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ABSTRACT Great progress has been made in providing convenient wireless communications with easy
connectivity for users everywhere. Many empirical path loss (PL) models have been developed to assess the
performance of new radio networks. This article first studies the state-of-the-art of empirical PL models,
along with vegetation effects on radio signal propagation. Next, an accurate empirical PL model is proposed
for fixed wireless networks under challenging rural propagation conditions. The proposed model is based on
a Canadian dataset from a wireless internet service provider, using the Wireless-To-The-Home technology
in the unlicensed 900 MHz, 2.4 and 5.8 GHz ISM bands and in the licensed 3.65 GHz band. The proposed
model considers several parameters, such as line-of-sight obstructions, frequency bands and dynamic link
distance splitting, in addition to seasonal variations in PL attenuation. It outperforms other models in terms
of accuracy when tested on a dataset from a different Canadian region, and it provides excellent and steady
accuracy when tested on a largely different open-access dataset for mobile communication technology from
seven different regions in England.

INDEX TERMS Radio signal propagation conditions, propagation empirical models, path loss, seasonal
effect.

I. INTRODUCTION
Wireless communication networks are a good alternative
for providing connectivity in rural regions thanks to their
robustness, easiness of deployment and low costs. However,
a serious challenge remains in terms of predicting the radio
signal attenuation caused by environmental parameters, such
as ground relief or vegetation. Many wireless standards are
used by WTTH (Wireless-To-The-Home) providers, such as
IEEE 802.11 (particularly the wide-range Wi-Fi versions),
which attracted a lot of interest due to its practical advan-
tages [1]. A successful deployment of wireless networks
requires careful planning due to radio signal impairments
caused by the surrounding environment, resulting in prop-
agation path loss (PL) and limiting the quality of service
(QoS). Accurate PL estimation is crucial for network plan-
ning and troubleshooting. This estimation can be made either
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with PL propagation modeling or with costly and complex
propagation measurements. The PL propagation models can
be used for feasibility studies, resource allocation and per-
formance prediction. The choice of the appropriate model
depends on the geographic location (e.g., urban, rural) and
radio link parameters (e.g., operating frequency). Empirical
models are used most frequently because they provide a good
compromise between accuracy, computational efficiency and
complexity [2]. Consequently, this work focuses on empirical
PL modeling and studies its applicability for fixed wireless
access (FWA) networks.

Empirical PL models have been traditionally designed for
frequencies lower than 2 GHz and for mobile networks in
urban areas. With the emergence of new wireless standards,
it has become necessary to update or extend them to consider
the recently diversified technology parameters. Each empiri-
cal model is usually designed for a specific environment and
has its own validity range of radio parameters (e.g., operat-
ing frequency, coverage, antenna heights). Consequently, this
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work examines the accuracy of these models for our studied
environment, in order to select a convenient PL model or
design a new one.

Despite the redundancy of empirical PL models, just a few
are handling rural environments and frequencies less than
6 GHz. In addition, empirical PL models have specific valid-
ity intervals (distance, frequency, environment type, and so
forth), and their performances outside these intervals have not
been fully investigated. Previous PL models have, in general,
been tested on a single (or two, at most) frequency band or
a single technology. Thus, wireless engineers need assistance
and guidelines with regards to how to choose a convenient
PL model. This work is a step towards dealing with these
problems.

The main contributions of this article can be summarized
as follows:

1) We survey the state-of-the-art PL empirical models and
focus on the vegetation effect.

2) We study the accuracy of listed PL models by compar-
ing their predictions based on our dataset in four fre-
quency bands below 6 GHz for outdoor Wi-Fi WTTH
in Canadian rural regions.

3) We establish the effect of long-term seasonal variations
on radio signal PL attenuation.

4) We propose a new PL empirical model based on
obstruction level, frequency band, dynamic distance
splitting and long-term seasonal variation.

5) We test and validate the proposed model on datasets
from different regions and countries.

The paper is organized as follows: Section II presents
the state-of-the-art of empirical PL models. In Section III,
quantitative performance metrics for PL model accuracy are
detailed. In Section IV, the data collection and measurement
are presented, and the accuracies of listed PL models are
compared. The proposed PL model is detailed in Section V.
In Section VI, seasonal PL variations have been integrated
into the proposed model. Section VII presents the model
validation conducted via independent international measure-
ments. Finally, conclusions and future work are provided in
Section VIII.

II. STATE-OF-THE-ART
A. RELATED WORK
Many research papers have studied existing PL models.
In [3], Sicker et al. described and implemented 30 propaga-
tion models proposed over the last 70 years for urban and
rural areas. They found that the landscape of PL models is
precarious. Furthermore, they affirmed that PL modelling
achieves, at best, 8 to 9 dBRootMean Squared Error (RMSE)
in urban environments and around 15 dB RMSE in rural ones.
The authors of [4] developed a new taxonomy by conducting
a deep survey covering more than 60 years of continuous
research. They stated that the next generation of PL models
will be data-centric, that attempt to extract information from
directed measurements. Phillips et al. analyzed 28 PLmodels

by using a large set of data from a wireless network in rural
New Zealand [5]. They demonstrated that: ‘‘the state-of-
the-art, even for the ‘‘simple’’ case of rural environments,
is surprisingly ill-equipped to make accurate predictions.’’
The best accuracy they achieve is a 12 dB RMSE.

Sarkar et al. [6] reviewed various propagation models
for both indoor and outdoor environments and summarized
their advantages and disadvantages. Sun et al. [7] presented
mmWave propagation measurements and PL models for
outdoors and indoors, then investigated their performances
across 5G networks. Erunkulu et al. [8] surveyed existing
techniques and mechanisms for network coverage prediction.
They provided an up-to-date review of existing PL models,
along with a comparative analysis, to aid in the planning and
implementation of cellular networks. Wang et al. [9] com-
pared the prediction performances of several channel models
in terms of three important metrics: the cell radius, spectral
efficiency, and outage probability in both indoor and out-
door scenarios for Internet of Things (IoT) communications.
Anusha et al. [10] surveyed different propagation models to
calculate path attenuation in rural, suburban and urban areas.

