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RESUME

Le théme principal de ce mémoire est ’estimation de densités définies sur des es-
paces métriques compacts en utilisant des méthodes bayésiennes nonparamétriques
(Binette and Guillotte, 2018). Le cas ot I'espace métrique est le cercle, d’intérét
en statistique circulaire et directionnelle, est développé avec une attention par-
ticuliére. Nous proposons dans ce contexte une base de densités de probabilités
des polynémes trigonométriques possédant des propriétés de préservation de la
forme analogues aux densités polynomiales de Bernstein. Une étude de simula-
tion montre que des estimateurs bayésiens nonparamétriques développés a 1'aide
de cette base peuvent offrir des gains par rapport a des méthodes comparables
précédemment suggérées dans la littérature.

D’un point de vue théorique, nous étudions les propriétés de concentration, pour la
distance de Hellinger, des distributions a posteriori issues de modeles engendrés
par des opérateurs d’approximation linéaires positifs de rang fini. Ce type de
modeles généralise les polynomes aléatoires de Bernstein a 'utilisation d’autres
types de bases de densités de probabilités définies sur des espaces métriques com-
pacts arbitraires. Ceux-ci se prétent particulierement bien & ’estimation sous con-
traintes de formes et les calculs a posteriori peuvent généralement étre effectués a
'aide du Slice Sampler de Kalli et al. (2011). Nous obtenons la convergence de la,
distribution a posteriori sous des conditions de régularité particulierement faibles
ne nécessitant pas-d’hypotheses de continuité. Des vitesses de convergences adap-
tatives sont de plus obtenues en termes de la croissance du rang des opérateurs et
de leurs propriétés d’approximation.

Ces contributions sont liées a quelques bases mathématiques présentées dans le
premier chapitre. Nous y introduisons différentes fonctions connues de divergences
sur des ensembles de mesures de probabilités ainsi que leur relation au rapport
de vraisemblance. De nouvelles inégalités de type Pinsker inverse, permettant
d’obtenir des bornes optimales sur les f-divergences en termes de la variation
totale et des extremums du rapport de vraisemblance (Binette, 2019), sont dérivées
dans le Chapitre 2.



ABSTRACT

This work is concerned with density estimation on compact metric spaces using
sieve priors (Binette and Guillotte, 2018). Particular attention is given to the case
where the metric space is the circle as the problem is relevant to circular and di-
rectional statistics. In this context, we suggest a density basis of the trigonometric
polynomials that is analogous, because of its interpretability and shape-preserving
properties, to the Bernstein polynomial densities. A simulation study shows that
the use of Bayes estimators constructed using this basis may provide gains over
comparable circular density estimators previously suggested in the literature.

From a theoretical point of view, we study the convergence of posterior distribu-
tion, in the Hellinger sense, for models that arise as the images of positive linear
approximation operators with finite ranks. These models generalize random Bern-
stein polynomials to the use of other density bases defined on arbitrary compact
metric spaces. They are particularly well suited to shape constrained density es-
timation and posterior simulation may be carried out using the Slice Sampler of
Kalli et al. (2011). Strong posterior consistency is obtained under notably weak
regularity assumptions and adaptative convergence rates are expressed in terms
of the growth of the operator ranks and of their approximation properties.

Some mathematical background is introduced in the first chapter. We introduce
different known divergence functions over sets of probability measures as well
as their relationship to the likelihood ratio. New reverse Pinsker inequalities,
providing optimal upper bounds on f-divergences in terms of the total variation
and likelihood ratio extremums (Binette, 2019), are derived in Chapter 2.



INTRODUCTION

Suppose that some unknown mechanism iteratively generates data points X;, X,
X3, and so on. Our goal is to use finitely many of those observations, say (X;)™,,

to infer characteristics of the mechanism that may be of interest.

The way in which the points X; are generated can be arbitrarily complex and may
stochastically depend on external factors. The starting point of any meaningful

statistical analysis would therefore be an assessment of the dependencies involved.

In the simplest case, which still abstractly encompasses a number of more general
situations, we model the points X; as random variables that are independent and

identically distributed following some unknown probability distribution P.

Our epistemic uncertainty about what may be Fy is quantified through what is
called a prior probability distribution II over the set of all reasonable possibilities
for what Py may be. Given a set A of probability distributions, the prior I;rob-
ability II(A) of A specifies what we consider as the probability that “Py € A”

before any observation of the X; has been made.

Once we have observed the data points (X;),, we may adjust our prior quantifi-
cation of uncertainty about F, through probabilistic conditioning, thus obtaining

what is called the posterior distribution A — II(A | (X;)%,).

This process of first quantifying uncertainty over an unknown state of the world

through a prior probability measure and then making adjustments using the cal-



culus of probabilities in light of new observations is called Bayesian inference.

0.1 Subjects of this memoir

0.1.1 Metrics and divergences on probability measures

Our first chapter introduces some mathematical ideas relevant to the theoretical
developments of the following chapters. We discuss different metrics and topolo-
gies on the space M of all probability measures on the space M on which the
variables X; take values, as this is related to the definition of prior distributions

on M and to the study of properties of the posterior distributions.

0.1.2 Information inequalities

In chapter 2, we derive new best-possible inequalities allowing us to upper bound
f-divergences in terms of the total variation distance and of likelihood ratio ex-
tremums. This work can be inscribed in the field of Information Inequalities:
this is about relating together different distributional characteristics of the log

likelihood ratio.

The motivation comes from Bayes’ Theorem, which states that, in dominated
models, the posterior distribution II(- | (X;)%,), for independent observations X;

with density fo, may be written as

A | (o) o [ [T 45, ©0:11)

The two elements involved in the right-hand side of this formula are the prior

distribution IT and the likelihood ratio f/fo- The logarithm of this likelihood

f(z)
fo(z)

we are interested in its distribution for z a random variable with density fo.

and

ratio is commonly referred to as the “information” function t(z) = log

The study of the behaviour of posterior distributions is therefore typically based on




properties of II, on characteristics of the distribution of the information () over
the range f € F and on the.resulting geometry on F. Characteristics of + include
the total variation between fy and f, their Renyi divergence and their Kullback-
Leibler divergence. Each may be expressed as an expected convex transform of

exp t(x); they are what are called f-divergences.

Information inequalities relate together different characteristics of ¢ as well as the
resulting geometries on F. They are quite fundamental to the study of posterior

distributions. One such inequality, of which we make repeated uses in Chapter 3,

/folog% < (SUP ?) /I‘f—fo|-

This is an instance of a reverse Pinsker inequality: it upper bounds an f-divergence

is

in terms of the total variation distance and the extremums of the likelihood ratio.
While the above is immediate and already quite useful, it can be significantly
improved. In Chapter 2, it is shown that any f-divergence Dy, here characterized

by a convex function ¢ : [0,00) = R with ¢(1) =0 and

Doio ) =E |6 (£)]. o~

we have

#(m) MMU
D =9
SR Dyl ) Q_m+M_1

when considering the class A(m, M,d) of pairs (fo, f) satisfying inf f/fy = m,
sup f/fo = M and [|f — fo| = 26. This idea is developed in Binette (2019)

as a response to suboptimal particular cases that appeared in the information

inequalities literature.

0.1.3 Density estimation using sieve priors

Chapter 3 considers in some generality the case where the variables X; take val-

ues in a compact metric space (M,d). For instance, the variables X; may be



observations of angles distributed on the sphere or of directions distributed on a

sphere.

We exploit sequences T}, : L'(M) — L*(M), n € N, of positive linear operators
with finite ranks mapping F to FF in order to obtain the decomposition
F=|]JT.(F),
neN
where the overline denotes L! closure in F. Given prior distributions II,, on the

submodels T,,(F) and a distribution p on N, we thus obtain a prior IT on F through

O=> p(n),. (0.1.2)

neN

This is an instance of a sieve prior or mizture prior and a number of particular

cases have appeared previously in the literature. Let me showcase a few examples’

and explain how some of our general results of Chapter 3 can easily be used
to obtain asymptotic properties of the 'posterior distribution in terms of simple

properties of the operators T,.
Random Bernstein polynomials.

With M = [0, 1], take T;, the Bernstein-Kantorovich operator defined as

Tof iz— (n+1) Z/, f(w) dup; (),
i=0 ¥ =¥l

where pin(z) = (})2*(1 — z)"* is the ith Bernstein polynomial of degree n. It
follows that
n
Tn(]F) = {(n + 1) Z Cj’npj,n . cj,n‘ 2 0, ch’n = 1}
i=0 j
is the set of finite mixture of Bernstein polynomial densities of degree n. With II,, a
Dirichlet distribution on the coefficients (¢jn) with parameters for instance a;, =

1/n and p a distribution on N with subexponential tail, we obtain a particular



case of the random Bernstein polynomials of Petrone (1999). Theorem 3.4.3 entail
" strong posterior consistency at all bounded densities provided also that p(n) > 0
for every n € N. Theorem 3.4.4, together with the well-known fact that |7, f —
fllo = O (wy(n~"/?)) where wy is the modulus of continuity of f, yields the
posterior contraction rate &, = (n/log(n))~#/8+2 whenever log p(n) < —nlogn
and the data generating density f, satisfies the the Holder continuity condition
wy,(6) < C8P for some C > 0 and B > 0. The strong posterior consistency
result refines Theorem 2 of Petrone and Wasserman (2002) by removing continuity
assumptions on fy while the posterior convergence rate we obtain is the same, up
to log factors, as that obtained in Kruijer and van der Vaart (2008). However, the

generality of our approach makes it readily applicable in other contexts as well.

Random histograms on metric spaces. Let M be an arbitrary compact
metric space and let {Rj,n}?lo be a measurable partition of M of diameter less
than n~! with d, € N elements. We assume that max; u(R;,)~! = O(d,) and
that d,, is an increasing integer sequence satisfying d,, < n¢ for some d > 0. Define

dTl

Tf oS / J(w)du p(Rin) 1, (a)
j=0 Y Rin

so that J
Tn(]F) = {Z Cin u(Rj,n)"lileln . Cj,n > 0, ch’" = 1}
Jj=0 J

and ||T.f — fllo = O(wg(n™!)) for any continuous f. With IT, a Dirichlet distri-
bution on the coefficients (c;,) with parameters «;, = 1/d, and p a distribution
on N satisfying log p(n) < —d, log(d,), we obtain from Theorems 3.4.3 and 3.4.4
strong posterior consistency at any bounded density and the posterior conver-
gence rate €, = (n/log(n))#/A+4) provided that f; satisfies a Holder continuity

condition with exponent 8 > 0.

The general form of positive linear operators. The Bernstein polynomials



and piecewise constant functions can be replaced by many other types of basis
functions: splines with fixed knots, Gaussian kernels at predetermined locations,
etc. The properties of resulting posterior distributions are then studied through

the associated sequence of positive linear operators.

By the Riesz representation Theorem (Rudin, 1987), any positive linear operator

and such that 7;,(1) = 1 takes the form
Tof :z— E[f(Ya(z))] (0.1.3)

for some families {Y,,(z) : € M} of random variables. In the examples considered
above, it is an easy exercise to explicit a definition of Y;,(x). The expression (0.1.3)
is especially useful when required to obtain the approximation rate of T;,. Indeed,
suppose that the modulus of continuity of f satisfies ws(nd) < nwys(§) for any
n € N and 6 > 0. This is the case, for instance, when M is a smooth compact
submanifold of Euclidean space together with its geodesic distance. Then for any
sequence &, — 0 we have that

ITnf = flloo < wys(dn) {2 + 5;1 SESHE [d(Yn(-'E)’ x)]ld(Yn(x),x)Zdn] }

< wy(dy,) sup {2 +6,2supE [d(Yn(z), 7)?] } .
zeM zeM

We may show that sup,cy 0, E[d(Yn(z), )] is uniformly bounded in n, which

therefore entails that
|Tnf — fllo = Ows(6n))-

. The square of the distance function is easier to deal with in some caseé, such as
when d(z,y) = |z — y| on [0,1]. In this case, if sup,cy E[d(Ya(z),2)?] < o2 for

some sequence of “variances” o2 € R, then by letting d, = 0, we obtain that

ITof = flleo = Ows(77))-



This relates the uniform contraction rate of the variables Y,(z) around z to the

approximation rate of T,,.

