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RÉSUMÉ 

Le thème principal de ce mémoire est l'estimation de densités définies sur des es-
paces métriques compacts en utilisant des méthodes bayésiennes nonparamétriques 
(Binette and Guillotte, 2018). Le cas où l'espace métrique est le cercle, d'intérêt 
en statistique circulaire et directionnelle, est développé avec une attention par-
ticulière. Nous proposons dans ce contexte une base de densités de probabilités 
des polynômes trigonométriques possédant des propriétés de préservation de la 
forme analogues aux densités polynomiales de Bernstein. Une étude de simula-
tion montre que des estimateurs bayésiens nonparamétriques développés à l'aide 
de cette base peuvent offrir des gains par rapport à des méthodes comparables 
précédemment suggérées dans la littérature. 

D'un point de vue théorique, nous étudions les propriétés de concentration, pour la 
distance de Hellinger, des distributions a posteriori issues de modèles engendrés 
par des opérateurs d'approximation linéaires positifs de rang fini. Ce type de 
modèles généralise les polynômes aléatoires de Bernstein à l'utilisation d'autres 
types de bases de densités de probabilités définies sur des espaces métriques com-
pacts arbitraires. Ceux-ci se prêtent particulièrement bien à l'estimation sous con-
traintes de formes et les calculs a posteriori peuvent généralement être effectués à 
l'aide du Slice Sampler de Kalli et al. (2011). Nous obtenons la convergence de la 
distribution a posteriori sous des conditions de régularité particulièrement faibles 
ne nécessitant pas d'hypothèses de continuité. Des vitesses de convergences adap-
tatives sont de plus obtenues en termes de la croissance du rang des opérateurs et 
de leurs propriétés d'approximation. 

Ces contributions sont liées à quelques bases mathématiques présentées dans le 
premier chapitre. Nous y introduisons différentes fonctions connues de divergences 
sur des ensembles de mesures de probabilités ainsi que leur relation au rapport 
de vraisemblance. De nouvelles inégalités de type Pinsker inverse, permettant 
d'obtenir des bornes optimales sur les /-divergences en termes de la variation 
totale et des extremums du rapport de vraisemblance (Binette, 2019), sont dérivées 
dans le Chapitre 2. 



ABSTRACT 

This work is concerned with density estimation on compact metric spaces using 
sieve priors (Binette and Guillotte, 2018). Particular attention is given to the case 
where the metric space is the circle as the problem is relevant to circular and di-
rectional statistics. In this context, we suggest a density basis of the trigonometric 
polynomials that is analogous, beca:use of its interpretability and shape-preserving 
properties, to the Bernstein polynomial densities. A simulation study shows that 
the use of Bayes estimators constructed using this basis may provide gains over 
comparable circular density estimators previously suggested in the literature. 

From a theoretical point of view, we study the convergence of posterior distribu-
tion, in the Hellinger sense, for models that arise as the images of positive linear 
approximation operators with finite ranks. These models generalize random Bern-
stein polynomials to the use of other density bases defined on arbitrary compact 
metric spaces. They are particularly well suited to shape constrained density es-
timation and posterior simulation may be carried out using the Slice Sampler of 
Kalli et al. (2011). Strong posterior consistency is obtained under notably weak 
regularity assumptions and adaptative convergence rates are expressed in terms 
of the growth of th~ operator ranks and of their approximation properties. 

Sorne mathematical background is introduced in the first chapter. We introduce 
different known divergence fonctions over sets of probability measures as well 
as their relationship to the likelihood ratio. New reverse Pinsker inequalities, 
providing optimal upper bounds on !-divergences in terms of the total variation 
and likelihood ratio extremums (Binette, 2019), are derived in Chapter 2. 



INTRODUCTION 

Suppose that some unknown mechanism iteratively generates data points X 1 , X 2 , 

X3 , and so on. Our goal is to use finitely many of those observations, say (Xi)i=I, 

to infer characteristics of the mechanism that may be of interest. 

The way in which the points Xi are generated can be arbitrarily complex and may 

stochastically depend on external factors. The starting point of any meaningful 

statistical analysis would therefore be an assessment of the dependencies involved. 

In the simplest case, which still abstractly encompasses a number of more general 

situations, we model the points Xi as random variables that are independent and 

identically distributed following some unknown probability distribution P0 • 

Our epistemic uncertainty about what may be P0 is quantified through what is 

called a prior probability distribution II over the set of all reasonable possibilities 

for what Po may be. Given a set A of probability distributions, the prior prob-

ability II(A) of A specifies what we consider as the probability that "Po E A" 

before any observation of the Xi has been made. 

Once we have observed the data points (Xi)i=I' we may adjust our prior quantifi-

cation of uncertainty about Po through probabilistic conditioning, thus obtaining 

what is called the posterior distribution A.-+ II (A 1 (Xi)f=1). 

This process of first quantifying uncertainty over an unknown state of the world 

through a prior probability measure and then making adjustments using the cal-



2 

culus of probabilities in light of new observations is called Bayesian inference. 

0.1 Subjects of this memoir 

0.1.1 Metrics and divergences on probability measures 

Our first chapter introduces some mathematical ideas relevant to the theoretical 

developments of the following chapters. We discuss different metrics and topolo-

gies on the space M of all pro babili ty measures on the space M on w hich the 

variables Xi take values, as this is related to the definition of prior distributions 

on M and to the study of properties of the posterior distributions. 

0.1.2 Information inequalities 

In chapter· 2, we derive new best-possible inequalities allowing us to upper bound 

!-divergences in terms of the total variation distance and of likelihood ratio ex-

tremums. This work can be inscribed in the field of Information Inequalities: 

this is about relating together different distributional characteristics of the log 

likelihood ratio. 

The motivation cornes from Bayes' Theorem, which states that, in dominated 

models, the posterior distribution II(· 1 (Xï)f=1), for independent observations Xi 

with density fo, may be written as 

TI(A 1 (X;)f~1) ex i ü fa~~:) TI(df). (0.1.1) 

The two elements involved in the right-hand sicle of this formula are the prior 

distribution II and the likelihood ratio f / f O• The logarithm of this likelihood 

ratio is commonly referred to as the "information" fonction L(x) = log Jo~~) and 

we are interested in its distribution for x a random variable with density fo. 

The study of the behaviour of posterior distributions is therefore typically based on 



3 

properties of Il, on characteristics of the distrib11:tion of the information i(x) over 

the range f E lF and on the .resulting geometry on lF. Characteristics of l include 

the total variation between fo and f, their Renyi divergence and their Kullback-

Leibler divergence. Each may be expressed as an expected convex transform of 

exp l(x); they are what are called f-divergences. 

Information inequalities relate together different characteristics of l as well as the 

resulting geometries on lF. They are quite fondamental to the study of posterior 

distributions. One such inequality, of which we make repeated uses in Chapter 3, 

is 

j fo log ; ( sup ; ) j If - fol. 
This is an instance of a reverse Pinsker inequality: it upper bounds an f-divergence 

in terms of the total variation distance and the extremums of the likelihood ratio. 

While the above is immediate and already quite useful, it can be significantly 

improved. In Chapter 2, it is shown that any f-divergence D</J, here characterized 

by a convex fonction cjJ : [O, oo) -+ 1î with c/J(l) = 0 and 

D~(Jo, J) = lE [ (/) (fa~~))], x ~ fo, 

we have 

sup D</J(Jo, f) = 8 ( c/J(m) + cjJ(M) ) 
(!0 ,f)EA(m,M,8) 1 - m M - 1 

when considering the class A(m, M, 8) of pairs Uo, f) satisfying inf f / fo = m, 

sup f / fo = M and J If - fol = 28. This idea is developed in Binette (2019) 

as a response to suboptimal particular cases that appeared in the information 

inequalities literature. 

0.1.3 Density estimation using sieve priors 

Chapter 3 considers in some generality the case where the variables Xi take val-

ues in a compact metric space (M, d). For instance, the variables Xi may be 
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observations of angles distributed on the sphere or of directions distributed on a 

sphere. 

We exploit sequences Tn : L1 (M) L1 (M), n E N, of positive linear opera tors 

with finite ranks mapping IF to IF in order to obtain the decomposition 

IF= LJ Tn(IF), 
nEN 

where the overline denotes L1 closure in IF. Given prior distributions Iln on the 

submodels Tn(IF) and a distribution p on N, we thus obtain a prior Il on IF through 

Il= L p(n)Iln. (0.1.2) 
nEN 

This is an instance of a sieve prior or mixture prior and a number of particular 

cases have appeared previously in the literature. Let me showcase a few examples · 

and explain how some of our general results of Chapter 3 can easily be used 

to obtain asymptotic properties of the posterior distribution in terms of simple 

properties of the opera tors Tn. 

Random Bernstein polynomials. 

With M = [O, 1], take Tn the Bernstein-Kantorovich operator defined as 

~1* Tnf: x 1-t (n + 1) L...J i f(u) dupi,n(x), 
i=O n+l 

where Pi,n(x) = (7)xi(l - xt-i is the ith Bernstein polynomial of degree n. It 

follows that 

Tn(IF) = {(n+ 1) tCj,nPj,n: Cj,n;;?, 0, Lcj,n = 1} 
i=O J 

is the set of fini te mixture of Bernstein polynomial densities of degree n. With Iln a 

Dirichlet distribution on the coefficients ( Cj,n) with parameters for instance Œj,n = 
1/n and p a distribution on N with subexponential tail, we obtain a particular 
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case of the random Bernstein polynomials of Petrone (1999). Theorem 3.4.3 entail 

· strong posterior consistency at all bounded densities provided also that p( n) > 0 

for every n E N. Theorem 3.4.4, together with the well-known fact that IITnf -

f 11 00 = 0 (w1(n-1!2)) where WJ is the modulus of continuity of J, yields the 

posterior contraction rate én = (n/ log(n))-.B/(2.B+2) whenever log p(n) ::=::: -nlogn 

and the data generating density f O satisfies the the Holder continuity condition 

w10 (8) C8.B for soine C > 0 and (3 > O. The strong posterior consistency 

result refines Theorem 2 of Petrone and Wasserman (2002) by removing continuity 

assumptions on fo while the posterior convergence rate we obtain is the same, up 

to log factors, as that obtained in Kruijer and van der Vaart (2008). However, the 

generality of our approach makes it readily applicable in other contexts as well. 

Random histograms on metric spaces. Let M be an arbitrary compact 

metric space and let {Rj,n}J:;;,0 be a measurable partition of M of diameter less 

than n-1 with d~ E N elements. We assume that maxi µ(Rj,n)-1 = O(dn) and 

that dn is an increasing integer sequence satisfying dn ::=::: nd for some d > O. Define 

dn r 
Tnf: X HE }r, f(u)duµ(Rj,n)- 1

]Rj,n(x) 
j=O Rj,n 

so that 

Tn(JF) = {t Cj,n µ(Rj,n)-
1

llR;,n : Cj,n 0, E Cj,n = 1} 
J=O J 

and IITnf - Jlloo = O(w1(n- 1 )) for any continuous J. With Iln a Dirichlet distri-

bution on the coefficients ( Cj,n) with parameters Œj,n = 1/ dn and p a distribution 

on N satisfying log p( n) ::=::: -dn log( dn), we obtain from Theorems 3.4.3 and 3.4.4 

strong posterior consistency at any bounded density and the posterior conver-

gence rate ên = (n/ log(n))-.B/(2.B+d) provided that fo satisfies a Holder continuity 

condition with exponent (3 > O. 

The general form of positive linear operators. The Bernstein polynomials 
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and piecewise constant fonctions can be replaced by many other types of basis 

fonctions: splines with fixed knots, Gaussian kernels at predetermined locations, 

etc. The properties of resulting posterior distributions are then studied through 

the associated sequence of positive linear operators. 

By the Riesz representation Theorem (Rudin, 1987), any positive linear operator 

and such that Tn ( 1) = 1 takes the form 

Tnf: x H 1E [f (Yn(x))] (0.1.3) 

for some families {Yn ( x) : x E M} of random variables. In the examples considered 

above, it is an easy exercise to explicita definition of Yn(x). The expression (0.1.3) 

is especially useful when required to obtain the approximation rate of Tn- Indeed, 

suppose that the modulus of continuity of f satisfies WJ(n8) nwJ(8) for any 

n E N and 8 > O. This is the case, for instance, when M is a smooth compact 

submanifold of Euclidean space together with its geodesic distance. Then for any 

sequence 8n 0 we have that 

IITnf - flloo WJ(8n) {2 + 8;;1 suplE [d(Yn(x), x)]d(Yn(x),x)~on]} 
xEMI 

WJ(8n) sup {2 + 8;;2 sup lE [d(Yn(x), x)2
]}. 

xEM xEMI 

We may show that supxEMI 8; 1IE[d(Yn(x), x)] is uniformly bounded in n, which 

therefore entails that 

IITnf - flloo = O(w1(8n)). 

The square of the distance fonction is easier to deal with in some cases, such as 

when d(x, y) = lx - YI on [O, 1]. In this case, if supxEMI IE[d(Yn(x), x)2] a~ for 

some sequence of "variances" a~ E IR, then by letting 8n = a;1 we obtain that 

IITnf - flloo = O(w1(a;;1
)). 
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This relates the uniform contraction rate of the variables Yn ( x) around x to the 

approximation rate of Tn. 

Interpretability and shape constrained estimation. It is notoriously difli-

cult to elicit priors on infinite dimensional spaces. The use of a sieve priors such 

as (0.1.2) reduces the problem to that of eliciting a prior on the finite dimensional 

subsets Tn(lF), which always admit a representation of the form 

Tn (JF) = { t Cj,n <Pi,n} 
J=Ü 

for some basis densities c/Jj,n and coefficients Cj,n, and a prior p on the parameter 

n. This parameter n may be thought as representing the complexity of the sieve 

through its dimension dn. The asymptotic theory of Chapter 3 suggests taking 

p(n) ::::::::: -dn log(dn) or p(n) ::::::::: -dn, and also provides some guidance for the choice 

of the prior on Tn(lF). The Bayes estimator resulting from (0.1.2) is simply the 

mixture of the Bayes estimator obtained from the priors IIn on Tn(lF), weighted 

by the posterior probabilities of each model. 

In some cases, the operators Tn may be extended to act upon probability mea-

sures; see again Chapter 3 for more details. If V is a Dirichlet Process, then the 

prior induced by the random density TN(V) where N rv pis independent of Vis 

bath a Dirichlet Process Mixture and a sieve prior as in (0.1.2). The interpretation 

as a Dirichlet Process Mixture is especially useful in view of the computational 

methods developed in Kalli et al. (2011). The sieve prior representation is oth-

erwise typically more suited to reversible jump MCMC algorithms for posterior 

simulation. 

We may also want to incorporate very precise types of prior information into the 

model. For instance, if fo is defined on M = [0, 1 ]2, we may know a priori its 

marginal distributions. Or we may know that fo defined on [O, 1] is monotonous. 
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The sieve prior (0.1.2) is particularly well suited to the incorporation of such shape 

constraints. 

Indeed, it suffices restrict IF to be the set of all bounded densities satisfying the 

required shape constraint, and tolet Tn be such that Tn(IF) C IF. This is possible 

in mentioned particular cases, e.g. for copula density estimation and monotone 

density estimation. The theory continues to apply in this context with still the 

same interpretability and with rates of convergences depending on the dimensions 

of Tn(IF). 

