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Abstract—In Software Product Line (SPL) engineering, Fea-
ture Models (FMs) are widely used to capture and manage
variability in a sound and organized fashion. Though semantics,
notations and reasoning support are well established, maintaining
large FMs is still an open problem. As large FMs naturally
contain different concerns, some related to domains, others being
inherently cross-cutting ones, it is challenging to find a decom-
position that will tame this complexity and ease maintenance.

This paper presents a visual representation of dependent FMs
useful in decomposing a large FM while quantitatively visualizing
constraints between and inside them. This Variability Blueprint
is intuitive enough to enable the SPL maintainer to confine
dependencies between FMs in a small set of identified features
inside each decomposed FM. We describe our blueprint and
report on its application on two case studies.

Index Terms—Feature Modeling, Visualization, Composition,
Software Product Lines.

I. INTRODUCTION

Reusing artifacts is central to the software engineering

discipline. The Software Product Lines (SPL) approach advo-

cates the development of software system families rather than

individual software products, aiming at a paradigm shift to

support mass customization through systematized reuse [1].

SPL engineering is about building and maintaining similar

software products within an application domain, exploiting

common parts and managing variable ones among products.

In this context the modeling and management of variability

is a central activity. Feature models (FMs) are then widely

used to model the variability of a domain or system, in terms

of mandatory, optional and exclusive features organized in a

hierarchy, as well as propositional cross-tree constraints over

these features [2], [3]. Developments around formal semantics,

reasoning techniques and tool support [3], [4], [5] make FM

a de facto standard for managing variability, largely accepted

in industry. Some practical issues have been identified in a

recent study [6]: very large FMs are observed (10,000 features),

several FMs are manipulated in the same project, cross-tree

constraints are frequent and make FMs complex to understand

and maintain. This study also shows that practitioners identify

both visualization and evolution of a model as the two most

important challenges.

In order to ease comprehension and maintenance of large

and complex FMs, previous work has proposed composition

operators (aggregation, merge) for FMs [7], as well as a

decomposition operator to slice a FM according to a given set

of features [8]. These operators are semantically well-founded

and efficiently implemented by solving techniques so to handle

large FMs. Decomposing FMs is thus possible, and especially

desirable as maintaining a single large FM for an entire system

may not be feasible [9], [10], [11], [12].

Our experience in the development of several real-world

SPLs in different domains [7], [13] and similar organization

of fragmented SPLs [10] is evidence that composing and

decomposing FMs helps in managing large and complex SPLs.

Even with decomposed smaller FMs, visualization issues are,

however, still present, as remaining FMs are of a large size,

and relations between features inside a FM and between related

FMs are hard to grasp. Several research results [14], [15], [16],

[17], [18] have produced variability visualizations that were

more expressive than the traditional FODA feature diagram [2].

However, they only focus on interactive configuration processes

and cannot be applied to large inter-related FMs during

maintenance phases.

This paper explores the use of visualization to cope with

the inherent complexity of large and related feature models.

We present Variability Blueprint, a polymetric-based visual-

ization [19] that contrasts complexity metrics against both

the hierarchical structure of a feature model and its internal

and external constraints when it is related to other feature

models. We evaluate our blueprint on FraSCAti, an open-source

component assembly middleware platform that is represented

by a complex medium-size feature model. Our case study

indicates that Variability Blueprint is a reliable support to

monitor large feature model decompositions and reengineering.

We employ polymetric view as the foundation of our

approach. The reason for this choice stems from empirical

evidence that shows this technique is an effective option for

software visualizations [20], [21], [22].

Our visualization has been implemented in the Moose

software analysis platform1 and our visualization is available

under the MIT license2.

This paper is structured as follows. Section II encompasses

themes of visualization and complexity in feature modeling

that served as motivation for our research. Section III describes

Variability Blueprint, a visual representation of large feature

models inter-related by constraints. Section IV reports on the

application of our representation on two different case studies

that are based on real SPLs. Section V discusses related work

1http://moosetechnology.org
2http://smalltalkhub.com/#!/∼abergel/Familiar
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while Section VI concludes this paper and describes future

work.