Interpretability and shape constrained estimation. It is notoriously diffi-
cult to elicit priors on infinite dimensional spaces. The use of a sieve priors such
as (0.1.2) reduces the problem to that of eliciting a prior on the finite dimensional

subsets T,,(F), which always admit a representation of the form

dn
T, (]F) = {Z Cin ¢j,n}
=0

for some basis densities ¢;, and coefficients c;,, and a prior p on the parameter
n. This parameter n may be thought as representing the cofnplexity of the sieve
through its dimension d,,. The asymptotic theory of Chapter 3 suggests taking
p(n) < —d, log(d,) or p(n) < —d,, and also provides some guidance for the choice
of the prior on T, (F). The Bayes estimator resulting from (0.1.2) is simply the
mixture of the Bayes estimator obtained from the priors II,, on T, (F), weighted

by the posterior probabilities of each model.

In some cases, the operators 7,, may be extended to act upon probability mea-
sures; see again Chapter 3 for more details. If D is a Dirichlet Process, then the
prior induced by the random density T (D) where N ~ p is independent of D is
both a Dirichlet Process Mixture and a sieve prior as in (0.1.2). The intefpretation
as a Dirichlet Process Mixture is especially useful in view of the computational
methods developed in Kalli et al. (2011). The sieve prior representation is oth-
erwise typically more suited to reversible jump MCMC algorithms for posterior

simulation.

We may also want to incorporate very precise types of prior information into the
model. For instance, if fy is defined on M = [0,1]2, we may know a priori its

marginal distributions. Or we may know that fy defined on [0, 1] is monotonous.



The sieve prior (0.1.2) is particularly well suited to the incorporation of such shape

constraints.

Indeed, it suffices restrict F to be the set of all bounded densities satisfying the
required shape constraint, and to let 7,, be such that 7,,(F) C F. This is possible’
in mentioned particular cases, e.g. for copula density estimation and monotone
density estimation. The theory continues to apply in this context with still the

same interpretability and with rates of convergences depending on the dimensions
of T,(F).

0.14 Circular statistics

The above theory has been developed concurrently to the study of a circular ana-

logue to the Bernstein polynomial densities which we use in Chapter 3 to construct -

sieve priors on circular density spaces. The density basis of the trigonometric

polynomials that we consider is given by

Cjn(u) o< (1 + cos (u— 22_n+L1))“

with a known normalizing constant and j € {0,1,2,...,2n}. The central element
Co,n is, up to a multiplicative constant, the De la Vallée Poussin kernel studied
in Pélya and Schoenberg (1958). The consideration of this set of translates was
proposed in Réth et ’al. (2009) in the context of Computer Aided Geometric De-
sign. Here we have studied properties of C;, which are particul‘arly relevant to

mixture modelling.

As such, we provide the Fourier coefficients of Cj, which are also referred to in
the directional statistics literature as the trigonometric moments. These provide -
the change of basis formula between the C;, and the usual trigonometric basis
{1, cos(u),sin(u), ..., cos(nu),sin(nu)}. Together with the method for the effi-

cient simulation of the Cj, provided in Chapter 3 and the characterization of



positive trigonometric densities as mixtures of the C;,, this shows how any posi-
tive trigonometric density can be directly simulated as a mixture and provides an

algorithm to do so.

: . : 2
Some properties of a mixture density f = 3 ") ¢;nCjn, Where cjn > 0, 3, cjn =

1, can also be easily related to properties of the vector of coefficients (Cj,n)?io-

Those can be neatly stated in terms of properties of the operator

2n '
T.f=)_ / flu)duC;, (0.1.4)
j=0 Y Bin
with R;, = |=&=D m(2i+l) Using variation diminishin ties of the D
in = | it ot |- g properties of the De
la Vallée Poussin kernel studied in Pélya and Schoenberg (1958), it is shown in
Chapter 3 that T, reproduces constants, that it preserves periodic unimodality
and diminishes total variation. Furthermore, |T,f — fll.o — 0 as n — oo for
every continuous f. The same kind of properties hold for the De la Vallée Poussin

means
2n

Vif@ = | (e —wCon(u)du

0
for which it is also known that [|Vof — fllee = O(ws(n~%/2)) (Lorentz, 1986).

Approximation rates can be obtained for 7, defined in (0.1.4) using the technique

described in Section 3.4.4.

In order to showcase the prdctical usefulness of these densities and of the frame-
work which we used to construct sieve priors, we have compared the finite sample
performance of our Bayes estimators to other circular density estimators based
on trigonometric polynomial densities. Notably, Fernéndez-Durén (2004) used a
surjective parameterization of the space of all trigonometric densities through a
complex hypersphere in order to compute maximum likelihood estimators. Model
dimensions are chosen using the AIC or BIC criteria. In Fernidndez-Durdn and

Gregorio-Dominguez (2016a), posterior means are also considered. The density
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estimators based on our models provide the best performance in a variety of sce-
narios. These results are not meant to show that our estimators are best-possible,
but éimply that the De la Vallée Poussin basis should be considered for circular
density modelling, especially when there is an availability of prior information to

support informed Bayesian estimation.



CHAPTER 1

METRICS AND DIVERGENCES FOR PROBABILITY MEASURES
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Let (M, d) be a complete and separable metric space together with its Borel o-
algebra By and let M be the space of all probability measures on (M, By).
This section presents elementary facts about M and its common metrics and
topologies, some of which may be found in Aliprantis and Border '(2006); Ghosh
and Ramamoorthi (2003a); Gibbs and Su (2002); Billiﬁgsley (2013).

1.1 The total variation distance

The space M embeds in the (complete) normed linear space of measﬁres u© with
finite total variation ||p|l, = supsem,, |#(A)| and inherits the total variation
distance dpv(p,v) = ||p — v||py- While this metric is easily interpretable as mea-
suring worst case difference in mass allocation, it is so at the loss of tractability of
the resulting metric space: M, with the total variation distance, is not separable

‘unless M is countable.l

However, the problem disappears when considering dominated subsets of M as

such sets identify with part of a suitable L' space.
Lemma 1.1.1. A subset F C M is dominated by a .a-ﬁm'te measure if and only

if (F,drv) is separable.

Proof. First suppose F is dominated by a o-finite measure A. Take u,v € F and
consider the densities (i.e. Radon-Lebesgue-Nikodym derivatives) f = du/dA,

1To seé this non-separability, suppose M is uncountable and consider the subset {0, }zem
of point mass measures. Let also E C M be such that for every z € M, there exists v, € F
with ||z — vz||py < 1/2. It follows that v, must contain a point mass at z. Since v; is finite, it
contains only a countable number of such point masses. Any countable number of such measures
can only approximate in this way a countable subset of {6;},em. This shows E is uncountable

and hence M is not separable.
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g = dv/dX\in L}(\). Theset A ={z € M| f(z) > g(z)} € Bm is such that
e = vy = (B —v)(A) = (v — p)(M\A) and it follows that

1
I =l = 5 [ 17 = glax R RY

Hence drv is equivalent to the L' distance on the identification of F with its
densities {du/d\ | p € F} < L'()\). Since ) is o-finite and By countably
generated, L1()\) is separable and so must be (F,drv).

Conversely, if (F,dry) is separable, let £ = {u, | n € N} be a countable dense
subset of F. We show that A = Y un2™" dominates F. Let A € By be such
that A\(A) =0, fix p € F and € > 0. Then p,(A) = 0 for every n and by density
of E there exists a n € N such that u(A) = |u(A) — un(A)| < €. Since € > 0 was
arbitrary, u(A) = 0. This shows pu < A for every p € F. O

1.2 The Prokhorov metric and weak convergence

As to obtain a complete separable metric structure on M we may relax the total

variation distance the Prokhorov metric dp. It is defined as -
dp(u,v) = inf{e > 0 | VA € By, u(A) < v(A°) + €} (1.2.1)

where A° = {z € M | d(z, A) < ¢} is the e-neighborhood of A and d(z, A) =
inf{d(z,y) | y € A} (Strassen, 1965; Prokhorov, 1956). This provides a metriza-
tion of the topology of weak convergence of probability measures (see for isntance
Huber (2011)), also known as the weak-* topology of the continuous dual of Cy(M),
which is further described by the Portmanteau theorem (see Billingsley (2013)).

It follows from (1.2.1) that dp < drv. Hence total variation convergence implies
weak convergence. The converse obviously does not hold, as can be seen by

considering the sequence of measures p, = =Y o &/, defined on [0,1] C R.
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While {u,} does not converge in (M, drv), it converges to the Lebesgue measure
in (M,dp). The approximation properties of measures with finite support are

further discussed in the proof of the following lemma.

Lemma 1.2.1. The space (M, dp) is separable if and only if (M, d) is separable.

Proof. Suppose (M, dp) is separable and consider the map ¢ : Ml - M : z — §,.
Fix z,y € M and let ¢ = min{d(z,y),1}. The fact that d,({z}) < 6,({4}¢) +¢
shows dp(¢(z), ¢(y)) = € and obviously 6,(A) < 6,(A%) + § for every § > ¢ and
A € By. Hence dp(é(z), ¢(y)) = min{d(z,y),1} and ¢ eétablishes an isometry
between (M, d) and (M, dp) when d = min{d,1}. Thus (M, d) is separable and
so is the homeomorphic (M, d).

Now suppose (M, d) is separable and let F be a countable dense subset. We
show that {d " ; @ids, | n € N, % € Q, z; € E} is dense in (M, dp). To this
end, fix € > 0 and let o € M. Let n € N and {z;}}.;, C E be such that
p(M\ UL, B(zi,€)) < /2 and consider v = Y-, @;0,, where o; € Q is such
that |a; — ,u(B(:ci,e))| < e/(2n). Then for any A € By,

+Zu :c,,a/2 YN A) €+Za,—‘l/AE

T;EAS

which shows dp(u,v) < €. O

The following theorem provides coupling characterizations of the two metrics seen
thus far and highlights how exactly dp weakens dry by taking into account the
metric structure of M. A proof can be found in Dudley (2002) and here we denote
Al = {z e M | d(z, A) < 6}. ’

Theorem 1.2.2 (Strassen (1965)). Let pu,v € M and let C be the set of all pairs
(X,Y) of random variables on (M,By) (defined on some common probability
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space of probability measure P) with marginal distributions p and v, respectively.

Then for every €,0 2> 0 following two statements are equivalent:

(i) for every A € By, p(A) < v(A%) +¢;

(ii) there exists (X,Y) € C such that P (d(X,Y) > ) <e.

- Considering the cases § = 0 and ¢ = ¢ yields explicit descriptions of drv and dp.

Corollary 1.2.3. Let i, v and C be as in Theorem 1.2.2. Then
= inf <
drv(p, V) (Xl’g)ec{e >0|Pd(X,Y)>0)<e}

and

= ] < .
dp(p,v) (X{§§€c{€ >0|P(d(X,Y)>e) < e}

We conclude the presentation of (M, dp) with a simple measurability result rele-

vant to the definition of random probability measures.

Lemma 1.2.4. The evaluation maps M > p v+ u(A), where A € By, are Borel

measurable.

