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ABSTRACT

By modelling reserves with micro-level models, individual claims information is better preserved
and can be more easily handled in the fitting process. Some of the claim information is available
immediately at the report date and remains known until the closure of the claim. However, other
useful information changes unpredictably as claims develop, for example, the previously observed
number of payments. In this paper, we seek to model payment counts in a discrete manner based
on past information both in terms of claim characteristics and previous payment counts. We use a
dynamic score that weighs the risk of the claim based on previous claim behaviour and that gets
updated at the end of each discrete interval. In this paper’s model we will also distinguish between
the different types of payments. We evaluate our model by fitting it into a data set from a major
Canadian insurance company. We will also discuss estimation procedures, make predictions, and
compare the results with other models.

Keywords loss reserving · individual models · BMS · GAMLSS

1 Introduction

Insurance companies must hold loss reserves to cover the cost of future liabilities from open claims. This very important
task has been well studied in the loss reserve literature through several propositions. Most of the earlier models are
based on loss triangles that summarize payments in terms of development years and accident year. This strand of the
literature belongs to the "macro-level" or "collective" family of models. Among them, the most popular is the Chain
Ladder model ([20] and [19]), which has been expanded upon by many authors (see Wüthrich and Merz [31] and
England and Verrall [8]). These "macro-level" models are appealing to many actuaries because aggregated data in
the form of loss triangles allows for concise and summarized data to be used. However, precisely because data is
aggregated, these models are often unable to include individual claim information. Thus, some actuaries may prefer
more complex approaches that are able to handle this data, if enough individual claim information is readily available.
In fact, it was shown in Wang [30] that models that make use of this type of information outperform models that do not.

In contrast with the "macro-level" models, another branch of the literature comprised of what are often called "micro-
level" or "individual" models has been suggested in recent years. They seek to model individual claims directly rather
than loss triangles and thus are better able to include claim information than their aggregate counterparts. Several
authors of individual modelling literature have focused on statistical learning methods. Indeed, interesting propositions
have been made by Wülthrich [32], Lopez et al. [16, 15], Lopez and Milhaud [17], Lopez [14] by implementing
regression trees methods for micro-level loss reserving. Other methods such as the ExtraTrees algorithm and the
Gradient Boosting procedure have also been implemented (see Baudry and Robert [5] and Pigeon and Duval [24],
respectively).
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Apart from the statistical learning methods, parametric and semi-parametric methods have also been suggested for
micro-level loss reserving. Some authors have developed models using Position Dependent Marked-Poisson Process
(PDMPP) to predict the exact time of each of the events of a claim, such as payments and closures. One of the first
papers to use this type of model is Haastrup and Arjas [9]. Later, in 2014, a more practical implementation of this
approach was proposed by Antonio and Plat [1], in which a more evidence-based methodology was suggested for
both IBNR and RBNS reserves using a data set from an insurance company. Antonio et al. [2] further developed this
type of model by including a multi-state approach that allowed the model to transition from one state to another as
the claim developed. In contrast to models based on Haastrup and Arjas [9], other propositions have been made. For
instance, Pigeon et al. [22] considered modelling individual development factors, and further expanded the model
by including incurred loss information (see Pigeon et al. [23]). Also, Zhao et al. [34] developed a semi-parametric
model for IBNR claims, and later incorporated copulae into the model (see Zhao et al. [35]). More recently, a more
hierarchical structure was considered in Yanez and Pigeon [33], where the development of claims was divided into
three components: duration of claims, payment frequency, and severity.

Because of their granular structure, micro-level models make it easier to include claim information in the modelling
process. This information can often be interpreted in the form of covariates, which, based on Taylor et al. [26], are
of three types: static, time dynamic, and unpredictable time dynamic. Although time dynamic covariates change as
time passes while static covariates remain fixed, both can be predicted with certainty at any point in time. In contrast,
unpredictable time dynamic covariates are, as the name suggests, unpredictable as time passes. Thus, both static and
time dynamic covariates can often be included in models in a more straightforward manner than unpredictable time
dynamic covariates. Despite the uncertainty associated with the latter type of covariates, useful claim information can
be extracted from them. Specifically, when modelling RBNS claims these covariates are abundant because a portion of
the claim development has already been observed. Furthermore, few models that can handle this information have been
implemented, namely Antonio et al. [2], which considered including interchangeable states based on payment counts,
and Pigeon et al. [23], which made use of incurred losses. In this paper, we propose a new method that can handle an
unpredictable time dynamic covariate in a discrete time interval context.

We consider using past observed payment counts to help predict future payment frequency by summarizing the past
payment counts using a score system that gets updated at different discrete intervals. At the end of a given interval the
score would be updated, and the prediction of the number of payments over the next interval would use the updated
score. Our discrete time scoring model can be implemented into any individual model that can predict payment counts
at discrete intervals and can incorporate new information at each interval. In Yanez and Pigeon [33], strong emphasis
was placed on the ease of implementation of covariate information in each of the hierarchical components (duration,
frequency, and severity). Given that, in this work, we aim to incorporate an unpredictable time dynamic covariate into
payment count modelling (i.e. frequency), Yanez and Pigeon [33] is an ideal candidate for the inclusion of this more
intricate type of covariate.

The idea of calculating a score based on previous observations is not new to the actuarial literature. In fact, the model in
this paper draws inspiration from the bonus-malus scoring system (BMS) developed for claim counts. Such a method
was developed in Boucher et al. [3], where the authors summarized previous claim counts into a single numerical claim
score. This model was further developed in Boucher and Pigeon [4], where the claim score included linear effects.
More recently Verschuren [29] proposed a version of the model that incorporates the claim development of different
product lines into the score system. Thus, the method we put forward in this paper can be seen as the introduction of a
dynamic risk scoring system into the micro-level loss reserve literature.

The method we suggest offers a concrete solution to the inclusion of past claim information in the modelling process,
fully taking advantage of a discrete interval structure. We want to make an additional contribution by distinguishing
between the different types of payments in the modelling process. This distinction is particularly relevant in loss
reserving because payments occur for a variety of reasons, (e.g., medical bills, legal fees, etc...), and their distribution
could vary. To our knowledge, this is the first payment count model that distinguishes between different types of
payments, and their difference will be considered in our numerical analysis.

To summarize, our article has the following objectives:

• implement a dynamic risk scoring system into a discrete interval payment loss reserve model, and weight the
impact of such covariates in the fitting process;

• develop a model that considers different types of payments, and analyze their distribution;

• outperform models that only make use of static and time dynamic covariates.

This paper is structured as follows. In Section 2, we look at the general framework of the model. In Section 3, we
discuss the estimation procedure followed by Section 4 where we describe the simulation procedure of payment counts.
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In Section 5, we describe the data set used, followed by the numerical results of both our model and other comparative
models. Finally, Section 6 contains concluding remarks and mentions further topics that could be explored based on our
findings.

2 Statistical framework

In this section we specify the framework of our approach by indicating the notation used and giving the parameters of
each model. We then specify the dynamic claim score that allows us to include previous payment counts.

2.1 Introductory notation

The development of a P&C claim is shown in Figure 1. First, accident i occurs and we identify t(o)i , the occurrence
delay, i.e. the delay between the beginning of the accident year and the exact accident date. There is an additional
delay between the accident date and the reporting date denoted by t(r)i . After the accident has been declared, several
payments may be made – illustrated by dots in the figure – before the claim is closed after a final delay t(c)i . At the
valuation date, claims can be separated into several categories according to the information available.

Figure 1: Development of two claims

In a loss-reserving context, we first need to distinguish the status of each of the claims in the portfolio. Let I =
I(O) ∪ I(C) be the set containing the claims available at the valuation date, where I(O) and I(C) are the subsets
containing open and closed claims (RBNS), respectively. Let I∗ be the set containing unreported claims (IBNR), which
is unknown at the valuation date.

For each claim i ∈ I, the observation period, i.e. the period between the reporting date and the closure date (or the
valuation date), is denoted by (0; τi], where τi = min{t(c)i , t

(e)
i }. Afterwards, the observation period, (0; τi], i ∈ I , can

be divided into time intervals based on vector

d = [d0, d1, . . . , dK ],

where dk < dk+1, d0 = 0 and dK > maxi{τi}.
Furthermore, let Ni,k be the number of payments for claim i, i ∈ I, taking place over the interval (dk, dk+1], and we
define Ni = [Ni,0, Ni,1, . . . , Ni,K−1]. For each Ni,k we associate an exposure measure that indicates how long claim i
is open in interval (dk, dk+1]. Thus, let Ei,k be the exposure measure of the claim i in the interval (dk, dk+1] so that,

Ei,k = max{min{τi, dk+1} − dk, 0},

and Ei = [Ei,0, Ei,1, . . . , Ei,K−1].