Most of the research considered PL modelling for mobile
technologies in urban areas [11]. Whereas some works
focused on empirical PL models for FWA in rural areas, but a
good proportion of these studies were simulation-based only,
with just a few including measurements. Moraitis et al. [12]
examined the accuracy of PL models at 3.7 GHz for FWA
Long-Term Evolution (LTE). They recommended the stan-
dard propagation model (SPM) as the best option for network
dimensioning and planning. MacCartney and Rappaport [13]
studied rural macro-cell (RMa) propagation models and the
current 3rd Generation Partnership Project (3GPP) RMa path
loss models for frequencies from 0.5 GHz to 30 GHz. They
used measurements in rural Virginia to develop a new RMa
PL model for 73 GHz that is more accurate than the exist-
ing 3GPP RMa models and can be used for frequencies
from 0.5 GHz to 100 GHz. Chee et al. [14] studied the
effects of carrier frequency, antenna height and season on
a FWA network deployed in a rural area at 825 MHz and
3535 MHz. They found that the frequency dependence of
a wireless channel varies strongly with the environment.
El Chall et al. [15] investigated LoRaWAN radio channel in
the 868 MHz band. Extensive measurement campaigns were
carried out to develop a PL model for indoor and out-
door environments in urban and rural locations of Lebanon.
Maurya et al. [16] studied the PL in urban and rural areas
by considering several parameters, such as frequency, loca-
tion and best fit. De Guzman et al. [17] applied 3-ray PL
analysis to evaluate the impact of variation in evaporation
duct height and antenna height in rural coastal areas. Rakesh
and Nalineswari [18] analyzed PL models at Global System
for Mobile Communications (GSM) 940 MHz and IEEE
802.16’s WIMAX 3.5 GHz frequencies in different terrains
including rural areas.

Since Wi-Fi is classically used for indoor communica-
tions, most studies have considered its PL modeling for
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indoor applications. However, Wi-Fi-based long-distance
networks have emerged as an alternative technology for pro-
viding Internet access in rural areas. Fendji et al. [19] com-
pared slope-based empirical PL models to measurements at
2.4 GHz using the 802.11n standard. They proposed a new
model based on the Liechty model because the number of
obstacles was known in their experiment. The Liechty model
provided a better prediction in a non-line of sight (NLOS)
scenario, while the new model outperformed in combined
scenario (line of sight (LOS) and NLOS). In our context, it is
impractical to apply thismodel since the link distance exceeds
twenty kilometers, and the number of obstacles is unknown.
El-Keyi et al. [20] updated the log-distance PL model for
indoor Wi-Fi to take wall penetration, reflection, scattering,
and diffraction effects into account. Oni and Idachaba [21]
reviewed PL models and their adaptation to Wi-Fi indoor
propagation environments. Rademacher et al. [22] conducted
outdoor experiments to measure the PL for Wi-Fi links at
distances of up to 10.3 km. They found that the Longley-
Rice model provides accurate results. Hong and Wu [23]
estimated the signal loss of Wi-Fi at 2.4 GHz to improve
search and rescue operations after disasters. Brinkhoff and
Hornbuckle [24] studied theWi-Fi signal range in agricultural
crops environments. They proved that the coverage distance
exceeded 1 Km. We [1] investigated the Wi-Fi coverage for
outdoor IoT applications, and we compared the predictions
of many PL models.

B. PATH LOSS EMPIRICAL MODELS
Effective wireless network deployment requires accurate
PL modeling to predict the coverage range and minimize
required infrastructure. Many PL models have been devel-
oped for specific environments [2]. In this section, the most
well-known empirical PL models and their pertinent param-
eters are revisited.

1) 3GPP TR 38.901 MODEL
This model was mainly designed for mobile networks [25],
with a frequency bandwidth of 10% around the center value
of no larger than 2 GHz. It considers LOS and NLOS links,
and supports urban, indoor and rural links, but, in this article,
we focus only on its rural macro-cell configuration. It is
described using the following formula [26]:

PLRMa−LOS =
{
PL1 for10m ≤ d ≤ dBP
PL2 for dBP ≤ d ≤ 10Km

}
(1)

dBP =
2πHAPHr f

c

PL1 = 20 log10

(
40πdf

3

)
+min

(
0.03h1.72, 10

)
log10 (d)

−min
(
0.044h1.72,14.77

)
+0.002 log10(h) d

(2)

PL2 = PL1(dBP)+ 40 log10

(
d
dBP

)
(3)

PLRMa−NLOS = max
(
PLRMa−LOS ,PL ′RMa−NLOS

)
(4)

For 10m ≤ d ≤ 5Km

PL ′RMa−NLOS
= 161.04− 7.1 log10 (W )+ 7.5 log10 (h)

−

(
24.37− 3.7

(
h
HAP

)2
)
log10 (HAP)

+
(
43.42− 3.1log10 (HAP)

) (
log10 (d)− 3

)
+20 log10 f −

(
3.2

(
log10 (11.75Hr )

)2
− 4.97

)
(5)

where d is the distance, f is the frequency, PLRMa−LOS and
PLRMa−NLOS are the macro-cells path losses in rural areas for
the LOS and NLOS links respectively, dBP is the break point
distance, h is the average building height, W is the average
street width, c is the free space propagation velocity, Hr is
the receiver height, and HAP is the access point (AP) height.
This model is valid for frequencies of 0.5–100 GHz, receiver
heights of 1–10 m, AP antenna heights of 10–150 m, average
building heights of 5–50 m, street widths of 5–50 m and link
distances of 0.01–10 Km for LOS links and 0.01–5 Km for
NLOS links.

2) FREE SPACE AND LOG-DISTANCE MODELS
The free space model describes the radio signal power loss in
LOS links and is written as [2]:

PL fs = 32.45+ 20 log10 d + 20 log10 f (6)

The log-distance model considers NLOS links and random
shadowing effects. It is given by [27]:

PLLD = PLd0 + 10n log10 (
d
d0

)+ χ (7)

where n is the path loss exponent, PLd0 is the PL in dB at the
reference distance d0, and χ is the shadowing effect, which
is zero-mean Gaussian distributed with a standard deviation
between 5 and 16 dB [28].

3) OKUMURA MODEL
This model was built using data collected in the city of Tokyo,
Japan [29]. It considers urban, suburban and open areas. The
urban area model is the most widely used in cities without tall
blocking structures. It is given by [29]:

PLO50 = PL fs+Amu (f , d)−G (HAP)−G (Hr )−Garea (8)

where PLO50 is the median PL, Amu (f , d) is the median
attenuation relative to free space, G (HAP) is the gain due to
the AP antenna height, G (Hr ) is the gain due to the receiver
or Customer Premises Equipment (CPE) antenna height, and
Garea is an environment-related correction factor. Okumura
developed a set of curves for Amu (f , d), in an urban area
over quasi-smooth ground with an HAP of 200 m and Hr
of 3 m, and vertical omnidirectional antennas on both the
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AP and the receiver sides. The values of Amu (f , d) and Garea
are obtained from Okumura’s empirical plots, G (HAP) and
G (Hr ) are described as follow:

G (HAP) =


10log10

HAP
200

for HAP ≤ 30m

20log10
HAP
200

for 30 < HAP≤1000 m

 (9)

G (Hr ) =


10log10

Hr
3

for Hr ≤ 3m

20log10
Hr
3

for 3 < Hr ≤ 10

 (10)

This model is restricted to the 150–1920 MHz frequency
range, receiver heights of 1–3 m, AP antenna heights of
30–100 m and link distances of 1–100 km.