Proof. The definition of dp entails the map f(u) = p(A) is upper semi-continuous
whenever A is a closed set. Indeed, fix yg € M, € > 0 and let § > 0 be such that
6 < €/2 and po(A°\A) < /2. Then by deﬁnitioﬁ dp(p, o) < 6 implies p(A) —
po(A) < po(A%\A) + 6 < e. Since semi-continuous functions are measurable, this
shows the family A of sets A € By such that p — p(A) is measurable contains
the m-system of closed sets of M. It is immediate to verify A is also a A-system.

From Dynkin’s theorem, we obtain that A D By O
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1.3 The Kullback-Leibler divergence

We now turn to another measure of discrepancy between probability measures;

introduced by Kullback and Leibler (1951).

To motivate its definition, let A\, u,v € M and consider the problem of testing
Hy : A= p versus Hy : A = v given an i.i.d. sample {X;}*, of sizen € N with
common distribution A\. We write X = (Xj,...,X,) ~ A™. Assuming y, v and
A are mutually absolutely continuous?, we can define their likelihood ratio as

_TT %
B i=1 dI/

9 )

dv (X:) € [0, oo]. (1.3.1)

The weight of evidence brought by the sample X in favor of H; versus Hj is
defined as W(X) = log %(X) (Good, 1985). This is also known as the relative
information of X according to (u,v) (Sason and Verdi, 2016), and is the usual

statistic of the likelihood ratio test.

The Kullback-Leibler divergence D(u||v) between u and v is the expected weight
of evidence brought by a single observation taken under the hypothesis H; (taking
the expectation under Hj simply reverses the sign). In the words of Kullback and
Leibler, it is the “mean information for discrimination between H; and Hj per

observation”. Hence formally

D(uflv) = /M log (fl—’;) d. (13.2)

When p, v are not absolutely continuous with respect to one another, we define
D(p|lv) = oo. This case does not always require particular care as we may

introduce { = p 4 v and write D(u|lv) = ff>0flog(f/g)d§ with f = du/d€ and

2This assumption is not completely necessary, but it is enforced here as to simplify the

discussion.
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g = dv/d¢. Equation (1.3.2) is well defined as the integral of the negative part of
the integrand is bounded:

—/ log <d_/z) du S/ (d—y — 1) du
{dp/dv<1} dv {du/dv<1} \GH

= v({du/dv <1}) — p({dp/dv < 1})

<1

Thé following theorem shows that the magnitude of D is a statistically meaningful
quantity. Here we let Y be some measurable space and 7" : M — M a measurable
transform. We denote by uT~! the pushforward measure defined by puT-1(A4) =
w(T~1(A)) for A C Y measurable.

Theorem 1.3.1 (Kullback and Leibler). If u,v € M are absolutely continuous
with respect to one another and if T : M — Y is a measurable transform of
M, then D(puT |vT™1) < D(u||v) with equality if and only if T is a sufficient
statistic for {u,v}.

. - -1 - - dy /(di
Proof. To ease notation, write i = pT~*, 7 = vT~! and let h = /(% o T).

Remark that by change of variable

D(ullv) — D(@l|7) = /M (log () —log (% 0 T)) dp = /Mlog(h) n
Since fM 1/hdp = 1, Jensen’s inequality together with the convexity of the func-
tion ¢(t) = tlog(t) yields D(u|lv) — D(ii||#) = ¢(1) = 0 with equality if and only if
h = 1 p-almost surely. Hence equality happens if and only if %ff = % oT p-almost
everywhere which, since p4 <« v and v < p, amounts to saying T is sufficient for -

{u,v} (Halmos and Savage, 1949, Theorem 1). O

Considering the case where T is constant yields an equally important result.

Corollary 1.3.2. If p,v € M, then D(u|lv) > 0 with equality if and only if

©=v.
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1.3.1 Exponential convergence of the likelihood ratio

The importance of the Kullback-Leibler divergence in Bayesian nonparametrics
and asymptotic statistics stems from its characterization of the likelihood ratio’s

exponential convergence.

Proposition 1.3.3. Suppose p,v € M are absolutely continuous with respect
to one another and let {X; | i € N} contain independent random variables with

distribution p. The following two statements are equivalent.

(i) D(pllv) < oco.

(i) There exists an R € [0, 00) such that [[5; %(X;) = exp {nR + o(n)} almost

surely.
Also, when the statements hold, we have R = D(pl||v) in ().

Proof. Note that (i1) is equivalent to = 37 | log %(X,-) = R+ o(1) almost surely
for some R € [0,00). By the Strong law of large numbers, this happens if and
only if R = E [log 2(X;)] = D(u|lv). O

Given a bound on the second moment of du/dv also provides a stochastic control
on the fluctuations of the likelihood ratio. Here we state a result of this kind

which is particularly helpful to the study of posterior distribution.

Lemma 1.3.4 (Lemma 8.1 of Ghosal et al. (2000)). Let II be a prior on a subset
F of (M, dry) with respect to its Borel o-algebra. Fiz e > 0, 61 > 0, 6o > 0 and
_ 2

let W ={ucF| [log® dde <, [ (log %ﬁ) dv < 62}, If (Xi), is a sequence

of independent random variables with distribution v, then

/ H (X)(dp) > e ™O+IT(W) | (1.3.3)
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holds with probability at least 1 —

6‘2

Remark 1.3.1. The Lemma shows how the Kullback-Leibler divergence, here con-
trolled through the constant §;, provides a probable exponential bound on the
convergence of (an average) of the likelihood ratio. The second moment bound 4,

of the log likelihood ratio acts linearly on the probability of the lower bound.

Proof of Lemma 1.3.4. Assume, without loss of generality, that II(W) > 0 and
let II = II/TI(W) be the renormalization of IT over W. By Jensen’s inequality,

log/ de X)(dp Z/ logd II(dp)

and hence the complementary probability of (1.3.3) is

& d | T +e ]
P (/WHd’:(X M(dp) < e )) <P (Z/ logd (X)I(dp) < —n(d —I—s)).

Subtracting the average E = —n [, D(v||p)II(d) of S0, [, T, 2 (X:)I(dy)
and using the fact that £ > —nd;, this is upper bounded by

where the last inequality follows by.ChebyChev’s inequality. By Jensen’s inequal-
ity, (fw log 2 (X,)I1 (du)) fw (log%’f(Xi)fﬁ(du) and by Fubini’s theorem
and the definition of W we obtain that the expectation of f;,, (log %(Xi))z I(du)
is bounded by d,. - g
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1.4 f-divergences

A large and very useful family of measures of discrepancy between probability
measures is obtained by considering expected transforms of the likelihood ratio.
The basic idea is that, for the purposes of likelihood based inference, any mean-
ingful measure of distance or discrepancy between probability measures should be
function of their likelihood ratio. In particular, expected convex transforms of the
likelihood ratio encompass a number of useful particular cases and share useful

properties.

Definition 1.4.1. Let f : [0,00] — (—00,00] be a convex function which is
strictly convex at 1 and such that f(1) = 0. Given two probability measures

i, v € M such that 4 < v, the f-divergence between p and v is defined as

D) =& |1 (%)| = [ 1(%) aw (1.4.1)

Remark 1.4.1. Part (i) of Proposition 1.4.2 shows that Dy is well-defined: while
it may be infinite, the integral of the negative part of f(du/dv) with respect to v

is always finite.

Table 1.1 summarizes a few of the most common f-divergences.

Remark 1.4.2 (Hilbert interpretation). Let F be a separable subset of (M, drv)
and let \ be a dominating o-finite measure. While F is naturally identifiable with
part of L'()\) (see the proof of Lemma 1.1.1), the identification p — +/du/dX €
L?()\) with part of the unit sphere of the Hilbert space L2()\) ‘provides additional
tools. The resulting inner product of L? is referred to as the (1/2)-affinity defined
by

Avpa(s,v) = (Vdpu]dx, /dv]ax)

and the L%()\)-distance for root densities is referred to as the Hellinger distance

21N

H(p,v) = [V dp/d\ — /dv/d]| 2z
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Table 1.1: Common f-divergence definitions and related functions.

f-divergence Symbol  f(t)

Total variation distance - drv(p,v) 3|t — 1], max{0,t — 1}
E., divergence E,(p,v) max{0,t—~v}
Kullback-Leibler divergence D(u|lv)  tlog(t)

Squared Hellinger distance H(p,v)?  (Vt—1)?
x2-divergence Xu,v) (B2 —1), (t—1)?

Hellinger divergence of order a >0 Ho(u,v) (t*—1)/(a—1)

Related functions

» ) 1/2
Hellinger distance - H(u,v)= (f (x/d,u/du - 1) du)
o-affinity (@ > 0) Al ) = E, [(dufdv)°]
Rényi divergence of order @ > 0 Do(p,v) = log (Aa(p, v)) /(e — 1)

These quantities are monotonous transforms of the Hellinger divergence, of the

Rényi divergence and of a-affinity.

Proposition 1.4.2. Let Dy be any f-divergence, as in Definition 1.4.1.

(i) E, [max{0, - f (du/dv)}] < oo
(it) We have D¢(u||lv) = 0 with D¢(u|lv) =0 if and only if p = v.
(i) If T is any measurable transform of M, then Dy(u|lv) > D;(uT-t,vT™?)

with equality if and only if T is a sufficient statistic for {u, v}.

Proof. (i) Since f is convex with f(1) = 0, either f(t) = 0 for every t > 1 or
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f(t) 2 0 for every 0 <t < 1. In the first case,

E, [max{0, —f (du/dv)}] < E, [ f (max{dp/dv, 1})]
< —=f (E, [max{du/dv, 1}]) < occ.

by Jensen’s inequality. The second case follows similarily.
Taking T any constant function, (ii) is seen to be a particular case of (7).

In order to prove (iii), let i = uT~1, U = vT~! and note that

0 =Exe, |00 1 T0) =)

1%

Hence using Jensen’s inequality and with’X ~ v we find
Ds(ulv) = E | £ (L)
7\ dv

~s[e (0)1 00
e (o[ f01 v )]

_E :f (%mx»)} — Dy ().

Since f is strictly convex at 1, equality holds if and only if %’5 = %% o T v-almost
everywhere. Because p < v, this is the same as saying that 7" is a sufficient

statistic for {y, v} (Halmos and Savage, 1949, Theorem 1). O

14.1 Application in importance sampling

One particularly accessible and useful subject in which f-divergences appear is in
error quantification for importance sampling. Without delving very deep in the
theory (see Chatterjee and Diaconis (2018); Agapiou et al. (2017); Sanz-Alonso

(2018) for more details and arguably converse results on necessary sample sizes),
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let me introduce the problem and state expected error bounds in terms of f-

divergences.

Let ¢ be integrable with respect to a measure v and define I(p) = [ ¢dv. The
goal is to estimate I(y) using a sample {X;}%, of 1ndependent random variables

with identical distribution u satisfying v < p. To this end, let

1 — dv
p) = E;WX

and notice that E [I,(¢; 1)) = I(p). The law of large number entails almost sure
convergence of I(¢; u) to I(y), and the almost sure convergence rate |I,(¢; p —
I(¢p))| = o (n'/P=1) is provided by thé MZ Theorem under the assumption || dv/dp| e .y <
oo for some 1 < p < 2. If [[pdv/dpl| 12, < oo, then the Central Limit Theorem

yields confidence intervals.

For the study of expected errors, it is an easy exercise to see that the variance
of I,(yp; 1) is minimized at I,(y; u*), where u* is such that du*/dv = |o|/I(|«]).
In this case, Var(I,(¢; z *)) = (I(l¢])? — I(¢)?)/n. In general, a straightforward

calculation shows that we have

I(|:I)2X2(M*: ©) + Var(I,(v; 1*))

2(,,*
+1
I(loh2X (w*, 1) _
(lel) T

Var(I,(p; 1)) =

While the term I(]¢]|)? is typically not precisely known in pfactice, the inequalities
du*

-1
dp

Lee(p)

(et p) <

)

drv(p*, 1) < ”

d“ Lo ()

which can be found in (Binette, 2019), can help control the x? divergence.