0.1.4 Circular statistics 

The above theory has been developed concurrently to the study of a circular ana-

logue to the Bernstein polynomial densities which we use in Chapter 3 to" construct 

sieve priors on circular density spaces. The density basis of the trigonometric 

polynomials that we consider is given by 

cj,n(u) ex (1 + cos (u - 2!711) r 
with a known normalizing constant and j E {0, 1, 2, ... , 2n }. The central element 

Co,n is, up to a multiplicative constant, the De la Vallée Poussin kernel studied 

in Polya and Schoenberg (1958). The consideration of this set of translates was 

proposed in Roth et al. (2009) in the context of Computer Aided Geometric De-

sign. Here we have studied properties of Cj,n which are particularly relevant to 

mixture modelling. 

As such, we provide the Fourier coefficients of Cj,n which are also referred to in 

the directional statistics literature as the trigonometric moment~. These provide • 

the change of basis formula between the Ci,n and the usual trigonometric basis 

{1, cos(u), sin(u), ... , cos(nu), sin(nu)}. Together with the method for the effi-

cient simulation of the Cj,n provided in Chapter 3 and the characterization of 
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positive trigonometric densities as mixtures of the Cj,n, this shows how any posi-

tive trigonometric density can be directly simulated as a mixture and provides an 

algorithm to do so. 

Sorne properties of a mixture density f = ~;:0 Cj,nCj,n, where Cj,n 0, ~i Cj,n = 
1, can also be easily related to properties of the vector of coefficients ( Cj,n)J~o-

Those can be neatly stated in terms of properties of the operator 

2n 

Tnf = L 1 f(u)duCj,n 
j=O Rj,n 

(0.1.4) 

with Rj,n = [ rr~;_;11), rr~;:11)). Using variation diminishing properties of the De 

la Vallée Poussin kernel studied in Polya and Schoenberg (1958), it is shown in 

Chapter 3 that Tn reproduces constants, that it preserves periodic unimodality 

and diminishes total variation. Furthermore, IITnf - !11 00 0 as n oo for 

every conti11:uous f. The same kind of properties hold for the De la Vallée Poussin 

means 

Vnf(x) = [" f(x - u)Co,n(u)du 

for which it is also known that IIVnf - Jlloo = O(w1(n-1!2 )) (Lorentz, 1986). 

Approximation rates can be obtained for Tn defined in (0.1.4) using the technique 

described in Section 3.4.4. 

In order to showcase the practical usefulness of these densities and of the frame-

work which we used to construct sieve priors, we have compared the finite sample 

performance of our Bayes estimators to other circular density estimators based 

on trigonometric polynomial densities. Notably, Fernandez-Duran (2004) used a 

surjective parameterization of the space of all trigonometric densities through a 

complex hypersphere in order to compute maximum likelihood estimators. Model 

dimensions are chosen using the AIC or BIC criteria. In Fernandez-Duran and 

Gregorio-Dominguez (2016a), posterior means are also considered. The density 
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estimators based on our models provide the best performance in a variety of sce-

narios. These results are not meant to show that our estimators are best-possible, 

but simply that the De la Vallée Poussin basis should be considered for circular 

density modelling, especially when there is an availability of prior information to 

support informed Bayesian estimation. 



CHAPTER I 

METRICS AND DIVERGENCES FOR PROBABILITY MEASURES 
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Let (M, d) be a complete and separable metric space together with its Borel Œ-

algebra œM and let M be the space of all probability measures on (M, œM). 

This section presents elementary facts about M and its common metrics and 

topologies, some of which may be found in Aliprantis and Border (2006); Ghosh 

and Ramamoorthi (2003a); Gibbs and Su (2002); Billingsley (2013). 

1.1 The total variation distance 

The space M embeds in the ( complete) normed linear space of measures µ with 

finite total variation llµIITv = sup AE'BM lµ(A) 1 and inherits the total variation 

distance dTv(µ, v) = Ilµ - vllTv· While this metric is- easily interpretable as mea-. 

suring worst case difference in mass allocation, it is so at the loss of tractability of 

the resulting metric space: M, with the total variation distance, is not separable 

unless M is countable. 1 

However, the problem disappears when considering dominated subsets of M as 

such sets identify with part of a suitable L1 space. 

Lemma 1.1.1. A subset F CM is dominated by a Œ-finite measure if and only 

if (F, drv) is separable. 

Proof. First suppose Fis dominated by a Œ-finite measure À. Take µ, v E F and 

consider the densities (i.e. Radon-Lebesgue-Nikodym derivatives) f = dµ/ dÀ, 

1To see this non-separability, suppose M is uricountable and consider the subset { ôx} xEM 

of point mass measures. Let also E C M be such that for every x E M, there exists Vx E E 

with llôx - vxllTv < 1/2. It follows that Vx must contain a point mass at x. Since Vx is finite, it 

contains only a countable number of such point masses. Any countable number of such measures 

can only approximate in this way a countable subset of {ôx}xEM· This shows E is uncountable 

and hence M is not separable. 
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g = dv/dÀ in L1(À). The set A = {x E M I f(x) g(x)} E œM is such that 

Ilµ - vllTv = (µ - v)(A) = (v - µ)(M\A) and it follows that 

Ilµ - vllTV = j If - 91 d>.. (1.1.1) 

Hence dTv is equivalent to the L1 distance on the identification of F with its 

densities {dµ/dÀ 1 µ E F} C L1 (À). Since À is a-finite and œM countably 

generated, L1 (À) is separable and so must be (F, dTv ). 

Conversely, if (F, dTv) is separable, let E = {µn I n E N} be a countable dense 

subset of F. We show that À= LnEN µn2-n dominates F. Let A E œM be such 

that À(A) = 0, fix µ E F and ê > O. Then µn(A) = 0 for every n and by density 

of E there exists a n E N such that µ(A) = lµ(A) - µn(A) 1 < ê. Since ê > 0 was 

arbitrary, µ(A) = O. This shows µ « À for every µ E F. 

1.2 The Prokhorov metric and weak convergence 

Asto obtain a complete separable metric structure on M we may relax the total 

variation distance the Prokhorov metric d p. l t is deffned as 

dp(µ, v) = inf{ ê > 0 l 'v A E œM, µ(A) v(Aé) + ê} (1.2.1) 

where At: = {x E M I d(x, A) < ê} is the ê-neighborhood of A and d(x, A) = 
inf{d(x, y) 1 y E A} (Strassen, 1965; Prokhorov, 1956). This provides a metriza-

tion of the topology of weak convergence of probability measures (see for isntance 

Hu ber ( 2011)), also known as the weak-* topology of the continuo us dual of Cb (M), 

which is further described by the Portmanteau theorem (see Billingsley (2013)). 

It follows from (1.2.1) that dp dTv• Hence total variation convergence implies 

weak convergence. The converse obviously does not hold, as can be seen by 

considering the sequence of measures µn = ¾ I:~=l Ôi/n defined on [O, 1] C R 
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While {µn} does not converge in (M, dTv ), it converges to the Lebesgue measure 

in (M, dp ). The approximation properties of measures with finite support are 

further discussed in the proof of the following lemma. 

Lemma 1.2.1. The space (M, dp) is separable if and only if (M, d) is separable. 

Proof. Suppose (M, dp) is separable and consider the map cp: MI-+ M : x r-+ ôx. 

Fix x,y E M and let ê = min{d(x,y),l}. The fact that c5x({x}) c5y({AY) +ê 

shows dp(cp(x), cp(y)) ;?; ê and obviously ôx(A) c5y(A8) + c5 for every c5 > ê and 

A E ~M- Hence dp(<p(x),cp(y)) = min{d(x,y), 1} and <p establishes an isometry 

between (M, J). and (M, dp) when d = min{ d, 1 }. Thus (MI, d) is separable and 

so is the homeomorphic (MI, d). 

Now suppose (M, d) is separable and let E be a countable dense subset. We 

show that {L7=1 aiôxi I n E N, ai E (Q, Xi E E} is dense in (M, dp). To this 

end, fix ê > 0 and let µ E M. Let n E N and {xi}i=l C E be such that 

µ (MI\ u~=l B(xi, ê)) < ê/2 and consider V = I:7=1 Ü'.iÔxi where Ü'.i E <Q is such 

that lai - µ(B(xi, ê))I < ê/(2n). Then for any A E ~M, 

n 

µ(A)~ i + Lµ(B(xi,ê/2) n A)~ ê + L ai= v(Ae) + ê 
i=l XiEAe 

which shows dp(JL, v) ê. 

The following theorem provides coupling characterizations of the two metrics seen 

thus far and highlights how exactly d p weakens dTv by taking into account the 

metric structure of MI. A proof can be found in Dudley ( 2002) and here we denote 

A8l = {x E MI d(x,A) c5}. 

Theorem 1.2.2 (Strassen (1965) ). Letµ, v E M and let C be the set of all pairs 

(X, Y) of random variables on (MI, ~M) ( defined on some common probability 
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space of probability measure If!>) with marginal distributions µ an~ v, respectively. 

Then for every ë, 8 0 following two statements are equivalent: 

(i) for every A E ŒM, µ(A) v(A6l) + ë; 

(ii) there exists (X, Y) E C such that If!> (d(X, Y) > 8) ë. 

Considering the cases 8 = 0 and 8 = ë yields explicit descriptions of dTv and dp. 

Corollary 1.2.3. Letµ, v and C be as in Theorem 1.2.2. Then 

and 

drv(µ, v) = inf {ë > 0 1 If!> (d(X, Y)> 0) ë} 
(X,Y)EC 

dp(µ,v)= inf {ë>OIIP(d(X,Y)>ë)~ë}. 
(X,Y)EC · 

We conclude the presentation of (M, dp) with a simple measurability result rele-

vant to the definition of random probability measures. 

Lemma 1.2.4. The evaluation maps M 3 µ H µ(A), where A E ŒM, are Borel 

measurable. 

Proof. The definition of dp entails the map f (µ) = µ(A) is upper semi-continuous 

whenever A is a closed set. Indeed, fix µ0 E M, ë > 0 and let 8 > 0 be such that 

8 < ë/2 and µ0 (A6\A) < ë/2. Then by definition dp(µ, µ0 ) < 8 implies µ(A) -

µ0 (A) µ0 (A6\A) + 8 < ë. Since semi_;continuous functions are measurable, this 

shows the family A of sets A E ŒM such that µ H µ(A) is measurable contains 

the 1r-system of closed sets of M. It is immediate to verify A is also a À-system. 

From-Dynkin's theorem, we obtain that A:) ŒM. 



16 

1.3 The Kullback-Leibler divergence 

We now turn to another measure of discrepancy between probability measures, 

introduced by Kullback and Leibler (1951). 

To motivate its definition, let À,µ, v E M and consider the problem of testing 

H 1 : À = µ versus H 2 : À = v given an i.i.d. sample { Xi}i=I of size n E N with 

common distribution À. We write X = (X1 , ... , Xn) rv À(n). Assuming µ, v and 

À are mutually absolutely continuous2 , we can define their likelihood ratio as 

n d 
dµ (X) := IJ _!!:_(Xi) E [O, oo]. 
dv . dv 

i=l 

(1.3.1) 

The weight of evidence brought by the sample X in favor of H 1 versus H 2 is 

defined as W(X) = log ~(X) (Good, 1985). This is also known as the relative 

information of X according to (µ, v) (Sason and Verdu, 2016), and is the usual 

statistic of the likelihood ratio test. 

The Kullback-Leibler divergence D(µllv) between µ and vis the expected weight 

of evidence brought by a single observation taken under the hypothesis H1 (taking 

the expectation under H2 simply reverses the sign). In the words of Kullback and 

Leibler, it is the "mean information for discrimination between H 1 and H 2 per 

observation". Hence formally 

D(µllv) = L log ( dµ. (1.3.2) 

When µ, v are not absolutely continuo us with respect to one another, we define 

D(µllv) = oo. This case does not always require particular care as we may 

introduce ç = µ + v and write D(µllv) = Jf>O f log(! /g)dç with f = dµ/dç and 

2This assumption is not completely necessary, but it is enforced here as to simplify the 

discussion. 
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g = dv / dç. Equation (1.3.2) is well defined as the integral of the negative part of 

the integrand is bounded: 

1 (dµ) 1 (dv ) - log - dJJ, - - l dJJ, 
{dµ/dv<l} dv {dµ/dv<l} dµ 

= v( {~µ/dv < 1}) - µ( {dµ/dv < 1}) 

< 1. 

The following theorem shows that the magnitude of D is a statistically meaningful 

quantity. Here we let Y be some measurable space and T : M M a measurable 

transform. We denote by µT-1 the pushforward measure defined by µT-1(A) = 
µ(T-1(A)) for Ac Y measurable. 

Theorem 1.3.1 (Kullback and Leibler). Ifµ, v E M are absolutely continuous 

with respect to one another and if T : M Y is a measurable transform of 

M, then D(µT-1 llvT-1) D(µllv) with equality if and only if T is a sufficient 

statistic for {µ, v}. 

Proof. To ease notation, write µ = µT-1 , v = vT-1 and let h = Î/(f/; o T). 

Remark that by change of variable 

D(µllv) - D(,üllii) = L (log (t) - log(~ o T)) dµ = L log(h) dµ. 

Since JM l/h dµ = l, Jensen's inequality together with the convexity of the func-

tion ef>(t) = t log(t) yields D(µllv)-D(P,llv) ef>(l) = 0 with equality if and only if 

h = l µ-almost surely. Hence equality happens if and only if Î = fi; o T µ-almost 

everywhere which, since µ « v and v « µ, amounts to saying T is sufficient for· 

{µ, v} (Halmos and Savage, 1949, Theorem 1). 

Considering the case where T is constant yields an equally important result. 

Corollary 1.3.2. Ifµ, v E M, then D(µllv) 0 with equality if and only if 

µ=v. 
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1.3.1 Exponential convergence of the likelihood ratio 

The importance of the Kullback-Leibler divergence in Bayesian nonparametrics 

and asymptotic statistics stems from its characterization of the likelihood ratio's 

exponential convergence. 

Proposition 1.3.3. Suppose µ, v E M are absolutely continuous with respect 

to one another and let { Xi I i E N} contain independent random variables with 

distribution µ. The f ollowing two statements are equivalent. 

(i) D(µllv) < oo. 

(ii) There exists an RE (0, oo) such that f1~1 ~(Xi)= exp {nR + o(n)} almost 

surely. 

Also, when the statements hold, we have R = D(p,llv) in (ii). 

Proof. Note that (ii) is equivalent to ¼ I:~=1 log ~(Xi) = R + o(l) almost surely 

for some R E [O, oo). By the Strong law of large numbers, this happens if and 

only if R = 1E [log ~(Xi)] = D(µllv). 

Given a bound on the second moment of dµ/dv also provides a stochastic control 

on the fluctuations of the likelihood ratio. Here we state a result of this kind 

which is particularly helpful to the study of posterior distribution. 