4) OKUMURA-HATA MODEL (OH)
This model [30] is based on the graphical information
obtained in the Okumura model but considers the effects
of the diffraction, reflection and scattering caused by city
structures. Additionally, it applies corrections for suburban
and rural environments. The PL in urban areas is given by:

PLOHU = 69.55+ 26.16 log10 f − 13.82 log10 HAP
+
(
44.9− 6.55 log10 HAP

)
log10 d − CH (11)

where

CH =



0.8− 1.56 log10 f +
(
1.1 log10 f − 0.7

)
Hr

for small or medium cities
8.29(log10 (1.54Hr ))

2
− 1.1

if 150 ≤ f ≤ 300MHz for large cities
3.2(log10 (11.75Hr ))

2
− 4.97

if 300 < f ≤ 1500MHz for large cities


(12)

the path loss in suburban areas is given by:

PLOHSU = PLOHU − 2
(
log10

f
28

)2

− 5.4 (13)

and the path loss in open areas is given by:

PLOHO=PLOHU−4.78
(
log10 f

)2
+18.33 log10 f −40.94

(14)

where CH is the antenna height correction factor. This
model is restricted to frequencies of 150–1500MHz, receiver
heights of 1–10 m, AP antenna heights of 30–200m and link
distances of 1–20 km.

5) EXTENDED COST-231 HATA MODEL
COST is a European Union forum for cooperative scientific
research, which developed thismodel based onmeasurements
in multiple European cities. It extends the urban Okumura-
Hata model to cover frequencies of up to 2 GHz [31]. It is
most often cited as the COST 231 model, but it also referred
to as the Hata Model PCS extension. It is given by [32]:

PLCOST = A1 + A2 log10 f + A3 log10 HAP
+
(
B1 + B2 log10 HAP + B3 × HAP

)
×(log10d)− aHr − Cr (15)

where A1, . . . , B3 are the Hata parameters described below:

A1 =
{
69.55 at 900 MHz
46.3 at 1800 MHz

}
A2 =

{
26.16 at 900 MHz
33.9 at 1800 MHz

}
A3 = −13.8

B1 = 44.9

B2 = −6.55

B3 = 0

where, aHr is the receiver antenna height correction factor, it
is calculated as:

aHr =



0.8− 1.56 log10 f +
(
1.1 log10 f − 0.7

)
Hr

for suburban or rural environments
8.29(log10 (1.54Hr ))

2
− 1.1

if f ≤ 300MHz for large cities
3.2(log10 (11.75Hr ))

2
− 4.97

if f > 300MHz for large cities


(16)

Cr is a correction factor that is equal to 0 dB for suburban or
rural environments and 3 dB for urban areas. At 900 MHz,
according to this model, the PL is:

PLCOST = 69.55+ 26.16log10f − 13.82log10HAP
+
(
44.9− 6.55log10HAP

)
log10d − aHr − Cr

(17)

For a frequency of 1800 MHz, the PL is:

PLCOST = 46.3+ 33.9 log10 f − 13.82 log10HAP
+
(
44.9− 6.55 log10HAP

)
log10 d − aHr − Cr

(18)

This model is restricted to frequencies of 1500–2000MHz,
receiver antenna heights of 1–10 m, AP antenna heights
of 30–200 m and link distances of 1–20 km.

6) OKUMURA-HATA EXTENDED MODEL (ECC-33 MODEL)
This model was developed by the Electronic Communication
Committee (ECC) and extrapolated from the original Oku-
mura measurements. It subdivides urban areas into ‘large’
and ‘medium’ categories. Since the characteristics of a highly
built-up area such as Tokyo are quite different from those
found in European suburban areas, the use of the ‘medium
city’ model is recommended [33]. It can be stated as [34]:

PLECC (dB) = PL fs + Abm − GAP − Gr (19)

where PL fs, Abm, GAP and Gr are the free space attenuation,
the basic median PL and the AP and receiver antennas’ height
gain factors, respectively. They are expressed as:

PL fs = 92.4+ 20 log10 d + 20 log10 f

Abm = 20.41+ 9.83 log10 d + 7.894 log10 f

+9.56
(
log10 f

)2
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GAP =
(
log10

HAP
200

)[
13.958+ 5.8

(
log10 d

)2]
Gr =

(
42.57+ 13.7 log10 f

) (
log10 Hr − 0.585

)
Gr = 0.759Hr − 1.862 for medium cities (20)

This model is restricted to frequencies ≤ 2000 MHz,
receiver heights of 1–10 m, AP antenna heights of 30–200 m
and link distances of 1–20 km.

7) STANFORD UNIVERSITY INTERIM (SUI) MODEL
This model is an extension of the Hata model for frequen-
cies above 1900 MHz. It introduced the PL exponent γ and
the weak fading standard deviation S as random variables
obtained through a statistical procedure. It was originally
proposed for FWA networks in the 3.5 GHz band [35].
It divided geographic areas into three types of terrains: A,
B and C. Terrain A has the highest PL for hilly areas with
moderate to dense vegetation, so it can be considered for
densely populated urban areas. Terrain B has an intermediate
PL, and it is used for hilly terrains with sparse vegetation or
flat terrains with moderate to high tree densities, making it
suitable for suburban environments. Terrain C used for flat or
rural terrain with light vegetation. Themodel is given by [28]:

PLSUI = A+ 10γ log10
d
d0
+ Xf + Xh + S

λA = 20 log10
4πd0

γ = a− bHAP +
c

HAP

Xf = 6 log10
f

2000

Xh = −10.8 log10
Hr
2

for terrains A and B

Xh = −20 log10
Hr
2

for terrain C, (21)

where d0 = 100 m, and S is a log-normally distributed factor
for the shadow fading of trees and other clutters. It is capped at
8.2 dB for rural environments, 9.6 for suburban environments,
and 10.6 dB for urban environments. Xf is a correction factor
for frequencies larger than 2 GHz, Xh is a correction factor for
the receiving antenna height and A is the intercept parameter.
The PL exponent γ is set to 2 in free space, 3–5 in an urban
NLOS and greater than 5 inside buildings. Parameters a, b,
and c depend on the terrain and are given in Table 1.

This model is restricted to frequencies ≤ 11 GHz, receiver
antenna heights of 2–10 m, AP antenna heights of 10–80 m
and link distances of 0.1–8 km.

TABLE 1. The SUI model parameter values.

8) ERICSSON (9999) MODEL
This model was also built off of the modified Okumura-Hata
model according to the propagation environment. Sometimes
it is called 9999 model. Regardless, it is given by [36]:

PL999 = a0 + a1 log10 (d)+ a2 log10 (HAP)

+a3 log10 (HAP)× log10 (d)

−3.2(log10 (11.75Hr ))
2
+ g (f ) (22)

where

g (f ) = 44.49 log10 (f )− 4.78× (log10 (f ))
2

The constants a0, a1, a2 and a3 are given in Table 2.

TABLE 2. Values of ericsson model parameters.

This model is restricted to frequencies ≤ 11 GHz, receiver
antenna heights of 2–10 m, AP antenna heights of 10–80 m
and link distances of 0.1–8 km.

