
Charting Microservices to Support
Services’ Developers: The Anaximander

Approach

Sébastien Mosser1(B), Jean-Philippe Caissy1, Florian Juroszek1,2,
Florian Vouters1,3, and Naouel Moha1

1 Université du Québec à Montréal (UQAM), Montréal, Canada
{mosser.sebastien,caissy.jean-philippe,juroszek.florian,

vouters.florian,moha.naouel}@uqam.ca
2 Université Côte d’Azur (UCA), Sophia Antipolis, France

florian.juroszek@univ-cotedazur.fr
3 Centre des Études Supérieures Industrielles (exia.CESI), Toulouse, France

florian.vouters@viacesi.fr

Abstract. Microservice architectures have gained popularity in the last
ten years, based on their intrinsic capabilities of implementing scalable
software architectures. However, understanding a microservice architec-
ture is still a challenging task for software architects. Current state-of-
the-art approaches addressing this challenge focus on exhaustive solu-
tions, working in an all-or-nothing way. These all-or-nothing solutions
rely on heuristics to create one map of a given architecture, using static
and/or dynamic analysis of the existing source code. This is not compat-
ible with the classical approaches used in software comprehension, that
relies on the exploration of a program in an incremental way. In this
paper, we leverage the exploration metaphor and describes the Anaxi-
mander approach to support the incremental definition of a map that
suits the needs of the architect exploring an architecture. Using probes
working at different levels of abstraction and precision, one can incremen-
tally chart a map representing the architecture and leverage the map by
querying it. We applied the Anaximander approach to six reference
microservice architecture published by major actors from the state-of-
practice.

Keywords: Microservice architecture · Software comprehension ·
Software composition

1 Introduction

Microservices are gaining momentum to support the development of com-
plex service architecture. Relying on the promising principles of domain-driven
design [12], microservices architectures provide an excellent answer to tame the
challenge of developing scalable service-based systems. Such architectures are
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 36–44, 2020.
https://doi.org/10.1007/978-3-030-65310-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_3


Charting Microservices to Support Services’ Developers 37

decomposed into a set of independent microservices, each of these being dedi-
cated to a given domain. The communication between services is delegated to
reliable communication paradigms, such as messages buses [2]. From a software
engineering point of view, micro-services triggers several maintainability issues,
e.g.,, how to maintain and evolve such systems.

Table 1. Size and technology heterogeneity for each reference architecture

Id. Ref. architecture [1] Technologies Size

Lang. DBs Mess. Depl. #Files #LoCs #Serv.

S1 HipsterShop 5 1 2 2 163 38, 934 10

S2 SockShop 3 4 2 9 222 19, 014 8

S3 eShopOnContainers 1 7 5 3 1, 585 143, 356 8

S4 Vert.x MS Blueprint 1 7 2 1 218 18, 881 9

S5 Shopping Cart 1 7 2 1 396 70, 045 8

S6 Robot shop 4 3 2 1 120 6, 341 7

Total for all arch. 5 5 6 11 2,704 296,580 50

In 2020, Assunçãao et al. described a variability challenge related to microser-
vice engineering [1], where they identified six references open-source microser-
vice architectures. These reference systems (see Sect. 4) demonstrate the high
level of variability related to microservices development (Table 1). This level of
heterogeneity is intrinsic to microservices architectures, and it is necessary to
support developers and architects who have to maintain such systems. Reverse-
engineering approaches typically support this task [9]. However, in the very
case of microservices architecture, the quest for a fully-automated tool that
can reverse-engineer any microservice architecture is pointless by design. On
the one hand, static code analysis approaches will quickly reach a limit consider-
ing the flexibility offered to the developers by the existing technologies, and the
upcoming frameworks that are not yet invented. On the other hand, dynamic
approaches (e.g., analyzing traces of execution) are fragile w.r.t. the scenarios
used as input to capture the dynamic traces.