At the reporting date, micro-level information from a claim becomes available in the form of vector Xi of size g
containing the g available static covariates, which do not vary over time, e.g., the region where the accident occurred.
Thus, let Xi = [Xi,1, Xi,2, . . . , Xi,g] be the vector containing all static covariates for claim i. Note that this vector is
not available for unreported claims (IBNR).

3
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We can also identify another vector Zi,k of size h containing h time dynamic covariates, which vary over time
with certainty, e.g., the current age of the insured, available at each interval (dk, dk+1]. Thus, let Zi,k =
[Zi,k,1, Zi,k,2, . . . , Zi,k,h] be the vector containing all the time dynamic covariates for claim i and interval k. In
particular, the covariate that indicates at which interval k, Ni,k is situated is considered to be known even if the claim is
not declared (IBNR). Thus, we can define Z∗i,k = dk, as the vector containing the risk factors for IBNR claims.

2.2 A priori distribution of the number of payments

2.2.1 RBNS claims

For open claims, i ∈ I(O), we aim to predict the number of payments Ni,k, over intervals (dk, dk+1]. We use the a
priori information available at the reporting date (vectors Xi and Zi,k), as well as the exposure Ei,k. Commonly used
approaches in a non-life-insurance context can be considered, such as generalized linear models (GLM). The expected
value of Ni,k, conditionally to Xi, Zi,k and Ei,k, is given by

µi,k = E [Ni,k|Xi,Zi,k, Ei,k] = (Ei,k) g−1
(
X′iβ + Z′i,kθ

)
,

where g−1() is the inverse of the link function, and β and θ are, respectively, the parameter vectors of static and time
dynamic covariates.

2.2.2 IBNR claims

For claims that have occurred but have not been reported, i ∈ I∗, we again aim to predict the number of payments Ni,k,
over the intervals (dk, dk+1]. Instead of having access to the information contained in the vectors Xi and Zi,k we only
have the information contained in Z∗i,k. Thus, the expected value of Ni,k, knowing Z∗i,k and Ei,k, is given by,

µ∗i,k = E
[
Ni,k|Z∗i,k, Ei,k

]
= (Ei,k) g−1

(
Z∗′i,kθ

∗) ,
where g−1() is defined as previously, and θ∗ is the parameter vector based on time intervals (dk, dk+1].

2.3 A posteriori distribution of the number of payments

Payments can be divided into several categories, e.g., payments related to medical costs, or administrative costs.
Suppose there are A different categories of payments. Thus, we want to incorporate past payment count information in
the fitting process from different payment categories as the claims develop. Thus, for a given payment category we
propose using a dynamic risk score model with three parameters

(
`0, ψ

(a), s(a)
)

where the level of risk associated with
the category a at the beginning of the interval (dk, dk+1] is given by

L
(a)
i (k) =

min

{
max

{
L
(a)
i (k − 1)− Ei,k−11

(
N

(a)
i,k−1 = 0

)
+ ψ(a)N

(a)
i,k−1

Ei,k−1
, 1

}
, s(a)

}
, for k = 1, . . . ,K − 1

`0, for k = 0,

where ψ(a) is the jump parameter, `0 is the initial claim score, and s is the maximum claim score. Hence, risk scores
have higher values for claims for which more frequent payments have been observed in the past. This structure can be
denoted by −1/+ ψ(a), and is directly inspired by bonus-malus pricing systems.

The information from the risk levels of each category can then be incorporated into the process. First, let Li(k) =

[L
(1)
i (k), L

(2)
i (k), . . . , L

(A)
i (k)] be the vector containing the risk levels associated with the different categories of

payments. Then, for RBNS claims, we can obtain the expected value of the number of payments from category a,

µ
(a)
i,k = E

[
N

(a)
i,k |Xi,Zi,k, Ei,k,Li(k)

]
= (Ei,k) g−1

(
X′iβ

(a) + Z′i,kθ
(a) + f (a)

(
L
(a)
i (k)

))
.

Moreover, by setting f (a)
(
`
(a)
i (k)

)
= 0 when `(a)i (k) = `0, we decide that for new claims, only covariate vectors X′i

and Z′i,k are considered for predictions. Furthermore, past claim behaviour, in the form of claim scores Li(k), modifies

4
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the baseline mean from new claims. Although it is possible to consider linear functions for functions f (a)(), it is also
possible to consider functions that better capture changes in the relationship between the risk scores and the number of
payments. A piecewise division with break points (or knots) splines COMMENTAIRES DU CORRECTEUR: ** this is
unclear to me - there are two plurals in a row with nothing joining them. Do the knots form splines?, is an interesting
solution that captures these changes. In this paper we suggest two types of splines: 1) cubic spline smoothers, and 2)
penalized cubic basis splines (cubic P-splines). According to Stasinopoulus et al. [25], there are two main differences
between these two types of splines. First, P-splines have equidistant knots while cubic smoothing splines have variable
values for the knots. Second, smoothness of the fitted function is achieved in two different ways. P-splines penalize the
smoothing parameter while cubic splines penalize the second derivative of the function.

We obtain the expected value of the number of payments from category a for IBNR claims:

µ
∗(a)
i,k = E

[
N

(a)
i,k |Z

∗
i,k, Ei,k,Li(k)

]
= (Ei,k) g−1

(
Z∗′i,kθ

∗(a) +

A∑
b=1

f∗(a)
(
L
(a)
i (k)

))
.

We include the same restriction that we used in the RBNS claims by setting f (a)
(
`
(a)
i (k)

)
= 0 when `(a)i (k) = `0.

However, because information from these type of claims is unknown we can only include covariate vector Z∗i,k, in
addition to the claim scores Li(k).

In order to better illustrate the dynamic measure, in Figure 2, we provide a graphical toy example of the impact of its
incorporation in the modelling process. In this example we show a claim that is riskier than average, where the mean
parameter (µi,k) is lower than the observed number of claims (Ni,k) between intervals 0 < k ≤ 4. We can modify the
mean parameters, µi,k, into parameters that incorporate past information with a very simple formula:

µ∗i,k = µi,k ·
∑

j<kNi,j∑
j<k µi,j

.

Although the calculation method used in this toy example is very simplistic we can see the value of using previous
information in the modelling process, obtaining new mean parameters closer to the observed values.

Figure 2: Mean parameters of a claim with and without a dynamic risk measure

2.4 Distribution of duration of claims

With pricing models, where BMS models are commonly used to predict claim counts, the duration of contracts is known
beforehand. However, in a loss reserve context, when we seek to predict outstanding payment counts the full duration of
open or unreported claims is unknown, and thus an additional model is required to predict this value in order to obtain
the exposure values after the evaluation date. This problem was fully addressed in Yanez and Pigeon [33], where, for
claim i, the duration was divided in three parts modelled by three random variables:

• T (o)
i for the occurrence delay;

• T (r)
i for the reporting delay; and

• T (c)
i for the closure delay.

5
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For RBNS claims, the report and occurrence date are known, and the information contained in the covariate vectors
Xi and Zi,k is also accessible. Hence, it is only necessary to model the closure delay with the added advantage of
having access to micro-level information. In Yanez and Pigeon [33], a variety of distributions are considered from the
survival literature, such as the Weibull and the Gamma distribution. It is worth noting that the training set used contains
right-censored observations because of the valuation date. For more details, refer to the above-mentioned paper.

For IBNR claims however, it is necessary to model all three parts of the duration, and no individual information is
available. In Yanez and Pigeon [33], the occurrence delay is addressed with methods that consider seasonal effects.
The reporting delay is based on the paper by Antonio and Plat [1], where a mixture of a Weibull distribution with
degenerate components was considered to accommodate the observations that only take a few days to complete. The
closure delay was addressed similarly to the RBNS claims without considering individual information. Again, refer to
Yanez and Pigeon [33] for more details.

