
SENSAPP as a Reference Platform to Support
Cloud Experiments: From the Internet of Things to

the Internet of Services

Sébastien Mosser, Franck Fleurey, Brice Morin, Franck Chauvel, Arnor Solberg

SINTEF ICT, Dept. of Networked Systems and Services

Oslo, Norway

first.last@sintef.no

Iokanaan Goutier

SINTEF ICT, Polytech’Lille

Lille, France

first.last@polytech-lille.net

Abstract—The Cloud-computing paradigm was considered as
a revolution. Thanks to the abstraction of computing resources
“in the clouds” this paradigm provides “anything” as a service,
on a pay-as-you-go basis. Unfortunately, there is no reference
software that one can use to properly compare a cloud approach
against others. We propose the SENSAPP platform to tackle
this challenge. SENSAPP is designed as a prototypical cloud
application and is provided as an open-source service-based
application used to store and exploit data collected by the Internet
of Things. We propose SENSAPP as a reference implementation
to compare different cloud approaches. In this paper we present
initial experiments about scalability based on this platform.

Keywords-Cloud-computing; Reference; Experiments; Internet
of Things; Internet of Services;

I. INTRODUCTION

Cloud–Computing [1] was considered as a revolution. Tak-

ing its root in distributed systems design, this paradigm advo-

cates the share of distributed computing resources designated

as “the cloud”. The main advantage of using a cloud-based

infrastructure is the associated scalability property (called

elasticity). Since a cloud works on a pay–as–you–go basis,

companies can rent computing resources in an elastic way. A

typical example is to temporary increase the server–side ca-

pacity of an e–commerce website to avoid service breakdowns

during a load peak (e.g., Christmas period). However, there is

still a huge gap between the commercial point of view and

the technical reality that one has to face when exploiting “the
cloud”. As any emerging paradigm, and despite all its intrinsic

advantages, Cloud–Computing still relies on fuzzy definitions1

and lots of buzzwords (e.g., the overused “IaaS”, “PaaS” and

“SaaS” acronyms that does not come with commonly agreed

definitions).

To clarify the situation, it becomes necessary to define

a fixed point in the cloud-computing technological space,

that is, something to be shared among research groups and

used as a comparison reference. From an industrial point of

view, the Java Pet Store [2] was such a fixed point, specified

as a reference application for the J2EE platform. From a

1The Cloud–Standard initiative (http://cloud-standards.org/) lists dozens of
overlapping standards related to Cloud–Computing. They focus on infrastruc-
ture modeling or business modeling.

research point of view, the component-based development

community defined a “common modelling example” to support

component system comparisons [3]. The same approach was

followed by the Aspect-Oriented Modelling (AOM) research

community. In 2009, Kienzle et al. proposed a common case

study for AOM [4] based on a Car Crash Crisis Manage-
ment System (CCCMS). The CCCMS was then exploited in

several scientific work as a reference to (i) compare AOM

approaches against others [5] and (ii) reify tool chains when

these approaches worked a different level of abstractions [6].

According to Google Scholar (July 2012), up to 32 papers are

referring to this case study.

The cloud computing research will benefit from making

available similar reference software platforms and applica-

tions. We believe a reference application for Cloud-computing

must match at least the following criteria:

C1: Reality-driven: the application cannot be just a toy exam-

ple, it needs to be applied to real situations.

C2: Implementation: “Theory guides, Experiments decides” is

a well known adage. Without a reference implementation,

proper comparison of technical achievements will never

be possible.

C3: Positioning with respect to Cloud-computing challenges:

the cloud domain is still young and immature, filled

with well-known challenges to be faced in the upcoming

years. A reference application must describes how it can

be used to support research conducted to tackle theses

challenges. This includes key cloud properties such as

elasticity, scalability, cost etc (this is further elaborated

in section III)

Our contribution in this paper is to describe SENSAPP as

a reference application for Cloud-computing. This platform

leverages the Internet of Services (IoS) and the Internet of
Things (IoT) to support the definition of innovative applica-

tions based on sensors data. Section II describes the SENSAPP

platform (addressing criteria C1 and C2). We believe this is

well suited for the purpose, since such applications typically

requires what cloud claim to offer (e.g., “big data”, peak

periods etc). The appropriateness of SENSAPP is thoroughly

elaborated in Section III, positioning SENSAPP w.r.t. cloud-

2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-4934-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SYNASC.2012.71

400

2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-4934-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SYNASC.2012.71

400

Fig. 1. Bike with sensors (e.g., altitude, speed, location) and cameras

computing challenges (addressing C3). Section IV describe an

initial experiment made with this platform. Finally, section V

conclude this paper by exposing immediate perspectives.