Lemma 1.3.4 (Lemma 8.1 of Ghosal et al. (2000)). Let Il be a prior on a subset 

IF of (M, drv) with respect to its Borel Œ-algebra. Fix E > 0, 81 > 0, 82 > 0 and 

· let W = {µ E lF I J log ~;dv :( ch, J (log ;;;:)2 dv :( c52}. If (X;)f=1 is a sequence 

of independent random variables U?ith distribution v, then 

1 IT (X;)II(dµ) ;;:, e~n(.i'.+e)rr(W) 
W i=l 

(1.3.3) 
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holds with probability at least l - <5\ . . né 

Remark 1.3.l. The Lemma shows how the Kullback-Leibler divergence, here con-

trolled through the constant 81 , provides a probable exponential bound on the 

convergence of (an average) of the likelihood ratio. The second moment bound 82 

of the log likelihood ratio acts linearly on the probability of the lower bound. 

Proof ofLemma 1.3.4. Assume, without loss of generality, that II(W) > 0 and 

let fi = II/II(W) be the renormalization of II over W. By Jensen's inequality, 

{ n d n { d 
log J~ IT d~ (Xi)ÏI(dµ) ;:;, L J~ log d~ (Xi)ÏI(dµ) 

W i=l i=l W 

and hence the complementary probability of (1.3.3) is 

1P' (L Il~~ (X;)Ïl(dµ) e-n{J,+e)) 1P' (t L log~~ (Xi)ÏI(dµ) -n(81 + e:)) . 

~ubtracting the average E = -n fw D(vllµ)IT(dµ) of I:~=1 fw rr~=l ~(Xi)II(dµ) 
and using the fact that E -n<51 , this is upper bounded by 

1P' (t L log !~(X;)ÏI(dµ)- E ~. -ne:) 
1P' ( (t fw log dv(xi)ÏI(dµ)- E) 

2 

(ne:)2) 

n~2 E [ (Llog !~ (Xi)fi(dµ)) 
2

] 

where the last inequality follows by Chebychev's inequality. By Jensen's inequal-

( 
d ~ ) 2 

d 2 ~ ity, fw log J,;(Xi)II(dµ) fw (log J,;(Xi)) II(dµ) and by Fubini's theorem 

and the definition of W we obtain that the expectation of fw (log ~(Xi)) 2 II(dµ) 

is bounded by 82. D 
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1.4 !-divergences 

A large and very useful family of measures of discrepancy between probability 

measures is obtained by considering expected transforms of the likelihood ratio. 

The basic idea is that, for the purposes of likelihood based inference, any mean-

ingful measure of distance or discrepancy between probability measures should be 

fun:ction of their likelihood ratio. In particular, expected convex transforms of the 

likelihood ratio encompass a number of useful particular cases and share useful 

properties. 

Definition 1.4.1. Let f : [O, oo) --+ (-oo, oo) be a convex function which is 

strictly convex at 1 and such that f (1) = O. Given two probability measures 

µ, v E M such that µ « v, the !-divergence between µ and v is defined as 

D1(µ1iv)=IEvH:~)] = J i(dv)dv. (1.4.1) 

Remark 1.4.1. Part (i) of Proposition 1.4.2 shows that DI is well-defined: while 

it may be infinite, the integral of the negative part of f(dµ/dv) with respect to v 

is always finite. 

Table 1.1 summarizes a few of the most common !-divergences. 

Remark 1.4.2 (Hilbert interpretation). Let IF be a separable subset of (M, dTv) 

and let À be a dominating o--finite measure. While IF is naturally identifiable with 

part of L1 (À) (see the proof of Lemma 1.1.1), the identificationµ M E 

L 2 (À) with part of the unit sphere of the Hilbert space L 2 (À) provides additional 

tools. The resulting inner product of L2 is referred to as the (1/2)-affinity defined 

by 

A1;2(µ, v) = / Jdv/dÀ) . 
\ L2(>.) 

and the L2 ( À )-distance for root densities is referred to as the Hellinger distance 

H(µ,v) = 



Table 1.1: Common /-divergence definitions and related functions. 

/-divergence 

Total variation distance 

E'Y divergence 

Kullback-Leibler divergence 

Squared Hellinger distance 

x2-divergence 

Hellinger divergence of order a > 0 

Related functions 

Hellinger distance 

a-affinity ( a > 0) 

Rényi divergence of order a > 0 

Symbol f(t) 

dTv(µ, v) ½lt - lj, max{O, t - 1} 

E-y(µ, v) max{O, t - ,} 

D(µllv) tlog(t) 

H(µ, v)2 ( Jt-1)2 

x2(µ, v) ( t2 - 1), ( t - 1) 2 

1-la(µ, v) ( t0 
- 1) / ( a - 1) 

( 

....--- 2 ) 1/2 
H(µ,v) = f ( Jdµ/dv-1) dv 

Aa(µ, v) = IEv [(dµ/dv)°] 

Da(µ, v) = log (A0 (µ, v)) /(a - 1) 
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These quantities are monotonous transforms of the Hellinger divergence, of the 

Rényi divergence and of a-affinity. 

Proposition 1.4.2. Let D f be any /-divergence, as in Defiriition 1.4.1. 

(i) IEv [max{O, - f (dµ/dv)}] < oo 

(ii) We have D1(µllv) 0 with D1(µllv) = 0 if and only ifµ= v. 

(iii) If T is any measurable transform of M, then D1(µllv) D1(µT-1, vT-1) 

with equality if and only if T is a sufficient statistic for {µ, v}. 

Proof. (i) Since f is convex with f (1) = 0, either f (t) 0 for every t 1 or 



f ( t) 0 for every 0 t 1. In the first case, 

lEv [max{0, -f (dµ/dv)}] lEv [-f (max{dµ/dv, 1} )] 

-f (IEv [max{dµ/dv, 1}]) < oo. 

by Jensen's inequality. The second case follows similarily. 

Taking T any constant fonction, {ii) is seen to be a particular case of {iii). 

In order to prove {iii), let µ = µT-1 , f; = vr-1 and note that 

[dµ ] dv (y) = lEx~v dv (X) 1 T(X) = y . 

Hence using Jensen's inequality and with X '"'"' v we find 

D1(µllv) = JE H !~(X))] 
= JE [JE [1 (dv(x)) 1 T(X)]] 

JE [1 ( JE [!~(X) 1 T(X)])] 
= JE [1 (: (T(X)))] = D1(J:illîi). 
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Since f is strictly convex at 1, equality holds if and only if = 1/g o T v-almost 

everywhere. Because µ « v, this is the same as saying that T is a suffi.dent 

statistic for {µ, v} (Halmos and Savage, 1949, Theorem 1). 

1.4.1 Application in importance sampling 

One particularly accessible and useful subject in which !-divergences appear is in 

error quantification for importance sampling. Without delving very deep in the 

theory (see Chatterjee and Diaconis (2018); Agapiou et al. (2017); Sanz-Alonso 

(2018) for more details and arguably converse results on necessary sample sizes), 
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let me introduce the problem and state expected error bounds in terms of !-
divergences. 

Let cp be integrable with respect to a measure v and define J ( cp) = J cp dv. The 

goal is to estimate J(cp) using a sample {Xi}i=l of independent random variables 

with identical distribution µ satisfying v << µ. To this end, let 

l n dv 
In(cp; µ) = - L cp(Xi)-d (Xi) 

n i=l µ 

and notice that JE [In ( cp; µ)] = I ( cp). The law of large number entails almost sure 

convergence of In(cp; µ) to J(cp), and the almost sure convergence rate IIn(cp; µ -

J(cp))I = o (n1/p-l) is provided by the MZ Theorem under the assumption llcpdv /dµIILP(µ) < 
oo for some 1 p < 2. If llcpdv/dµIIL2(µ) < oo, then the Central Limit Theorem 

yields confidence intervals. 

For the study of expected errors, it is an easy exercise to see that the variance 

of In(cp; µ) is minimized at In(cp; µ*), where µ* is such that dµ* /dv = lcpl/ J(lcpl). 

In this case, Var(Jn(cp; µ*)) = (J(lcpl)2 - J(cp)2)/n. In general, a straightforward 

calculation shows that we have 

Var(Jn(cp;µ)) = J(lcpl)
2 
x2 (µ*,µ) + Var(Jn(cp;µ*)) 

n 
I(lcpl)2 x2(µ*, µ) + 1 _ 

n 

While the term J(lcpl)2 is typically not precisely known in practice, the inequalities 

x2(µ*' µ) Il d{ Il dTv(µ*, µ) Il d{ Il - 1, 
µ L00 (µ) µ L00 (µ) 

which can be found in (Binette, 2019), can help control the x2 divergence. 

In the case where x2(µ*,µ) = oo, and consequently Var(Jn(cp;µ)) = oo, we can 

still get first moment bounds on the absolute error in terms of the tail distribution 

of dµ* / dµ. The following proposition is a variation on the first part of Theorem 
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1.1 of Chatterjee and Diaconis (2018). We chose to express the result in term of 

the tail of dµ* / dµ, instead of the tail of dv / dµ, as the former incorporates aspects 

the fonction <p. Otherwise, minimizing a divergence between v and µ may be 

entirely unrelated to the minimization of the expected error. 

Proposition 1.4.3. Let Y µ* and p = dµ*/ dµ. Then for every a 0, 

IB: [IIn(<p; µ) - I(ip)I] I(l~I) (If;,+ 2Il" (p(Y) >a)) . (1.4.2) 

Proof. In order to simplify the notation, let / = J(lcpl)sign(cp), h = f ](p a) 

and define 

J(f) = j f dµ* = I(<p) 

and 
l n . 

ln(/;µ)= - E f(Xi)p(Xi) = In(cp; µ). 
n i=l 

Following Chatterjee and Diaconis (2018), write . 

IIn(cp; µ) - J(cp)I IJn(/; µ) - Jn(h; µ)I + IJn(h; µ) - J(h)I + IJ(h) - J(f)I. 

N ow for the first term 

JE [IJn(/; µ) - Jn(h; µ)I] JE [l/(X1)p(X1) - h(X1)p(X1)I] 

= J(l.cpl)JID (p(Y) > a), 

for the third term 

IJ(h) - J(f)I = I(lcpl)JID(p(Y) >a), 

and finally, noting again that JE [Jn(h; µ)] = J(h), we find 

JE [IJn(g) - J(h)I] (Var(Jn(h))) 112 

(JE [(h(Xi)p(Xi))2]) 112 

I(l'Pl)/f 

Combining the above yields the result. 
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Controlling the decay rate of the tail probabilities IP' (p(Y) > a) in terms of Hellinger 

divergence provides the following bound. 

Corollary 1.4.4. For every /3 > 0, 

[I ( . ) ( )1) (1 1 + /31-l13+1(µ*, µ) 1E ln <p, µ - 1 <p 21 rpl) n/3/(1+2/3) 

Proof By Markov's inequality, for any f3 > 0, 

JP> (p(Y) > a) a-11 J ( :r dµ' 

-J (dµ*)/3+1 = a 13 - dµ dµ 

= a-13 (/31-l13+1 (µ*, µ) + l) . 

With a = n 1/(1+2/3) and combining the above with Proposition 1.4.3 yields the 

result. 

1.4.2 Application of !-divergences to risk bounds 

Cramer-Rao variance bound. Let lF = {Po 1 0 E 8} c L1 (>.) be a set of 

densities with respect to the o--finite measure >., where 8 c J:Rk is open and the map 

0 t--+ p0 is injective. We also assume that map ( 0, x) t--+ P0 ( x) is sufliciently regular, 

and we freely interchange integration and differentiation throughout. Now suppose 

that { Xï}f=1 is a sequence of independent variables with common distribution p00 

for some 00 E 8, and consider an unbiased estimator 0n of 00 which are_ fonctions 

of only {Xï}f=1 . 

The Kullback-Leibler divergence K-(0) := KL(p00 ,p0) describes how easily we may 

discriminate 00 from 0, on average, using an observation X "'p00 . Since 00 is a 

minimum of K, the first order rate of change of K at this point is zero. The Hessian 
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of"", also referred to as Fisher's information matrix, provides more information 

about variation around 00 . 

Consider, for instance, a direction u E Rk, llull 2 = 1, and let "'111 (00) be the second 

derivative of K, in direction u evaluated at 00. Because "'11 
( 00) = 0, this is the 

curvature of K, at 00 in direction · u. The Cramer-Rao variance bound states that 

for every 00 E 8, 

1E [(en -00,u) 2
] (n"'111 (0o))- 1

. 

That is, the mean squared error of Bn in direction u is always greater than 

l/(n"'1"(0O)). Note that the quantity "'111 (00) is the same as Fisher's information 

matrix evaluated as a quadratic form at u. 

For the pro of, it suffi.ces to consider the case n = l. Let 80 be the differential op-

erator with respect to 0 in direction u. For instance, 800 (log Poo) is the differential 

of 0 i--+ log p0 in direction u evaluated at 00 . Using the fact that 

J 8o(logpo)Po d>. = f 8o(Po) d>. = 0 

for every 0 E 8 and differentiating under the integral, we find that 

"'111 (00) = 1E [(800 (logp00 (X))) 2
] • 

Hence by the Cauchy-Schwartz inequality and integrating by part, we find 

E [ (Ôn - 0o, u)2] t."(0o) ;;;, J 800 (p00 )(Ô1 - 0o, u) d>. 

= 800 (! (Ô1 - 0o, u)p00 d>.) - J 800 ( (Ô1 - 0o; u) )Poo d>. 

= ( 800 (! ( Ô1 - 0o )Poo dÀ) , u) + 1. 

Since 01 is unbiased, J ( 01 - 0)p0 dÀ = 0 for every 0, its derivative at 00 is also 

zero, and we obtain the result. 
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In the biased case, that is if JE [ 01 (X)] 00 = b( 00 ) for some differentiable fonction 

b, then a direct adaptation of the above proof yields 

JE [(0 _ 0 )2] ((800 (b(Bo)),u) + 1)2 

n °' u r nK" (Bo) · 

Minimax and Bayes risks lower bounds. Let IF = {Pe 1 0 E 8} C L1 (À) 
be a set of densities with respect to th~ a--finite measure À, where 8 is an arbitrary 

set and the map 0 i--+ Pe is injective. We will also need to assume that ( 0, x) i--+ 

p0 (x) is measurable in the product space once the Borel a--algebra of 8 has been 

introduced. The probability measure corresponding to p0 is denoted JP>0 and the 

expectation under JP> e is denoted by JE0. 

Given a loss fonction I!,: 8 x 8 --+ [O, oo ), we define the minimax estimation risk 

as 

R = i:qf sup JE00 [e(Bo, 0)] 
0 0oE9 

(1.4.3) 

where the infimum is taken over all estimators 0. It is a lower bound on worst case 

expected loss. Provided a prior II on 8, the Bayes risk associated to II becomes 

Rn= i~f { E00 [t(0o, ê)] IT(d0o). 
e le 

Note that (1.4.4) is a lower bound on (1.4.3), for any prior II on 8. 