3 Parameter estimation

We can summarize the steps to follow to estimate the parameters of the model for RBNS claims. First, the actuary must
select or estimate the following components:

• the division of time intervals d,
• the number of levels s(a) for each type of payment a = 1, . . . , A,

• the static explanatory variables Xi and their parameters associated with each type of payment β(a), a =
1, . . . , A,

• the time dynamic explanatory variables Zi and their parameters associated with each type of payment θ(a),
a = 1, . . . , A,

• the type of smoothing functions used for claim scores f (a) (), and
• the underlying distributions of the payments.

For this dynamic risk score model, the a priori distribution parameters β(a), θ(a), and f (a) () for each type of payment
a = 1, . . . , A are obtained by maximizing the likelihood function given by

Λ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p(
N

(a)
i,k |Xi,Zi,k,Ei,k,Li(k)

) (n(a)i,k |xi, zi,k, ei,k, `i(k)
)
,

where p() is the mass function of the number of claim payments at each k interval given their covariates, dynamic risk
measure, and exposure. We suggest estimating the jump parameters ψ(a) by looking for the value that generates the
best likelihood or the best predictions (based on an out-of-sample analysis).

Because the model of this paper distinguishes between IBNR and RBNS reserves, it is also important to comment on
the parameter estimation procedure for IBNR claims. One can follow the same procedure already described, but instead
of using covariate vectors that have micro-level information (i.e Xi and Zi) we only have access to covariate vector
Z∗i,k. Thus, the likelihood function is given by

Λ∗ =
∏
i∈I

K−1∏
k=0

A∏
a=1

p∗(
N

(a)
i,k |Z

∗
i,k,Ei,k,Li(k)

) (n(a)i,k |z
∗
i,k, ei,k, `i(k)

)
,

where p∗() is the mass function. Also, a different estimation can be made for the jump parameter, ψ∗(a), and it can be
estimated, yet again, either by maximizing the likelihood function or by an doing an out-of-sample analysis.

4 Simulation procedure

As stated at the beginning of the paper, loss reserves are split into two types: IBNR and RBNS. We have established
different modelling procedures for both reserves, and in this section, we must establish the two different simulation
procedures.

6
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4.1 IBNR simulation procedure

The exact number of IBNR claims and their information is unknown at the evaluation date. Before we define the
simulation procedure for the number of payments, we must perform a few steps. As indicated in section 2.4, for these
claims all three delays must be simulated, that is t(o)i , the occurrence delay, t(r)i , the reporting delay, and t(c)i , the closure
delay (see Table 1). To obtain the number of IBNR claims for each calendar year, Yanez and Pigeon [33] suggest using
a Poisson distribution thinned by the registered exposure of each period and the distributions of the occurrence and
report delays. Employing this methodology, we can define the simulation procedure of IBNR payments as follows:

• Step 1: Obtain Ĩ∗, the simulated number of claims, (see Yanez and Pigeon [33]).

• Step 2: For i = 1, . . . , Ĩ∗, follow the procedure from Yanez and Pigeon [33], to simulate the occurrence
delay T̃ (o)

i , the reporting delay T̃ (r)
i and the closure delay T̃ (c)

i .
• Step 3: Calculate

Ẽi,k =


di,k+1 − di,k, if di,k+1 ≤ T̃ (c)

i

T̃
(c)
i − di,k, if di,k+1 > T̃

(c)
i

0, elsewhere,

for k = 0, . . . ,K − 1 and i = 1, . . . , Ĩ∗.

• Step 4: For i = 1, . . . , Ĩ∗, go through each of the following sub-steps.

– Step 4a: Set k = 0, the first time interval for which the exposure of claim i is positive and obtain its risk
level by setting L̃(a)

i (0) = `0 for a = 1, . . . , A.

– Step 4b: Obtain Ñ (a)
i,k , a simulated value of

(
N

(a)
i,k |Z∗i,k, Ẽi,k, L̃i(k)

)
, for a = 1, . . . , A.

– Step 4c: Calculate the next risk level,

L̃
(a)
i (k + 1) = min

{
max

{
L̃
(a)
i (k)− Ẽi,k1

(
Ñ

(a)
i,k = 0

)
+ ψ(a)

Ñ
(a)
i,k

Ẽi,k

, 1

}
, s(a)

}
for a = 1, . . . , A.

– Step 4d:
∗ If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the exposure of claim i is positive.

Then return to Step 4b.
∗ If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

4.1.1 RBNS simulation procedure

With RBNS claims, we have covariate information in the form of vectors Xi and Zi,k. Because we are dealing with
open claims, a portion of the development has already been observed, so we can use the observed risk level contained in
Li(k) to simulate the unobserved potion of the development. The whole procedure is described as follows,

• Step 1: For each i ∈ I(O), follow the procedure from Yanez and Pigeon [33], to obtain T̃ (c)
i , the simulated

value of T (c)
i > t

(e)
i .

• Step 2: Calculate the exposures after the evaluation date,

Ẽi,k =



di,k+1 − t(e)i , k ∈ {k : di,k ≤ t(e)i , di,k+1 ≤ T̃ (c)
i }

T̃
(c)
i − t(e)i , k ∈ {k : di,k ≤ t(e)i , di,k+1 > T̃

(c)
i }

di,k+1 − di,k, k ∈ {k : di,k > t
(e)
i , di,k+1 ≤ T̃ (c)

i }
T̃

(c)
i − di,k, k ∈ {k : di,k > t

(e)
i , di,k+1 > T̃

(c)
i }

0, elsewhere,

for k = 0, . . . ,K − 1 and i ∈ I(O).

7
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• Step 3: For each i ∈ I(O), go through each of the following sub-steps.

– Step 3a: Set k = {k : di,k ≤ t(e)i < di,k+1}, the first time interval that takes place after the evaluation
date and obtain its risk level by calculating

L̃
(a)
i (k) =

min

{
max

{
L
(a)
i (k)− Ei,k1

(
N

(a)
i,k = 0

)
+ ψ(a)N

(a)
i,k

Ei,k
, 1

}
, s(a)

}
, if di,k < t

(e)
i

L
(a)
i (k), if di,k = t

(e)
i

for a = 1, . . . , A. Notice that if a portion of the interval has been observed (that is, when di,k < t
(e)
i ),

then we use the first portion, (di,k, t
(e)
i ], to update the risk level of the remainder of the interval. However,

if no portion of the interval has been observed (that is, when di,k = t
(e)
i ), then the latest information

available occurs at the previous time interval (di,k−1, di,k], thus, the risk level is updated based on this
information instead.

– Step 3b: Obtain Ñ (a)
i,k , a simulated value of

(
N

(a)
i,k |Xi,Zi,k, Ẽi,k, L̃i(k)

)
, for a = 1, . . . , A.

– Step 3c: Calculate the next risk level,

L̃
(a)
i (k + 1) = min

{
max

{
L̃
(a)
i (k)− Ẽi,k1

(
Ñ

(a)
i,k = 0

)
+ ψ(a)

Ñ
(a)
i,k

Ẽi,k

, 1

}
, s(a)

}
for a = 1, . . . , A.

– Step 3d:
∗ If Ẽi,k+1 > 0, set k = k + 1, the next time interval for which the exposure of claim i is positive.

Then return to Step 3b.
∗ If Ẽi,k+1 = 0 stop the simulation procedure of claim i.

5 Numerical results

5.1 Data Set

For our numerical analysis we consider a data set from a Canadian insurance company. The data set contains information
from 57,593 claims about Accident Benefits (AB) coverage, i.e., no-fault benefits for accidents where the insured, or a
third party, was injured or killed in a car accident. Micro-level information is incorporated in the modelling process in
the form of categorical static covariates, which are summarized in Table 1. However, some of the covariates contain
missing values (NA). We are able to keep these observations in the process by creating a "missing value" category for
each of the covariates. We decided not to remove observations with one or more missing values as this would have
deprived us of a large amount of information.

The claims considered in our analysis have occurrence dates from 2011 to 2015, and we have information regarding
their development until December 31, 2017. In order to evaluate the performance of our model we chose to set the
valuation date December 31, 2015, splitting the data set into a training and an evaluation set. Payments before the
evaluation date are used to fit the models while payments from that date until December 2017 are used for validation.
At the valuation date, there were 48,855 closed claims, 7,872 open claims, and 866 unreported claims in our portfolio.

Table 1: Description of covariates
Covariate Label Number of levels

Gender Gender of the injured/killed 3
Region Geographical region where the accident occurred 3
Type of loss Kind of AB claim 5
Vehicle age Age of the vehicle, in years, when the accident occurred 6
Injured age Age of the injured/killed, in years, when the accident occurred 7
Reporting delay Delay calculated in days 7
Initial reserve Reserve at report date 5

8
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Diving more deeply into the number of payments from the data set, which is the focus of this paper, we group payments
into three categories:

1. Medical: all medical payments;
2. Disability: recurrent payments such as Disability Income and Caregiver Disability Income; and
3. Expenses: all other types of expenses.