9) WALFISCH-IKEGAMI (WI) PROPAGATION MODEL
This model was developed by the COST-231 project. Four
additional factors are included for better prediction within the
urban context: heights of buildings, widths of roads, building
separations and road orientations. As a result, its applicability
in rural area with vegetation is doubtful. It considers only ver-
tical buildings and distinguishes LOS and NLOS situations
[37]. The LOS PL is given by:

PLWILOS = 42.6+ 26 log10 (d)+ 20 log10 (f ) (23)

where d is in Km, and f is in MHz. For NLOS situations,
the PL is:

PLWINLOS

=

{
PLFS + PLrts + PLmsd (urban and sub urban)
PLFS (urban if PLrts + PLmsd < 0)

}
(24)

where PLrts is the rooftop-to-street diffraction, and PLmsd
is the multi-screen diffraction loss. This model is restricted
to the frequencies of 800–2000 MHz, AP antenna heights
of 4–50 m, receiver antenna heights of 1–3 m and link dis-
tances of 0.02–5 km.

10) STANDARD PROPAGATION MODEL (SPM)
This model is based on Hata PL formulas but it ignores the
effects of diffraction, clutter, and terrain. It is appropriate for
cellular technologies [38]. The PL is given by [39]:

PLSPM = K1 + K2 log10 (d)+ K3 log10 (HAP)

+K5 log10 (HAP)× log10 (d)+ K6

×hr + K7 log10 (hr ) (25)
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where K1, . . . , K3 are the SPM parameters. They are given
according to Hata models as follow:

K1 = A1 + A2 log10 (f )− 3B1
K2 = B1
K3 = A3 − 3B2
K5 = B2

The correction function for the receiver antenna height was
also ignored for hr ≤ 1.5 m since it has negligible values in
that range.

K6 = K7 = 0

For hr > 1.5, K6 is the same as in the Hata model, namely,

K6 = a

For 900 MHz and hr ≤ 1.5 m, the PL is given by [40]:

PLSPM = 12.5+ 44.9 log10 (d)+ 5.83 log10 (HAP)

−6.55 log10 (HAP)× log10 (d)

For 1800 MHz and hr ≤ 1.5 m, the PL is given by [40]:

PLSPM = 22+ 44.9 log10 (d)+ 5.83 log10 (HAP)

−6.55 log10 (HAP)× log10 (d)

This model is restricted to frequencies of 150–1500 MHz,
receiver antenna heights of 1–10 m, AP antenna heights of
30–200 m and link distances of 1–20 km.

C. THE IMPACT OF VEGETATION
Radio signal attenuation through vegetation is traditionally
assumed to increase exponentially with the crossed distance
through foliage [41]. In the literature, we can find essentially
two groups of models: empirical models based on obser-
vations and measurements, and analytical models based on
propagation theory. Foliage empirical models have attracted
a lot of attention since they provide a good compromise
between accuracy and simplicity. In the literature, we can
find many such models, including the modified exponen-
tial decay [42], Weissberger [43], ITU-R [44], COST 235
[45], FITU-R [46] and maximum attenuation [47] models.
In general, the foliage PL can be described with the following
exponential decay model:

L = A× f B × dC (26)

where the parameters A, B and C are fitted empirically
according to the foliage type. Here, f is the frequency, and
d is the distance crossed through vegetation.

During our literature search, we noticed that most research
studies were done in controlled laboratory-like environments.
Hence, the distance crossed through foliage must be known
for an accurate estimation of the vegetation loss to be formu-
lated. Unfortunately, such information is difficult to obtain,
especially in rural environments where the locations and
types of trees and the densities of the vegetation (in-leaf and
out-leaf propagation) are not uniform within the radio signal

path. In addition, available models cover only relatively short
foliage distances (400 m), while radio links may exceed
10 Km.

Furthermore, there are other parameters that affect the
vegetation loss, such as the presence or absence of leaves on
deciduous trees, and the humidity of the vegetation, as they
are involved in the estimation of trees’ dielectric constants
(permittivity and conductivity) [48]. In general, high humid-
ity increases the propagation loss, but the amount of loss
is still difficult to predict, as it depends on the tree types,
frequency, humidity level, rainfall rate, and so on. In general,
isolated trees do not represent an important problem, but
dense vegetation has a major effect on a wireless signal.
In addition, the CCIR report [44] has assessed the vegetation
attenuation per meter through foliage for many frequencies
for greater simplicity. It is about 0.05, 0.1, 0.2, 0.3 and
0.4 dB/m for 0.2, 0.5, 1, 2 and 3 GHz, respectively. At low
frequencies, the horizontal polarization has less attenuation
than the vertical one due to scattering from tree trunks, but
this difference vanishes above 1 GHz [49].

Finally, as the vegetation PL requires a wide set of param-
eters and existing models are not practical for real and rural
deployments, it is important to establish a more accurate and
easier-to-use PL model for rural areas. With this aim in mind,
we integrate the vegetation effect implicitly through the PL
empirical modeling for NLOS links because vegetation is the
major source of obstructions in rural areas.

D. DISCUSSION
According to our review, the most relevant parameters for PL
estimation are the AP and receiver antennas heights, link dis-
tance and frequency band. As the PL increases with frequency
band and link distance, it is important to choose the lowest
possible frequency to raise the radio signal coverage and the
quality of NLOS links. On the other hand, the PL is inversely
dependent on the antennas’ heights since taller antennas
decrease the effect of obstructions on the radio signal. Most
existing empirical models’ validity intervals were developed
to respect mainly GSM applications. In this context, fixed
wireless applications have not been investigated well, and
not enough measurements have been made to confirm the
accuracy of these models in such applications.

Table 3 compares many research studies according to the
relevance of the existing PL empirical models to their mea-
sures. When a new model is proposed by the authors to fit
their measures, it is listed as ‘‘author proposed’’ in the ‘‘fitted
path loss’’ column. This table lists the frequency band, cover-
age distance, area type, main wireless technologies and if the
mobility is considered in each study. It also indicates whether
the measurements were taken in a controlled environment.
It is noticed that most existing research papers consider the
PL for mobile technologies and urban areas. In most cases,
the coverage distance does not exceed 1 Km for Wi-Fi. The
locations of these experiments are mostly controlled. Wi-Fi
is often considered for indoor or small outdoor areas such as
university campus. Recently, this technology has been used
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for outdoor long-range links to bring cheap and convenient
broadband fixed Internet access to rural or difficult-to-access
areas. Furthermore, only one wireless technology or two
frequencies are considered at most. While with the diversi-
fication of services and applications, many communication
technologies can be offered in the same area to satisfy various
communication needs.

Unfortunately, it is difficult to find research papers dealing
with FWA for long-range Wi-Fi in rural areas that include
several frequency bands or several technologies. It is also
difficult to get any agreement concerning the best PL model
to use for a given area, technology or frequency. A PL
model cannot be blindly used in a given environment unless
its inherent parameters are well-tuned to that environment.
Furthermore, propagation in rural areas is considered less
challenging since it is assumed that there will be a clear LOS
or free space. This observation is not true, in general, due
to high vegetation densities and the differences inherent in
seasonal propagation conditions. Hence, this article explores
the applicability of existing empirical PL models for FWA
in rural areas for Wi-Fi long-range radio links with many
frequency bands.

