 

and animals could be assigned to each of these categories outside of study in culture, 

making it difficult to use it routinely for testing ecological questions at large scales and 

across study systems (but see Li and Shipley 2017, Pierce et al. 2017). Therefore, the 

identification of measurable traits representing major ecological trade-offs across 

species and across space emerged as an important next step to improve the utility of 

ecological classification systems. 

In plant ecology, the leaf-height-seed (LHS) scheme was consequently 

developed in answer to those considerations (Westoby 1998, Westoby et al. 2002). 

Three important axes of adaptive strategies that explained ecological trade-offs and 

variation among plant species at local and global scales were first identified. Three 

measurable phenotypic traits were respectively proposed to describe variation along 

each of these axes, namely: (i) specific leaf area (the area of the leaf divided by its dry 

mass) as a proxy of resource conservation strategies, (ii) height as a proxy for energy 

acquisition and response to disturbance strategies, and (iii) seed weight as a proxy for 

dispersal and colonization strategies. Upon identification of other axes important in 

explaining ecological variation among plant species, such as below-ground resource 

investment strategies (Li et al. 2017), this framework has been expanded through years 

(Díaz et al. 2016). It is now used widely as a basis for standardized measurements of 

plant functional traits across the globe (e.g. Pérez-Harguindeguy et al. 2013). These 

traits are also being increasingly used in building predictive models of ecosystem 

function (Cadotte 2017). 

Similar functional classification schemes for microbes have recently been 

proposed in microbial ecology (Fierer et al. 2007, Ho et al. 2013), though with mixed 

success. While some have tried to apply functional classification schemes from other 

domains of study such as plant and animal ecology (e.g. Chagnon et al. 2013, Ho et al. 

2013 with the CSR classification scheme), others have aimed at devising new 
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functional classifications based on phenotypic traits common to the microbial world, 

such as the complexity of the carbon chains that they can process (Martiny et al. 2015). 

Most experimental characterizations of microbial strategies have focused on a few 

well-studied microbial clades that could be grown on a variety of carbon substrates, 

mostly in aquatic and soil habitats (e.g. Lennon et al. 2012, Evans and Wallenstein 

2014, Shapiro and Polz 2014); as a result, the extent to which they represent the major 

ecologically and evolutionarily informative axes of phenotypic variation in microbes 

remains unknown. 

0.3 Role of hosts in driving microbial diversity across the landscape 

Matches between hosts and symbionts are supported by several lines of 

evidence, including variation in community composition of symbionts among 

genotypes of a given host species or species of a given host genus (Clark et al. 2001, 

Bailey et al. 2005, Whitham et al. 2012, Pita et al. 2013). Trait-based approaches are 

beginning to help us understand the ecology and evolution of host-associated microbes, 

by identifying host traits that play a selective role in driving microbial distributions 

among hosts (Kembel et al. 2014), or more rarely in identifying drivers of co-

diversification between hosts and symbionts (Zangerl and Berenbaum 2003, Anderson 

et al. 2010). Building on these approaches, in this thesis I am particularly interested in 

examining the role for plant hosts and their phenotypes in structuring microbial 

diversity on the aboveground parts of plants including leaves, a habitat commonly 

referred to as the phyllosphere. 

0.3.1 The phyllosphere as a study system 

Interactions between plants and their symbionts have mostly been studied in 

plant-herbivore and plant-pathogen systems, due to their historically negative impacts 

in agriculture and their simpler nature, often involving only one plant species and one 
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main symbiont species. As pairwise interactions become better understood and with 

the availability of more efficient computational tools, more complex relationships can 

be modelled and multiple symbionts studied at the same time, allowing a more realistic 

investigation of the structuring of interactions in nature.  Still, the dynamics of plant-

microbiome associations remain poorly understood, particularly with regards to 

mutualisms and commensalisms and the specific mechanisms by which these 

associations may be maintained through time and space. 

The best-studied plant-symbiont systems are from agricultural soils, mostly 

focusing on organisms such as rhizobacteria and mycorrhizal fungi which have been 

found to have positive impacts on plant fitness (reviewed in Pineda et al. 2013) and 

have thus represented attractive opportunities for applied research. The extent to which 

such model organisms may be used for above-ground plant-microbial interactions is 

however debatable. Notably, the phyllosphere may be exposed to more variable and 

less stable environments (Hirano and Upper 2000, Lindow and Brandl 2003, Bringel 

and Couée 2015). Phyllosphere microbes are also likely to be subjected to very 

different environmental filters (e.g. exposure to UV rays or high temperatures from 

which soil microbes may be relatively sheltered) (Jacobs et al. 2005) and may therefore 

greatly differ in their ecology and evolution than soil microbes for example.  

The phyllosphere is an immense microbial habitat worldwide, as large as 

100,000,000 km2 and harbouring more than 1026 bacterial cells (Lindow and Brandl 

2003, Vorholt 2012), making it a particularly relevant host-associated habitat to study. 

Phyllosphere microbial communities include bacteria (Yang et al. 2001, Lindow and 

Brandl 2003), fungi (Inácio et al. 2002), viruses and archaea (Taffner et al. 2018), with 

bacterial members being the most abundant and diverse. Bacterial communities are 

mostly composed of members of the phyla Actinobacteria, Bacteroidetes, Firmicutes 

and Proteobacteria, spanning a large breadth of bacterial evolutionary history 

(Bulgarelli et al. 2013).  
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Phyllosphere bacteria and their hosts can influence each other’s health through 

several mechanisms. Host plants are typically a source of carbon and nitrogen for the 

microbes on their leaves, as well as shelters from water stress (Lindow and Brandl 

2003). Microbes may reciprocally influence plant health through nitrogen fixation 

(Moyes et al. 2016), the production of plant growth enhancers (e.g. auxin) (Cox et al. 

2018), production of antimicrobial compounds and the induction of systemic resistance 

to improve plant defense against pathogens and herbivores (Carvalho and Castillo 

2018). Phyllosphere microbes are also drawing interest for their potential applications 

for improving human health (e.g. through the production of antimicrobial components; 

Pérez et al. 2016), and for crop health (Kerdraon et al. 2019). Despite these interesting 

features, as for many host-associated microbes, we still understand little of the factors 

driving their distribution both across ecosystems and among hosts. In the second part 

of this thesis, I will thus investigate how hosts drive the ecology and distribution of the 

yet largely unknown phyllosphere, focusing on bacteria living on the outside of plant 

tissues (i.e. epiphytes). 

0.3.2 Drivers of phyllosphere microbial community assembly in association with 
hosts 

Relationships between the relative abundance of different microbial strains and 

the abiotic features of their environment have been reported for some time in 

microbiology and have been the guiding principle for the use of selective growth media 

in strain isolation and culture (Lagier et al. 2015). Such a trait-matching process is 

collectively referred to in ecology as species sorting. For example, culture media 

determine differential growth among bacterial strains, a striking example of which is 

heavy-metal contaminated soil matrices in which only a small set of microbial species 

may actually grow (Roane and Pepper 1999). Field-based studies of microbial 

biogeography are more recent (Bryant et al. 2008) and have been linked with the 

emergence of culture-free sequencing technologies to characterize microbial diversity 

without requiring culturing. Based on the use of sequencing approaches, climatic 
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features of the abiotic environment such as temperature and precipitation have been 

found to play a role in determining the dominant species in field microbial community 

across regional to continental spatial scales (Drenovsky et al. 2010, Garcia-Pichel et al. 

2013, Chen and Shapiro 2015, Coleman-Derr et al. 2016). 

The biotic environment of a microbial community, that is to say the organisms 

with which the microbial community interacts directly or indirectly, also plays a role 

in driving its composition. Thinking of plants as landscapes for micro-organisms, we 

can recognize them as forming potentially important and geographically variable 

selective gradients for microbes, with plant physical and physiological characteristics 

such as tissue nutrient concentration or growth form determining the resources 

available for symbionts to establish, grow and reproduce. Differences in leaf microbial 

community composition and diversity have been reported among plant species with 

very different types of leaves (broadleaf vs. coniferous) in temperate forests (e.g. 

Redford et al. 2010, Laforest-Lapointe et al. 2016). While a greater abundance of 

Proteobacteria and Firmicutes and an overall lower diversity of bacteria was detected 

on the thinner, less waxy angiosperm leaves, a greater abundance of Actinobacteria and 

Acidobacteria as well as a greater overall diversity of bacteria was recorded on the 

thicker and longer-lived leaves of gymnosperms (Laforest-Lapointe et al. 2016). 

Similar differentiation of leaf microbial communities among plant taxa have also been 

found in tropical forests (Kembel et al. 2014). 

Various properties of leaves may influence the species composition of 

phyllosphere bacteria, and these may depend on the specific ecosystem in which the 

plants are found. Finkel and colleagues (2016) reported adaptations to the salt-secretion 

and high UV radiation at the leaf surface in bacterial members of desertic plants, while 

leaf water content was the primary environmental driver structuring epiphytic bacterial 

abundance in dry Mediterranean environments (Vokou et al. 2012). Leaf traits 

indicative of resource-use acquisition strategies in plants, such as leaf mass per area, 
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and the wood density versus growth-mortality trade-off explained the most variation in 

bacterial community composition among host species in the phyllosphere of tropical 

trees (Kembel et al. 2014).  

While we know of bacterial adaptations to life in the phyllosphere and of host 

traits driving bacterial taxonomic turnover among hosts, few studies to date have 

combined information on both bacterial and host traits to understand the emergence of 

associations between bacterial and plant taxa. Identifying matches between traits of 

both partners would help understand selective processes through which hosts may 

influence bacterial community assembly. 

0.4 Variation in host-symbiont matching across the landscape 

As the abiotic and the biotic environment change through space, selective 

pressures on microbial communities and the match between the characteristics of the 

environment or the plant host should vary as well, with consequences for the evolution 

of microbes (Thompson 2005). Still, whether variation in microbial community 

assembly on their plant host among sites results from variation in environmental 

features of the landscape or variation in characteristics of individual hosts or the host 

community remains an open question.  

0.4.1 Influence of sampling site and the abiotic environment 

The importance of sampling site in explaining variation in microbial 

community composition across space has been evaluated in several habitats. On the 

one hand, there is evidence for large-scale circulation of microbes around the globe; 

cross-continental winds have been shown to move microbes directionally from Africa 

to North America (DeLeon-Rodriguez et al. 2013), and between the Sahara and the 

Pyrenees (Barberan et al. 2014). Evidence for global circulation of microbes in the 

troposphere has also been uncovered, though being limited to a number of resistant 
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microbial species (DeLeon-Rodriguez et al. 2013). On the other hand, decreases in 

compositional similarity among microbial communities with increases in their 

geographic separation (i.e. distance-decay patterns) have been detected in some 

systems, indicating dispersal limitation could play a role in structuring microbial 

community assembly (e.g. Barberán et al. 2015) among sites. 

Environmental variation can also explain microbial variation among sites, 

though the strength of environmental variables relative to geographical location 

depends on the study. In vineyard soil microbial communities, Morrison-Whittle & 

Goddard (2015) found that selection from the local environment explained as much as 

four times more variation in the composition of fungal communities than geographic 

location, though both factors were significant drivers of assembly. Sampling site 

however explained more variation among endophytic bacterial communities of the pine 

phyllosphere than climatic variation (Firrincieli et al. 2020). Such differences among 

studies could be due to the type of organisms considered and their dispersal capacities, 

but also on the spatial structure of the microbial habitat studied, providing microbes a 

spatially continuous or discontinuous matrix for dispersal.  

0.4.2 The spatially structured plant landscape 

Despite growing interest in understanding mechanisms of bacterial community 

assembly across space, it is still unclear what role there is for variation in biotic features 

of the landscape in driving bacterial turnover among sites relative to abiotic variables 

such as temperature or humidity. Studies to date have mostly touched on these 

questions by comparing the relative influence of host identity versus site in explaining 

microbial community similarity between samples (Knief et al. 2010, Redford et al. 

2010, Coleman-Derr et al. 2016, Laforest-Lapointe et al. 2016) and have shown 

variable importance of species and species-site interactions in driving microbial 

community assembly across large sampling areas. Yet, whether dynamics of filtering 

and matching between bacteria and their hosts may vary across the landscape as a 
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function of the characteristics of the hosts and the host communities remains to be 

investigated. 

The spatial structure of plants in the landscape determine patterns of dispersal 

and gene flow between populations of symbionts and their plant hosts. For example, 

the relative abundance of a particular plant host in the landscape should influence the 

likelihood of an associated microbe encountering that plant, leading to a positive 

relationships between landscape abundance of a host and the strength of its interactions 

with that symbiont (Kuussaari et al. 2001, Agrawal 2006). In laboratory experiments, 

Kuussaari and colleagues (2001) found a link between the heterogeneity of host plant 

species in the landscape and the degree of specialization or generalization of one of 

their shared parasites. The diversity of host tree species plantations has similarly been 

found to be linked with the diversity of their associated arthropod communities 

(Setiawan et al. 2016).  

The connectivity of host populations in the plant landscape may also determine 

the extent of symbiont homogenization among co-occurring host species. In a 

mesocosm experiment on microarthropod meta-community dynamics in moss habitats, 

spatial connectivity among moss patches affected diversity observed both among and 

across arthropod communities (Chisholm et al. 2011). When patches were more tightly 

connected, more frequent exchanges between communities tended to homogenize 

species composition among sites, while when they were further apart, individual 

patches tended to diverge more between one another. Similarly, high levels of 

immigration from the surrounding terrestrial landscape have been documented to affect 

community composition of freshwater networks within the boreal forest (Ruiz-

González et al. 2015). Acting as environmental filters or spatially structured microbial 

pools, plant hosts as part of a plant landscape therefore have multiple means of 

impacting the ecology and evolution of their associated organisms. 
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The structure of the plant landscape is also likely to affect the occurrence and 

evolution of symbiont specialization on their hosts. When selection is strong and 

opportunities to interact with alternative partners are low, given enough time local 

adaptation should occur and favor specialization, even in species rich communities 

(Thompson 2005). As selection from host individuals decreases and/or gene flow 

increases in the landscape and thus increases the probability of symbionts encountering 

functionally diverse hosts, we expect host-symbiont relationships to loosen and 

symbionts to become more generalist. Symbiont specialization may also vary along 

abiotic selection gradients (Wolinska and King 2009). First, along a productivity 

gradient, specialization is expected to be stronger when resources are scarce, such that 

benefits from the mutualisms may be higher (Callaway et al. 2002, Pineda et al. 2013). 

In more productive environments, resources may be plentiful enough that even more 

inefficient species may perform well enough to survive on their own (Thrall et al. 2007). 

Evidence for stronger mutualistic interactions under water stress have been 

documented in plant-mycorrhizal systems (O’Brien et al. 2018), though the breakdown 

of such mutualisms have also been reported under extreme nutrient limitations 

(Treseder and Allen 2002). Second, strong spatially variable selection in a 

heterogeneous landscape is expected to lead to greater specialization because of the 

fitness costs imposed to the evolution of generalization in the presence of limits to 

plasticity (Rainey and Travisano 1998, Markussen and Marvig 2014). With much of 

the theory on symbiont specialization having been developed in plant-pollinator 

systems or host-parasite systems, we still have little understanding of how these 

processes could influence the match between diverse communities of microbes and 

their hosts. 

0.5 Presentation of this thesis 

In this thesis, I address four main questions. First, how can we use the study of 

microbial functions to better understand the structure of microbial diversity worldwide? 
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Second, what are the adaptive mechanisms underlying microbial taxonomic variation 

among microbial clades and ecosystems? Third, what is the role of hosts in structuring 

functional diversity of bacterial communities in the phyllosphere of tree species? 

Fourth, how does host-symbiont associations vary across spatial scales and how is it 

determined by the abiotic and biotic features of their habitat? I addressed these 

questions using a diversity of research approaches. 

0.5.1 Chapter 1  ̶  Trait-based approaches in microbial ecology 

The first chapter is an extensive conceptual investigation of the way trait-based 

approaches have been used in microbial ecology and how they could potentially be 

improved for ameliorating our ecological knowledge of microbes. We first present the 

different roles that trait-based approaches are occupying in improving ecological 

knowledge using a framework derived from epistemology, a branch of philosophy that 

investigates the nature of knowledge, as well as whether and how it can be obtained 

(Williams 2001). Using comparisons from the macro-organismal literature, we then 

outline the main challenges that the adoption and use of such approaches have been 

facing in microbial ecology and conclude with four main recommendations in 

answering these challenges and making the most of the study of traits in microbial 

ecology. This chapter was published in 2019 as an Opinion piece in Trends in 

Microbiology. 

0.5.2 Chapter 2  ̶  Fundamental bacterial strategies across clades and ecosystems 

Building on conclusions from Chapter 1, the second chapter is a meta-analysis 

of worldwide bacterial functional gene data aimed at identifying the principal axes of 

variation in bacterial traits worldwide. Finding such universal axes has two general 

motivations regarding the development of ecological knowledge, namely to reduce 

dimensionality in the potentially large diversity of traits exhibited by bacteria and to 

facilitate investigations and comparisons of microbial ecological dynamics and 



 
15 

distributions across scales and study systems. My rationale here is that these major trait 

syndromes will be uncovered by assessing axes of correlated trait variation that 1) 

contribute the most to variation among microbial communities across ecosystem types 

and 2) contribute the most to variation among microbial clades. These axes should 

reflect respectively recent (ecological sorting) and longer-term selection pressures. 

This chapter is currently (July 2020) under review at Nature Ecology and Evolution. 

0.5.3 Chapter 3  ̶  Adaptive matching between phyllosphere bacteria and their tree 
host 

I empirically investigate the role of hosts in driving the assembly of their 

microbial community in Chapters 3 and 4. Chapter 3 first addresses whether taxonomic 

associations between phyllosphere bacteria and their tree hosts are driven by adaptive 

matching between the partners at a local scale. Using metagenomic sequencing, we 

first characterize the functional diversity of epiphytic phyllosphere bacterial 

communities from 17 tree species in a neotropical forest. We then test three main 

predictions. First, bacterial functions should vary among host plant species and be 

correlated with the functional traits of the hosts. Second, cophylogenetic associations 

between trees and bacteria should lead to phylogenetic signal in bacterial functions 

present on different plant hosts. Third, bacterial functions present on leaves should be 

filtered by the host, since conditions on the leaves of different host plants create a 

selection pressure on the functions of bacteria able to persist on those leaves. This 

chapter was published in 2020 in Microbiome. 

0.5.4 Chapter 4  ̶  Bacterial community assembly and specialization in a multi-host 
landscape 

This final chapter addresses the drivers of phyllosphere bacterial composition 

and specialization among multi-species tree communities at large spatial scales. Using 

microbial phyllosphere samples collected from 33 tree host species across a large 

climatic gradient, we test whether community assembly of epiphytic phyllosphere 
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bacteria on a focal host species may be influenced by the co-occurrence of functionally 

different host species across the landscape. We predict that the microbiota of host 

species co-occurring with different host species be more similar to that of the other host 

species as opposed to host species that are occurring in essentially monospecific stands. 

We also hypothesize that the temperature stress gradient, host filtering strength and 

host functional diversity will affect the prevalence and strength of specialization of 

bacteria on their host across this heterogeneous landscape. This chapter is currently 

(July 2020) under review at Ecological Monographs. 
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1.1 Abstract 

There is an increasing interest in applying trait-based approaches to microbial 

ecology, but the question of how and why to do it is still lagging behind. By anchoring 

our discussion of these questions in a framework derived from epistemology, we 

broaden the scope of trait-based approaches to microbial ecology from one oriented 

mostly around explanation towards one inclusive of the predictive and integrative 

potential of these approaches. We use case studies from macro-organismal ecology to 

concretely show how these goals for knowledge development can be fulfilled and 

propose clear directions, adapted to the biological reality of microbes, to make the most 

of recent advancements in the measurement of microbial phenotypes and traits. 
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1.2 Shifting paradigms : moving to trait-based ecology 

Counts of individual organisms and species across space and time have provided 

valuable insights into the processes governing species distributions since ecology’s 

early days (MacArthur and Wilson 1967, Jackson 2009), but in recent decades these 

approaches have been criticized for providing only a partial understanding of the 

adaptive mechanisms driving ecology and evolution. By focusing on the study of 

phenotypic characteristics that influence organismal fitness across environmental 

gradients regardless of species identity, trait-based ecology aims to provide 

mechanistic explanations to ecological patterns and more robust predictions of 

ecological dynamics and ecosystem function. Grounded in the long-lasting tradition of 

studying relationships between traits and fitness in evolutionary and population 

ecology it has in the last few decades been fueled by conceptual developments in the 

fields of plant and animal ecology (Calow 1987, Keddy 1992, Violle et al. 2007). 

Thanks to the increasing availability of data on the diversity of microbial 

populations and communities, trait-based approaches to microbial ecology are gaining 

in popularity (Shafquat et al. 2014, Martiny et al. 2015, Rojo et al. 2017, Bahram et al. 

2018, Heintz-Buschart and Wilmes 2018) (Box 1). Direct observations of microbial 

traits and indirect inferences based on genetic data are increasingly used for 

investigating fundamental ecological questions and have already contributed to the 

development of knowledge in microbial ecology. We examine these contributions 

below. 

1.3 Trait-based approaches have expanded our understanding of microbial 
ecological processes 

One of the most recognized roles of trait-oriented approaches to microbial 

ecology has been to provide mechanistic explanations (see Glossary) of ecological 
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patterns. Bacterial traits have served in identifying adaptive mechanisms important for 

survival across different types of environments (e.g. plant roots   ̶  Hartmann et al. 2009, 

Rowe et al. 2018; human organs  ̶  Huttenhower et al. 2012; sponge tissues  ̶  Kamke et 

al. 2013; soil  ̶  Leff et al. 2015, Malik et al. 2017). By analyzing the genomes of single 

cells of Poribacteria, Kamke and colleagues (2013) discovered metabolic pathways 

indicative of the ability to degrade chains of proteoglycans – important components of 

their sponge host tissues – thereby providing a mechanism by which these bacteria 

could survive in their host. A study of the functional genes of soil bacterial 

communities across a soil pH gradient revealed that adaptation to high-pH soils was 

characterized by a greater abundance of multiple transporters (e.g. ABC transporters) 

allowing a direct uptake of substrates and cofactors (Malik et al. 2017). Attention to 

microbial traits has also led to important advancements in understanding the 

consequences of organismal adaptations and interactions for ecosystem functioning 

and productivity (Lindström et al. 2010, Raes et al. 2011, Wallenstein and Hall 2012, 

Hall et al. 2018). Variation in the diversity of microbial traits based on functional genes 

found in metagenomic samples of ocean water explained shifts in the primary 

productivity of these communities across the globe, providing insight into the role of 

ocean microbes in sustaining global productivity (Raes et al. 2011). 

Developing functional explanations for observed ecological patterns also has the 

benefit of providing mechanistic bases for the development of corroboratory 

predictions (sensu Maris et al. 2018), aimed at testing the validity of ecological 

hypotheses, models or theories. Traits have been used to develop predictions on the 

importance of different ecological and evolutionary drivers of community assembly 

through time and space (Severin et al. 2013, Staley et al. 2014). To distinguish the 

relative importance of selection and neutral processes in driving the assembly of 

microbial communities, researchers have compared the trait similarity of microbes 

living in the same community to communities composed from microbes whose traits 

were drawn randomly from across all samples. A trait similarity higher than expected 
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by chance in observed communities suggests selection on the traits of microbes in 

several systems (Burke et al. 2011, Shafquat et al. 2014, Staley et al. 2014).  

Functional ecology also holds the further promise of integrating ecological data, 

methodologies and explanatory schemes across research groups and disciplines (see 

O’Malley 2013) – the operationalization of which also constitutes its greatest challenge. 

Data integration involves the creation and use of tools and standards for assembling 

and comparing data collected within and among taxa (Leonelli 2013), the analysis and 

interpretation of which helps improve understanding. Nowadays, it typically requires 

online infrastructure for standardizing and storing data to facilitate their use and 

interpretation by researchers of different backgrounds. Data integration has been one 

of the strengths of microbial ecology, having relied on the development of databases 

for storing, organizing and sharing large amounts of genetic data (Zhulin 2015, Nilsson 

et al. 2019). Benefitting from those infrastructures, phenotypic data and functional 

annotations of full genomes and metagenomes are now being added to existing or new 

databases, such that trait information is more readily retrievable and comparable (e.g. 

Nguyen et al. 2016, Chen et al. 2017, Basenko et al. 2018, Cornwell et al. 2018, Reimer 

et al. 2019). The growth of protein description databases has also helped develop more 

precise and accurate functional predictions (The UniProt Consortium 2017). Data 

integration in microbial functional ecology is lastly being fostered by the development 

of elaborate methodologies (e.g. Moretti et al. 2016), refined ontologies (e.g. Chibucos 

et al. 2014, The Gene Ontology Consortium 2019) and standardized pipelines (e.g. 

Keegan et al. 2016) for collecting and processing massive standardized trait data sets 

(see also Box 1). Such methodologies are further making the collection of data more 

uniform and comparable among research groups, facilitating generalization. 

Methodological integration concerns the development and use of a range of 

methods for the study of a given ecological pattern or process. It is aimed at developing 

a multi-faceted understanding of the results that improves on using each method 
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individually (Leonelli 2013). The concurrent use of phenotypic microarrays and next-

generation sequencing have for example been used to characterize the real-time 

functional capabilities of specific microbial taxa to understand adaptive mechanisms 

underlying their endophytic lifestyle (Blumenstein et al. 2015). The parallel sequencing 

of a microbial community’s genomes and transcriptomes has similarly helped 

characterize differences between the fundamental and realized niches of these 

communities (Ofek-Lalzar et al. 2014, Rojo et al. 2017). 

Finally, explanatory integration involves the use of combination of hypotheses 

or theories developed in other disciplines in a new area of research, which may or may 

not lead to theoretical unification (Leonelli 2013). While a call for explanatory 

integration in microbial ecology to foster ecological understanding was made more 

than a decade ago (Prosser et al. 2007), such types of integration are now just emerging. 

For example, Werner and colleagues (Werner et al. 2014) proposed a reapplication of 

market theory adapted from economics to provide explanations of cooperative 

behaviors in microbes by characterizing resource investment strategies (a key concept 

in functional ecology) across varying conditions. In order to partition the relative 

contributions of different processes carried on by microbial communities to dinitrogen 

production in a marine habitat (here anammox and denitrification), Reed and 

colleagues (Reed et al. 2014) adapted models of chemical dynamics developed in 

biogeochemistry to functional gene abundance data from environmental genomic 

studies. Comparing their model with experimental data, they were able to confirm a 

larger role for denitrification in N2 production. This type of integration however 

remains rare. 

When achieved via functional traits, explanation, prediction and integration may 

finally serve a further goal for the development of knowledge in ecology. They provide 

a foundation for the generalization of research results irrespective of taxonomic 

identity across the globe, facilitating the search for general laws, theory development 
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and the elaboration of large-scale predictive models.  A world-wide comparison of the 

relative abundance of nitrogen-cycling pathways in soil microbial communities has for 

example revealed that while the abundance of nitrogen pathways tended to vary 

biogeographically as a function of C and N concentrations, their relative proportions 

tended to correlate across soil samples (Nelson et al. 2016). This observation supported 

the hypothesis that habitats in which microbes can successfully exploit one pathway 

will also support higher number of cells that can exploit other N pathways, possibly 

leading to faster nutrient cycling rates. 