II. MOTIVATION

A. Visualizing Feature Models

A feature model (FM) [2] defines a hierarchy, structuring

features into levels of increasing detail, as well as the variability

itself, which is expressed on features and through cross-tree

constraints. In the hierarchy, when a feature is composed of

subfeatures, these subfeatures may be optional, mandatory or

define a group (XOR or OR). In addition, any propositional

constraints (e.g., implies or excludes) can be specified to

express complex dependencies between features. A FM defines

a set of valid feature configurations. They are obtained by

selecting features in the FM, so that i) if a feature is selected,

its parent is also selected; ii) if a parent is selected, all the

mandatory subfeatures, exactly one subfeature in each of its

XOR-groups, and at least one of its OR groups are selected;

iii) propositional constraints hold.

Optional

Mandatory

Xor-Group

Or-Group
requires

requires

Fig. 1: A Feature Diagram

FMs were introduced in the FODA method [2], which also

provided a graphical representation through feature diagrams.

An example extracted from our FraSCAti platform case study is

depicted in Figure 1. While textual representations for editing

and manipulating FMs have also been proposed, some recent

controlled experiments [23] show the advantages of graphical

representation to increase cognitive efficiency and effectiveness

of novice practitioners, as well as quality of produced FMs.

Much effort has been made on variability visualization with

a focus on visualizing a FM during its interactive configura-

tion [14], [15], [16], [18] (i.e., selecting a feature and showing

impacts with deselected features). Specific visualizations have

been proposed, combining techniques such as color-coding

(i.e., green for selected features, red for deselected ones) [14],

details on demand and focus with zoom on a chosen part of

the FM hierarchy [15], [16]. Different kinds of visualization

techniques, ranging from cone trees to Venn diagrams, have

been envisaged [17], but none that can be applied to large

inter-related FMs during maintenance phases, as they do not

scale well to large FMs and do not represent constraints in

and between FMs at the same time.

B. Feature Model Complexity

The ISO 9126 model for software product quality describes

maintainability as one of the 6 main characteristics of software

product quality. It is characterized by a set of attributes that

bear on the effort needed to make specified modifications,

among others:

• analyzability is the capability of the conceptual model of

a software system to be diagnosed for deficiency;

• changeability is the possibility and ease of change in a

model when modifications are necessary;

• understandability is the prospect and likelihood of the soft-

ware system model to be understood and comprehended

by its users or other model designers.

Analyzability is possible on a single FM, as FMs have

been semantically related to propositional logic [4]. Their

configuration set can be described by a propositional formula,

which allows for automating FM analysis [5] to detect defects

and anomalies, e.g., dead features, void feature models. Change-

ability is partially achieved by reasoning on feature edits [24]

so to reason on the modifications (refactoring, specialization,

generalization or arbitrary edit of the FM). Still, understanding

a non-trivial FM may be challenging in presence of numerous

and constrained features.

A number of dedicated metrics measure feature model

complexity and relate such complexity to maintainability [25]:

• Number of Features (NF): The total number of features

in a FM.

• Number of Leaf Features (NLeaf): The number of features

with no children or further specializations (i.e., the leaf

of the FM tree).

• Cyclomatic Complexity (CC): The number of distinct

cycles that can be found in the FM. As a FM is a

tree, cycles can only be caused by cross-tree constraints

between features. It is simple to show that the number of

distinct cycles and hence cyclomatic complexity of a FM

is equivalent to the number of its constraints.

• Cross-Tree Constraints (CTC): The ratio of the number of

unique features involved in the FM cross-tree constraints

over the number of features in the FM. This measure

represents the degree of involvement of features in the

definition of cross-tree constraints.

• Flexibility of Configuration (FoC): The ratio of the number

of optional features over the number of features in the FM.

The rationale behind this metric is that the more optional

features exist in a FM, the more choices are available for

the designers to choose from while configuring the FM.

• Number of Valid Configurations (NVC): The number of all

possible and valid configurations that can be derived from

the FM w.r.t. its tree structure and cross-tree constraints.

The set {NLeaf, CC, NVC, FoC} was identified to be

the sufficient subset of the proposed metrics for evaluating

maintainability of a single FM [25]. This study was however
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conducted on small to medium-size FMs (with an average of 76

features per FM) while the current practice shows that cross-tree

constraints are widely used in FMs [6] and that they strongly

influence SAT-based analysis algorithms on large FMs [26]. In

addition, with large FMs, its size in terms of total number of

features (NF) is also likely to influence maintainability. We

thus consider NF and CTC important metrics when dealing

with the maintainability of large and complex FMs.