We chose these groups based not only on the nature of the payments, as previously described, but also on their empirical
distribution. We present, in Table 2, some descriptive statistics of the claim frequency for each category in the training
set, such as the Value-at-Risk, or VaR.

Table 2: Descriptive statistics
Mean SD 95% VaR 99% VaR

Medical 3.44 9.86 13.70 41.00
Disability 1.01 5.79 4.00 27.00

Expense 1.11 3.60 7.00 17.00
All 5.57 16.81 24.00 74.00

Finally, we made some simplifying assumptions about the possible dependency that may exist in the data set. Firstly,
in some situations, it is possible that a casualty may trigger coverages from different claims, and we acknowledge
that this situation can cause dependency between these claims. However, we are not going to address this situation in
this study because the proposition made in this paper is more geared towards tackling the problem of including past
information from the claims themselves rather than the information from other dependent claims. Consequently, we
assumed independence between those claims. Secondly, we do not consider the possible dependency that may exist
between different types of payments from the same claim. We believe that this is a more complex issue that would
require a full analysis and allow for the use of innovative methods. We postpone this analysis to a future work where we
can better deal with this point.

5.2 Fitting the models

In this section, we describe the models we considered in our numerical analysis, as well as the choices made regarding
estimating parameters, distributions, etc. The choices and thought process for each step are based on Section 3. As
previously stated, two models are required: one for IBNR claims and one for RBNS claims. We thoroughly describe the
procedure for RBNS claims and make some remarks concerning the procedure for IBNR claims.

Let’s begin by describing the first steps to take to implement our model. First, we considered a time division vector
with an even division between each period:

d = {0, 0.25, 0.5, . . . , 4.75, 5} .

Second, we decide to set the value of s(a) for each type of payment, a = 1, . . . , 3, using the 99th quantile of the total
observed frequency of claim payments from the training set:

Pr

(∑
kN

(a)
i,k∑

k Ei,k
> s(a)

)
= 0.01, where i ∈ I.

The values s(a) are listed in Table 3. For the covariates, we consider the ones listed on Table 1, as well as vector d. It is
worth noting that all the listed covariates are static (Xi), but it is possible to consider time variable covariates (Zi,k),
as shown throughout Section 2. Then, for the smoothing functions used for the risk scores, Li(k), we consider cubic
splines in the same light as suggested by Verschuren [29] (in a pricing context). Finally, we chose three distributions
for our models, Poisson, Negative Binomial type I and type II.

The Negative Binomial type I can be described by its mean and variance

(
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

)
∼ Neg Bin I

(
µ
(a)
i,k , σ

)
, if Ei,k > 0, for i ∈ I,
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Table 3: Values of s(a)

All Medical Disability Expenses

47.70275 31.46552 7.237277 10.37915

where µ(a)
i,k and σ are such that,

E
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

]
= µ

(a)
i,k ,

Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

]
= µ

(a)
i,k + σ

(
µ
(a)
i,k

)2
.

The Negative Binomial type II can be described in a similar manner,

(
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

)
∼ Neg Bin II

(
µ
(a)
i,k , σ

)
, if Ei,k > 0, for i ∈ I,

where µ(a)
i,k and σ are such that,

E
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

]
= µ

(a)
i,k ,

Var
[
N

(a)
i,k |Xi,k,Zi,k, Ei,k,Li(k)

]
= µ

(a)
i,k (σ + 1).

Having specified these features we could then estimate parameters β(a), θ(a), θ∗(a), ψ(a) and ψ∗(a) by maximum of
likelihood. For each distribution and each type of payment, we also fitted a simpler model that does not use the dynamic
risk score. We included these simpler models to compare them to the models that use the dynamic risk score. We list all
estimated values in Appendix A.

We perform a goodness-of-fit analysis in the next subsection.

5.3 Goodness-of-fit analysis

Our main goal in this section is to assess the performance of the inclusion of the risk score Li(k) into the count models,
in terms of goodness-of-fit. First, we compare the likelihood, the Akaike information criterion and the Bayesian
information criterion (or Schwarz information criterion) of two versions of our proposed models. The first version will
include Li(k) as a covariate and the second version will not. We present these results in Table 4 and Table 5. As shown
in these tables, the inclusion of the risk scores provides better results in terms of BIC and AIC across all models and all
types of payments.

Table 4: AIC and BIC of RBNS models with and without the risk score
AIC BIC

Model Payment type with without with without

NBII
Medical 291,287.49 301,585.04 291,691.25 301,960.63

Disability 99,683.58 109,571.18 100,087.34 109,946.77
Expenses 157,080.20 160,298.89 157,483.96 160,674.48

NBI
Medical 296,689.78 308,597.22 296,821.24 308,700.50

Disability 101,039.15 112,260.51 101,170.61 112,363.79
Expenses 164,760.37 170,638.74 164,891.83 170,742.03

POI
Medical 296,689.78 308,597.22 296,821.24 308,700.50

Disability 101,039.15 112,260.51 101,170.61 112,363.79
Expenses 164,760.37 170,638.74 164,891.83 170,742.03

With the same goal in mind (assessing the performance of the inclusion of the risk score covariate) we performed a
likelihood ratio test between the models that use it and those that do not. Table 6 contains these results, where we also
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Table 5: AIC and BIC of IBNR models with and without the risk score
AIC BIC

Model Payment with without with without

NBII
Medical 402,649.49 428,040.19 402,885.65 428,246.83

Disability 131,999.99 159,272.96 132,236.16 159,479.61
Expenses 212,020.49 223,972.00 212,256.66 224,178.64

NBI
Medical 404,536.01 425,922.65 404,772.18 426,129.29

Disability 142,628.00 159,348.47 142,864.17 159,555.11
Expenses 216,294.50 225,826.63 216,530.66 226,033.27

POI
Medical 473,852.46 563,348.57 474,078.78 563,545.37

Disability 189,932.19 294,274.79 190,158.51 294,471.60
Expenses 250,549.49 276,408.74 250,775.81 276,605.54

notice that models that include the risk score provide better results across all distributions and for both IBNR and RBNS
claims.

Table 6: Likelihood Ratio (L. R.) test RBNS and IBNR models with and without the dynamic risk score.
Model Payment Restricted model covariates Unrestricted model covariates L.R. test statistic p-value

NBII
Medical Xi,Zi,k Xi,Zi,k,Li(k) 21,104.47 < 0.01

Disability Xi,Zi,k Xi,Zi,k,Li(k) 25,498.87 < 0.01
Expenses Xi,Zi,k Xi,Zi,k,Li(k) 212,113.68 < 0.01

NBI
Medical Xi,Zi,k Xi,Zi,k,Li(k) 19,321.00 < 0.01

Disability Xi,Zi,k Xi,Zi,k,Li(k) 16,654.54 < 0.01
Expenses Xi,Zi,k Xi,Zi,k,Li(k) 211,382.58 < 0.01

POI
Medical Xi,Zi,k Xi,Zi,k,Li(k) 75,126.25 < 0.01

Disability Xi,Zi,k Xi,Zi,k,Li(k) 94,570.46 < 0.01
Expenses Xi,Zi,k Xi,Zi,k,Li(k) 302,934.58 < 0.01

NBII
Medical Z∗i,k Z∗i,k,Li(k) 25,396.70 < 0.01

Disability Z∗i,k Z∗i,k,Li(k) 27,278.97 < 0.01
Expenses Z∗i,k Z∗i,k,Li(k) 216,025.69 < 0.01

NBI
Medical Z∗i,k Z∗i,k,Li(k) 21,392.64 < 0.01

Disability Z∗i,k Z∗i,k,Li(k) 16,726.46 < 0.01
Expenses Z∗i,k Z∗i,k,Li(k) 209,634.15 < 0.01

POI
Medical Z∗i,k Z∗i,k,Li(k) 89,502.11 < 0.01

Disability Z∗i,k Z∗i,k,Li(k) 104,348.61 < 0.01
Expenses Z∗i,k Z∗i,k,Li(k) 312,805.08 < 0.01

Having assessed the increase in terms of goodness of fit, through AIC, BIC, and likelihood ratio test, we can also
observe how changes in the dynamic risk score affect the mean of payment counts by plotting its relativity, that is,

exp
(
f (a)(`)

)
, for 1 ≤ ` ≤ s(a)

,

for the suggested distributions. Figures 3, 4 and 5 depict these results for RBNS payments. Using cubic splines, we
notice that for all the distributions we have a similar trend, an increasing value of the relativity for the lower and higher
values of the dynamic risk score and a plateau that indicates a more constant value in between these extremes. Also, the
relativity tends to be similar between distributions except for the disability payments from the Negative Binomial type I
model, which diverges from the other two distributions. Overall, we can say that high risk scores increase the number
of subsequent payments.