1.4 Opportunities and challenges in the study of functional microbial ecology 

The various types of studies mentioned above provide examples of the 

opportunities for using traits in microbial ecology with the objective of improving 

ecological understanding. Specific opportunities provided by microbial study systems 

include their large variety of physiologies and resource-use strategies, providing a 

playground for the study of adaptive mechanisms and the eco-evolutionary generation 

of biological diversity. For example, the incorporation of organismal optimum 

temperatures and light intensities for growth, as well as their capacity for assimilating 

nitrate and metabolizing silica all contribute to improving models of community 

structure and predictions of ecosystem function and biogeography in marine 

phytoplankton (Follows et al. 2007). From integrative and pragmatic standpoints, 

microbial ecologists can also benefit from existing infrastructure developed for the 

sharing of trait data, as well as several free online platforms for standardizing the 

treatment and analysis of functional trait data (Dudhagara et al. 2015, Shi et al. 2019). 

This potential has however not yet been fully realized (see Fig. 1.1). We next examine 

current challenges in the implementation of microbial functional ecology and their 

consequences for the different aspects of knowledge development. 
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Figure 1.1  Key steps for trait-based approaches in improving understanding of 
microbial ecology. Each step can contribute to ecological understanding via different 
mechanisms, described in the blue boxes. 

 

1.4.1 Lack of a working definition of a microbial functional trait 

As much as scientific progress has been made by the use of traits in microbial 

ecology, individual studies have rarely defined the functional trait concept for microbes 

or explicitly linked traits to components of fitness as has been done for macro-

organisms (but see Johnson et al. 2006, Lennon and Lehmkuhl 2016). This has limited 

the capacity of traits to identify adaptive mechanisms and the potential for explanatory 
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power. The lack of a standardized definition of microbial traits has further limited our 

possibility to compare results across trait-based studies, impacting the potential for 

integration. This issue may stem in part from the difficulty of applying existing 

concepts of functional traits developed in plant and animal ecology to the reality of 

microbial life (Box 2). 

1.4.2 Large diversity of microbial lifestyles 

The diversity of microbial lifestyles is another facet of the challenge to the 

standardized use of functional trait approaches. It encompasses three distinct issues. 

First, a large diversity of traits may be of potential adaptive significance. Second, many 

potentially important microbial traits may not have been documented yet (Sberro et al. 

2019). This problem is especially evident when trying to attribute functions to gene 

sequences for which associated proteins are rarely experimentally characterized, and 

in many cases do not sufficiently match any characterized protein to allow their function 

to be predicted by homology (Danchin and Fang 2016, Price et al. 2018). Third, this 

diversity of traits has led to a diversity of ways by which researchers select traits to study 

(see Ramírez-Flandes et al. 2019), leading to the study of potentially distinct gene 

families depending on the specific interests and expertise of a research group; examples 

include methane oxidation (Krause et al. 2014), glucose utilisation (Morrissey et al. 

2016), and nitrogen cycling (Nelson et al. 2016). In turn, we are witnessing a diversity 

of ways in which microbial traits are studied (see Box 1). 

These situations have led to consistent context-dependence in interpreting 

ecological patterns and dynamics of microbial traits among systems, making 

integration and generalization more challenging among research groups and study 

systems. In part to address such concerns and also to account for the fact that the 

functions of many individual genes are still poorly understood, microbial traits are 

frequently classified and analyzed at broad levels, for example ‘metabolism’ or 

‘cellular processes’ (see Box 1). This approach seems necessary given the inability to 
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characterize the precise function of many genes, but it limits inference of adaptive 

mechanisms driving differences in relative abundances of microbes across habitats. 

Finding the right level at which to aggregate microbial trait data to maximise 

explanatory power will require more investigation and improvement in our ability to 

annotate and classify gene functions (Österlund et al. 2017, Ramírez-Flandes et al. 

2019). 

The complexity of microbial trait measurement methods likewise constitutes a 

barrier to integration and generalization, promoting compartmentalization of research 

groups around technical specialties (e.g. metabolomics, metagenomics, proteomics – 

see Box 1). This compartmentalization is further encouraged by the prohibitive costs 

of some technologies, with costs for analysis running to hundreds or thousands of 

dollars per sample (e.g. SWATH-MS for assessing protein identity  ̶  Schilling et al. 

2017), leading to technical limitations and cost determining methodology for many 

research groups. Finally, the analysis of high-dimensional microbial trait space data 

poses a technical challenge to traditional statistical analyses, both in terms of 

bioinformatics infrastructure and expertise requirements, and due to the expense 

associated with replication of samples (Johnstone and Titterington 2009). 

1.4.3 Incomplete and biased databases 

Annotation of microbial functional traits requires the use of reference databases, 

but current databases of microbial traits are phylogenetically incomplete and biased. 

These databases have far better representation of microbial taxa associated with certain 

ecosystems, in particular those microbes of importance for human health and those that 

can be grown in culture (Overmann et al. 2017). While these data are valuable for 

certain microbial systems such as the human microbiome, the extent to which the 

ecology of human-associated microbes matches that of their relatives in other 

environments limits the quality of the inference that can be drawn from using their 

genomes for predicting traits of microbes from environmental samples (Choi et al. 
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2016). Biases in the phylogenetic origin of microbes in trait databases further limits the 

investigation of general (i.e. context-independent) drivers of ecological and 

evolutionary dynamics in microbial communities. 

Certain data management practices have also been limiting progress in 

integration. The general lack of metadata associated with sequence data complicates 

meta-analyses on fundamental ecological questions among studies and ecosystems. For 

example, different studies may define or measure different environmental variables 

when quantifying microbial functions. Data curation practices prior to integration in a 

database such as sample preservation conditions are often undescribed, despite the fact 

that these conditions can have significant impacts on the measured diversity and 

relative abundance of key taxa in the samples (Vandeputte et al. 2017). 

1.4.4 Lack of clear ecological hypotheses in many trait-based studies 

Initial studies on microbial traits have mostly focused on describing phenotypes 

and physiological mechanisms for understanding the biology of microorganisms and 

for identification of different microbial taxa in culture (Janda and Abbott 2002). While 

some have argued that microbial ecology is still in a ‘discovery’ phase where collection 

of data without specific tests of ecological hypothesis is normal or desirable (Tripathi 

et al. 2018), there have been ongoing calls by microbial ecologists to develop a more 

explicitly hypothesis-based science of microbial ecology in order to move forward 

(Jessup et al. 2004, Prosser et al. 2007). Some go further in arguing that microbial 

systems could actually represent ideal systems to test and expand on existing theory 

(Meyer and Leveau 2012, Bruns 2018). While researchers have been using trait-based 

approaches to identify linkages between microbial community structure and ecosystem 

processes, direct empirical tests of these predictions are still largely lacking (Bier et al. 

2015, but see Glassman et al. 2018). 
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1.5 Next steps for trait-based approaches in microbial ecology 

1.5.1 Developing a definition of a microbial functional trait 

A first major step to be taken in improving the contribution of microbial 

functional trait approaches would be to develop a definition of a functional trait in the 

microbial realm. In particular, this definition would include identification of the units 

of selection that are being discussed and worked on. A clear definition of a microbial 

functional trait would facilitate the development of guidelines for selecting informative 

traits, which should consequently improve the explanatory power of trait-based 

approaches. We suggest adopting the definition of a functional trait in current use for 

plants and other macro-organisms – that a functional trait is any attribute of an 

organism that can be linked to its fitness (Violle et al. 2007). This adoption will require 

a shift from purely sequence-based approaches to quantifying microbial functions, 

towards incorporation of data from direct measurement of microbial population and 

cellular growth, performance and survival (e.g. monitoring of cell densities, biomass 

incorporation or respiration rates) (Bai et al. 2015, Widder et al. 2016). 

1.5.2 Defining microbial adaptive strategies that encompass biological scales 

A next step forward in microbial ecology research would be the search for 

major axes of adaptive variation within and among taxa, as has been performed in fields 

such as plant ecology (Grime 1977, Westoby 1998, Díaz et al. 2016) (Box 3). In other 

words, questions such as "Are there universal adaptive strategies across microbes?" or 

"What types of functional traits have driven the generation of their evolutionary 

diversity?" should be addressed. The investigation of overarching adaptive strategies 

among organisms also serves the pragmatic purpose of reducing dimensionality in the 

potentially large diversity of traits exhibited by an organism. While some researchers 

have attempted to apply some of the categorizations developed in macro-organismal 

ecology to the microbial realm (Fierer et al. 2007, Evans and Wallenstein 2014), their 
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use has so far been limited as these categories have not been easily applicable and 

measurable across taxa. Reducing thousands of potential traits to a smaller number of 

measurable functions that are consistently correlated with each other and with the 

ecological strategies of microbes will help researchers focus investigations and in turn 

address common issues such as time and budget limitations. For the foreseeable future, 

collecting microbial trait data will remain fairly expensive and time-consuming, 

making the use of a limited set of functional traits to study even more important. 

1.5.3 Implementing better practices in database management 

Much of the research in microbial ecology makes use of online databases of 

information on microbial phenotypes, functional genes, and proteins. An ongoing 

challenge to make the most of these data is the improvement of metadata collection and 

reporting to facilitate investigations and large-scale comparisons of microbial 

ecological dynamics and distributions (see also Nayfach and Pollard 2016, Tripathi et 

al. 2018). Such metadata include the methods used in preliminary analysis of the data 

and environmental conditions in which the data were collected, including relevant 

features of the host or habitat from which microbes were collected. While minimal 

information standards have been developed (Yilmaz and Al. 2011, McQuilton et al. 

2016), their adoption and appropriation by practicing scientists remains difficult 

without proper large-scale consultations of all experts concerned. Built-in support for 

third-party annotations of records by expert users may also represent a way forward in 

improving the completeness of data in curated databases (Nilsson et al. 2019). 

Enforcement of these standards by database managers is nevertheless challenging and 

will require better funding for the operation and curation of these databases. 

1.5.4 Improving knowledge transfer between ecologists and microbiologists 

The limited use of microbial traits in testing ecological theories might be due 

to a divide in the current practice of microbial ecology by microbiologists versus non-
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microbial ecologists, separated by a history of distinct scientific traditions and 

publishing journals (Koskella et al. 2017). The pairing between ecological questions 

needing to be answered and the biological knowledge of a system that could best serve 

these questions is made difficult for each side in the absence of active knowledge 

transfer. While there is no panacea in bridging that divide, it will be extremely 

important to work towards developing common definitions of concepts and providing 

their explicit definitions and explanations in publications and conferences that cross 

disciplinary boundaries (e.g. Tipton et al. 2019). Fostering pre- and post-publication 

peer review by researchers with different backgrounds will also help make the most of 

each discipline's experience.  

1.6 Concluding remarks 

Fostered by the development of high-throughput sequencing technologies, trait-

based approaches to microbial ecology have accelerated the development of ecological 

knowledge of a highly diversified branch of the tree of life. These approaches have yet 

been successful in documenting the mechanisms by which microbes adapt to their 

environment, providing explanations to the variation in microbial life observed across 

several systems as well as insight into the generation of biological diversity. A strong 

bioinformatics capital in the discipline has further simplified online data sharing and 

thus increased opportunities for integration of results worldwide. 

Knowledge development in microbial ecology could however be improved by 

a more consistent use of functional traits in generating predictions for testing ecological 

theories, and in better data and theory sharing between all practitioners of microbial 

ecology to facilitate integration and generalization of research results. We have argued 

here that the first step in reaching these goals should be to reach an agreement on what 

constitutes a valuable microbial trait to study (Klassen 2018). Building on definitions 

of functional traits developed in plant ecology, we suggest that adopting a concept of 
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functional traits anchored in adaptation and fitness would increase both the explanatory 

power of trait-based approaches and their relevance in testing ecological theories in 

microbial systems. The identification and use of major microbial adaptive strategies, 

combining numerous covarying traits, could further facilitate the methodological 

integration of trait-based results among research teams studying trait variation at 

different biological levels and with different methodologies and simplify the high-

dimensionality of microbial trait data, which remain challenging to analyze and 

interpret. All in all, adopting a plan of action that seeks to firmly link microbial 

functions with fitness offers the promise to greatly accelerate knowledge development 

in microbial ecology. 
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1.8 Boxes 

Box 1. Measuring microbial traits. 

While the use of microbial functional traits in the framework of functional 

ecology – generally conceptualized as characteristics of microbes that might have an 

importance for their survival in an environment – is relatively recent, there is a long 

history in microbiology of measuring phenotypic traits of microorganisms. For 

example, while recent work in microbiology has moved to the use of sequencing-based 

approaches to identify microbial taxa, a compendium of phenotypic attributes or traits 

of bacterial taxa (Bergey 1923) was widely used for bacterial species identification and 
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diagnostic purposes for most of the 20th century. We here describe the most common 

approaches in use today, by classifying them into direct and indirect approaches. 

Direct approaches refer to any trait measurement method that characterize traits 

of microbes through direct observation of phenotypes. They comprise traditional 

techniques of microscopy and cultivation for studying morphological characteristics of 

microbes (e.g. shape, cell wall structure) (Bergey 1923, Nielsen and Nielsen 2005). 

They also include phenotypic arrays, quantifying the physiological response of 

microbes (e.g. respiration) to a large range of substrates or stressors (Bochner 1989). 

Resource-use traits of microbes can then for example be described as the ability to 

metabolize different carbon compounds such as fructose, or to survive at different salt 

concentrations. Direct approaches may also involve the monitoring of metabolites (e.g. 

glucose, fumarate) produced by microbes of interest in culture or in the field providing 

a snapshot of their physiological state (Zhong et al. 2018). This approach, commonly 

performed through nuclear magnetic resonance or mass-spectrometry analysis, is 

referred to as metabolomics (Tang 2011). Lastly, metaproteomics refers to the analysis 

of proteins produced by a given sample of microbes, with each of the proteins with 

known roles for the organism being considered a trait (Maron et al. 2007). It is usually 

performed through mass spectrometry of isolated proteins. 

Indirect approaches quantify microbial traits using the sequencing and analysis 

of genes via genomics, metagenomics including targeted sequencing of marker genes 

as well as shotgun sequencing of environmental DNA (National Research Council (US) 

Committee on Metagenomics: Challenges and Functional Applications. 2007), or 

sequencing of messenger RNA (via transcriptomics or metatranscriptomics) 

(Bashiardes et al. 2016). These approaches rely on the comparison of gene sequences 

to databases of described genes or proteins to infer their function and potential use to 

the microbes. The emergence of high-throughput sequencing have improved the quality 

of ecological inferences possible through such approaches by increasing the breadth 
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and depth at which diverse microbial communities can be described.  Since interpreting 

the ecological function of single genes is not straightforward, microbial ecologists have 

commonly used gene hierarchy schemes to describe microbial traits, classifying genes 

by their contribution to higher-level traits such as metabolic pathways, or 

environmental sensing pathways (Tatusov et al. 1997, Ogata et al. 1999). 

Box 2. Challenges in translating the concept of functional trait from macro-
organismal to microbial ecology 

The concept of functional trait used in macro-organismal ecology is essentially 

a selective one: ecologists aim to use traits that explain differences in fitness among 

individuals (Violle et al. 2007).  For plants and animals, the notion of fitness and 

heritability of traits is relatively straightforward, as they are generally multi-cellular 

organisms that reproduce and transmit their traits vertically to their descendants. As a 

result, both the trait and the measure of fitness (e.g. the number of descendants) can be 

traced back to a single individual. Microbial ecologists trying to adapt this concept of 

the trait to the reality of microbial biology have been confronted with several 

challenges.  

First, it has been difficult to apply an individual-based definition of trait to 

microbes provided their potential for horizontal gene transfer with other cells 

irrespective of phylogenetic identity (Abby et al. 2012). Other phenomena, such as the 

aggregation of microbes into biofilms that can be selected upon as a group (Ereshefsky 

and Pedroso 2013), or oppositely the presence of genetically diverse nuclei observed 

in single fungal mycelia (Ma et al. 2016a) make it even harder to target individual 

microbes as units of selection.  

The difficulty in measuring trait and fitness at the level of individual cells is 

another facet of the problem. Commonly used environmental sequencing approaches 

do not allow the attribution of sequences to individuals, but are rather grouped by 
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sequence variants or taxonomic units (Callahan et al. 2016). The lowest level at which 

they are defined is thus generally the population, requiring the use of fitness measures 

such as the population growth rate, or population size. Technical solutions such as flow 

cytometry and single-cell genomics (Gawad et al. 2016) offer the possibility of 

characterization of functional traits of individual cells, but these approaches are still in 

their early stages of development. Whether these approaches will provide a standard 

and easily applicable way to perform trait-based ecology remains unknown. Whether 

a definition of functional traits focusing on individual cells or organisms can or should 

be adopted in microbial ecology is yet another open question (see main text and Inkpen 

et al. 2017).  

Box 3. History of research on functional strategies in macro-organismal ecology 

The classification of living organisms has a long history and has allowed 

comparisons of taxa to each other via measurable differences in their morphology, 

physiology or behaviors (Mayr 1982). One of the first major contemporary ecological 

classification systems was the r-K selection spectrum which aimed to explain life-

history evolution (Dobzhansky 1950). This classification recognizes a trade-off 

between r-selected species, reproducing at fast rates with less investment in each 

offspring, and K-selected ones, reproducing at slower rates and investing more in the 

success of each reproductive unit. Popularized by MacArthur and colleagues in the 

1960s and 1970s, it was most famously used in building models of population 

dynamics as part of the theory of island biogeography (MacArthur and Wilson 1967). 

Since then, it has more generally been used to conceptualize how density-dependent 

regulation and resource availability may be shaping the evolution of life-history 

(Reznick et al. 2002).  

Building on the r-K spectrum, the CSR (competitor – stress-tolerant – ruderal) 

classification system was later developed by plant ecologists (Grime 1977) to explain 

species variation to environmental variation, based on two types of gradients: stress 
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and disturbance. Competitive species (C) grow best in low stress and low disturbance 

habitats, while the stress-tolerant (S) thrives under high stress and low disturbance, and 

the ruderal (R) is most adapted to low stress and high disturbance environments. Until 

recently (Li and Shipley 2017, Pierce et al. 2017), the difficulty of classifying animals 

and plants using these systems without prior study in cultivation or captivity made it 

difficult to apply them at large scales to facilitate integration and generalization of 

research results across biological scales and biomes (see main text).  

The identification of main axes of measurable trait variation across species and 

the investigation of their global distribution was the next step in addressing this issue. 

Thus plant ecologists developed the leaf-height-seed (LHS) scheme (Westoby 1998, 

Westoby et al. 2002), representing three important axes of adaptive strategies that could 

easily be measured across many species and which explained more precisely the 

ecological trade-offs and variation among plant species at local and global scales. The 

LHS scheme proposed three phenotypic traits of plants that could be used as surrogate 

measures for plant ecological strategies: specific leaf area (the area of the leaf divided 

by its dry mass) as a proxy of resource conservation strategies, height as a proxy for 

energy acquisition and response to disturbance strategies, and seed weight as a proxy 

for dispersal and colonization strategies. Subsequent development of plant functional 

trait strategy schemes have included the incorporation of below-ground resource 

investment strategies (Li et al. 2017), and as world-wide observations of plant 

functional traits are collected, this framework has been expanded (Díaz et al. 2016, 

Laliberté 2017). Plant functional traits are increasingly reported in open-access 

databases (Kattge et al. 2011), and the availability of these data have helped explain 

the distribution of plant species among habitats and coexistence within habitats 

(Laughlin et al. 2010, Kunstler et al. 2016). They have also been used in building 

predictive models of ecosystem function (Cadotte 2017). 
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1.9 Glossary 

Functional trait: Morphological, physiological, phenological or behavioural trait that 

impacts fitness by its effects on growth, reproduction or survival (Violle et al. 

2007, Pey et al. 2014). 

Explanation: Identification and description of the mechanisms underlying invariant 

causal relationships (Paslaru 2009). 

Corroboratory prediction: Expectation that can be compared to scientific 

observations to test hypotheses, models and theories and support or not to the 

understanding of a phenomenon (Maris et al. 2018). 

Integration: Formation of an account of a phenomenon that is built from a variety of 

ideas possibly coming from different levels of organization or disciplines 

(Brigandt 2013). 

 Data integration: Design and implementation of tools and standards for 

assembling and comparing data (Leonelli 2013). 

 Methodological integration: Creation and use of various methods for developing 

a more multi-faceted understanding of an ecological phenomenon or process than 

what could be obtained by using these methods individually (Leonelli 2013). 

 Explanatory integration: Use or combination in a new field of research, of 

hypotheses, models or theories developed in other disciplines (Leonelli 2013). 

Generalization: Postulation of the occurrence of a pattern or process on a whole 

system from observation on a part. Generalization through abstraction can help 
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reduce the complexity of a system to facilitate its interpretation (Vepsäläinen and 

Spence 2000). 

Fundamental niche: The range of environmental conditions individuals of a species 

may thrive under. 

Realized niche: The portion of the range of conditions individuals of a species are 

actually found to inhabit, due to constraints on the occupancy of their 

fundamental niche. 
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2.1 Abstract 

The microbial realm is characterized by an exceptional diversity of forms and 

functions across Earth’s ecosystems (Huttenhower et al. 2012, Sunagawa et al. 2015, 

Bahram et al. 2018). The discovery of major axes of correlated functional variation 

among species and habitats has revealed the fundamental trade-offs structuring both 

functional and taxonomic diversity in eukaryotes (Díaz et al. 2016, Pigot et al. 2020). 

However, we still do not know whether similar axes of functional variation shape 

global bacterial diversity, nor whether they could explain bacterial taxonomic turnover 

among ecosystems. Here we reveal the existence of universal bacterial ecological 

strategies using global genomic and metagenomic datasets. We identify three primary 

axes of correlated functional variation explaining both evolutionary differentiation 

within the Bacteria and their ecological sorting along major environmental gradients. 

Functional variation along these three axes is characterized by traits related to 1) DNA 

metabolism, 2) metabolism of secondary compounds, and 3) signalling and attachment 

to hosts, with most variation in these functional axes occurring among different 

bacterial families. Our results support clade-based sorting of bacteria across 

ecosystems as a major driver of global bacterial functional diversity. By reducing the 

high functional diversity of bacteria to fewer fundamental axes of variation, our study 

offers a way forward in generalizing our understanding of the drivers of biological 

diversity



2.2 Introduction 

The identification of major axes of variation in life-history strategies among 

organisms and habitats has led to advances of both theory and practice in ecology and 

evolutionary biology (Grime 1977, Westoby et al. 2002, Lajoie and Kembel 2019). For 

example, in plants, large-scale screening of plant functional traits (Grime 1977, 

Westoby 1998, Díaz et al. 2016) led to the discovery that a few major axes of covarying 

traits related to leaf economics, seed mass, and plant height explain most of the global 

variation in plant functional and life-history strategies, and that each of these strategy 

axes could be characterized by the measurement of one or a few key functional traits 

(Westoby 1998, Wright et al. 2004). The results of this discovery have been twofold;  

first, it improved our understanding of the major environmental drivers and 

evolutionary origins of functional variation among organisms (Ackerly and Reich 1999, 

Wright et al. 2004). Second, the identification of a subset of measurable functional 

traits that can be used to characterize ecological strategies helped coordinate 

measurement efforts around a reduced set of interpretable functions, thus facilitating 

attempts at generalization among study systems worldwide (Kattge et al. 2011, Díaz et 

al. 2016, Madani et al. 2018). 

While recent conceptual and technological developments have led to a 

proliferation of microbial trait measurements, functional categorization schemes 

proposed to date in microbial ecology have mostly consisted of direct translations of 

functional strategy schemes developed for macro-organisms, such as the r-K selection 

spectrum or Grime’s CSR (competitive, stress-tolerant, ruderal) scheme (Fierer et al. 

2007, Bissett et al. 2010, Wallenstein and Hall 2012, Evans and Wallenstein 2014, 

Santillan et al. 2019). While the application of these approaches has provided insights 

into the diversity of microbes in certain habitats (Malik et al. 2020), it has proven 

challenging to classify microbes into these categories, especially outside of those 

microorganisms that can be grown in culture for which phenotypic measurements are 
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available. The lack of a coherent functional strategy scheme for microbes and more 

generally a lack of data about the key sets of covarying microbial traits and strategies 

has prevented the widespread adoption of functional strategy schemes in microbes 

(Lajoie and Kembel 2019). 

Here, we develop an a posteriori trait screening approach defining bacterial 

functional traits based on the relative abundance of gene families in genomic and 

metagenomic data sets (Louca et al. 2016) in order to identify ecological strategies 

structuring bacterial diversity across the tree of life and across ecosystems (Calow 

1987). We go beyond existing large-scale assessments of metagenomic variation along 

environmental gradients (Dinsdale et al. 2008, Fierer et al. 2012, Thompson et al. 2017, 

Ramírez-Flandes et al. 2019) by identifying bacterial ecological strategies from the 

study of trait correlations across both genomes and environmental metagenomes. To 

evaluate the contribution of evolutionary processes to ecologically important trait 

variation across metagenomes, we tested whether the axes of trait covariation 

explaining the most variation among metagenomes from different environments would 

also be phylogenetically structured among genomes by comparing trait correlation 

structures between bacterial communities (metagenomes) and bacterial clades 

(genomes). We lastly assessed the taxonomic level at which traits explained most 

variation in both datasets in order to test hypotheses about the phylogenetic origins of 

ecologically important traits (David and Alm 2011, Martiny et al. 2013, Dolan et al. 

2017). Such information is also paramount to improving predictions of ecosystem 

functioning from bacterial taxonomic composition data (Goberna and Verdú 2016). 
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2.3 Methods 

2.3.1 Metagenomic dataset collection and processing 

We searched the IMG/M system (Chen et al. 2019) for shotgun metagenomic 

datasets from environmental and host-associated sources. To limit biases due to 

sequencing technology (Clooney et al. 2016) and processing, only datasets that had 

been sequenced with Illumina Hi-Seq at the DOE Joint Genome Institute (JGI) were 

included. Using the Ecosystem search tool, we selected up to four samples per habitat 

from the main types of ecosystems listed under the category “Ecosystem Type” in this 

database, leading to a final set of 69 metagenomic sample records (Table S2.1). For 

each sample, we downloaded the KEGG functional annotations of sequences that had 

been performed by the JGI’s Microbial Genome Annotation Pipeline on assembled and 

unassembled reads. We also downloaded each of their taxonomic annotations, 

consisting in the best BLAST hits of protein-coding genes (>30% identity) in each 

sample. In order to facilitate comparisons with the genomic dataset, metagenomic 

sequences were filtered to the bacterial kingdom only, which represented the vast 

majority of annotated sequences (~94% of all taxonomic annotations). 

Counts of protein-coding (i.e. functional) genes retrieved for each sample were 

first rarefied to the smallest number of functional genes retrieved for any one sample 

(~74,000) to control for differences in sequencing depth among samples. We then 

calculated the average copy number of all functional genes per functional pathway and 

sample. These pathways were defined following the KEGG BRITE gene hierarchy 

(Kanehisa et al. 2014) which classifies genes by shared functionality at three different 

hierarchical levels, the lowest of which we considered here. We counted a pathway as 

present if at least one of its constitutive functional genes were present. We lastly 

generated a table of relative abundances of each of these functional pathways per 

sample. The total number of functional pathways was 312. Taxonomic annotations 
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were rarefied to 41,500 hits per sample. Tables of the relative abundances of each taxon 

in each sample were generated at the phylum, class, order and family levels. 

