
Towards Modelling Acceptance Tests
as a Support for Software Measurement

Alexandra Lapointe-Boisvert
Université du Québec à Montréal

Montréal, Canada
lapointe-boisvert.alexandra@uqam.ca

Sébastien Mosser
Université du Québec à Montréal

Montréal, Canada
mosser.sebastien@uqam.ca

Sylvie Trudel
Université du Québec à Montréal

Montréal, Canada
trudel.s@uqam.ca

Abstract—The DevOps paradigm emphasizes the need for a
measurable feedback loop, starting from requirements and going
as far as deployment in an automated way. In this context,
a modelling challenge is to leverage the existing requirement
engineering approaches to support measurements. Unfortunately,
measurement methods are slow and costly by definition, pre-
venting precisely measured requirements from being used in the
DevOps loop. As a result, developers have to deal with grossly
estimated elements, e.g., using story points promoted by agile
methods. Thus, it is not possible to provide better support for
the development team. We envision taking advantage of the
artifacts that already exist in a DevOps context to provide better
support for requirements measurement, making it available in an
automated context such as the DevOps one. This paper focuses
on the automated analysis of acceptance tests (e.g., expressed
using the Gherkin language) to support functional measurement
automation in a DevOps context. This proposition is illustrated
by a scenario coming from an industrial partner, supporting the
identification of four research challenges to be tackled.

I. INTRODUCTION

Many organizations shift from waterfall to Agile and now
DevOps culture to deliver software rapidly and continuously,
be more adaptive to change, and achieve their performance
goals. This is done by adopting leaner processes, disabling
non-added value activities and leveraging automation tools
to speed and stabilize software delivery through the entire
product life cycle [1]. With DevOps accelerating the pace
of digital development, all development actors must adapt.
Instead of relying on holistic specifications, development
teams break down products into smaller pieces of functional
software to release frequently and on cadence. DevOps prac-
titioners are continuously improving Continuous Integration
(CI) and Continuous Deployment (CD) pipelines to integrate
and deploy more efficiently. Quality analysts are automating
test executions to ensure the quality of the software being
shipped at every iteration. Security is integrated into every
phase of the software development life-cycle. By its very
essence, DevOps is about providing a way to continuously
improve the development process in an endless feedback loop.
Thus, measurement becomes critical, as one cannot improve
what cannot be measured.

From a state-of-practice point of view, user requirements
are mainly written into the form of user stories and functional
tests are written based on the acceptance criteria of the user
story. Tests tend to be written simultaneously, and user stories

are required and act as functional requirements that prevent
duplication of requirements writing. Eventually, the DevOps
paradigm reaches a paradox here, by emphasizing the need to
improve while still relying on clumsy measurements to support
such improvement at the requirements level. More precise way
of measuring software exists (e.g., the COSMIC method [2]),
with demonstrated benefits in terms of planning and project
implementation [3]. Unfortunately, the effort necessary to
measure a given piece of software according to these methods
is tremendous, making it close to impossible to integrate such
approaches in a DevOps context.

Any research effort in this direction should take into con-
sideration the state of practice: while relying on informal
artifacts as inputs, there is a need for better measurements
to support the DevOps feedback loop. As a consequence, the
global research question to be addressed is the following:

RQ: “To what extent existing artifacts developed in
a DevOps context can be modelled to support a
better (faster and more precise) estimation at the
requirements level?”

In the remainder of this paper, we envision how to address
this question by focusing on modelling acceptance tests as
relevant DevOps artifacts to support COSMIC measurements
allowing more precise measurements to be obtained in a faster
way. SEC. II describe the research effort in this context, and
SEC. III provides an in-depth description of an illustrative
scenario with the associated artifacts available. We describe in
SEC. IV our vision to address the research question by refining
it into modelling challenges to be tamed. Finally, section
SEC. V concludes this paper by summarizing the challenges
and the benefits of the approach for requirement engineers
working in a DevOps context.

II. RELATED WORK

There is a de facto convergence existing between Require-
ments Engineering (RE) and DevOps approaches. It started
with the study of agile methods (e.g., [4], [5], [6]) and naturally
evolve into taking into account the DevOps paradigm at a
broader level [7]. The objective of this section is to picture how
DevOps and RE research efforts evolved, while emphasizing
the lack of dedicated modelling approach in this context.

