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ABSTRACT
Microservices are deployable software artifacts that combine a set
of business features and expose them to other microservices. Ideally,
the reuse and interchanging of microservices should be easy as they
are supposed to be independent of each other, both conceptually
and technologically. Selecting a service to fulfill a given feature
(e.g., managing a cart in a website) recalls the way Software Product
Lines (SPL) allow variability. However, in practice, interchanging
microservices requires knowing the features that the services pro-
pose, how they communicate with other services and their types.
In this work, we propose to analyze service dependencies as fea-
ture dependencies, at the feature, structural, technological, and
versioning level, to assess the interchangeability of services. We
analyze six community-selected use-cases and report that services
are non-interchangeable systematically.
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• Software and its engineering→ Software product lines; Soft-
ware reverse engineering; Software evolution.
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1 INTRODUCTION
1.1 Context and Challenges
Software Product Line Engineering (SPLE) is an approach to design
Sofware Product Lines (SPL). Their goal is to systematically reuse
software artifacts by specifying their features and defining explic-
itly product-specific features. A feature is an ”incremental unit of
functionality“ and features ”are used to distinguish the products
of a product line“[1], and the SPL manages the variability that ex-
ists when multiple features can implement the same functional
requirement. For instance, an online store can manage a cart, but
this is not a feature as we define them as cart management is not
an incremental feature and does not allow to distinguish two online
stores. However, updating the quantity of a cart item is a feature as
we will use them throughout this paper.

Decomposing a software system by software artifacts, each im-
plementing a set of features, is similar to the design and implemen-
tation of microservice-based systems. A microservice is a part of a
software system and implements a set of domain-specific features,
e.g., managing a cart on a shopping website. A microservice is both
a set of business code and the description of its deployment. In the
remainder of this paper, “microservice” denotes all the code and
documentation attached to the building, testing, specification, and
deployment of a reachable software artifact.

Decoupling those services eases their development and reuse as
they are (supposedly) independent of each other, both from a func-
tionality and technological point-of-view. It gives much flexibility
to development teams, as their technical choices (e.g., programming
languages) do not impact the remainder part of the system, and the
service’s interface is supposed to be well-documented.

However, even if microservices are meant to be deployed in
isolation, independent from a technological point-of-view, they
remain artifacts of the same final system.

A B C

B' C: order management
B: basket management
A: user management

Figure 1: Simplified example of swapping microservices

For example, let us take the simplified e-commerce system de-
scribed in Fig. 1. One wants to replace the cart management service
B by another one B’, supposedly more efficient. Ideally, one could
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take B’, remove B, and make use of B’. The SPLC community iden-
tified this challenge as “Challenge 4”, described as follows [3].

Challenge 4: Propose a solution that allows to inter-
change microservices of different technologies within a
system.

Our contribution is a methodology to assess the compatibility
between services in the perspective of interchanging them. Inter-
changing services enables reuse of artefact and devleopement effort
in an SPL-fashion. We applied our methodology to one use-case
and propose a meta-analysis on other use-cases. The validation
material and the information described in this paper can be found
on the companion webpage on this paper [7].

1.2 Interchanging microservices
To safely interchange two microservices, they must be compatible
at different levels that are detailed below.

Features compatibility. Compatible microservices must propose
the same features. Managing a cart is not a feature per se, but a set of
features such as adding an item, or modifying its quantity. In Fig. 1,
service Amakes use of a feature exposed by B; thus, B’must propose
an implementation of the same feature. Such a compatibility implies
that one can identifymicroservices feature sets. The SPL community
identified this as Challenge 1 [3].

Challenge 1: Identify the features of microservice-
based systems, establish a mapping to the microservices
that implement them, and compare between systems

To solve “Challenge 4”, we must first address the “Challenge 1”
defined above. If two services do not implement the same features
set, other services must be considered to fulfill the remaining un-
covered features. Composing services to cover the same feature set
in case of incompleteness is out of the scope of this paper, but its
results can be used towards its goal.

Communication compatibility. Microservices are communicating
artifacts, and the way they exchanges information must remain the
same. In Fig. 1, if one removes the service B, which is used by a
service A, then the new service B’ must be callable by A. Thus, we
must know the calls that happen between services, i.e., the overall
system architecture to assess if previous calls remain possible.