III. PERFORMANCE METRICS
In order to compare the prediction accuracies of PL models
quantitatively and efficiently, many performance metrics are
used [58], [59]. The prediction error is given by:

εi =
(
PLmeasi − PLpredi

)
(27)

wherePLmeasi andPLpredi are themeasured and predicted PLs,
respectively, and i is the index of each PL sample. The mean
error is then given by:

ε̄ =
1
N

∑N

i=1
εi (28)

where N is the total number of observations. The mean
absolute error (MAE) expresses the mean shift between the
measurements and the predictions and is given by:

¯|ε| =
1
N

∑N

i=1

∣∣∣PLmeasi − PLpredi

∣∣∣ = 1
N

∑N

i=1
|εi| (29)

The root mean squared error is among the most important
metrics with which to assess prediction accuracy and is per-
ceived as the shadow factor. It is provided by:

¯|ε| =

√
1
N

∑N

i=1

(
PLmeasi − PLpredi

)2
=

√
1
N

∑N

i=1
ε2i (30)

The standard deviation of a given PL model is given by:

σ =

√
1

(N − 1)

∑N

i=1

(
PL i − P̄L

)2 (31)

where PL i is the path loss model at a given index, and P̄L
is the mean. The cumulative distribution function (CDF) of a

PL evaluated at a given value, say x, is the probability that the
PL will take a value less than or equal x. It is given by:

CDFPL(x) = Porbability(PL ≤ x) (32)

The five-number summary can be deduced from the CDF: the
maximal and the minimal PL values, the lower and the upper
quartiles and the median value. The maximal PL value PLmax
is given by:

PLmax = MAX (PL1,PL2, . . .PL i, . . .PLN ) (33)

The minimal PL value PLmin is given by:

PLmin = MIN (PL1,PL2, . . .PL i, . . .PLN ) (34)

The path loss median value (PL%50) separates the ordered PL
values into two equal intervals and is given by:

PLmedian = PL(N+12 ) (35)

The lower quartile PL25% divides the interval between the
minimal and median PL values into two equal halves and is
expressed as:

PL25% = PL(N+14 ) (36)

The upper quartile PL75% divides the interval from the
median to the maximal PL values into two equal halves and
is expressed as:

PL75% = PL 3
4 (N+1)

(37)

The coefficient of determination or ‘‘R squared’’ assesses the
ability of a given model to predict a given observation. In the
best case, R2 = 1, the model fits the measures perfectly.
When R2 = 0, the model predicts mostly ¯PLmeas. A negative
value means that the model fails in its predictions. R2 is
expressed by:

R2 = 1−

∑N
i=1 (PL

pred
i − PLmeas)

2∑N
i=1 (PL

meas
i − PLmeas)

2 (38)

The statistical dependence between two parameters, x and
y, is given by the cross-correlation coefficient, also referred
as the sample Pearson correlation coefficient. It evaluates
whether the relationship between these two variables can be
described with a linear function. Hence, this function can be
used to extract the parameters that influence the path loss the
most. It is defined as:

ρxy =

∑N
i=1 (xi − x̄)(yi − ȳ)√[∑N

i=1 (xi − x̄)
2
]
×

[∑N
i=1 (yi − ȳ)

2
] (39)

where x̄ and ȳ are the mean values of x and y, and N is
the total number of observations. Since the measurements
include thousands of observations, a logarithmic regression
is used to ease and clarify the visualization. Hence, the cloud
of observations can be simplified via a logarithmic curve. Its
equation is given by:

f (x) = A+ B log (Cx + D) (40)
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TABLE 3. Comparison of research studies on path loss empirical models according to their relevance to the measurements.

where A, B, C and D are tuned for the best fit according to
f , and x is the input variable. For example, if logarithmic
regression is used to clarify the curve of the measures accord-
ing to distance, then these variables are fitted according to
the measured PL and the corresponding distance. In the same
manner, the listed PL models produce a cloud of points that
are difficult to visualize according to each pertinent parameter
(e.g. distance). The use of logarithmic regression can simplify
and clarify the visualization of a given PL model according
to a pertinent parameter.

IV. DATA COLLECTION AND MEASUREMENT METHODS
The measurements were provided by an Internet ser-
vice provider servicing two different rural regions with
FWA networks: SLSJ and OUT in Quebec, Canada.
Figures 1 and 2 present the distribution of the wireless links
in the two regions. The signal paths contain hills, plains
and lakes and are largely covered by trees. The propagation
environment varies between two conditions: (i) extremely
cold, snowy weather with coniferous trees during the winter,
and (ii) hot, rainy weather with deciduous leaves during the
summer. Essentially, the networks consist of Wi-Fi long-
range links based on the 802.11 standard, as previously pre-
sented in [1], [60]. The networks include thousands of CPE
units connected to hundreds of APs.

Measurements include relevant information such as trans-
mitted and received signal power, data rates, signal-to-noise
ratios, noise floors and so forth. Operating frequencies cor-
respond to the ISM bands: 915 MHz, 2.4, and 5.8 GHz
as well as the licensed 3.65 GHz band. These frequencies

FIGURE 1. Distribution of the wireless links in the SLSJ region.

are diversified to provide various penetrations capabilities.
Bandwidths range between 5 and 80 MHz for diversified
throughput options. AP and CPE antennas of various types
and gains are used. Many transmitted powers are used for
various radio link configurations. Additional pertinent infor-
mation includes antenna gains and heights, link distances
and obstruction type (LOS or NLOS). Only links within
the AP coverage are used. CPE nodes are mostly installed
on rooftops of houses, whereas APs are installed on com-
munication towers, churches’ steeples or the rooftops of
houses. Hence, the effects of ground reflection and moving
objects can be neglected. The proposedmodel is always tuned
according to the SLSJ region and tested separately in the
OUT region in order to verify the generalizability of our
assumptions.
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FIGURE 2. Distribution of the wireless links in the OUT region.

The PL is computedwith the Friis link budget formula [61]:

Pr = Pt + Gt + GCPE − L (41)

where Pr and Pt are the received and transmitted signal pow-
ers, respectively;Gt andGCPE are the AP and CPE antennas’
gains, respectively; and L is the total link loss, which includes
the PL and the total losses of the internal devices Lint for the
APs and CPE units. As all variables are known through data
sheets (Lint , Pt , Gt , Gr ) and measurements (Pr ), the PL is
assessed via the following formula:

PL = Pt + Gt + Gr − Pr − Lint (42)

Figure 3 presents the PL measurements and their loga-
rithmic regressions (Eq. 40) for easy visualization. The dis-
tance varies between 0.05 and 18 Km, and the PL interval is
within 70 and 150 dB.