2.3.2 Genomic dataset collection and processing 

The genomic dataset, consisting of the functional annotations, taxonomic 

identification and phylogenetic relationships of more than 27,000 fully sequenced 

bacterial genomes, was retrieved from the AnnoTree server (Mendler et al. 2019). We 

simplified the dataset by randomly retaining a single genome at each tip of the 

phylogeny, leading to a final dataset of 15,973 genomes (Annex A: Fig. S2.1). Counts 

of protein-coding genes for each genome were transformed to relative abundances of 

KEGG pathways as with the metagenomic dataset. The total number of pathways was 

312. 

2.3.3 Identification of main functional axes in metagenomic dataset 

We used a hierarchical clustering approach in order to identify groups of 

correlated functions that could constitute ecological strategies. We first generated a 

principal coordinate analysis of the metagenomic functional table based on the binary 

distance between samples. We then fitted the functional pathways onto the ordination 

to obtain vectors maximizing the correlation of these pathways with each ordination 

axis. These vectors thus explain the most variation among the metagenomic samples 

(Oksanen et al. 2013). To identify correlated axes of functional variation, we next 

calculated distances among the functional pathways using the coordinates of these 

vectors. We then performed a hierarchical clustering on these distances using Ward’s 

minimum variance criterion to minimize within-cluster variance and generated a 

dendrogram of these relationships. We assessed support in the clustering through 

multiscale bootstrap resampling (n=10,000), as implemented in the R package pvclust 

(Suzuki and Shimodaira 2006). We lastly calculated each functional pathway’s 

contribution to the variance in the principal coordinate analysis as the scores of each of 
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their vectors obtained from the fitting in order to assess the importance of the different 

groups in driving functional differentiation among metagenomes. 

2.3.4 Phylogenetic structure of functional variation 

We assessed the phylogenetic covariation of functional traits by performing a 

phylogenetic PCA (Jombart and Dray 2010) on the genomic functional dataset. This 

approach finds axes of functional variation that maximize the product of variance of 

the scores and their phylogenetic autocorrelation phylogenetic variation, so to reveal 

axes of correlated trait variation that are phylogenetically structured (Jombart et al. 

2010). This analysis was performed on a genomic dataset rather than the metagenomic 

dataset, because it contained more complete annotations permitting a more accurate 

phylogenetic placement of sequences (Darling et al. 2014). Using the loadings obtained 

through this PCA, we performed a hierarchical clustering analysis on Euclidean 

distances among samples using Ward’s minimum variance criterion.  

We compared the structure of functional covariation in the metagenomic and 

genomic-based clusterings with a Procrustes analysis performed on their cophenetic 

distance matrices. The two dendrograms were pruned for this purpose to include the 

same functions. The significance of the Procrustes statistic, describing the similarity 

between the two datasets, was assessed by comparing the observed statistic to a 

distribution of 999 statistics generated through permutations of the original data 

(Oksanen et al. 2013). We generated a tanglegram of the two clusterings for visual 

comparison of the functional groupings resulting from the two datasets. The trees were 

untangled prior to plotting using R package dendextend (Galili 2015). 

2.3.5 Phylogenetic depth of functions 

To tell whether functional strategies important in driving differences among 

ecosystems tended to vary at a recent or ancient scale in Bacteria, we tested the mean 
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depth at which each of the functional pathways was conserved across clades within the 

genomic dataset using the consenTRAIT approach from Martiny et al. 2013, 

implemented in the R package castor (Louca and Doebeli 2018). Because this approach 

only accommodates binary data, we transformed our relative abundance data into 

presence-absence. As such, this test represents a conservative estimate of the depth at 

which traits relative abundances may actually vary. To be considered as possessing the 

trait, a clade had to have at least 70% of its constituting genomes possessing the trait. 

To evaluate whether the mean depth of each trait was different than expected from a 

random distribution of trait values, we compared the observed depths to those estimated 

based on a null model in which tips were randomly assigned the presence or absence 

of the traits (n=99). For comparison, we calculated mean phylogenetic depths at which 

taxonomic identities varied for each taxonomic level from phylum to genus using the 

same approach. 

2.3.6 Contributions of environmental variables and bacterial taxnomy in driving 
metagenomic functional variation 

We calculated the relative contributions of environmental variation among 

ecosystems and of the taxonomic composition of communities to metagenomic 

functional variation using a variation partitioning approach. We first performed PCAs 

on each of the taxonomic relative abundance table in order to extract major axes of 

taxonomic variation for each taxonomic level as well as to reduce dimensionality in the 

datasets. We then performed variation partitioning of the functional dataset using the 

first ten PCA axes of the phylum, order, family and genus data tables in order to assess 

what portion of the variation could be explained by each factor alone and by 

combinations of taxonomic factors. 
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2.4 Results and discussion 

2.4.1 Defining main strategies driving bacterial functional turnover across 
ecosystems 

To identify the principal strategies that drive variation in bacterial functional 

turnover across ecosystems, we searched for axes of correlated functional trait variation 

among microbial metagenomes from different ecosystems using a dataset of 69 

metagenomes from diverse habitats (Annex B: Table S2.1). Functional annotations of 

sequences for all metagenomes were obtained from JGI’s Microbial Genome 

Annotation Pipeline and filtered to bacterial sequences only. They were rarefied to 

~74,000 sequences per sample and then aggregated by Tier 3 functional pathways as 

defined by the KEGG BRITE Hierarchy. These functional gene annotations were used 

as functional traits for further analyses. We used a principal coordinates analysis 

(PCoA) to identify the main axes of functional variation across metagenomes from 

different ecosystems. We next used multiscale bootstrap resampling to identify clusters 

of highly correlated trait variation that explained the most trait variation across samples. 

We identify three strongly supported clusters of independently covarying 

bacterial traits (Fig. 2.1, detailed in Annex A: Fig. S2.2). These strategies – namely 

DNA metabolism, secondary compounds metabolism and signalling and attachment to 

host – explained variation across the transition from soil to aquatic microbiomes (Fig. 

2.2 – Axis 1) and the transition from host-associated to environmental microbiomes 

(Fig. 2.2 – Axis 2). A fourth cluster of traits associated with oxidative stress response 

was also found to be strongly associated with the latter transition (Fig. 2.1, Fig. 2.2). 

Together, these first axes encompassed 34.1% of total trait variation. Each of these 

strategies were also observed to explain differences among microbiomes along the third 

and fourth axes of variation through sister clusters with similar trait composition (Fig. 

2.1). Along these axes, most variation was aligned along a transition from strongly 
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symbiotic bacterial communities to epiphytic and free-living ones (Annex A: Fig. S2.3 

– Axis 3) and from terrestrial to aquatic ecosystems (Annex A: Fig. S2.3 – Axis 4).  

Communities associated with soils were characterized by groups of correlated 

functions linked with the degradation and biosynthesis of xenobiotics and toxins (Fig. 

2.1 – C9 & 10). The fact that this strategy occurs in soil bacterial communities is not 

surprising and supports existing evidence of the prevalence of competitive dynamics 

among microbes in these diverse and densely populated habitats (Charlop-Powers et al. 

2014, Tyc et al. 2017). Our results suggest that this axis of microbial trait variation is 

similar to the competitive axis of Grime’s CSR strategy scheme (1977), though based 

on different premises; while Grime’s CSR scheme defines a competitive plant species 

as one having faster growth rates and allocation to resource-acquisition structures, the 

competitive axis found in environmental metagenomes is related to the ability of 

bacteria to respond to and participate in chemical warfare. 

Bacteria associated with aquatic microbiomes possessed suites of traits linked 

with DNA metabolism and repair (Fig. 2.1 – C2 & C1) and with oxidative stress 

response mechanisms (Fig. 2.1 – C8 & C7), both indicative of stress-tolerance 

strategies analogous to Grime’s. Ecologically important stresses associated with 

aquatic communities include low resource availability, temperature fluctuation, and 

UV radiation (Matallana-Surget et al. 2012), that can be responsible for the production 

of reactive oxygen species (ROS) and the degradation of DNA. The use of the TCA 

cycle in controlling intracellular concentrations of ROS (Mailloux et al. 2007) and of 

antioxidants such as riboflavin (Ashoori and Saedisomeolia 2014) and alpha lipoic acid 

(Packer et al. 1995) to scavenge them are known to play a role in resistance to oxidative 

stress. The importance of DNA metabolism in aquatic habitats is also coherent with the 

presumed important role of dissolved DNA as a source of energy and nutrients for 

bacteria in such habitats (Lennon 2007). 



 
48 

The trait clusters that were most strongly associated with a host-associated 

ecological strategy were characterized by functional pathways involved in signalling 

and attachment to host cells, particularly membrane receptors (Högbom and Ihalin 

2017) (Fig. 2.1 – C3 & C4). This category of traits does not appear to have any 

equivalent in previously defined functional strategies of micro- or macro-organisms. 

In the case of bacterial communities taking part in symbiotic relationships with hosts, 

several traits associated with the metabolism of terpenoids and polyketides were also 

part of the host-associated strategy. Terpenoids and polyketides being major plant 

secondary metabolites. Bacterial traits associated with the metabolism of major 

secondary metabolites such as terpenoids and polyketides likely represent adaptations 

specific to life in endophytic associations with plants or the plant-based diets of 

symbiotic host



 

Figure 2.1 Dendrogram indicating correlations among bacterial functional 
pathways across 69 metagenomic samples.  Main clusters of correlated traits are color-
coded and labelled (C1-C10) in the dendrogram. The trait composition of each cluster 
is indicated in a piechart and color-coded using the Tier 1 functions of the KEGG 
functional hierarchy. Tier 2 functions that represented at least 15% of the total number 
of traits in each cluster are indicated with two letter codes. BO: Biosynthesis of other 
secondary metabolites; CG: Cell growth and death; GM: Glycan biosynthesis and 
metabolism; MC: Metabolism of cofactors and vitamins; MT: Metabolism of 
terpenoids and polyketides; SM: Signaling molecules and interaction; ST: Signal 
transduction; TR: Translation; XB: Xenobiotics biodegradation and metabolism. The 
axes to which they contribute most in the principal coordinates analysis of 
metagenomic functions (see Fig. 2.2) are indicated on the left. The major strategies 
explaining variation among metagenomes are indicated with black boxes.

                  
                          
          
                    
          
          

            

                            

      

    
  

  
     

  

              

          
         
          

               
          

                 

                 
        

  

    

    

  

  

    

   

 
  
  
 
  
 

  
 
 
  
   
 

 
  
  
 
  

  
 
 
  
   
 

 
  
  
 
 



 

 

 

Figure 2.2 Principal coordinates analyses of the metagenomic functional dataset. 
Axes 1 and 2 are shown. Colored arrows represent the mean position of the traits 
contributing most to variance across these dimensions, by functional cluster (as 
depicted in Fig. 2.1). These most important traits are indicated in colored boxes next to 
the corresponding arrow. Bacterial phyla that correlate the most with the axes are 
indicated on the outer portion of the graph, along with the direction of the correlation. 
Ellipses define the average position of the points in each environmental group. 

                                     
                         
                       

                           
                 
               

                       

                       
                       

                          
                         

                               
           

                     
            

  
   

  
  

   
   

  
  

   
  

  
  

  
   

  
  

  
  

                             
                            

 
  

  
  

   
 

  
  

  
  

  
  

   
 

  
  

   
  

  
  

 
  

  
  

  
  

  
   

  
  

  
  

  
  

  
   

  
  

  
  

   
  

  
  

  
   

  
  

  
  

  

                             

                              

 
  
 
 
  
 
  
 
 
 
  
  
 
  
 
  
 
  
  

  
  

  
  

  
  

  
   

  
  

  
  

  
  

              

                         

                   



2.4.2 Evolutionary structure of correlated trait variation across metagenomes 

Correlated axes of trait variation across ecosystems may be shaped by two 

major processes: the filtering of groups of traits differentially selected along 

environmental gradients, as well as evolutionary selection or constraints on the 

variation of these traits through time (Futuyma 2010, Muir 2015). To test the 

contribution of phylogenetic processes to the presence of correlated trait variation 

across metagenomes we compared the clustering of functional traits in metagenomes 

with a clustering analysis of an extensive genomic dataset in which we account for 

phylogenetic correlations among traits. Our main prediction was that the strategies of 

ecological importance to bacterial communities would be phylogenetically structured 

among bacterial genomes, such that functional pathways would cluster similarly in 

both datasets (Annex B: Table S2.2). To identify clusters of phylogenetically correlated 

traits across the bacterial tree of life, we first performed a phylogenetic principal 

component analysis ordination on functional annotations of 15,973 bacterial genomes 

(Mendler et al. 2019) (Annex A: Fig. S2.1) to reveal axes of trait variation taking into 

account the phylogenetic non-independence of evolving genomes (Jombart et al. 2010). 

We then identified clusters of correlated traits on these phylogenetically corrected 

ordination axes.  Major clusters of bacterial functions are similar in both metagenomic 

and genomic datasets (Procrustes test: m12 = 0.5051, r = 0.700, p = 0.001), with the 

broad retention of major groups of covarying functions in the phylogenetic clustering 

analyses (Fig. 2.3, detailed in Annex A: Fig. S2.4). 

Of the most ecologically important functional groups of traits presented above, 

clusters linked with DNA metabolism (Fig. 2.1 - C2 & C1) and secondary compounds 

metabolism (Fig. 2.1 - C9 & C10) were consistently clustered in both genomes and 

metagenomes, along with the host signalling and attachment cluster associated with 

symbiotic microbiomes (Fig. 2.1 - C4). These results suggest that selection or 

constraint (e.g. genetic correlations (Futuyma 2010) or functional barriers to 
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recombination (Hendrickson et al. 2018)) have been important in shaping the evolution 

of clusters of correlated traits in bacteria in a consistent fashion across both clades and 

habitats, leading to predictable variation in the ecological strategies of bacteria 

associated with particular clades (Fig. 2.2, Annex A: Fig. S2.3). The fact that we found 

such clusters despite the likely presence of many transient organisms in environmental 

metagenomes samples investigated provides additional confidence in these results. 

Despite identifying three main axes of functional covariation among bacterial 

traits, other drivers of functional trait correlations appeared to play a role in structuring 

trait variation among ecosystems (Annex B: Table S2.2). First, metagenomically-

derived trait clusters such as those associated with oxidative stress response in aquatic 

systems (Fig. 2.1 - C7 & C8), or those generally correlated with host-associated life 

(Fig. 2.1 - C3) were not observed in the genomic dataset (Fig. 2.3). These clusters might 

thus result from environmental filtering on pre-existing trait variation or lateral gene 

transfer among host-associated clades rather than a fundamental constraint or trade-off 

in genome architecture and evolution. Phylogenetic biases in the genomic dataset could 

also prevent us from detecting some functional strategies in genomic analyses. Second, 

most of the remaining traits were very loosely clustered in both metagenomic and 

genomic clusters (Fig. 2.3). The fact that these traits explained little of the functional 

variation among communities in the metagenomic dataset suggests they do not 

represent part of a functional strategy that has arisen in response to the major axes of 

environmental variation encompassed by this dataset. Their lack of correlations in the 

genomic dataset suggests that they are likely to have been evolving idiosyncratically 

or to be subject to more extensive horizontal gene transfer. It is possible that other types 

of functional strategies than those identified above are also important for driving 

within-community niche partitioning among bacteria, but at the broad scales of the 

bacterial tree of life and among metagenomes from distinct habitat types these types of 

trade-offs are not important enough to be consistently identified as clusters of 

covarying traits.  
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Figure 2.3 Comparison of functional clusters for bacteria based on annotation of 
metagenomic (left) and genomic (right) datasets.  Dendrograms indicate correlations 
among bacterial functional pathways; functional pathways are color coded by 
metagenomic clusters (see details in Fig. 2.1). Lines connect the same functional 
pathways in each data set. Red boxes indicate the main functional strategies identified 
for bacterial genomes (see details in Fig. 2.1, Fig. 2.2).

                  

          
         

               
              

              

                 
        

              

               
          

          
         

  

  

  

  

  

  

  

   

  

                 
               



2.4.3 Phylogenetic depth of ecologically important trait variation 

One of the interests of understanding the phylogenetic structure of trait 

variation in microbes has been to improve predictions of functional traits and 

ecosystem functioning of microbial communities from taxonomic community 

composition data (Goberna and Verdú 2016, Dolan et al. 2017). Studies assessing the 

phylogenetic depth of trait conservatism in Bacteria have suggested a relationship 

between the complexity of a trait and the phylogenetic depth at which it arose, with 

complex traits like methanogenesis that involve multiple functional pathways being 

conserved more deeply in the phylogeny than relatively simple traits such as organic 

substrate utilisation (Martiny et al. 2013). Still, the phylogenetic depth at which the 

traits that are most important for driving ecological gradients in bacterial community 

composition are conserved remains untested. Understanding these patterns is important 

for predictive purposes as well as for linking the evolution of traits in Bacteria to their 

biogeographical distributions.  

To determine the depth at which functional pathways explained most variation 

in the bacterial phylogeny, we used the consenTRAIT approach which evaluates the 

phylogenetic similarity of groups of organisms sharing discrete traits (Martiny et al. 

2013), here the presence or absence of functional pathways. We compared these depths 

to those obtained for the different taxonomic levels encompassed by our dataset to test 

at which level taxonomic variation best explained the functional composition of 

metagenomes. For this analysis, we used variation partitioning of metagenomic 

functions using the taxonomic composition of communities (phylum, class, order and 

family) as explanatory variables.  

The mean depth at which functional pathways varied among bacterial clades 

did not vary considerably among major functional clusters (Annex A: Fig. S2.5). Most 

trait variation was observed at the level of taxonomic families or slightly lower. The 

importance of ecological variation among bacterial families in driving variation along 
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the main functional axes of variation in the metagenomic dataset was also evident based 

on the variation partitioning analysis in which families could explain the majority of 

functional variation among metagenomes (Annex A: Fig. S2.6). These results support 

a role for complex adaptations in mediating adaptation across large environmental 

gradients, as they reflect the phylogenetic depths at which other complex microbial 

traits such as methylotrophy or survival in saline environments vary among microbial 

clades (Martiny et al. 2015, Goberna and Verdú 2016). They also support an important 

role for clade-based bacterial sorting across environments in maintaining the match 

between organismal traits and their environment.  

 We have identified large-scale functional strategies across the bacterial domain, 

and a stimulating research venue will be to test the scale-dependence of these trait 

relationships across different biological scales (Anderegg et al. 2018). We might expect 

that the numerous traits that explain only a small proportion of global variation among 

metagenomes could play important roles in niche differentiation within certain habitats, 

such that different functional axes could be important in driving adaptive variation and 

the sorting of Bacteria at smaller environmental and phylogenetic scales (Martiny et al. 

2009). Overall, the integration of evidence from different biological and phylogenetic 

scale represents a fruitful venue for expanding our understanding of the generation and 

maintenance of bacterial diversity. 

2.5 Conclusion 

In conclusion, we used a data-driven functional trait screening approach to 

identify the major axes of functional trait covariation in bacterial metagenomes and 

genomes based on gene functional annotations. By comparing functional trait clusters 

in both datasets, we show that the major strategies driving functional differentiation 

between bacterial genomes can be scaled up to the level of metagenomes of co-

occurring bacteria in ecological communities. There is limited overlap between the 
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bacterial ecological strategy axes described here and the trait classification schemes 

developed for plants and animals. While we find evidence for bacterial traits related to 

metabolism and resource utilisation driving the functional differentiation among 

bacterial communities and clades, we have shown that many major clusters of 

functional traits that we identify differentiate bacterial strategies based on biotic 

interactions. Taken together, our results offer a first step in quantifying global microbial 

functional trait strategies based on both environmental and genomic data. By reducing 

the high-dimensionality of trait variation observed among microorganisms around a 

small number of fundamental axes of trait covariation, we make an important step 

towards generalization of microbial ecology and of the drivers of biological diversity 

across study systems (Lajoie and Kembel 2019). 
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3.1 Abstract 

The phyllosphere is an important microbial habitat but our understanding of 

how plant hosts drive the composition of their associated leaf microbial communities 

and whether taxonomic associations between plants and phyllosphere microbes 

represent adaptive matching remains limited. In this study we quantify bacterial 

functional diversity in the phyllosphere of 17 tree species in a diverse neotropical forest 

using metagenomic shotgun sequencing. We ask how hosts drive the functional 

composition of phyllosphere communities and their turnover across tree species, using 

host functional traits and phylogeny.  

Neotropical tree phyllosphere communities are dominated by functions related 

to the metabolism of carbohydrates, amino acids and energy acquisition, along with 

environmental signalling pathways involved in membrane transport. While most 

functional variation was observed within communities, there is non-random assembly 

of microbial functions across host species possessing different leaf traits. Metabolic 

functions related to biosynthesis and degradation of secondary compounds, along with 

signal transduction and cell-cell adhesion were particularly important in driving the 

match between microbial functions and host traits. These microbial functions were also 

evolutionarily conserved across the host phylogeny.  

Functional profiling based on metagenomic shotgun sequencing offers 

evidence for the presence of a core functional microbiota across phyllosphere 

communities of neotropical trees. While functional turnover across phyllosphere 

communities is relatively small, the association between microbial functions and leaf 

trait gradients among host species supports a significant role for plant hosts as selective 

filters on phyllosphere community assembly. This interpretation is supported by the 

presence of phylogenetic signal for the microbial traits driving inter-community 
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variation across the host phylogeny. Taken together, our results suggest that there is 

adaptive matching between phyllosphere microbes and their plant hosts. 
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3.2 Background 

The phyllosphere – the aerial surfaces of plants including leaves – is a 

widespread microbial habitat that hosts a diversity of microorganisms that play key 

roles in plant ecology and evolution (Vorholt 2012). Phyllosphere microbes play key 

roles in plant health (Saleem et al. 2017, Wagi and Ahmed 2017) and human health 

(Berg et al. 2014), and can influence ecosystem function (Laforest-Lapointe et al. 2017). 

At a broad taxonomic scale, phyllosphere bacterial communities are consistently 

dominated by taxa including Actinobacteria, Bacteroidetes, Firmicutes, and 

Proteobacteria (Bulgarelli et al. 2013), indicating that plants also influence the 

composition of their microbial partners. A key goal of phyllosphere microbial ecology 

research has been to identify the adaptive basis of such relationships between plants 

and associated microbes. 

Comparative studies of the taxonomic composition of phyllosphere microbial 

communities across plant hosts have demonstrated the importance of host identity as a 

key driver of variation in phyllosphere microbial taxonomic diversity. At fine 

taxonomic scales, the composition of these communities varies predictably across host 

plant species (Kim et al. 2012, Lambais et al. 2014, Laforest-Lapointe et al. 2016) and 

across genotypes within host plant species (Bailey et al. 2005, Schweitzer et al. 2008). 

Plants and associated bacteria also show cophylogenetic associations, with clades of 

plants and bacteria consistently occurring together (Redford et al. 2010, Kim et al. 2012, 

Kembel et al. 2014), suggesting close adaptive associations between plants and their 

phyllosphere microbes. 

Determining whether plant-microbe associations in the phyllosphere have an 

adaptive basis will require establishing how both plant and microbial functions are 

related across a range of host species. Plant functional traits – measures of morphology 

and physiology that capture key axes of variation in plant life history and ecology 
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(Violle et al. 2007) – have been targeted as a potential proxy for explaining microbial 

community turnover among plant species. These traits determine the potential for 

nutrient, metabolite and secondary compound leaching from the plant, which should 

largely determine the quality of a leaf as a habitat for phyllosphere microbes (van der 

Wal and Leveau 2011). In support of this hypothesis, plant functional traits such as leaf 

mass per area, leaf elemental composition, and growth rate are correlated with 

phyllosphere microbial community turnover both within (Hunter et al. 2010) and 

among plant species (Whipps et al. 2008, Yadav et al. 2008, Barott et al. 2011, 

Bodenhausen et al. 2014, Kembel et al. 2014). 

Several studies have reciprocally identified the broad-scale microbial 

functional categories and adaptations that epiphytic microbes possess for living on 

plants (e.g. Krohn-Molt et al. 2013, Akinsanya et al. 2015, Finkel et al. 2016, Sambles 

et al. 2017). Functions including the biosynthesis of osmoprotectants such as trehalose 

and betaine and the production of extracellular polysaccharides are enriched in the 

phyllosphere and are thought to provide key adaptations to life on leaf surfaces by 

allowing microbes to attach to the leaf surface and by providing resistance to 

environmental stresses and plant defenses (Hartmann et al. 2009, Rastogi et al. 2013). 

The enrichment of rhodopsin genes in leaf bacterial communities exposed to high light 

also points to a role for those pigments in improving microbial fitness through higher 

energy acquisition on sun leaves (Atamna-Ismaeel et al. 2012). However, studies of 

microbial functions in the phyllosphere have largely been based on comparison of one 

or a few host plant species. How microbial functions map onto variation in host plant 

functions in diverse natural communities thus remains largely unknown. As a result, it 

is not clear whether plant microbiota exhibit the pattern of taxonomic turnover but 

functional homogeneity across hosts that has been observed in some animal microbiota 

(Human and Project 2012) or if a turnover in microbial functions can also be observed 

across functionally different tree species. 
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In this study, we quantified the functional repertoire of microbial communities 

on leaves of multiple tree species in a neotropical forest on Barro Colorado Island 

(Panama) using metagenomic shotgun sequencing. Sampling was performed in a 50-

ha long-term plot of old-growth tropical forest within which ~300 tree species have 

been recorded, most of them evergreen (Condit et al. 1999). We asked which microbial 

functions are abundant in the phyllosphere, and how these functions are linked to the 

taxonomy and functional traits of plant hosts. Our central hypothesis was that the plant-

microbe taxonomic associations previously observed in this forest (Kembel and 

Mueller 2014, Kembel et al. 2014) should be driven by adaptive matches between 

microbes and host plants, leading to several key predictions. First, we predicted that 

microbial functions should vary among host plant species and be correlated with the 

functional traits of the hosts. Second, we predicted that cophylogenetic associations 

between trees and microbes should lead to phylogenetic signal in microbial functions 

present on different plant hosts. Third, we predicted that microbial functions present 

on leaves should be filtered by the host, since conditions on the leaves of different host 

plants create a selection pressure on the functions of microbes able to persist on those 

leaves.  

