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Abstract: In phytoplankton communities, competitive exclusion might occur when functionally
similar species are impeded from regulating their positions along light and nutrient gradients to
reduce niche overlap. Greater spatial overlap (SO) between species due to water column mixing could
thus promote competitive exclusion, reducing community taxonomic diversity. However, greater
SO could also promote coexistence of functionally different taxa. Using data from a whole-lake
experiment, we investigated the effects of SO and other relevant environmental factors on phyto-
plankton diversity across the water columns of lake basins with different thermocline manipulations.
We estimated SO using an in situ fluorometer, and overall community diversity microscopically.
Using structured equation models, we estimated directional relationships between phytoplankton
diversity, SO, the lake physical structure and the zooplankton community. No significant effect of
SO on phytoplankton taxonomic diversity was observed, but higher SO was associated with greater
functional diversity. Change in lake physical structure and in the zooplankton community also
affected diversity, with a negative response to increased top-down interactions. Overall, despite
the fact that the alteration of water column stratification structure and top-down interactions were
stronger drivers of phytoplankton diversity in our system, some effect of spatial overlap on the
outcome of inferred competitive interactions were observable.

Keywords: diversity; composition; functional traits; competition; spatial ecology

1. Introduction

Spatial segregation along opposing resource gradients constitutes one of the mecha-
nisms allowing multiple species to coexist on a finite number of resources [1,2]. In thermally
stratified lakes, two important gradients for phytoplankton growth are represented by
light and nutrient concentrations. Light decreases from a lake’s surface, and nutrient
concentrations increase at depth, thereby forming opposing gradients of essential resources.
In this context, studies have theorized about the importance of phytoplankton segregation
in the water column to mitigate interspecific competition [3,4]. Under stratified conditions,
species can actively establish at different depths over these opposing gradients to maximize
resource acquisition, while avoiding competitive exclusion [5–7]. If species can differentiate
their niches (light and nutrient requirements in particular) and spatially segregate either
through active motility or through differentiated growth rates over the vertical dimension,
the amount of spatial overlap (SO) within the community should then decrease.

A handful of observational studies have linked species segregation (or its corollary,
spatial overlap) to heterogeneous resource distributions [5,8]. Combining field observation
and predictive modelling, Clegg et al. [8] observed an increase in flagellate diversity with
stratification, which they linked to fine-scale species segregation over opposing resource
gradients. In a study across multiple north-temperate lakes, more strongly stratified lakes
had reduced SO amongst major phytoplankton groups than more mixed lakes and greater
taxonomic evenness [9]. Similarly, George and Heaney [10] demonstrated that the physical
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environment can be one of the main drivers of phytoplankton spatial distribution. High
levels of mixing homogenized nutrient concentrations within the water column thereby
increased SO, based on both the disruption of the nutrient gradient as well as of the active
position regulation by phytoplankton.

If the vertical distribution of species in the water column affects competition, the levels
of SO for a given phytoplankton community should affect its diversity, both taxonomi-
cally and functionally. Reduced SO should be associated with lower levels of interspecific
competition, and consequently higher taxonomic diversity, as more species can coexist
in the community (richness) and as spatial differentiation precludes dominance (more
evenness). On the other hand, while taxonomic diversity should decline as SO increases
(more competitive exclusion), the species that persist together should be more functionally
diverse in their resource acquisition traits in order to permit some form of segregation along
additional niche axes (e.g., resource acquisition rates, storage capacity, trophic strategies)
instead of spatially. For example, Stomp et al. [11] demonstrated experimentally that coexis-
tence in a mixed system is possible between spatially overlapping cyanobacterial taxa with
different photosynthetic pigment types, i.e., different light requirements. However, greater
functional diversity could also be expected under low levels of SO when conditions are
stratified, given that species growing at different depths face different local conditions that
could select for a larger range of trait values. While they did not find any direct relationship
between diversity and SO, Beisner and Longhi [9] observed increases in phytoplankton
taxonomic diversity and functional richness (in motility and resource acquisition traits) for
deeper, stratified lakes with clear water columns, where phytoplankton could reduce their
SO, compared to shallow, polymictic lakes. It is also worth noting that the physical struc-
ture of the environment can itself directly influence community composition. For example,
Reynolds et al. [12] showed in a mesocosm experiment that altering the mixing depth af-
fected the phytoplankton community composition, with shallower mixing depths favoring
sinking diatoms. The composition of the zooplankton grazer community is also likely
to affect the diversity of the phytoplankton community through top-down interactions.
Currently, we lack a clear understanding of the effect of SO on taxonomic or functional trait
diversity in natural communities under experimental conditions that control for extraneous
factors such as lake morphometry, seasonality and grazer community.