A. MEASUREMENT COMPARISONS WITH PATH LOSS
MODELS
Each listed PL model has many configurations depending
on area (e.g., urban, rural), frequency, antenna heights and
radio link distances. Their accuracies are assessed according
to their RMSEs. Then the best configuration in terms of
the RMSE of each listed PL model is used in Fig. 4. The
logarithmic regression of each model configuration is added
to clarify the curves. According to this figure, urban or big-
city configurations are mostly retained, which confirms the
inaccuracies of the rural or open-area configurations of most
of the listed PL models since they considered rural areas to
be low-obstruction areas, whereas radio signals are highly
attenuated by the increased vegetation density. To obtain a
more detailed picture of these PL models’ accuracies, the
RMSEs of all their configurations are compared in Table 4.
This table presents the RMSEs for all the aggregated data in
the first column, then measurements are grouped according
to regions (SLSJ and OUT), line of sight obstruction (LOS
and NLOS) and frequency bands (0.915, 2, 3.65, 5.8 GHz).
The orange lines are for the LOS configurations of PL
models. These configurations exhibit better performances for
LOS links than for NLOS links since they are optimized

for low obstruction. The LOS configuration of Walfisch PL
model is the most accurate for LOS links, with an RMSE of
12.85 dB. The large-city configuration of the urban Okumura
Hata model predicts the NLOS links best, with an RMSE
of 15.24 dB. When the measurements are split according
to regions, the Walfisch LOS and suburban Okumura Hata
models are the most accurate, yielding RMSEs of 16.50 dB
for SLSJ region sincemost of links have lower obstructions in
this region. Whereas, in the OUT region, the urban Okumura
Hata model does best due to the higher vegetation density
in this region, yielding an RMSE of 14.77 dB. This model’s
configuration is still accurate for the 0.915 and 2.4 GHz bands
since it has RMSEs of 14.12 and 16.51 dB for these fre-
quencies, respectively (sub 2.4 GHz frequencies are generally
used for obstructed NLOS links). For the 3.65 and 5.8 GHz
frequencies, the Walfisch LOS is the best, turning in RMSEs
of 13.9 and 15.29 dB respectively. This result is to be expected
since 3.65 and 5.8 GHz frequencies are mostly used for direct
LOS links. Note that the listed PL models are not accurate
enough in the context of this study since the best RMSEs vary
between 12.85 and 17 dB, all high compared to the receiver
sensitivity. At an accuracy in this range, a radio link can
easily be predicted to be feasible while proving impossible
to deploy in a real environment. In the remainder of this
article, a new, accurate PL model is proposed and optimized
according tomany data types and scenarios. Then its accuracy
and statistical performance metrics are compared with the
listed PL models in order to highlight the improvements it
brings.

V. PROPOSED PATH LOSS EMPIRICAL MODEL
The advantage of empirical PL models is their good balance
between the low computing complexity and the improved
prediction accuracy. Once generated, the proposed PL model
is similar in terms of computational complexity to any other
mathematical formula that involves arithmetic operations
with few input parameters. Regarding the input parameters,
the PL models are generally dependent on the following
ones: distance, frequency band and antennas’ heights. This
finding was confirmed by the previous review on PL models,
where most listed models are dependent on these parame-
ters. Table 5 contains the cross-correlation coefficients (see
Eq. 39) of the PL measurements with the pertinent param-
eters. Note that link distance and AP antenna height are
highly correlated, as higher APs cover, in general, wider
distances. Hence, the proposed model must contain both
parameters in the same term. The PL cross-correlation with
frequency is −0.01, which is low due to the non-uniform
data distribution. This finding is confirmed by the LOS links’
measurements, which are uniformly scattered according to
frequency bands, which have a cross-correlation with fre-
quency of 0.17. Antennas’ heights are negatively correlated to
PL measurements, which means that when antennas’ heights
rise, the PL generally decreases. This conclusion reflects
the expectation that since higher antennas can better clear
LOS obstructions, they can consequently decrease the PL
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FIGURE 3. PL measures and the logarithmic regression curve for easy visualization.

FIGURE 4. Comparison of PL measurements with the best configurations of all listed PL models. Their logarithmic regression curves are added
for greater clarity.

attenuation. Whereas, distance is positively correlated to PL,
which increases logically for wider radio links.

Fig. 5 presents the PL measurements versus the perti-
nent parameters: frequency, distance, AP and CPE antennas’
heights, respectively. The logarithmic regressions are added
for better visibility of the relationships and the variabil-
ity between the PL and various pertinent parameters. The
PL variability with frequency is low due to non-uniform
data distribution as discussed earlier. When the dataset is
conveniently scattered according to frequency, as for LOS
links, the PL variability improves considerably, and the
cross-correlation increases from −0.01 to 0.17. According

to the logarithmic regression curves, the PL variability with
distance is within the range of 105–130 dB, whereas it
is 114–122 dB and 115–122 dB for AP and CPE heights
respectively.

Since the PL can be logarithmically approximated by per-
tinent parameters, as in Figure 5, and by considering the pre-
vious arguments, the proposed model is expressed as follows:

PLzek = A0 + A1log10(f )+ A2 log10 (d)+ A3 log10 (HAP)
+A4 log10 (hr )+ A5 log10 (HAP)× log10 (d) (43)

where f , d , HAP and Hr are the frequency, link distance
and AP and CPE antennas’ heights, respectively. A0, A1,
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TABLE 4. Comparison of the RMSEs of all listed PL models.

FIGURE 5. Path loss dependence on pertinent paramaters: measurements and logarithmic regression
curves.

A2, A3, A4, and A5 are model parameters that are tuned for
better accuracy. More precisely, A0 is the intercept parameter.
A1 is the frequency dependent tuning parameter, logically it

must have a positive value since the PL increases for higher
frequencies. A2 is the distance dependent tuning parameter,
its value is positive as the PL increase for wider radio links.
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TABLE 5. Cross-correlations of PL with its pertinent parameters.

TABLE 6. ZEK model parameters.

A5 is the tuning parameter for the correlated distance and
AP antenna height term. A3 and A4 are respectively AP and
CPE heights’ tuning parameters. They have negative values
since higher antennas are better to clear the line of sight and
decrease the propagation PL.

A. MODEL OPTIMIZATION OBTAINED BY
SPLITTING DATA
Model parameters are extracted by using the least squares
algorithm implemented via the curve fit function in the opti-
mization module of SciPy [62]. The extraction is done with
SLSJ measurements and tested directly with the OUT ones in
order to verify its generalizability. Three optimization criteria
are used: region, line of sight obstruction (LOS, NLOS) and
frequency bands (0.9, 2.4, 3.65 and 5.8 GHz). Hence, seven
sets of parameters are shown in Table 6. Parameters extracted
according to LOS links are smaller than those extracted
according to NLOS links since there are fewer obstructions in
the LOS case. Frequency dependent parameters vary slightly
with the frequency bands since the PL is less correlated with
frequency (e.g., Table 6 ). The 5.8GHz band has the largest
parameters since the radio signal is themost highly attenuated
in this band.