3.3 Methods 

3.3.1 Microbial DNA collection, extraction and sequencing 

Microbial communities were collected from the leaves of 24 individual trees 

from 17 tree species (1-2 samples per species) in the tropical lowland rainforest of 

Barro Colorado Island, Panama, in December 2010. These samples were selected from 

a larger pool of samples (Kembel and Mueller 2014, Kembel et al. 2014) for which we 

had sufficient quantities of high-quality DNA, selecting host species to maximize the 

phylogenetic and functional diversity of hosts. Methodological details of sample 

collection are described by Kembel et al. (2014). Briefly, 50-100g of fresh leaves were 
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collected from the subcanopy of one tree of each species. Microbial cells were then 

washed from each leaf sample using phosphate buffer [1 M Tris•HCl, 0.5 M Na EDTA, 

and 1.2% CTAB] and collected by centrifuging at 4,000 × g for 20 min. DNA was 

extracted using MoBio PowerSoil DNA extraction kits and samples stored at -80°C for 

future analyses. We quantified DNA concentrations and sequenced both extraction 

negative controls and PCR negative controls for these samples as part of previously 

published analyses of bacterial 16S and fungal 28S amplicon sequencing of these 

samples (Kembel and Mueller 2014, Kembel et al. 2014); none of the negative control 

samples contained measurable concentrations of DNA and upon sequencing they 

contained fewer DNA sequences than the minimum cut-off for inclusion in analyses 

As a result, they were all excluded from subsequent analyses in previously published 

studies and the present study. To quantify the metagenomic structure of each microbial 

community, we constructed a paired-end metagenomic shotgun library including a 

random sample of the whole community DNA composition using an Illumina Nextera 

XT® kit (Illumina reference FC-131-1024). These libraries were then sequenced using 

Illumina MiSeq paired-end 2 x 250 base pair sequencing (V2 kit, Illumina reference 

MS-102-2003). Analyses were performed on these 24 samples unless stated otherwise. 

Results were not influenced by including replicates of the same species (see tests 

below). 

3.3.2 Microbial taxonomy and functional trait annotation 

Metagenomic shotgun sequencing yielded 14,642,408 reads in total. We 

trimmed sequences to remove Illumina adapters and truncate end-bases with a quality 

score less than 20, and removed sequences shorter than 25bp, leaving 14,634,072 

trimmed and quality-controlled reads. Taxonomic annotation of all sequences in each 

microbial community was performed to restrict functional analyses only to bacterial 

sequences. We annotated metagenomic reads using Kaiju, which annotates taxonomic 

identity of reads by comparing sequenced reads to the microbial subset of the NCBI 
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BLAST non-redundant protein database (Menzel et al. 2016). Out of the 7,317,036 

sequences, we were able to annotate taxonomy to at least the taxonomic level of 

domain/kingdom for 2,138,885 sequences, of which 2,100,491 sequences were from 

Bacteria, representing 29% of total sequences. All subsequent taxonomic and 

functional analyses were based on this subset of sequences identified as belonging to 

the Bacteria. Of these Bacterial sequences, 1,902,749 were annotated to at least the 

phylum level, representing 26% of total sequences. Analysis of taxonomic composition 

was carried out on this subset of sequences annotated to at least the bacterial Phylum 

level. We rarefied all samples to 20,100 randomly chosen sequences per sample for 

taxonomic composition analyses, resulting in a total of 482,400 sequences for 

taxonomic analyses (relative abundances of major taxa are shown in Annex C: Fig. 

S3.1). 

Functional annotation of microbial sequences was performed via protein 

homology searches using the KEGG annotation framework (Ogata et al. 1999, 

Kanehisa et al. 2014) via the software COGNIZER (Bose et al. 2015). Analyses 

resulted in the identification of functional genes and categories for 873,082 sequences 

representing 12% of sequences. In total, of the 7,317,036 bacterial sequences that were 

obtained from the metagenomic sequencing of all samples, 722,936 sequences were 

taxonomically annotated as bacteria and had a functional annotation. Only these 

sequences that were both bacterial and functionally annotated were used for the 

functional analyses. We lastly classified each of these sequences into functional 

categories, defined by the BRITE functional hierarchy manually curated for the KEGG 

annotation system based on published literature (Kanehisa et al. 2014). This hierarchy 

contains four different levels, which were designed as Tier 1, Tier 2, Tier 3 and 

functional genes, ranging from the more general to the more specific functional 

assignment (see Staley et al. 2014). Most analyses were performed at the Tier 3 level, 

in the intent of reaching a balance between the complexity of the data and its 

interpretability. In a few instances, Tier 3 categories were perfectly correlated across 
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samples so we removed the duplicates from the dataset in order to reduce its 

dimensionality (Annex D: Table S3.1). 

3.3.3 Plant functional traits and phylogeny 

We obtained measurements of plant functional traits for all plant species from 

a dataset collected previously on Barro Colorado Island (Wright et al. 2010). This trait 

database initially included 21 whole-plant and leaf traits, but we reduced these traits to 

a subset of 16 traits with limited overlap in functional significance (Pérez-

Harguindeguy et al. 2013) (Annex C: Fig. S3.2). This reduced set of traits included 

height at maturity, sapling growth rate and sapling mortality rate as whole-plant 

resource-use traits, leaf area and leaf dry matter content as leaf structural traits, and a 

suite of leaf elemental chemistry traits including concentration of aluminum, calcium, 

copper, magnesium, phosphorus, zinc and nitrogen content. A phylogenetic hypothesis 

for host plant species was obtained by grafting tree species onto a dated megatree of 

angiosperms provided by Zanne et al. (2014) using Phylomatic v.3 (Webb and 

Donoghue 2005). 

3.3.4 Variation in phyllosphere functions among versus within samples 

We determined the contributions of within- and among-sample variation in 

function of total functional variation among metagenomic samples using additive 

diversity partitioning, where γ𝑑𝑖𝑣 =  α𝑑𝑖𝑣 + β𝑑𝑖𝑣 (Veech et al. 2002). The percentage 

of alpha diversity was calculated as the amount of alpha entropy divided by the amount 

of total entropy across all communities. The percentage of beta diversity was calculated 

as 1 minus the percentage of alpha diversity. These metrics were calculated using the 

R package entropart (Marcon and Hérault 2015). Analyses were performed at three 

levels of functional aggregation (Tier 1 to Tier 3). We tested whether the presence of 

two samples rather than one for some of the sampled species would affect this diversity 

partitioning by subsampling the dataset to include all possible combinations of samples 
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totally a single sample per species (n=128) and rerunning the analyses. This 

subsampling did not affect our results (Annex C: Fig. S3.3), such that we kept the 24 

samples in the subsequent analyses. We then compared sources of turnover for 

functions and taxonomy between samples by performing the same analysis from the 

taxonomically annotated metagenomic sequences, defined at levels from phylum to 

species. 

3.3.5 Associations between microbial and plant traits 

We performed a principal component analysis (PCA) of functional trait 

matrices and identified the functions contributing most to variation along the first axes 

of variation using R package FactoMineR (Lê et al. 2008).  We fitted the plant traits 

onto this ordination to identify correlations between bacterial traits driving the PCA 

and the plant traits. We evaluated the influence of tree species replicates in our samples 

on these results and did not uncover important differences in the main drivers of 

functional differences among samples when excluding these duplicates. We also 

performed a Procrustes analysis (Oksanen et al. 2013) on the duplicated samples to 

evaluate whether their functional composition were correlated and obtained a very high 

correlation coefficient (r=0.989). As such, we can assume that individuals from the 

same species are structuring their leaf microbial communities in a similar way and do 

not drive important functional differences among samples. All 24 samples were thus 

kept in this analysis.  

We quantified the phylogenetic signal in associations between microbial 

functions and host plant phylogeny using function multiphylosignal from R package 

Picante (Kembel et al. 2010) to calculate Blomberg’s K. This statistic quantifies 

whether a microbial trait exhibits stronger phylogenetic signal than expected by chance 

under a Brownian motion model of trait evolution. The higher the K statistic, the more 

phylogenetic signal in the trait. We identified microbial functions with strong 

phylogenetic signal by comparing the variance of independence contrasts observed for 



 
67 

each microbial function to those obtained through a null model where taxa labels have 

been shuffled across the tips of the phylogeny (n=9,999 randomizations). We 

considered a microbial function to exhibit strong phylogenetic signal if it fell in the top 

5% of the distribution of signal based on the randomization test (P < 0.05 according to 

randomization test). We selected a single random sample per host species for those host 

species with more than one sample prior to calculating phylogenetic signal. We 

repeated this for different random subsamples and it did not qualitatively change the 

results so we report phylogenetic signal for a representative random subsample. 

3.3.6 Host filtering of microbial functions and taxa 

The degree of host filtering on microbial communities was assessed by 

comparing the occurrence of traits in observed communities to those obtained from 

9,999 randomizations of community trait matrices. Host filtering was detected as an 

over- or under-representation of the given trait in individual communities. 

Randomizations were generated by permutations of the trait matrix preserving row and 

column totals. For each site and bacterial trait combination, we compare the observed 

frequency of the trait to the random values to assess whether it was lower or higher 

than expected by chance. To compare the strength of functional vs. taxonomic filtering, 

we applied the same procedure to the taxonomic datasets defined at each of six 

taxonomic levels, from the phylum to the species. 

3.4 Results 

3.4.1 Metagenomics shotgun sequencing characterization of phyllosphere microbial 
functions 

Overall, we detected 4587 different functional genes across all samples based 

on annotation of metagenomic shotgun sequencing of tropical tree phyllosphere 

communities. Functions related to metabolism were the most abundant overall in our 
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dataset, making up 45% of all functionally annotated sequences (Fig. 3.1). The 

principal metabolic functions in the phyllosphere were related to metabolism of amino 

acids (e.g. amino acid related enzymes), nucleotides (e.g. purine and pyrimidine 

metabolism), carbohydrates (e.g. pyruvate, glyoxylate and dicarboxylate metabolism), 

and energy (e.g. oxidative phosphorylation & TCA cycle) (Fig. 3.1). Groups of 

functional genes related to environmental and genetic information processing also had 

a high relative abundance, mainly membrane transport (e.g. transporters), translation 

(e.g. aminoacyl-tRNA biosynthesis), and signal transduction (e.g. two-component 

systems). 

3.4.2 Variation in phyllosphere functions and taxa among versus within samples 

The bacterial functions present on tree leaves were remarkably consistent 

among different samples. The vast majority of functional variation occurred within 

samples (>97%), with a very small contribution of functional turnover among samples 

(<3%) to total functional diversity, regardless of the functional level under study. Most 

taxonomic diversity was also observed within samples, with a contribution of beta-

diversity increasing from 1 to 4.4% of total diversity with a refinement of the 

taxonomic scale utilized (Table 3.1). The principal component analysis of bacterial 

community functional composition indicated that metabolic functions related to 

biosynthesis and degradation of secondary compounds and antibiotics, as well as 

functions related to signal transduction and cell-cell adhesion were the most strongly 

varying among hosts (Fig. 3.2; Annex D: Table S3.2). We detected 16 Tier 3 functions 

that exhibited strong phylogenetic signal with respect to the host phylogeny (functions 

with phylogenetic signal in top 5% of values compared to null distribution compared 

to K statistic randomization test; P<0.05; Fig. 3.3). These functions were mostly 

involved in the metabolism of terpenoids and polyketides, signal transduction and 

cellular processes. 
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3.4.3 Associations between microbial and plant traits and host filtering 

Many of the plant traits displayed some level of correlation with the principal 

axes of microbial functional community composition. Among these, morphological 

leaf traits (e.g. leaf area, leaf mass per area) were most strongly associated with the first 

two axes of microbial functional variation. Leaf elemental concentrations of copper, 

aluminum and manganese were also strongly correlated with these first dimensions. 

The plant trait gradients explained altogether ~17% of variation in functional 

composition among microbial communities. The vast majority of the microbial Tier 3 

functions were more abundant or less abundant than 95% of the values obtained from 

null model keeping both the total abundance of a trait and the number of traits in a 

community constant (Table 3.2). The filtering signal was slightly stronger for the 

microbial taxa than for the microbial functions (Table 3.2). 



Table 3.1 Functional and taxonomic additive diversity partitioning of bacterial communities across 24 tree phyllosphere 
samples. The percentage of alpha diversity was calculated as the amount of alpha entropy divided by the amount of total 
entropy across all communities. The percentage of beta diversity was calculated as 1 minus the percentage of alpha diversity. 

 

 

 

Functional Taxonomic 

 

Tier 2 Tier 3 Functional 

gene 
Phylum Class Order Family Genus Species 

Alpha diversity (%) 100.0 99.8 97.2 99.0 99.0 99.0 98.8 98.2 95.6 

Beta diversity (%) 0.0 0.2 2.8 1.0 1.0 1.0 1.2 1.8 4.4 



Table 3.2 Occurrences of Tier 3 functions and taxa across 24 tree phyllosphere samples. Occurrences of Tier 3 bacterial 
functions and taxa that are respectively more  or less abundant than 95% of the values obtained from a null model 
randomizing abundances of functions and taxa across hosts (n=9,999). 

  

Number of combinations 

in the top 5% of the null 

model values % of total 

Number of 

combinations in the 

bottom 5% of the null 

model values % of total 

Total number of 

combinations 

Functions           

Tier 3 functions 4360 70 930 15 6192 

Taxa      
Phylum 1397 69 279 14 2016 

Class 1073 63 405 24 1704 

Order 2426 62 988 25 3888 

Family 5597 64 2014 23 8808 

Genus 26723 66 6690 16 40608 

Species 183337 76 23479 10 240288 

 

 



 

Figure 3.1 Relative abundance of the most abundant functional pathways detected across 24 tree phyllosphere samples 
in a neotropical forest in Panama. Functional pathways are classified using the KEGG functional hierarchy (Kanehisa et al. 
2014).



 

Figure 3.2 Principal components analysis (PCA) of microbial functional 
composition from the phyllosphere of neotropical trees. The 20 Tier 3 functions 
contributing the most to variation among samples are indicated as black arrow. Plant 
traits were fitted onto the PCA in a configuration that would maximize correlation with 
the PCA axes and are represented as blue dashed lines. Plant trait abbreviations are the 
following:  Aluminum (AL), Calcium (CA), Carbon (C), Copper (CU), Diameter at 
breast height (DBH), Leaf area (LEAFAREA), Leaf dry matter content (LDMC), Leaf 
mass per area (LMA), Leaf thickness (LEAFTHICK), Manganese (MN), Mortality 
(MORT), Nitrogen (N), Phosphorus (P), Potassium (K), Relative growth rate (RGR), 
Zinc (ZN). 

  



 
74 

 

Figure 3.3 Distribution of microbial functions with respect to plant phylogeny. 
Distributions are shown for the subset of Tier 3 microbial functions with phylogenetic 
signal (K statistic) in the top 5% of values compared to the expected distribution of 
phylogenetic signal according to the K statistic randomization test (P < 0.05). Symbol 
size indicates the scaled relative abundance of microbial functions for each host species. 

 



3.5 Discussion 

The functional composition of tree phyllosphere microbial communities in a 

tropical forest in Panama is largely consistent with those reported in the literature, 

regardless of the type of plant studied, suggesting the presence of a core functional 

microbiota in phyllosphere microbial systems. Core functional microbiota in host-

associated systems have also been reported for other hosts. Our study supports findings 

of an important role for the metabolism of carbohydrates and amino acids in bacterial 

survival in the phyllosphere (Yadav et al. 2008, Ryffel et al. 2015, Müller et al. 2016) 

that is consistent with the abundance of these compounds in leaf leachates and 

photosynthates. The main mechanism of energy acquisition from these compounds 

appeared to be the TCA (citric acid) cycle, as reported in experimental studies of 

bacterial colonization of the phyllosphere (Müller et al. 2016). Membrane transporters 

were also reported to be an important component of the epiphytic microbe functional 

repertoire, maximising the ability to monopolize otherwise limiting resources 

(Delmotte et al. 2009). The abundance of signal transduction functional pathways, 

involved in the rapid sensing and response to environmental change, would lastly be 

coherent with the high variability in conditions of humidity, light and temperature in 

that microbial habitat (Rastogi et al. 2013).  

The low functional variability in microbiota observed among tree species 

represents a further line of evidence supporting the presence of a core phyllosphere 

functional microbiota. This low variability, observed even at fine functional levels, 

could be the consequence of essentially similar constraints imposed by the generally 

harsh leaf environment on its microbial communities, regardless of the specific 

physiological traits of the host plant species. This low functional turnover among 

communities was also associated with a low taxonomic turnover, contrasting with 

reports from phyllosphere-associated temperate systems where species identity was a 
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strong driver of taxonomic composition of the microbial communities (Laforest-

Lapointe et al. 2016). These results could be explained by a finer-scale partitioning of 

taxa among neotropical than temperate tree species, or a greater overlap in species 

functional types limiting strong associations between microbial taxa and their hosts. 

Such differences should be further investigated. 

Despite the high levels of convergence in microbial functions among the 

phyllospheres of different tree species, several lines of evidence support a role for plant 

species taxonomic and functional identity in driving microbial community assembly. 

Tree traits explained a notable portion of the functional turnover among microbial 

communities. Traits correlated with microbial functional turnover (e.g. leaf area, leaf 

mass per area) are mostly part of the leaf economics spectrum (Wright et al. 2004), a 

functional strategy scheme describing photosynthetic resource-use efficiency in plants, 

which is coherent with what we know of phyllosphere microbial physiology. The 

ability of a tree to be conservative of its resources and generate thicker and better 

protected leaves (i.e. high leaf mass per area) is likely to limit the leaching of nutrients 

from the leaf to the phyllosphere, in turn constituting a filter on resource-use strategies 

in microbes. The high correlation of leaf mass per area with turnover in microbial 

communities is coherent with a previously described role for cuticle characteristics in 

determining functional turnover among leaf microbial communities (Hunter et al. 2010, 

Bodenhausen et al. 2014). The high correlation of aluminum and copper concentrations 

in leaves with microbial functional variation may be explained by their role as 

antibiotics. The predominance of two-component systems associated with high 

aluminum and copper concentrations suggests that the ability to sense and quickly 

respond to fluxes in these elements at the cell surface might constitute an efficient 

stress-response to deal with these conditions (Kaczmarczyk et al. 2014). This type of 

plant trait gradient is analogous to the leaf chemical gradient described by Yadav and 

colleagues (Yadav et al. 2005), who reported variation in leaf colonization by 

phyllosphere microbes on different tree species as a function of their total leaf 



 
77 

phenolics content. Taken together, these interpretations are concordant with the 

importance of energy metabolism, secondary metabolites and antibiotics production as 

well as environmental sensing in driving functional turnover of microbes among tree 

species. 

Other lines of evidence support the idea that the plant host plays a selective role 

on microbial community assembly, such as the detection of bacterial traits that exhibit 

a strong phylogenetic signal with respect to the host plant phylogeny. While this pattern 

might arise from the filtering of microbes on phylogenetically structured selective plant 

traits or from co-evolution of the two partners, it is regardless indicative of an influence 

of the host on the functional make-up of bacterial phyllosphere communities. 

Interestingly, the set of pathways that are important in driving functional turnover 

among communities belong to the same functional categories as the ones that are 

phylogenetically structured among plant hosts, supporting the proposed match between 

these bacterial functions and their host’s functional and taxonomic identity. The fact 

that the relative abundance of a large set of functions was different within communities 

than that expected by chance given their relative abundance across samples, also 

supports a role for individual tree species in structuring the functional composition of 

their phyllosphere bacterial communities. The higher filtering of most microbial taxa 

relative to microbial functions suggests a role for unmeasured trait variation in driving 

functional turnover among communities. 

The relatively small but significant contribution of functional turnover among 

microbial communities to the total functional diversity observed across samples 

suggests that the functions that are of importance in driving the distribution of bacteria 

across different host trees are actually relatively few compared to those enabling the 

bacteria to pass the overall “phyllosphere filter” that is needed to survive in the 

phyllosphere habitat. It remains unknown whether the majority of functional pathways 

that do not vary among trees are actually important for the ecology of the microbes, or 
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if that trait variation is adaptively neutral within communities. It is also possible that 

some pathways important for microbial adaptations to leaf physiological gradients are 

not yet functionally described and are part of the large number of sequences that could 

not be functionally annotated. Ongoing efforts to better characterize gene functions will 

help improve the precision of ecological inferences in environmental metagenomes. 

3.6 Conclusions 

In conclusion, we have identified a core functional microbiota in the 

phyllosphere of neotropical trees. While most functional variation was observed within 

individual microbial communities, we reveal a functional matching between the traits 

of microbes and the traits of plants across 17 tree species, emphasizing the role for 

energy metabolism, secondary metabolites and antibiotic production as well as 

environmental sensing in mediating bacterial adaptation to leaf trait gradients in the 

canopy. Our identification of the adaptive drivers of phyllosphere microbial 

community composition in this neotropical ecosystem represents a good starting point 

for identifying the types of microbial traits that could be routinely studied by 

phyllosphere microbial ecologists to address global questions on the ecological and 

evolutionary dynamics of phyllosphere microbes. Empirical testing of the fitness 

consequences of variation in those traits will represent an important next step in 

understanding adaptive processes in the phyllosphere. 
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4.1 Abstract 

Hosts shape microbial diversity in natural ecosystems by acting as selective 

filters on environmental microbes. Selection gradients are also observed among host 

species and genotypes, with turnover in the composition of microbial communities and 

variation in the strength of symbiont specialization taking place as a function of host 

taxonomy and phenotypes. With many studies focusing on pairwise interactions 

between hosts and symbionts, little is understood about the influence of the host 

community as a whole in shaping host-microbe interactions and how these may change 

according to the environmental context in which these interactions take place.  

Here we investigate the role of host community composition at the local and 

regional scale in modulating turnover in phyllosphere bacteria among 33 tree host 

species and within sugar maple (Acer saccharum) across a large-scale transition from 

deciduous to boreal forest. We hypothesize that mass effects from functionally 

different host species across the landscape will limit the strength of the match between 

a focal host species and its microbiota. We further hypothesize that temperature stress 

gradient, host filtering strength and host functional diversity will affect the prevalence 

and strength of specialization of bacteria on their hosts across this heterogeneous 

landscape. 

We found that the presence of alternate dominant host species at the local and 

regional scales influenced the composition of symbiont communities on individual host 

populations and species. Host traits were important drivers of microbial community 

composition across the landscape, such that we found the strongest differences in the 

composition of sugar maple microbiota when co-occurring with functionally 

contrasting species such as conifers. The relative abundance of the focal host species 

was similarly one of the most important predictors of the specialization of its 

microbiota, along with the temperature gradient. These results suggest that the 



 
82 

transmission of phyllosphere microbes from the dominant tree community members 

may be constraining the match between a species and its symbionts, particularly at its 

range limits. This study provides important insights for predicting host-symbiont 

mismatches with variation in the distribution of species as a result of climate change. 
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4.2 Introduction 

Host-microbe associations are widespread across plants and animals (Paster et 

al. 2001, Huttenhower et al. 2012). Hosts influence microbial diversity structure within 

ecosystems by selecting specific sets of microbial taxa from the environment, as 

evident by differences in the identity of microbes living inside or outside host tissues 

and the environmental matrix surrounding the host (Smalla et al. 2001, Hentschel et al. 

2002, Björk et al. 2013). Though some members of host microbial communities are 

invariable among host genotypes and species (the core microbiota) (Schmitt et al. 2012, 

Ainsworth et al. 2015, Yeoh et al. 2017), host taxonomy and traits also drive microbial 

species sorting among host genotypes and species (the peripheral microbiota) (Ley et 

al. 2008, Hunter et al. 2010, Kembel et al. 2014). Evidence for adaptive matching 

between host and microbial traits in maintaining these associations is also emerging 

(Lajoie et al. 2020). 

Despite these advances in understanding drivers of symbiont species sorting 

across hosts, little is still understood of the relative importance of source-sink dynamics 

from the host neighbourhood in affecting host-microbe associations. At a local scale, a 

few studies have provided evidence suggesting that the sharing of habitats among 

different animal species could make their microbiota more similar through direct or 

indirect contact (e.g. van Veelen et al. 2017, Perofsky et al. 2019, but see Ivens et al. 

2018). In a forest ecosystem, transfer of gut bacteria among mammal species depended 

on the type of niche occupied, with the more connected terrestrial mammals sharing 

more microbes than arboreal species displaying less contact with each other (Perofsky 

et al. 2019).  

The relative influence of species sorting versus source-sink dynamics is 

expected to vary with variation in the identity and relative abundances of co-occurring 

host species of a focal host across space. Some studies have shown variation in the 
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composition of the microbial community of focal hosts across large spatial gradients 

(Finkel et al. 2011, Laforest-Lapointe et al. 2016), but the extent to which such 

variation can be explained by variation in abiotic factors (e.g. climate), variation in 

traits of the host, or variation in the biotic context experienced by the symbionts (e.g. 

host community structure) remains largely unknown. Comparing the prevalence of 

these processes among, as well as within, host species can inform us about the potential 

importance of these processes in affecting adaptation and evolution in a host species. 

With several microbial strains associating with a limited number of related host 

genotypes or species (Konno et al. 2011, De Mares et al. 2017, Eck et al. 2019), hosts 

also appear to structure microbial diversity by shaping opportunities for microbial 

specialization. Specialization is here defined as the level of phylogenetic similarity 

among hosts that a given symbiont associates with (Jorge et al. 2017). In some cases, 

variation in host genotypes and traits is also linked with patterns of diversification in 

their microbes (Lei and Olival 2014, Miyake et al. 2016). Studies of these questions 

have mostly focused on a small number of pathogenic or strongly symbiotic microbial 

partners. As a result, we have little understanding of the drivers of microbial 

specialization on their hosts and the extent to which this process is important in 

structuring microbial diversity in natural systems. 

As for microbial community composition, the ecological contexts in which 

host-symbiont interactions take place is expected to affect the quality of the match 

between microbes and their hosts, leading to variation in the strength of microbial 

specialization across a spatially structured landscape (Thompson 2005, Mihaljevic 

2012, Chamberlain et al. 2014). First, the Stress Gradient Hypothesis predicts that with 

an increase in stress in a habitat, we should observe an increased frequency of 

mutualistic interactions between partners (Bertness and Callaway 1994). In an 

extension of that predictive framework, O’Brien et al. (2015) suggested that an increase 

in mutualistic interactions should be conducive to co-adaptation, which should in turn 
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favor greater specialization of symbionts on their host and vice-versa. Stressful 

conditions can be defined as conditions where organisms are under strong selective 

pressure, resulting in a reduction in fitness of populations (Hoffman and Hercus 2000). 

Using this concept, the level of stress can be evaluated as the level of phylogenetic 

clustering in the microbial community, representative of the strength of filtering 

experienced by the community (Webb et al. 2002, Horner-Devine and Bohannan 2006).  

In host-associated microbes, stress can be qualified in two ways. We can first 

think of abiotic stress gradients defined as variation in environmental conditions that 

impact microbial fitness. For example, growth at 0°C was linked with longer generation 

times and higher nutrition requirements than at 10-35°C in aquatic bacteria (Wiebe et 

al. 1992). We can also think of stress gradients experienced via host phenotypes, for 

example through variation in host traits affecting carbon or nutrient availability for 

microbial communities such as cuticle thickness in plants (Lindow and Brandl 2003), 

or gut pH in animals (Ilhan et al. 2017).  

Second, context-dependence in the extent of symbiont specialization can also 

take place through variation in source-sink dynamics across the landscape, since 

variation in the relative abundance of alternative hosts among sites can affect 

opportunities for specialization of symbionts to a focal host (Agrawal 2004). For 

example, butterfly larvae specialize by feeding on a given plant species when it is more 

abundant regionally (Kuussaari et al. 2001). This effect was explained by an increase 

in direct encounter rates, but also by a greater adaptation of populations to regionally 

more abundant plants. The spatial scale at which such effects are likely to be observed 

however seems to vary among study systems (Tack et al. 2014). 