(1.4.4) 

The Bayes risk can be bounded as follows. Let Be(00 ) = {0 E 8 1 1!,(0, 00 ) < c} 

and let Pe0 ,e(x) = JEe~n [Pe(x) 11!,(0, Bo) < c] be the density obtained by normalized 



averaging over Be(00 ), assuming IT(Be(00 )) > O. Using these notation, we find 

Rn;;, eil!f f lP'o (e(0,Ô);;, e) IT(d0) 
0 le 

;;, € ( 1- j st l]. ( f(0, Ô(x)) < €) Po(x)IT(d0) À(dx)) 

;;,E (1 - j s~p l]. (f(0,00 ) < e)po(x)IT(d0)>-(dx)) 

= € ( 1 - J s~p IT(Be(0o))p00 ,e(x) À(dx)) • 
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Now let rrr,e = 1 -.J sup00 IT(Be(0o))p00 ,e(x) À(dx). Following Theorem II.1 of 

Guntuboyina (2011), we show that for any !-divergence D1 and any probability 

measure Q << À, if rrr,e 0 then 

l D1(lP'0IIQ)IT(d0);;, WI c-:rr,e) + (1- W)I (1 ~·~) (1.4.5) 

where W = J IT(Be(T(x))) Q(dx) and T(x) = argmax00 IT(Be(0o))p00 ,e(x). Indeed, 

with q = dQ / dÀ and for any 00 E 8, we have 

lEo~rr [1 ( p:)] = II(Be(0o))lEo~rr [1 (p:) 1 f(0, 0o) < €] 

+ II(Be(0o)")lEo~rr [1 (p:) 1 f(0, 0o) ;;, €] . 

Denoting Pe0 ,ec = lEe~rr [Pe I R, ( 0, 0o) E], this is bounded by 

IT(Be(0o))I ( P;,e) + IT(Be(0o)c)I (P~e') . 

With 00 = T and integrating with respect to Q, we find 

l D1(lP'01iQ)IT(d0) ;;, J IT(Be(-r(x)))I (Pr~(:t)) Q(dx) 

+ J IT(Be(-r(x))")I (Pr(;(:t) Q(dx). 

Using the convexity off and the definition of W, it can be checked that this is 

bounded below by 

W I c-:rr,e) + (1 - W)I (i ~·~) . 
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Now inequality (1.4.5) can be inverted in some cases, as to provide a lower bound 

on rrr,e and consequently also a lower bound on Rn. A general technique, which 

is Corollary II.2 in Guntuboyina (2011), uses a first order approximation of the 

convex fonction g(r) = W J((l-r)/W)+(l-W)f(r/(l-W)): for 0 r0 l-W, 

we have g'(r0 ) g'(l - W) = 0, and hence 

la D1(JP0IIQ)Il(d0) ;;;, g(rrr,e) ;;;, g(ro) + g'(ro)(rrr,e - ro) 

implies 
fe D1(IP'0IIQ)II(d0) - g(ro) 

rrr,e ;::: ro + , ( ) . g ro 
Since Q was arbitrary, we also have 

rrr,e ;::: ro + infQ«,\ fe D1(1F0IIQ)II(d0) - g(ro) 
g'(ro) 

(1.4.6) 

(1.4. 7) 

To see how this may be used in practice, suppose that II satisfies the condition 

II(Be(00 )) E {0, 1/N} for some N;::: 1 and every 00 E 8. In this case, W = l/N. 

If J(t) = tlog(t), so that D1 is the Kullback-Leibler divergence, and with r0 = 
(N - l)/(2N - 1), we find g'(r0 ) = log(l/N), g(r0 ) = {(n - 1) log(n/(2n -1)) + 
nlog(n2 /(2n - 1))}/(2n - 1) and 

2 
infQ«,\ fe D1(]P'0IIQ)II(d0) + log(2N - 1) - log(N) 

rrr,e :;--- 1 - log( N) 

2 
infQ«,\ fe D1(IP'0IIQ)II(d0) + log(2) 

1/ l - log(N) . 

The existence of such a probability measure II can be seen as depending on the 

metric entropy of 8. Suppose for instance that the loss P, is a distance and let 

8e be a 2c:-net of 8, which we assume to be finite. That is, for any 0, 0' E 8e, 

either f(0, 0') > 2c or 0 = 0'. Then with N = Ne = l8el and II= t I:eESe 80, we 

have II(Be(00 )) E {0, 1/N} for every 00 E 8 and the minimax and Bayes risks are 

bounded below by 

( 
infQ«,\ J 8 D 10P'0 IIQ)II( d0) + log(2)) 

é l - log(Ne) · 
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In order to bound infQ«>. fe D(IP0IIQ)II(d0), fix ô > 0 and suppose there exists a 

finite set e:, C e such that for every 0 E e, :30' E e:, with D(IfD0 IIIfD0,) < ô. Then 

with Q = ,i81 ~ 0, EB8, we find 

inf r D(IP0IIQ)IT(d0) supD(IfD0IIQ) 
Q«>. }9 0E8 

and for every 0 E 8, 

[ ( 
P0(X) )] 

D(ll"ol[Q) = lEx~w, log 1J;1 ~O'E06 PO'(X) 

log(l8~1+ inf D(IfD0lllfD01 ) 
0'E88 

log(l8~1) + ô. 

We therefore obtained 

Rn ê (1 - log(1e:,1) + ô + log(2)) 
log(l8êl) . 

(1.4.8) 

The quantities 1881 and l8êl, which are respectively covering and packing numbers 

for the Kullback-Leibler divergence and the f distance, can be related to one 

another using inequalities between f and the Kullback-Leibler divergence. With 

ô such that log(l881) = ô and ê satisfying log(l8êl) 48 + 2 log(2), we have then 

showed that Rn E/2. See Yang and Barron (1999) for a more in-depth study 

and the analysis of particular cases. 



CHAPTER II 

NOTE ON REVERSE PINSKER INEQUALITIES 
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2.1 Abstract 

A simple method is shown to provide optimal variational bounds on !-divergences 

with possible constraints on relative information extremums. Known results are 

refined or proved to be optimal as particular cases. 

2.2 Introduction 

This note is concerned with optimal upper bounds on relative entropy and other 

!-divergences in terms of the total variation distance and relative information 

extremums. When taking relative entropy as the !-divergence, such upper vari-

ational bounds have been referred to as reverse Pinsker inequalities (Sason and 

Verdu, 2016; Bocherer and Geiger, 2016). They are used in the optimal quantiza-

tion of probability measures (Bôcherer and Geiger, 2016) and have also appeared 

in Bayesian nonparametrics for controlling the prior probability of relative entropy 

neighbourhoods (see e.g. Lemma 8.2 of Ghosal et al. (2000)). 

Our main theorem demonstrates a simple method that yields optimal "reverse 

Pinsker inequalities" for any !-divergence. This refines or shows the optimality 

of previously best known inequalities while avoiding arguments that are tuned to 

particular cases. In particular, Simic (2009a) uses a global upper bound on the 

Jensen fonction to bound relative entropy by a fonction of relative information 

extremums. Corollary 2.3.2 below refines their inequality to best possible. More 

recently, three different bounds on relative entropy involving the total variation 

distance have been proposed in Theorem 23 of Sason and Verdu (2016) in Theorem 

7 of Verdu (2014) and in Theorem 1 of Sason (2015). Our results show that the 

inequalities of Sason and Verdu (2016) and Verdu (2014) are in fact optimal in 

related contexts. Another direct application of the method improves Theorem 
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34 in Sason and Verdu (2016), which is an upper bound on Rényi's divergence 

in terms of the variational distance and relative information maximum, while 

providing a simpler proof for this type of inequality._ Vajda's well-known "range 

of values theorem" (see Vajda (1972); Liese and Vajda (2006); Vajda (2009); 

Kumar and Hunter (2004); Kumar and 'Chhina (2005)) is also recovered as an 

application. 

The rest of the paper is organized as follows. Section 3.5.3 presents the definitions 

and main results. Examples with particular !-divergences are provided in section 

2.4 and proofs are given in section 2.5. 

2.3 Main results 

Let (P, Q) be a pair of probability measures. It is assumed throughout that 

P « Q. Given a convex fonction f : [0, oo) (-oo, oo] such that f(l) = 0, the 

!-divergence between P and Q is defined as 

D1(PIIQ) = lEQ [t (:~)] . (2.3.1) 

In particular, the relative entropy D(PIIQ) and the total variation distance Drv(P, Q) = 
supA IP(A) - Q(A)I correspond to the cases J(t) = t log(t) and J(t) = ½lt - li 
respectively. 

For fixed 8, m 0 and M oo, we consider the set A(J, m, M) of all probability 

measure pairs (P, Q) respecting the conditions : P « Q, 
dP dP 

essinf dQ = m, esssup dQ = M and Drv(P,Q) = 8. (2.3.2) 

Here ess inf and ess sup represent the essential infimum and supremum taken with 

respect to Q. 

The following theorem provides. the best upper bound on the !-divergence over 

the class A(J, m, M) determined by (2.3.2). 
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Theorem 2.3.1. If 8, m 0 and M < oo are such that A(8, m, M) f= 0, then 

sup D~(PIIQ) = 8 ( J(m) + J(M)) . 
(P,Q)EA(<>,m,M) 1 - m M - l 

(2.3.3) 

Remark 2.3.l. If m = 1 or M = 1, then necessarily 8 = 0 and the right-hand sicle 

of (2.3.3) is to be interpreted as O. 

Remark 2.3.2. Theorem 2.3.1 generalizes Theorem 23 in Sason and Verdu (2016) 

with J(t) = t log(t) for the relative entropy: the upper bounds obtained are the 

same in this case. The concepts of the proofs also share similarities which are 

detailed in Remark 2.5.1 of Section 2.5. 

We can obtain from Theorem 1 tight bounds for more general families of distri-

butions. Consider for instance 

and 

B(m, M) = LJ A(8, m, M) 
ô~O 

C(8) = LJ A(8, m, M). 
mE[0,1] 

ME[l,oo] 

(2.3.4) 

(2.3.5) 

Using the first family, Corollary 2.3.2 below provides the range of D1 as a fonction 

of relative information bounds. 

Corollary 2.3.2. If m 0 and M < oo are such that B(m, M) f= 0, then 

sup D1(PIIQ) = (M - l)J(m) + (1 - m)f(M). 
(P,Q)EB(m,M) M - m 

(2.3.6) 

Using the second family (2.3.5), we re-obtain Theorem 4 of Sason and Verdu 

(2016) (see also Lemma 11.1 in Basu et al. (2011)). Taking the Ùnion over possible 

values of 8 also yields Vajda's well-known "range of values theorem" (see Liese 

and Vajda (2006); Vajda (1972, 2009); Kumar and Hunter (2004); Kumar and 

Chhina ( 2005)). 
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Corollary 2.3.3. If O o l, then 

sup D1(PIIQ) = o (!(O) + lim J(M))·. 
{P,Q)EC(c5) M 

(2.3.7) 

2.4 Examples 

This section lists applications to particular !-divergences and follows the standard 

definitions of Sason and Verdu (2016). The bounds obtained are compared to 

similar inequalities recently shown in the literature. 

2.4.1 Relative entropy (Kullback-Leibler divergence) 

The relative entropy corresponds to f(t) = t log(t) in (2.3.1) and is denoted 

D(PIIQ). The results are more neatly stated in this case as fonctions of a = 
ess inf = M-1 and b = ess sup = m-1 , assuming both quantities are well 

defined. Theorem 2.3.1 then shows 

sup D(PIIQ) = o (log(a) + log(b)) . 
(P,Q)EA(c5,m,M) a - l 1 - b 

In particular, the resulting upper bo~nd on D(PIIQ) is Theorem 23 of Sason and 

Verdu (2016). Letting b oo gives the related Theorem 7 of Verdu (2014) and 

the inequality presented therein is consequently optimal over Uo::;;m::;;i A( o, m, M). 

Also, Corollary 2.3.2 yields 

sup D(PIIQ) = (a - 1) log(b) + (1 - b) log(a). 
(P,Q)EB(m,M) b - a 

For comparison, Theorem I of Simic (2009a) (which also appears as Theorem I 

in Simic (2011) and is related to results in Simic (2009c,b)) provides the weaker 

upper bound 

alog(b) - blog(a) 1 ( b - a ) ------ + og ----- .:.._ 1 
b - a log(b) - log(a) 
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on D(PIIQ) over (P, Q) È B(m, M) as an application of their "best possible global 

bound" for the Jensen functional. 

2.4.2 Hellinger divergence of order a 

Let a E (0, 1) U (1, oo) and f(t) = (ta -1)/(a-1). The corresponding divergence 

is denoted 1-la(PIIQ). Theorem 1 shows in this case 

sup 1-la(PIIQ) = _fJ_ (1 - ma - Ma - 1) . 
(P,Q)EA(6,m,M) 1 - a l - m M - l 

When a= 2, 1-la = Dx2 is the x2 divergence and the above can be rewritten as 

sup Dx2(PIIQ) = ô(M - m). 
(P,Q)EA(ô,m,M) 

For comparison, Example 6 of Theorem 5 in Sason and Verdu (2016) is the weaker 

inequality 

Dx2(PIIQ) 2ômax{M -1, 1- m}. 

2.4.3 Rényi's divergence 

Also related is Rényi's a-divergence, defined as 

1 
Da(PIIQ) = -log(l + (a - 1)1-la(PIIQ)) a-1 

and which is a monotonous transform of 1-la. Correspondingly we obtain 

l ( ·(Ma-1 1-ma)) Da(PIIQ) a _ 1 log 1 + 6 · M - l - 1 - m · 

Taking m = 0 recovers Theorem 34 of Sason and Verdu (2016). Their inequality, 

which is also appears in Theorem 3 of Sason and Verdu (2015) for a > 2, is 

improved when m > O. 
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2.5 Proofs 

The starting point of our analysis is the following simple known application of 

convexity. 

Lemma 2.5.1. Let 11, be a random variable with values in a bounded interval 

I = [a,b], letr.p: J (-00,00] be a convexfunction and let a= (b-IE [11,])/(b-a). 

Then 

IE [r.p(,,:)] ar.p(a) + (1 - a)r.p(b). (2.5.1) 

Proof. Let a be a non-negative random variable such that 11, = aa + (1 - a)b. 

Then IE[a] = a and by convexity of <p we find 

IE [r.p(11,)] IE [ar.p(a) + (1 - a)r.p(b)] = ar.p(a) + (1 - a)r.p(b). 

As a particular case, we obtain a bound on the total variation distance that is of 

use in the proof of Theorem 2.3.1. 

Corollary 2.5.2. If m 0, M < oo and (P, Q) E B(m, M), then 

D (p Q) (M - 1)(1 - m) 
TV ' M. . -m (2.5.2) 

Proof. Lemma 2.5.1, applied with 11, = cp(x) = lx - li, a = m and b = M, 

shows that 

1 [I dP I] 1 [ M - l 1 - m ] -IEQ --1 - --lm-ll+--IM-11 2 dQ 2 M-m M-m 
(M -1)(1- m) 

M-m 
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We now proceed with the proof of Theorem 2.3.1. 

Proof of Theorem 2.3.1. Let (P, Q) E A(ô, m, M). If A= { x 1 ~~(x) 1 }, then 

· ô = Q(A) - P(A) and we may write 

D1(PIIQ) = Q(A)lEQ [1 (!~) H + Q(AC)JEQ [1 (!~) IAC]. (2.5.3) 

To bound the first term on the right-hand side of (2.5.3), note that lEQ [ j~ IA] = 
and that x E A implies m ~~(x) 1. An application of Lemma 2.5.1, 

using the fact that /(1) = 0, therefore yields 

P(A) 

[ (dP) 1 ] l - Q(A) ôf (m) 
IEQ f dQ A 1 - m f(m) =_ Q(A)(l -·m). (2.5.4) 

The second term is similarly bounded as to obtain 

[ (dP) 1 c] 8/(M) 
IEQ f dQ A Q(Ac)(M_- l)' (2.5.5) 

Together with (2.5.3), the inequalities (2.5.4) and (2.5.5) show that 

D1(PIIQ) ô ( J(m) + J(M)) 
1-m M-1 

(2.5.6) 

whenever (P, Q) E A(ô, m, M). 