C. Decomposing Feature Models: How Visualization Can Help

As previously mentioned, both the decomposition and

composition of FMs [8], [7] are efficient mechanisms to tame

the complexity of large and complex FMs [10], [7], [13].

Decomposing FMs can have different purposes, as FMs may

capture variabilities at different levels of abstraction [27], [9],

from several concerns [28], and from external parties [29],

[27].

Whatever the final purpose, a semantically correct decompo-

sition of a FM into related FMs should keep the semantics of the

cross-tree constraints from the original FM into the resulting

FMs. Taking the example of a common implies constraint

A =⇒ B between features A and B, can lead to two cases:

• A and B are kept in the same FM when the original one

is decomposed. We define this constraint as internal.

• A and B are put into two separated FMs during decom-

position, so their constraint is kept as an external, or

inter-FM, constraint.

Depending on how the decomposition is carried out (which

features are put in which FMs), the resulting FMs may be

related to many inter-FMs constraints. As each decomposed

FM is aimed at being as comprehensible as possible on its

own, these inter-FMs constraints are creating some useless

complexity. In several large and complex SPLs [7], [13], we

observed that this inter-FMs constraints decreases maintain-

ability. In this case, visualization can help by providing a crisp

representation of internal and external constraints. Currently

the common FM visualizations [16], [18] are not well-suited,

as they mainly use curved lines to link the two constrained

features, in our case leading to intermingled lines.

In addition, even with decomposed FMs, they are still large,

so that visualizing the whole FM does not require the level of

detail of a feature diagram. For example, feature names are

less important, whereas knowing which features are the most

involved in inter or intra constraints is extremely relevant to

our maintainability objective. It is also important to keep some

strong semantic information on the FM itself; its hierarchy

and the type of nodes (e.g., optional, mandatory) are salient

information to understand how variability is organized within

a FM.

Our aim is not to propose a method to determine whether a

decomposition is relevant for a specific domain or stakeholder,

or whether the concerns are well decomposed (if this is ever

possible). Instead, our objective is to provide an appropriate

visualization when a SPL maintainer has to determine what

complexity is produced by applying a possible decomposition.

III. VARIABILITY BLUEPRINT

Our first step toward decomposing complex feature models

is to provide a meta-model that is rich enough to express

quality attributes presented earlier. As the decomposition

of FMs is following the general principle of separation of

concerns [7], we use these concepts to organize our meta-

model around two models. As depicted in Figure 2, the SPL

part defines a domain model with a set of Concerns. Each

concern abstracts a configuration space (i.e., a Feature Model

capturing some variability). Constraints between concerns

(External Constraints) involve features from different concerns

(i.e., decomposed FMs).

We specialize some of the FM metrics to quantify depen-

dencies between FMs:

• external Cyclomatic Complexity (exCC) is the number

of distinct cycles that can be found between two feature

models (due to inter-FMs constraints). This is the external

counterpart of the CC metric.

• external Cross-Tree Constraints (exCTC) is the ratio of

the number of unique features involved in the external

constraints over the number of features in the FM. While

the CTC measures an intra-constraints ratio, exCTC

represents the degree of involvement of features in the

definition of the inter-FMs constraints. We expect it to be

low if these constraints are gathered on few features.

Blueprint description. Variability blueprint is a visual repre-

sentation of a FM. Our blueprint visually represents feature

hierarchies while emphasizing the constraints, being internal

or external, associated to each feature. An example of the

blueprint is given in Figure 3.

Each box represents a feature. As with traditional feature

visualizations, an edge describes the parent relationship between

two features – a child feature being located below its parent

feature. However, in order to make large representation more

readable, the kind of a sub-feature (e.g., optional, mandatory) is

expressed by a color-coding on the edge, e.g., blue for optional,

green for mutual exclusion. The shape of a feature is indicated

by two metrics:

• width indicates the number of external constraints in which

this feature is involved.

• height indicates the amount of constraints internal to the

concern/decomposed FM in which the feature is involved.