In the case where x?(u*, ) = oo, and consequently Var(I,(p; 1)) = oo, we can
still get first moment bounds on the absolute error in terms of the tail distribution

of du*/du. The following proposition is a variation on the first part of Theorem
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1.1 of Chatterjee and Diaconis (2018). We chose to express the result in term of
the tail of du*/du, instead of the tail of dv/du, as the former incorporateé aspects
the function ¢. Otherwise, minimizing a divergence between v and p may be

entirely unrelated to the minimization of the expected error.

Propositiobn 1.4.3. Let Y ~ u* and p = du*/du. Then for every a = 0,

E (i 1) — 1)) < I(l¢) (\f; PG >0). 142

Proof. In order to simplify the notation, let f = I(|¢|)sign(¢), h = f1(p < a)
and define |

3$)= [ raw = 1(9)
and .
(i) = = 37 JXDpX0) = i)
Following Chatterjee and Diaconis _(2018), write .
[Ln(i05 1) = I()| < |Ju(f5 1) — Tulbs )] + [Ju(hs ) = J(R)] + | I (R) — J(f)].
Now for the first term |
E [|Ju(f; 1) — Ju(hs 0)]] < E[|F(X0)p(X1) = A(X)p(XD)]
= I(l¢[)P (p(Y) > a),

for the third term
[J(h) = J()| = I()B(p(Y) > a),
and finally, noting again that E [J,(h; u)] = J(h), we find
E[|J(g) = J(W)[] < (Var(J ()2
< (E [(h(X)p(X:))%])

< Lol 2

Combining the above yields the result. | O

1/2
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Controlling the decay rate of the tail probabilities P (o(Y") > a) in terms of Hellinger

divergence provides the following bound.

Corollary 1.4.4. For every 3 > 0,

1 .
Bt~ 19 <21 LS

Proof. By Markov’s inequality, for any 8 > 0,

P((Y) > 0) < a~* / (d“*)ﬁ dp

dp

d,LL* B+1
— B
¢ / ( du ) s

=a P (BHpn (", ) +1).

With a = n!/(+28) and combining the above with Proposition 1.4.3 yields the
result. ' _ : O

1.4.2 Application of f-divergehces to risk bounds

Cramer-Rao variance bound. Let F = {py | § € ©} C L'()\) be a set of
densities with respect to the o-finite measure \, where © C R¥ is open and the map
0 — py is injective. We also assume.that map (6, z) — pp(z) is sufficiently regular,
and we freely interchange integration and differentiation throughout. Now suppose
that {X;}, is a sequence of independent variables with common distribution py,
for some 6y € ©, and consider an unbiased estimator 9n of 8y which are functions

of only {X;}~,;.

The Kullback-Leibler divergence x(6) := KL(pg,, pg) describes how easily we may
discriminate 6 from 6, on average, using an observation X ~ py,. Since 6 is a

minimum of k, the first order rate of change of k at this point is zero. The Hessian
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of k, also referred to as Fisher’s information matrix, provides more information

about variation around 6.

Consider, for instance, a direction u € R¥, ||lullz = 1, and let " () be the second
derivative of & in direction u evaluated at 6;. Because &'(6p) = 0, this is the
curvature of k at 0y in direction u. The Cramer-Rao variance bound states that

for every 6, € ©,
E (6, — 60, )] > (ne"(60) ™

That is, the mean squared error of 6, in direction u is always greater than
1/(nk"(6p)). Note that the quantity x”(6) is the same as Fisher’s information

matrix evaluated as a quadratic form at u.

For the proof, it suffices to consider the case n = 1. Let Jy be the differential op-
erator with respect to 8 in direction u. For instance, 0y, (log pg,) is the differential

of 8 — log pg in direction u evaluated at 6. Using the fact that

/30(10gp9)p9 d\ = /’89(199) dA=0

for every 6§ € © and differentiating under the integral, we find that

k" (60) = E [ (8, (log p,(X)))*] -

Hence by the Cauchy-Schwartz inequality and integrating by part, we find

\/E [(én - 9o,u>2] K"(6) 2 /390(;000)(91 - 9@”) dX
= Op, (/(él — 6o, u)Pe, d/\) - /390(<é1 — bo; u))pg, dA

= <690 ( / (61 — 60)pa, d/\> u> +1.

Since 6, is unbiased, il (91 — 8)pg d)\ = 0 for every 6, its derivative at 8 is also

zero, and we obtain the result.
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In the biased case, that is if E [él (X )] — 8y = b() for some differentiable function

b, then a direct adaptation of the above proof yields

((600 (b(QO))7 ’LL) + 1)2
TLK,”(HO) ’

E [(én —Ho,u)2] >

Minimax and Bayes risks lower bounds. Let F={py | 8 € ©} C L}(N)
be a set of densities with respect to the o-finite measure A, where © is an arbitrary
set and the map 6 — py is injective. We will also need to assume that (0, z) +—
pe(z) is measurable in the product space once the Borel g-algebra of © has been
introduced. The probability measure corresponding to ps is' denoted Py and the

expectation under Py is denoted by E,.

Given a loss function £: © x © — [0, 00), we define the minimax estimation risk

as

R = inf sup Eg, [5(90, é)] (1.4.3)
) 0 6p€©

where the infimum is taken over all estimators . It is a lower bound on worst case

expecﬁed loss. Provided a prior II on ©, the Bayes risk associated to II becomes
R = inf / o, [£(00,)] T1(d80). (1.4.4)
8 Jo
Note that (1.4.4) is a lower bound on (1.4.3), for any prior II on ©.

The Bayes risk can be bounded as follows. Let B.(6p) = {6 € © | £(8,6,) < €}
and let pg, < (z) = Egunn [pe(z) | £(6,00) < €] be the density obtained by normalized
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averaging over B, (6fp), assuming II(B (00)) > 0. Using these notation, we find

51nf/IPg €6,0) > H(dﬁ)

(1— / sup / £(6,0(a)) < <) po(a)1(d6) )\(da:))

e (1— / sup /e 1 (£(6, 86) < €) pol(z)TI(d6) A(da:))
=€ (1 - / sup I1(B:(00))pes . (%) ,\(da:)) :

Now let rre = 1 —. [ supy, II(Be(60))poo,(z) Mdz). Following Theorem II.1 of
Guntuboyina (2011), we show that for any f-divergence D; and any probability
measure Q < A, if rp. > 0 then

[ prl@man > wr (<578 ) ca-wis (25) a4
where W = [II(B.(7(x))) Q(dz) and 7(z) = argmaxg, H(BE(OO))pgo,E(:b). Indeed,
with ¢ = dQ/dX and for any 6, € ©, we have

Boan | (2)] =100 Eonn |7 (22) 1 66,00) < <]
+ T1(B.(60)°)Egrr l f (%) | £(0,00) > e] .

Denoting pg, e« = Epri [po | £(6, 60) > €], this is bounded by
(00 f (22 ) + mB))f ().

With 6y = 7 and integrating with respect to @), we find
[ orwionw) > [ne.cens (P25 o

+ [y (P25 g,

Using the convexity of f and the deﬁnition of W, it can be checked that this is
bounded below by

Wt (1 “WT”’E) J}(1 —W)f (:’W) .
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Now inequality (1.4.5) can be inverted in some cases, as to provide a lower bound
on 7, and consequently also a lower bound on Rp. A general technique, which
is Corollary II.2 in Guntuboyina (2011), uses a first order approximation of the
convex function g(r) =W f(1—=r)/W)+(1-W) f(r/(1-W)): for0 < 1o < 1-W,
we have ¢'(r9) < ¢'(1 — W) =0, and hence

/e D (PollQ)TI(d8) > g(rme) > 9(ro) + ¢'(ro) (ree — 7o)

implies
D¢ (P I1(do) —
e > 7o + Jo s 9”Q,) (d6) = 9(ro) (1.4.6)
g'(ro)
Since () was arbitrary, we also have
inf Ds(P I1(d6) —
re > o+ 2 Q< Jo Dr(Po||Q)TI(d0) 9(‘7‘0). (1.4.7)

g'(ro)

To see how this may be used in practice, suppose that II satisfies the condition
I(B.(6p)) € {0,1/N} for some N > 1 and every 6y € ©. In this case, W = 1/N.
If f(t) = tlog(t), so that Dy is the Kullback-Leibler divergence,-and with o =
(N = 1)/(2N — 1), we find ¢/(ro) = log(1/N), g(ro) = {(n — 1) log(n/(2n — 1)) +
nlog(n?/(2n —1))}/(2n — 1) and

o1l infgoen f@ D(IP||Q)I1(d6) + log(2N — 1) — log(N)
the Z log(N)
| infges Jo Dy (Bl Q)TI(d) + log(2)
~ log(NV) '

The existence of such a probability measure II can be seen as depending on the
metric entropy of ©. Suppose for instance that the loss £ is a distance and let
©. be a 2e-net of ©, which we assume to be finite. That is, for any 6,6’ € 6.,
either £(6,0') > 2¢ or § = 6. Then with N = N, = |[©,| and [T = § > ycq_ g, We
have I1(B.(6y)) € {0,1/N} for every 6y € © and the minimax and Bayes risks are
‘bounded below by

infgen Jo Dy (PollQ)TI(d0) + log(?)
i (1 log (V) ) |
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In order to bound infg«n [ D(Pe||Q)II(dF), fix § > 0 and suppose there exists a
finite set ©f C © such that for every 8 € ©, 3¢ € ©f with D(Py||Pe) < §. Then
with Q = IGLQI > ocey, We find
inf [ D(Py[|Q)T1(df) < sup D(Py||Q)

) )

Q<A

and for every 0 € ©,

- o 2o(X)
D(Ps||Q) = Ex~p, [l 8 (@ 20'663 pg/(X))]

< log(&51 jnf D(Bs|[Py)
[

< log(|0%]) + 6.

We therefore obtained

(1.4.8)

/
Ry>e (1 _ log(|©5]) + 5+10g(2)> .

log(|©|)

The quantities |©}| and |©,|, which are respectively covering and packing numbers
for the Kullbéck—Leibler divergence and the ¢ distance, can be related to one
another using inequalities between ¢ and the Kullback-Leibler divergence. With
d such that log(|05]) = ¢ and ¢ satisfying log(|©|) = 49 + 2log(2), we have then
showed that Ry > €/2. See Yang and Barron (1999) for a more in-depth study

and the analysis of particular cases.



CHAPTER II

NOTE ON REVERSE PINSKER INEQUALITIES
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. 2.1 Abstract

A simple method is shown to provide optimal variational bounds on f-divergences

with possible constraints on relative information extremums. Known results are

refined or proved to be optimal as particular cases.

2.2 Introduction

This note is concerned with optimal upper bounds on relative entropy and other
ffdivergences in terms of the total variation distance and relative information
extremums. When taking relative entropy as the f-divergence, such upper vari-
ational bounds have been referred to as reverse Pinsker inequalities (Sason and
Verdd, 2016; Bocherer and Geiger, 2016). They are used in the optimal quantiza-
tion of probability measures (Bocherer and Geiger, 2016) and have also appeared
in Bayesian nonparametrics for controlling the prior p‘robability of relative entropy

neighbourhoods (see e.g. Lemma 8.2 of Ghosal et al. (2000)).