Lastly, in conjunction with these density-dependent effects, the functional 

composition of the local or regional host community can also constrain the evolution 

of specialization. A greater availability of functionally similar hosts (lower host 
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functional diversity) could increase opportunities for host species shifts by the 

symbionts, decreasing opportunities for specialization (Agrawal 2006). Alternatively, 

in examining the evolution of multi-host parasites, the ability to exploit functionally 

different hosts is likely to be constrained by trade-offs between traits involved in 

exploiting the different hosts, such that specialization should be more likely (Gandon 

2004).   

4.2.1 Hypotheses and predictions 

Here, we examine the role for the local and regional host community 

composition on the assembly of their bacterial microbiota through an extensive study 

of associations between temperate tree species and their leaf bacterial communities in 

eastern North America. We first evaluate the role of host identity, host community 

composition and climatic variation in determining leaf bacterial community 

composition on more than 30 tree species across a latitudinal gradient spanning 5°C in 

mean annual temperature. We then test different hypotheses about variation in the 

prevalence and strength of bacterial specialization on their hosts across the landscape 

among and within host species (Fig. 4.1). 

We expect that host community composition (tree community structure) will be 

important in determining bacterial community composition of individual host tree 

species. We predict that bacterial composition of focal host species will become more 

similar to that of neighbouring host species as the focal host becomes less abundant. 

This would happen as a result of an increased exposition of the focal host to bacterial 

communities from neighbouring species when the focal host is less abundant. Epiphytic 

plant bacteria being dispersible as aerosols by wind and clouds (Lindemann and Upper 

1985), we expect source-sink dynamics to take place at local, but also at regional scales. 

We next hypothesize that bacterial specialization will vary both as a function 

of host taxonomy and traits and as a function of the ecological context in which the 
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host-symbiont associations take place (Thompson 2005, Chamberlain et al. 2014). First, 

following the Stress Gradient hypothesis, we predict an increase in specialization with 

an increase with abiotic and biotic stress for the bacterial communities. More 

specifically, we predict that specialization should increase with a decrease in mean 

annual temperature. It should also vary as a function of the leaf physiology of the host, 

namely be higher on hosts that have more conservative resource-use strategies and that 

exhibit higher filtering of their bacterial communities. 

We lastly expect that as for bacterial community composition, the level of 

specialization of bacteria on a given tree host species will vary as a function of the 

relative abundance and functional diversity of its neighbouring tree species (Agrawal 

2004, 2006). We predict that specialization will be higher when the focal host is more 

abundant locally and regionally. This would result from the opportunity to have more 

consistent interactions with the focal hosts, facilitating specialization. By extension, we 

also predict that bacterial specialization will decrease as a function of the functional 

diversity of the host community, which should relax selection on specialization to the 

focal host phenotypes.  

. 
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Figure 4.1 Predictions on the context-dependence of symbiont specialization on their 
host. 
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4.3 Methods 

4.3.1 Data collection 

4.3.1.1 Sampling design 

During summer 2017, we sampled epiphytic microbial communities from the 

leaf surface (phyllosphere) of sugar maple (Acer saccharum) and its surrounding tree 

communities across the north-eastern portion of its range. Nine sites were laid out in a 

grid across Quebec, eastern Ontario and north-eastern United States, each one 

separated by ~150 km from its closest neighbour (Annex E: Fig. S4.1a). Mean annual 

temperature over the 1981-2010 period was determined for the station nearest to each 

site using publicly-available regional climatic data from Environment Canada 

(Gouvernement du Canada 2017) for Canadian sites, and the United States National 

Center for Environmental Information (National Atmospheric and Oceanic 

Administration 2017) for the Vermont site (Table 4.1). At each site, we established 

three 20 x 20 m plots in stands where sugar maple was dominant (>70% cover), and 

three in stands where it was rare (<30% cover). In Québec, we located such stands 

using ecotype forest maps from the Ministère des Forêts, Faune et Parcs of Québec 

(Direction des inventaires forestiers du Ministère des Forêts Faune et Parcs 2015). 

Within each site, all plots were separated by at least 800 m.  

We estimated regional abundance of each tree species in our species pool in a 

25 km radius around median geographic coordinates of plots at each site (Annex E: Fig. 

S4.1b). For Quebec sites, we estimated tree species relative regional abundance at each 

scale using ecotype forest maps, describing tree species composition at the stand level 

across the province from aerial photographs and field surveys (Direction des 

inventaires forestiers du Ministère des Forêts Faune et Parcs 2015). We obtained 

similar information on tree species composition around our Ontarian sampling site 

from the Ontario Forest Resources Inventory (Ontario Ministry of Natural Resources 
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and Forestry 2007). For the Vermont site, we evaluated regional tree species relative 

abundances through the Forest Inventory and Analysis Database of the United States 

Forest Service, consisting in a network of plots in which individual tree species are 

identified and measured (US Department of Agriculture - Forest Service - Northern 

Research Station 2019). All of these georeferenced data were analyzed with ArcGIS 

v.10.5 (ESRI 2011). 

 



Table 4.1 Description of sampling sites. Latitudes and longitudes represent the centroid of latitude and longitude for all 
plots at that site. Mean annual temperature was recorded for the closest governmental meteorological station. 

Site name Abbreviation 
Latitude 
(UTM) 

Longitude 
(UTM) 

Mean annual 
temperature (1981-

2010) (°C) 

Parc des Monts-Valins (Québec, Can.) VAL 48.60088 -70.90967 2.8 

Parc de la Vérendrye (Québec, Can.) VER 47.08255 -76.52711 3.1 
Centre écologique La Huardière, Saint-Michel-des-Saints (Québec, 
Can.) SMS 

46.67675 -74.14121 
3.1 

Parc de la Jacques-Cartier (Québec, Can.) JAC 47.17828 -71.38214 3.4 

Parc du Mont-Mégantic (Québec, Can.) MEG 45.44989 -71.11256 4.0 

Parc de la Gatineau (Québec, Can.) GAT 45.60540 -76.04605 5.6 

Gault Nature Reserve, Mont-Saint-Hilaire (Québec, Can.) MSH 45.54956 -73.13212 6.1 

Proctor Maple Research Center (Vermont, USA) PRO 44.52747 -72.86562 7.4 

Frontenac Provincial Park (Ontario, Can.) FRO 44.52042 -76.53622 7.8 

 

 

 



4.3.1.2 Microbial community sampling and DNA analysis 

Within each plot, we determined tree composition by visually estimating the 

relative abundance (% cover) of each woody species for which we observed at least 

one individual >1 m height. We then sampled three individuals per species present for 

both leaf microbial communities and tree traits. We first used sterile gloves and a pole 

pruner to collect leaves from each of the three individuals of each species at a height 

of ~5 m in the canopy to sample microbial communities. All leaf samples from the 

same species in each plot were mixed together in a sterile bag and kept on ice until 

brought back to the lab and refrigerated in the dark at 4°C. 

Within two days of field collection, epiphytic microbes were washed from leaf 

surfaces using 100 mL of a 1:50 dilution of Redford buffer (1M Tris, 500 mM EDTA, 

1.2% CTAB). The suspension was centrifuged at 3300 g for 25 minutes after which the 

pellet was collected and added to an extraction tube before being frozen at -20°C until 

DNA extraction. Microbial DNA was extracted using QIAGEN Powersoil kits, 

following the instructions of the manufacturer. Using a 1-step PCR protocol adapted 

from Fadrosh et al. (2014), we amplified the bacterial V5-V6 region of the bacterial 

16S rRNA gene to determine community composition using primers 799F and 1115R 

(Kembel et al. 2014). These primers exclude plant chloroplasts and cyanobacterial 

sequences and thus avoid PCR contamination by host plant DNA amplification 

(Rastogi et al. 2010, Redford et al. 2010). Their use is justified since cyanobacteria are 

rare members of the tree phyllosphere (Delmotte et al. 2009, Vorholt 2012). Twenty-

five microliter PCR solutions consisted of 5 μL 5X Phusion HF Buffer (Thermo Fisher 

Scientific), 0.5 μL dNTPS (10μM each), 0.75 μL DMSO, 0.5 μL each primer (10 μM), 

0.25 μL Phusion Hot Start II polymerase (2U/μL) (Thermo Fisher Scientific), 1 uL 

genomic DNA template and 16.5 uL molecular-grade H2O. Reactions were performed 

for each sample using the following conditions: 30 s initial denaturation at 98 °C, 

followed by 35 cycles of 15 s at 98 °C, 30 s at 64 °C, and 30 s at 72 °C, with a final 10-
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min elongation at 72 °C. PCR products were normalized using a SequalPrep 

Normalization kit (Thermo Fisher Scientific), pooled and then purified using AMPure 

(Beckman Coulter Life Sciences) to remove contaminants. The DNA library was 

prepared by mixing equimolar concentrations of DNA from each sample, and then 

sequenced using Illumina MiSeq 250-bp paired-end sequencing. In total, 53 samples 

of sugar maple, and 270 samples of other coexisting species were obtained across 

sampling sites, for a total of 323 samples of epiphytic bacterial communities spanning 

34 tree and tall shrub species.  

4.3.1.3 Tree trait measurement 

We sampled a range of tree traits representative of different plant adaptive axes 

to characterize the host community at each plot. In each plot, we measured wood 

density on three individuals per species as a trait indicative of the stability, defence, 

carbon gain and growth potential of trees (Sungpalee et al. 2009). For example, fast 

growers will typically have low wood density. While this trait value has a lower cost 

and higher hydraulic capacity, it is also associated with lesser biomechanical strength 

and resistance against pathogens. For measuring this trait, we extracted a wood core 

from the same three individuals per plot for sugar maple, and from a total of 5 

individuals per site for each other species using a wood corer. In the lab, we rehydrated 

the wood cores for 30 min. We then measured their volume by water displacement in 

a graduated cylinder (Chave 2005). Samples were then dried at 100°C for 72h before 

being weighed. Wood density was calculated as the ratio between the dry mass and the 

fresh volume of each core. 

We also measured leaf traits across our range of plots and tree species. From 

the same branch where microbial communities were sampled for each tree, we 

collected the three largest leaves and pooled them by species and site for further 

measurements. Upon collection, we first measured leaf area by scanning each leaf and 

determining its area using ImageJ. We then dried the samples at 70°C for 72h and 
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measured their dry mass in order to calculate specific leaf area (SLA), the ratio between 

the fresh area of a leaf and its dry mass. While leaf area is related to a plant's light 

capture strategies, SLA is a proxy for photosynthetic efficiency and resource-use vs. 

conservation tradeoffs (Reich et al. 1994). Using these samples, we also measured leaf 

nutrient concentrations (Ca, Mg, K, P) for all sugar maple samples, and for one sample 

per other tree species per site, totalling 155 samples. To measure leaf nutrient 

concentrations, we first ground the leaf material from each of these samples into fine 

powder and digested with sulfuric acid and hydrogen peroxide (Parkinson and Allen 

1975). Ca, Mg and K were measured on 1/20 dilutions of digested samples with flame 

atomic absorption spectrometry (Varian SpectrAA 220FS, Varian Australia). P was 

measured on digested samples through the colorimetric automated method with 

ammonium molybdate and ascorbic acid (Lachat Instruments, Hach USA). 

4.3.2 Data preparation 

4.3.2.1 Bacterial community composition 

We obtained a total of 10.1M sequences across our 323 bacterial samples. 

Sequence processing, amplicon sequence variants (ASV) identification, and taxonomic 

annotation were carried out using the R package ‘DADA2’ version 1.10 (Callahan et 

al. 2016) using default parameters except where noted. In order to calculate a 

community composition matrix, we first filtered the sequences based on read quality 

and trimmed the forward reads at 210 bp and the reverse reads at 170 bp to get rid of 

low-quality tails. We then identified amplicon sequence variants (ASV) in each sample 

using pseudo-pooling, in which information is shared among samples and then each 

sample processed independently. Pseudo-pooling was used to increase the sensitivity 

of sample inference to sequence variants that may be present in several samples but at 

very low frequencies. We next merged paired reads and removed non-target sequences 

that were shorter than 293 bp or longer than 322 bp along with chimeras. These 

operations resulted in a final set of 9.2M sequences from 18,155 ASVs across all 
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samples, with a median of 29,340 sequences and 497 ASVs per sample. Taxonomy 

was assigned to ASVs by comparison with the SILVA SSU r132 database, confirming 

that all sequences were of bacterial origin and did not contain chloroplasts. For 

subsequent analysis, we rarefied the bacterial community composition matrix to 7,000 

sequences per sample using the R package ‘vegan’ (Oksanen et al. 2013), leading to 

the removal of 27 samples that contained fewer than 7,000 sequences and reducing the 

host species pool to 33 species (Annex F: Table S4.1). After rarefaction, 2,072,000 

sequences and 14,777 ASVs remained and were used for all subsequent analyses. 

4.3.2.2 Bacterial phylogeny 

We built a 16S bacterial phylogeny using the sequences of all ASVs in our 

dataset. We first aligned the sequences to a GreenGenes core set alignment, then 

filtered them to eliminate positions that were gaps in 80% of the sequences using 

QIIME (Caporaso et al. 2010). We then inferred approximately-maximum-likelihood 

phylogenies with the GTR+CAT model using the FastTree2 tool and picked the 

phylogeny with highest likelihood (Price et al. 2010). We removed  167 ASVs with 

extremely long subtending branches in the phylogeny that resulted from poor alignment 

of the associated ASV sequences.  

4.3.2.3 Tree trait community weighted means and functional diversity 

In order to limit collinearity in our tree trait dataset, we evaluated correlations 

between all traits measured across all samples and kept only a subset of traits for which 

the correlation coefficient was less than 0.5 between each other. As a result, our final 

tree trait dataset only includes wood density, specific leaf area, leaf calcium 

concentration and leaf phosphorus concentrations. For each of these traits, we then 

calculated average plot-level population values by averaging trait values across all 

individuals of each species per plot. We also calculated site-level species mean traits 

by averaging a species’ measured trait values across all plots where it was present for 
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each site. Using these species average values, we then calculated weighted mean trait 

values for each plot by weighing the trait values of each species in the plot by their plot 

relative abundance and summing these values across species. We calculated site 

weighted mean trait values in the same way, using the species regional relative 

abundance as weights. 

Lastly, we calculated host functional diversity using the functional dispersion 

metric (FDis) for each plot and site (Laliberté and Legendre 2010). Functional 

dispersion represents the average distance of each species to the species centroid in a 

PCoA space calculated using trait dissimilarities between species. Functional 

dispersion metrics were calculated using a trait dissimilarity matrix generated from trait 

values of all five traits for each plot and site. These calculations were performed using 

package ‘FD’ in R (Laliberté and Legendre 2010). 

4.3.2.4 Tree host phylogeny 

A phylogeny for the sampled tree species was constructed by concatenating the 

dated angiosperm and gymnosperm phylogenies of North American trees published by 

Ma and colleagues (2016). Concatenation of the two trees was performed by grafting 

the angiosperm tree onto the gymnosperm tree with a divergence time set at 377 Mya 

(Ran et al. 2018) using R package ‘ape’ (Paradis and Schliep 2018). 

4.3.3 Analyses 

4.3.3.1 Drivers of bacterial community composition across the landscape 

We first evaluated whether there were differences in bacterial community 

composition as a function of the plot, plot type (high- or low- sugar maple abundance) 

and site. We calculated a Bray-Curtis distance matrix from the rarefied bacterial 

community composition of each sample on which we performed a PERMANOVA 

analysis using plot nested within type and site, type nested within site and site as 
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explanatory factors. We also evaluated the role of host taxonomy in driving differences 

in bacterial communities among samples using a PERMANOVA with host species, 

genus and family as nested explanatory factors. 

We then tested whether variation observed respectively among plots and among 

sites could be linked with variation in host species identity and host community 

composition, while controlling for environmental differences between them. We thus 

conducted a variation partitioning analysis of the bacterial community composition 

data, as a function of host species identity, plot-level tree community composition, site-

level tree community composition and environmental variation among samples (mean 

annual temperature). We conducted individual models per spatial scale, incorporating 

host species identity or abundance, tree trait measures and mean annual temperature, 

to tell which tree traits were most important in explaining these patterns. All analyses 

were performed using R package ‘vegan’ (Oksanen et al. 2013). 

4.3.3.2 Bacterial specialization on their tree hosts 

We evaluated bacterial specialization on their hosts for each ASV at each site 

using the rescaled version of the distance-based specialization index (DSI) (Jorge et al. 

2014, 2017). The DSI metric is a Z-score comparing the mean phylogenetic distance 

(MPD) between all host species on which an ASV was found weighted by their relative 

abundance on each host, to a null distribution obtained by randomly sampling hosts 

from the host pool (n=999). The metric is then scaled by the maximum or minimum 

value obtained for that ASV to obtain DSI*, a metric ranging between -1 (fully 

generalist ASV) to +1 (fully specialist ASV). This scaling enables a more accurate 

comparison of scores among ASV and datasets with different sample sizes. While the 

DSI* metric controls to some extent for the number of host species available, it tends 

to be less stable with fewer species of hosts (Jorge et al. 2017), so we performed these 

analyses at the site rather than the plot-level, to include as many species as possible in 

the calculations. In doing so, we first selected only the 8 species that were the most 



 
98 

abundant at each site, to standardize the number of host species across sites. For each 

of these site and species combinations, we used the sample from the plot where the 

species was the most abundant. To eliminate diversity effects due to variation in the 

size of the ASV pool among sites, we performed these analyses using only the 500 

most abundant ASVs per site. We tested for an effect of site in driving variation in 

bacterial specialization using an analysis of variance, followed by Tukey’s tests to test 

for differences in mean specialization among pairs of sites.  

4.3.3.3 Drivers of bacterial specialization across the landscape 

We evaluated the role of stress gradients, host functional diversity and a focal 

host local and regional abundances in driving bacterial specialization across sites. In 

order to compare microbial specialization with characteristics of the host, we calculated 

weighted averages of ASV specialization scores for each host species at each site, 

which we used in subsequent analyses. We defined both abiotic and host-associated 

stress gradients among host species and sites. Abiotic stress was defined as the gradient 

in mean annual temperature among sites. Host-associated stress was defined two-fold. 

Firstly, we evaluated the strength of bacterial selection by the host, in terms of the 

phylogenetic clustering of the bacterial community. Using the same samples for which 

specialization was measured, we calculated for each host species within each site the 

mean phylogenetic distance (MPD) between all ASVs of its bacterial community and 

compared this distance to a null model where the ASV labels were shuffled across a 

bacterial phylogeny of all ASVs recorded at that site to obtain a Z-score (n=999). We 

performed these analyses using R package ‘picante’ (Kembel et al. 2013). Secondly, 

we were interested in linking this proxy of host-associated stress to trait variation 

among hosts, since host traits determine the type of resources available for the microbes 

on their leaves (e.g. Ca or P) or impediments to colonization (e.g. the thicker wax layer 

associated with leaves with lower specific leaf area). 
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We used the specialization scores calculated above and the abiotic and host-

associated stress proxies to evaluate how the prevalence and strength of ASV 

specialization on their host would vary across host species and sites. We first tested 

whether bacterial specialization varied as a function of mean annual temperature using 

a general linear model. We then added species identity as a variable to this model to 

evaluate the extent to which variation of bacterial specialization along the temperature 

gradient was related with a turnover in host species identity among sites. We compared 

the variance explained by temperature in the two models using analyses of variance. 

We used individual regression models to evaluate the effect of host individual- 

and site-level trait variation on bacterial specialization. We then built a general linear 

model to explain variation in the mean specialization score of all ASVs on a given host 

by the filtering on that host species (ASV phylogenetic clustering). We tested the role 

of host functional diversity at the site level in driving specialization patterns using a 

similar model, with site-level functional diversity as an explanatory variable.  

We lastly evaluated the effect of host local and regional abundance on 

specialization patterns in a focal host species (A. saccharum). First, we reran the 

calculations of the specialization metrics at each site using only the ASVs that were 

found on sugar maple. In order to get specialization estimates for each sugar maple 

sample while keeping the ASV pool from other host species constant, we reran these 

calculations at each site using in turn every sugar maple sample from that site. For the 

following analyses, we only used ASVs that were recorded at each site. We used 

analyses of variance of general linear models to test the influence of sugar maple 

relative abundance and bacterial ASV identity on specialization of sugar maple 

associated bacteria. We ran one such model using plot relative abundance, and another 

using regional relative abundance of sugar maple to evaluate their respective effects. 

We also tested the interactions between relative abundance and ASV identity to account 

for intraspecific variation in ASV specialization as a function of host relative 
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abundance. All ecological analyses were performed using R version 3.6.1 (R Core 

Team 2013). 

4.4 Results 

4.4.1 Drivers of bacterial community composition across the landscape 

Bacterial community composition of the tree phyllosphere varied as a function 

of host taxonomy, plot-level host relative abundances and site-level host relative 

abundances, with only a small portion of this variation being jointly explained by 

covariation of tree species abundances with mean annual temperature across the 

gradient (Table 4.2, Fig. 4.2a, Fig. 4.3a-c). Similar patterns were observed when 

considering sugar maple samples alone (Table 4.2, Fig. 4.3d-f). One of the major 

gradients in bacterial community composition among samples was a differentiation 

between gymnosperm (top-left) and angiosperm (bottom) microbiota (Fig. 4.3a). This 

transition was also observed among sites, across the transition from old-growth 

deciduous and mixed forests with large abundances of sugar maple and red oak 

(Quercus rubra (L.)) to the boreal forest dominated by balsam fir (Abies balsamea (L.)) 

and paper birch (Betula papyrifera (Marshall)) (Fig. 4.3c-f). Across this gradient, 

species belonging to the birch family (Betulaceae) appeared as intermediates (Fig. 4.3a), 

with more northern plots dominated by yellow birch (Betula alleghaniensis (Britt.)) 

tending to draw the composition of co-occurring species further from conifer-type 

microbiota (Fig. 4.3b,e). 

Variation in the traits of hosts, particularly within and among host species and 

among site-weighted means, explained a significant portion of the variation in bacterial 

community composition among hosts (Fig. 4.2b-d, Fig. 4.3). A gradient in specific leaf 

area and wood density was strongly associated with bacterial community turnover 

between gymnosperms and gymnosperm-dominated communities and the angiosperms 
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and angiosperm-dominated communities (Fig. 4.3a-c), while leaf phosphorus 

concentration was strongly correlated with bacterial community turnover among hosts 

and host communities dominated by the maple (Sapindaceae) and the oak (Fagaceae) 

family to the birch family (Betulaceae) (Fig. 4.3a-c). 



Table 4.2 Variation in bacterial community composition as a function of sample structure and host taxonomy. Two sets 
of models were built, the first for all samples and the second for sugar maple samples only. Sample structure includes 
variation among plots, among plot types (hi- or low- abundance of sugar maple) and among sites. For each model, variation 
explained by different variables was evaluated using a PERMANOVA test on Bray-Curtis dissimilarity (n=999 permutations). 
F represents a pseudo-F ratio used to estimate statistical significance of the different variables. Significance levels for each 
variable are given by: *p < 0.05; **p < 0.01; ***p < 0.001. 

All samples         

Model Variables Bray-Curtis dissimilarities 

    df Sum of Sqs R2 (%) F Pr (>F)   

Sample 
structure 

Plot (nested within Type and Site) 33 8.331 11.4 1.270 0.001 *** 

Type (nested within Site) 9 4.173 5.7 2.332 0.001 *** 

Site 8 8.331 15.9 7.259 0.001 *** 

Residuals 245 48.72     
Total 295 72.772       

Host taxonomy 

Species (nested within Genus and Family) 12 6.305 8.7 2.695 0.001 *** 

Genus (nested within Family) 10 4.427 6.1 2.271 0.001 *** 

Family 10 10.771 14.8 5.525 0.001 *** 

Residuals 263 51.270     
Total 295 72.772         

        
Sugar maple samples        

Model Variables Bray-Curtis dissimilarities 

    df Sum of Sqs R2 (%) F Pr (>F)   

Sample 
structure 

Type (nested within Site) 9 1.815 18.5 1.056 0.21  
Site 8 2.093 21.3 1.371 0.001 ** 

Residuals 31 5.919     
Total 48 9.828         



 

Figure 4.2 Variation partitioning of bacterial community composition (proportion 
of variance explained) as a function of host identity, host community composition, host 
traits and mean annual temperature (MAT). Panel a shows variation partitioning based 
on the host species identity, host community composition and MAT alone. Panels a-d 
present variation partitioning as a function of host identity or relative abundance of the 
host and their traits aggregated at three different hierarchical levels: individual host 
species within plot and site (b), plot-level within site (c) and site-level (d). Only 
significant portions (p<0.05) are shown. 
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Figure 4.3 Principal components analyses (PCoA) of bacterial community 
composition of the phyllosphere of 33 tree host species. Two PCoA were calculated 
using Bray-Curtis distances among samples, one using samples from all species (a-c) 
and the other using samples from the sugar maple host only (d-f). Each point represents 
a bacterial community sample from a host species at a given plot and site. Samples are 
color-coded by the taxonomic family of the host. Ellipses representing the standard 
error of the average of scores are drawn for host species for which he had at least 5 
samples (panel a) and for sites (panels c,f). We fitted host traits and relative abundances, 
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as well as mean annual temperature (MAT) onto each PCoA in a way that maximises 
the correlation between these variables and the configuration of the PCoA and plotted 
them on the graphs. We performed this fitting respectively for individual- (a,d), plot-
level (b,e) and site-level (c,f) average host traits (black lines), as well as plot-level and 
site-level host relative abundances (lines colored by host taxonomic family). Only the 
host species occurring in more than 3 sites were used for plotted in site-level analyses. 
Species codes are the following: Abies balsamea (L.) [ABIBAL]; Acer pensylvanicum 
(L.) [ACEPEN]; Acer rubrum (L.) [ACERUB]; Acer saccharum (Marshall) 
[ACESAC], Acer spicatum (Lam.) [ACESPI], Betula alleghaniensis (Britt.) 
[BETALL], Betula papyrifera (Marshall) [BETPAP], Corylus cornuta (Marshall) 
[CORCOR], Fagus grandifolia (Ehrh.) [FAGGRA], Fraxinus pennsylvanica (Marshall) 
[FRAPEN], Ostrya virginiana (Mill.) K. Koch [OSTVIR], Picea rubens (Sarg.) 
[PICRUB], Prunus pensylvanica (L.f.) [PRUPEN], Quercus rubra (L.) [QUERUB], 
Tilia americana (L.) [TILAME]. Host trait codes are the following: specific leaf area 
(mm2·mg−1) [SLA]; wood density (g·cm−3) [Wood.dens]; leaf calcium concentration 
(mg·g−1) [Ca]; leaf phosphorus concentration (mg·g−1) [P]. Site codes are presented in 
Table 4.1. 

 



4.4.2 Drivers of bacterial specialization on their host across the landscape 

Phyllosphere bacteria showed a tendency for specialization (DSI* > 0) as 

opposed to generalization (DSI* < 0) (Fig. 4.4). Bacterial specialization on individual 

hosts varied significantly among host species (Type III ANOVA: F(10,43) = 2.584, 

MSE = 0.022, p = 0.015) and host families (Type III ANOVA: F(3,50) = 5.925, MSE 

= 0.022, p = 0.002). Phyllosphere microbiota of host species from the maple and birch 

family showed the highest specialization, while those of the pine and the oak families 

showed the lowest levels (Fig. 4.4A). Variation in specialization of bacteria on hosts 

was also observed across sites (Type II ANOVA: F(8,4491) = 14.254, MSE = 0.213, p 

< 0.001) (Fig. 4.4B). While we observed a negative correlation between bacterial 

specialization and mean annual temperature among sites, this relationship was mostly 

encompassed by turnover in the mean specialization levels of host species across the 

climatic gradient (Table 4.3, Fig. 4.5a).  