Instead of targeting an ultra-high-definition description of the architecture,
we propose here to define an incremental and iterative way of creating such a
description. The key idea is to consider such a description as a map, and leverage
the way cartographers addressed the creation of maps in the early days of our
civilization. We named our approach after Anaximander, a Greek philosopher
known to have produced the first map of the world. Based on a source code audit
of the reference architectures, we propose in this paper to describe an incremen-
tal approach to support developers and architects who maintain microservice
architecture.



38 S. Mosser et al.

2 Related Work

Haitzer and Zdun [4] present a Domain-Specific Language (DSL) to abstract
an application’s architecture in a semi-autonomous way. This approach empha-
sizes that working incrementally is essential. Granchelli et al. [3] present an
approach to recover the architecture of microservice systems called MicroART
from a GitHub repository and a reference to the container engine managing the
application. This approach differs from ours by using a monitoring tool such as
tcpdump to capture the communication log between services without taking into
account the architecture deployment artifacts. Kleehaus et al. [6] provides a tool
called MICROLYZE to recover the infrastructure in real-time of a microservice
architecture. Similar to our approach, MICROLYZE uses both automatic and
manual processes to gather information. Ma et al. [8] propose another approach
to generate service dependency graphs automatically. Those graphs are used to
analyze and visualize the dependencies between the microservices deployed for
the application. Their solutions allow them to select specific test cases in order
to run regression tests on the application. Ma et al. explore similar monitoring
solutions [7] to leverage annotation in Java source code. Those annotations are
used to help build service dependency graphs.

Probe

Architect

Microservice
Architecture

Partial Map

Existing Map

Composition
algorithm

Enriched Map

Fig. 1. Overview of the Anaximander approach

Leveraging the cartography metaphor, all the approaches described in this
can be seen as exploration campaigns of the architecture, trying to create a
complete map out of a single exploration. The maps are dedicated to a sin-
gle objective (e.g., non-regression testing) and cannot inter-operate with each
other. Moreover, the amount of information produced is very detailed, and it
might overwhelm an architect, preventing the approach to answer the architect’s
questions.

3 The Anaximander approach

Taking a different point of view, the key concepts of Anaximander are the
definition of (i) partial maps, obtained as the result of the execution of (ii)
exploration probes applied to the system. This approach tackles by design the



Charting Microservices to Support Services’ Developers 39

heterogeneity of micro-services architectures (see Sect. 4), and is complementary
of the approaches already existing in the state-of-the-art that can be considered
as exploration probes. We describe in Fig. 1 the approach for a software architect,
that relies on the classical extract - abstract - present paradigm [10] used in
reverse engineering. The architect selects a probe among the one available off
the shelf, and execute it on the architecture. A probe can rely on static analysis,
or dynamic traces. As a result of its exploration, a probe returns a partial map,
i.e., the information gathered by the probe. The obtained partial map is then
composed with the already existing one (if any), to enrich the knowledge (e.g.,
adding new information, correcting errors).

3.1 Modelling the Map as a Graph

We define an architecture map as a typical graph g = (V,E) ∈ G, where V =
{v1, . . . , vi} ∈ Vi is a set of vertices and E = {e1, . . . , ej} ∈ Ej a set of edges.
A vertex v is defined as an vertex identifier, a type, and a set of associated
properties P . An edge e is defined as a pair of source and target vertex identifiers,
a type, and a set of properties. A property p is a simple key-value pair. To support
the efficient manipulation of the maps, we rely on two constraints that need to
hold in a given map: (i) vertex uniqueness and (ii) edge uniqueness.

To manipulate the map and support its enrichment, we leverage the classical
match and merge algorithm [5]. Each graph element (i.e., graphs, vertices and
edges) defines an equivalence relation (denoted as ≡) for matching purpose (e.g.,
two nodes are considered equivalent when they have the same identifier), and a
merge function (denoted as ⊕) to merge two elements identified as equivalent.
Thus, enriching an existing map m with the result of a probe m′ is simply to
compute m′′ = m ⊕ m′. To correct an error, we rely on the opposite operation
remove (denoted as �), where the following law holds: m = (m ⊕ m′) � m′.