Our main theorem demonstrates a simple method that yields optimal “reverse
Pinsker inequalities” for any f-divergence. This refines or shows the optimality
of previously best known inequalities while avoiding arguments that are tuned to
particular cases. In particular, Simic (2009a) uses a global upper bound on the
Jensen function to bound relative entropy by a function of relative information
extremums. Corollary 2.3.2 below refines their inequality to best possible. More
recently, three different bounds on relative entropy involving the total variation
distance have been proposed in Theorem 23 of Sason and Verdi (2016) in Theorem
7 of Verdd (2014) and in Theorem 1 of Sason (2015). Our results show that the
inequalities of Sason and Verdud _(20’16) and Verdd (2014) are in fact optimal in

related contexts. Another direct application of the method improves Theorem
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34 in Sason and Verdd (2016), which is an upper bound on Rényi’s divergence
in terms of the variational distance and relative information maximum, while
providing a simpler proof for this type of inequality. Vajda’s well-known “range
of values theorem” (see Vajda (1972); Liese and Vajda (2006); Vajda (2009);
Kumar and Hunter (2004); Kumar and Chhina (2005)) is also recovered as an

application.

The rest of the paper is organized as follows. Section 3.5.3 presents the definitions
and main results. Examples with particular f-divergences are provided in section

2.4 and proofs are given in section 2.5.

2.3 Main results

Let (P,Q) be a pair of probability measures. Tt is assumed throughout that
P <« Q. Given a convex function f : [0,00) = (—00,00] such that f(1) = 0, the
f-divergence between P and () is defined as

dP
D/(PIQ) =0 |1 (55)] (23.1)
In particular, the relative entropy D(P||Q) and the total variation distance Dy (P, Q) =
sup, | P(A) — Q(A)| correspond to the cases f(t) = tlog(¢) and f(t) = 1|t — 1

respectively.

For fixed §,m > 0 and M < oo, we consider the set A(J, m, M) of all probability

measure pairs (P, Q)) respecting the conditions : P < @,

. .dP dP
ess 1nf§§ =1m, esssup a0 " M and Dry(P,Q)=0. (2.3.2)

Here essinf and esssup represent the essential infimum and supremum taken with

respect to Q.

The following theorem provides.the best upper bound on the f-divergence over

the class .A(6, m, M) determined by (2.3.2).
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Theorem 2.3.1. If§,m >0 and M < oo are such that A(6,m, M) # 0, then

; _ o fm) | f(M) )
(P,Q)GSE(I;,m,M) D(PlQ) =9 (1 =1 (2.3.3)

Remark 2.3.1. If m =1 or M = 1, then necessarily § = 0 and the right-hand side
of (2.3.3) is to be interpreted as 0.

Remark 2.3.2. Theorem 2.3.1 generalizes Theorem 23 in Sason and Verdu (2016)
with f(t) = tlog(t)‘ for the relative entropy: the upper bounds obtained are the
same in this case. The concepts of the proofs also share similarities which are

detailed in Remark 2.5.1 of Section 2.5.

We can obtain from Theorem 1 tight bounds for more general families of distri-

butions. Consider for instance

Bm, M) = | JA@G,m,M) (2.3.4)
620
and
co)y= |J A@6m M). (2.3.5)
me[0,1}
Me(1,00}

Using the first family, Corollary 2.3.2 below provides the range of Dy as a function

of relative information bounds.

Corollary 2.3.2. If m >0 and M < oo are such that B(m, M) # 0, then

sip  Dy(PYQ) = M= DS m) + (L =m)f(M)

(2.3.6)
(P,Q)EB(m, M) | M —m

Using the second family (2.3.5), we re-obtain Theorem 4 of Sason and Verda
(2016) (see also Lemma 11.1 in Basu et al. (2011)). Taking the union over possible
values of ¢ also yields Vajda’s well-known “range of values theorem” (see Liese
and Vajda (2006); Vajda (1972, 2009); Kumar and Hunter (2004); Kumar and
Chhina (2005)).
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Corollary 2.3.3. If0 < § < 1, then

sup Df(PHQ)=5<f(O)+ lim f—(]y—)) (2.3.7)

(PQ)EC(8) M—ro0

2.4 Examples

This section lists applications to particular f-divergences and follows the standard
definitions of Sason and Verdd (2016). The bounds obtained are compared to

similar inequalities recently shown in the literature.

2.4.1 Relative entropy (Kullback-Leibler divergence)

The relative entropy corresponds to f(¢f) = tlog(¢) in (2.3.1) and is denoted

D(P||Q). The results are more neatly stated in this case as functions of a =

cedQ _ ar-1 _ dQ _ -1
essinf 35 = M~ and b = esssup3g = m

defined. Theorem 2.3.1 then shows
sup  D(P||Q) =6 <1°g(“) + IOg(b)) .

(P,Q)EA(é,m,JW) a - 1 1 _— b

, assuming both quantities are well

In particular, the resulting upper bound on D(P||Q) is Theorem 23 of Sason and
Verdu (2016). Letting b — oo gives the related Theorem 7 of Verdu (2014) and

the inequality presented therein is consequently optimal over (Jo¢,,<; A(d, m, M).

Also, Corollary 2.3.2 yields

sup  D(P| Q) = 2= Hls) + (1~ blog(e)
(P.Q)eB(m,M) a

~ For comparison, Theorem I of Simic (2009a) (which also appears as Theorem I
in Simic (2011) and is related to results in Simic (2009c,b)) provides the weaker
upper bound

alog(b) — blog(a) b—a
b—a +log (10g(b) - log(a)) -
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on D(P||Q) over (P, Q) € B(m, M) as an application of their “best possible global

bound” for the Jensen functional.

242 Hellinger divergence of order «

Let a € (0,1)U(1,00) and f(¢) = (t¢*—1)/(a—1). The corresponding divergence
is denoted H4(P||@). Theorem 1 shows in this case

§ [(l-me Me—1
sup Ho(P||Q) = ( _ ) .
(P.Q)EA(6,m,M) ( ” ) l—-al\l-m M-=1

When o = 2, Ho = D, is the x? divergence and the above can be rewritten as

sup D,2(P||Q) = 6(M — m).
(P,Q)EA(8,m,M)

For comparison, Example 6 of Theorem 5 in Sason and Verdu (2016) is the weaker
inequality

D,2(P||Q) < 20 max{M — 1,1 —m}.
24.3 Rényi’s divergence

Also related is Rényi’s a-divergence, defined as

_ 1
T a-—1

Do (P|IQ)

log(1 + (o — 1)Ho(P||Q))

and which is a monotonous transform of H,,. Corfespondingly we obtain

1 IME—1 1-—m®
a—110g<1+5(M—1 - 1-—m))'

Taking m = 0 recovers Theorem 34 of Sason and Verdd (2016). Their inequality,

Da(P|I@) <

which is also appears in Theorem 3 of Sason and Verdd (2015) for a > 2, is

improved when m > 0.
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2.5 Proofs

The starting point of our analysis is the following simple known application of

convexity.

Lemma 2.5.1. Let k be a random variable with values in a bounded iﬁter’ual
I =la,b], let p: I — (—00,00] be a convez function and let & = (b—E [«])/(b—a).
Then

E [p(x)] < dip(a) + (1 —@)e(b). (2.5.1)

Proof. Let o be a non-negative random variable such that k = aa + (1 — a)b.

Then E[a] = @ and by convexity of ¢ we find

E [p(k)] < E [ap(a) + (1 — a)p(b)] = @p(a) + (1 = 2)p(b).

O

As a particular case, we obtain a bound on the total variation distance that is of

use in the proof of Theorem 2.3.1.

Corollary 2.5.2. If m 20, M < 0o and (P, Q) € B(m, M), then

(M = 1)(1 = m)
M-m )

Drv(P,Q) < (2.5.2)

Proof. Lemma, 2.5.1, applied with k = %, p(z) =z~ 1, a =mand b = M,
shows that |

1 dP 11 M-1 -
o ||5 - 1] <3 [3mim— 11+ iy -

2 @_ 2| M—-—m M—-m
_ M -1)(1—m)
B M~-m '
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We now proceed with the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Let (P, Q) € A(6,m,M). If A = {x | %(m) < 1}, then
6 =Q(A) — P(A) and we may write ’

D(PIQ) = QUA)Eq |1 (G5 )[4] + Qa9 |1 (55)

Ac] . (2.5.3)

To bound the first term on the right-hand side of (2.5.3), note that Eq [%‘A] =
%ﬁ% and that x € A implies m < %g(x) < 1. An application of Lemma 2.5.1,
using the fact that f(1) = 0, therefore yields
P(A)
dP 1 - 5@ 6f(m)
o ()]« TS m = gty s

The second term is similarly bounded as to obtain

dP
E il
|/ ()
Together with (2.5.3), the inequalities (2.5.4) and (2.5.5) show that

Dy(PIIQ) <6 (1’[(_7”731 + ]{4(1\—/1)1) (2.5.6)

§f(M)
Q(A9)(M — 1)

(2.5.5)

x| <

whenever (P, Q) € A(d,m, M).

We now show that the supremum of (2.3.3) indeed attains this bound. The cases

0 = 0 and § = 1 are easily treated as they correspond to equality or mutual

M-1
M-m?

p=mgq t = 6M —m)[(M — 1)(1 — m)]~! and consider the pair of discrete

singularity of P and Q). We can therefore assume 0 < § < 1. Let ¢ =

measures

{ Py = (tp,t(1 —p), 1 — 1), (2.5.7)

Qo = (tq, t(1 —q),1 - 1t).
Corollary 2.5.2 ensures 0 < t < 1 and thus Py and )y are probability measures.
It is also straightforward to verify that (Fo, Qo) € A(J, m, M) with t(g — p) =6,
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p/q=m and (1 —p)/(1 — ¢) = M. Some algebraic manipulations then show
.Df(PO,Qo) =1tqf (Z—)) +t(1—q)f (]i%g)
s ( fm)  SOM) )

1—m M——l
O

Remark 2.5.1. A decomposition equivalent to (2.5.3) is also used in the proof
of Theorem 23 in Sason and Verdd (2016) wherein f(¢) = tlog(t). They then
proceed to obtain the upper bound (2.5.6) using the monotonicity of the function
t — tlog(t)/(1 —t) (continuously extended at 0 and 1). |

Proof of Corollary 2.3.2. Combining Corollary 2.5.2 with equation (2.3.3) of The-
orem 2.3.1 yields the upper bound. To see that the supremum attains this bound,

let § — (M — 1)(1 — m)/(M — m) in (2.3.3). | O

Proof of Corollary 2.3.3. Some care has to be taken when considering the ele-
ments of A(4, 0, 00). To see that the right-hand side of (2.3.7) also upper bounds
the elements of this set, we again use the decomposition (2.5:3). The first term is
treated as in (2.5.4). For the second term, let 45 A K = min{45, K'}. By Fatou’s
lemma and Lemma 2.5.1, using that f(1) =0,

dP\]| .. . dP
w1 ()] st (£ 1)}
i BN 1
S RLe K—1 J(K).
By the monotone convergence theorem,
[dP P(A°)
|
e | ag A] Q(4?)

and hence

P\l 6 )
= |1 ()] < qtm dm iy
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We note that limps_,e % exists by convexity of f and can be infinite. The

required upper bound on Df(P||Q) is then obtained as in the proof of Theorem
2.3.1.

To see that the upper bound is attained, it suffices to let M — oo in Theorem
2.3.1. O



CHAPTER III -

BAYESIAN NONPARAMETRICS FOR DIRECTIONAL STATISTICS
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3.1  Abstract

We introduce a density basis of the trigonometric polynomials that is suitable to
' mixture modelling. Statistical and geometric properties are derived, suggesting
it as a circular analogue to the Bernstein polynomial densities. Nonparametric
priors are constructed using this basis and a simulation study shows that the
use of the resulting Bayes estimator may provide gains over comparable circular

density estimators previously suggested in the literature.