The strength of bacterial filtering by a host was not correlated with the level of 

bacterial specialization on that host (Fig. 4.5b). However, individual host traits were 

good predictors of its average bacterial specialization (Fig. 4.6). We observed a positive 

relationship between specific leaf area, calcium concentration and phosphorus with the 

average bacterial specialization on a host (Annex F: Table S4.2a). In opposition to the 

patterns observed with bacterial community composition, bacterial specialization was 

not influenced by the functional characteristics of the host community. Mean site 

weighted traits did not explain variation in specialization across host species and 

among sites (Annex F: Table S4.2b), nor did host functional diversity (Fig. 4.5d). 

Lastly, we tested the role of local and regional host abundance in driving host 

specialization in sugar maple. We find that plot-level abundance of sugar-maple did 

not have any impact on the level of specialization of their leaf microbiota. We however 

show that regional abundance of sugar maple was positively correlated with the 

specialization of its phyllosphere bacterial communities, even when controlling for 
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variation in mean annual temperature (Fig. 4.5c). This effect was linked to differences 

in specialization among, but also within ASVs long the sugar maple abundance 

gradient (Table 4.4).



Table 4.3 Variation in mean bacterial specialization (DSI*) on host species among sites along a temperature gradient. 
The DSI* metric is a standardized score characterizing the phylogenetic range of hosts an ASV interacts with. We used linear 
regression models to evaluate the influence of mean annual temperature on mean bacterial specialization on hosts per site 
while controlling or not for variation in host species identity. We evaluated sums of squares explained by each variable using 
analyses of variance. Only the 8 most abundant host species and the 500 most abundant ASVs per site were included in the 
model to control for differences in host species and ASV diversity among sites. Significance levels for each variable are 
given by: *p < 0.05; **p < 0.01; ***p < 0.001. 

Model Variables 

      

df Sum Sq Mean Sq F Pr (>F)   

One factor 

model 

Mean annual temperature 1 0.213 0.213 7.48 0.008 ** 

Residuals 70 1.994      

Two factor 

model 

Mean annual temperature 1 0.024 0.024 1.138 0.292  
Host species 25 1.051 0.042 2.004 0.021 * 

Residuals 45 0.943         

 

 



Table 4.4 Variation in bacterial specialization (DSI*) on sugar maple (Acer saccharum) per site as a function of sugar 
maple abundance, bacterial ASV identity and their interaction. The effect of sugar maple abundance at the local and at the 
regional scales were examined in two separate models. The DSI* metric is a standardized score characterizing the 
phylogenetic range of hosts an ASV interacts with. We used an analysis of variance to determine the variance in specialization 
of individual ASVs present on sugar maple explained by each factor and their interaction. Only ASVs that were present at 
all sites across the gradient were included. Significance levels for each variable are given by: *p < 0.05; **p < 0.01; ***p < 
0.001. 

Model Variables 

  

df Sum Sq Mean Sq F Pr (>F)   

Local 

Local abundance of sugar maple (SM) 1 0.09 0.14 0.653 0.419  
Bacterial ASV identity (ASV) 113 182.45 1.61 17.202 <0.0001 *** 

SM*ASV 113 4.84 0.04 0.457 1.000  
Residuals 3328 435.78 0.13    

  Total 3555 623.16         

Regional 

Regional abundance of sugar maple (SM) 1 3.40 3.40 29.430 <0.0001 *** 

Bacterial ASV identity (ASV) 113 182.74 1.62 19.512 <0.0001 *** 

SM*ASV 113 52.62 0.47 5.620 <0.0001 *** 

Residuals 3328 384.69 0.12    
  Total 3555 623.45         



 

Figure 4.4 Variation in specialization (DSI*) of bacterial phyllosphere 
communities among the most abundant tree host species (a) and among sites (b). The 
DSI* metric is a standardized score characterizing the phylogenetic range of hosts an 
ASV interacts with varies between -1 (fully generalist) and +1 (fully specialist ASVs). 
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In panel a, data points are mean specialization scores of ASVs per host species per site, 
weighted by the ASV abundance on the host. We only show host species that were 
present in at least 3 sites. Different letters among taxonomic families indicate 
significant differences in their average level of specialization as indicated by Tukey’s 
HSD test on an analysis of variance. Host species are color-coded by the host 
taxonomic family. In panel b, data points are specialization scores of individual ASVs 
at each site. Different letters among sites indicate significant differences in their 
average level of specialization as indicated by Tukey’s HSD test on an analysis of 
variance. Sites were ordered in the figure from coldest (left) to warmest (right). Site 
codes are indicated in Table 4.1. 
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Figure 4.5 Variation in mean specialization (DSI*) of ASV on their host across 
sites, as a function of mean annual temperature (a), phylogenetic clustering of bacterial 
communities (b), host regional abundance (c) and host functional diversity (d). The 
DSI* metric is a standardized score characterizing the phylogenetic range of hosts an 
ASV interacts with and varies between -1 (fully generalist) and +1 (fully specialist 
ASVs). Each point represents the mean specialization of ASVs on a host species at a 
site. In panel b, phylogenetic clustering was calculated as a standardized effect size of 
mean pairwise phylogenetic distances between all members of the bacterial community 
as compared to null communities (n=999). The standardized scores vary from negative 
(less clustered than expected by chance) to positive (more clustered than expected by 
chance). Panels a, b and d include one sugar maple sample per site, while panel c only 
includes sugar maple samples, for which specialization scores were calculated for 
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every sample at every site. In panel d, the FDis metric represents a measure of 
functional dispersion among all host species at a given site, with a larger metric 
indicating a larger functional diversity. 
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Figure 4.6 Variation in mean specialization (DSI*) of ASVs on their host across 
sites as a function of individual host traits. The DSI* metric varies between -1 (fully 
generalist) and +1 (fully specialist ASVs). Each point represents the mean 
specialization of ASVs on a host species at a site. Each panel represents a different trait. 
Blue solid slopes indicate significant relationship between specialization and the trait 
in linear regression models. Detailed results for these models are presented in Annex 
F: Table S4.2a. 
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4.5 Discussion 

4.5.1 Role for host community structure in driving bacterial community 
composition 

Our results show a role for both bacterial species sorting and mass effects in 

determining phyllosphere bacterial community composition. Indeed, bacterial 

community turnover was observed across plant host species and families as a function 

of their functional traits such as specific leaf area. Still, we also observe a role for plot-

level and site-level host community composition and traits in driving bacterial 

community composition, suggesting that the presence of alternate hosts is affecting the 

assembly of bacterial communities on a given host. Similar differences in bacterial 

community composition of sugar maple among samples taken from sites where sugar 

maple, balsam fir or yellow birch were dominant also support a role for mass effects 

from abundant host species in phyllosphere community assembly. As such, our results 

support the presence of a “core” microbiota determined by host taxonomy and traits in 

the phyllosphere bacterial community, supplemented by a “peripheral” microbiome 

likely acquired from neighbour host species. 

The role of host taxonomy or traits vs. horizontal transmission from contact 

with other host species in driving symbiont community assembly has been explored in 

the study of animal gut microbiomes. A few studies have provided evidence suggesting 

that the sharing of habitats among different animal species could make their microbiota 

more similar through direct or indirect contact (e.g. van Veelen et al. 2017, Perofsky et 

al. 2019, but see Ivens et al. 2018). While differences in the microbiota of tree leaves 

of host species among different sites have been reported (Finkel et al. 2011, Laforest-

Lapointe et al. 2016), it was unclear if these patterns result from bacterial sorting in 

response to abiotic gradients such as temperature or precipitation, or differences in the 

ecological context experienced by the host. Here, we provide some of the first evidence 
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that a host’s niche overlap with other abundant host species influences community 

composition of its associated phyllosphere bacteria. 

4.5.2 Bacterial specialization across a heterogeneous landscape 

We expected fewer opportunities for specialization in epiphytic bacteria from 

the leaf surface than in other host-microbe systems, because of greater opportunities 

for movement among hosts and less costly barriers to overcome to interact with the 

exposed surfaces of the host, both of which should favor generalization. Here however, 

we show high average levels of specialization of bacteria to hosts in the phyllosphere 

(specialization is always in the upper part of the specialization gradient (DSI* > 0)), 

even when evaluating only the most abundant bacterial strains at each site, suggesting 

that there would still be potential benefits for a microbe to specialize on resources 

provided by a given host species in the phyllosphere. 

Specialization of phyllosphere bacteria on their hosts was largely determined 

by tree species identity and linked to variation in their traits, with an increase in 

specialization on species with higher SLA and higher leaf calcium concentrations. 

Despite this influence of individual host traits, we did not find that specialization was 

linked to variation in the strength of filtering of hosts on their symbionts. These results 

suggest that the selection of phylogenetically similar bacteria by host plants is not an 

important driver of bacterial specialization on their host and that reciprocal 

specialization is therefore unlikely to be a strong driver of host-symbiont pairing across 

the gradient.  The association between bacterial specialization and host traits suggests 

that niche partitioning and opportunities for specialization do not depend on 

phylogenetic distances among bacteria (Dolan et al. 2017), but rather on the 

opportunities for niche partitioning provided by leaf morphological and physiological 

characteristics. For example, higher leaching of resources on the surface of leaves with 

higher SLA (and thinner cuticles) could explain the higher propensity for specialization 
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of their bacteria through resource competition (Lindow and Brandl 2003, Brockhurst 

et al. 2006). 

Variation in the level of specialization of different host species also led to a 

turnover in mean levels of specialization among sites along the climatic stress gradient. 

While conifer species and their less specialized microbiota were present throughout the 

climate gradient, the deciduous species observed at the colder end of the gradient 

hosted more specialized communities than their southern counterparts, such that we 

observed a general increase in average specialization with a decrease in temperature 

across the gradient. While deciduous tree species hosting more specialist bacteria were 

found at the northern part of our climatic gradient, specialization on sugar maple tended 

to be lower at these sites where conditions were colder and sugar maple was less 

regionally abundant. This effect was principally associated with turnover in ASV along 

the gradient, and to a lesser extent with variation in specialization within ASVs. These 

observations suggest on the one hand that the mass effects leading to a greater 

resemblance between microbiota of sugar maple and coniferous species at the northern 

part of the sugar maple range would also increase the proportion of generalist species 

coming from the surrounding conifers in its microbiota. On the other, it means that 

specialization on sugar maple could be harder to maintain in plots where it is not as 

abundant, such that even individual ASVs would tend to become more generalist.  

The variation in specialization across sites that we observed is not entirely 

consistent with the expanded Stress Gradient Hypothesis (O’Brien et al. 2018). While 

average specialization of bacteria among deciduous host species follows the 

expectation that associations between hosts and symbionts should be more specialized 

in more stressful sites, within a deciduous host species, bacterial specialization appears 

to be decreasing with stress. A possible explanation would be that bacteria taking 

advantage of the greater nutrient availability on deciduous trees would benefit more 

from specializing on deciduous hosts that are consistently present in harsher climates. 
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However, bacteria specialized on more southern species would not be resistant to 

climate stress, and thus average specialization would be reduced towards a host’s 

northern range limit where it is less abundant. These results are consistent with 

observed constraints to sugar maple establishment at the northern portion of their range 

as a result of a lower availability of their associated mycorrhizal fungi (Brown and 

Vellend 2014, Carteron et al. 2020), and suggest that such constraints might also exist 

at the level of the phyllosphere and be affecting the northern expansion of tree species.  

Lastly, in contrast with what was observed for community composition, 

characteristics of the host community at the site-level, namely weighted average host 

traits and functional diversity did not explain variation in levels of specialization 

among sites. With average bacterial specialization levels being strongly determined by 

host species identity, characteristics of the population of that host and its relative 

abundance in the landscape appear to be more important in determining the extent of 

specialization of its bacteria than the characteristics of other hosts. Since specialization 

is higher when the host is more abundant, it seems that the opportunity to encounter a 

host encourages the maintenance of bacterial specialization. Whether specialization in 

phyllosphere bacteria is likely to lead to co-diversification with their hosts remains to 

be investigated. Still, the absence of correlation between average levels of 

specialization of bacterial communities and the extent of phylogenetic clustering of 

these communities among hosts suggest it is unlikely to be prevalent in this system. 

4.6 Conclusions 

Using field data from more than 30 host tree species sampled across a wide 

latitudinal gradient in eastern North America, we have provided evidence for context-

dependence in the associations between plant hosts and their bacteria in the 

phyllosphere. We show that bacterial community composition on temperate tree leaves 

was determined both by the abiotic environmental context and the identity of the focal 
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host, but also by the taxonomic and functional traits of co-occurring hosts across the 

landscape. The level of specialization of bacteria on their hosts also varied as a function 

of its regional abundance, suggesting an importance for co-occurring host species in 

altering the match between host trees and their microbiota. Overall, our results 

represent a first major examination of the drivers of bacterial composition and 

specialization to life on diverse tree hosts in natural communities. They also represent 

a major step in trying to predict potential mismatches between tree host species and 

their microbiota under environmental change. 
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CONCLUSION 

 

Understanding the diversity of microbial life is crucial to addressing several 

fundamental questions in ecology. Through the study of microbes, we are starting to 

evaluate the universality of ecological processes driving species distributions across 

the tree of life. We are also improving our appreciation of the role for biotic interactions 

in driving coexistence and the evolution of co-occurring species across trophic levels. 

With numerous studies linking the composition of human and plant microbial 

communities to their host health or productivity, applied research in microbial ecology 

is also having tremendous impacts on our understanding of plant and animal fitness. 

My thesis research focused on improving our understanding of the structure of 

microbial diversity at a global scale using trait-based approaches, and of the way 

microbial diversity is maintained through their association with hosts. I used diverse 

research methodologies, including a conceptual review, a meta-analysis and a field-

based study to address these fundamental questions. Specific contributions of this 

thesis to the field of ecology, and more specifically microbial ecology, along with 

caveats and future directions for this research program are outlined below. 

5.1 Trait-based approaches in microbial ecology 

While the prediction of microbial functions based on gene sequences are being 

more routinely added to studies of taxonomic turnover among microbial communities, 

the use of trait-based data continues to fulfill a largely descriptive role in microbial 

ecology. In the first chapter, we identify recent contributions of trait-based approaches 
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to knowledge development in microbial ecology and outline specific challenges that 

are hampering a transition to a more predictive and integrative microbial trait-based 

ecology. Such challenges include a lack of a working definition of a microbial trait, a 

large diversity of microbial lifestyles limiting the potential for “universal” 

methodologies for studying traits, and incomplete and biased databases on microbial 

traits. In response to these challenges, we first make the case for initiating new 

discussions on what constitutes a valuable microbial trait to study. We then argue that 

the identification of major microbial adaptive strategies, combining numerous 

covarying traits, could facilitate the integration of trait-based results among research 

teams studying trait variation at different biological levels and with different 

methodologies. We finally propose grounds for better data and theory sharing between 

all practitioners of microbial ecology to facilitate integration and generalization of 

research results. 

Altogether, this opinion piece comes at a time when there is a great interest in 

applying trait-based approaches to microbial ecology, but when the question of how 

and why to do it is still lagging behind. By anchoring our discussion in a framework 

derived from philosophy and epistemology, we broaden the scope of trait-based 

approaches to microbial ecology from one oriented mostly around explanation towards 

improving the predictive and integrative potential of these approaches. We use case 

studies from macro-organismal ecology to show concretely how these goals for 

knowledge development can be fulfilled and propose precise solutions, adapted to the 

biological reality of microbes, to make the most of recent advancements in the 

measurement of microbial phenotypes and traits. 

Despite such stimulating prospects for microbial trait-based approaches and an 

increased interest in generating functional predictions from sequence data, important 

caveats to these approaches still remain to be solved and keep on applying to most 

genetic trait-based studies. These caveats therefore also apply to Chapter 2. Namely, 
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the presence of genes encoding for a certain protein in a microbial genome does not 

necessarily mean that these genes are expressed in the environment from which the 

sequence was collected, such that we may get at the fundamental niche of microbes, 

but not the realized niche. The still massive challenge that characterization of the 

proteome or transcriptome of microbes poses suggests that the description of realized 

niches may not be widely used for yet another several years. Also, protein-prediction 

from gene sequences are still biased to those observed from model organisms of narrow 

taxonomic breadth and economic importance (i.e. human-associated). As such, the 

functions of environmental microbes remain largely uncharacterized. Assignment of 

functions to genes also relies on the study of culturable organisms, which has yet 

excluded a great portion of microbial life (but see Martiny 2019). However, with 

improvements in the capacity to culture microorganisms regardless of habitat, the 

description of phenotypes from culture may represent the best way forward in 

characterizing new microbial traits. 

5.2 Fundamental bacterial strategies across clades and ecosystems 

The search for the fundamental axes of functional trait variation among living 

organisms has been a key question in ecology and evolutionary biology for decades 

(David and Alm 2011, Levine 2015, Díaz et al. 2016). In this article, we use a trait 

screening approach based on genomic and metagenomic data to identify the key 

functional strategies of bacteria across the tree of life and across ecosystems. We 

identify three main axes of correlated functional genes that explain functional turnover 

both among bacterial clades and habitats, namely 1) DNA metabolism, 2) metabolism 

of secondary compounds, and 3) signalling and attachment to hosts. Importantly, we 

show that these strategies are mostly linked with biotic interactions rather than resource 

use (e.g. carbon compounds), as is usually considered in microbial trait-based 

approaches (e.g. Krause et al. 2014, Malik et al. 2019). We also show an important role 

for hosts in explaining bacterial turnover among habitats worldwide. These results 
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represent a major advance in our understanding of the origin and maintenance of 

biological diversity, expanding on related findings for plants (Wright et al. 2004) and 

birds (Pigot et al. 2020). 

Overall, our study is the first to use a data-driven approach to identify microbial 

ecological strategies across both genomes and environmental metagenomes. Our novel 

approach to studying the structure of bacterial functional diversity allows us to quantify 

the role of evolutionary processes in structuring microbial ecological differences 

among ecosystems. By reducing the high dimensionality of trait variation observed 

among microorganisms around a small number of fundamental axes of trait covariation, 

we make a significant step towards generalization of the drivers of biological diversity 

in microbes but also across study systems. 

The quality of functional inference possible from metagenomic datasets 

represents a caveat to most metagenomic studies of environmental microbiota. With 

current datasets used for microbial protein predictions, we are still only capable of 

annotating a very low portion of sequences in metagenomic datasets (~3%). As a result, 

even with relatively high depth of sequencing it remains difficult to confirm the 

presence of whole functional pathways for most members of the microbial community. 

In this context of our analyses, we therefore assumed that the presence of a functional 

gene was evidence for the presence of the functional pathways in which it is known to 

participate. Still, genes can participate in several pathways and it may not thus be 

possible to tell which one of these pathways is truly represented in the dataset, such 

that there might be false positives in our datasets. Still, by setting a minimum of 74,000 

functional annotations for inclusion in our study, we expect to have controlled for this 

issue. In a similar vein, metagenomic and genomic approaches to the identification of 

adaptive strategies are still limited by the precision of the fitness metric they are using 

in identifying traits of ecological importance. That is, we had to rely on the relative 

abundance of a functional gene in the community as an indicator of its fitness 
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consequences, but this metric may not be perfectly correlated with a gene’s impact on 

growth and survival in individual organisms. More precisely linking traits to function 

in sequencing studies may require more extensive coupling of sequencing approaches 

with culture-based methods. 

 

An important motivation for investigating functional strategies was to improve 

integration and generalization and while our work represents an important first step in 

doing this, this project could radiate in different ways to contribute to these goals. It 

would namely be relevant to ask whether these axes of variation are scalable among 

biological levels, meaning whether they explain variation within ecosystems and 

bacterial communities, and among bacterial populations. In the third chapter of this 

thesis, we found that the functions that explained most variation among bacterial 

phyllosphere samples from a neotropical forest were those linked to signalling and 

attachment, as well as metabolism of terpenoids and polyketides, which is in line with 

the functional strategies found to be important among ecosystems as well.  

5.3 Adaptive matching between phyllosphere bacteria and their tree host 

The phyllosphere is an important microbial habitat but we have a limited 

understanding of how plant hosts drive the composition of their associated leaf 

microbial communities and whether taxonomic associations between plants and 

phyllosphere microbes arises through adaptive matching. In this paper, we asked how 

plant hosts are shaping community assembly of their phyllosphere bacteria through 

their role as biotic filters. We first describe a core functional microbiome of the 

phyllosphere of 17 neotropical tree species. We next uncover a role for trees in 

constraining the composition of traits of their phyllosphere communities along a 

gradient of leaf trait properties among host species, with specific microbial adaptations 

pertaining to the biosynthesis and degradation of secondary compounds appearing to 

play a role in responding to these host gradients. We further find that several microbial 
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traits driving functional turnover among communities were conserved in the host 

phylogeny, strengthening the proposed role for plants as selective forces on microbial 

community assembly in the phyllosphere. 

 

This study is among the first field-based studies to investigate the structure and 

drivers of phyllosphere functional diversity across multiple host species using 

metagenomic shotgun sequencing. Our study considerably improves the mechanistic 

understanding of plant-microbe interactions by using a trait-based approach to evaluate 

the nature and extent of adaptive matching between microbes and their tree hosts. It 

also provides an important first step in unraveling the main adaptive axes of microbial 

communities in the phyllosphere and in finding specific microbial functions that could 

be routinely used to describe such communities. 

Some questions however remain unanswered regarding the emergence of these 

trait correlation patterns between hosts and bacteria. Namely, we were not able to 

determine whether this trait matching arose through adaptation of bacteria to trait 

variation in their tree hosts, or whether they are the result of reciprocal adaptation 

between both types of partners potentially leading to coevolutionary dynamics. 

Evidence for broad cophylogenetic patterns between phyllosphere bacteria and their 

tree hosts was uncovered in the same study system using samples from 57 tree species, 

with several bacterial phyla being consistently associated with specific plant families 

(Kembel et al. 2014). Evaluating evolutionary correlation between host and bacterial 

traits would represent a valuable step in testing the mechanistic bases of these patterns 

(e.g. Adams and Nason 2018). It would also be relevant to test in controlled conditions 

whether trait matches are the result of reciprocal adaptation, leading to individual 

partners exhibiting higher fitness through these traits in the presence of each other (e.g. 

Bassar et al. 2017).  
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It would also be worthwhile to evaluate how the main axes of variation 

uncovered in phyllosphere bacterial traits in this tropical forest compare with other 

phyllosphere habitats that may present different abiotic and biotic filters for both 

microbes and plants. While we provided evidence for a role for the host community in 

driving bacterial community composition on individual hosts across climatic gradients 

(Chapter 4), we do not know whether their functional composition is similarly affected. 

For example, we could expect droughts to represent greater selective pressure on the 

traits of phyllosphere microbes and their hosts in temperate relative to tropical forests, 

with consequences for the quality of trait matching between them. Evaluating the 

generality of the drivers of bacterial community assembly on their host in the 

phyllosphere remains a standing objective for the field. 

5.4 Bacterial community assembly and specialization in a multi-host landscape 

Turnover in the composition of microbial communities among host species and 

genotypes supports a role for hosts in structuring microbial diversity. While such 

patterns have mostly been explained with host taxonomy, little is understood of the role 

of neighbouring hosts in influencing the match between a focal host and its microbiome. 

In this article, we show that tree hosts structure bacterial diversity on their leaves 

through selection by their leaf traits, but also through horizontal transmission between 

co-occurring host species. More specifically, we show that the abundance of other tree 

species in the locality and region of a focal tree population influences the composition 

of its bacterial microbiota across its range. The relative abundance of the focal host 

species in the landscape is similarly a good predictor of bacterial specialization on that 

host, suggesting that the transmission of generalized bacteria from alternative host 

species may affect host-symbiont matching in the phyllosphere.  

All in all, this study is among the first to characterize the influence of co-

occurring host species in driving community assembly of plant-associated microbes. It 
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also represents one of the first characterization and investigation of the drivers of 

phyllosphere microbial specialization in multi-species host communities. 

Characterizing variation in microbial specialization is an important first step in 

evaluating the role of hosts in the evolution of phyllosphere microbes in natural settings. 

It also provides important insight for predicting host-symbiont mismatches with 

variation in the distribution of host species as a result of climate change. 

One of the main challenges remaining in the study of host-symbiont 

associations is to determine to which extent partners of co-occurrence translate into 

interactions. It is possible that several of the microbial occurrences on host leaves 

represent passenger microbes rather than resident microbes. While we could not 

confirm this without extensive laboratory manipulations, the consistent association 

patterns found between host species and their microbiome appear to support the 

presence of interactions (whether commensalist, mutualist or antagonistic) between 

hosts and their microbiota in our system. To better understand the pairing mechanisms 

behind these associations it would also be relevant to obtain data on the functions 

expressed by microbes on the host leaves, for example through metagenomic 

sequencing of bacterial samples. Another interesting venture for expanding this project 

would be to assess whether specialization of bacteria on different host species across 

the landscape is associated with co-diversification with their host. Linking trait 

evolution in hosts and diversification of their bacteria would be an important next step 

in understanding the role of hosts in structuring bacterial diversity in the wild. 

5.5 Final remarks 

 In this thesis, I have argued that the use of trait-based approaches represents a 

promising way forward in investigating mechanisms of adaptation of microbes to 

environmental gradients, but also in attempting to build a more integrative practice of 

microbial ecology. I namely showed that the investigation of major bacterial strategies 
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represented an informative tool for drawing more general understanding of the 

processes at play in structuring the composition and evolution of bacterial communities 

worldwide. I also provided empirical evidence of the role of individual plant hosts and 

their neighbourhoods in structuring bacterial diversity across spatial scales. Overall, 

this thesis supports adaptation to life with hosts as an important axis of ecological 

variation in bacteria, both globally and within a forest ecosystem. It also lays 

foundations for an improved use of bacterial and host traits in understanding the origin 

and maintenance of bacterial diversity. 

 

 

 



ANNEX A 

 

 

SUPPLEMENTARY FIGURES – CHAPTER II 

 



 

Figure S2.1.  Taxonomic composition of the genomic dataset at the phylum level. Bar 
height indicates the relative abundance of each phylum. 



 

Figure S2.2. Detailed dendrogram indicating correlations among bacterial functional pathways across 69 metagenomic 
samples. Main clusters of correlated traits are color-coded and labelled (C1-C10) in the dendrogram. Colors and shapes of 
leaves indicate the KEGG functional category to which the functional pathways belong. Red numbers at each node represent 
the Approximately Unbiased p-value obtained from multiscale bootstrap resampling of the dendrogram (n=10 000). 