3.2 Modelling Probes as Functions

Exploration probes are the software artifacts used to produce the partial maps.
According to the heterogeneity of the technologies involved in microservices
architectures, it is unrealistic to develop a polyglot framework supporting the
state-of-practice as well as anticipating any upcoming technological trends. As a
consequence, we decided to model a probe as a black-box function p : conf → G,
taking as input its configuration, and producing as output a map, in a tex-
tual format. Adding or removing information to the map relies on the ⊕ and �
operators previously described, e.g., mt+1 = mt ⊕ p(configuration).

The immediate advantage of this black-box representation is that it unifies
the outcome of each exploration while supporting the designers of probes to use
the most appropriate technologies for their very own probes. For example, a
static analysis of Go source code will leverage the compiler capabilities directly
embedded inside the Go language, where a probe dedicated to analyzing Spring
Boot Java services will leverage the reflexivity API available in Java to analyze



40 S. Mosser et al.

the developed artifacts. Dynamic analysis can leverage classical formal mod-
els such as the Knowledge Discovery Metamodel [11], an international standard
promoted by the OMG to support software modernization. To tame this hetero-
geneity and consider all the probes as equals from the architect point of view, it
is possible to wrap each probe into an image (e.g., using Docker or Singularity
container technologies). The image will contain all the necessary software depen-
dencies (e.g., executable, compiler, libraries, frameworks) for a given probe, and
hide this complexity to the architect into a black-box approach. It emphasizes
the idea of probes’ black-box representation, where the internal implementation
details are hidden inside the container. The probes library available off-the-shelf
is then a set of turn-key images ready to be used by the architect, and creating
a new probe is as simple as publishing a new image inside the library.

legend

carts-dbcarts
tcp

catalogue

orders-dborders

tcp

tcp

user

tcp

payment

tcp

shipping

tcp

user-db

tcp

front-end

tcp

tcp

rabbitmq tcp

queue-master

tcp tcp

consul

poincare

tcp

wilson

tcp

kalam

tcp

edge-router

tcp

databaseservicemessaging

Fig. 2. Anaximander map obtained dynamically using WeaveScope (mi)

4 Exploring a Reference Architecture

In this section, we validate the Anaximander approach based on the reference
architectures used to express the requirements. The source code of the probes is
available on the project repository1. For the sake of concision, it is not possible to
provide here an in-depth analysis of each of the reference architecture. Instead,
we focus on a single one (S2, SockShop[13]), as it is built as a demonstration
showcase by a tool vendor (WeaveWorks), medium-sized concerning the five
others, a representative in terms of heterogeneity (three languages for service
development, three databases technologies, two messaging framework and nine
deployment technologies), and involves 8 services.

As a starting point, we transformed the dynamic map provided by the tool
vendor into an Anaximander artifact (Fig. 2). This first map mi is the com-
position of three different information: (i) the server that host the services, (ii)
the TCP connections that exist between the services and (iii) the kind of service
1 https://github.com/ace-design/anaximander-microservices.

https://github.com/ace-design/anaximander-microservices


Charting Microservices to Support Services’ Developers 41

(i.e., database, messaging, service). For the sake of readability, we only kept
the two last ones in the paper version of the map. As the map is obtained by
listening to a runtime infrastructure, it contains noise, i.e., existing containers
in the deployment infrastructure that are not related to the business logic (e.g.,
edge-router, consul).