To complement modeling and observational work done to date on the effect of spatial
overlap and resource competition on phytoplankton diversity, we conducted an in situ
experiment manipulating the water column stratification in a small lake with multiple
basins. Our goal is to increase mechanistic understanding of (i) the effect of thermal
stratification disruptions of the water column on phytoplankton SO, (ii) the effect of SO, in
conjunction with the physical structure of the water column and top-down interactions, on
community taxonomic and functional diversity; all while controlling for lake morphometry,
chemistry and global community composition. Data were from a whole-lake experimental
thermal stratification manipulation of a temperate lake (Thermocline Induced Mixing
Experiment; TIMEX) and used here to assess phytoplankton community diversity in
conjunction with overlap (SO) between major phytoplankton groups. A previous study
by Ouellet Jobin and Beisner [13] showed that the TIMEX treatment application led to
thermocline deepening as planned. This deepening of the warmer upper mixed layer
(eplimnion) could impede species coexistence (reduced diversity predicted) owing to
mixing across greater depth for the same wind. Experimentally deepened thermoclines
also resulted in the nutrient gradient being pushed deeper with the hypolimnetic waters,
while the light gradient remained unchanged. Ouellet Jobin and Beisner [13] also showed
that the treatment application led to some metalimnetic thickening, at the expense of a
deeper mixed layer, thereby increasing overall water column stability. This environmental
shift should improve the ability of phytoplankton to segregate and avoid competitive
exclusion across a more stable water column (increased diversity predicted).

By differentially altering the stratification structure of the different basins of the lake
all possessing similar morphometries, we expect to have selectively altered the ability
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of phytoplankton species to spatially segregate. Within this experimental context, we
examined how the spatial overlap (SO) of major phytoplankton groups relates to the
overall community (taxonomic and functional) diversity, while accounting for other often
time-varying changes in the background environmental (thermal stratification) and biotic
(zooplankton grazing) variables. Previous results from the TIMEX experiment have shown
important shifts in zooplankton composition with thermocline deepening from large-
bodied cladocerans to smaller crustacean zooplankton composed of cyclopoid copepods
and Bosmina spp. [14,15]. Less efficient feeding by these smaller zooplankton associated
with deeper thermoclines could also promote phytoplankton diversity. More generally,
any change in the zooplankton community might affect phytoplankton diversity through
altered top-down effects [16].

Our focal experimental system thus consists of five main interacting compartments:
Thermocline depth, Metalimnion width, Zooplankton community, and SO, all potentially influ-
encing the Phytoplankton diversity response (Figure 1). We further assume that changes
in Thermocline depth and Metalimnion width through experimental thermocline deepening
potentially affects every compartment in the system. We expect Phytoplankton taxonomic
diversity to decline with greater SO because of greater competition between overlapping
taxa. On the other hand, increased SO could favor greater Phytoplankton functional diversity
through greater trait variation amongst co-existing taxa, although this effect might be
mitigated if, under a lower SO regime, species established at different depth experience dif-
ferent environmental conditions, leading to trait differentiation. Finally, we expect changes
in the Zooplankton community to affect Phytoplankton diversity through altered top-down
effects and, in particular negative effects on diversity of increasing Cladoceran biomass.

Figure 1. Initial Structural Equation Model. Each box represents a variable, and each arrow is a
hypothesized relationship.

2. Materials and Methods

The Thermocline Induced Mixing EXperiment (TIMEX) was conducted from 2007 to
2012 (with 2007 and 2011 being non-experimental years when no treatment was applied)
in Croche Lake (45.590 3500 N, 74.000 2800 W) at the Station de biologie des Laurentides,
St-Hippolyte, Quebec, Canada. Phytoplankton compositional data was only collected from
2009 to 2011. Samples were collected fortnightly during the day from ice-off to the end
of September in each year at a sampling platform anchored at the deepest point of each
basin. The main goal of the TIMEX experiment was to alter the depth of the thermocline
of one of three lake basins. However, the treatment altered additional parameters related
to the stratification structure as well, especially the width of the metalimnion, which was
enlarged with thermocline deepening [13].