Features may also visually express some patterns. In Figure 3

several sub-features of feature A have both numerous internal

and external constraints. These features therefore constrain

other features both externally and internally. With such a pattern

of internal and external constraints distributed among numerous

features, it is difficult to understand this part (or concern) of

the FM semantics, as impacts on the outside are not directly

exposed. On the contrary, all sub-features of B are tall and

thin as these features have numerous internal constraints and

no external constraints. This shows that B can be configured

internally. Finally looking at A and B at the same time, we can

say that A might act as a kind of proxy from the whole FM
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Fig. 2: Metamodel used to represent feature models broken down in multiple concerns
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Fig. 3: Variability blueprint example

of the figure to the outside as it has all the features that have

external constraints. At this point, it is however not possible

to know whether the external constraints related to A:

• may transitively trigger constraints on features of B,

• may be restricted to other features of A,

• or a mix of both.

A SPL maintainer will have to decompose A according to some

rules or identified concerns of the domain to visualize the

results in a new blueprint showing the decomposed FMs from

A and B. This case illustrates the kind of scenarios that we

have experimented on industrial SPLs and are reported in the

next section.

Interaction. Variability Blueprint has been designed to ef-

ficiently indicate the structure of FMs. The presence of

constraints shape each feature, however dependencies between

features are not indicated on the blueprint. The rationale for

this is to not overload the blueprint while still relying on its

structure. To be effective, the visualization has to provide ways

to dig into features, which is supported by some interactions.

For example, moving the mouse cursor over a feature highlights

some related features (cf. Figure 4). Clicking on a feature opens

an inspector detailing it, notably with its name, the number

of internal constraints and the number of features that may

affect it (i.e., feature that can select or deselect, by means of

a constraint or an XOR-group)3. Features may be drag-and-

dropped and searched for using regular expression. The whole

3Weighted Internal Constraints and Launch are values that are related to
the configuration process and are out of the scope of this paper.
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Fig. 4: Available interactions on a feature

visualization may be zoom-in and out are is exportable in

numerous file formats.

Implementation. Our visualization support is available under

the MIT license4. It has been implemented with the Moose

software analysis platform (http://moosetechnology.org), while

the decomposition of feature models and the maintenance of

their dependencies rely on both the FAMILIAR domain-specific

language [7]5 and the SpineFM framework [30]6.

IV. CASE STUDIES

To illustrate and show the applicability of Variability

Blueprint, we report its application on two different industrial

case studies. The first one aims at finding a decomposition

of a large FM with less complexity. The second one aims

at visualizing and understanding a complex SPL in which

concerns have been decomposed from the start.

A. Decomposing a Large FM

Our first case study concerns FraSCAti [31], an open-source

component assembly middleware platform. A feature model

representing all available FraSCAti configurations has been

created using reverse engineering techniques on its architecture

and plugin dependencies [32]. This operation was conducted

through 6 different versions, noted V0 until V5, corresponding

to different decompositions of the original FM. Different

versions have been manually identified by a domain expert.

This section summarizes the different versions, their mo-

tivations, and the impact on Variability Blueprint. Figure 5

provides a visual evolution of these versions (V2 and V3 are

not represented, to save space).

V0 → V1. The reverse engineered information from the

FraSCAti architecture is initially gathered in a monolithic

FM (V0): visually, this is represented with V0 in Figure 5

being a unique large feature model.

Different cohesive parts of the original feature hierarchy

have been identified and moved into dedicated FMs with the

4http://smalltalkhub.com/#!/∼abergel/Familiar
5http://familiar-project.github.io
6https://github.com/surli/spinefm

help of the main architect of FraSCAti. This first decompo-

sition attempts to distinguish high-level functionalities of the

configurable middleware platform:

• The ScaParser part loads software components following

the Service Component Architecture (SCA) standard [33].

As the standard is extensible and supports different

implementations, the related variability is supposed to

be captured in this part.

• AssemblyFactoryImplementation checks SCA compo-

nents and drive their instantiation. Numerous plugins are

combined in this factory according to component im-

plementations, interface definition languages and service

bindings (e.g., http, REST).

• ComponentFactory actually instantiates the SCA compo-

nents. Variability related to different Java compilers and

containers is supposed to be captured in this part.