Figure 6 presents the measured and the predicted PLs for
the SLSJ and OUT regions. The link distances in the OUT
region are smaller due to the vegetation obstructions. As the
links in OUT have more obstructions, the proposed model
slightly underpredicts the PL in comparison to the predictions
made for the SLSG region. Figure 7 illustrates the measured
and predicted PLs by splitting the data between LOS and
NLOS links for the SLSJ and OUT regions. The predicted
PLs for the NLOS links are around 6 to 7 dB higher than those
predicted for the LOS links. Figure 8 presents the measured

TABLE 7. RMSEs of proposed model under various data splitting criteria.

and predicted PLs by splitting the data according to frequency
bands for the SLSJ and OUT regions. The 5.8 GHz band
has the highest PL values since it is the most sensitive to
obstruction. The proposedmodel generalizes well since it still
accurate for a different region (e.g., OUT).

Table 7 contains the RMSEs for the various optimization
criteria. The total RMSE by region is 10.15 dB, which cor-
responds to an improvement of 6.89 dB compared to the
best of listed PL models. The RMSE difference between the
SLSJ and OUT regions is due to the high vegetation density
in the OUT region. When splitting regions’ measurements
according to obstruction or frequency bands, an additional
improvement of 0.33 dB is obtained since model has been
tuned with more specific data.

B. DYNAMIC DISTANCE SPLITTING (DDS)
Since the PL is highly dependent on the radio link distance,
which can exceed 18 Km for long-range Wi-Fi, the avail-
able measurements are dynamically split into many intervals
according to the path distance to improve the PL prediction
accuracy. Hence, each data interval is optimized separately to
extract its own parameters A0, . . . , A5. The number of inter-
vals is optimized to minimize the overall RMSE. To predict
the PL of a new link, the interval parameters that include the
link distance are used. The new PL expression is then:

PLDDS = A0,i + A1,ilog10(f )+ A2,i log10 (d)

+A3,i log10 (HAP)+ A4,i log10 (hr )

+A5,i log10 (HAP)× log10 (d) (44)

where A0,i, A1,i, A2,i, A3,i, A4,i and A5,i are the PL model
tuning parameters for the ith interval. Figure 9 presents the
comparison between the PL measurements and DDS model
results for the SLSJ and OUT regions. The DDS is tuned
according to the SLSJ measurements and applied directly to
the OUT region. It generalizes well despite the differences
between regions in terms of vegetation and terrain and shows
an additional improvement of 0.16 dB RMSE in the OUT
region according to Table 8.

Figure 10 presents the extraction of the optimal number
of intervals by comparing the RMSE for the SLSJ region
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FIGURE 6. Comparison of PL measurements and the proposed model for the SLSG and OUT regions.

FIGURE 7. Comparison of PL measurements and the proposed model for the SLSG and OUT regions, data is split between LOS and
NLOS links.

TABLE 8. Comparison of the RMSEs for the proposed and the DDS PL
models.

(training set) to the RSME for the OUT region (testing set).
Its value is 6, and the corresponding RMSE for OUT is
10.36 dB. When the number of intervals exceeds this optimal
value, the DDS model becomes overfitted since the RMSE
continues to decrease in the SLSJ region, whereas it increases
in the OUT region. Therefore, the DDS model progressively
loses its generalizability as it memorizes the learning set.

Figure 11 compares the CDF of the PL measurements to
the values obtained from the proposed PL models. The PLdds
model produces values closer to the measurements because
splitting the available paths into many intervals increases the
prediction accuracy. Furthermore, the proposed PL models’
values vary faster than the measurements around their mean
values since their standard deviations are bigger.

C. COMPARISON WITH OTHER MODELS
The comparison of the RMSEs of the proposed PL models
and the most accurate configurations of the listed PL models
is presented in Table 9 by region, obstruction level, frequency
bands and whole datasets. The DDS algorithm improved the
RSME of the proposed PLzek model by 0.2 dB for the whole
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FIGURE 8. Comparison of PL measurements and the proposed model for the SLSG and OUT regions according to frequency bands.

FIGURE 9. Comparison of PL measurements and the DDS model for the SLSG and OUT regions.

dataset, while the proposed PLzek model’s RSME is better
than those of existing models by at least 6.8 dB. When the
data are split according to regions, the RMSE for the proposed
model PLzek is 6.6 and 7.5 dB better for SLSJ and OUT
regions, respectively. For the LOS links, the improvement is
2.4 dB, while it is 6.5 dB for the NLOS links. The 0.915 GHz
frequency band showed an improvement of 5.9 dB, while the
accuracy improved by 7.0, 3.2 and 4.9 dB for the 2.4, 3.65 and
5.8 GHz frequency bands, respectively.

An additional statistical analysis is carried out in Table 10,
where the proposed PL model values are compared to the PL
measurements and to the values obtained through the best
configurations of the listed PL models in terms of the coeffi-
cient of determination (R2), mean, standard deviation, MAE,

min, max, and so on. The proposed models have positive
coefficients of determination since their predictions are closer
to the measurements, while the other models have negative
R2 s due to their high prediction errors. The same obser-
vation holds for the other statistical parameters, where the
mean, standard deviation, min, max, and so forth are closer
to those for the measurements than the statistical parame-
ters obtained via other listed PL models. The mean abso-
lute error (MAE) of the proposed PLzek model is 8.1 dB,
which means that when designing new radio links, there
can be a difference of 8.1 dB, on average, between the
PL prediction and the real PL value. When LOS-NLOS
or frequency splitting is considered, the MAE improves
to 7.8 dB.
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FIGURE 10. Extraction of the optimal number of intervals.

FIGURE 11. CDF of PL measurements and values obtained from the
proposed PL models.

TABLE 9. Comparison of the RMSEs of the proposed PL models with the
most accurate configurations of the listed PL models.

Figure 12 compares the CDFs of the values generated by
the proposed PLmodels and the most accurate listed PLmod-
els with measurements. It clearly confirms the findings of the

TABLE 10. Descriptive Statistics for the proposed PL models and the best
configurations of listed PL models.

FIGURE 12. CDF of the PL measurements, proposed PL model values and
the most accurate listed PL model values.

previous statistical analysis, especially for higher PL values,
where the link distances and the vegetation obstructions are
large. The differences between the measurements and the
values generated by the other listed PL models are high since
these models are developed and tuned for urban areas with
more obstructions. Furthermore, their rural configurations are
less accurate since they consider radio links to be mostly LOS
links, contrary to the high vegetation densities in these areas.