Agile methods are considered successful by the industry and
are widely used in DevOps ecosystems. However, one of the

main remaining challenges here is the effort estimation, as it
relies on experts’ opinions or judgements [8]. The concrete
way of estimating varies, as there are many different agile
estimation techniques. One common technique is to use poker
planning to evaluate a given requirement’s relative complexity
in story points [9]. However, there are many drawbacks to
this approach. Estimating in story points has been shown to
consume much time, for very subjective results [8]. Secondly,
story points are often misunderstood between the different
actors of development. Another wrong usage of story points
is using them to compare team performance or evaluate
individual performance. Moreover, story points do not provide
any size metrics [10] that can be used to improve a DevOps
loop.

At the other side of the spectrum, functional measurement
methods are available. They promote measurement as essential
for managers to make better decisions: it is nearly impossible
to properly estimate effort without having a minimum under-
standing of the product size to develop [11]. The ISO/IEC
19761:2011 normative document [2] describes the COSMIC
functional size measurement method to measure software size
as COSMIC function points. Several studies have proposed to
measure functional size with COSMIC from different input
artifacts. Marı́n et al. [12] have conducted a survey in 2008
identifying existing measurement procedures that have been
proposed for applying the COSMIC measurement method.
Among the eleven methods inventoried, five measured UML
models, one measured xUML specifications, one measured
RRRT models, one measured MERODE models, two mea-
sured OO-Method models and one measured i* models as
a primary artifact. They observed that seven out of eleven
methods did not specify all the functional requirements and
only allowed to estimate the functional size.

Zhu et al. [13] identified four challenges with automation
of functional measurement: entity identification, entity disam-
biguation, entity-relationship extraction and event extraction,
which are almost all done manually now. Several approaches
are defined to measure automatically existing code [14], [15].
To support automation, alternative methods relying on model-
driven engineering also propose to measure by leveraging
conceptual models [16], [17]. Finally, Ochodek, Kopczyńska
and Staron [18] proposed a deep learning model to approx-
imate COSMIC size from use cases automatically. All the
approaches covered in this section suffer from either or both of
the following flaws when considered in a DevOps context: (i)
they are manual/time-consuming, or (ii) they rely on artifacts
(e.g., UML use cases) that are not used by the state of practice
in DevOps.

Focusing on such state-of-practice, the most common strate-
gies in agile testing are Test-Driven Development (TDD),
Acceptance-Test-Driven Development (ATDD), and Behavior-
Driven Development (BDD) [19]. Acceptance tests are ex-
pressed as code (e.g., using the Gherkin language [20]),
creating an executable bridge between the user stories they are
validating the implemented product. Solı́s and Wang advocate
that ATDD is widely adopted in the industry because it im-

proves software quality and productivity [21]. Longo showed
that developers would use acceptance testing for specifying
software requirements over natural language to improve the
quality of requirements [22]. Fischbach et al. [23] studied 961
user stories from the industry and observed that, even if not
systematic (e.g., “up to 51%”), ATDD is used on a regular
basis by the industry.

To conclude this related work review, we as software engi-
neering and modelling researchers are facing a challenge. The
DevOps state-of-practice requires measurements to support
its improvement feedback loop. Unfortunately, at the require-
ments levels, there is no way to provide proper estimations
of the pieces of software to be developed, as the existing
methods cannot be used in such a context: they would consume
too much time, or would rely on models/artifacts that are
classically missing in DevOps ecosystems. However, even if
it is not possible to consider acceptance tests as actionable
models, such testing approaches provide a trade-off to adress
this challenge: first they have the obvious advantage of existing
in our context, and secondly, as such tests are expressed as
code, they provide a solid ground to automate the extraction
of relevant models from their implementation.

III. SCENARIO FROM THE STATE-OF-PRACTICE

We consider here a scenario used to illustrate the artifacts
available to support estimation in a DevOps context, as close
as possible to the requirements level. We consider here a
cross-functional team that includes a product owner, software
developers to implement the product, and operational engi-
neers to support its deployment. In a product-centric approach,
the development team produces increments of the software
product in iterations (i.e., dev), ultimately deployed in an
operational way (i.e., ops). Since budget and time are fixed, the
team is only required to evaluate and plan the scope produced
over the next iteration.

Prior to the development iteration, the team meets with the
customer or the product owner in order to define a functional
increment of the product [24]. The result of this discussion is
captured in a User Story, expressed as a triple (role, feature,
reason). The story is classically written in natural language as
a sentence, using the Connextra format1 (FIG. 1). The story is
then stored using a ticket management system such as Jira.