• The Frascati part presents a high-level view of the

middleware, shielding the non-specialist user from the

implementation details contained in the three other FMs.

The first and second lines of Table I give some metrics

for the first two considered versions7. The number of features

and constraints overall are first given. Then the details on

all FMs of the four metrics we consider (CC and CTC for

internal constraints, exCC and exCTC for external inter-FMs

constraints) are shown. We observe that while smaller FMs have

been obviously created by the decomposition, an important

complexity is present in the dependencies between these FMs,

with exCC being 17, 21 and 16, and exCTC being 47%, 54%

and 71% for three of the FMs in V1.

V1 → V4. We study here several steps with the same objective.

On some versions depicted in Figure 5, we have pinpointed

several features by lower-case letters (a to g). In V1, nodes

b and c depend on a with the two relations b =⇒ a and

c =⇒ a. Feature a corresponds to the OSGI support library,

while b and c are two implementations of the component

structure that rely on this library. On the visualization, we

observe that nodes b and c are slightly taller than other nodes,

and node a is wide. Using our tool support for the Variability

7In the following versions V2 and V3 are not detailed steps, but the
intermediate metrics are shown to their evolution.
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Fig. 5: Evolution of the FraSCAti decompositions

Blueprint, hovering the mouse pointer over these nodes gives

the exact list of dependencies. Note that the width of node a

is greater than the height of nodes b and c, meaning that node

a contains additional incoming dependencies.

In V4, the dependencies from b to a and c to a have been

replaced by 3 dependencies, a =⇒ d, c =⇒ d and d =⇒ a,

d acting as a proxy inside the ComponentFactory FM. The 2

inter-FMs dependencies of V1 have also been replaced by 2

intra FM constraints and 1 inter-FMs dependencies. As a result

the modularity of V2 is strengthened thanks to the removal

of one external dependency. The feature a has one external

dependency less, therefore its width is reduced compared to

V1.

In V1, a majority of features of ScaParser are involved

in many external constraints to Frascati features. To avoid

this coupling, a complex proxy to these features is introduced

in the Frascati FM, consecutively reducing the number of

external constraints in both FMs. In Figure 5, we observe that

the whole set of nodes marked g in V4 have been introduced

in the Frascati FM to act as proxies to the nodes marked

f in ScaParser (i.e., each child node in the hierarchy f is

mapped into a child node in g). In table I, we see that the

amount of external dependencies are reduced from V1 to V4

for ScaParser, as the exCC metric is moving from 17 to 8, 21

to 8 and 16 to 8 for the three more complex FMs. The exCTC

is also reduced or kept equals (this is the case for ScaParser

as the number of features involved in constraints is still the

same among versions).

V4 → V5. In V5 the ScaParser FM has been removed

and merged back inside the Frascati FM. Visualizing the

dependencies with the main architect of FraSCAti, he realized

that the hierarchy f in ScaParser is almost entirely mapped

into the hierarchy g and that the separation of the parsing

features is not offering much in the understanding of the whole

platform variability. In V5 we observe that child nodes in

ScaParser (at the bottom right part of the Frascati FM on

Figure 5) remains wide because of the dependencies to the

AssemblyFactoryImplementation FM.
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TABLE II: Metrics about successive Frascati FMs (low values

for CC, CTC, exCC, and exCTC are positive indicators)

Version #FM #features CC CTC exCC exCTC
V0 1 63 46 57% 0 0%
V1 4 64 4 16% 14.5 47%
V2 4 65 4 17% 14.5 47%
V3 4 67 6 28% 11 42%
V4 4 77 11 35% 6.5 34%
V5 3 71 13 45% 5 19%

Summary. Table II gives the averaged metrics for the con-

secutive versions. We first observe that the different steps

V1 to V5 have increased the CTC (i.e., decomposed FMs

have more internal constraints and are likely to be more

easily understandable and configurable). Both exCC and

exCTC are relatively high in steps V1 to V4, but the final

simplification in V5 shows on average 5 constraints per FM

and a 19% exCTC, which is low for both metrics. As a result,

the visualization blueprint has helped in understanding the

constraints of the decomposed FMs and their impacts. Together

with its interactive functionalities, it was possible for the SPL

maintainer to try different decompositions that still fit the

domain while providing better maintainability.