Furthermore, we can compare these values with the relativity of the time intervals (defined by vector d). As opposed to
the values from the dynamic risk score, the relativity associated with the time intervals evolves differently and tends
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to decrease over time. For medical payments, there is an increase for dk ∈ (0.25, 0.5], a sharp decrease for values
dk ∈ (0.25, 1], followed by a slow decrease from dk ∈ (1, 4]. For disability and expense payments, there is a sharp
decrease from dk ∈ (0.25, 1] and more stable values from then on (except for time intervals dk ∈ (4, 5] from expense
payments, where values slightly decrease and increase at different times in the interval). Overall, we can say later time
intervals decrease the number of subsequent payments compared to more recent ones.

Figure 3: Relativity of the dynamic risk score to the mean of medical RBNS payments

Figure 4: Relativity of the dynamic risk score to the mean of disability RBNS payments

5.4 Simulation analysis

We continue our numerical analysis by simulating the number of outstanding payments for each of the claims. By
performing the algorithm described in Section 4 10,000 times, we can obtain the number of payments for the IBNR,
RBNS, and total reserves of the various frequency models we fitted. Results are summarized in Tables 7 and 8, which
contain, respectively, the values for models that use the dynamic risk score and those that do not.

We begin by analyzing the results regarding the exposure. We see that it is very well adjusted to the observed value for
the RBNS claims; both the mean and the values-at-risk are close to it, but this is not the case for IBNR claims. This can
be explained by the lack of individual information in IBNR claims. It will be reflected in the results obtained in terms
of the frequency, as both the models with and without risk scores predict values that are lower than the observed values.

Next we focus on the frequency models, where the inclusion of the risk score improves the results of RBNS medical
payments significantly, obtaining VaR and mean values that are higher than the observed values. Given that medical
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Figure 5: Relativity of the dynamic risk score to the mean of expense RBNS payments

Figure 6: Relativity of the time intervals to the mean of medical RBNS payments

Figure 7: Relativity of the time intervals to the mean of disability RBNS payments
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Figure 8: Relativity of the time intervals to the mean of expense RBNS payments

payments constitute the majority of payments this result is reflected into the total where we see values, again higher
than the observed ones in terms of VaR and mean, which does not happen when the dynamic risk score is not included.
In terms of RBNS disability payments, the inclusion of the risk score does not affect the mean significantly but it does
increase the standard deviation, which gives more conservative results and is relevant to the NBII model because results
for both models are lower than the observed values. As for the RBNS expense payments, including the risk score
slightly decreases the model accuracy because models that do not use it already provide results over the observed values
and its inclusion slightly increases the mean, standard deviation, and VaRs. Overall, however, all types of payments are
not impacted in the same manner, including dynamic risk scores, which yield better results in terms of payment counts
in this simulation comparison.

After analyzing the frequency models, we can now compare the best performing model (the one that uses the NBII
distribution) to other models in the literature. However, because most models directly predict the total cost of payments
rather than payment counts, we decided to compare total cost instead. Thus, we added a severity model to our
dynamic score frequency model. We tested popular distributions, such as the Gamma, log-Normal and inverse normal
distributions. We found that fitting distributions for each type of payment separately and including the risk score as a
covariate were satisfactory, and the Gamma distribution was chosen for this numerical analysis. As for the comparative
distributions we chose two collective generalized linear models, based on the quasi-Poisson distribution and the Gamma
distribution (for more details see Wüthrich and Merz [31]). We also considered the individual model by Yanez and
Pigeon [33], which served as a comparative baseline for the inclusion of dynamic risk scores. Table 9 contains the
results of 10, 000 simulations of each described model, and Figure 9 displays the results.

We discuss the results from Table 9 and Figure 9. We notice that all the models yield satisfactory results in terms of
the 95 % and the 99 % VaRs as the values are higher than the observed value. The two collective models (Gamma
and Over-dispersed Poisson) have a mean that is lower than the observed value, but their standard deviation is higher
than the individual models. Furthermore, because the 95 % and the 99 % Values-at-Risk of the individual models are
lower than the collective models but higher than the observed value, the latter approaches are preferable. As for the
comparison between both individual approaches, we notice that the mean of the total reserve is similar, but the standard
deviation and the 95 % and the 99 % VaRs are lower, further increasing the accuracy of the model while providing
values over the observed reserve. Again, this shows an overall numerical preference for the model in this paper over the
one suggested in Yanez and Pigeon [33].

6 Conclusion

In this paper, we introduced an innovative dynamic risk score to the loss reserve literature. This score allows for
the inclusion of past individual claim development in the fitting process of outstanding payment counts. Through
an interval-based approach we could feed this score information at the end of each interval and utilize this updated
information for the next interval. We applied this new method to the model by Yanez and Pigeon [33] because of the
discrete nature of its payment count modelling and the ease of covariate implementation it allows. However, any model
that can predict payment counts at different time development states may incorporate the risk score introduced in this
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Table 7: Simulation results for outstanding payment counts from models with risk scores
Reserve Model Payment Mean SD 95% VaR 99% VaR Observed

RBNS

Weibull Exposure 5892.83 52.71 5977.85 6016.12 5888.89

NBII

Medical 57,555.00 1175.52 59,505.15 60,294.10 53,765
Disability 17,784.90 509.59 18,635.10 18,914.08 18,401
Expenses 21,245.61 369.21 21,848.40 22,114.06 16,653

Total 96,585.51 1520.75 99,059.35 100,200.16 88,819

NBI

Medical 64,539.33 1640.93 67,265.20 68,739.13 53,765
Disability 18,780.31 767.09 20,070.20 20,592.35 18,401
Expenses 21,196.75 436.98 21,920.05 22,279.12 16,653

Total 104,516.39 2007.75 107,773.35 109,374.25 88,819

POI

Medical 59,938.11 1049.61 61,588.00 62,267.09 53,765
Disability 18,627.40 420.70 19,337.00 19,612.01 18,401
Expenses 20,210.12 302.64 20,725.00 20,939.00 16,653

Total 98,775.63 1405.06 101,034.00 101,934.06 88,819

IBNR

Weibull Exposure 391.23 24.79 432.49 446.00 564.63

NBII

Medical 2624.17 237.45 3022.30 3197.02 3424
Disability 549.57 110.30 736.10 797.01 1016
Expenses 767.64 81.56 906.05 989.11 1427

Total 3941.38 335.03 4517.05 4689.02 5867

NBI

Medical 2679.94 259.08 3110.35 3365.02 3424
Disability 520.02 105.85 708.00 824.02 1016
Expenses 749.43 82.10 891.00 956.00 1427

Total 3949.38 330.45 4493.10 4779.02 5867

POI

Medical 2381.70 165.00 2655.00 2775.04 3424
Disability 765.65 107.71 953.00 1038.00 1016
Expenses 770.37 66.55 885.05 933.02 1427

Total 3917.72 277.93 4389.00 4553.07 5867

TOTAL

Weibull Exposure 6284.06 58.10 6377.10 6421.57 6453.52

NBII

Medical 58,248.00 1046.49 60,015.55 60,706.79 57,189
Disability 17,054.64 465.71 17,862.30 18,096.99 19,417
Expenses 21,991.42 371.91 22,576.25 22,895.19 18,080

Total 97,294.07 1397.37 99,441.40 100,474.90 94,686

NBI

Medical 67,219.27 1654.18 69,989.05 71,386.46 57,189
Disability 19,300.33 770.92 20,601.50 21,180.04 19,417
Expenses 21,946.17 445.50 22,701.15 23,018.12 18,080

Total 108,465.77 2025.24 111,774.15 113,498.01 94,686

POI

Medical 62,319.81 1059.18 63,984.35 64,640.03 57,189
Disability 19,393.05 431.93 20,091.15 20,403.06 19,417
Expenses 20,980.49 312.32 21,505.00 21,725.08 18,080

Total 102,693.35 1428.71 105,039.30 105,875.52 94,686

paper. Furthermore, we expanded the scope of payment count modelling by proposing a structure that can consider
different payment types.