To remove the noise, we use a probe dedicated to extracting services from a
Kubernetes descriptor. This probe extracts from the deployment descriptors the
services into a map mk, but cannot infer their interconnection. This is where the
composition of multiple probes provided by Anaximander is helpful: to date,
our most useful map is m0 = mi � (mi � mk), i.e.,, the map containing all the
discovered interconnection in mi, without the infrastructure noise (mi � mk).

queue-master

shipping-task-exchange

exchange

shipping

exchange

(a) masync ∈ G

orders

/orders

GET POST

exposes

payment

/paymentAuth

POST

exposes

/health

GET

exposes

(b) mswag ∈ G

orders

/orders

GET POST

exposes

/paymentAuth

POST

calls

(c) mspring ∈ G

Fig. 3. Partial maps used to explore S2 with probes (RabbitMQ, Swagger, Spring)

Based on this initial map, we can start the incremental exploration of the
infrastructure. First, we want to understand the interconnection that uses asyn-
chronous messages (e.g., RabbitMQ exchange topics) in this architecture. A
query to m0 to know all the services exchanging data with RabbitMQ returns
two services: queue-master and shipping. It means that if the message bus
suffers an outage, only the shipping infrastructure will be impacted. To improve
the precision of the map concerning asynchronous communications, we use a
source code analysis probe to identify the exchange topics from the source code,
obtaining a map masync (Fig. 3a).

A critical part of the architecture is the payment of orders, so we decide to
explore the interconnection that exists between the payment and order services.
Without more information, we assume that both services communicate using
an HTTP REST protocol. We first use a probe dedicated to Swagger contracts
identification, identifying the routes exposed by each service (mswag, Fig. 3b).
Then, we use a probe that performs a static analysis of the order service to
identify the control-flow of its Spring implementation (mspring, Fig. 3c). As there
is no other connection between order and payment, we can use this information



42 S. Mosser et al.

to correct our initial map, and erase the technical tcp link that exists between
the two services and use the proper control-flow instead.

carts

catalogueorders

tcp

user

tcp

payment

tcp

shipping

tcp

/orders

GET POST

exposes

front-end

tcptcp

/paymentAuth

POST

exposes

queue-master

shipping-task-exchange

exchange

exchange

calls

/health

GET

exposes

Fig. 4. Final map for S2, composing mi, mk, masync, mswag & mspring

We describe in Fig. 4 the map obtained after these preliminary explorations.
We used a query to identify the databases and remove them from the map, and
then compose all the partial maps with the initial one to obtain a more precise
picture of the architecture. The map is still shadowed for some services, but the
amount of information inside it was sufficient to answer the questions we were
asking about the architecture.

An immediate threat to validity is related to the lack of validation outside of
the six reference architectures used to defined Anaximander. This is empha-
sized by the difficulty of collecting open-source microservice architecture, as this
paradigm is used to implement business-driven logic. However, we mitigate this
threat by the fact that the six architectures were highly heterogeneous, using dif-
ferent coding styles and technologies, and therefore representative of microservice
development. Moreover, the representativity of these architectures is emphasized
by their selection for a variability study by Asunçãao et al.

5 Conclusions and Perspectives

In this paper, we described a novel approach named Anaximander to support
microservice architecture maintenance, leveraging the idea of gathering incom-
plete information about the architecture and composing this incomplete infor-
mation with the existing ones to enrich the knowledge of the architect incre-
mentally. This approach complements the state-of-the-art ones, which try to
create ultra-precise maps by focusing on particular technological choices, where
Anaximander support a more flexible way of creating such maps. The need
for Anaximander emerged after a careful audit of six references architectures.



Charting Microservices to Support Services’ Developers 43

This work opens an interesting perspective concerning uncertainty. As the map
created by Anaximander is imprecise by design and aims to be refined itera-
tively, finding a way to model such imprecision (e.g., with goal modelling from the
requirements engineering community) will help the architect during the explo-
ration of the system.

Acknowledgments. This research has been supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), Université du Québec à Montréal
(UQAM), and the Inria - Équipe Associée program.