As a level designer I would like to create custom
grids in order to increase my level of challenge

Fig. 1. Example of user story for a video game

When the story is groomed to be included in the develop-
ment sprint, the story needs to be estimated (classically using
story points). The team classically estimates the stories accord-
ing to two dimensions: (i) business value, and (ii) technical
risk. As shown in the previous section, these estimations are
used in a good enough way, meaning that they are rough and
not precise, but at least exist. The estimation is also stored

1“As a role, I want feature so that reason”.

Feature: Level editor

Scenario: Access to the level editor.
Given I am on the main menu of the program
When I select the menu option "Level editor"
Then I am in the "Level editor" menu

Listing 1. Example of an acceptance scenario expressed with Gherkin

in the ticket management system as metadata. When a user
story is adequate (e.g., it is independent between each other,
negotiable, valuable, estimable, small and testable [25]), it is
considered as ready.

When a story is ready, an essential corollary notion in the
context of DevOps is the Definition of Done (DoD). With
a precise DoD, it is possible to transfer a story from the
“dev” space to the “ops” one as soon as possible, enacting
a continuous deployment feedback loop. To support this, the
development team starts writing acceptance tests from the
story’s acceptance criteria. The success of the acceptance tests
for this very feature then implements the DoD. During the
development stage, the development team develops the product
increment based on the acceptance tests’ specifications until
the DoD is reached, i.e., successfully executing this very
feature’s acceptance tests.

In this context, many organizations have adopted a struc-
tured language, such as Gherkin, as their preferred method
of documenting test scenarios. The advantage of such an
approach is that it minimizes the potential of ambiguities
instead of requirements in natural language and allows the
scenarios to be parsed easily, generally to automate the test
execution, without compromising readability for non-technical
stakeholders. We describe in LST. 1 an example of an accep-
tance scenario described using the Gherkin language. It allows
one to define scenarios, as a succession of steps, according to
a given-when-then format. A scenario describes (i) the context
of the scenario using steps starting with given), (ii) the trigger
of the feature with steps starting with when, and finally a
sequence of assertions (i.e., using then steps) used to assess
the scenario in an automated way. Acceptance tests are usually
written alongside the user stories directly in Jira through test
plugins (e.g., XRay, Zephyr) or specialized BDD testing tools
(e.g., Cucumber, jBehave, RSpec).

The acceptance scenarios modelled using Gherkin are only
the visible part of the iceberg. Using frameworks such as
Cucumber, a Gherkin scenario is mapped to executable test
code using regular expressions. This executable code is clas-
sically implemented using a unit test framework, as described
in LST. 2. The execution engine takes as input a Gherkin file,
matches each step of the scenario with the associated function,
and executes it.

A company that is not mature enough would now stop
the requirement engineering process and then move to the
development, validation and deployment phases. However, a
company more mature concerning its product development
can start a measurement process to have a better estimation

@given(’I am on the main menu of the program’)
def step_impl(context):

context.application.state =
_main_menu(context.application)

@when(’I select the menu option "{}"’)
def step_impl(context, option_label):

menu = context.application.state
menu.activate_option(option_label)

@then(’I am in the "{}" menu’)
def step_impl(context, menu_title):

menu = context.application.state
assert isinstance(menu, menus.Menu))
assert menu.title == menu_title

Listing 2. Implementing the scenario with unit tests (in Python)

of the size of the software to be implemented. The more
precise a measurement is, the better it is possible to size
the development iteration and anticipate that the features
committed to being developed will be pushed to production
at the end of the development iteration.

For this example, we consider a measurement process im-
plemented according to the COSMIC method. In a nutshell, the
idea of COSMIC is to measure the number of data movements
inside a given piece of software, identified as function points.
An expert will carefully evaluate the software’s source code
and requirements, identifying which part of the code is related
to which feature. Then, the method is applied to measure
function points as data movements, e.g., data entering into the
feature, exiting the feature, being stored or read from persistent
storage. Each movement worth one function point, and the
size of the feature is defined as the sum of all the function
points involved. The challenge here is that this process is
known to be time-consuming, as it is human-based. Moreover,
it requires a deep understanding of the software to measure
by the COSMIC expert. Consequently, it is not possible to
include a measurement step inside each development iteration,
preventing the usage of such methods in a DevOps context.