In our numerical analysis, we applied the aforementioned model to a data set and were able to show that the inclusion of
a dynamic risk score improves the performance of traditional count models (such as the Poisson and Negative Binomial
models) in terms of goodness-of-fit. Then, we compared the predictions of outstanding payment counts between models
that utilize this new score and models that do not, and we obtained an overall improvement of the predictions. Finally,
we showed that our new approach yields better results than collective and individual models available in the literature.

As mentioned before, this work pioneers the introduction of risk scores in a loss reserve context. Thus, we left possible
extensions of this idea for future projects. Examples are an implementation of a risk measure that is based on both the
number of payments and their cost, or even a risk measure based on the previously observed total cost. Furthermore,
correlation between different payment categories of the same claim was deemed complex enough to be considered in a
separate future work.
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Table 8: Simulation results for outstanding payment counts from models without risk scores
Reserve Model Payment Mean SD VaR 95% VaR 99% VaR Observed

RBNS

Weibull Exposure 5892.83 52.71 5977.85 6016.12 5888.89

NBII

Medical 41,785.18 549.99 42,696.00 43,085.42 53,765
Disability 16,857.87 397.87 17,527.10 17,786.06 18,401
Expenses 19,998.91 298.34 20,490.00 20,717.09 16,653

Total 78,641.95 915.76 80,136.10 80,834.18 88,819

NBI

Medical 47,642.49 641.25 48,717.00 49,207.06 53,765
Disability 18,430.06 583.85 19,361.35 19,736.03 18,401
Expenses 19,168.58 311.31 19,680 19,884.25 16,653

Total 85,241.13 1092.88 87,003.45 87,895.25 88,819

POI

Medical 47,145.71 510.23 47,997.35 48,193.39 53,765
Disability 18,020.15 229.80 18,400.95 18,586.17 18,401
Expenses 18,609.22 224.51 18,980.30 19,122.01 16,653

Total 83,775.08 840.14 85,083.05 85,767.02 88,819

IBNR

Weibull Exposure 391.23 24.79 432.49 446.00 564.63

NBII

Medical 2846.31 200.30 3180.05 3309.01 3424
Disability 886.12 105.34 1066.00 1137.08 1016
Expenses 965.86 85.21 1110.00 1173.01 1427

Total 4698.28 332.67 5258.05 5458.02 5867

NBI

Medical 3008.36 218.95 3376.00 3534.01 3424
Disability 858.06 109.15 1041.05 1140.01 1016
Expenses 945.07 80.82 1082.00 1153.02 1427

Total 4811.49 347.46 5389.05 5665.09 5867

POI

Medical 1839.70 110.95 2024.20 2133.01 3424
Disability 652.79 96.06 807.05 879.08 1016
Expenses 933.54 89.19 1093.05 1152.05 1427

Total 4741.26 382.15 5332.30 5646.07 5867

TOTAL

Weibull Exposure 6284.06 58.10 6377.10 6421.57 6453.52

NBII

Medical 44,631.49 584.63 45,581.15 46,007.09 57,189
Disability 17,743.98 411.91 18,409.10 18,693.03 19,417
Expenses 20,964.77 307.66 21,465.05 21,700.11 18,080

Total 83,340.24 968.01 84,949.20 85,550.04 94,686

NBI

Medical 50,650.85 680.48 51,771.20 52,287.08 57,189
Disability 19,288.12 595.33 20,254.20 20,644.22 19,417
Expenses 20,113.65 321.20 20,640.10 20,840.12 18,080

Total 90,052.62 1149.97 91,939.70 92,730.19 94,686

POI

Medical 50,016.84 562.36 50,958.05 51,255.08 57,189
Disability 18,915.86 243.44 19,300.10 19,520.11 19,417
Expenses 19,556.02 236.94 19,962.05 20,090.32 18,080

Total 88,488.73 919.77 90,033.90 90,576.75 94,686

Table 9: Results of the total reserve predictions
Mean SD 75% VaR 95% VaR 99% VaR

GLM Gamma 143,604,545 7,969,902 148,973,525 156,696,768 162,534,340
GLM ODP 145,171,862 6,565,836 149,603,156 156,112,224 161,073,565

3-component RBNS 145,459,940 3,636,952 147,915,838 151,546,231 154,130,897
3-component IBNR 4,160,285 488,219 4,475,441 5,000,940 5,386,198

3-component total 149,620,225 3,678,054 152,066,762 155,830,382 158,291,786

Dynamic Risk RBNS 147,488,982 2,957,654 149,446,106 152,473,969 154,292,371
Dynamic Risk IBNR 3,565,489 352,761 3,798,531 4,154,814 4,483,246

Dynamic Risk total 151,054,472 2,980,171 153,058,465 156,103,266 157,962,819

Observed 147,703,974
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Figure 9: Total reserves for the chosen model
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Table 10: Estimated values for the Negative Binomial I Model (RBNS)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Type of loss

Single vehicle 0.12 0.48 0.50 0.32 0.72 0.54
Multi vehicle 0.19 0.17 0.35 0.22 0.22 0.33
Hit pedestrian 0.37 0.80 0.75 0.76 1.12 0.91

Other 0.39 0.63 0.46 0.50 0.85 0.50

Injured gender Male -0.14 0.08 0.10 -0.17 0.08 0.12
Unknown 0.02 1.35 0.83 0.11 2.26 0.98

Region Ontario -0.08 0.65 1.84 -0.21 0.81 2.29
West 0.52 0.18 0.46 0.45 0.48 0.72

Injured age

(18, 25] 0.07 0.43 0.25 0.05 0.41 0.31
(25, 30] 0.19 0.57 0.36 0.16 0.58 0.42
[30, 50] 0.22 0.59 0.37 0.20 0.59 0.42
(50, 70] 0.27 0.63 0.46 0.26 0.62 0.53
(70,∞) 0.32 0.61 0.62 0.39 0.56 0.72

Unknown -0.21 -1.12 -0.33 -0.31 -1.88 -0.38

Vehicle age

(3, 6] 0.02 0.09 -0.00 0.04 0.13 -0.01
(6, 10] 0.01 0.14 0.05 0.06 0.24 0.07
(10, 20] 0.05 0.30 0.15 0.08 0.42 0.19
(20,∞) 0.03 0.49 0.12 0.12 0.74 0.11

Unknown -0.00 0.05 0.05 -0.07 -0.09 0.01

t
(r)
`

(1, 7] -0.03 0.12 0.11 -0.04 0.10 0.08
(7, 30] -0.12 -0.07 0.08 -0.20 -0.18 0.02
(30, 90] -0.23 -0.34 0.03 -0.39 -0.65 -0.08
(90, 180] -0.48 -0.48 0.01 -0.79 -0.96 -0.21
(180, 365] -0.50 -0.59 -0.10 -0.79 -1.09 -0.33
(365,∞) -0.38 -0.27 0.25 -0.46 -0.59 0.03

Initial reserve

(1000, 5000] -0.12 -0.25 -0.34 -0.18 -0.30 -0.38
(5000, 10000] -0.05 0.24 -0.09 -0.08 0.22 -0.11
(10000, 20000] -0.02 0.35 0.04 -0.05 0.33 0.07

(20000,∞) 0.11 0.65 0.23 0.30 0.87 0.30

Time intervals

(0.25, 0.5] 0.30 -0.80 -0.12 0.71 0.59 0.28
(0.5, 0.75] -0.35 -1.28 -0.48 0.46 0.75 0.27
(0.75, 1] -0.80 -1.90 -0.97 0.36 0.81 0.05
(1, 1.25] -0.97 -2.03 -1.04 0.45 0.96 0.14

(1.25, 1.5] -1.28 -2.12 -1.25 0.39 1.00 0.04
(1.5, 1.75] -1.40 -2.16 -1.20 0.41 1.07 0.18
(1.75, 2] -1.46 -2.23 -1.29 0.47 1.08 0.19
(2, 2.25] -1.51 -2.36 -1.25 0.48 0.91 0.27

(2.25, 2.5] -1.63 -2.61 -1.43 0.43 0.77 0.14
(2.5, 2.75] -1.69 -2.59 -1.45 0.49 0.75 0.21
(2.75, 3] -1.91 -2.66 -1.38 0.45 0.78 0.30
(3, 3.25] -1.93 -2.59 -1.38 0.43 0.78 0.36