We now show that the supremum of (2.3.3) indeed attains this bound. The cases 

ô = 0 and ô = 1 are easily treated as they correspond to equality or mutual 

singularity of P and Q. We can therefore assume O < ô < 1. Let q = :J ~!, 
p = mq, t = ô(M - m)[(M - 1)(1 - m)J-1 and consider the pair of discrete 

measures 

{ 
Po = (tp, t(l - p), 1 - t), 

Qo = (tq, t(l - q), 1 - t). 
(2.5.7) 

Corollary 2.5.2 ensures O < t < 1 and thus P0 and Q0 are probability measures. 

It is also straightforward to verify that (Po, Q0 ) E A(ô, m, M) with t(q - p) = ô, 



p/q = m and (1 - p)/(1 - q) = M. Sorne algebraic manipulations then show 

. (p) (1-p) D1(Po, Qo) = tqf q + t(l - q)f l _ q 

= 8 ( f (m) + f(M) ) . 
1-m M-1 
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Remark 2.5.1. A decomposition equivalent to (2.5.3) is also used in the proof 

of Theorem 23 in Sason and Verdu (2016) wherein f(t) = t log(t). They then 

proceed to obtain the upper bound (2.5.6) using the monotonicity of the fonction 

t tlog(t)/(1- t) (continuously extended at 0 and 1). 

Proof of Corollary 2.3.2. Combining Corollary 2.5.2 with equation (2.3.3) of The-

orem 2.3.1 yields the upper bound. To see that the supremum attains this bound, 

let 8 (M - 1)(1 - m)/(M - m) in (2.3.3). 

Proof of Corollary 2.3.3. Sorne care has to be taken when considering the ele-

ments of A(8, 0, oo). To see that the right-hand sicle of (2.3.7) also upper bounds 

the elements of this set, we again use the decomposition (2.5;3). The first term is 

treated as in (2.5.4). For the second term, let /\ K = min{~~' K}. By Fatou's 

lemma and Lemma 2.5.1, using that f(l) = 0, 

Eq [t(~~) IAC] l~i1Eq [t(~~ /\ K) IN] 
IEQ [dP /\ KI Ac] - 1 

liminf dQ f(K). 
K -1 

By the monotone convergence theorem, 

. [dP I c] P(Ac) J~oo IEQ dQ /\ K A = Q(Ac) 

and hence 

[ (
dP) 1 c] 8 . f(M) 

IEQ f dQ A Q(Ac) J~oo M - 1. 
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We note that limM-+oo ¼~i exists by convexity of f and can be infinite. The 

required upper bound on D1(PIIQ) is then obtained as jn the proof of Theorem 

2.3.1. 

To see that the upper bound is attained, it suffices to let M oo in Theorem 

2.3.1. 



CHAPTER III · 

BAYESIAN NONPARAMETRICS FOR DIRECTIONAL STATISTICS 
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3.1 Abstract 

We introduce a density basis of the trigonometric polynomials that is suitable to 

mixture modelling. Statistical and geometric properties are derived, suggesting 

it as a circular analogue to the Bernstein polynomial densities. Nonparametric 

priors are constructed using this basis and a simulation study shows that the 

use of the resulting Bayes estimator may provide gains over comparable circular 

density estimators previously suggested in the literature. 

From a theoretical point of view, we propose a general prior specification frame-

work for density estimation on compact metric space using sieve priors. This is 

tailored to density bases such as the one considered herein and may also be used 

to exploit their particular shape-preserving properties. Furthermore, strong pos-

terior consistency is shown to hold under notably weak regularity assumptions 

and adaptative convergence rates are obtained in terms of the approximation 

properties of positive linear operators generating our models. 

3.2 Introduction 

There is increasing interest in the statistical ànalysis of non-euclidean data, such 

as data lying on a circle, on a sphere or on a more complex manifold or metric 

space. Applications range from the analysis of seasonal and angular measurements 

to the statistics of shapes and configurations ( J ammalamadaka and Sen Gupta, 

2001; Bhattacharya and Bhattacharya, 2012). In bioinformatics, for instance, 

an important problem is that of using the chemical composition of a protein 

to predict the conformational angles of its backbone (Al-Lazikani et al., 2001). 

Bayesian nonparametric methods, accounting for the wrapping of angular data, 

have been successfully applied in this context (Lennox et al., 2009, 2010). 
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Directional statistics deals in particular with univariate angular data and provides 

basic building blacks for more complex models. Among the most commonly used 

model for the probability density fonction of a circular random variable is the von 

Mises density defined by 

u r-+ exp(~cos(u - µ))/(21rJ0 (~)), 

where µ is the circular mean, > 0 is a shape parameter and 10 is the modified 

Bessel fonction of the first kind and order O. This fonction is nonnegative, 21r-

periodic and integrates to one on the interval [0, 21r). It can be regarded a circ_ular 

analogue to normal distribution (Jammalamadaka and SenGupta, 2001) (see also 

Coeurjolly and Le Bihan (2012) for a comparison with the geodesic normal distri-

bution). Mixtures of von Mises densities and other log-trigonometric densities are 

also frequently used (Kent, 1983). Another natural approach is to model circular 

densities using trigonometric polynomials 

1 n 
u r-+ 27r + L)ak cos(ku) + bk sin(ku)). 

k=l 
(3.2.1) 

These densities have tractable normalizing constants, but the coefficients ak and 

bk must be constrained as to ensure nonnegativity (Fejér, 1916; Fernandez-Duran, 

2004). 

For a review of common circular distributions, see Mardia and Jupp (2000); 

Jammalamadaka and SenGupta (2001). Notable Bayesian approaches to direc-

tional statistics problems include Ghosh and Ramamoorthi (2003b); McVinish 

and Mengersen (2008); Ravindran and Ghosh (2011); Hernandez-Stumpfhauser 

et al. (2017). 

In this paper, we introduce a basis of the trigonometric polynomials (3.2.1) con-

sisting only of probability density fonctions. Properties shown in Section 3.3, 

such as its shape-preserving properties, suggest it as a circular analogue to the 
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Bernstein polynomial densities and we argue that it is particularly well suited. to 

mixture modelling. In Section 3.4, we use this basis to devise nonparametric pri-

ors on the space of bounded circular densities. We compare their posterior mean 

estimates to other density estimation methods based on the usual trigonometric 

representation (3.2.1) in Section 3.5. 

An important aspect of nonparametric prior specification is the posterior consis-

tency property, which entails almost sure convergence (in an appropriate topology) 

of the posterior mean estimate. In Section 3.4.2, we thus develop a general prior 

specification framework that immediately provides consistency of a class of sieve 

priors for density estimation on compact metric spaces. Particular instances of 

this framework appeared previously in the literature. For instance, Petrone and 

Wasserman (2002) obtained consistency of the Bernstein-Dirichlet prior on the 

set of continuous densities on the interval [O, 1]. More recently Xing and Ranneby 

(2009) (see also Walker (2004); Lijoi et al. (2005)) have obtained a simple condi-

tion for models of this kind ensuring consistency on the Kullback-Leibler support 

of the prior. As an application, they quickly revisit the problem of Petrone and 

Wasserman (2002) but without discussing what contains the Kullback-Leibler sup-

port. Our main contribution here is the proof that the Kullback-Leibler support 

of the priors specified in our framework contains every bounded density. Further-

more, we show in Section 3.4.4 how our framework may be used to obtain posterior 

contraction rates. The results are related to those of Ghosal (2001); Kruijer and 

van der Vaart (2008) in the case of the Bernstein-Dirichlet prior but are stated 

with more generality. They express posterior contraction rates in terms of a bal-

ance between the dimension of the sieves and their approximation properties, as 

they are accounted for by a sequence of positive linear approximation operators. 
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3.3 De la Vallée Poussin mixtures for circular densities 

3.3.1 The basis 

We propose the basis Bn for 21r-periodic densities of circular random variables 

given by 

Cj,n ( U) = 22n ( 1 + COS ( U - ~) ) n 2 (2n) 2n+l 
1f n 2 ' 

u E IR, j = 0, ... , 2n, (3.3.1) 

Cl 2 
' - -' ' ' ' ..... 

-7r 7r -7r 7r 

Figure 3.1: Comparison between De la Vallée Poussin basis densities (left) and 

the usual trigonometric basis 1, cos(x), sin(x), ... (right). 

The rescalings CJ,n = (21r / (2n + 1) )Cj,n, j = 0, ... , 2n, were considered in Roth 

et al. (2009) in the context of Computer Aided Geometric Design (CAGD). It 

was shown therein to actually form a basis for the vector space of trigonometric 

polynomials ( of order at most n 1) given by 

Vn = span{l, cosu, sin u, ... , cos nu, sin nu}. 

One important property of these rescalings to the CAGD community is that the 

resulting basis forms a partition of unity, meaning that I::]:0 CJ,n(u) = 1, for all 

u E R The fonction Wn = 21rC0 n is the so-called De la Vallée Poussin kernel 
' 

which has been studied· by Polya and Schoenberg (1958) and Co,n has also been 

refered to as Cartwright's power of cosine distribution Cartwright (1963). 
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We argue here that Bn provides an interesting model for densities of circular 

random variables, representing an angle or located on the circumference of a 

circle. Here is a formal definition of the angular domain on which we work. 

Circular random variables take their values on a circle § 1 , which we identify to 

the real line modulo 21r. We therefore write § 1 = IR (rµod 21r), so that § 1 consists 

of equivalence classes { x + 21rk : k E Z} and is represented by any half-open 

interval of length 21r. In the following, we do not distinguish equivalence classes 

from their representatives. We endow § 1 with the angular distance d defined as 

d§1 ( u, v) = minkEZ I u - v + 21r k 1. By the embedding 0 1----7 ei0 of § 1 as the unit circle 

of the complex plane C, the angular distance d§1 becomes the arc length distance. 

For instance, an interval [a, b) C §1, b- a< 21r, can be viewed as an arc of length 

b - a on the unit circle. 

The following result gives elementary properties of the distributions corresponding 

to the densities in Bn. 

Theorem 3.3.1. , The random variables on § 1 given by Uj = U + 2~;1 , j = 
0, ... , 2n, where U = (l - 2V) cos-1 (1 - 2W), with V and W independently dis-

tributed, V rv Ber(l/2) and W rv Beta(l/2, 1/2 + n), have (3.3.l) as densities. 

Furthermore, by letting Zj = ewi be the corresponding random variable on the 

unit circle of C, we have 

{ 

( 2n) -~ 
(~~p) ei2n+1, if p E {-n, ... , n }, 

JE(Zf) = n 

0 if p E Z \ {-n, ... , n}. 
(3.3.2) 

Proof. The first part is a straightforward application of the change of variables 
· 1.til!.. formula. For the integer moments, we have the equality JE( Zf) = ei 2n+i JE ( Z&). 

Using the identity 
22n 

Co,n(u) = 21r(2,;') cos2n(u/2), u E [O, 21r), (3.3.3) 
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and letting S rv U (§1), we find 

1 2n · JE (Zg) = (
2
,:') ( k) IE(e-i(n-k-p)S) = (2,:') , 1f p E {-n, ... , n }, 

2n { ( 2n) 

0 if p E Z \ { -n, ... , n}. 

The above integer moments (3.3.2) are also known as the Fourier coefficients in 

Feller (1971, p. 631) and as trigonometric moments in the directional statistics 

jargon, see for instance Mardia and Jupp (2000), Jammalamadaka and SenGupta 

(2001) and recently Coeurjolly and Le Bihan (2012). From the result for p = 1, 

we get that the mean direction of the jlh component is ei;:!1 with the so-called 

circular variance equal to 1 / ( n + 1). 

3.3.2 The circular density model 

Let ~2n be the 2n-dimensional simplex ~2n = { ( Co, .•. , C2n) E [O, 1 ]2n+1 c0 + 
· · · + c2n = 1}. Our model consists in mixtures of the form 

2n 

Cn(u; Co, ... , C2n) = L CjCj,n(u), u E IR, 
j=O 

(3.3.4) 

with (Co, ... ' C2n) E ~2n, and n o. Let Cn, n 0, represent the set of mixtures 

obtained this way; our model is therefore 

C = LJ Cn. (3.3.5) 
n~O 

We now give a characterization of the model in terms of trigonometric polynomials. 

We use the following degree elevation lemma, which is a reformulation of Roth 

et al. ( 2009, Theo rem 6). 
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Lemma 3.3.2 (Degree elevation formula). Each Cj,n E Bn given by (3.3.1) can 

be expressed as 
2(n+r) 

cj,n(u) = L cr;,; Ce,n+r(u), (3.3.6) 
i=O 

with 

l { 2(2(n+r)) n-1 (2n) } 
d1:•r = 1 n+r k 2(n-k)rre 2(n-k)rrj 

J,e 2(n + r) + 1 + (2n) L (2(n+r)) COS ( 2(n+r)+l - 2n+l ) , 
n k=O k+r 

(3.3.7) 

for RE {0,l, ... ,2(n+r)}, andr;?;0. 

To give the characterization, let Vn C Vn be the subset of trigonometric poly-

nomial densities ( of order at most n ;?; 1), and let Vt C Vn be the positive 

ones. 

Theorem 3.3.3 (Characterization). We have C = Un~0 {Bn U Vt}. 

Proof. If Cn E Cn n B~, then we have Cn(u) > 0 for all u, and this shows 

C C Un~o { Bn U Vt}. For the converse inclusion, let Cn E Vt, be a positive 

trigonometric polynomial density, that is, Cn(u) = L~:0 c5Cj,n(u) > 0, for all 

u E §1, with I:~:0 c5 = 1. Sorne of the c;,'s may be negative here. However, by 

the degree elevation lemma we have 

2(n+r) { 2n } 
Cn(u) = cjd'j,'I Ce,n+r(u), 

with c!J,f given by (3.3.7). The resulting coefficients c;+r = L}:0 c5d1J/ also have 

the property L;i~+r) c;+r = 1, and soit remains to show that there is some r;?; 0 

such that cf+r ;?; 0, for every f, = 0, ... , 2(n + r ). To see this, use (3.3.3) and the 

binomial identity to write 

2rri _ 1 2 2n n 2(n-k)rre 2(n-k)rrj 

{ 

n-1 ( ) 2n } 
Cn ( 2(n+r)+l) - 271" l + (2:) k Ci COS ( 2(n+r)+l - 2n+l ) · 
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After some manipulations, and using the fact that k H (2t:;)) is increasing on 

{ 0, ... , n - 1}, we find · 

2(n+r}+l n+r 2rr.e . 2n n+r . (n-1 ( ) (2(n+r)) 
1 2,,. Ce -Cn ( 2(n+r)+l) 1,( Œ1(n) k (2~:;>) -11) 

( 

(2(n+r)) ) 
,( Œ2(n) (2[;.:r)) - 1. , 

where a 1(n), a 2 (n) > O. A final calculation shows that 

(2~:;>) _ 1 = (2n + r)(2n + r -1) · .. (n + r + 1) _ 1 ,( (l + n/rt _ 1. 
(2(n:r)) (n + r)(n + r - l) · · · (r + 1) 

Since Cn E v-:; is positive by assumption, this shows that for large enough r, we 

have c~+r > 0, for every /!, = 0, ... , 2(n + r), and therefore Cn E C. 