As one can notice, models are absent in this scenario. The
objective of DevOps software development being to deliver
value, classical models are seen as a loss of time in the DevOps
state-of-practice, and existing industrial methods needs to be
deeply adapted to consider classical modelling as a first-class
citizen [26]. We describe in the next section our vision with
respect to this situation.

IV. VISION, PROPOSITION & CHALLENGES

If models are absent from the state-of-practice, they are still
required from an engineering point of view, to provide a formal
ground to automation (in our case, supporting the measurement
process).

According to the iterative and feature-driven approach em-
phasized by the DevOps paradigm, we define a product p ∈ P

def gcd(a: int, b: int):
if a<b:

a,b = b,a # Swapping a and b
while b != 0 :

a,b = b,a%b # Computing the GCD
return a

Listing 3. Greatest Common Divisor (GCD) algorithm in Python

as the composition (⊕) of products increments δi ∈ ∆ (i.e.,
features) to the empty product (∅ ∈ P) [27].

p = ∅ ⊕ δ1 ⊕ . . .⊕ δi

As described in the previous section, we define a product
increment δ = (u, {s1, . . . , sn}) ∈ ∆ as a user story u, and
a set of acceptance scenarios si ∈ S. Classical (and manual)
measurement methods would take u as input, but we envision
here an automated measurement process that takes δ as input.
The measurement of a given increment is then defined as
the composition (e.g., a sum) of the code’s measurements
associated with each acceptance scenario involved in the
increment.

measure : ∆→ N

(u, {s1, . . . , sn}) 7→
n∑

i=1

measure(si)

As a consequence, we need now a way to properly model
each acceptance scenario to support their measurements.

A. Using Control-Flow as Modelling Foundation

Our proposition here is to investigate how compilation tech-
niques can be used in this context. As acceptance scenarios are
written as code, we envision an approach relying on control-
flow extraction to automatically extract from the source code
the Control-Flow Graph of the code involved in the acceptance
scenario. A CFG is a classical data structure used in the
compilation domain to represent a given program’s execution
flow, supporting static analysis (e.g., test generation [28]). We
describe in LST. 3 an implementation of the greatest common
divisor using the Euclidian’s algorithm, and in FIG. 2 the
associated CFG that can be automatically extracted from the
source (e.g., using a function named cfg). CFG-based models
are interesting from a modelling point of view, as (i) they
can be easily extracted from source code, and (ii) they can
be manipulated by large families of algorithms. Considering
software measurement in particular, CFGs are helpful as they
model the way instructions are modifying the processed data
(which is precisely what software measurement captures).

As there is no reference consensus about how to model
a CFG, we consider here a classical graph-based modelling.
We define a CFG as a typical attributed graph G = (V,E)
where V = {v1, . . . , vi} is a set of vertices and E =
{e1, . . . , ej} ⊆ V × V a set of edges. Vertices and nodes
might contains attributes (e.g., labels for conditions, kind of
instructions). The modelling space is built as a commutative

gcd(a,b)

if: a<b

a,b = b,a

T

while: b > 0

F

return a

F

a,b = b,b%a

T

Fig. 2. ggcd: Control-Flow Graph automatically extracted from LST. 3

monoid CFG = (G,∪, ∅), where ∪ is the classical graph
union operator2 and ∅ the empty graph.

To support the measurement process, we define three helper
functions: (i) calls to extract the instruction calling the business
logic used inside a scenario, (ii) slice to extract the CFG of
the sub-part of the product covered by a given acceptance sce-
nario, and (iii) size to measure a given CFG (e.g., computing
COSMIC function points). Considering the previous example,
if an acceptance scenario s contains a call to gcd(a,b), then
the sliced CFG will contain ggcd (FIG. 2), added to the CFGs
extracted from the other instructions involved in s using the ∪
operator. Then, any measurement method can be used to size
the resulting CFG. For example, using the COSMIC method,
the data exchange between elements involved in the CFG will
be used as main measurement points.

calls : S → Instruction?

slice : S → CFG

s 7→ {g | Let calls(s) = {i1, . . . , in},
n⋃

j=1

cfg(ij)}

To provide a sound model, we define a measure function as
the composition of the previously defined helpers.

measure : ∆→ N

(u, {s1, . . . , sn}) 7→
n∑

i=1

size(slice(si))