(3.25, 3.5] -2.09 -2.61 -1.54 0.31 0.87 0.26
(3.5, 3.75] -2.23 -2.43 -1.51 0.23 1.01 0.32
(3.75, 4] -2.10 -2.20 -1.66 0.40 1.27 0.18
(4, 4.25] -1.68 -2.01 -1.44 0.66 1.43 0.41

(4.25, 4.5] -2.13 -2.14 -1.36 0.48 1.70 0.47
(4.5, 4.75] -2.52 -1.49 -1.58 -0.12 1.85 0.29
(4.75, 5] -2.22 -2.53 -1.18 0.01 1.44 0.53

Cubic spline
1st polynomial 5.40 6.38 2.77
2d polynomial 0.98 0.54 0.53
3d polynomial 4.17 4.45 2.33

Intercept 1.37 -1.29 -1.72 1.46 -1.55 -2.11
σ(a) 0.08 1.48 0.57 0.50 2.46 0.80
ψ(a) 0.11 0.32 0.4919
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Table 11: Estimated values for the Negative Binomial II Model (RBNS)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Type of loss

Single vehicle 0.06 0.37 0.38 0.13 0.67 0.48
Multi vehicle 0.17 0.16 0.33 0.22 0.18 0.34
Hit pedestrian 0.22 0.51 0.59 0.46 0.89 0.81

Other 0.27 0.41 0.42 0.39 0.69 0.52

Injured gender Male -0.12 0.07 0.08 -0.17 0.07 0.11
Unknown 0.03 0.87 0.75 0.01 1.10 0.88

Region Ontario -0.11 0.07 1.69 -0.28 0.26 2.08
West 0.46 0.22 0.52 0.40 0.58 0.77

Injured age

(18, 25] 0.03 0.15 0.26 0.06 0.45 0.32
(25, 30] 0.13 0.26 0.32 0.17 0.57 0.37
[30, 50] 0.16 0.27 0.35 0.23 0.56 0.39
(50, 70] 0.20 0.31 0.42 0.30 0.56 0.49
(70,∞) 0.22 0.47 0.48 0.38 0.52 0.64

Unknown -0.15 -0.82 -0.30 -0.11 -0.73 -0.35

Vehicle age

(3, 6] 0.02 0.08 -0.01 0.00 0.11 -0.01
(6, 10] 0.02 0.08 0.04 0.05 0.18 0.06
(10, 20] 0.04 0.14 0.11 0.05 0.34 0.18
(20,∞) -0.00 0.31 0.03 0.01 0.66 0.10

Unknown 0.03 0.07 0.07 -0.05 -0.09 0.01

t
(r)
`

(1, 7] -0.03 0.08 0.07 -0.06 0.12 0.08
(7, 30] -0.11 0.02 0.06 -0.19 -0.13 0.02
(30, 90] -0.22 -0.04 0.02 -0.41 -0.55 -0.10
(90, 180] -0.56 -0.22 -0.03 -0.85 -0.96 -0.24
(180, 365] -0.60 -0.32 -0.07 -0.92 -0.96 -0.33
(365,∞) -0.84 -0.25 0.01 -1.25 -1.24 -0.18

Initial reserve

(1000, 5000] -0.10 -0.22 -0.29 -0.15 -0.27 -0.34
(5000, 10000] -0.06 0.02 -0.08 -0.08 0.17 -0.08
(10000, 20000] -0.06 0.13 0.01 -0.11 0.26 0.05

(20000,∞) 0.07 0.37 0.15 0.06 0.85 0.20

Time intervals

(0.25, 0.5] 0.30 -0.24 -0.04 0.59 0.53 0.29
(0.5, 0.75] -0.29 -0.80 -0.35 0.36 0.57 0.29
(0.75, 1] -0.71 -1.35 -0.78 0.20 0.55 0.09
(1, 1.25] -0.90 -1.49 -0.85 0.25 0.76 0.17

(1.25, 1.5] -1.18 -1.67 -1.03 0.15 0.75 0.11
(1.5, 1.75] -1.32 -1.75 -1.01 0.15 0.80 0.21
(1.75, 2] -1.40 -1.83 -1.04 0.20 0.80 0.25
(2, 2.25] -1.49 -1.99 -1.04 0.21 0.72 0.30

(2.25, 2.5] -1.65 -2.20 -1.18 0.14 0.55 0.24
(2.5, 2.75] -1.69 -2.19 -1.19 0.18 0.61 0.26
(2.75, 3] -1.88 -2.13 -1.18 0.06 0.67 0.33
(3, 3.25] -1.85 -2.18 -1.21 0.18 0.56 0.32

(3.25, 3.5] -2.03 -2.15 -1.33 0.09 0.64 0.24
(3.5, 3.75] -2.19 -2.15 -1.27 -0.02 0.68 0.35
(3.75, 4] -2.09 -2.07 -1.43 0.09 0.84 0.19
(4, 4.25] -1.99 -1.90 -1.14 0.23 1.18 0.48

(4.25, 4.5] -2.59 -1.90 -0.98 -0.33 1.24 0.67
(4.5, 4.75] -2.92 -2.01 -1.28 -0.21 1.35 0.40
(4.75, 5] -3.09 -1.74 -0.66 -0.81 1.38 0.85

Cubic spline
1st polynomial 5.16 6.46 2.54
2d polynomial 1.01 0.98 0.54
3d polynomial 4.08 4.53 2.13

Intercept 1.50 -0.62 -1.57 1.63 -0.85 -1.97
σ(a) 0.55 1.18 0.25 0.93 1.90 0.40
ψ(a) 0.11 0.32 0.4920
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Table 12: Estimated values for the Poisson Model (RBNS)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Type of loss

Single vehicle 0.14 0.40 0.41 0.33 0.76 0.49
Multi vehicle 0.18 0.19 0.29 0.23 0.26 0.28
Hit pedestrian 0.33 0.53 0.63 0.74 1.01 0.86

Other 0.30 0.41 0.42 0.45 0.74 0.51

Injured gender Male -0.10 0.06 0.07 -0.15 0.05 0.10
Unknown 0.10 1.03 0.70 0.11 1.42 0.82

Region Ontario -0.08 0.43 1.92 -0.23 0.79 2.34
West 0.36 0.20 0.49 0.26 0.64 0.74

Injured age

(18, 25] 0.05 0.07 0.24 0.06 0.27 0.32
(25, 30] 0.13 0.17 0.32 0.15 0.37 0.37
[30, 50] 0.15 0.19 0.33 0.18 0.39 0.39
(50, 70] 0.20 0.24 0.41 0.24 0.41 0.48
(70,∞) 0.22 0.46 0.50 0.34 0.54 0.67

Unknown -0.21 -0.97 -0.32 -0.23 -1.02 -0.36

Vehicle age

(3, 6] 0.04 0.08 -0.01 0.04 0.16 -0.00
(6, 10] 0.02 0.09 0.04 0.06 0.24 0.07
(10, 20] 0.05 0.16 0.13 0.08 0.38 0.21
(20,∞) 0.04 0.30 0.09 0.13 0.75 0.16

Unknown 0.00 0.04 0.02 -0.09 -0.14 -0.04

t
(r)
`

(1, 7] -0.03 0.05 0.04 -0.05 0.09 0.03
(7, 30] -0.11 -0.02 -0.01 -0.21 -0.19 -0.08
(30, 90] -0.21 -0.12 -0.08 -0.43 -0.67 -0.22
(90, 180] -0.50 -0.22 -0.15 -0.89 -1.02 -0.41
(180, 365] -0.48 -0.36 -0.21 -0.87 -1.11 -0.50
(365,∞) -0.43 -0.22 -0.05 -0.75 -1.11 -0.27

Initial reserve

(1000, 5000] -0.12 -0.19 -0.26 -0.20 -0.28 -0.31
(5000, 10000] -0.05 0.02 -0.06 -0.09 0.10 -0.06
(10000, 20000] -0.01 0.11 0.06 -0.06 0.20 0.10

(20000,∞) 0.15 0.36 0.22 0.31 0.80 0.31

Time intervals

(0.25, 0.5] 0.17 -0.61 -0.13 0.52 0.62 0.26
(0.5, 0.75] -0.43 -1.11 -0.50 0.36 0.77 0.22
(0.75, 1] -0.86 -1.68 -0.95 0.27 0.82 0.01
(1, 1.25] -1.08 -1.90 -1.05 0.34 0.88 0.08