 

 
 

 
 

 
 

 
  
 
  
 
 
  
  
 
 
  
  
 
  
 
 
 
  
 
  

 
  
 
 
   
 

 
 
 
  
  
 
 
 
 
  

 
 
 
  
 
  
 
  

 
  
  
  
  
  
 
 
 
 
  
 
  
 
  
 
 
 
 
  
 
 
  
  
 
  
 
 
  
 

 
  
 
 
 
 
 

 
  
 
 
  
  
 
  

 
  
 
 
   
 

 
 
  
 
 
 
  
  
 
 
 
 
 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
  
 
 
  
  
 
  
  
 
  
 
  
  
  
 

 
 
   
 
 
  
   
 
  
 
 
  
 
 
  
  
 
 

 
 
  
 
  

  
  
 
  
  
  
  
 

 
 
 
 
  
 
 
  
 
 
 
 
 
 

 
 
 
  
  
 
 
  
 
 
  
 

 
  
 
 
  
  
 
 
  
  
 
 
 

 
 
 
 
  
 
 
  
  
 
  
 
 
 
  

 
 
 
  
 
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
  
 
 
   
 
  
 
 

 
  
 
  
 
  
 
 
  
 
 
  
 
 
  
 
  
 
 
  
 
  

 
  
 
 
   
 

 
 
 
  
 
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
  
 
 
  
 
  
  
 
  
  
  
  
 

 
 
 
  
 
 
  
 
 
  
  
 
 
  
 
 
  
  
 
  
  
 
 
 
 
  
  
 
 

 
  
 
 
 
 
 
  
  
 
 
 
 
 
  
  
 
  
 
 
 
  
 
  
 

 
 
 
  
 
 
  
 
 
 
 
 
 
  
  
 
  
 
 
 

 
 
 
  
 
 
   
  
  

 
  
 
 
   
 

 
 
 
 
 
  
  
 
 
 
 
  
  
  
 
 
 
  
 
 
  

 
  
 
 
 
 
 
  
 
 
   
  
  
  
 
 
 
  
 
 
  
  
  
  
 
 
  
 
 
  
 
 
 
  
 
 
  
 
  
 
 

 
  
 
  
 
  
 
 
 
  
 
 
  
 
 
  
 
 

 
 
  
 
  
 
 
 

 
  
 
 
 
  
  
 
 
 
  
 
 
  
  
 
 
  

 
  
 
 
   
 

 
  
  
 
  
 
 
  
 
 
  
 
 
  

 
  
 
 
   
 

 
 
 
  
 
 
 
  
 
 
  

 
 
 
 
 
 
 
  
 
  
 
  
  

 
  
 
 
   
 

 
  
  
 
 
 
  

 
  
 
 
   
 

 
 
  
 
 
 
 
  
  
 
 
  
  
 
 
 
  
 
 
  

 
 
 
  
 
 
  
 
 
  
 
 

 
 
 
  
 
  
 
 
  
 
 
  
 
 
  
 
  
  

 
  
  
  
  
 
 
 
  

 
 
 
  
 
  
 
 
  
 
 
  
  
 
  
 
 
 
  

 
  
 
 
 
 
 
 
  
 
  
 
  
 
 
 
 
 
  

 
  
 
 
  
  
 
 
  
 
 
  
  

 
  
 
 
  
 
  
 
  
 
  
 
 
 
  
 
 
  
 

 
 
 
 
 
 
 

 
 
 
  
  
 
  
 
  
 
 
  
 
 
  
  
 
 
  
  

 
  
 
 
   
 

 
 
 
 
 
 
 
 
  
 
 
 
  
  
 
 
 
 
 
  

 
 
   
 
 
 
  
  
  
 
 
  
 
 
 
  
 

 
 
  
 
 
  

 
  
 
 
   
 

 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
  
 
  
 
 

 
  
 
 
  
 
  
 
 
 
  

 
 
 
  
 
 
 
  
  
 
 
  
 
 
 
 
 
  
 
  
 
 
  
  
  
  
 

 
 
  
 
  
  
 
  

 
  
 
 
   
 

 
 
  
 
  
 
  
  
 
  
  
 
  
 
 
 
 
 
 

 
  
 
 
  
  
 
 
 
  
  
 
 
 
 
 
  

 
  
 
 
 
 
 
  
  
 
 
 
 
 
  

 
 
  
 
  
 
  

 
  
 
 
   
 

 
 
 
  
  
 
  
 
 
  

 
  
  
 
  
 
  

 
  
 
 
   
 

 
 
  
 
 
 
 
 
 
  
 
 
  
 
 
 
 
  
  
 
  
  
  
  
 

 
  
  
  
  
 
 
 
 
 
 
  
 
 
  
 
 
  
 
 
 
 
  
  
 
  
  
  
  
 

 
 
  
 
 
  
  
 
  
 
 
  
 
  
 
 
  
 
 
 
  
 
  
 
  
  
 
 
  
 
 

 
  
 
  
 
 
  
 
 
  

 
 
 
 
 
 
  

 
  
 
 
   
 

 
 
  
 
 
 
 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
  
 
 
  
  
  
  
 
  
 

 
  
  
 
 
 
 
 

 
  
  
  
 
  
  
 
 
 
  
 
 
  

 
 
 
 
 
  
 
 
 
  
 
 
  
 
  
  
 
  
 
  
  
 
  

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
 
 
  
 
  
 
 
   
 
  
 
  
 
 
 

 
 
  
 
  
 
 
  

 
  
 
 
   
 

 
 
 
  
 
  
  
 
 
 
  
 
 
  

 
  
 
 
 
 
 
  
 
 
  
 
 
 
  
 
 
  
 
 
  
 
 

 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
  
 
 
   
  
  
  
 
 
 
  
 
 
  
  
  
 
 
 
   
  
 
  
 
 

 
 
  
 
 
 
  
 
 
 
 
  
  
 
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
  
 
 
  
 
 
  
  

 
 
  
 
  
 
 
  
 
 
   
 

 
 
 
 
 
 
 
 
 
  
  
 
 
  
 
 
 
 
 
  
 
  
  

 
  
 
 
   
 

 
 
 
 
  
 
 
  
 
 
  
 
  
 
 
 
   
  
  
 
  
 
 
  
  
  
 
 
  
 
 
  
 

 
  
 
 
 
 
  
 
  

 
 
 
 
  
 
  

 
  
 
  
  
 
 
  
 
 
  
 
 

 
 
  
 
 
  
 
 
  
 
 
  
 
 

 
  
 
 
  
 
 
  
  
 
  
  

 
  
 
 
   
 

 
  
 
 
 
 
 
  
 
 
  
 
 
 
  
  
 
  
 
  
  
  
  
 

 
  
 
  

 
  
 
 
   
 
  
  
  
 
  
 
 
 
 
 
 
 

 
  
  
  

 
  
 
 
   
 

 
  
 
 
 
  
 
 
  
  
  
  

 
 
 
 
 
 
  
  
  
 
 
  
 
  
 
  
  
 
 

 
 
  
 
 
  
 
 
  
 
 
 
  
 
 
  
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
 
  
  
  
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
  
 
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
 
  
  
  
 
 
 
  
 
 
 
  
 
 
  
 
 
 
 
 
 
 
  
 
  

 
 
  
   
 
 

 
 
 
 
  
  
 
 
 
  
  
  
 
 
 
  
 
 
  

 
 
 
 
  
  

 
  
 
  

 
 
   
 
 
 
  
  
  
 
 
 
 

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
  
 
  
 
 
 
 
  
 
  
 
  
 
 
 
 
  
  
  
  
  
 
  
 
 

 
 
  
 
  
 
  
 
 
 
 
  
  

 
 
 
 
 
 
 
   
 
 
 
  
 
 
 
 
  
  

 
 
   
 
 
 
  

 
  
 
 
  
   
  
  

 
  
 
 
   
 

 
 
   
  
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  
 
 
 
 
  
  
 
  
 
 
 

 
 
 
 
 
  
 
  
 
  
  
  
  
 

 
  
 
 
 
 
 
 
  
  
 
 
 
 

 
  
 
 
   
  
 
 
 
 
 
 
  

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
   
 
  
 
  
 
 
 
 
  
 
 
 
  
  
 
 
  
  
  
 
 
  
 
 
 
  
  
 
  
 
  
 
   

 
 
  
 
 
 
 
 
  
  
 
  

 
 

 
 
  
 
 
 
 
 
  
  
  
 
  
 
 
 
 
  
 
  
 

 
 
 
  
 
  

 
  
 
 
   
 

 
 
 
 
 
  
 
  
 
 
 
  
  
 
 
  
  
  
  
 
 
 
  
  
  
 
 
 
  
 
 
  

 
  
  

 
 
  
 
 
  
  
 
 
 
 
  
 
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
 
  
  
  
 
 
 
 
  
  
  
 
  
 
  
 
  
 
  
 

 
 
  
 
 
  
 
  

 
  
 
  
  
  
 
  
  

 
  
 
 
   
 

 
 
 
 
 
 
  
 
  

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
  
  
 
 
  
  
 
 
  
 
  
 
  
 
 
 
  
  
 

 
 
 
 
  
 
 
  
 
 
 
  
 
 

 
 
 
 
  
 
 
 
 
 
  
 

 
  
 
  
  
 
 
  
 
 

 
 
 
 
  
 
  
 
   
 
 
 
 
  
 
  
 
 
 

 
 
  
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
   
 
 
 
 
 
 

 
 
  
 
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
  
 
 
 
 
 
 
 
   
  
  

 
  
 
 
   
 

 
 
 
 
 
 
 
  
 
 
   
 
 
  
 
  
 
  
 
 
   
 
  
 
 
  
 

 
 
  
  
 
 
  
  
  
 
 
 
  
 
 
  

 
 
 
 
  
  
  
 
 
  
 
 
  
  
 
  
  
 
 
  
 
  

 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
  
  
 
 
  
 
 
  
 
  
  
  
  
 
 
 
  
 
 
  

 
 
 
 
  
  
 
 
 
 
  
 
  
 
 
  
 
 
  
  

 
  
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
  
  
 
 
   
 
  
 
  
 
 
 
  
  
 

 
 
  

 
  
 
 
  
 

 
  
 
 
  
  
 
 
 
 
 
 
  
 
 
  

 
 
 
 
 
  
 
 

 
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
  
 
 
  

 
 
 
  
 
  

 
  
 
 
 
  
 
 
  
  
  
  
 
 
  
  
 
 
  
 
 
  
 
 
  
  
 
 
 
  

 
 
  
 
  
  
 
 
 
  
 
 
  
 
 

 
  
 
 
 
  
 
 
  
  
  
  
 
 
  
  
 
 
  
 
 
  
 
 
  
 
 
 
 
 
 
 

 
 
 
 
  

 
 
 
  
 
  
 
  
  
 
 
  
 
 
 
 
  
 
  

 
 
 
  
 
 

 
 
 
 
 
 
  
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
 
 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 
  
  
  

 
 
 
 
 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
  
 
 
  
 
 
  
  
 
 
 
 
  
 
 
 
  
  
  
  
  
 
  
 
 

 
  
 
 
 
 
 
  
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  
  
  
 
  
  
 
  
 
   

  
 
  
  
  
  
 
 
 
 
 
  
 
  
 
 
 
 
  
  

 
 
 
 
 
  
 
  
  
 
  
 
 
 
  
 
  
 
 
  
 
  
  
  
 
 
 
 
 
  

 
 
  
 
  
 
 
 
 
  
 
 
  
 
 
  
 
 
  
  
 
 
 
  
 
 
  

 
  
 
 
  
  
 
 
   
 
  
 
  
 
 
 
  
  

 
  
  
  
  
 
 
 
  
 

 
 
 
   
  
  
 
 
   
 
  
 
  
 
 
 

  
 
  
 
 
 
 
 
  

 
 
 
  
  
 
 
 
  
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
  
 
  
 
 
  

 
 
 
  
  
 
 
  
  
 
 
 
 
 
 
  
 
 

 
 
  
 
  
 
 

 
  
 
 
 
 
 
 
  
  
 
  

 
 

 
  
 
  
  
 
 
   
 
  
 
  
 
 
 

  
 
 
 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
  
 
  
  
  

  
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
  
 
  
 
 
  
 
 
  
 
 
  
 
 

 
 
 
   
 
  
 
 
  
  
 
 
 
 
  
 
  
 
 
  
 
 
  
 
 
 
  
  
  
  
  
 

 
 
   
 
  
 
  

 
  
 
 
 
 
  

 
  
  
  

  
 
  

 
  
 
 
  
  
  
  
 
  
 
 
  
  
 

  
 
  
 
 
  
  
 
 
  
  
 
 
 
 
  
  
 
 
  

 
  
 
 
   
 

 
  
  
  
  
 
 
 
  
 
 
  
  
  
  
  
 

 
  
 
 
  
 
 
  
  
  
  
  
 
 
 
  
 
 
  

 
 
  
 
  
 
  
  

 
  
 
 
   
 

 
 
 
  
 
  
  
 
 
 
  
  

 
  
 
 
 
 
 
  
 
 
   
  
  
  
 
 
 
  
 
 
  
  
  
 
 
  
  
 
 
  
 
 
  
 
  
  
 
  
 
 

 
  
 
 
  
 
  
  
 
  
  
  
 
 
 
  
 
 
  

 
 
 
  
  
  
 
  
 
 
  
 
 
  
  
 
  
 
  

 
  
 
 
   
 

 
  
 
 
 
 
 
  
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  
  
  
 
 
 
 
  
  
  
  
 
   

  
  
  
 
  

 
  
 
  
 
   

  
 
  
 
  
  
 
 
 
  
  
 
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
 
 
 
  
 
 
 
  
 
 
  
 
 
 
  
  
 
 
 
  
 
  

 
 
  
 
  
 
 
  
 
 
 
 
 
 
  
  
  
 
 

 
  
 
 
  
  
   
  
 
  
  
  
 
 
 
  
 
 
  

 
 
 
 
 
 
 
  
  
   
  
 
  
  
  
 
 
 
  
 
 
  

 
 
 
  
  
 
  
  
 
  
 

 
  
 
 
  
  
 
 
  
  
  
  
 

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
 
  
  
 
 
   

 
  
 
  
 
 
 
  
  
 
 
 
 

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
  
 
 
 
 
 
 
  
 
 
 
  
 
 
  
  
 
 
  
  
 

 
 
  
 
 
  
 
 
  
  
 
 
 
  
 
 
  
  
  
  
  
 

 
 
  
  
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
  
 
 
 
 
  
  
  

 
  
 
 
   
 

 
 
 
 
 
 
 
  
 
 
 
  
  
 
 
  
 
 
  
 
  
 
 
 
 

 
  
 
 
 
 
  
 
 
 
 
 
 
  
 
 
   
 
 
  
 
  
 
 
  
 
 
 
 
 
 
  
 
  
 
 
 
  
 
 
  

 
  
  
  

  
 
  

 
  
 
 
  
  
 
 
 
 
  
 
 
  
  
 
  

 
 
 
  
  
 
  
 
 
  
   
 
  
  
  
  
 

 
  
 
 
 
 
  
  
 
 
  
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 

 
  
  
  
  
 
 
 
  
 
 
  
 
 
  
 
 

 
  
 
 
 
  
  
  
 
 
  
  
 
  
 
 
 
  
  
  

 
  
 
 
   
 

 
 
  
 
 
 
  
  

 
  
 
 
   
 

 
 
 
 
  
 
 
 
 
 
  
  
 
 
  
  
 
  
  

 
  
 
 
   
 

 
  
  
 
  
 
  

 
  
 
 
   
 

  
 
 
 
  
 
   
 
  
  
 
  
  
  
  
 
 
 
  
 
 
  

 
 
 
 
 
  
 
  
  
  
 
 
 
  
 
 
  

 
  
 
 
 
 
  
 
  
 
  
 
  
 
  
 
 
  
 
  
 
  
 
  
  
 
  
  
  
  
 
 
 
  
 
 
  

 
 
  
 
 
 
  

 
  
 
 
   
 

 
 
  
 
 
  
 
  
 
 
  
 
  
  
 
 
 
   
 
 
  
 
 
   
 

 
 
 
  
 
  
 
 
  

 
  
 
 
   
 

 
 
 
  
 
  
 
  

 
  
 
 
   
 

 
  
  
  
  
 
  
  
 
  
 
 
  
 
 
 
 
  
  
 
  
  
 
 
 
 
  
 

 
 
  
 
 
   
 
  
  
 
 
  
 
  
  
  
 
 
  
  
 
 
  
 

 
 
 
  
 
 
 
 
 

 
 
  
 
  
  
  
 
  
 
 
  
 

 
 
 
 
 
  
  
 
  
 
  
  
  
 
  
 
  
 
 
  
  
 
  
 
 
 
 
  
  
 
 
 
  
 
 
  

 
  
 
  
 
 
  
  

 
  
 
 
   
 

 
  
 
  
  
 
  
  

 
  
 
 
   
 

 
 
  
  
  
  
 
 
 
  
 
 
  

 
  
 
 
 
  
 
 
 
 
 
 
  
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
 
 
  
 
  
  
 
 
 
  
 
 
  

 
 
 
 
  
 
  
  
  
  

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 
  
  
  

 
  
 
  
 
 
 
 
 
 
  
 
 
  
 
 
  
 
 

 
  
 
 
 
 
  
 
  
 
  
  
 
  
  

 
  
 
 
   
 

 
 
  
 
  
 
 
 
  
 
 
  
  
 
  
  
  
 
 
 
  
 
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 
  
  
  
 
 

 
 
 
 
 
 
 
   
 
 
 
  
  
  
 
 
   
 
  
 
  
 
 
 

 
 
  
 
  
  
  
 
 
  
 

 
 
  
 
 
 
 
 
  
  
 
 
 
 

 
  
 
 
 
  
 
 
  
  
  
 
  
 
  
 
 
 
  
  
  
 
 
  
 
 
  
 
 
 
 
 
 
  
 
 
 
  
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
  

 
  
 
 
   
 

 
 
  
 
  
 
  
  
  
 
 
 
  
 
 
  

 
  
  
  
  
  
 
 
 
  
 
 
  

 
 
 
  
 
 
 
  
 
 
  
  
  
 
  
 
 
 
  
  
  
  
 

 
  
 
 
 
 
 
  
 
 
  
 
 
 
  
  
 
 
 
  
 
 
  
  
  
 
 
 
  
 
  
 
  
 
  
  
  
 
 
 
  
 

 
 
 
 
  
  
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
  
 
 
 
  
 
 

 
 
   
 
 
 
 
 
  
 
  

 
  
 
 
  
 
  
 
 
 
 
 

 
 
 
 
  
 
 
 
  
  
  
  
  
 
  
 
 

 
 
 
 
  
  
 
  
 
 
  
 
 
  
  
 
 
  
  
 

 
 
  
 
  
 
  
  
  
 
 
 
  
 
 

 
  
  
 
 
  
 
 
 
 

 
  
 
  
 
  
 
 
 
 
  
 
  
  
 
 
  
  
  
 
 
  
  

 
  
 
 
   
 

 
 
 
  
 
  
 
 
  
 
 

 
 
  
 
  
 
 
 
  
 
 
 
  
 
 
  
 
  
 
 
  
 
 
 
  
 
 
  
 
 
   
 

 
  
 
 
  
 
 
 
  
  
  
 
 
 
  
 
 
  

 
  
  
  
  
 
 
  
  
 
 
 
  
 
 
  
 

 
 
 
  
 
 
 
  
 
 
  
 
   
 
 
 
 
  
  
  
 
 
 
  
 
 
  

 
  
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
 
 
  
 
  
  
  
  
 
 
 
  
 
 
  

 
 
  
 
 
  
  
 
  
 
 
  
 
  
 
 
 
 
  
 
  
  
 
 
  
 
  
 

 
 
  
  

  
  

 
  
 
 
   
 

 
  
 
  
 
 
 
 
  

 
  
 
 
   
 

 
 
  
 
 
 
 
 
 
 
  
  
 
 
  
 
 
  
 
 

 
 
  
 
  
 
  
  
 
 
  
 
 
  
 
 

 
 
  
 
  
  
 
 
 
  
 
 
  
 
 

 
 
  
 
 
 
   
  
  
 
 
  
 
  
 
 
  
 
 
  
 
 
  
 
 
  
 
 
  
 
 

  
 
 
 
  
 
 
  

 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
  
 
  
  
  

 
  
  
  
  
 
 
 
  
 

 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
  
 
  

 
  
 
 
   
 
  
  
 
  
 
 
  
 
 
  
 
 
 

 
 
  
 
 
   
 
  
  
  

 
 
 
  
  
 
 
  
 
  
 
  
 
 
  
 
 
  
 
 
 

 
 
  
 
 
  
 
  
 
  

 
  
 
 
   
 

 
 
   
 
  
  
 
 
  
 
  
 
 
  
 
 
  
 
 
  
 
  
 
 
  
 
 
  
 
 

 
  
  
  
  
 
 
  

 
  
 
 
   
 

 
 
 
  
  
 
  
 
  
 
 
  
 
 
  
 
 

 
 
 
  
 
  
 
 
  
 
 
  
 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
  
  
  
 

 
  
 
  
 
 
 
 
 
 
  
  
 
 
  
 
 
  
 
 

 
  
  
 
 
  
 
 
  
 
 
  
 
 

 
 
  
 
 
 
  
 
 
  
 
 
  
 
 

 
  
 
 
 
 
 
  
 
 
 
  
 
 
  
 
 

 
 
  
 
 
  
 
 
  
 
 
 

 
 
  
 
 
 
 
   
 
  
  
 
 
 
  
 
 
  

 
  
  

 
 
  
  
  
 
 
 
  
 
 
  

 
  
  
 
 
 
  
  
 
  
  
  
 
 
  
 
 
  
  
 
 
  
  
 
 
  
  
 
  
 
 
 
  
 
 
  

  
 
 
  
  
  
 
  
  
  
  
 
 
 
  
 
 
  

 
  
 
  
  
 
  
  
  
 
 
 
  
 
 
 
 

 
 
 
  
   
  
  
 
 
  
 
 
 
 
  
 
 
 
  
 
  
  
 
 
 
  
 
 
  

 
 
  
  
  
  
  
 
 
 
  
 
 
  

 
  
  
 
  

 
  
 
 
   
 

 
  
  
  
  
  
 
 
 
 

 
  
 
 
 
  
 
 
  
  
  
 
 
 
 
  
 
 
  
 
  
 
  
  
 
 

  
 
  
 
  

 
 
  
  
  
 
 
 
  
 
 
  

 
 
 
 
  
 
  
  
 
 
  
  
 
  
  
  

 
  
 
 
   
 

 
  

 
 
 
 
 
  
 
 
  
  
 
 
 
  
 
 
  
 
 
  
 
 

 
  
  
  
  
 
 
  
 
 
  
 
 

 
 
  
  
 
  
 
 
 
  
 
 
  
 
  
  
 
  
 
 
 
  
 
 
  
 
 
  
 
 

 
 
  
 
 
  
 
 
  
 
 
   
 

 
 
 
  
 
 
   
  
  
  
 
 
   
 
  
 
  
 
 
 

 
  
  
  
 
  
 
 
  
  
   
 
  

 
  
 
 
   
 

 
 
 
 
 
  
  
 
  
 
  

 
  
 
 
   
 

 
  
 
 
 
 
 
  
  

 
  
 
 
   
 

 
 
 
 
 
 
  
  
 
 
  
 
 
  
 
 

 
 
 
  
 
 
  
  
 
 
  
 
 
  
 
 
  
 
 
  
  
  

  
 
 
  
 
 
  
 

 
 
 
  
 
  
 
 
 
  
 

 
 
 
  
  
 
 
 
  
  
 
 
  
 
 
  
  
 
 
 
  
 
 
  

 
 
   
 
  
  
 
 
  
 
  
 
 
  
 
 
  
 
 
  
 
  
  
 
 
 
  
 
 
  

 
  
 
 
  
 
  
 
 
  
 
 
  
 
 

 
  
  
  

  
 
  

 
  
 
 
  
  
 
 
 
 
 
 
 
 
 
 
  
 
  
 
  
 
 
 

  
 
 
  
 
  
 
 
 
 
 
 
 
  
  

 
  
 
 
   
 

 
 
  
 
  
 
  

 
  
 
 
   
 

 
  
 
  
 
 
 
  
 
 
  
  
 
 
 
  
 
 
  

 
 
  
 
  
  
  
 
 
 
 

 
 
  
  
 
 
 
  
 
 
 
 
 
 
  
 
 
  
 
  
  
 
 
 
 
 
 
 
  
 
 
  
 
 
  
 
 

 
  
  
  
  
 
  

 
 
 
  
  
 
 
 
  
 
 
  

 
 
 
 
 
 
 
 
  
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
 
 
  
  
 
 
   
 
  
 
  
 
 
 

 
 
  
 
  
 
  

 
  
 
 
   
 

 
  
 
  
   
  
  

 
  
 
 
   
 

 
  
 
 
 
  
 
 
  
  
 
 
  
  
 
 
 
  
 
 
  
 
 
  
  
 
 
 
 
 
 
 
  
  

 
  
 
 
   
 
 

 
 
 
  
 
 
  
 
 
  
 
 
 
  
 
  
 
 
  

 
  
 
 
   
 

                
                                      

                                    
  

  
  

                                              
                     

                
  

            

  
  

        
  

           
              

                                  
                            

  
                                                                    

  
                                                               

                                                                                                        
              

    
      

  
   

 

 

  

 

 

  

 

     

                     
             
                               
                                
                        
                  
                                   
                   
                                
                      
             
           
                     
                                           
                       
                 
               
                                  
                
                                    
                               
                                        
                     
                                         
                                
                              
          
                    
                    



 

Figure S2.3. Principal coordinates analyses of the metagenomic functional dataset. 
Axes 3 and 4 are shown. Colored arrows represent the mean position of the traits 
contributing most to variance across these dimensions by functional cluster (as depicted 
in Fig. 2.1). These most important traits are indicated in colored boxes next to the 
corresponding arrow. Bacterial phyla that correlate the most with the axes are indicated 
on the outer portion of the graph, along with the direction of the correlation. Ellipses 
define the average position of the points in each environmental group. 

         
         

                   
                      

                                       
            

                     

           
                 

                                 
            

                                           
                              

                  
                       

                
            

  
  

  
  

  
  

   
  

  
   

 
  

   
   

  
  

  
  

   
 

  
  

  
 

  
  

 
 

  
  

  
  

  
  

   
 

  
  

   
  

  
  

  
   

  
  

  
  

  
  

  
   

 
  

  
  

  
  

  
  

 
 

  
   

  
   

   
  

 
   

  
  

 
  

  
  

   
  

 

                                

                            

                             

 
  
 
 
  
 
  
 
 
 
  
  
 
  
 
  
 
  
  

  
  

  
  

  
  

  
   

  
  

  
  

  
  

                   

                         



 

Figure S2.4.  Detailed tanglegram comparing functional clusters for bacteria based on 
annotation of metagenomic (left) and genomic (right) datasets. Functional pathways 
are color coded by metagenomic clusters (see details in Fig. 2.1). Lines connect the 
same functional pathways in each data set. Red boxes indicate the main functional 
strategies identified for bacterial genomes (see details in Fig. 2.1, Fig. 2.2). 



 

Figure S2.5.  Mean phylogenetic depth at which bacterial functional traits are 
conserved across clades, for each bacterial functional trait cluster identified from 
metagenomic data (Fig. S2.2). Only traits that had non-random mean depths (i.e. with 
an observed mean depth as high or higher than 95% of those obtained through the null 
model) are shown. The median depth at which each taxonomic level varies in this 
dataset is represented by the dashed black lines. 

  
  

   
 

  
  

  
  

  
 

     

  

  

  

  

  

  

  

  

  

   



 

 

Figure S2.6. Variation partitioning of the functional composition of metagenomic 
samples, as explained by taxonomic levels (A), and taxonomic levels in conjunction 
with environmental variables (B). Values indicate the proportion of total variation in 
functional composition explained by each factor.