B. Research Challenges

The previous section sketches the foundations one can
use to properly model product increments and the associated
acceptance scenarios in the context of software measurement.
Our proposition has the advantage of giving a precise value
of the software size much earlier in the software develop-
ment life cycle for better support of planning and decision

2Let g1 = (V1, E1) and g2 = (V2, E2), g1 ∪ g2 = (V1 ∪ V2, E1 ∪E2).
The operator ∪ is by nature commutative and associative, as it relies on set
unions. The enpty graph ∅ = (∅, ∅) is its natural identity element.

making. However, finding a proper way to model existing
artifacts triggers research challenges to be addressed in order
to properly achieve this vision. To refine our initial research
question, focusing on acceptance tests and our envisioned
modelling paradigm, we have identified the following four
research challenges that need to be tamed:

C1 Modelling polyglot products. Nowadays, products are
rarely written using a single language. It triggers a chal-
lenge to define the slice function used to project a CFG
from a given acceptance scenario. This projection can
be made statically or by dynamically executing the tests.
In addition to the engineering challenge of supporting
multiple languages, the research challenge relies here on
the analysis’s uncertainty. It is easy to extract a CFG
from a program written in a statically typed language, but
dynamic languages make the job much harder [29]. As a
consequence, the CFG model extraction implemented by
the slice function must include uncertainty mechanisms
that will be propagated to the measurement obtained by
the size function, as well as its composition for multiple
tests at the measure function level.

C2 CFG extrapolation of unwritten code. It is classical
in compiler engineering to extract control flow from a
program representation. However, the challenge here is
to work at the early phases of development, where the
feature’s code is not implemented yet. In these conditions,
it is not possible to perform a classical extraction. Instead,
the key point is to leverage inference techniques used
to extrapolate characteristics of the “code to be written”
based on the code previously written for this product or a
similar one in the company portfolio. Similar techniques
were successfully applied in AAA video game devel-
opment to identify the probability of code contributions
to contain functional bugs [30]. Providing such model
inference mechanism is critical, as well as identifying
the limitations of the existing approaches.

C3 Input data quality measurement. Since the quality of
the measurement is dependent on the quality of the
acceptance tests, potential defects such as ambiguities or
inconsistencies impact the quality of measurement. The
input artifact must have enough semantic formalization
to allow completeness of the functional requirements.
The challenge here is to provide an automated evaluation
method for the acceptance scenarios and consider this
evaluation to characterize the uncertainty of the measure
at the model level.

C4 Adoption potential. In order to adhere to a new paradigm,
an organization must see its benefits. To better meet
business demands and customers’ needs, increasing their
productivity or decreasing response time to change are
good incentives for an organization to revisit and change
its processes. Leveraging acceptance tests to support
functional measurement would reduce the effort in es-
timation and stem duplication effort of requirements
writing, improve quality of requirements, and accelerate

delivery. The challenge here is to identify a reference
benchmark to empirically demonstrate the company’s
benefits when such measurements are available to im-
prove the DevOps feedback loop.

C. Methodology and Work in progress

The work described in this paper is done in close collab-
oration with an industrial partner, which provides unlimited
access to the DevOps teams that work on several products.
To date, the research effort was focused on the identification
of the artifacts available in a DevOps context, following a
comprehensive state-of-practice analysis started in 2019 in
an M.Eng. thesis. These results were then confronted to
the DevOps ecosystem implemented in the context of the
industrial partner. This work leads to the definition of the
scenario described in SEC. III. Based on this scenario, and
an analysis of the state-of-the-art approaches described in the
literature (SEC. II), we have identified the four challenges
Ci previously described. We are now focusing our efforts on
addressing (and hopefully tame) these challenges.

To achieve such a goal, we plan to leverage our industrial
collaboration as a medium-scale case study by first charting
the different teams’ DevOps practices at a fine-grained level.
These practices will help us target the languages that will
cover the most significant part of the product (C1) while
limiting the engineering effort. As the products developed by
the company can be considered as legacy, we have access to an
extensive history of code modifications. These histories will
be used to feed the CFG inference learning algorithms (C2)
and validation benchmarks (we have access to the team that
developed these features to qualitatively evaluate if an equiva-
lence identified by the algorithms is compatible with the team
domain knowledge). Considering that the company shifted to
a DevOps context one product at a time, it gives us access to
teams with different maturity levels. Thus, the evaluation of the
maturity of the acceptance scenarios (C3) will be supported at
two levels: (i) by comparing the scenarios written by different
teams with a different level of expertise, and (ii) by comparing
scenarios written in the past with more recent ones inside the
same team. Finally, we will use this case study to identify the
benefits measured at quantitative and qualitative levels for the
industrial partner and reproduce the obtained result in other
contexts (C4). To achieve such a goal, we will rely on an
industrial-academic research chair dedicated to DevOps that
accelerate the collaboration between universities and industries
(e.g., empirical case study, qualitative studies).