(1.25, 1.5] -1.38 -2.03 -1.27 0.28 0.92 -0.03
(1.5, 1.75] -1.53 -2.07 -1.25 0.31 0.98 0.09
(1.75, 2] -1.63 -2.15 -1.31 0.35 0.94 0.09
(2, 2.25] -1.73 -2.29 -1.28 0.37 0.83 0.19

(2.25, 2.5] -1.88 -2.42 -1.49 0.34 0.73 0.05
(2.5, 2.75] -1.94 -2.43 -1.46 0.38 0.75 0.13
(2.75, 3] -2.06 -2.39 -1.46 0.36 0.80 0.18
(3, 3.25] -2.12 -2.36 -1.48 0.36 0.80 0.20

(3.25, 3.5] -2.30 -2.31 -1.56 0.25 0.90 0.15
(3.5, 3.75] -2.45 -2.27 -1.62 0.14 0.98 0.14
(3.75, 4] -2.33 -2.19 -1.69 0.30 1.14 0.09
(4, 4.25] -2.18 -2.15 -1.51 0.52 1.26 0.25

(4.25, 4.5] -2.48 -2.10 -1.51 0.32 1.37 0.26
(4.5, 4.75] -3.35 -2.38 -1.73 -0.51 1.12 0.07
(4.75, 5] -2.96 -2.40 -1.09 -0.53 0.63 0.44

Cubic spline
1st polynomial 5.39 6.48 2.63
2d polynomial 1.22 1.02 0.67
3d polynomial 4.30 4.51 2.33

Intercept 1.54 -0.63 -1.56 1.61 -1.34 -2.00
ψ(a) 0.11 0.32 0.49
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Table 13: Estimated values for the Negative Binomial II Model (IBNR)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Time intervals

(0.25, 0.5] 0.12 -0.58 0.08 0.45 0.47 0.50
(0.5, 0.75] -0.60 -1.19 -0.28 0.16 0.51 0.57
(0.75, 1] -1.07 -1.46 -0.73 -0.02 0.51 0.39
(1, 1.25] -1.27 -1.43 -0.82 0.01 0.74 0.49

(1.25, 1.5] -1.56 -1.49 -1.01 -0.09 0.75 0.44
(1.5, 1.75] -1.71 -1.47 -1.00 -0.10 0.81 0.54
(1.75, 2] -1.82 -1.50 -1.04 -0.07 0.81 0.60
(2, 2.25] -1.93 -1.61 -1.04 -0.09 0.73 0.66

(2.25, 2.5] -2.10 -1.79 -1.18 -0.17 0.56 0.60
(2.5, 2.75] -2.15 -1.75 -1.21 -0.13 0.61 0.61
(2.75, 3] -2.33 -1.70 -1.18 -0.26 0.67 0.69
(3, 3.25] -2.31 -1.76 -1.22 -0.15 0.56 0.69

(3.25, 3.5] -2.46 -1.71 -1.34 -0.24 0.64 0.62
(3.5, 3.75] -2.67 -1.67 -1.26 -0.36 0.69 0.75
(3.75, 4] -2.60 -1.55 -1.45 -0.24 0.91 0.59
(4, 4.25] -2.45 -1.38 -1.16 -0.06 1.27 0.89

(4.25, 4.5] -2.99 -1.36 -1.03 -0.58 1.37 1.05
(4.5, 4.75] -3.13 -1.34 -1.33 -0.38 1.60 0.81
(4.75, 5] -3.00 -1.10 -0.74 -0.96 1.71 1.34

Cubic spline
1st polynomial 4.05 5.39 3.32
2d polynomial 1.87 -0.42 0.68
3d polynomial 3.61 3.99 2.54

Intercept 1.78 0.03 0.45 1.88 0.37 0.51
σ(a) 0.60 1.30 0.34 1.02 1.96 0.57
ψ(a) 0.20 1.15 0.57 0.20 1.15 0.57

22



A PREPRINT - OCTOBER 25, 2021

Table 14: Estimated values for the Negative Binomial I Model (IBNR)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Time intervals

(0.25, 0.5] 0.11 -0.78 -0.10 0.45 0.47 0.50
(0.5, 0.75] -0.67 -1.23 -0.51 0.16 0.51 0.57
(0.75, 1] -1.17 -1.78 -1.05 -0.02 0.51 0.39
(1, 1.25] -1.37 -1.82 -1.14 0.01 0.74 0.49

(1.25, 1.5] -1.69 -1.88 -1.36 -0.09 0.75 0.44
(1.5, 1.75] -1.83 -1.89 -1.34 -0.10 0.81 0.54
(1.75, 2] -1.89 -1.93 -1.43 -0.07 0.81 0.60
(2, 2.25] -1.99 -2.02 -1.39 -0.09 0.73 0.66

(2.25, 2.5] -2.11 -2.25 -1.57 -0.17 0.56 0.60
(2.5, 2.75] -2.18 -2.21 -1.58 -0.13 0.61 0.61
(2.75, 3] -2.39 -2.26 -1.51 -0.26 0.67 0.69
(3, 3.25] -2.38 -2.23 -1.53 -0.15 0.56 0.69

(3.25, 3.5] -2.56 -2.25 -1.69 -0.24 0.64 0.62
(3.5, 3.75] -2.74 -2.09 -1.67 -0.36 0.69 0.75
(3.75, 4] -2.66 -1.92 -1.79 -0.24 0.91 0.59
(4, 4.25] -2.21 -1.72 -1.65 -0.06 1.27 0.89

(4.25, 4.5] -2.70 -2.00 -1.58 -0.58 1.37 1.05
(4.5, 4.75] -3.03 -1.19 -1.85 -0.38 1.60 0.81
(4.75, 5] -2.60 -2.25 -1.29 -0.96 1.71 1.34

Cubic spline
1st polynomial 4.52 5.16 3.45
2d polynomial 1.71 0.29 0.74
3d polynomial 3.89 4.27 2.77

Intercept 1.78 0.07 0.55 1.88 0.37 0.51
σ(a) 0.18 1.62 0.82 1.02 1.96 0.57
ψ(a) 0.19 1.08 0.61
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Table 15: Estimated values for the Poisson Model (IBNR)

Variable Category With the risk score Without the risk score
Medical Disability Expenses Medical Disability Expenses

Time intervals

(0.25, 0.5] 0.07 -0.97 -0.03 0.41 0.67 0.48
(0.5, 0.75] -0.59 -1.50 -0.46 0.22 0.84 0.51
(0.75, 1] -1.05 -1.70 -0.94 0.13 0.93 0.32
(1, 1.25] -1.28 -1.77 -1.06 0.19 1.01 0.41

(1.25, 1.5] -1.59 -1.79 -1.29 0.13 1.06 0.31
(1.5, 1.75] -1.75 -1.77 -1.27 0.16 1.13 0.44
(1.75, 2] -1.87 -1.81 -1.35 0.18 1.10 0.46
(2, 2.25] -1.99 -1.91 -1.33 0.18 0.98 0.57

(2.25, 2.5] -2.14 -2.02 -1.53 0.14 0.89 0.43
(2.5, 2.75] -2.21 -2.02 -1.52 0.18 0.88 0.50
(2.75, 3] -2.34 -1.98 -1.53 0.14 0.93 0.55
(3, 3.25] -2.40 -1.95 -1.53 0.14 0.94 0.58

(3.25, 3.5] -2.58 -1.90 -1.62 0.02 1.04 0.55
(3.5, 3.75] -2.72 -1.84 -1.68 -0.10 1.12 0.54
(3.75, 4] -2.60 -1.75 -1.75 0.06 1.31 0.50
(4, 4.25] -2.44 -1.77 -1.59 0.29 1.42 0.66

(4.25, 4.5] -2.73 -1.70 -1.60 0.13 1.57 0.66
(4.5, 4.75] -3.51 -1.93 -1.82 -0.61 1.43 0.48
(4.75, 5] -3.06 -2.02 -1.22 -0.61 1.07 0.94

Cubic spline
1st polynomial 5.79 5.82 3.42
2d polynomial 1.12 -0.19 0.79
3d polynomial 4.44 4.19 2.78

Intercept 1.83 0.14 0.56 1.83 0.14 0.56
ψ(a) 0.12 1.16 0.52 0.12 1.16 0.52
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