2.1. Experimental Setup

Croche Lake is a meso-oligotrophic and P-limited (TN:TP = 41) as is typical of
north temperate lakes with a TN:TP > 21 [17]. The phytoplankton community is mainly
dominated throughout the growing season by chrysophytes, diatoms and cryptophytes
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(Figure S1). The lake is naturally divided into three 10–11-m deep basins (Figure 2). The
eastern basin (B1) served as a control in all years. To lower the thermocline in the western-
most basin (B3), a solar-powered lake mixer (SolarBee®, H2O Logics Inc., Sherwood Park,
Alberta, Canada) was run during the experimental years (2009–2010 in our dataset). Ther-
mocline depth in the western B3 basin was successfully lowered from 4 m to around 8 m.
This basin was isolated from the intermediately located basin (B2) by a narrow pass of 1 m
deep water, an island and a 120 m wide and 6 m deep section where a black polyethylene
curtain was installed. In all treatment years, passive heat transfer occurred through the
curtain, thereby also lowering the thermocline in B2 from 4 m to around 6 m (Figure 3). For
simplicity, the basins will be referred to as the control basin (B1), the passively deepened
basin (B2) and the actively deepened basin (B3). This setup is described in other related
publications [13,14,18].

Figure 2. Bathymetric map of the lake (Courtesy of R. Carignan, Station de Biologie des Laurentians, University of Montreal,
Montréal, Quebec). The dotted line represents the curtain and each basin is defined as follows: B1 = control, B2 = passively
deepened, B3 = actively deepened. Adapted from Ouellet Jobin and Beisner [13].

2.2. Data Collection

TP concentrations were measured at the surface and at 2, 4, 6 and 8 m depth in each
basin over the three years. A graphical investigation confirmed that the nutrient vertical
gradient, present in the control basin B1, was disrupted in B3 during the experimental
years (Figure S2).

Whole water column samples were taken for phytoplankton from each basin on each
of 22 sampling occasions across the 3 years. An integrated 1.5 cm diameter PVC tube
sampler was used to sample from the surface to 1 m above the sediments. Taxa composing
the communities were identified and enumerated using the Ütermohl method on an
inverted microscope (400× magnification). Biovolumes (in mm3.m−3) were determined
based on measured cell dimensions and by applying geometric formulae for similarly
shaped objects [19].
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Figure 3. Contour plots of temperature at each depth in 2009, 2010 and 2011 in each of the three
basins. The solid line represents the thermocline depth (computed daily), while the dotted lines
represent the limits of the metalimnion.

On each sampling date, a FluoroProbe (FP; bbe-Moldaenke, Kiel, Germany) was used
to measure the quantity of chlorophyll a (Chl a) associated with four major spectral groups
throughout the water column at the deepest point in each basin. The FP detects Chl a by flu-
orescence using excitation light sources at different wavelengths, which enables grouping
of phytoplankton according to their accessory pigments: BROWNS (diatoms, dinoflag-
ellates and chrysophytes), GREENS (chlorophytes), CYANOS (phycocyanin-containing
cyanophytes) and MIXED (cryptophytes in this lake). A UV-excitation source is used to
subtract the fluorescence coming from chromophoric dissolved organic matter (CDOM).
The FluoroProbe data have a vertical resolution of about 10 cm.

Also, at the deepest point in each basin, water temperature profiles were measured
at 20 min intervals using thermistor chains equipped with HOBO temperature loggers
(±1 ◦C; Onset Computer Corporation, Cape Cod, MA, USA) at 0.5 m depth intervals and
installed for the duration of the experiment. Owing to a defective sensor, temperature
data were not available at the surface (0 m) of B3 in 2011. However, this did not affect any
subsequent estimations of thermal profile properties in the basin as it was always shallower
than the upper limit of the metalimnion.

Finally, the zooplankton community was sampled by hauling a 54 µm mesh net
(150 cm in length; 30 cm in diameter) from the bottom of the lake (1 m above the sediments)
to the surface at the deep station in each basin. Taxonomic identification was performed
on sub-samples using an Olympus inverted microscope (×100 magnification), until a
minimum of 200–300 total individuals had been enumerated. Biomasses (dry weight, in
µg.L−1) were estimated by applying length–mass relationships [20] to standard length
measurements of 20 individuals per species. The time series dynamics by basin and year
for the cladoceran zooplankton and total phytoplankton (Chl a) biomasses are shown in
Figure S3. The experimental effect of the TIMEX experiment itself on the interactions
of these communities has been explored in detail previously in Gauthier et al. [15] and
Sastri et al. [18].