From a theoretical point of view, we propose a general prior specification frame-
work for density estimation on compact metric space usiing sieve priors. This is
tailored to density bases such as the one considered herein and may also be used
to exploit their particular shape-preserving properties. Furthermore, strong pos-
terior conéistency is shown to hold under notably weak regularity assumptions
and adaptative convergence rates are obtained in terms of the approximation

properties of positive linear operators generating our models.

3.2 Introduction

There is increasing interest in the statistical analysis of non-euclidean data, such
as data lying on a circle, on a sphere or on a more complex manifold or metric
space. Applications range from the analysis of seasonal and angular measurements
to the statistics of shapes and conﬁgurations (Jammalamadaka and SenGupta,
2001; Bhattacharya and Bhattacharya, 2012). In bioinformatics, for instance,
an important problem is that of using the chemical composition of a protein
to predict the conformational angles of its backbone (Al-Lazikani et al., 2001).
Bayesian nonparametric methods, accounting for the wrapping of angular data,

have been successfully applied in this context (Lennox et al., 2009, 2010).
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Directional statistics deals in particular with univariate angular data and prbvides
basic building blocks for more complex models. Among the most commonly used
model for the probability density function of a circular random variable is the von

Mises density defined by

u — exp(k cos(u — u))/(2nIy(k)),

where p is the circular mean, x > 0 is a shape parameter and I is the modified
Bessel function of the first kind and order 0. This function is nonnegative, 2m-
periodic and integrates to one on the interval [0, 27). It can be regarded a circular
analogue to normal distribution (Jammalamadaka and SenGupta, 2001) (see also
Coeurjolly and Le Bihan (2012) for a comparison with the geodesic normal distri-
bution). Mixtures of von Mises densities and other log-trigonometric densities are
also frequently used (Kent, 1983). Another natural approach is to model circular

densities using trigonometric polynomials

1 < .
we ot ;(ak cos(ku) + by sin(ku)). (3.2.1)

These densities have tractable normalizing constants, but the coefficients a; and
bi, must be constrained as to ensure nonnegativity (Fejér, 1916; Ferndndez-Durén,

2004).

For a review of common circular distributions, see Mardia and Jupp (2000);
Jammalamadaka and SenGupta (2001). Notable Bayesian approaches to direc-
tional statistics problems include Ghosh and Ramamoorthi (2003b); McVinish
~ and Mengersen (2008); Ravindran and Ghosh (2011); Hernandez-Stumpfhauser
et al. (2017).

In this paper, we introduce a basis of the trigonometric polynomials (3.2.1) con-
sisting only of probability density functions. Properties shown in Section 3.3,

such as its shape-preserving properties, suggest it as a circular analogue to the
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Bernstein polynomial densities and we argue that it is particularly well suited to
mixture modelling. In Section 3.4, we use this basis to devise nonparametric pri-
ors on the space of bounded circular densities. We compare their posterior mean
estimates to other density estimation methods based on the usual trigonometric

representation (3.2.1) in Section 3.5.

An important aspect of nonparametric prior specification is the posterior consis-
tency property, which entails almost sure convergence (in an appropriate topology)
of the posterior mean estimate. In Section 3.4.2, we thus develop a general prior
specification framework that immediately provides consistency of a class of sieve
priors for 'density estimation on compact metric spaces. Particular instances of
this framework appeared previously in the literature. For instance, Petrone and
Wasserman (2002) obtained consistency of the Bernstein-Dirichlet prior on the
set of continuous densities on the interval [0, 1]. More recently Xing and Ranneby
(2009) (see also Walker (2004); Lijoi et al. '(2005)) have obtained a simple condi-
tion for models of this kind ensuring consistency on the Kullback-Leibler support
of the priof. As an application, they quickly revisit the problem of Petrone and
Wasserman (2002) but without discussing what contains the Kullback-Leibler sup-
port. Our main contribution here is the proof that the Kullback-Leibler support
of the priors specified in our framework contains every bounded density. Further-
more, we show in Section 3.4.4 how our framework may be used to obtain posterior
contraction rates. The results are related to those of Ghosal (2001); Kruijer and
van der Vaart (2008) in the case of the Bernstein-Dirichlet prior but are stated
with more generality. They express posterior contraction rates in terms of a bal-
ance between the dimension of the sieves and their approximation properties, as

they are accounted for by a sequence of positive linear approximation operators.
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3.3 De la Vallée Poussin mixtures for circular densities

3.3.1 The basis

We propose the basis B,, for 2m-periodic densities of circular random variables
given by

2271

Cjn(u) =

Figure 3.1: Comparison between De la Vallée Poussin basis densities (left) and

the usual trigonometric basis 1, cos(z), sin(z), ... (right).

The rescalings C},, = (27/(2n + 1))Cjn, j = 0,...,2n, were considered in Réth
et al. (2009) in the context of Computer Aided Geometric Design (CAGD). It
was shown therein to actually form a basis for the vector space of trigonometric

polynomials (of order at most n > 1) given by
~ V, = span{1, cosu,sinu,...,cosnu,sinnu}.

One important property of these rescalings to the CAGD community is that the
resulting basis forms a partition of unity, meanihg that 212.20 Cin(u) =1, for all
v € R. The function w, = 27Cy, is the so-called De la Vallée Poussin kernel
which has been studied by Pélya and Schoenberg (1958) and Cjp,, has also been
refered to as Cartwright’s power of cosine distribution Cartwright (1963).
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We argue here that B, provides an interesting model for densities of circular
random variables, representing an angle or located on the circumference of a

circle. Here is a formal definition of the angular domain on which we work.

Circular random variables take their values on a circle S!, which we identify to
the real line modulo 2. We therefore write S = R (mod 27), so that S! consists
of equivalence classes {z + 27k : k € Z} and is represented by any half-open
interval of length 27. In the following, we do not distinguish equivalence classes
from their representatives. We endow S! with the angular distance d defined as
dsi (u,v) = mingez |u—v+27k|. By the embedding 0 > €? of S! as the unit circle
of the complex plane C, the angular distance ds: becomes the arc length distance.
For instance, an interval [a,b) C S', b—a < 2, can be viewed as an arc of length

b — a on the unit circle.

The following result gives elementary properties of the distributions corresponding

to the densities in B,.

Theorem 3.3.1. The random variables on S' given by U; = U + 2%7}1, j =

0,...,2n, where U = (1 —2V)cos™!(1 — 2W), with V and W independently dis-
tributed, V' ~ Ber(1/2) and W ~ Beta(1/2,1/2 + n), have (3.3.1) as densities.
Furthermore, by letting Z; = €'Yi be the corresponding random variable on the
unit circle of C, we have
2n .2
(n2:zp) e":_n_%,z’f’ pr € {—n)'- 'an}7
E(Z?) = n (3.3.2)
0 ifp€Z\{-n,...,n}. '

Proof. The first part is a straightforward application of the change of variables
formula. For the integer moments, we have the equality E(Z}) = eif_:ﬁ'lE(Zg ).

Using the identity
2n

2m ()

Con(u) = cos®™(u/2), wu € [0,2m), (3.3.3)
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and letting S ~ U(S'), we find

2n

: G e in
E (Z(I))) = . 22 <2n) ]E(e“i("—k—-p)S) _ (2:) , ifpe { My..., },
n k 0 ifpeZ\{——n,...,n}.

a

The above integer moments (3.3.2) are also known as the Fourier coefficients in
Feller (1971, p. 631) and as trigonometric moments in the directional statistics
jargon, see for instance Mardia and Jupp (2000), Jammalamadaka and SenGupta
(2001) and recently Coeurjolly and Le Bihan (2012). From the result for p = 1,
we get that the mean direction of the j** component is ‘531 with the so-called

circular variance equal to 1/(n + 1).

3.3.2 The circular density model

Let Ay, be the 2n-dimensional simplex Ay, = {(co,..-,c2n) € [0, 1]2"+i :co +
-+ + 4 cop = 1}. Our model consists in mixtures of the form

2n

Cu(tico, ... cm) = Y _¢iCin(uw), ueR, (3.3.4)

=0
with (co, ..., Con) € Agy, and n > 0. Let Cn,_n > 0, represent the set of mixtures
obtained this way; our model is therefore
c=JCn (3.3.5)
n>0
We now give a characterization of the model in terms of trigonometric polynomials.

We use the following degree elevation lemma, which is a reformulation of Réth

et al. (2009, Theorem 6).
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Lemma 3.3.2 (Degree elevation formula). Each C;, € B, given by (3.3.1) can

be expressed as

2(n+r)
Cin(u) = Y d}7Crnir(w), (3.3.6)
=0
with
1 { (2(n+") § (n—k) (n—k)
v = n+r COS(2 n—k)yrl _ 2(n—k Trj)}
7.l 2(n+r 2(n+r)+1 2n+1 ’
An+r)+1 r_z k=0 (lc+r)

(3.3.7)
for £e€{0,1,...,2(n+7r)}, and r 2 0.

To give the characterization, let D,, C V, be the subset of trigonometric poly-
nomial densities (of order at most n > 1), and let D} C D, be the positive

ones.

Theorem 3.3.3 (Characterization). We have C = J,,5o{B, UD; }.

Proof. 1If C, e C. N BE, then we have C,(u) > 0 for all u, and this shows
C C Unso{Br UD;}. For the converse inclusion, let C, € D7, be a positive

c?Cjn(u) > 0, for all

trigonometric polynomial density, that is, C,(u) = EJ 20 C

u € S, with E i—oC; = 1. Some of the c}’s may be negative here. However, by

the degree elevation lemma we have

2(n+r)
Co(u) = > {Zc"d;{g‘} Conir(w),

£=0 =0

with d7; given by (3.3.7). The resulting coefficients cj* Zzﬁo ctd;y also have

(n-+r) c;*" =1, and so it remains to show that there is some r > 0

the property Ze
such that ¢;*" > 0, for every £ =0, ...,2(n + 7). To see this, use (3.3.3) and the

binomial identity to write

n—1 2n
1 2 2n ;
2mf _ E : § : n 2(n—k)me 2(n—k)rj
Cy (2(n+r)+l> T o {1 + (2n) (k) . ¢; COS (2(n+r)+1 T T ongl )} ’
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2(n+r)

i) is increasing on

After some manipulations, and using the fact that £ — (

{0,...,n—1}, we find -

. n—1
2n
2(n+r)+1 n4r 2l
7 ce+ — Chn (2(n+7;)+1)’ < al(n) (Z (k) (2(n+r))

k=0 k+r

()
< asfn) ((2<n+,)) -1},

r

=)

where ay(n),as(n) > 0. A final calculation shows that

(2(:::)) (2n+r)(2n+r——1)~--(n+r+1) "
(2("+T))—1= (n+r)n+r—1)---(r+1) 1< (4n/r)" 1

T

Since C,, € D} is positive by assumption, this shows that for large enough T, we

have ¢j*" > 0, for every £ =0,...,2(n +r), and therefore C, € C. O

As mentioned in the introduction, a criticism made by Ferreira et al. (2008) con-
cerning the nonnegative trigonometric polynomials proposed by Ferndndez-Durdn
(2004) and Ferndndez-Durén (2007) is that “approximating a function (using non-
negative trigonometric polynomials) often results in a wiggly approximation, un-

likely to be useful in most real applications”.

In the following, we define the notion of cyclic variations to formalize “wiggliness”

and show that it can be controlled using our basis.