As mentioned in the introduction, a criticism made by Ferreira et al. (2008) con-

cerning the nonnegative trigonometric polynomials proposed by Fernandez-Duran 

( 2004) and Fernandez-Duran ( 2007) is that "approximating a fonction ( using non-

negative trigonometric polynomials) often results in a wiggly approximation, un-

likely to be useful in most real applications" . 

In the following, we define the notion of cyclic variations to formalize "wiggliness" 

and show that it can be controlled using our basis. 

One way of quantifying "wiggliness" was discussed by Polya and Schoenberg 

(1958) via the cyclic variations. For a finite sequence x = (x1 , ... , xm), m 2, de-

note by v(x) the number of sign changes (from positive to negative or vice versa) in 

the terms of the sequence. Denote by v(x) = v(xi, Xi+1, ... , Xm, X1, X2, ... , Xi-l, Xi); 

xi -:/- 0, the cyclic variation of the sequence, with v(x) = 0 if x = O. This 

is well defined because v does not depend on the particular index i such that 

xi -:/- O. Notice that the value of v is always an even number not exceeding 
0 

m. The sequence x is said to be periodically unimodal if v( ~x) = 2, where 
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0 • 

.6.x = (x2 - xi, ... , Xm - Xm-1, xi -_xm)- For a fonction f: § 1 JR, we make use 

of the notation 

v(f) = SUp{ v(f(xi)~1) : 0 X1 < X2 < · · · < Xm < 21r, m 2}, 

and Z(f) = #{x E (0, 21r) : f(x) = 0}. Similarly to the discrete case, such a 

fonction f is said to be periodically unimodal, also called periodically monotone 

by Polya and Schoenberg (1958), if v(f') = 2, provided f' exists ( a more general 

definition without the differentiability assumption is given in the latter paper but 

is not needed in our case). 

We have the following results. 

Theorem 3.·3.4. For Cn = L;:0 CjCj,n E Cn, let c = (co, ... , C2n) E .6.2n• We 

have 

{i) 

V(Cn - a)~ Z(Cn - a)~ V (2n
2
; 

1 c - a), for alla;;,, O. 

· {ii) A bound for the total variation of Cn is given by 

r27r 2 +1 2n 
TV(Cn) := Jo IC~(u)I du n21l" L Jci+l - cil (2n + 1)/7r, 

0 j=O 

where C2n+ 1 = Co. 

{iii) If c = ( Co, ... , c2n) is periodically unimodal, then Cn is also periodically 

uni modal. 

Proof. The proof of {i) follows by Polya and Schoenberg (1958, Lemma 3) by 

noticing that 

2
n { C· a } ( 21rj ) 

Cn ( u) - a = L 2: - 2n + 1 Wn u - 2n + 1 ' 
j=O 

u E §1 
' 
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with Wn = 21r Co,n the De la Vallée Poussin kernel. Their result says (in this case) 

that Z(Cn - a) v (cj/21r - a/(2n + l))~:0 , which implies {i}. 

To show {ii), let Pn : § 1 -+ IR be the continuous and 21r-periodic, piecewise linear 

interpola~ion of the points (21rj /(2n+ 1), (2n+ l)cj/21r) E § 1 x IR, j E {0, ... , 2n }. 

For definiteness, 
2n 

Pn(u) = L CjLj(u), 
j=O 

u E §1 
' (3.3.8) 

where L1(u) = 0 V 2~;1(1- 2~;1d§1(u, 2~7$1)). By {i) and the Banach Indicatrix 

Theorem, see Benedetto and Czaja (2009), we have 

r)O rX) ( 2n + 1 ) 
TV(Cn) = Jo Z(Cn - a) da~ Jo v 27r c - a da, 

. l"" Z(Pn - a)da 

2n + 1 2
n 

= TV(Pn) = 2 L lcj+l - cjl• 
7r . 

J=O 

Now a (sharp) bound is easily found for the last sum by I:}:0 lcj+l - cil 

ll(c1, ... , C2n+i) - (Co, ... , C2n)lli 2, which leads to the assertion TV(Cn) 

(2n + l)/1r. 

For {iii}, we assume v(Ac) = 2 and we want to show that v(C~) = 2. First, if 

v(C~) = 0 then C~ is either nonnegative or nonpositive. By continuity of C~, 

we have 0 = Cn(21r) - Cn(0) = J0
2

1r C~(u) du, which implies C~(u) = 0, for all 

u E [0, 21r), and this gives ci = 1/(2n + 1), i = 0, ... , 2n. Thus, v(C~) = 2k, for 

some 1 k n. The unit circle § 1 can therefore be partitioned into 2k open 

arcs A1, ... , A2k with (-l)iCn being nondecreasing on Aj, j = 1, ... , 2k and with 

( anticlockwise) end points a1, ... , a2k (listed in anticlockwise order) being inter-

laced local minima { a1, a3 ... , a2k- l} and maxima { a2, .. ·. , a2k} of Cn. Assume 

k > l and without loss of generality a2 a4 • Let m = max{a1, a3 }. By the 

monotonicity of Cn on each arc, each of which being a connected set ( relatively to 
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the topology induced by the angular distance d), the Intermediate Value Theorem 

gives Z(Cn - a) > 2 for all a E (m, a2 ). By the same argument, using the fact 

that v(.6.c) = 2, we obtain 

V (2n2; 
1 

c _ a) = { :• 
if a E (min(c), max(c)), 

otherwise, 

contradicting (i), and ·this implies k = 1. 

3.4 Prior specification 

3.4.1 Circular density prior 

Our prior Il on the space JF' = JF'(§1 ) of bounded circular densities, parametrized 

by a Dirichlet process V and a distribution p on {1, 2, 3, ... }, is induced by the 

random density 
2N 

LV(Rj,N)Cj,N, N AJ p, (3.4.1) 
j=O 

where RJ,n = [ 1r~~;11), 1r~~:f)) C § 1 • If V has a base probability measure G and 

a concentration parameter M > 0, then 

IT(B) = L p(n)ITn(B n Cn), BE B, (3.4.2) 
n;;::,o 

where Iln = I1~2n ol:;;1, I1~2n is the Dirichlet distribution of parameters MG(RJ,n), 

j = 0, 1, ... 2n, and where ln : .6.2n 3 (Co, ... , C2n) i---+ I:}:0 CjCj,n E Cn. 

Strong posterior consistency is obtained using Theorem 3.4.3 of Section 3.4.2. The 

theorem requires the conditional distributions Iln to have full support on Cn, that 

0 < p(n) < ce-en for some c, C > 0, ·and that. proper approximation properties of 

the sieves Cn are assessed by a sequence Tn : L1 (M) L1 (M) of linear operators, 

. mapping densities to densities, such that Tn (JF') = Cn C ]F. Here we let Tn be 
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defined by 
2n 

Tnf = L 1 f(u)duCj,n• 
j=O Rj,n 

(3.4.3) 

The only condition of the theorem that is not readily verified is given in the 

following lemma. 

Lemma 3.4.1. For every continuous function J on §1, IITnf - Jlloo---+ O. 

Proof. We use Lemma 3.9.1, in the appendix (a result is similar to that of Lorentz 

(1986, Theorem 1.2.1)), which gives three sufficient conditions {i} - {iii} for uni-

form convergence. We denote d§1 ( u, Rj,n) = infvERj,n d( u, v), and diam( Rj,n) = 

SUPu,vERj,n d§1(u,v). Here {i} is immediate by diam(Rj,n) = 21r/(2n + 1), j = 
0, ... , 2n, and {iii) follows from the partition of unity property of 2~:1 Cj,n· As-

sumption {ii) follows since Co,n is unimodal with mode at 0, and d§1 ( u, Rj,n) 

ô > 0 implies 

Ci,n(u) = Co,n ( ds• ( u, 1)) ,( Co,n (ds, (u, Ri,n)) <( Co,n(ô), 

therefore Lj:dsi(u,Rj,n)~o 2~:1 Cj,n(u) 21rCo,n(ô) ---+ 0, n ---+ oo, uniformly over 

u E § 1 . 

The prior may be interpreted similarly as the Bernstein-Dirichlet prior of Petrone 

(1999). Conditionally on a fixed n, the random histogram Hn = 2
~;

1 I::~:0 Cj,n]_Ri,n 

is immediately understood through the Dirichlet distribution on (co,n, ... , c2n,n)-

Since I:}:o Cj,ncj,n = TnHn, the following proposition together with Lemma 3.4.1 

shows that the finite mixture (3.4.1) may be seen as a smooth; variation dimin-

ishing approximation to H n. 

Proposition 3.4.2 (Variation diminishing property). For every density f on §1, 
continuous on Rj,n, j = 0, ... , 2n, we have v(Tnf - a) v(J - a) for all a > O. 
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Proof. This is a straightforward consequence of Theorem 3.3.4 {i}. Indeed, by 

continuity of /, the Mean Value Theorem says that P1(Rj,n) = 2~:1 J(uj), for 

some Uj E Rj,n, j = 0, ... , 2n. It follows that 

v(Tnf - a) v ((P1(Ro,n), ... , P1(R2n,n)) - a) v (f - a), a> O. 

3.4.2 Strong posterior consistency 

We show the strong posterior consistency of a general class of priors for bounded 

density spaces on compact metric spaces. These include sieve priors such as 

(3.4.2), as well as a class of Dirichlet process location mixtures (see §3.4.3). In 

contrast with Bhattacharya and Dunson (2012), who also obtained general strong 

consistency result, we consider a prior specification framework, with a different 

applicability, that does not require continuity and positivity assumptions on the 

true density from which observations are made. 

Here, strong consistency on IF means that if X 1 , ... , Xn are independent random 

variables and identically distributed according to the probability distribution P10 

with density / 0 E IF, denoted (Xik~1 rv PJ::0), then for all ê > 0, 

Il ( {1 E lF: j If- fol< é} 1 (X;)f=i) 1, PX;°>-a.s. (3.4.4) 

The general framework is the following. Suppose IF is the space of all bounded 

densities with respect to some finite measure µ on a compact metric space (M, d). 

Let Tn : L1 (M) --+ L1 (M), n E N, be a sequence of linear opera tors mapping 

densities to densities. Consider a model having the form C = Un~oCn, with Cn := 

Tn(IF) C IF. Let 93 be the Borel a-algebra of IF for the L1 metric and let 93n be 

the restriction of 93 to Cn, n 0. A prior II on IF can be specified through priors 



Iln on (Cn, œn) and a distribution p on n E {0, 1, 2, ... } as 

IT(B) = L p(n)ITn(B n Cn), BE œ. 
n~O 
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(3.4.5) 

In Theorem 3.4.3 below, we give simple conditions on Iln, Tn and p, in this frame-

work, ensuring strong posterior consistency on all of IF. The proof is given in the 

appendix. 

Theorem 3.4.3. Let 1F, Iln, Il and Tn be as above. Suppose that Tn(1F) C 1F 

are of finite dimensions bounded by an increasing sequence dn E N, and also that 

IITnf - flloo 0, n oo, for every continuous function f on M. If O < p(n) < 
ce-Cdn, for some c > 0, C > 0 and if ITn has support Tn(IF), then the posterior 

distribution of IT is strongly consistent on 1F. 

The proof is in Appendix 3.8.1. 

Remark 3.4.1. The result still holds when the space IF is constrained such as being 

some convex subset of bounded densities containing at least one density that is 

bounded away from zero or a star-shaped subset around such a density ( e.g. IF 

may be a set of bounded unimodal densities or a set of continuous multivariate 

copula densities). The precise conditions required on IF are stated at the beginning 

of Appendix 3.7.1. 

3.4.3 Relationship with Dirichlet Process Mixtures 

Here we consider Dirichlet Process location Mixtures on IF induced by the random 

density 

f = L f(- 1 µ, n)'D(dµ), (3.4.6) 

where {f ( · 1 µ, n) 1 µ E M} C 1F are families of densities, 'D is a Dirichlet 

Process and n follows some distribution p on { 1, 2, 3, ... } . Our circular den-

sity · prior (3.4.1) can be seen to take the form (3.4.6) by letting f(u 1 µ, n) 
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I:l:o JIRj,Jµ)Cj,n( u). This point of view is especially useful in view of the Slice 

Sampler of Walker (2007); Kalli et al. (2011) which is tailored to Dirichlet Process 

Mixtures (DPMs). 

Furthermore, Theorem 3.4.3 may be applied to a class of such DPMs. The idea 

is the following. In order to describe properties of (3.4.6), consider the linear 

operators Tn, n EN, which maps a probability measure Pon M to the density 

TnP= li(- 1 µ,n)P(dµ). (3.4. 7). 

If F has some continuous density p, then it is natural to require that IITnP -
Pll 00 0 (see e.g. assumption A2 in Bhattacharya and Dunson (2012)). If 

also the image under Tn of all absolutely continuous probability measures is a finite 

dimensional space, then Theorem 3.4.3 can be applied to ensure strong posterior 

consistency. 

For instance, wè can let 

f(u 1 µ, n) = Co,n(u - µ) (3.4.8) 

to obtain a Dirichlet process mixture over a continuous range of locations. The 

associated operator Tn defined by (3.4. 7), when seen as acting on probability 

densities, is the De la Vallée Poussin mean of Polya and Schoenberg (1958). Now 

for any density f on § 1 , Tnf is a trigonometric polynomial of degree n (Polya and 

Schoenberg, 1958). Hence the dimension of Tn(lF) is bounded above by 2n + 1. 

Following general_ theory about integral operators (DeVore and Lorentz, 1993), it 

is straightforward ·to verify that IITnf - Jlloo -+ 0 for all continuous f. Theorem 

3.4.3 is therefore immediately applied to obtain strong posterior consistency. 

In Section 3.5, a prior of the type (3.4.6) with densities given by (3.4.8) is com-

pared to our circular density prior (3.4.1). Both yield very similar posterior mean 

estimates in our examples. 
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3.4.4 Adaptative convergence rates 

It is interesting to note that the framework of Section 3.4.2 may be precised as to 

obtain adaptative convergence rates on classes of smooth densities, similarily as in 

Kruijer and van der Vaart (2008); Shen and Ghosal (2015). Again, the posterior 

convergence result is stated in some generality as to be easily applicable to other 

problems of similar nature. 

Here we write an :::::::: bn if there are positive constants A and B such that Abn 

an Bbn for all large n. The posterior distribution of Il is said to contract around 

fo at the rate en if (Xi)i~l rv PJ;) implies-that for all large L > 0, 

Il ( {f E IF: H(fo, f) < Len} 1 (Xi)f=1) 1, P;;)-a.s. 

where H(f0 , f) = (J ( vTo - v7)2) 112 is the Hellinger distance. 

(3.4.9) 

The following assumptions are made on the sequence of operators Tn and on the 

distribution p which induces the prior Il defined by (3.4.5) with Iln priors on the 

submodels Tn (IF). The proof of Theorem 3.4.4 is in the appendix. 

Al The sequence of linear operators Tn : L1(M) L1(M) with Tn(IF) C IF maps 

densities to densities and is such that IITnl - 111 00 0 for the constant 

fonction 1. 