II. SENSAPP, A CLOUD PLATFORM FOR THE IOT

This section describes the SENSAPP platform as a dis-

tributed set of services, and then present the reference im-

plementation available as open-source software.

SENSAPP addresses the IoT domain, which relies on the

following assumption: things can communicate about their

state with other things, creating a network of interconnected

things. Things rely on sensors to collect data. For example

in an “intelligent building”, temperature sensors collect room

temperature, radiators (or A/C systems) are remotely activated

to regulate such a temperature. In a daily context, smart-

phones can collect information from their hardware sensors

(e.g., user’s location, battery level, wifi signal strength) and

broadcast them to telephone companies for statistical purpose.

Means of transport with accurate sensors (e.g., speed, location)

can log context information about a given travel. For example,

the bike depicted in Figure 1 holds 12 sensors and 2 cameras2.

The collected data are then used to collect information about

the city surroundings.

A. Coarse-Grained Description

SENSAPP is designed to support application of the IoT.

It provides elementary bricks a software developer can use

to define cloud-based IoT application. Figure 2 describes the

SENSAPP platform from a coarse-grained point of view.

We consider three different roles for the users. First, the

“sensor architect” is in charge of the definition of the sensors

that feed the system. Then, the “data miner” can work with the

collected data to exploit them (e.g., inferring new knowledge

like air quality as a combination of carbon monoxide and

ozone levels). Finally, “end users” (non technical) visualise the

collected data through third-party applications that reshape the

2http://www.youtube.com/watch?v=kia5Vkx59nY

database
registry

notification
dispatcher

data
miner

sensor
architect

sensors

end users

third part application

����������	�
������ ����������	�������

Fig. 2. Overview of the SensApp system

collected raw data into something they can understand (e.g.,
air quality displayed according to a color code).

SENSAPP provides four elementary services to support

the definition of IoT applications. The registry is fed by

the sensor architect, and stores information (e.g., description,

creation date) about the sensors that are involved in the appli-

cation. The database service implements a storage facility

for sensor data, providing dedicated queries to expose the

collected data to the data miner. The notification service

is used by third party application to subscribe for notification

when relevant data are pushed (in the previous example, the

application will subscribe for new data collected by the air
quality sensor, updating the displayed colors according to the

latest quality level). Finally, the dispatcher received the data

from the sensors, store the data in the relevant database
according to the information stored in the registry, and fi-

nally triggers the notification mechanisms with the newly

arrived data.

By default, SENSAPP is deployed as a monolith: all the ser-

vices are deployed on the very same server. But the described

architecture is intrinsically distributed: the services provided

by SENSAPP interacts through well defined remote interfaces,

thus it is possible to deploy the platform on multiple servers, as

described in Figure 3. In this particular topology, the platform

relies on three independent hosts to support its deployment:

(i) localhost, (ii) a private database deployed in SINTEF’

premises and (iii) a server used as a public demonstration.

The configured platform relies on a local dispatcher to receive

data, and store the collected data in the private database. The

public server is used to support sensor registration and third-

party notification.

B. Reference Implementation

We provide an open-source (LGPL) implementation of

the SENSAPP platform, freely available3. The services are

implemented as REST services [7] exposed on top of the

HTTP protocol. Sensor data are represented with the SENML

standard [8], used as an intermediary representation of sensor

data in the platform. SENSAPP supports two databases: (i)

3http://sensapp.modelbased.net

401401

Fig. 3. Topology in SENSAPP administration panel

Fig. 4. Comparing sensors accuracy using SENSAPP dashboard

a MongoDB database used to store raw data and (ii) a

Round-Robin database to store journaled data. SENSAPP also

provides a web-based administration interface built on top

of the offered REST interface. This interface supports the

manipulation of sensors, and provide graphical widgets to

visualise data collected in SENSAPP (see Figure 4). To support

the access to resources with cross origin through plain HTTP,

it implements the Cross Origin Resource Sharing standard [9].