B. Visualizing Concerns of a Complex SPL

Our second case study concerns the YourCast SPL. Your-

Cast8 is a project aiming at creating an industrial-strength SPL

for Digital Signage Systems (DSS) [13]. A DSS broadcasts

dynamic information, mainly from the Web, typically targeting

both public institutions and private companies. Over a two-year

period, this project involved around 30 contributors carrying

out more than 470 KLOC for the software assets of the SPL

and two SPL architects.

8http://www.yourcast.fr

Layout Zone

Behaviour

Renderer

Source

1 1..*

1

1

1 1..*

1

1

Fig. 6: Yourcast domain model

Separating FMs was a necessity to tame the complexity of the

variability and to handle the frequent evolutions among features

and constraints [30]. In this case study the decomposition of

FMs is thus directly driven by a domain model. Each domain

model instance has an associated FM that captures its variability.

Figure 6 shows the domain model of YourCast SPL (i.e., how

the different concerns of a DSS are decomposed). Information

comes from a source, a renderer displays it inside a zone,

which has a specific behavior (e.g., horizontal scrolling). A

layout organizes zones on a screen.

Using Variability Blueprint, the objective in this case is first

to have a high-level picture of the variability of the SPL. We

then expect to analyze complex parts and understand whether

they come from the domain or from an inadequate organization

of the SPL concerns. Figure 7 shows Variability Blueprint of the

YourCast SPL, while Table III shows the metrics corresponding

to each FM.

On Figure 7, we observe that the blueprint is quite effective

in showing different patterns, with very thin and tall nodes,

but also square boxes as in the upper left FM. The blueprint

uses interactive highlights of features. A green-colored feature

is the feature pointed by the mouse cursor. Impact is visually

represented using colors. For example, orange features are

deselected internally by the selection of the features (using the

inter feature constraints mentioned above), blue features are

TABLE I: Detailed metrics about successive FraSCAti decompositions

Version FM Name # features CC CTC exCC exCTC
V0 Frascati 63 46 57% 0 0

V1

Frascati 26 14 46% 17 54%
ComponentFactory 12 2 17% 4 17%
ScaParser 7 0 0% 21 71%
AssemblyFactoryImplementation 19 0 0% 16 47%

V2

Frascati 26 14 46% 17 54%
ComponentFactory 13 3 23% 4 15%
ScaParser 7 0 0% 21 71%
AssemblyFactoryImplementation 19 0 0% 16 47%

V3

Frascati 26 14 46% 17 54%
ComponentFactory 13 3 23% 2 8%
ScaParser 7 0 0% 16 71%
AssemblyFactoryImplementation 21 7 43% 9 33%

V4

Frascati 36 30 72% 8 22%
ComponentFactory 13 8 23% 2 8%
ScaParser 7 0 0% 8 71%
AssemblyFactoryImplementation 21 7 43% 8 33%

V5
Frascati 37 30 70% 6 16%
ComponentFactory 13 3 23% 2 8%
AssemblyFactoryImplementation 21 7 43% 8 33%
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Fig. 7: Visualization of the Yourcast SPL
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directly impacted by constraints.

TABLE III: Metrics about Yourcast FMs (low values for CC,

CTC, exCC, and exCTC are positive indicators)

Concept #Features CC CTC exCC exCTC

Sources 81 154 88% 20 18%
Renderers 76 347 93% 30 30%
Transitions 33 45 76% 5 6%

Zones 49 160 87% 52 65%
Layouts 51 59 95% 37 8%
Average 58 153 88% 28.8 26%

On Table III, we first observe that while the YourCast SPL

may be considered a medium-size SPL with 290 features, it

is highly complex with a great number of constraints (almost

900). Looking at the distribution of constraints, it can be seen

that the large majority of them are internal constraints of the

FMs, which is good for maintainability. Not surprisingly, with

a lot of constraints in comparison to the number of features,

the CTCs are very high with an average of 88%. This is also

due to the specific way the FMs are built from the existing

products [30].

Focusing on external constraints, the exCC and exCTC

metrics are quite low for almost all FMs except Zone. The

maintainability of the other FMs can be considered as good.