A2 There exists dn E N an increasing integer sequence with dn dim(Tn (IF)) 

and satisfying dn :::::::: nd for some d 1. 

A3 The distribution p on N satisfies log(p(n)) :::::::: -dn log( dn). 

Theorem 3.4.4. Suppose that A1, A2 and A3 are satisfied. Let fo E IF be such 

that 11.logfolloo < oo, IITnfo - folloo = O(n-13 ) for some /3 > 0 and suppose there 
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exists li > 0, co > 0 such that for every large n E N and every O < é < co/ dn, 

IIn ({/ E Tn(IF): 11/-Tnfolloo c}) (c/dnfdn. (3.4.10) 

Then the posterior distribution of Il contracts around fo at the rate én = (n/ log(n))-.B/(2.B+d). 

Remark 3.4.2. In order to verify (3.4.10), suppose as in (3.3.4) that 

Tn(IF) = {f:,cj,n<Pi,n 1 (cj,n)J:o E f:..d.} 
J=Ü 

for some families of basis fonctions { </>j,n}J~o with maxi 11</>j,nlloo Cdn for some 

C > 0 that does not depend on n. Writing f = ~1:o Cj,n</>j,n and Tnfo = 
I:;:o CJ~l</>j,n, we find Il/ - Tnfolloo Cdn I:;:0 lcj,n - c;~ll- Now consider a 

Dirichlet distribution P on the coefficients ( Cj,n)J~o with parameters ( Œj,n)J~o sat-

isfying ~1:o Œj,n = a and ad;;,1 < Œj,n < b for some positive constants a, a and 

b > l that do not depend on n. An application of Lemma A.1 of, Ghosal (2001) 

yields that for every 0 < é < min{l, 2C /b} and dn 2, 
dn 

IIn ({/ E Tn(IF): 11/-Tnfolloo c}) P({(cj,n)J~o: L lcj,n - CJ~ll (Cdn)-1c}) 
j=O 

(c/dntdn 

for some li > 0 that does not depend on n. 

Remark 3.4.3. In the case where / 0 E Tk(IF) for some k E N, the use of Tnfo to 

control the approximation error to the sieves may be suboptimal. In this case, 

it is possible to obtain convergence rates of the order of (n/ log(n))-1/ 2 . See for 

instance Ghosal (2001); Kruijer and van der Vaart (2008); Barrientos et al. (2015). 

Remark 3.4.4. The work in this section shares similarities to Shen and Ghosal 

(2015) who also obtained general adaptative contraction rates of posterior distri-

butions for a class ofrandom series priors. The reader is refered to Petrone and 

Veronese (2010) for a different generalization of the random Bernstein polynomials 

that is also based on constructive approximation techniques. 
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Application to a circular density prior 

Let us continue the example of Section 3.4.3, where the prior II on the space of all 

bounded circular densities is a Dirichlet Process location Mixture of C0 n with a 
' 

distribution p on n EN. The corresponding operator Tn is defined in (3.4.7) using 

the densities (3.4.8). If pis chosen so that log(p(n)) -nlog(n) and the base 

distribution of the Dirichlet Process is uniform on § 1 with concentration param-

eter a > 0, Theorem 3.4.4 is easily applied as to obtain the rate of convergence 

(nflog(n))-.Bl(2.B+2) when fo is_such that li log foll 00 < oo and satisfies the Holder 

continuity condition 
lfo(x) - fo(Y)I < sup ,8 oo 

x,yE§l d§l (x, y) 
for some /3 E (0, l]. Indeed, the operator Tn satisfies the hypothesis Al of Theorem 

3.4.4 and A2-A3 have already been show to hold. Using Remark 3.4.2 and the fact 

that the distribution IIn on the image of Tn corresponds to a Dirichlet distribution 

on the coefficients of the mixture I:~:0 Cj,n Cj,n with parameters aj,n = 2n~l, we 

obtain that (3.4.10) is satisfied. Furthermore, (DeVore and Lorentz, 1993, eq. 

(8.6), Chapter 9) shows that IITnfo - folloo = O(w10 (n- 112 )), where WJ0 is the 

modulus of continuity of fo defined as 

w10 (8) = sup { lfo(x) - fo(Y)I : x, y E §1, d§1 (x, y) < 8}. 

We thus obtain the stated convergence rate En = (n/ log(n))-.B/(2.B+2) which is, 

up to log factors, the same as in the case of the random Bernstein polynomial 

prior (Kruijer and van der Vaart, 2008) for /3 E (0, 1]. In the case where fo 

is continuously differentiable with f satisfying the Holder continuity condition 

with parameter a E (0, 1], then (DeVore and Lorentz, 1993, eq. (8.6), Chapter 

9) together with (DeVore and Lorentz, .1993, eq. (7.13), Chapter 2) shows that 

IITnfo - folloo = O(n-(l+a)/2). This yields the posterior contraction rate En = 
(n/ log(n) )-(1+a)/(2{1+a)+2) which is again the same, up to log factors, as for the 



60 

random Bernstein polynomial prior (Kruijer and van der Vaart, 2008). Similar 

arguments may be used to obtain contraction rates in the case of the De la Vallée 

Poussin prior (3.4.1). 

3.5 Comparison of density estimates 

In this section, we compare density estimates based on the De la Vallée Poussin 

basis and the nonnegative trigonometric sums of Fernandez-Duran (2004). Focus 

is on the expected Kullback-Leibler and L1 losses in the estimation of target den-

sities exhibiting a range of smoothness, skewness and multimodal characteristics. 

3.5.1 Nonnegative trigonometric sums 

Trigonometric polynomials that are probability density fonctions on the circle 

can be parameterized by the surface of a complex hypersphere (Fernaridez-Duran, 

2004). A circular distribution of the corresponding family takes the form 
M 

f(u; Co, ... , CM) = IIL ckeiku 

k=O 

2 

where the coefficients ck are complex numbers such that L~o llckll 2 = 2~. 

(3.5.1) 

. The parameterization (3.5.1) is exploited in Fernandez-Duran (2004, 2007); Fernandez-

Duran and Gregorio-Domfnguez (2010, 2014a,b) to model distributions of circular 

random variables. Circular density estimates from i.i.d. samples are obtained 

therein by maximum likelihood. Goodness of fit for different degrees M of the 

trigonometric polynomials is assessed using Akaike's information criterion (AIC) 

and the Bayesian information criterion (BIC). Recently, Fernandez-Duran and 

Gregorio-Dominguez (2016a) considered a uniform prior on the coefficients ck, 

with respect to hyperspherical surface measure for the Bayesian analysis of circu-

lar distributions. 
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3.5.2 Methods 

The following five estimates of circular densities, denoted pd, pc, nAIC, nBIC and 

f dbayes, are compared. 

pd: The posterior mean estimate based on the De la Vallée Poussin prior (3.4.1). 

This prioris parameterized by a Dirichlet process V and a probability dis-

tribution p on N. We chose V to be centered on the circular uniform distri-

bution with concentration parameter· Œ = 1, and we let p(n) ex e-n/5 _ 

pc: The posterior mean estimate based on the Dirichlet process location mix-

ture (3.4.8). This prior is also parameterized by a Dirichlet process and a 

distribution p on N. We use the same hyperparameters as ab ove. 

nAIC: The maximum likelihood estimate of (3.5.1) where the dimension M is 

chosen as to minimize Akaike's information criterion. 

nBIC: The maximum likelihood estimate of (3.5.1) where the dimension M is 

chosen as to minimize the Bayesian information criterion. 

fdbayes: The posterior mean estimate based on a uniform hyperspherical distribu-

tions on the coefficients ck of (3.5.1) and a uniform prior on {O, 1, 2, ... , 5} 

for the dimension M. This prior on M, uniform on a range {O, 1, ... , m} of 

values, is suggested in Fernandez-Duran and Gregorio-Dominguez (2016a). 

The value of m = 5, also suggested therein, was chosen as to provide the 

best performance of this estimator in the comparison of Section 3.5.3. 

We assess the quality of a density estimate f using the Kullback-Leibler loss 

defined by J§1 log ( 1<~i) J0 (u)du, where fo is the targe~ density (Kullback and 

Leibler, 1951), as well as the L1 loss defined by J§1 lfo(u)- f(u)ldu. This Kullback-
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Leibler loss is appropriate in the context of discrimina_tion between density esti-

mates (Hall, 1987), while the L1 loss is relevant in view of Theorem 3.4.3. Results 

obtained using the L2 and Hellinger lasses were highly similar to those using the 

L1 loss and we omit their presentation. 

Target densities 

We consider the following two families of target densities to be estimated. 

1. The Skewed von Mises family parameterized by a E [0, 1) and with densities 

v0 (u) ex (l+asin(u+l))exp(3acos(u-1r)). 

2. The family parameterized by a E [0, 21r) and with densities 

w0 (u) ex exp(sin(cos(2u) + sin(3u) + a)), 

which we will refer to as the w-family. 

The first family was obtained by applying the skewing technique of Abe and 

Pewsey (2011) to von Mises circular densities and the second family was chosen 

to showcase multimodal characteristics. This is illustrated in Figure 3.2. 

3.5.3 Results 

We estimated the mean Kullback-Leibler loss in 1000 repetitions of the estimation 

of our target densities, for a range of parameter values, using independent samples 

of sizes 30 and 100. The results are shown in Figure 3.3 and Figure 3.4. Boo~strap 

confidence intervals at the 95% level are illustrated by vertical bars. 

Under the Kullback-Leibler loss, the nAIC and nBIC estimators are at a con-

siderable disadvantage in the examples considered herein. This is due to their 
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Figure 3.2: The Skewed von Mises family of densities (left panel) and the w-family 

of densi ties ( right panel). 
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tendency of underestimating probabilities in regions where few samples are ob-

served. An important exception to this, however, is in the use of the the nBIC 

method to estimate a constant density, since it typically selects M = 0 or M = l 
in this case and stays bounded away from zero. 

The Bayesian averaging methods pc, pd and f dbayes are generally more appro-

pria te under the Kullback-Leibler loss and all three are competitive. The fdbayes 

estimator has a poorer performance in the estimation of a spiked unimodal density 

(Skewed von Mises with parameter a near 1), but improves as the target density 

approaches being constant. 

The nAIC estimator improves under a L1 loss. Its increased flexibility over nBIC 

allows to better approach the target in regions of high probability density. The 

ordering of the estima tors is otherwise roughly similar. U nder a sample size of 

size 100, the different estimators are more clearly distinguished and the pc and pd 

estimators provide the best overall performance. 

Remark 3.5.l. These results show that the De la Vallée Poussin densities provide 

a viable alternatives to the nonnegativ~ trigonometric sums of Fernandez-Duran 

(2004) and that they can be used to adapt techniques developped on the unit 

interval, such as the random Bernstein polynomials of Petrone (1999); Petrone 

and Wasserman (2002), to the topology of the circle. However, it is not our goal to 

provide best-possible estimators. It would be required to adapt the basis densities 

as in Kruijer and van der Vaart (2008) in order to obtain certain minimax-optimal 

Hellinger convergence rates. Our theoretical results can also be applied when 

using different density bases, including for multivariate density estimation, and 

the shape-preserving properties of the De la Vallée Poussin densities can be used 

to incorporate prior information. 
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Figure 3.3: Mean Kullback-Leibler losses for the Skewed von Mises family { v0 } 

of target densit ies and different values of the parameter a . 
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Figure 3.4: Mean Kullback-Leibler lasses for the w-family { wa} of t arget densities 

and different values of the paramet er a. 
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Figure 3.5: Examples of density estimates for different targets and sample sizes. 
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The nAIC and nBIC density estimates are obtained using the CircNNTSR R 

package (Fernandez-Duran and G regorio-Domfnguez, 20166). Precisely, we ran 

the fonction "nntsmanifoldnewtonestimation" twice from random starting points 

provided by "nntsrandominitial" and for each degree M of the trigonometric poly-

nomials ranging in {0, 1, ... , 7}. Density estimates with the best AIC and BIC 

scores were retrieved. 

Posterior means corresponding to the pc and pd estimates are approximated using 

the Slice Sampler described in Kalli et al. (2011). The implementation is straight-

forward. We ran 80 thousand iterations of the algorithm, of which 20 thousand 

were treated as burn-in, and sub-sampled clown to 20 thousand iterations in order 
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to calculate the posterior mean. Each iteration consisted in the update of ev-

ery variable in the Slice Sampler following their full conditional distribution. The 

distribution of the model dimension n was truncated to the range {1, 2, 3, . . . , 60} . 

Posterior means for the fdbayes estimates are approximated using a simple inde-

pendent Metropolis-Hastings algorithm with trans-dimensional moves that nat-

urally exploit the nestedness of the models. We ran the algorithm for a million 

iterations, treating 100 thousand as burn-in, and sub-sampled clown to 20 thou-

sand observations in order to calculate the posterior mean. This large number of 

iterations was used to ensure convergence across the 7200 different datasets and 

to compensate for the lower acceptance rate of independent Metropolis-Hastings. 

3.6 Discussion 

We introduced the density basis Cj,n , j E {O, 1, .. . , 2n}, of t he trigonometric poly-

nomials . It is well suited to mixture modelling in the sense that different character-

istics of the mixture density J = I::I:0 Cj,nCj,n can be easily related to the vector 

c = (co,n, c1 ,n, .. . , C2n,n) of coefficients. For instance, Theorem 3.3.4 shows that f 
is constant if and only if c is constant ; that it is periodically unimodal if c is peri-

odically unimodal; and that the range off is contained between 2~;1 min { Cj,n}}:;;0 

and 2~;1 max{ Cj,n};:;;0 . From the cyclic symmetry of the basis, it also follows 

that f is symmetric about O if the vector (cn+l,n, . .. ) C2n,n, Co,n, C1 ,n, ... ) Cn,n) is 

symmetric about its center coefficient co ,n• As yet another example, consider the 

problem of modelling a bivariate angular copula density g: § 1 x § 1 -+ [0, oo). Us-

ing the De la Vallée Poussin basis, we may let g(u, v) = I::;,]=o ci,jCi,n(u)Cj,n(v). 

The fact that g has constant marginal densities follows if the row sums and col-

umn sums of the matrix of coefficients [ci,jkj are constant. On the interval [0, 1], 

similar properties of t he Bernstein polynomial densities have been exploited for 



69 

copula modelling and shape constrained regression (Guillotte and Perron, 2012; 

Chang et al., 2007). The De la Vallée Poussin basis may thus be used to adapt 

such procedures developed in the unit interval case to the topology of the circle. 
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3. 7 Appendix A 

3.7.1 Proof of Theorem 3.4.3 

Let IF be any space of bounded densities such that for all f E IF, there exists 

h E IF with infx h(x) > 0 and {(1 - cx)f +ah: 0 <a< 1} C IF (the assumption 

is used only at the end of the proof in Claim 3). We also recall the hypothesis 

Cn := Tn(IF) C IF. 