This reference implementation is small enough to be eas-

TABLE I
SENSAPP REFERENCE IMPLEMENTATION SIZE (LOC)

Language Files Blank Comment Code
Scala 127 1130 4197 4742
XML 66 248 280 2867
Bourne Shell 9 51 33 160
Total 202 1429 4510 7769

Reproducibility using git and cloc commands:

$ git clone git://github.com/mosser/SensApp.git
$ cloc.pl SensApp

ily understood, shared and deployed (mainly implemented

in Scala, see TAB. I). But it is also expressive enough to

support real-life experiments, and the platform is shared with

other research groups (e.g., SINTEF Communication Systems,

the Rainbow project-team at the University of Nice Sophia

Antipolis — I3S UMR CNRS UNS 7271). SENSAPP is daily

used in SINTEF’ premises (as a living lab) to collect work

environment information in key offices. We also propose

public data sets on the website.

III. SENSAPP IN THE CLOUDS

The previous section demonstrated the intrinsic distribution

of the SENSAPP platform. In this section, we position the

platform w.r.t. the ten major “obstacles and opportunities”

identified in the Cloud-computing seminal paper [1]. The key

point is to illustrate how SENSAPP can be used to setup

experiments and compare platforms w.r.t. these points.

A. Availability of Services

This obstacle is based on the recent outages encountered

by major cloud vendors (up to several hours). As a cloud

application is hosted in the cloud, it becomes dependent of

the availability and the Service Level Agreement (SLA) of the

underlying cloud vendor. A cloud outage transitively impacts

the application, at different levels (e.g., unavailability, data

loss). To avoid such a situation, one can use a multi-tenant

cloud through the federation of multiples clouds [10]. In this

configuration, the federated cloud aggregates resources from

different vendors, minimizing the risk of complete outage.

SENSAPP can be used to support research in this direction.

Its very simple architectures does not require boilerplate

configuration to deploy it. Thus, it is easy to deploy several

instances of SENSAPP on multiple resources. One can easily

simulate an outage by simply shutting down a subset of SEN-

SAPP services, and then take adaptation decision (e.g., starting

new resources in the remaining providers) to ensure continuous

service. Moreover, the notification mechanism embedded in

SENSAPP makes easy the definition of controlled experiments

to assess service availability: a sensor sends controlled data

to the instance that encounter the simulated outage, and a

checker subscribe to notification associated to this sensors.

One can then compare sent and received data, as well as

measure latency with or without outage.

402402

B. Data Lock-in

Cloud vendors offer proprietary interfaces to their internal

data storage facilities. Thus, the migration of an application

from one cloud to another (e.g., due to a change in the com-

mercial offer) requires dedicated development. The obvious

solution to this problem is the definition of a standard API to

interact with cloud storage, but this solution is not accepted

by major vendors (as data lock-in enforce customer fidelity).

SENSAPP is built on top of the SENML standard to model

sensors data. This standard is extremely small (24 pages,

implemented in less than 500 lines of code using the Scala

language4). This uniform data representation is a good can-

didate for data migration techniques: the cost of writing a

transformation from SENML to another data format is low,

and SENSAPP provide public data sets containing 250,000

entries. The scalability of a migration technique τ can then

be measured according to two dimensions: (i) the difficulty to

write the adapter from SENML to the proprietary format using

τ and (ii) the efficiency of τ while migrating the public data

set.

C. Data Confidentiality and Auditability

Data access is one of the major flaws that prevents a large

adoption of Cloud-computing. One the one hand, companies

are reluctant to send critical data to external partners, for

security and control reasons. Usually, companies tackle this

challenge by using hybrid clouds: critical information are

stored and processed in a private cloud (hosted by the com-

pany), and public clouds are used to host non-critical processes

and data. On the other hand, some, such as governments might

not be allowed to host sensitive data outside of some physical

borders (e.g., regions such as country borders, Europe). It is

then critical for public actors to have a clear control on the

data location, for auditability reasons.

SENSAPP collects data from sensors. Thus, the confidential-

ity of these data is transitively connected to the confidentiality

associated to the physical sensor that collects the data. A

luminance sensor collecting the amount of light measured in

front of SINTEF’ premises is clearly public, while the GPS

location sensor of a smart-phone collects highly confidential

information [11]. Classification techniques to model data pri-

vacy can then be applied on SENSAPP sensors to reify such

knowledge. As the underlying database can be replicated and

deployed on multiples host, it is possible to simulate hybrid

clouds with one private database and one public database. The

published available data sets contains both public (e.g., GPS

signal strength) and private (e.g., location) information.