V. CONCLUSIONS

In this paper, we identified one of the biggest challenges
for functional software measurement in the context of a
DevOps ecosystem. Despite all of their advantages for the
DevOps team, functional measurements cannot be included in
a DevOps loop. In this context, our proposition is to identify
which artifacts developed in a DevOps ecosystem can be
leveraged to provide ways to automate such measurement.
To date, we focused on acceptance scenarios defined using

the Gherkin language as the entry point for an approach
that will support a better estimation of the functional size
to be developed, starting as early as possible, and as close
as possible to the requirements. This approach triggers four
research challenges yet to be addressed, and we proposed
a methodology to focus our research effort to tame these
challenges. The challenges cover a wide spectrum of software
engineering research, from compilation (C1) to code inference
(C2), data quality (C3) and stakeholder adoption measurement
(C4). Combining these four challenges into a comprehensive
approach will provide an elegant and efficient way to reconcile
requirements engineering and DevOps through a functional
measurement point of view.

REFERENCES

[1] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in Technol-
ogy Organizations, 1st ed. Portland, OR, USA: IT Revolution Press,
2016.

[2] ISO/IEC 19761-2, “Software engineering – COSMIC: a functional size
measurement method,” International Organization for Standardization,
Geneva, CH, Standard ISO/IEC TR 19761-2:2011, 2011. [Online].
Available: https://www.iso.org/standard/54849.html

[3] J.-F. Dumas-Monette and S. Trudel, “Requirements engineering quality
revealed through functional size measurement: an empirical study in an
agile context,” in 2014 Joint Conference of the International Workshop
on Software Measurement and the International Conference on Software
Process and Product Measurement. IEEE, 2014, pp. 222–232.

[4] S. Mosser and J.-M. Bruel, “Reconciling Requirements and Continuous
Integration in an Agile Context,” in International Requirements Engi-
neering Conference, ser. RE, Aug. 2018, Tutorial.

[5] F. Dalpiaz and S. Brinkkemper, “Agile Requirements Engineering: from
User Stories to Software Architectures,” in International Requirements
Engineering Conference, ser. RE, Sep. 2021, Tutorial.

[6] F. Dalpiaz, V. D. Schalk, B. Ivor, A. Sjaak, F. Başak, and G. Lucassen,
“Detecting terminological ambiguity in user stories: tool and experi-
mentation,” Information and Software Technology, vol. 110, pp. 3–16,
2019.

[7] J.-M. Bruel and S. Mosser, “Requirements Engineering in the DevOps
Era,” in International Requirements Engineering Conference, ser. RE,
Sep. 2021, Tutorial.

[8] P. Sudarmaningtyas and R. B. Mohamed, “Extended Planning Poker: A
Proposed Model,” in 2020 7th International Conference on Information
Technology, Computer, and Electrical Engineering (ICITACEE), 2020,
pp. 179–184.

[9] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in ag-
ile software development: a systematic literature review,” in Proceedings
of the 10th international conference on predictive models in software
engineering, 2014, pp. 82–91.

[10] C. Commeyne, A. Abran, and R. Djouab, “Effort estimation with story
points and cosmic function points-an industry case study,” Software
Measurement News, vol. 21, no. 1, pp. 25–36, 2016.

[11] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, pp. 1236–1249, 2011.

[12] B. Marı́n, G. Giachetti, and O. Pastor, “Measurement of functional size
in conceptual models: A survey of measurement procedures based on
COSMIC,” in Software Process and Product Measurement. Springer,
2008, pp. 170–183.

[13] J. Zhu, S. Huang, Y. Shi, M. Chen, J. Liu, and E. Liu, “Survey on Meth-
ods for Automated Measurement of the Software Scale.” International
Journal of Performability Engineering, vol. 16, no. 2, 2020.