A 

B 
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Table S2.1.  Metagenomics datasets used in this study. 

3300000097 
Passalidae beetle gut microbial communities 
from Costa Rica - Adult (4MA+4BA+4MSA) 

Gs0050939 
Host-
associated 

Arthropoda 
Digestive 
system 

Arthropoda 
Costa Rica: Quebrada 
Gonzales Sector, Braulio 
Carrillo National Park 

3300000110 
Microbial communities from multiple species 
of Shipworm: Sample from Bankia setacea gill 
BSg2 

Gs0063438 
Host-
associated 

Mollusca 
Respiratory 
system 

Mollusca 
USA: Puget Sound, 
Washington 

3300000333 
Honey bee gut microbial communities from 
New Haven, Connecticut, USA - Honey Bee 
colony 

Gs0067856 
Host-
associated 

Arthropoda 
Digestive 
system 

Arthropoda 
USA: New Haven, 
Connecticut 

3300000385 
Marine microbial community from Cabo Rojo, 
Puerto Rico - PR CR 10% Liquid 1 

Gs0053056 Environmental Aquatic Marine Marinewater Puerto Rico: Cabo Rojo 

3300000401 
Marine microbial community from La 
Parguera, Puerto Rico - BB Mangrove B Liquid 

Gs0053056 Environmental Aquatic Marine Marinewater 
Puerto Rico: 
Bioluminescent Bay, La 
Paraguera 

3300000488 
Salt pond sediment microbial community 
from Fremont, CA, USA - Pond A23 Sediment 
3 

Gs0053056 Environmental Aquatic 
Non-marine 
saline and 
alkaline 

Saltwater-
sediment 

USA: Alviso Ponds, San 
Francisco, California 

3300000734 
Tropical forest soil microbial communities 
from Luquillo Experimental Forest, Puerto 
Rico - Sample 81  

Gs0075432 Environmental Terrestrial Soil Soil 
Puerto Rico: Luquillo 
Experimental Forest Soil 

3300000793 
Forest soil microbial communities from 
Amazon forest - 2010 replicate II A001 

Gs0067860 Environmental Terrestrial Soil Soil 

Brazil: Amazon forest, 
Fazenda Nova Vida, City 
of Ariquemes, State of 
Rondonia 

3300001384 
Arctic peat soil from Barrow, Alaska - NGEE 
Surface sample 53-3 shallow-072012 

Gs0084162 Environmental Terrestrial Soil Soil 
USA: Barrow 
Environmental 
Observatory site, Alaska 

3300001401 
Arctic peat soil from Barrow, Alaska - NGEE 
Surface sample 53-3 deep-072012 

Gs0084162 Environmental Terrestrial Soil Soil 
USA: Barrow 
Environmental 
Observatory site, Alaska 

3300001539 
Ecteinascidia turbinata endosymbiont from 
Florida, USA - Sample 2 

Gs0090291 
Host-
associated 

Tunicata Endophyte Tunicata USA: Key West, Florida 
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3300002125 
Cubitermes P4 segment microbial 
communities from Max Planck Institute, 
Germany - Cu122P4 

Gs0084161 
Host-
associated 

Arthropoda 
Digestive 
system 

Termite Kenya: Kakamega 

3300002147 

Host-associated microbial community of the 
marine sponge Aplysina aerophoba from Gulf 
of Piran - sponge mesohyl, lysed by freeze-
thaw cycling 

Gs0099546 
Host-
associated 

Porifera Endophyte Porifera 
Italy: Gulf of Piran, 
Adriatic Sea 

3300002308 
Nasutitermes corniger P4 segment microbial 
communities from Max Planck Institute, 
Germany - Nc150P4 

Gs0084161 
Host-
associated 

Arthropoda 
Digestive 
system 

Termite USA: Davie, Florida 

3300002405 
Earthworm egg capsule microbial community 
from the University of Washington, USA - E. 
fetida Yelm 

Gs0060821 
Host-
associated 

Annelida 
Reproductive 
system 

Annelida 
USA: University of 
Washington 

3300002504 
Termite gut P4 segment microbial 
communities from Max Planck Institute, 
Germany - Nt197 

Gs0084161 
Host-
associated 

Arthropoda 
Digestive 
system 

Termite Germany: Marburg 

3300003170 
Upper troposphere microbial communities - 
SDPR-005 

Gs0110167  Environmental Air Outdoor Air Air USA 

3300003203 
Tabebuia heterophylla rhizosphere microbial 
communities from the University of Puerto 
Rico - S4T2R2 

Gs0103004 
Host-
associated 

Plants Rhizosphere 
Plant-
rhizosphere 

Puerto Rico, University 
of Puerto Rico, San Juan 

3300005453 
Anoxygenic and chlorotrophic microbial mat 
microbial communities from Yellowstone 
National Park, USA - YNP MS-T MetaG 

Gs0046783 Environmental Aquatic 
Thermal 
springs 

Thermalwater 
USA: Wyoming, 
Yellowstone National 
Park 

3300005578 
Corn rhizosphere microbial communities from 
Kellogg Biological Station, Michigan, USA - 
KBS Corn C4-2 

Gs0090294 
Host-
associated 

Plants Rhizosphere 
Plant-
rhizosphere 

USA: Michigan, Kellogg 
Biological Station 

3300006046 
Grasslands soil microbial communities from 
the Angelo Coastal Reserve, California, USA - 
Sample Angelo_101 

Gs0110119 Environmental Terrestrial Soil Soil 
USA: California, Angelo 
Coastal Reserve 

3300006353 
Populus root and rhizosphere microbial 
communities from Tennessee, USA - 
Endosphere MetaG P. TD hybrid TD303-5 

Gs0103573 
Host-
associated 

Plants Rhizosphere 
Plant-
rhizosphere 

USA: Tennessee 
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3300006619 

Arctic peat soil microbial communities from 
the Barrow Environmental Observatory site, 
Barrow, Alaska, USA - NGEE Permafrost159B-
4B 

Gs0084162 Environmental Terrestrial Soil Soil 
USA: Barrow 
Environmental 
Observatory site, Alaska 

3300006893 

Iron sulfur acid spring bacterial and archeal 
communities from Banff, Canada, to study 
Microbial Dark Matter (Phase II) - Paint Pots 
PPA 5.5 metaG 

Gs0111485 Environmental Terrestrial Soil Soil Canada: Banff 

3300006894 
Agricultural soil microbial communities from 
Utah to study Nitrogen management - NC 
Control 

Gs0114436 Environmental Terrestrial Soil Soil USA: Utah 

3300006903 
Populus root and rhizosphere microbial 
communities from Tennessee, USA - Soil 
MetaG P. TD hybrid SBSTD5 

Gs0103573 Environmental Terrestrial Soil 
Plant-
rhizosphere 

USA: Tennessee 

3300006941 
Root nodule microbial communities of 
legume samples collected from California, 
USA - Siratro red BW 

Gs0114676 
Host-
associated 

Plants Nodule Plant-nodule USA: California 

3300006944 
Root nodule microbial communities of 
legume samples collected from California, 
USA - Cow pea red BW 

Gs0114676 
Host-
associated 

Plants Nodule Plant-nodule USA: California 

3300009102 
Deep subsurface microbial communities from 
Mariana Trench to uncover new lineages of 
life (NeLLi) - CR04 metaG 

Gs0118434 Environmental Aquatic Marine Marinewater Mariana Trench 

3300009446 
Marine algal microbial communities from 
Maine, USA - Maine_Asex2 metaG 

Gs0019863 
Host-
associated 

Algae Epiphyte Algae USA: Maine 

3300009488 
Deep subsurface microbial communities from 
Indian Ocean to uncover new lineages of life 
(NeLLi) - Sumatra_00607 metaG 

Gs0118434 Environmental Aquatic Marine Marinewater North Sumatra 

3300009507 
Pelagic marine microbial communities from 
North Sea - COGITO_mtgs_120607 

Gs0084160 Environmental Aquatic Marine Marinewater 
Atlantic Ocean: North 
Sea, Helgoland 

3300009510 
Host-associated microbial communities from 
peat moss isolated from Minnesota, USA - 
S1T2_Fd - Sphagnum fallax MG 

Gs0118677 
Host-
associated 

Bryophyta 
Whole-
organism 

Bryophyta USA: Minnesota 

3300009594 
Groundwater microbial communities from 
Devils Hole, Nevada to study Microbial Dark 
Matter (Phase II) - Devils Hole 

Gs0111485 Environmental Aquatic Freshwater Freshwater Nevada: Devil's Hole 



 
140 

3300009697 
Host-associated microbial communities from 
peat moss isolated from Minnesota, USA - 
S1T2_Fd - Sphagnum magellanicum MG 

Gs0118677 
Host-
associated 

Bryophyta 
Whole-
organism 

Bryophyta USA: Minnesota 

3300009765 
Root nodule microbial communities of 
legume samples collected from Mexico - 
Turtle bean Mexico pink nodule 

Gs0114676 
Host-
associated 

Plants Nodule Plant-nodule Mexico: Nepantla 

3300009774 

Glacier valley bacterial and archeal 
communities from Borup Fiord, Nunavut, 
Canada, to study Microbial Dark Matter 
(Phase II) - lysozymeSSSS metaG 

Gs0111485 Environmental Aquatic Freshwater Freshwater 
Canada: Borup Fiord, 
Nunavut 

3300010262 
Eastern black-and-white colobus group fecal 
microbial communities from Wisconsin, USA - 
Cm1105 metagenome 

Gs0120398 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia USA: Wisconsin 

3300010264 

Marine hydrothermal vent microbial 
communities from Guaymas Basin, Gulf of 
California to study Microbial Dark Matter 
(Phase II) - Marker 14 Mat core 4571-4 33-36 
cm metaG 

Gs0111485 Environmental Aquatic Marine Marinewater 
Mexico: Guaymas Basin, 
Gulf of California 

3300010278 
Western lowland gorrila individual fecal 
microbial communities from Wisconsin, USA - 
Go1022B metagenome 

Gs0120398 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia USA: Wisconsin 

3300010279 
Orangutan group fecal microbial communities 
from fecal samples from Wisconsin, USA - 
O1105 metagenome 

Gs0120398 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia USA: Wisconsin 

3300010282 
Capybara group fecal microbial communities 
from Wisconsin, USA - P1105 metagenome 

Gs0120398 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia USA: Wisconsin 

3300010284 

Hot spring microbial mat communities from 
California, USA to study Microbial Dark 
Matter (Phase II) - Cone Pool mat layer H 
metaG 

Gs0111485 Environmental Aquatic 
Thermal 
springs 

Thermalwater USA: California 

3300010313 
Hot spring microbial communities from South 
Africa to study Microbial Dark Matter (Phase 
II) - Sagole hot spring metaG 

Gs0111485 Environmental Aquatic 
Thermal 
springs 

Thermalwater South Africa: Limpopo 

3300010324 

Lake sediment bacterial and archeal 
communities from Gulf of Boni, Indonesia to 
study Microbial Dark Matter (Phase II) - 
?I18A1 metaG 

Gs0111485 Environmental Aquatic Freshwater 
Freshwater-
sediment 

Indonesia: Gulf of Boni 
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3300010343 
Bog forest soil microbial communities from 
Calvert Island, British Columbia, Canada - Bog 
Forest MetaG ECP23OM1 

Gs0110174 Environmental Terrestrial Soil Soil 
Canada: Calvert Island, 
British Columbia 

3300011013 
Deep subsurface microbial communities from 
Kolumbo volcano to uncover new lineages of 
life (NeLLi) - 4SBTROV10_white metaG 

Gs0118434 Environmental Aquatic Marine Marinewater 
Aegean Sea: Kolumbo 
volcano 

3300012264 

Freshwater sediment bacterial and archeal 
communities from Indian Creek, Illinois, USA 
to study Microbial Dark Matter (Phase II) - 
Sed-PBS metaG 

Gs0111485 Environmental Aquatic Freshwater 
Freshwater-
sediment 

USA: Indian Creek, 
Illinois 

3300012266 

Freshwater bacterial and archeal 
communities from Indian Creek, Illinois, USA 
to study Microbial Dark Matter (Phase II) - 
JTO19cm metaG 

Gs0111485 Environmental Aquatic Freshwater Freshwater 
USA: Indian Creek, 
Illinois 

3300012809 
Enriched millipede-associated microbial 
communities from UW Madison campus, WI, 
USA - HID1971M_E11 MG 

Gs0121620 
Host-
associated 

Arthropoda 
Digestive 
system 

Arthropoda 
USA: Madison, 
Wisconsin 

3300012824 
Enriched pill bug-associated microbial 
communities from UW Madison campus, WI, 
USA - HID1972M_E11 MG 

Gs0121620 
Host-
associated 

Arthropoda 
Digestive 
system 

Arthropoda 
USA: Madison, 
Wisconsin 

3300012830 
Enriched soil microbial communities from UW 
Madison campus, WI, USA - 
DID2934_E24_Xylan MG 

Gs0121620 Environmental Terrestrial Soil Soil 
USA: Madison, 
Wisconsin 

3300012839 
Enriched mosquito-associated microbial 
communities from UW Madison campus, WI, 
USA - HID1973M_E11 MG 

Gs0121620 
Host-
associated 

Arthropoda 
Digestive 
system 

Arthropoda 
USA: Madison, 
Wisconsin 

3300012995 
Fungus gardens microbial communities from 
leaf cutter ant in Ribeir?o Preto, State of S?o 
Paulo, Brazil - Atta laevigata ALBM2 

Gs0121620  
Host-
associated 

Fungi Mycelium Fungal 
Brazil: Ribeiro Preto, 
State of Sao Paulo 

3300012996 
Fungus gardens microbial communities from 
leaf cutter ant in Botucatu, State of S?o Paulo, 
Brazil - Atta capiguara ACBM2 

Gs0121620  
Host-
associated 

Fungi Mycelium Fungal 
Brazil: Botucatu, State of 
Sao Paulo 

3300013091 
Freshwater microbial communities from Lake 
Kivu, Western Province, Rwanda to study 
Microbial Dark Matter (Phase II) - Kivu_220m 

Gs0111485 Environmental Aquatic Freshwater Freshwater 
Rwanda: Western 
Province 
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3300013297 
Miscanthus rhizosphere microbial 
communities from Kellogg Biological Station, 
Michigan, USA - M6-5 metaG 

Gs0090294 
Host-
associated 

Plants Rhizosphere 
Plant-
rhizosphere 

USA: Michigan 

3300014325 
Switchgrass rhizosphere microbial 
communities from Kellogg Biological Station, 
Michigan, USA - S6-5 metaG 

Gs0090294 
Host-
associated 

Plants Rhizosphere 
Plant-
rhizosphere 

USA: Michigan 

3300014488 
Bulk soil microbial communities from Mexico 
- San Felipe (SF) metaG 

Gs0053055 Environmental Terrestrial Soil Soil Mexico: San Luis Potosi 

3300017788 

Freshwater microbial communities from Lake 
Kivu, Western Province, Rwanda to study 
Microbial Dark Matter (Phase II) - 
Kivu_15m_20L 

Gs0111485 Environmental Aquatic Freshwater Freshwater 
Rwanda: Western 
Province 

3300019360 

White microbial mat communities from a lava 
cave in the Kipuka Kanohina Cave System on 
the Island of Hawaii, USA - GBC170108-1 
metaG 

Gs0118434 Environmental Terrestrial Cave 
Terrestrial-
cave 

USA: the Island of Hawaii 

3300019458 

Bio-ooze microbial communities from a 
basaltic lava cave in the Kipuka Kanohina Cave 
System on the Island of Hawaii, USA - 
MA170107-3 metaG 

Gs0118434 Environmental Terrestrial Cave 
Terrestrial-
cave 

USA: the Island of Hawaii 

3300020185 

Pelagic subsurface seawater microbial 
communities from Kabeltonne, Helgoland, 
North Sea - 
Helgoland_Spring_Bloom_20160517_1 

Gs0084160 Environmental Aquatic Marine Marinewater 
Atlantic Ocean: North 
Sea, Helgoland 

3300024038 
Enriched microbial communities from leaf-
cutter ant dump, University of Wisconsin, 
Madison, United States - 3A200A 

Gs0121620 
Host-
associated 

Arthropoda Ant dump Arthropoda USA: Wisconsin 

3300025100 

Hot spring sediment microbial communities 
from Zodletone spring, Oklahoma to study 
Microbial Dark Matter (Phase II) - Zodletone 
Spring source 0.5m metaG (SPAdes)  

Gs0111485 Environmental Aquatic Hot (42-90C) 
Thermalwater-
sediment 

USA: Oklahoma, 
Zodletone Spring  

3300028599 
Marine sediment microbial communities from 
subtidal zone of North Sea - Hel_20160524 
(Illumina Assembly) 

Gs0084160 Environmental Aquatic Marine 
Marinewater-
sediment 

Atlantic Ocean: North 
Sea, Helgoland 
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3300028887 
Bovine rumen microbial communities from 
tropical cattle in Woodstock, Queensland, 
Australia - Gonzalo_02 

Gs0133408 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia 
Australia: Woodstock, 
Queensland 

3300028888 
Sheep rumen microbial communities from 
Palmerston North, Manawatu-Wanganui, 
New Zealand - 1728 DNA GHGlow gp2 

Gs0133408 
Host-
associated 

Mammalia 
Digestive 
system 

Mammalia 
New Zealand: 
Palmerston North, 
Manawatu-Wanganui 

3300030501 
Agave microbial communities from 
Guanajuato, Mexico - Mg.Sf.e (v2) 

Gs0053055 
Host-
associated 

Plants Phylloplane 
Plant-
phyllosphere 

Mexico: Guanajuato 



Table S2.2.  Predictions of the ecological and evolutionary significance of groups of 

functional pathways based on their clustering in the metagenomic and the genomic 

datasets. 

  Genomic dataset 

Group of traits is : Clustered Not clustered, or clustered but 

unsupported 

M
et

ag
en

o
m

ic
 d

at
as

et
 

Clustered The cluster is a conserved 

strategy of current ecological 

importance.  

(There is selection and/or 

constraints on the evolution of 

this group of traits.) 

 

The cluster represents a 

strategy selected in the species 

pool, regardless of phylogenetic 

identity. 

 

Not clustered, or 

clustered but 

unsupported 

The cluster may have been 

selected for under previous 

ecological constraints that are 

no longer important in driving 

the distribution of organisms 

among ecosystems, or that 

explain ecological variation at 

another scale. 

These traits do not participate in 

a general strategy. 

They might be labile traits that 

do not have strong constraints 

of evolution. 

They might be important for 

occupying rare niches. 
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Figure S3.1. Relative abundance of phyla (A) and orders (B) across 24 leaf bacterial 

communities in a neotropical forest. Only the taxa that made up more than 1% of the 

total abundance of bacteria are indicated in the barchart. 

    

    

    

    

    

     
 

  
  

  
  

  
  

  
  

  
  

 

    

    

    

    

    

      

 
  

  
  

  
  

  
  

  
  

  
 

      

             

              

             

           

             

          

              

              

                

          

               

               

               

             

                 

            

                

             

                 

            

                

                   

               

                 

           

               

                

                   

                  

                

                

                   

               



 

Figure S3.2. Distribution of trait values for 16 traits across 17 tree species from a 

neotropical forest. See caption of Fig. 2 for a description of trait abbreviations. 

                       

                           

             
             

 
 
                                  

                 
 
 
            

 
 
               

   

   

   

 

    

     

     

     

   

   

   

   

    

    

    

    

    

    

    

    

    

    

    

   

   

   

    

 

 

  

  

   

   

   

   

   

  

  

   

 

 

 

 

 

  

  

  

  

 

   

   

   

 

   

   

   

 

   

   

   

 

  

  

  

   

   

   

   

   

  

  



 

Figure S3.3. Distribution of alpha, beta and gamma diversities generated from 128 

subsampling of the metagenomic functional dataset to include only one sample per tree 

species. Despite variation observed among bootstraps, the relative importance of alpha 

vs. gamma diversity stayed constant at 97.3% alpha diversity and 2.7% beta-diversity 

for all subsamples.  The red vertical line indicates the observed value. 
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Table S3.1.  Tier 3 functional categories that are perfectly correlated across samples. The category on the left-hand column 
was kept for all analyses, while the correlated categories in the right-hand column were discarded. 

 

 

 

 

 

Functional category in dataset Correlated functional category removed from dataset 

Adherens junction Focal adhesion 
Hippo signaling pathway -fly 
Hippo signaling pathway 
Phagosome 
Rap1 signaling pathway  
Regulation of actin cytoskeleton  
Tight junction 

Biosynthesis of 12-, 14- and 16-membered macrolides Type I polyketide structures 

Biosynthesis of type II polyketide backbone Tetracycline biosynthesis 

Endocytosis Ras signaling pathway 

Glycosphingolipid biosynthesis - ganglio series Various types of N-glycan biosynthesis 

NF-kappa B signaling pathway TNF signaling pathway 
VEGF signaling pathway 

Notch signaling pathway Wnt signaling pathway 



Table S3.2. The 25 Tier 3 functions contributing the most to variation among samples. Columns correspond to functional 
categories defined by the Kegg hierarchy (see Methods). 

Tier 1 
Functional category 

Tier 2 
Functional category 

Tier 3 
Functional category 

Cellular Processes Cell growth and death Apoptosis 

Cellular Processes Cellular community - eukaryotes Adherens junction 

Cellular Processes Transport and catabolism Exosome 

Environmental Information Processing Signal transduction cGMP - PKG signaling pathway 

Environmental Information Processing Signal transduction MAPK signaling pathway - fly 

Environmental Information Processing Signal transduction Two-component system 

Genetic Information Processing Replication and repair DNA repair and recombination proteins 

Genetic Information Processing Transcription Transcription factors 

Metabolism Amino acid metabolism 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 

Metabolism Amino acid metabolism Valine, leucine and isoleucine biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Betalain biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Indole alkaloid biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Isoquinoline alkaloid biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Novobiocin biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Phenazine biosynthesis 

Metabolism Biosynthesis of other secondary metabolites Phenylpropanoid biosynthesis 

Metabolism Biosynthesis of other secondary metabolites 
Tropane, piperidine and pyridine alkaloid 
biosynthesis 

Metabolism Carbohydrate metabolism C5-Branched dibasic acid metabolism 

Metabolism Carbohydrate metabolism Citrate cycle (TCA cycle) 

Metabolism Carbohydrate metabolism Starch and sucrose metabolism 
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Metabolism Energy metabolism Oxidative phosphorylation 

Metabolism Energy metabolism Photosynthesis 

Metabolism Energy metabolism Sulfur metabolism 

Metabolism Metabolism of cofactors and vitamins Pantothenate and CoA biosynthesis 

Metabolism Metabolism of terpenoids and polyketides Zeatin biosynthesis 

Unclassified Genetic information processing Replication, recombination and repair proteins 

Unclassified Viral protein family Unclassified viral proteins 
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Figure S4.1.  Geographical position (panel a) and tree composition (panel a) of sampling sites across North-Eastern America. 
Mean annual temperatures at each site is color-coded using a heatmap. Abbreviations for sampling sites are presented in 
Table 4.1. Tree composition was evaluated in a 25 km radius from the center of the site using governmental tree inventories 
from field surveys and aerial photography. Relative abundances of the ten most abundant tree species across the study area 
are shown for each site.
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Table S4.1. Species names and taxonomic classification of tree host species sampled in this study. 

Species name Genus Family Order Abbreviation 

Abies balsamea (L.) Abies Pinaceae Pinales ABIBAL 

Acer pensylvanicum (L.) Acer Sapindaceae Sapindales ACEPEN 

Acer rubrum (L.) Acer Sapindaceae Sapindales ACERUB 

Acer saccharum (Marshall) Acer Sapindaceae Sapindales ACESAC 

Acer spicatum (Lam.) Acer Sapindaceae Sapindales ACESPI 

Alnus incana subsp. rugosa (Du Roi) R.T.Clausen Alnus Betulaceae Fagales ALNRUG 

Amelanchier laevis (Wiegand) Amelanchier Rosaceae Rosales AMELAE 

Amelanchier stolonifera (Wiegand) Amelanchier Rosaceae Rosales AMESTO 

Betula alleghaniensis (Britt.) Betula Betulaceae Fagales BETALL 

Betula papyrifera (Marshall) Betula Betulaceae Fagales BETPAP 

Carpinus caroliniana (Walter) Carpinus Betulaceae Fagales CARCAR 

Carya cordiformis (Wangenh.) K. Koch Carya Juglandaceae Fagales CARCOR 

Carya ovata (Mill.) K. Koch Carya Juglandaceae Fagales CAROVA 

Corylus cornuta (Marshall) Corylus Betulaceae Fagales CORCOR 

Fagus grandifolia (Ehrh.) Fagus Fagaceae Fagales FAGGRA 

Fraxinus americana (L.) Fraxinus Oleaceae Lamiales FRAAME 

Fraxinus nigra (Marshall) Fraxinus Oleaceae Lamiales FRANIG 

Fraxinus pennsylvanica (Marshall) Fraxinus Oleaceae Lamiales FRAPEN 

Ostrya virginiana (Mill.) K. Koch Ostrya Betulaceae Fagales OSTVIR 

Picea glauca (Moench) Voss Picea Pinaceae Pinales PICGLA 

Picea mariana (Mill.) Britton, Sterns & Poggenburg Picea Pinaceae Pinales PICMAR 

Picea rubens (Sarg.) Picea Pinaceae Pinales PICRUB 

Pinus strobus (L.) Pinus Pinaceae Pinales PINSTR 
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Populus grandidentata (Michx.) Populus Salicaceae Malpighiales  POPGRA 

Populus tremuloides (Michx.) Populus Salicaceae Malpighiales  POPTRE 

Prunus pensylvanica (L.f.) Prunus Rosaceae Rosales PRUPEN 

Quercus alba (L.) Quercus Fagaceae Fagales QUEALB 

Quercus rubra (L.) Quercus Fagaceae Fagales QUERUB 

Sorbus americana (Marshall) Sorbus Rosaceae Rosales SORAME 

Thuja occidentalis (L.) Thuya Cupressaceae Pinales THUOCC 

Tilia americana (L.) Tilia Malvaceae Malvales TILAME 

Tsuga canadensis (L.) Carrière Tsuga Pinaceae Pinales TSUCAN 

Ulmus americana (L.) Ulmus Ulmaceae Rosales ULMAME 

 

 



Table S4.2. Variation in mean specialization of phyllosphere bacterial communities on their tree host as a function of 
individual (a) and site-weighted mean (b) host traits. Results from linear regression models are presented for each trait : 
specific leaf area (SLA), leaf calcium concentration (Ca), leaf phosphorus concentration (P) and wood density. β represents 
the standardized regression coefficient. Significance is indicated as the following: *p < .05, **p < .01, ***p < .001. 

a. Individual host traits  

  β R2 p   

SLA 0.066 0.14 0.001 *** 

Ca 0.051 0.08 0.014 * 

P 0.048 0.08 0.019 * 

Wood density 0.025 0.02 0.230   

     
     
b. Site-weighted mean host traits   

  β R2 p   

SLA -0.021 0.01 0.318  
Ca -0.005 0.00 0.803  
P -0.034 0.04 0.108  
Wood density -0.043 0.06 0.040 * 
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