D. Data Transfer Bottleneck

Cloud applications are usually data-intensive. As a con-

sequence, such applications require a lot of bandwidth to

exchange data between processing nodes. Bandwidth that is

usually charged by the cloud vendor as part of its business

4https://github.com/mosser/SensApp/tree/master/net.modelbased.sensapp.
library.senml

model. Tremendous savings can be collected thanks to a

careful deployment of the data set in the clouds to avoid

external communication when not necessary5. In addition

to this challenge, the data locality factor is important for

the customer of a cloud application. Considering that the

application is hosted by the Amazon European data centre

(located in Dublin, Ireland), if all clients are located in the

United States, it makes sense to migrate it to one of the

data centres available in this region (e.g., the one located in

Virginia).

SENSAPP is based on SENML for data representation, which

provides a fixed representation for the exchanged data. Public

data sets can therefore be used to feed cost models and then

infer a deployment topology that minimises the data cost.

E. Performance Unpredictability

Cloud infrastructures rely on the concept of Virtual Machine
(VM), started on demand according to user’s needs. Contrarily

to a “concrete” machine that is physically dependent of a

given hardware, several VMs can be executed on the same

“concrete” machine at the very same time. As a consequence,

the performances of a VM can be degraded by another in-

dependent VM that over-consumes physical resources. In this

shared model, reproducibility of experiments is not ensured,

as it might be impacted by external and uncontrollable factors.

SENSAPP provides real-life data sets obtained from concrete

situations. Thus, a scientific contribution in VM isolation can

use the provided data sets to re-play again and again the same

scenario. The main advantages are the following: (i) data sets

are collected through real-life sensors and (ii) the collected

data are explicitly timestamped by nature, allowing one to

exactly replay a scenario by following the timestamps.

F. Scalable Storage

The immediate drawback of a data intensive application

is that it consumes and/or produces tremendous amount of

data. Handling such amounts of data becomes challenging,

according to two orthogonal concerns. First, the storage ca-

pability must scale, i.e., the underlying infrastructure must

transparently absorb very large amount of data (measured in

Tb). Secondly, as applications consumes these data, the query

interface provided by the infrastructure must scale to extract

relevant data subsets according to user’s expectations.

SENSAPP is dedicated to a domain that both generates and

consumes large volumes of data. Considering a sensor sending

one value per second (this is typical for sensors that are

deployed in buildings, as there are powered by the electrical

network of the building instead of embedded battery), it

produces 86400 data in a single day. A SENML message

encoded in JSON (i.e., plain text) weights in average 100 bytes.

Thus, such a sensor produces almost 9 megabytes of data per

day, and 3 gigabytes per year. Multiplied by the number of

sensors involved in an application (our building monitoring

system collects data from 16 sensors, which is a small system),

5The communication between instances from the same vendor but located
in different world regions are usually considered as external communications

403403

it immediately triggers storage issues. Moreover, third part

applications rely on SENSAPP database to feed themselves.

Thus, the response time of the underlying database is critical

for SENSAPP. According to the simplicity of the platform,

one can easily change the internal data representation (it only

implies to re-implement the marhsalling function used by

the service framework) to assess contribution in this domain.

Database back-end can also be easily changed in the current

implementation to assess scalability of querying systems.

G. Bugs in Large Distributed Systems

This empirical obstacles is based on the following facts:

cloud-specific bugs appears in very large distributed systems,

triggered by cloud side effects (e.g., high latency, lost of

connexion, VM migration). These bugs cannot be replicated

outside of the cloud environment, as they are triggered by

external factors.

SENSAPP provides an open source code, allowing one to

apply offline static analysis on the source code, as well as run-

time analysis and assessments using the reflexive capabilities

of the Java VM. The services used to compose SENSAPP

are by default hosted in Jetty servers, which are lightweight

java-based web servers. Thus, it is possible to activate remote

monitoring of the involved JVMs to apply bug discovering

techniques dedicated to distributed systems [12]. SENSAPP

is also easy to mock according to its reduced size, and is

therefore a good candidate for fault injection techniques.

H. Scaling Quickly

Clouds are “elastic” by nature. Elasticity can be vertical

(e.g., increasing the number of core allocated to a VM) or

horizontal (e.g., increasing the number of VM involved in the

application). A typical cloud scenario couples load balancing

techniques, automated provisioning and adaptation policies

to ensure the scalability of the deployed application. These

mechanisms must react accordingly when a load peak is

encountered, hiding this overload from the end user point of

view.

SENSAPP can easily be deployed according to this kind of

architecture: it is possible to hide the services behind load

balancers, as they rely on plain HTTP requests (conforming

to the uniform interface principle of the REST architectural

style). It is then possible to validate the scalability according

to two dimensions. First, one can assess the capability of the

platform to absorb large data sets collected by real-life sensors.