2.3. Estimation of Indices and Metrics

Our dataset included 66 sampling events corresponding to unique combinations of
sampling date and sites (basins). Overall, there were 21 observations in 2009 (7 time points
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per basin), 24 observations in 2010 (8 time points per basin) and 21 observations in 2011
(8 time points in B1; 7 in B2; 6 in B3). Index determination and statistical analyses were
done in R version 4.1.0 [21]. Indices related to physical structure of the water column
(thermocline depth ThermoDepth and metalimnion width MetaWidth) were estimated for each
sampling event from the temperature profiles using the rLakeAnalyzer R package [22].
rLakeAnalyzer estimates a density gradient over the water column [23]. Thermocline depth
is the depth at which this gradient is maximized. The upper and lower bounds of the
metalimnion are defined as the depths at which the density gradient reaches a specified
threshold value of 0.1 kg.m−3.m−1.

The FluoroProbe spectral profiles were used to calculate an index of spatial over-
lap (SO) between the spectral groups using a script for overlap in traits created by
Mouillot et al. [24] and modified in Beisner and Longhi [9] for phytoplankton profiles.
In summary, a kernel density function was applied to the vertical profile of each spectral
group taken at a given sampling event. The proportion of the area under the overlapping
curves shared between each pair of spectral groups was calculated with the mean of all
these pairwise comparisons representing SO. The index ranges from 0 to 1, where 0 in-
dicates no spatial overlap and 1 represents total overlap in the distribution curves of the
spectral groups.

Phytoplankton taxonomic diversity was estimated using the Shannon diversity in-
dex (H’) based on biomass with the vegan R package [25]. The Shannon index takes into
account both the number of species and their relative biomass. A higher Shannon index
value indicates a more diverse community, i.e., a community with more species and/or
a set of species that contribute more evenly to the total community biomass [26]. Phyto-
plankton functional diversity was estimated from a functional trait matrix compiled by
our research team for lake phytoplankton taxa across lakes in the region (DataS1). This
matrix included six functional traits related to morphology and resource acquisition, as
listed in Table 1. The traits used have been described in other publications and reflect
important processes, in particular resource acquisition [27,28]. All traits were categorical
except for the continuous maximum linear dimension (MLD). The MLD is a measure of
the size of a cell for a given taxon (in µm). Nitrogen fixation is the potential for some
cyanobacteria taxa to fix atmospheric dinitrogen. Silica fixation refers to the production of
external protective silica structures by diatoms and by some chrysophytes. Mixotrophy is
the potential for a given taxon to acquire energy and nutrients through both phototrophy
and phagotrophy via bacterivory. Coloniality refers to the tendency of some taxa to form
chains or colonies of multiple cells. The Pigment trait comprises five categories corre-
sponding to combinations of accessory pigments found in one or several taxonomic groups:
Brown (diatoms, dinoflagellates, chrysophyceae), Green (chlorophyceae, euglenophyceae),
Blue-Green (cyanobacteria), Red (cryptophyceae) and Yellow-Green (xantophyceae). Traits
related to nutrient consumption kinetics (e.g., half saturation constants, maximum absorp-
tion rates) could not be included in the trait matrix as they are not routinely available
for freshwater taxa. However, several studies have noted that these traits correlate well
with the body size of phytoplankton [29,30], making MLD a suitable proxy of life history
strategy variation. We did not include a trait for motility structures like flagella or gas
vacuoles, as motility is likely to directly affect spatial overlap, unlike the traits we chose
to consider, that are also more direct proxies of resource competition. Moreover, motility
was highly correlated (ρ = 0.988) with mixotrophy, and we chose to use the trait most
closely related to resource acquisition in this case. The trait values were assigned using
microscopic observations and information available in the literature [31]. Phytoplankton
functional dispersion (FDis) was estimated by applying our trait matrix with the genus
biovolume matrix using the FD R package [32,33]. FDis measures the dispersion of the
taxa in the multidimensional space formed by the functional traits and the index increases
with greater diversity. It corresponds to the mean distance of individual taxa, weighted
by the relative abundances of the taxa, to the community centroid projected in trait space.
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Furthermore, this index can use both quantitative and qualitative traits and is not sensitive
to community taxonomic richness.