VI. SEASONAL EFFECT
In the rural Canadian context, the extreme propagation con-
ditions can be split according to the seasons into two groups:
cold and hot. Since our research considers only long-term
extreme PL seasonal variations that last throughout entire
cold or hot seasons, snow and rain falling are not accounted
for, as they are of limited duration and their impact is
reduced in our operation frequencies [63], [64]. The main
long-term seasonal effects are the PL difference due to leaf
growth during the hot season and snow accumulation and
leaves falling during the cold season. During the hot season,
the attenuation includes vegetation and buildings (for NLOS
links) added to the free space effects. Thus, the hot season
attenuation Ahot is:

Ahot = Afs + Aveg + Abuild (45)
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FIGURE 13. Path loss variation in the summer and winter seasons.

where Afs, Aveg and Abuild are the free space, vegetation
and building attenuations, respectively. During the autumn,
leaves fall progressively, and the total vegetation attenuation
decreases progressively to reach its value for the cold season.
During the winter, the conifers, buildings and accumulated
snow (for NLOS links) and free space attenuations are con-
sidered. The cold season attenuation Acold is given as follows:

Acold = Afs + Acon + Abuild + Aaccu (46)

where Acon and Aaccu are the conifers and the accumu-
lated snow attenuations, respectively. Furthermore, most
researchers have used laboratory-like environments, where
all the influencing parameters are under control, and the path
distance is many hundred meters. Yet, in wide-deployment
networks or hard-to-access rural areas, most of these param-
eters are difficult to assess accurately. Consequently, in this
article, an easy and comprehensive PL model is developed
by considering long-term extreme seasonal variations in PL
measurements during winter and summer.

Figure 13 presents the PL during the summer when the
leaves are present and during the winter when the leaves have
fallen and snow has accumulated. The PL difference between
the two seasons is presented in the figure below; the total
mean difference is about 3.92 dB, which mean that when
installing a wireless link during the winter, a margin of at least
3.92 dB must be considered for the PL attenuation increase
during the summer. After splitting the radio links according to
obstruction levels, themean seasonal differences in the PL are
1.22 and 5.14 dB for the LOS and NLOS links, respectively.
Hence, margins of 1.22 and 5.14 dB should be considered for
the summer. Figure 14 presents the CDFs of the PL measure-
ments for the summer andwinter seasons for the entire dataset
and for when the data are classified according to line of
sight obstructions (LOS, NLOS). It reflects the expectations
that the margin for NLOS links between summer and winter

FIGURE 14. CDFs of PL measurements by season and obstruction.

TABLE 11. The proposed model parameters for seasonal variations.

should be bigger than the one for the LOS links. Furthermore,
the minimal and maximal PL means are sorted logically in
the following ascending order: Winter LOS, Summer LOS,
Winter all data, Winter NLOS, Summer all data and Summer
NLOS.

A. MODEL OPTIMIZATION ACCORDING TO SEASONAL
VARIATION
To model the long-term PL variations between summer and
winter, the measurements are split into the two corresponding
groups. Then each group is split according to the obstruc-
tion level (LOS, NLOS). Later, the proposed model is tuned
for each group by using the least squares algorithm imple-
mented by the curve fit function in the optimization mod-
ule of SciPy [62]. Therefore, four groups of parameters are
obtained: LOS Summer, LOS Winter, NLOS Summer and
NLOS Winter. They are presented in Table 11, where the
NLOS and Summer parameters are generally greater than
LOS and Winter ones.

Similarly, Figure 15 presents four groups of curves, where
each one compares themeasured and predicted PLs according
to seasonal variations, line of sight obstructions (LOS and
NLOS) and region (SLSJ and OUT). The predicted PLs dur-
ing the summer are higher, as leaves are growing. Similarly,
the PL seasonal variation is bigger for NLOS links than it is
for LOS ones. This variation increases for greater distances
since more vegetation can be present along the signal path.

Table 12 shows that our model accuracy has been improved
by 0.69 dB (in terms of the RMSE) when seasonal effects
are considered. The RMSE for the entire dataset is about
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FIGURE 15. Comparison of PL measurements and predictions for seasonal variations of NLOS and LOS links in SLSJ and OUT regions.

TABLE 12. RMSEs for the proposed model with seasonal variations in the
SLSG and out regions.

9.46 dB, whereas it is 10.15 dB without taking seasonal
effects into consideration. When taking the seasonal effects
into consideration, the MAE drops to 7.5 dB, whereas the
MAEs are 8.1 and 8 for the PLzek and PLdds models,
respectively.

VII. VALIDATION WITH INTERNATIONAL INDEPENDENT
MEASUREMENTS
In order to verify the generalizability of our model, it is tested
with independent and open PL measurements for mobile
communication technology from seven different regions in
England with radio link distances of over 25 km. Measure-
ments weremade during summer andwinter, and they include
rural, urban and suburban areas with various obstructions,
such as vegetation, buildings, hills, and so on. Frequency
bands range from 449 MHz to 5850 GHz. A complete
description of the measurements is available in [65]. Table 13
presents a comparison of the RMSEs between our proposed
model and the most accurate PLmodels among all the models
listed in this article. In each location, all the configurations
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TABLE 13. Testing proposed PL model with internationnal measurements for mobile communication technology from seven different regions in England.
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of the proposed PL model are compared to all listed PL
models, but, for the sake of simplicity, only the most accu-
rate configurations have been included in this table. This
comparison includes many frequency bands, the obstruction
type and the season for all concerned regions. According to
this comparison, our model is among the most accurate, with
a steady performance in various environments despite the
following issues:

1) The differences between technologies: our model has
been optimized for Wi-Fi technology, whereas the test
measurements were taken for mobile GSM.

2) The difference between countries: our model has been
optimized in Canada, whereas the other measurements
were made in England.

3) The diversity in topography: dense urban, suburban,
dense rural, high vegetation, mountainous, and so forth.

4) The difference in antennas’ heights: various heights
were used for our model, and 1.5 m was used for the
receiver antenna heights in England dataset.

5) The heterogeneous nature of our measurements, and
the homogeneous test data.

6) The wide frequency range, which is extended from
450 MHz to 5.8 GHz.

VIII. CONCLUSION
Wireless networks operating below 6 GHz present an
attractive solution for connecting people in rural regions.
Therefore, wireless engineers need assistance in choosing a
convenient PLmodel for their purposes from among themany
available models. This article provides a step towards dealing
with this issue.

This article reviews the available PL models and dis-
cusses the effects of vegetation on radio signal attenuation.
In addition, long-term extreme PL seasonal variations that last
throughout entire cold or hot seasons are considered since this
issue has not been covered well in the literature. The accura-
cies of most known PL models are characterized for FWAs of
various frequencies and configurations in two different rural
regions in Canada. Then the light is shed on how to derive
a useful PL model for the rural area by proposing a new PL
model. The improvement brought by this new model is about
7.2 dB in terms of the RSME. Taking the seasonal effect into
consideration adds an additional improvement of 0.69 dB.
The model is tested on datasets from different regions in Eng-
land, and it provides predictions with very high accuracy. The
proposed model is valid for frequencies below 6 GHz, CPE
heights of 3-81 feet, AP antenna heights of 3-220 feet and
link distances below 34 Km. Future research could consider
a solution for the user association and AP selection in order
to improve the QoS in difficult rural environments.
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