Secondly, as sensors can easily be simulated (being a sensor

means to send SENML messages to a given URL), it is possible

to stress the platform with billions of parallel “fake” sensors.

I. Reputation Fate Sharing

According to the cloud paradigm, a user books VMs hosted

in the clouds. We consider here a “nasty” VM, used for

spam or “denial of services” purpose. External systems might

blacklist the IP address of such a VM. As a consequence, if

a normal VM is eventually hosted using the same IP address,

the application executed in this VM is also blacklisted!

SENSAPP provides notification mechanisms that can for-

ward such information (e.g., “unable to connect to ...”). The

source code is simple enough to be modified in order to

implement a reputation protocol and test its efficiency.

J. Software Licensing

The main idea of the cloud is to provide “anything” as a

service, e.g., infrastructure, platform, software. The notion of

service is often connected to the notion of business. Thus,

cloud business models implies to generate value based on the

provided service. Infrastructure providers base their fees on

CPU consumption and consumed bandwidth, where service

providers usually charge account based licenses.

SENSAPP public data sets can be used to feed cost models

and then apply multi-criteria analysis techniques to find a

cloud provider that maximize user’s expectations.

IV. INITIAL EXPERIMENTS: SCALABILITY

In this section, we describe initial experiments made with

the SENSAPP platform to address the previously described

challenges. The experiments were made using the Amazon

EC2 cloud infrastructure (European data centre). The results

presented here does not aim to compare cloud providers, as

such a goal requires the set-up of an exhaustive protocol. Our

goal here is to sketch how such a protocol can be defined,

by focusing on the definition of artefacts to assess it. The

underlying idea of this experiment is to investigate challenges

F (“scalable storage”) and G (“scaling quickly”). It is also

related to challenges A (“availability of services”) and D (“data

transfer bottleneck”).

The objective is to implement a set of scenarios that

simulates the use of the SENSAPP platform. These scenario

can be “normal” situations, e.g., n sensors pushing a single

data according to a given sampling frequency f . We can then

work on n and f to assess instances of SENSAPP deployed

in the clouds according to different topologies. We can also

implement stress scenario, used to model peak load. For

example, a stress scenario can model defective sensors that

flood the system with irrelevant data6. It is then possible

to implement a library of scenarios, available off-the-shelf

(with reference value associated to each scenario). One can

then confront a SENSAPP instance deployed according to its

research contribution w.r.t. the reference value obtained in a

similar context.

To model these scenarios, we used the Gatling Stress tool,

provided as open source by Excylis7. It provides a domain-

specific language (internal to Scala) to properly implement

HTTP based scenario. Listing 1 describes a scenario imple-

mented with the Gatling language. A scenario is a class that

implements the Simulation class (l. 1). It defines an apply
method that returns a list of scenario to be executed in this

6This situation actually happened in our living lab, where a router lost
the physical connection to one of its associated sensors and enter in an
infinite loop where it was sending all the collected data again and again to
the SENSAPP instance.

7https://github.com/excilys/gatling

404404

(a) Number of requests per second sent to the SENSAPP instance

(b) Response time measured on client side (800ms in average, including network latency)

Fig. 5. Stressing a SENSAPP instance deployed in Amazon EC2 cloud

1 class SensorPushSimulation extends Simulation {
2

3 val numberOfData: Int = 200
4 val maxDelayBetweenPush: Int = 400
5 val url = "http://..."
6

7 def apply = List(sensorPush.configure.users(10).ramp(10))
8

9 val headers = Map("Content-Type" -> "application/json",
"Accept" -> "text/plain,application/json")

10

11 val sensorPush =
12 scenario("Sensor pushing Data")
13 .exec{
14 http("Alive?").get(url).check(status is 200)
15 }.pause(100, 200, MILLISECONDS)
16 .exec {
17 http("Sensor Creation").post(url)
18 .headers(headers).body(genSensor())
19 }.pause(100, 200, MILLISECONDS)
20 .loop{ chain
21 .exec {
22 http("Random data").put(url)
23 .headers(headers).body(genRandomData())
24 }.pause(100, maxDelayBetweenPush, MILLISECONDS)
25 }.times(numberOfData)
26 .exec {
27 http("Sensor Deletion").delete(url)
28 }
29 }

Listing 1. Example of Gatling Stress Scenario

simulation (l. 7, here configured to start 10 concurrent users

in a 10 seconds ramp). A scenario is defined as a sequence of

exec steps, executed for each user in parallel. In this scenario,

we first check if the platform is responding (l. 13). Then, we

register a new sensor in the platform (l. 16). The scenario

send random data associated to this newly registered sensor

by entering in a finite loop (l.20→25), and finally deletes this

sensor (l. 27). One must notice that all the measurements are

done on the client side and not on the server (it does not

requires to instrument the running instance).