One way of quantifying “wiggliness” was discussed by Pdlya and Schoenberg
(1958) via the cyclic variations. For a finite sequence z = (z1,...,Zm), m = 2, de-
note by v(z) the number of sign changes (from positive to negative or vice versa) in
the terms of the sequence. Denote by ¥(z) = v(Zi, Tit1, - - - s Ty T1, T2, - - -, Tie1, Ti)s
z; # 0, the cyclic variation of the sequence, with v(z) = 0 if £ = 0. This
is well ’deﬁned because v does not depend on the particular index ¢ such that
z; # 0. Notice that the value of v is always an even number not exceeding

m. The sequence z is said to be periodically unimodal if ﬁ(éokx) = 2, where
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o ) .
Az = (xy — %1, ..., Tm — Tm—1,T1 — Trm)- For a function f : S' — R, we make use

of the notation
O(f) =sup{0(f(@:)2;) : 0< 21 < Zp < +++ < Ty, < 2w, m = 2},

and Z(f) = #{z € [0,27) : f(z) = 0}. Similarly to the discrete case, such a
function f is said to be periodically um'modal, also called periodically monotone
by Pélya and Schoenberg (1958), if 0(f’) = 2, provided f’ exists (a more general
definition without the differentiability assumption is given in the latter paper but

is not needed in our case).

We have the following results.

Theorem 3.3.4. For C,, = Z?Zo ciCin € Cp, let ¢ = (co,...,Con) € Agp. We

have

(i)

c—a), for all a 2 0.

(it) A bound for the total variation of C,, is given by

27
TV(C,) = / IC" (w)] du <
0

2n
2n+1
5 D le — ol < @n+ 1)/,
=0

where cony1 = Co.
(iii) If ¢ = (co,-..,Con) is periodically unimodal, then C, is also periodically

unimodal.

Proof. The proof of (i) follows by Pélya and Schoenberg (1958, Lemma 3) by
noticing that

2n .
_ cj o 2my 1
Cn(u)_a_z{é—;r—_%—{—l}w"(u_2n—!—1>’ ues,

Jj=0
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with wp = o Co,n the De la Vallée Poussin kernel. Their result says (in this case)
that Z(C, — @) < v(c¢;/2m — o/ (2n + 1))3 —o» Which implies (7).

To show (ii), let P, : S' — R be the continuous and 27-periodic, piecewise linear
interpolation of the points (27j/(2n+1), (2n+1)c¢;/27) € S' xR, j € {0,...,2n}.

For definiteness,

u) = zn:chj(u), ueSs (3.3.8)

where L;(u) = 0V 24(1 - 2”+1dg (u, 2%)). By (i) and the Banach Indicatrix

Theorem, see Benedetto and Czaja (2009), we have

x o0 2
TV(C,) = / Z(Cp — @) da < / 5 ( "2: Lo _ a) da,
0 , 0

< / Z(P, - o) da
. 0

2n +1
=TV(P) = = Z|CJ+1 —gl.

Now a (sharp) bound is easily found for the last sum by Z?:o lcir1 — ¢l =
l(c1,- -y cont1) — (€oy---5c2m)|l1 < 2, which leads to the assertion TV(C,) <
(2n+1)/x.

For (i), we assume i')(ﬁc) = 2 and we want to show that v(C}) = 2. First, if -
v(C’) = 0 then C) is either nonnegative or nonpositive. By continuity of CJ,
we have 0 = C,(27) — C,(0) = fOQ" C' (u) du, which implies C’ (u) = 0, for all
u € [0,27), and this gives ¢; = 1/(2n+1),1=0,...,2n. Thus, v(C)) = 2k, for
some 1 < k < n. The unit circle S! can therefore be partitioned into 2k open
arcs Ay, ..., Ay, with (=1)/C, béing nondecreasing on A4;, j =1,...,2k and with
(anticlockwise) end points ay, ..., ag (listed in anticlockwise order) being inter-
laced local minima {aj,as...,a%-1} and maxima {as,...,a} of C"w Assume
k > 1 and without loss of generality as < as. Let m = max{a;,a3}. By the

monotonicity of C, on each arc, each of which being a connected set (relatively to
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the topology induced by the angular distance d), the Intermediate Value Theorem
gives Z(C,, — ) > 2 for all @ € (m,ay). By the same argument, using the fact
that $(Ac) = 2, we obtain

. <2n +1 ) 2, if o € (min(c), max(c)),
v c—al) =

2m 0 otherwise,

contradicting (%), and this implies k£ = 1. O

3.4 Prior specification

3.4.1 Circular density prior

Our prior IT on the space F = F(S') of bounded circular densities, parametrized
by a Dirichlet process D and a distribution p on {1,2,3,...}, is induced by the

random density
2N :

> D(R;n)Cin, N ~p, (3.4.1)
=0
where R;, = [”—g%:il—), 1%’;{#) C St If D has a base probability measure G and

a concentration parameter M > 0, then

I(B) =Y p(n)I(BNC,), BE€B, (3.4.2)

n=0

where IT, = [Ia,, ol;!, IIa,, is the Dirichlet distribution of parameters M G(R; ),
j=0,1,...2n, and where [, : Ay, 3 (cg,...,Con) — Z?ZO ¢iCin € Cy.

Strong posterior consistency is obtained using Theorem 3.4.3 of Section 3.4.2. The
theorem requires the conditional distributions II,, to have full support on C,, that
0 < p(n) < ce~©™ for some ¢, C > 0, and that proper approximation properties of
the sieves C, are assessed by a sequence T, : L}(M) — L*(M) of linear opefators,

_mapping densities to densities, such that T,,(F) = C, C F. Here we let T, be
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defined by
2n
T.f=) / Fw)duC;p. (3.4.3)
§=0 /i

The only condition of the theorem that is not readily verified is given in the

following lemma.

Lemma 3.4.1. For every continuous function f on S, |Tf — flleo — O.

Proof. We usé Lemma, 3.9.1, in the appendix (a result is similar to that of Lorentz
(1986, Theorem 1.2.1)), which gives three sufficient conditions (%) — (%) for uni-
form convergence. We denote dgi(u, R;,) = infyeg,, d(u,v), and diam(R;,) =
SUD,, R, , dst (u,v). Here (i) is immediate by diam(R;,) = 2m/(2n + 1), j =
0,...,2n, and (iii) follows from the partition of unity property of %Cj,n. As-

sumption (i) follows since Cy,, is unimodal with mode at 0, and dg:(u, R;,) >

6 > 0 implies

2my
Cjn(u) = 00,7 (d§1 (U, ﬁ)) < Con (ds (4, Rjn)) < Con(9),
therefore Zj:dsl(u,Rj,n)zd %ij(u) < 21Cn(6) — 0, n — oo, uniformly over
u €S o O

The prior may be interpreted similarly as the Bernstein-Dirichlet prior of Petrone

sy . n 2n
(1999). Conditionally on a fixed n, the random histogram H,, = ot o CinlR,,.
is immediately understood through the Dirichlet distribution on (cgn, ..., cann)-

Since Z?ZO ¢jnCjn = TnH,, the following proposition together with Lemma 3.4.1
shows that the finite mixture (3.4.1) may be seen as a smooth; variation dimin-

ishing approximation to H,.

Proposition 3.4.2 (Variation diminishing property). For every density f on S!,

continuous on Rj,, j =0,...,2n, we have v(T,f — a) < 0(f — a) for all a > 0.
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Proof. This is a straightforward consequence of Theorem 3.3.4 (7). Indeed, by

continuity of f, the Mean Value Theorem says that P;(R;,) = 2—3% f(u;), for

some u; € Rjn, j=0,...,2n. It follows that

H(Tof — ) <8 (P(Rom)s -, Py(Rann) — @) <8 (f—a), a>0.

3.4.2 Strong posterior consistency

We show the strong posterior consistency of a general class of priors for bounded

density spaces on compact metric spaces.” These include sieve priors such as
(3.4.2), as well as a class of Dirichlet process location mixtures (see §3.4.3). In

contrast with Bhattacharya and Dunson (2012), who also obtained general strong

consistency result, we consider a prior specification framework, with a different -

applicability, that does not require continuity and positivity assumptions on the

true density from which observations are made.

Here, strong consistency on F means that if X;,..., X, are independent random
variables and identically distributed according to the probability distribution P,
with density fo € F, denoted (X;)i1 ~ P(O°°), then for all € > 0,

I ({f eF :/|f—— fol < 5} | (X,-);;l) — 1, 'P};"’)-a.s. (3.4.4)

The general framework is the folloWing. Suppose F is the space of all bounded
densities with respect to some finite measure p on a compact metric space (M, d).
Let T, : L'(M) — L'(M), n € N, be a sequence of linear operators mapping
densities to densities. Consider a model having the form C = U,5¢C,,, with C, :=
T,.(F) C F. Let B be the Borel g-algebra of F for the L! metric and let 9B, be
the restriction of 8 to C,, n > 0. A prior II on F can be specified through priors
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II, on (C,,®B,) and a distribution p on n € {0,1,2,...} as

I(B) =Y p(m)I(BNC,), BeB. (3.4.5)

n>0
In Theorem 3.4.3 below, we give simple conditions on II,,, 75, and p, in this frame-
work, ensuring strong posterior consistency on all of F. The proof is given in the

appendix.

Theorem 3.4.3. Let F, II,, II and T, be as above. Suppose that T,(F) C F
are of finite dimensions bounded by an increasing sequence d_" € N, and also that
T f — flloo = 0, n — o0, for every continuous function f on M. If0 < p(n) <
ce=C  for some ¢ > 0, C > 0 and if 11, has support T,,(F), then the posterior

distribution of II is strongly consistent on F.

The proof is in Appendix 3.8.1.

Remark 3.4.1. The result still holds when the space F is constrained such as being
some convex subset of bounded densities containing at least one density that is
bounded away from zero or a star-shaped subset around such a density (e.g. F
may be a set of bounded unimodal densities or a set of continuous multivariate
copula densities). The precise conditions required on F are stated at the beginning

of Appendix 3.7.1.

3.4.3 Relationship with Dirichlet Process Mixtures

Here we consider Dirichlet Process location Mixtures on F induced by the random
density |

f= [ 561 mnyDi), (346)
where {f(- | u,n) | o € M} C F are families of densities, D is a Dirichlet
Process and n follows some distribution p on {1,2,3,...}. Our circular den-

sity prior (3.4.1) can be seen to take the form (3.4.6) by letting f(u | p,n) =
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Z;:o Ig,, (1)Cjn(w). This point of view is especially useful in view of the Slice
Sampler of Walker (2007); Kalli et al. (2011) which is tailored to Dirichlet Process
Mixtures (DPMs).

Furthermore, Theorem 3.4.3 may be applied to a class of such DPMs. The idea
is the following. In order to describe properties of (3.4.6), consider the linear

operators T,, n € N, which maps a probability measure P on M to the density

TP = /M £ | mym) Pdp). (3.4.7)

If P has some continuous density p, then it is natural to require that ||T,P —
Pl —— 0 (see e.g. assumption A2 in Bhattacharya and Dunson (2012)). If
also the image under T;, of all absolutely continuous probability measures is a finite
dimensional spéce, then Theorem 3.4.3 can be applied to ensure strong posterior

consistency.

For instance, we can let

flu| pyn) = Conlu— p) (3.4.8)

to obtain a Dirichlet process mixture over a continuous range of locations. The
associated operator T, deﬁhed by (3.4.7), when seen as acting on probability
densities, is the De la Vallée Poussin mean of Pélya and Schoenberg (1958). Now
for any density f on S!, T, f is a trigonometric polynomial of degree n (Pélya and
Schoenberg, 1958). Hence the dimension of T, (F) is bounded above by 2n + 1.
Following general theory about integral operators (DeVore and Lorentz, 1993), it
is straightforward to verify that |7}, f — fllcc — O for all continuous f. Theorem

3.4.3 is therefore immediately applied to obtain strong posterior consistency.