Table 1. List of the functional traits used in the study, their type and diversity index to which they
are associated.

Functional Traits Values Associated Diversity Index

Maximum Linear Dimension (MLD) Quantitative (µm) CWvarMLD
Nitrogen fixation Y/N HNfix
Silicium fixation Y/N HSi

Mixotrophy Y/N HMix
Coloniality Y/N HCol

Pigment

Brown
Green

Blue-Green
Yellow

Red

HPig

A caveat of our study relates to the scale discrepancy in the data used to compute the
SO and the diversity indices: SO was estimated using pigment measurements that combine
broad phytoplankton taxonomic groups at fine spatial scales, while diversity was estimated
at a finer taxonomic resolution using genus-level biomass, but across the water column.
While in theory SO could be measured at a finer taxonomic scale by using phytoplankton
counts in samples taken at many discrete depths, the sampling and counting effort required
would be monumental and is simply not realistic in the context of measurements taken at
multiple timepoints as in the TIMEX experiment. For the tools available to us during this
unique whole-lake experiment, these discrepancies in scales were unavoidable, but our
interpretation considers this context.

2.4. Statistical Analyses

All 66 sampling events in our datasets were treated as independent observations.
Causal relationships and links between variables were tested using structural equation
modeling (SEM). This multivariate statistical framework allows evaluation of the network
of causal relationships linking multiple variables based on user-specified hypotheses. The
validity of the model is then assessed by confronting it with measured data [34,35]. We
first specified a general model that included the ecologically plausible pathways between
five compartments: Thermocline depth, Metalimnion width, Zooplankton community, Spatial
overlap, Phytoplankton diversity (Figure 1). The relationships between these compartments
reflect the hypotheses of our study. Thermocline depth (ThermoDepth) and Metalimnion width
(MetaWidth) directly relate to the treatment applied to our system, so we considered these
compartments as exogenous variables, not affected by the other variables. All the other
variables are endogenous, dependent on at least these two variables. Using this general
model (Figure 1) as a template, two distinct models were estimated for each type of com-
munity diversity, the first one using H’ (taxonomic) and the second using FDis (functional)
to represent the Phytoplankton diversity compartment. Variables representing the remaining
compartments were identical across the two diversity models. The Zooplankton commu-
nity compartment consisted of Cladoceran biomass (CladoceraBiom) as these are the most
efficient grazers constituting a reliable indicator of the intensity of top-down interactions
shaping phytoplankton diversity. Furthermore, a previous analysis of the response of
the zooplankton to the TIMEX experiment showed that cladocerans were particularly
susceptible to the alteration of stratification structure [15], justifying causal relationships
between the compartments ThermoDepth, MetaWidth and CladoceraBiom in the SEMs. Because
SEMs do not support variables with very dissimilar observed variance, variables were
transformed when necessary to stabilize variance. In particular, the variable CladoceraBiom
was log-transformed. We checked for signs of temporal autocorrelation in the variables for
each year and for each basin and found none.
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Path significance and coefficients were determined through global estimation using
the lavaan R package [36]. This procedure determines path coefficients by minimizing
the difference between the model-implied variance–covariance matrix and the observed
data variance–covariance matrix; with the fit between the matrices being assessed by a
Chi-square test. A non-significant Chi-square test indicates that the covariance matrices
do not differ and that the model structure thus fits the data well. Owing to the non-
normal distributions of several variables, we used a bootstrap procedure available in lavaan
(10,000 bootstrapped samples) to estimate the p-values of the model paths. Additional
metrics can be used to assess model fit, including the goodness-of-fit index (GFI). This
index measures the relative proportion of variance and covariance in the data covariance
matrix predicted by the model-implied covariance matrix. A value > 0.95 is indicative of a
good fit [37]. For each endogenous variable, an R2 score can be calculated to quantify the
amount of variation explained.