Sorne notations 

Let Il · lloo denote the supremum norm, let Il · 111 denote the L1-norm, and write 

B1 Uo , E) = {f E IF : Il! - folli < E } , E > 0, for an L1-ball. For a subset 

A c IF and ô > 0, let N(A, ô) be the minimum number of L1-balls of radius 

{; and centered in IF needed to cover A. Let KL(f o, f) = fuo >O} fo log fol f dµ 

be the Kullback-Leibler divergence between the densities fo and f, and denote 

BKL(fo, 1:) := {f E IF: KL(fo , f) < E}. The Kullback-Leibler support of TI is the 

set of all densities fo such that IT(BKL(fo , 1:)) > 0, for all E > O. Note that the IB-

measurability of BKL(fo , 1:) is shown in Barron, Schervish, and Wasserman (1999, 
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Lemma 11 ). 

A result of Xing and Ranneby (2009) 

Strong consistency on the Kullback-Leibler support of II is ensured as a particular 

case of Xing and Ranneby (2009 , Theorem 2) (see also Walker (2004); Lijoi et al. 

(2005)) which we state here in the following lemma (their result is stated in terms 

of the Hellinger distance which is topologically equivalent to the L1-distance) . The 

fact that MI is a finitely measured compact metric space satisfies the conditions 

on MI and lF stated therein. Therefore, once we show that the lemma applies , all 

we need is to compute the Kullback-Leibler support. 

Lemma 3.7.1. Let Fn C lF, n EN, be such that II(UnFn) = 1. Suppose there 

exists a: (0 , 1) [0 , 1) such that lim8__, 0 o/ (1 - a(o)) = 0 and 

00 L N(Fn, o)l - a(ô)II(Fnf(ô) < 00 (3.7.1) 
n =O 

for every small ô > O. Then the posterior distribution of II is strongly consistent 

at every density fo of its Kullback-Leibler support. 

Application of the lemma 

Denote Cn the L1-closure of Cn = Tn(lF) in lF. We apply Lemma 3.7.1 with the 

disjoint \.B-measurable sets Fn = Cn no,;;; k<n ck c , so that II (UnFn) = II(UnCn) = 1 

and II(Fn) = L k;;,o p(k)IIk(FnnCk) Lk;;,n p(k). Let dk be the strictly increasing 

integer sequence bounding dim(Fk) and such that p(k) < ce- Cdk , so that we find 

Lk;;,n p( k) < c L k;;,n e- Cdk c Lk;;, dn e-Ck ex: e-Cdn. Moreover , from Lemma 1 of 

Lorentz (1966) , Fn being of dimension at most dn and contained in an L1-ball of 
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radius 2, we have N(Fn , c5) !( (6/ô)dn. It follows that 
00 00 L N(Fn , c5)l-o(o)II(Fnf(o) !( DL exp ( -dn { (1 - a( c5)) log( c5 /6) + a( c5)C}) 

n=O n=O 

for some constant D > O. Now let a(c5) = (l-J) - 10g(o), noting thatlim0, 0 a(c5) = 1 

and 

a'(c5) = a(c5) (1;~c5l - log(~ - c5)) . 

Hence, lim0, 0 c5/ (1 - a(c5)) = - (lim0, 0 a'(c5)) - 1 = O. Furthermore, the se-

ries (3.7.1) converges provided(l - a(c5)) log(c5/ 6) + a(c5)C > 0 for c5 > 0 suffi.-

ciently small. This is indeed the case since lim0, 0 Ca(c5) = C > 0 and lim0, 0 (1-

a(c5)) log(c5/ 6) = O. 

The Kullback-Leibler support of II 

Let KL(II) denote Kullback-Leibler support of II; we show that IF' C KL(II). The 

proof is divided in the three following daims. 

Claim 1: For all f E L1(MI) we have IITnf - !Ili-+ O. 

To see this , the fact that Tn maps the densities of L1 (MI) to densities implies 

that f H Tnf , f E L1(MI) , is monotone and we get IITnfll1 !( IITnlfl 111 !( li/Ili, 

for all n ;;:: O. Take é > 0, we can find g continuous with Il! - glli < r::/3; 

this is because the set of continuous fonctions on MI is dense in L1 (MI). N ow by 

assumption there exists N ;;:: 0 such that IITNg - gll 00 < c/(3µ(M)), and we get 

IITNJ - fll1 !( IITN(f - g)lli + IITN9 - glli + llg - !Ili< é . 

Now let IF'+ be the densities in IF' which are bounded away from zero. 

Claim 2: IF'+ c KL(II) . 

We show that for all f 1 E IF'+, and for all é > 0, there exists an N ;;:: 0 and c5 > 0 
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such that B1 (T N li, o) n C N c BKL (f 1, E). The result will then follow from 

IT(BKL(li ,c) ) = LP(k)ITk(BKLU1, E) nCk) p(N)ITN(B1(TNli , o) nCN) > o, 
k ;;;,O 

since p(N) > 0 and ITN has support CN. To find such N and c5, notice that for all 

l E IF+, 

KL(J1 , J) llli/ lll ool l!i - 1111 llli/ lll oo( llli - Tnlilli + IITnli - 1111) , (3.7.2) 

Now put 0 < infxEMI li(x ) =: m M := supxEMI li(x ). By the first daim, 

there exists N 0 such that IITnli - lilli < 8~c, for all n N. Furthermore, 

since l r--+ Tnl is monotone and since IITnm - mll oo -+ 0, we can assume N is 

large enough so that we also have infxEMI TNli(x) infxEMI TNm(x) m / 2. Since 

CN = TN(IF) C IF and is finite dimensional, li· 11 00 is finite and equivalent to li · 11 1 on 

CN and we can find 0 < c5 < 8~[ such that B1(TNli , o)nCN C Boo(TNfi , m/4)nCN, 

Now for any l E B1(TNf1 , c5) n CN, the quantity llfi/111 00 4M/m, so that by 

plugging Nin (3.7.2) we get KL(f1 , f) < E. 

Claim 3: IF \ IF+ c KL(IT). 

Let lo E IF \ IF+ and let 0 < E < 6. By assumption there is an h E IF+ such that 

{(1 - a )lo +ah: 0 <a< 1} C IF. Now take 11 = f~:~h E IF+ , with "f = c/6, so 

fo < (l+"f) li. We use the following result from Ghosal, Ghosh, and Ramamoorthi 

(1999, Lemma 5.1). 

Lemma 3.7.2. If lo and li are densities with fo Cli , for some C 1, then 

for any density l , 

KL(J0 , J) (C + 1) logC + C [KL(j1 , J) + JKL(f1 , J)]. 

Here (2 + "!) log(l + "!) < ê/2. By the second d aim and the above lemma, there 

exists c5 > 0 and N 0 such that for l E B1(TNli ,c5)n CN , we have KL(Jo , J) < E. 
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3.8 Appendix B 

3.8.1 Proof of Theorem 3.4.4 

We apply a particular case of (Xing, 2011, Theorem 1) which is stated in the 

following lemma. Here H(f0 , !)2 = J ( v1 - v'To)2 dµ is the squared Hellinger 

distance and N(E, F ; H) is the covering number of F with respect to the Hellinger 

distance: it is the minimum number of Hellinger balls of radius E necessary to cover 

F. 

Lemma 3.8.1 (Xing (2011)). Let En and En be positive sequences such that 

nmin{E;_,f;_} -? oo as n -? oo. Suppose there exists subsets Fj , j E N, of IF 

with II(UjFj) = 1 and constants c1 > 0, c2 > 0, 0:::; a< 1 such that 

00 00 L e-c1nf~ L N(En, Fj; H)l-aII(Fj)° < 00 (3.8.1) 
n=l j=l 

and 

II ({JE IF: H(fo , J)2llfo/ fll~2 :::; E~ }) e-n€~c2 (3.8.2) 

for all large n. Then the posterior distribution of II contracts around fo at the 

rate max{En ,En}-

Here we let En= n_,, for I satisfying ,B/(2,B+d) < 1 < 1/ 2, and En= (n/ log(n))-.8!(2.B+d)_ 

The two conditions (3.8.1) and (3.8.2) can be independently verified. 

Verification of condition (3.8.1) 

This follows along the lines of Section 3.1 in Xing (2008). By assumption A3, there 

exists a constant C > 0 such that p( n) :::; e-Cdn log(dn). As in the proof of Theorem 

3.4.3, we let Fj = Cj no~k<j C/ with Cj = Tj(IF). Now using A2, II(Fj) :::; 
. p(k) e-Cklog(k) is bounded above by L e-Cdj log(dj) L = 2c/(2c -Dk~J '-' Dk~ dj , 
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1), when j 2. Since H(f , g) 2 :Ç J If - gl dµ , we have that N(in, Fj; H ) :Ç 

N(i~, Fj) (6/i~)d1 where the last inequality is derived as in Appendix 3.7. 1. 

Now let 0 :Ça< 1 be sufficiently close to 1 so that Ca( l - 2Î) 2Î (l - a). By 

L 3 9 2 th . t D 0 "th ~ oo ( ·Ca ) -.i _,,, (D 2"((1-a)/(Ca:) ) emma . . , ere eXIS S > Wl D j=l 61 _ 0 nZ-y (l - a ) ""::: exp n 

for every large n. We therefore obtain 
00 00 L N(in, F j; H)l -aIT (Fj)°' :Ç L °' L(6n2"f)d1(l-a)e-Cd1 log(dj)a 

.i= l j=l 
00 

:Ç L °' L(6n2'Y)J(l-a)e- Cj log(j)a: 

j=l 

= U' ( je°' )-j L °' exp (Dn 2'Y(l-a:)/(Ca:) ) 
L......t 51-a:n2'Y(l -a) " · 
j=l 

Taking c1 > D and since (1 - 2')') 2Î( l - a )/(Cà), it follows that 

00 00 L e-në;.c1 L N(in, F j) l-a IT (F j)°' 
n=l j=l 

00 

:Ç L °' L exp ( D n2'Y (l-a)/(Ca) - C1nl-2'Y) < oo. 
n= l 

Verification of condit ion (3.8.2) 

This follows along t he lines of the proof of Theorem 2.3 in Ghosal (2001 ) and 

of t he proof of Theorem 2 in Kruijer and van der Vaart (2008). Again En = 
(n / log(n))-.8! (2.B+d) and we let kn be an integer sequence such that kn ::=:: c-;,, 1/.B_ 

The first step of t he proof is to show that for some constant L1 > 0 and for n 

sufficiently large, 

{f : H(fo , J)2llfo/ fll~2 :Ç Lie; } ::) {f E Tkn (IF) : II Tkn fo - fll oo :Ç En }• (3.8.3) 

The probability of the set on the right hand sicle will t hen be lower bounded 

through (3.4.10) . 
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Since li log foll 00 < oo by assumption, there exists constants m , M with O < m < 
fo < M. Furthermore, if f E lF is such that IITnfo - Jlloo < inf Tnfo , then 

M 
llfo/ 111 00 (inf Tnfo) - IITnfo - f ll oo. 

By assumption Al and the resulting positivity of Tn , inf Tnfo Tn(m) --+mas 

n--+ oo. Hence for n sufficiently large that inf Tnfo > m / 2 and if IITnfo - Jlloo < 
m/4, then 

M 
llfo/ 111 00 m/2 - IITnfo - fll oo 4M /m. 

Now, since we are integrating with respect to the finite measure µ, we also have 

H(f0 , !)2 J ( /7- JTof ( 1 + JT!Tor dµ 

m-1 j (f - Jo)2dµ 

m-1µ(M)llf - foll~-

Furthermore, llf - foll oo IITknfo - foll oo + IITknfo - fll oo with IITknfo - foll= = 
O(k:;;, 1113 ) and k:;;, 13 ;::::: En- Therefore, taking n sufficiently large that inf Tkn fo > m/2 

and En~ m/4, we have that IITknfo - Jll oo En implies 

H(fo , f) llfo/ fll~4 L2(k;;/3 + En) L3En 

for some constants L2 and L3 . This proves (3.8.3). 

Now for n sufficiently large, we have E~+d//3 En and E~+d//3 Eo/dkn , where Eo is 

a fixed constant in Theorem 3.4.4. Hence using (3.4.10) we find 

Il ( {J E Tkn (JF) : IITknfo - fll oo ~En}) Il ( {J E Tkn (JF) : IITknfo - f ll oo E~+d//3}) 

(
E~+d//3 ) Kdkn 

p(kn) -d-
kn 

Combining assumptions A2 and A3 , there exist positive constants A and B such 

that 

p(kn);, (Lf'" and dkn B E;.d/ f3. 
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It follows that for n sufficiently large and taking A > K,, 

( 
é~+d//3 ) Kdkn ),: (-1-) Adkn ( é~ +d//3 ) Kdkn 

p(kn) d 1/ d d kn kn kn 

) ( ê~+;d/~) A&~'I' 

exp { -c2nc~} 

for some positive constant c2 > O. This finishes the proof of Theorem 3.4.4. 

3.9 Appendix C 

3.9.1 Auxiliary results 

Lemma 3.9.1. Letµ be a .finite measure on the compact metric space (M, d). For 

each n 0, dn 0, let { <Pi,n}f~o be a set of densities (with respect ta µ) and let 

{Ri,n}f~o be a partition of M. Let Tnf = I:1:o (JR;,n f dµ) c/>i,n, f E L1(M). If 

the three following conditions hold: 

(i} maxi diam(Ri,n ) -+ 0, as n -+ oo, where diam(Ri,n) = sup{ d(x , y) : x, y E 

R ,n}, 

(ii} for all ô > 0, L{i:d(x,R;,n);;,o} µ(Ri,n)c/>i ,n(x) -+ 0, uniformly in x E M, where 

d(x , Ri,n) := inf { d(x , y) : y E Ri,n }, 

(iii} I:1:o µ(R,n )c/>i,n = 1, sa that Tnc = c, for all c E IR, 

then we have IITnf - 111 00 -+ 0 for every continuous density J. 

Proof. Let f be a (uniformly) continuous density on M and let c > O. From (iii} 

we have ITnf(x)- J(x)I I:1:o JR;" lf(y) - f(x)I µ(dy)c/>i,n(x). Take é > 0, there 
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exists ô > 0, such that IJ(y) - J(x) I < c/2, for all y E Bd(x, 6). Using (i), let 

N 0 be chosen so that maxi diam(Ri,n) < 6/2, for all n N. Notice that for 

n N, we have M = Bd(x , ô) u{i:d(x,R;,n);;,,8/2} R ,n; this follows from the fact that 

d(x , y) d(x , S) + diam(S) , for all y E SC M. Therefore, 

ITnf(x) - f(x)I t 1 IJ(y) - f(x)I µ(dy)c/>i,n (x) , 
i=O R; ,n 

dn 1 ; L . " µ(dy) c/>i,n(x) 
i=O R,,nnBd(x ,ô) 

+ 2llfll oo L 1. µ(dy) c/>i,n (x) , 
{i:d(x ,R ;,n);;,,8 / 2} R, ,n 

< E, XE M, 

follows from (iii) and (ii) provided N is further chosen large enough. 

Lemma 3.9.2. If a, b E (0, oo), then as n-+ oo we have 

logf (~:)-j = a (nafb ). 
J=l 

Proof. Let kn = n,/b for some 1 > a and write 

00 
( ·b )-j ( ·b )-j ( ·b )-j J J J - - +km~ -

na " L na n 1,;;;j~kn na 
J - 1 J>kn 

The second term on the right hand sicle is easily seen to be bounded by kn exp (bna/b / e) 
oo ( kb )- j 1 and the first term is bounded by I::j=O = l-na- -y ------+ 1. Taking the log-

arithm and neglecting low order terms then yields the result . 
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