We represent in Figure 5 the graphs generated by the Gatling

platform after the execution of a scenario. Among others,

these two graphs describe (i) the number of requests sent per

second to the SENSAPP instance (Figure 5(a)) and (ii) the

average response time of the platform (Figure 5(b)). The x-axis

represents the time, and the y-axis represents the measured

dimensions: (i) number of request handled, or (ii) average

response time of a request.

Through the capture of prototypical situations encountered

in the running SENSAPP systems, it is possible to provide a set

of stress simulation scenario, implemented as Gatling scenario.

Relying on publicly available data sets, it becomes possible

to provide quantifiable metrics to assess cloud research on a

common platform.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we described SENSAPP, a platform that

leverages IoT and IoS to support the definition of sensor based

applications. This platform is intrinsically distributed, and we

405405

emphasized how it can be used as a reference platform for

cloud computing research assessment, based on the ten major

obstacles identified for cloud-computing research. We also

proposed a first experiment to assess scalability issues in a

comparable way.

Immediate perspective of this work is the definition of a

benchmark that extends the initial experiment sketched in this

paper. We plan to provide off-the-shelf usage scenario, as well

as reference time for different topologies provisioned in major

clouds.

ACKNOWLEDGEMENT

This work is partially funded by the EU Commission

through the REMICS project (FP7-ICT, Call 7, contract num-

ber 257793, http://www.remics.eu) and by SINTEF through

the MODERATES and SISAS strategic projects. Interactions

with the Amazon EC2 IaaS platform are supported through

the MOD4CLOUD project (AWS in Education grant award,

http://sm.ace-design.eu/projects/proposal/mod4cloud).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28, Feb 2009.

[2] N. Kassem and E. Team, Designing Enterprise Applications: Java 2
Platform, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2000.

[3] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Common
Component Modeling Example: Comparing Software Component Mod-
els [result from the Dagstuhl research seminar for CoCoME, August 1-3,
2007], ser. Lecture Notes in Computer Science, vol. 5153. Springer,
2008.

[4] J. Kienzle, N. Guelfi, and S. Mustafiz, “Crisis Management Systems: A
Case Study for Aspect-Oriented Modeling,” T. Aspect-Oriented Software
Development, vol. 7, pp. 1–22, 2010.

[5] S. Katz, M. Mezini, and J. Kienzle, Eds., Transactions on Aspect-
Oriented Software Development VII - A Common Case Study for Aspect-
Oriented Modeling, ser. Lecture Notes in Computer Science, vol. 6210.
Springer, 2010.

[6] M. Alférez, N. Amálio, S. Ciraci, F. Fleurey, J. Kienzle, J. Klein,
M. E. Kramer, S. Mosser, G. Mussbacher, E. E. Roubtsova, and
G. Zhang, “Aspect-Oriented Model Development at Different Levels
of Abstraction,” in ECMFA, ser. Lecture Notes in Computer Science,
R. France, J. M. Küster, B. Bordbar, and R. Paige, Eds., vol. 6698.
Springer, 2011, pp. 361–376.

[7] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, 2000, aAI9980887.

[8] C. Jennings, Z. Shelby, and J. Arkko, “Media Types for Sensor Markup
Language (SENML), draft #8,” IETF, Tech. Rep., Jan 2012. [Online].
Available: http://tools.ietf.org/html/draft-jennings-senml-08

[9] A. van Kesteren, “Cross-origin resource sharing,” W3C, W3C Working
Draft, Mar. 2009, http://www.w3.org/TR/2009/WD-cors-20090317/.

[10] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-
Yehuda, W. Emmerich, and F. Galán, “The RESERVOIR Model and
Architecture for Open Federated Cloud Computing,” IBM J. Res.
Dev., vol. 53, no. 4, pp. 535–545, Jul. 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1850659.1850663

[11] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Show Me How
You Move and I Will Tell You Who You Are,” Transactions on Data
Privacy, vol. 4, no. 2, pp. 103–126, 2011.

[12] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat, “Pip: Detecting the Unexpected in Distributed Systems,” in
NSDI. USENIX, 2006.

406406