We further investigated the effects of environmental factors on individual functional
traits. Multiple linear regression analyses were performed on indices of variability for
each functional trait used to compute FDis, with ThermoDepth, MetaWidth, CladoceraBiom
and SO as predictors. For the quantitative trait, MLD, variability was estimated as the
community-weighted standard variance (CWvarMLD), using a formula proposed by Peres-
Neto et al. [38]. Applying the community-weighted variance formula to a quantitative trait
yields a weighted measure of the dispersion in trait values within the community. For the
six other qualitative traits with two to five different modalities, we estimated the biomass of
each trait modality in the community on each sampling date by summing biomasses across
taxa presenting that modality. We then applied the formula of the Shannon index (H’) on
each trait, using the biomasses of the different modalities of a given trait rather than taxa as
distinct statistical individuals. Applying the Shannon index formula to a given qualitative
trait reflects both number of trait modalities represented in the community, as well as
the evenness of the biomass distribution of those modalities. These indices of variability
were used as response variables in separate regression models: in total, six regression
models were estimated (Table 2). The distributions of the response variables did not always
meet the assumptions of frequentist Gaussian models, so we applied permutation tests
(10,000 draws) to assess the significatively of the coefficients of the regression models, using
the function lmorigin available in the R package ape [39].

Table 2. Results of the permuted multiple linear regressions on the different trait diversity indices. For
each regression, the coefficients for each potential explanatory factor (from left to right: Thermocline
depth, Metalimnion width, Zooplankton biomass and Spatial Overlap) are indicated along with associated
p-values in parentheses. Significant coefficients and p-values are indicated in bold.

ThermoDepth MetaWidth CladoceraBiom SO

CWvarMLD
156

(1.00 × 10−4)
−16.7
(0.342)

3.10
(0.082)

85.7
(0.429)

HNfix
−8.93 × 10−4

(0.401)
8.15 × 10−3

(0.025)
2.40 × 10−4

(0.114)
0.01

(0.387)

HSi
3.76 × 10−3

(0.322)
−4.19 × 10−4

(0.470)
−4.63 × 10−4

(0.183)
0.18

(0.060)

HMix
3.40 × 10−3

(0.302)
0.019

(0.004)
−5.21 × 10−4

(0.099)
0.07

(0.221)

HCol
−1.16 × 10−3

(0.427)
0.0104
(0.091)

−1.39 × 10−3

(0.002)
0.09

(0.167)

HPig
−0.0302
(0.041)

0.0608
(0.001)

−2.61 × 10−3

(0.007)
0.26

(0.121)
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3. Results
3.1. SEM for the Taxonomic Diversity

The SE model for taxonomic diversity H’ was not significant (χ2 = 0.404, d f = 1, p = 0.525)
and the goodness-of-fit index was high (GFI = 1), together indicating a valid model ade-
quately representing the observed data (Figure 4a). The relationship of H’ with SO was not
significant and neither was the direct relationship with ThermoDepth. However, taxonomic
Phytoplankton diversity (H’) was significantly positively affected by MetaWidth. H’ was also
significantly negatively affected by CladoceraBiom (Zooplankton community compartment),
which itself was negatively affected by ThermoDepth (but not by MetaWidth). A significant
positive relationship was detected between ThermoDepth and SO, but not between MetaWidth
and SO. Although there was no direct significant relationship between ThermoDepth and H’,
a larger epilimnion indirectly promoted the taxonomic Phytoplankton diversity compartment
because ThermoDepth negatively affected CladoceraBiom, which itself negatively affected H’.
The model explained 18.1% of the variability in SO, 22.2% of the variability in CladoceraBiom
and 35.5% of the variability in H’.

Figure 4. Structural Equation models for H’ (a) and FDis (b). Dashed grey arrows represent non-significant relationships.
Blue arrows represent significant positive relationship and red arrows represent significant negative relationship. Results
shown are standardized coefficients and p-value (between parentheses), as well as R2 scores for endogenous variables. Ab-
breviations are as follows: ThermoDepth = thermocline depth, MetaWidth = metalimnion width, CladoceraBiom = cladoceran
biomass, SO = spatial overlap, H’ = Shannon diversity index, FDis = Functional dispersion.
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3.2. SEM for the Functional Diversity

The final SE model for FDis was very similar to the model for H’ (Figure 4b), as might
be expected given that the predictors for the compartments were the same. The main
difference was that this SEM revealed a significant positive effect of SO on FDis, indicating
that increased spatial overlap favored functional Phytoplankton diversity. The model Chi-
square test was not significant (χ2 = 0.405, d f = 1, p = 0.525) and the goodness-of-fit
index was GFI = 1, indicating that the model provided an adequate fit to the data.
This model explained 18.1%, 22.2% and 35.8% of the variability of SO, CladoceraBiom and
FDis, respectively.