In Section 3.5, a prior of the type (3.4.6) with densities given by (3.4.8) is com-
pared to our circular density prior (3.4.1). Both yield very similar posterior mean

estimates in our examples.
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3.4.4 Adaptative convergence rates

It is interesting to note that the framework of Section 3.4.2 may be precised as to
obtain adaptative convergence rates on classes of smooth densities, similarily as in
Kruijer and van der Vaart (2008); Shen and Ghosal (2015). Again, the posterior
convergence result is stated in some generality as to be easily applicable to other

problems of similar nature.

Here we write a, < b, if there are positive constants A and B such that Ab, <
an < Bby, for all large n. The posterior distribution of II is said to contract around

fo at the rate &, if (X;)i>1 ~ P};x’) implies-that for all large L > 0,
N{feF:H(fo,f) < Lea} | (X)) = 1, P-as. (3.4.9)

where H(fo, f) = ([ (V/Fo — \/7)2)1/2 is the Hellinger distance.

The following assumptions are made on the sequence of operators T;, and on the
distribution p which induces the prior II defined by (3.4.5) with II,, priors on the
submodels 75, (F). The proof of Theorem 3.4.4 is in the appendix.

A1l The sequence of linear operators Ty, : L!(M) — L!(M) with T,(F) C F maps
densities to densities and is such that ||7,1 — 1||cc — O for the constant

function 1.

A2 There exists d, € N an increasing integer sequence with d, > dim(7,(F))

and satisfying d,, < n? for some d > 1.

A3 The distribution p on N satisfies log(p(n)) < —d, log(d,).

Theorem 3.4.4. Suppose that A1, A2 and A3 are satisfied. Let fo € F be such
that ||log folleo < 00, [|Tnfo — folleo = O(n*) for some B > 0 and suppose there
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exists K > 0, €9 > 0 such that for every large n € N and every 0 < € < g¢9/d,,

H" ({f € Tn(]F) : ”f - TnfO“oo < 5}) 2 (5/dn)ndn . (3410)
Then the posterior distribution of Il contracts around fy at the rate €, = (n/ log(n))~#/(2F+d),

Remark 3.4.2. In order to verify (3.4.10), suppose as in (3.3.4) that

T(F {ann¢1n|(cjn) —OeAdn}

0
for some families of basis functions {qﬁj,n}?go with max; ||¢;.]lc < Cd, for some
C > 0 that does not depend on n. Writing f = Z?LO Cin®jn and Tpfo =
Zdio §0,2¢Jn, we find ||f — Thfolle < Cdn Z o lein — cﬁo,)ll Now consider a
Dirichlet distribution P on the coefficients (c; )% ito with parameters (aj,n)?j;o sat-
isfying Z?Zo ajn, = a and ad;! < a;, < b for some positive constants «, al and

b > 1 that do not depend on n. An application of Lemma A.1 oﬁ Ghosal (2001)
yields that for every 0 < ¢ < min{1,2C/b} and d,, > 2

I ({f € Ta(F) < |f = Tufolleo < €}) = P({(c30)5 Zlcy, il < (Cdn)7'e})

> (e/dy)"™
for some k > 0 that does not depend on n.

Remark 3.4.3. In the case where fo € Ti(F) for some k£ € N, the use of T, fo to
control the approximation error to the sieves may be suboptimal. In this case,
it is possible to obtain convergence rates of the order of (n/log(n))~*/2. See for

instance Ghosal (2001); Kruijer and van der Vaart (2008); Barrientos et al. (2015).

Remark 3.4.4. The work in this section shares similarities to Shen and Ghosal
(2015) who also obtained general adaptative contraction rates of posterior distri-
butions for a class of random series priors. The reader is refered to Petrone and
Veronese (2010) for a different géneralization of the random Bernstein polynomials

that is also based on constructive approximation techniques.
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Application to a circular density prior

Let us continue the example of Section 3.4.3, where the prior IT on the space of all
bounded circular densities is a Dirichlet Process location Mixture of Cj, with a
distribution p on n € N. The corresponding operator T, is defined in (3.4.7) using
the densities (3.4.8). If p is chosen so that log(p(n)) =< —nlog(n) and the base
distribution of the Dirichlet Process is uniform on S with concentration param-
eter > 0, Theorem 3.4.4 is easily applied as to obtain the rate of convergence
(n/log(n))~#/(%A+2) when f, is such that ||log fo||cc < co and satisfies the Hélder

continuity condition

oy @) = o)
z,yeS! dSl (33, y)B
for some 8 € (0, 1]. Indeed, the operator T}, satisfies the hypothesis A1 of Theorem

< 00

3.4.4 and A2-A3 have already been show to hold. Using Remark 3.4.2 and the fact
that the distribution II,, on the image of T}, corresponds to a Dirichlet distribution

. . 2 .
on the coefficients of the mixture ) 7" ¢;nCjn with parameters a;, = we

preag
obtain that (3.4.10) is satisfied. Furthermore, (DeVore and Lorentz, 1993, eq.
(8.6), Chapter 9) shows that || Ty fo — follw = O(wg,(n7Y/2)), where wy, is the

modulus of continuity of fy defined as

wfo((s) = sup {If(](x) - fow) :z,y € Sl, dsi(z,y) < (5} .

We thus obtain the stated convergence rate &, = (n/log(n))~#/(#+2 which is,
up to log factors, the same as in the case of the random Bernstein polynomial
prior (Kruijer and van der Vaart, 2008) for # € (0,1]. In the case where f
is continuously differentiable with f§ satisfying the Holder continuity condition
with parameter o € (0,1], then (DeVore and Lorentz, 1993, eq. (8.6), Chapter
9) together with (DeVore and Lorentz, 1993, eq. (7.13), Chapter 2) shows that
I Tnfo — follow = O(n~(+9)/2) This yields the posterior contraction rate e, =

(n/ log(n))~(+e)/(20+e)+2) which is again the same, up to log factors, as for the
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random Bernstein polynomial prior (Kruijer and van der Vaart, 2008). Similar
arguments may be used to obtain contraction rates in the case of the De la Vallée

Poussin prior (3.4.1).
3.5 Comparison of density estimates

In this section, we compare density estimates based on the De la Vallée Poussin
basis and the nonnegative trigonometric sums of Fernandez-Durdn (2004). Focus
is on the expected Kullback-Leibler and L' losses in the estimation of target den-

sities exhibiting a range of smoothness, skewness and multimodal characteristics.

3.5.1  Nonnegative trigonometric sums

Trigonometric polynomials that are probability density functions on the circle
can be parameterized by the surface of a complex hypersphere (Fernéridez—Durén,

2004). A circular distribution of the corresponding family takes the form

M
Z cr eiku
k=0
1

: M
where the coefficients ¢, are complex numbers such that > g [k = 5.

2

flusco,. .. cn) = , (3.5.1)

'The parameterization (3.5.1) is exploited in Ferndndez-Durdn (2004, 2007); Ferndndez-
Durén and Gregorio-Dominguez (2010, 2014a,b) to model distributions of circular
random variables. Circular density estimates from i.i.d. samples are obtained
therein by maximum likelihood. Goodness of fit for different degrees M of the
vtrigonometric polynomials is assessed using Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC). Recently, Ferndndez-Durdn and
Gregorio-Dominguez (2016a) considered a uniform prior on the coefficients c,
with respect to hyperspherical surface measure for the Bayesian analysis of circu-

lar distributions.
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3.5.2 Methods

The following five estimates of circular densities, denoted pd, pc, nAIC, nBIC and

fdbayes, are compared.

pd: The posterior mean estimate based on the De la Vallée Poussin prior (3.4.1).
This prior is parameterized by a Dirichlet process D and a probability dis-
tribution p on N. We chose D to be centered on the circular uniform distri-

bution with concentration parameter o = 1, and we let p(n) oc /%,

pc: The posterior mean estimate based on the Dirichlet process location mix-
ture (3.4.8). This prior is also parameterized by a Dirichlet process and a

distribution p on N. We use the same hyperparameters as above.

nAIC: The maximum likelihood estimate of (3.5.1) where the dimension M is

chosen as to minimize Akaike’s information criterion.

nBIC: The maximum likelihood estimate of (3.5.1) where the dimension M is

chosen as to minimize the Bayesian information criterion.

fdbayes: The posterior mean estimate based on a uniform hyperspherical distribu-
tions on the coefficients c; of (3.5.1) and a uniform prior on {0,1,2,... ,'5}
for the dimension M. This prior on M, uniform on a range {0,1,...,m} of
values, is suggested in Ferndndez-Durdn and Gregorio-Dominguez (2016a).
The value of m - 5, also suggested therein, was éhosen as to provide the

best performance of this estimator in the comparison of Section 3.5.3.

We assess the quality of a density estimate f using the Kullback-Leibler loss

defined by [, log (’;?((uu))) fo(u)du, where fy is the target density (Kullback and

Leibler, 1951), as well as the L' loss defined by [, | fo(u)— f(w)|du. This Kullback-
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Leibler loss is appropriate in the context of discrimination between density esti-
mates (Hall, 1987), while the L' loss is relevant in view of Theorem 3.4.3. Results
obtained using the L? and Hellinger losses were highly similar to those using the

L loss and we omit their presentation.

Target densities

We consider the following two families of target densities to be estimated.

1. The Skewed von Mises family parameterized by « € [0, 1] and with densities
| va(u) o (1 + asin(u + 1)) exp(3a cos(u — )).
2. The family parameterized by « € [0,27) and with densities
Wa (u) o exp(sin(cos(2u) + sin(3u) + a)),
which we will refer to as the w-family. |
The first family was obtained by applying the skewing technique of Abe and

Péwsey (2011) to von Mises circular densities and the second family was chosen

to showcase multimodal characteristics. This is illustrated in Figure 3.2.

3.5.3 Results

We estimated the mean Kullback-Leibler loss in 1000 repétitions of the estimation
of our target densities, for a range of parameter values, using independent samples
of sizes 30 and 100. The results are shown in Figﬁre 3.3 and Figure 3.4. Bootstrap

confidence intervals at the 95% level are illustrated by vertical bars.

Under the Kullback-Leibler loss, the nAIC and nBIC estimators are at a con-

- siderable disadvantage in the examples considered herein. This is due to their
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téndency of underestimating probabilities in regions where few samples are ob-
served. An important exception to this, however, is in the use of the the nBIC
method to estimate a constant density, since it typically selects M =0or M =1

in this case and stays bounded away from zero.

The Bayesian averaging methods pc, pd and fdbayes are generally more appro-
priate under the Kullback-Leibler loss and all three are competitive. The fdbayes
estimator has a poorer performance in the estimation of a épiked unimodal density
(Skewed von Mises with parameter « near 1), but improves as the target density

approaches being constant.

The nAIC estimator improves under a L' loss. Its increased flexibility over nBIC
allows to better approach the target in regions of high probability density. The
ordering of the estimators is otherwise roughly similar. Under a sample size of
size 100, the different estimators are more clearly distinguished and the pc and pd

estimators provide the best overall performance.

Remark 3.5.1. These results show that the De la Vallée Poussin densities provide
a viable alternatives to the nonnegative trigonometric sums of Ferndndez-Duran
(2004) and that they can be used to adapt techniques developped on the unit
interval, such as the rdndom Bernstein polynomials of Petrone (1999); Petrone
and Wasserman (2002), to the topology of the circle. However, it is not our goal to
provide best—possible estimators. It would be required to adapt the basis densities
as in Kruijer and van der Vaart (2008) in order to obtain certain minimax-optimal
Hellinger convergence rates. Our theoretical results can also be applied when
using different density bases, including for multivariate density estimation, and
the shape-preserving properties of the De la Vallée Poussin densities can be used

to incorporate prior information.







































