[15] A. Sahab and S. Trudel, “COSMIC Functional Size Automation
of Java Web Applications Using the Spring MVC Framework,” in
Joint Proceedings of the 30th International Workshop on Software
Measurement and the 15th International Conference on Software

[14] H. Soubra, Y. Abufrikha, and A. Abran, “Towards Universal COSMIC
Size Measurement Automation,” in International Workshop on Software
Measurement – IWSM 2020. Mexico: CEUR-WS, 2020.
Process and Product Measurement (IWSM Mensura 2020), Mexico
City, Mexico, October 29-30, 2020, ser. CEUR Workshop Proceedings,
A. Abran and Ö. Özcan-Top, Eds., vol. 2725. CEUR-WS.org, 2020.
[Online]. Available: http://ceur-ws.org/Vol-2725/paper7.pdf

[16] B. M. Marı́n Campusano, “Functional size measurement and model
verification for software model-driven developments: A cosmic-based
approach,” Ph.D. dissertation, Universitat Politècnica de València, 2011.

[17] S. Abrahão, J. Gómez, and E. Insfran, “Validating a size measure
for effort estimation in model-driven Web development,” Information
Sciences, vol. 180, no. 20, pp. 3932–3954, 2010.

[18] M. Ochodek, S. Kopczyńska, and M. Staron, “Deep learning model
for end-to-end approximation of COSMIC functional size based on use-
case names,” Information and Software Technology, vol. 123, p. 106310,
2020.

[19] S. O. Barraood, H. Mohd, and F. Baharom, “A Comparison Study of
Software Testing Activities in Agile Methods,” in Knowledge Manage-
ment International Conference (KMICe) 2021, Malaysia, 02 2021.

[20] E. C. dos Santos and P. Vilain, “Automated acceptance tests as software
requirements: An experiment to compare the applicability of fit tables
and gherkin language,” in International Conference on Agile Software
Development. Springer, 2018, pp. 104–119.

[21] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2011, pp. 383–387.

[22] D. H. Longo, P. Vilain, and L. P. da Silva, “Impacts of Data Uniformity
in the Reuse of Acceptance Test Glue Code.” in SEKE, 2019, pp. 129–
176.

[23] J. Fischbach, A. Vogelsang, D. Spies, A. Wehrle, M. Junker, and
D. Freudenstein, “Specmate: Automated creation of test cases from
acceptance criteria,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE, 2020, pp.
321–331.

[24] Agile Alliance. (2021) Three Amigos. [Online]. Available:
https://www.agilealliance.org/glossary/three-amigos/

[25] ——. (2021) INVEST. [Online]. Available:
https://www.agilealliance.org/glossary/invest/

[26] N. Santos, J. M. Fernandes, M. S. Carvalho, P. V. Silva, F. A. Fernandes,
M. P. Rebelo, D. Barbosa, P. Maia, M. Couto, and R. J. Machado, “Using
scrum together with uml models: A collaborative university-industry
r&d software project,” in Computational Science and Its Applications
– ICCSA 2016, O. Gervasi, B. Murgante, S. Misra, A. M. A. Rocha,
C. M. Torre, D. Taniar, B. O. Apduhan, E. Stankova, and S. Wang, Eds.
Cham: Springer International Publishing, 2016, pp. 480–495.

[27] S. Mosser, M. Blay-Fornarino, and L. Duchien, “A commutative model
composition operator to support software adaptation,” in Modelling
Foundations and Applications - 8th European Conference, ECMFA 2012,
Kongens Lyngby, Denmark, July 2-5, 2012. Proceedings, ser. Lecture
Notes in Computer Science, A. Vallecillo, J. Tolvanen, E. Kindler,
H. Störrle, and D. S. Kolovos, Eds., vol. 7349. Springer, 2012, pp.
4–19. [Online]. Available: https://doi.org/10.1007/978-3-642-31491-9 3

[28] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, The
Fuzzing Book. Saarbrücken: CISPA + Saarland University, 2019.
[Online]. Available: https://publications.cispa.saarland/3120/

[29] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos,
“Pycg: Practical call graph generation in python,” in ICSE ’21: 43nd
International Conference on Software Engineering. ACM, 2021.

[30] M. Nayrolles and A. Hamou-Lhadj, “CLEVER: combining code
metrics with clone detection for just-in-time fault prevention and
resolution in large industrial projects,” in Proceedings of the 15th
International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018, A. Zaidman, Y. Kamei,
and E. Hill, Eds. ACM, 2018, pp. 153–164. [Online]. Available:
https://doi.org/10.1145/3196398.3196438