As for Zone, we explain these high values by the fact that the

Zone domain element is central in the model that organizes the

decomposition. It is indeed the only element that is connected

to 3 other elements, thus creating more external constraints on

the FMs of these elements. To tame this remaining complexity,

we could envisage the use of proxy features, as in the FraSCAti

case study, to concentrate the external constrains on a smaller

set of features.

V. RELATED WORK

Visual support for FM configuration. As briefly discussed

in Section II-A, the first visualization of feature models was

introduced in the FODA method [2] with feature diagrams.

From then on, the majority of proposed FM visualizations

were targeted at facilitating the configuration process (selecting

features in a FM to build a valid configuration). Usually SPL

environments also rely on the feature diagram representation

equipped with tick boxes to provide a configuration support.

Botterweck, Nestor et al. [14] were the first to introduce

an interactive visualization during configuration (a feature

diagram showing what is selected, unselected, deselect at each

configuration step with some color-coding), relying on SAT-

solving to update the visualization at each step.

Extending it, Botterweck, Thiel et al. [15] have proposed a

meta-model and a visual support for configuration of FMs and

associated components. Their model provides the notions of

decision, feature, components and relationship between them,

so that the impact between FM selection and components can

be visualized. Their visualization notably supports details on

demand and focus with zoom [16], but it is still based on a

common feature diagram and cannot show several FMs at the

same time. While we also rely on a metamodel, Variability

Blueprint only focuses on feature models, but can handle

relations between several of them. On the other hand, it does

not handle relationships with other artifacts, but bridging our

Variability Blueprint to SPL assets, such as components and

their dependencies, is a promising perspective.
Another visualization tool for configuration is S2T2 [18],

proposed by Lero9. S2T2 was designed to support the configu-

ration of FMs while displaying efficiently constraints between

features. Our visualization has a different focus since it aims

at being a visual support for maintenance and reengineering.
Pleuss et al. [17] made an overview of possible visualization

techniques (e.g., tree maps, cone trees, Venn diagrams) for

FMs with criteria to determine their benefits and drawbacks

for interactive product configuration. The study focuses on

several expected benefits, e.g., showing the hierarchy, the

constraint dependencies, a possible configuration workflow.

Interestingly, their comparison matrix shows that none of the

studied techniques is well suited to display both constraints

dependencies and complex feature models. On the contrary we

show in our two case studies that our Variability Blueprint is

well adapted in these situations.

Understanding FMs. Some related work is also concerned

by the comprehension of feature models. Jaksic et al. [23]

conducted an experiment to compare textual and graphical

representations during the edition and manipulation of FMs.

Their results focus on the quality of the produced FMs

(absence of errors) and show the advantages of the graphical

representation, being common feature diagrams, to increase

cognitive efficiency and effectiveness of novice practitioners.
Reinhartz-Berger et al. have studied the comprehensibility

of the CVL standard for feature modeling [34] with some

controlled experiments in which users have to answer questions

related to the interpretation of a FM. They notably showed

that some constructs (or-group) are perceived as more difficult,

whatever the expertise level of users. The same authors have

also studied CVL and OVM, two modeling languages support-

ing relations from feature models to other development artifacts,

showing that the variability models are easily comprehensible

whereas the relations have a low comprehensibility [35].

VI. CONCLUSION

Feature models (FMs) are widely used to compactly represent

the variability of a given domain or system. To handle the

complexity of large and complex FMs, an appropriate visual

support should complement existing management techniques

that support separation of concerns and decomposition into

related FMs.
We presented a visual and interactive blueprint that enables a

software product line (SPL) maintainer to review the complexity

of these related FMs. The visual representation reuses the usual

tree-like hierarchy of a feature diagram, removing names to

benefit the contrasts between internal and external constraints

on features of several FMs. Some interactions on the visual

representation complement it with details on a specific feature.

9http://download.lero.ie/spl/s2t2/
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A practitioner can then decompose and relate sub-domains or

concerns of a SPL, while being able to visually validate that the

complexity is tamed in the resulting FMs. The tool-supported

approach is shown to be efficient in two different real case

studies by appropriate metrics related to maintainability.
As future work, we plan to further evaluate the practicality of

the proposed solution, as well as the coupling with automated

decomposition techniques. Together we hope they contribute

to a methodology of FM management for SPL practitioners.
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