References

1. Assunção, W.K.G., Krüger, J., Mendonça, W.D.F.: Variability management meets
microservices: six challenges of re-engineering microservice-based webshops. In:
24rd International Systems and Software Product Line Conference, SPLC, Mon-
treal, Canada. ACM (2020). https://variability-challenges.github.io/

2. Garg, N.: Apache Kafka. Packt Publishing Ltd., Birmingham (2013)
3. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle,

A.D.: Towards recovering the software architecture of microservice-based sys-
tems. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 46–53, April 2017. https://doi.org/10.1109/ICSAW.2017.48

4. Haitzer, T., Zdun, U.: DSL-based support for semi-automated architectural com-
ponent model abstraction throughout the software lifecycle. In: Proceedings of
the 8th International ACM SIGSOFT Conference on Quality of Software Archi-
tectures, QoSA 2012, pp. 61–70.Association for Computing Machinery, New York
(2012). https://doi.org/10.1145/2304696.2304709

5. Kienzle, J., Mussbacher, G., Combemale, B., DeAntoni, J.: A unifying framework
for homogeneous model composition. Softw. Syst. Model. 18(5), 3005–3023 (2019).
https://doi.org/10.1007/s10270-018-00707-8

6. Kleehaus, M., Uludağ, Ö., Schäfer, P., Matthes, F.: MICROLYZE: a framework
for recovering the software architecture in microservice-based environments. In:
Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 148–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9 14

7. Ma, S., Liu, I., Chen, C., Lin, J., Hsueh, N.: Version-based microservice analy-
sis, monitoring, and visualization. In: 2019 26th Asia-Pacific Software Engineer-
ing Conference (APSEC), pp. 165–172, December 2019. https://doi.org/10.1109/
APSEC48747.2019.00031. iSSN 2640-0715

8. Ma, S.P., Fan, C.Y., Chuang, Y., Liu, I.H., Lan, C.W.: Graph-based and
scenario-driven microservice analysis, retrieval, and testing. Future Gener. Com-
put. Syst. 100, 724–735 (2019). http://www.sciencedirect.com/science/article/pii/
S0167739X19302614

9. Müller, H.A., Jahnke, J.H., Smith, D.B., Storey, M.A., Tilley, S.R., Wong, K.:
Reverse engineering: a roadmap. In: Proceedings of the Conference on The Future
of Software Engineering, ICSE 2000, pp. 47–60. Association for Computing Machin-
ery, New York (2000)

10. Müller, H.A., Tilley, S.R., Wong, K.: Understanding software systems using reverse
engineering technology perspectives from the Rigi project. In: Proceedings of the
1993 Conference of the Centre for Advanced Studies on Collaborative Research:
Software Engineering, CASCON 1993, vol. 1, pp. 217–226 (1993)

https://variability-challenges.github.io/
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1145/2304696.2304709
https://doi.org/10.1007/s10270-018-00707-8
https://doi.org/10.1007/978-3-319-92901-9_14
https://doi.org/10.1109/APSEC48747.2019.00031
https://doi.org/10.1109/APSEC48747.2019.00031
http://www.sciencedirect.com/science/article/pii/S0167739X19302614
http://www.sciencedirect.com/science/article/pii/S0167739X19302614


44 S. Mosser et al.

11. OMG: Knowledge Discovery Metamodel 1.4. Technical report, OMG (2016)
12. Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley Professional,

Boston (2013)
13. Weaveworks: SockShop, a generic microservices application (2020). https://github.

com/microservices-demo. Accessed 27 May 2020

https://github.com/microservices-demo
https://github.com/microservices-demo

	Charting Microservices to Support Services' Developers: The Anaximander Approach
	1 Introduction
	2 Related Work
	3 The Anaximander approach
	3.1 Modelling the Map as a Graph
	3.2 Modelling Probes as Functions

	4 Exploring a Reference Architecture
	5 Conclusions and Perspectives
	References