3.3. Effect of SEM Predictors on the Diversity of Individual Traits

We used ThermoDepth, MetaWidth, CladoceraBiom and SO as predictors in the permutation
multiple linear regression models on the individual trait variability indices (Table 2).
ThermoDepth had a significant negative effect on the diversity of taxa cell sizes (CWvarMLD)
and a significant positive effect on the diversity of pigments (HPig). MetaWidth significantly
and positively affected the diversity of the nitrogen fixation, mixotrophy and pigment
traits (HFix, HMix and HPig respectively). CladoceraBiom had a significant negative effect on
diversity of the pigment trait (HPig) and the coloniality trait (HCol). SO did not significantly
affect any individual trait diversity indices, although all regression coefficients in relation
to SO were positive.

4. Discussion

We examined, in a whole-lake experimental context, whether altering the stratification
structure of the water column would reveal an influence of spatial overlap on community
diversity. Only functional diversity (FDis) was directly influenced by spatial overlap: higher
SO was associated with a greater diversity of the resource acquisition and morphology
traits we considered in our analysis. While we anticipated that a positive effect of SO
on functional diversity could be attenuated by enhanced functional differentiation at low
levels of SO as spatially segregated taxa need to adapt to different local conditions, the
results obtained were in line with our theoretical expectations that, to coexist, spatially
overlapping species need to be functionally distinct, notably in their resource requirements
or feeding strategies. However, we also predicted that increased interspecific competition
would reduce taxonomic diversity, but our analyses revealed no such effect of SO on the
Shannon diversity index (H’) of the community. These contrasting diversity results do make
sense however if the functional trait differentiation is effective at precluding taxonomic
diversity decline through niche partitioning.

In our study, greater SO was associated with a deeper thermocline (Figure 4a,b), and
thus, by definition, a wider mixed (epilimnetic) layer. Overall, this implies a larger portion
of the water column over which phytoplankton species cannot easily regulate their position
and are thus potentially susceptible to greater competition. Therefore, we expected to
see a negative effect of SO on H’. The absence of such signal indicates that the effect of
spatial aggregation on diversity might not be as straightforward as we initially assumed,
and that species can coexist even when spatial overlap is high—perhaps via coexistence
of taxa utilizing different traits. The absence of effect of SO on H’ could also simply
indicate that interspecific competition is not a strong driver of taxonomic diversity, owing
to increased functional diversity or trait variation. Furthermore, the physical structure of
the environment and top-down interactions also appear to be important drivers of diversity,
as MetaWidth and CladoceraBiom significantly affected H’ and FDis in our SE model (Figure 4a).

The SEMs featured a direct positive effect of metalimnetic width on both diversity
types, but not a direct effect of thermocline depth itself. Focusing on functional diversity,
further analyses revealed an effect of metalimnetic width on the diversity of pigments
and trophic strategy traits (mixotrophy and diazotrophy). A wider metalimnion implies
a thicker stable layer covering a larger range of light intensities and colors. Species with
different light requirements, hence with different pigment types, would be able to better



Microorganisms 2021, 9, 2447 11 of 14

coexist within a wider stratified layer by establishing at different depths [40]. The positive
effect of MetaWidth on HMix and HNfix appears to mostly be the result of a taxonomic change
in community contribution. Further investigation revealed that most of the biomass is
mixotrophic when the metalimnion is thin, and that the prevalence of mixotrophy in the
community is negatively affected by a thicker MetaWidth (Figure S4a). On the other hand,
a larger metalimnion, implying a larger stratified portion of the water column, would
favor buoyant cyanobacteria that can use gas vacuoles to regulate their vertical positions
(Figure S4b) [41,42]. A higher contribution of autotrophic cyanobacteria would reduce
the prevalence of mixotrophy, thus promoting a better balance between the prevalence of
autotrophic and mixotrophic taxa. Since some cyanobacterial taxa are able to fix dinitrogen,
a larger metalimnion would then also contribute to a diversification (HNfix) of nitrogen
fixation strategy [43].

While thermocline depth did not have a similar direct significant effect on the overall
functional diversity of the community, it did affect the diversity of several individual
traits. In particular, a deeper thermocline positively affected the diversity of community
cell sizes and negatively affected the diversity of pigments (CWvarMLD and HPig, respec-
tively). A larger mixed layer induced by thermocline deepening might allow larger sinking
diatoms to be more prevalent where otherwise small non-sinking taxa would dominate.
Indeed, Ptanick et al. [44] demonstrated in a mesocosm experiment that large fast-sinking
diatoms benefit from higher mixing depths. Conversely, a deeper epilimnion could prevent
some species from establishing at the optimal light absorption depth for their accessory
pigment composition, leading to a loss of pigment diversity in the community; optimal
adaptations being for varying light (more mixed taxa) or for reduced light (those that
are able to remain near or in the hypolimnion). These effects of thermocline depth and
metalimnetic width on phytoplankton diversity illustrate how the physical environment
shapes community composition.

Returning to the significant relationship between SO and FDis, we expected higher
levels of SO to be associated with higher levels of functional differentiation. When spatial
niche overlap occurs within the actively mixed layer, species need to display different
strategies of nutrient acquisition to avoid competitive exclusion [45,46]. More generally,
functional differentiation of traits related to resource acquisition should promote coex-
istence. However, we found no positive significant effect of SO on any individual trait
diversities. We noted a near-significant trend (p = 0.060) indicating that SO might promote
a better balance between silica-requiring taxa (i.e., diatoms and chrysophytes) and non-
silica-requiring taxa (greater HSi). Overall, our results indicate that SO acts on the global
functional diversity of the community by affecting the combination of multiple interacting
traits, which is captured by a global index of trait diversity like FDis, rather than on the
diversity of individual trait types. Note that these results are conditioned by the selection
of traits we could measure and chose to include in our analyses.

Grazing by zooplankton was also an important factor in regulating phytoplankton
diversity in our SEM analyses. In particular, cladoceran biomass was one of the main
factors affecting, negatively, phytoplankton, both taxonomic and functional diversity.
The CladoceraBiom effect on FDis was greater than SO in terms of the absolute values of
the standardized relationship coefficients, indicating that the zooplankton community
was a more important driver of Functional diversity than was SO in the context of our
experiment. The negative grazing effect runs counter to theory that states that zooplankton
grazing pressure should promote phytoplankton taxonomic diversity by reducing the
amount of interspecific resource competition [47,48], even experimentally for evenness [49].
However, detailed examination of phytoplankton communities under increasing levels of
cladoceran grazing has demonstrated concomitant shifts to dominance by larger or colonial
phytoplankton species [50], thereby reducing functional diversity, and thus potentially
taxonomic diversity where such species are rare, as is the case in our study lake and as we
observed. Indeed, individual trait diversity did demonstrate significantly reduced diversity
within traits associated with coloniality (HCol) and pigments (HPig), indicating that selective
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grazing by cladocerans can reduce the diversity of certain phytoplankton trait types as a
result. Accompanying declines in taxonomic diversity would be expected in a relatively
closed experimental system such as ours where selective feeding could remove entire taxa
(based on traits) without replacement by other more resistant species from adjacent lakes
(none upstream of our site) over the time scale of our experiment. Indeed, cladoceran
feeding is known to be selective, as observed in experiments demonstrating that cladoceran
gut pigment composition is significantly different from the pigment composition of the
associated phytoplankton community [51].

It is important to note that our spectral measurements of phytoplankton vertical
structure can only approximate real values of SO, as they only inform on the pigment
levels for four broad spectral groups, but at fine spatial scales. For example, we cannot
quantify spatial overlap between chlorophyte taxa, as they all share the same green pigment
detected spectrally. This leads to difficulty in fully assessing SO at very fine taxonomic
scales, similar to those at which diversity was estimated. To utilize whole-lake experiments
to their full potential, improved rapid tools to assess both spatial overlap at fine spatial
scales and taxonomic resolution are needed.

5. Conclusions

Our study revealed that altering the thermal stratification structure of a lake, while
controlling for lake morphometry, chemistry and global community composition, can affect
spatial overlap amongst phytoplankton groups. Spatial overlap was related to greater
functional diversity, indicating that forced coexistence enabled niche differentiation along
trait axes to alleviate interspecific competition, that appear to have precluded an effect of SO
on taxonomic diversity. Globally, however, our analyses revealed that the physical structure
of the environment and cascading top-down interactions are likely the stronger drivers of
phytoplankton diversity (both taxonomic and functional). To our knowledge, this study is
the first to simultaneously assess the relative effects of not only spatial overlap, but also
grazing and the physical environment on multiple dimensions of phytoplankton diversity.
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