Technological compatiblity. Microservices can be independent
in their technologies (e.g., libraries, languages), but the way they
exchange information must be compatible. If one removes service B
in Fig. 1, which uses Remote Procedure Call (RPC) to call a service
C, then the new service B’ must use RPC as well. If not, additional
actions are needed (e.g., adding a proxy between B’, and C).

Code Evolution. Microservices should be independent in their
evolution, i.e., modifying one service should not imply modifying
another service. This development (in)dependency is the coevolu-
tion of artifacts and microservices should not coevolve. Thus, their
coevolution must be assessed. A pair of services that coevolve may
imply a hidden dependency that must be taken into account when
using one service without the other. In Fig. 1, if services B and A
(and–or C) coevolve, it means that they may be coupled together
and that integrating B’ may add additional problems, on top of
the ones already identified. The coevolution of microservices is an

indicator that reusing one service without the other may be more
difficult if they strongly coevolve than when they do not.

Proposition. To overcome Challenge 4 we identified the need to
partially solve Challenge 1 first. We propose to (i) map services to
domain features, (ii) establish the calls between services, (iii) along
with the kind of technology used to exchange information, and
(iv) an assessment of their coevolution, to assess if two services are
compatible and can be exchanged with one another.

We define the notion of interchangeable microservices as fol-
lows. One can interchange two services B and B’ if (i) they have
the same feature sets, where the new service may offer additional
features, (ii) they have compatible communication at the structural
level (i.e., the calls with other services are the same) (iii) they have
compatible communication at the technological level, (iv) B, or B’,
does not coevolve with other services of its system (e.g., A and C).

We make the hypothesis that a microservice implements a set of
features, and we propose a methodology that considers the code,
architectural, technological, and more originally, the versioning
levels, to assess the level of compatibility between services. Using a
development metric (i.e., a codevelopment indicator) with a feature
mapping and a call-graph annotated by the type of communication
protocol used, we assess if two services are compatible and inter-
changeable. We applied our methodology on one use-case selected
by the SPL community [3], and gather the results of applying our
methodology on five other use-cases in the form of a meta-analysis.

First, we present the methodology in Sec. 2, before applying it to
a concrete use-case in Sec. 3, and presenting a meta-analysis of our
findings on six use-cases identified by the SPL community. Then,
before concluding in Sec. 6, we present threats to validity in Sec. 4
and related work in Sec. 5.

2 METHODOLOGY
Thus, this section describes the overall generic methodology that
we applied latter in this paper, to gather information about features,
communication, and technological compatibility ; and codevelop-
ment to assess the interchangeability of two services.

2.1 Features as a Service
The first step is to map features to services, allowing us to identify
potential variability by identifying potentially swappable services.

This feature mapping can be defined from a feature to microser-
vices, specifying which features are offered by a given microservice
; or the mapping can preferably be from feature to endpoint when
possible. An API endpoint is a remotely callable point of a service,
and is a portion of a whole API (e.g., Getting a product description
is likely to be implemented as an endpoint). The more fine-grained
the mapping will be, the harder it will be to extract it. However,
it will significantly improve the detail of knowledge that one can
have about communications between services. Instead of knowing
that “service A calls service B”, one would benefit from knowing that
“when performing operation 𝑋 in service A, this remotely calls the
operation 𝑌 in services B”, leading to a finer-grain archicture.

Each microservice can implement various features, e.g., a Cart-
Managment servicemay implement an𝐴𝑑𝑑𝐼𝑡𝑒𝑚,𝑀𝑜𝑑𝑖 𝑓 𝑦𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦,
𝑅𝑒𝑚𝑜𝑣𝑒𝐼𝑡𝑒𝑚 feature. Depending on the data available, one can map
features to services (coarse-grained), or to the specific handling
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endpoint (fine-grained). Considering feature granularity is neces-
sary, as one has no guarantee that a fine-grained feature mapping is
feasible in practice due to the intrinsic heterogeneity that microser-
vices development offers. Over the six microservices systems that
are part of the study, we note the usage of six different languages,
eleven deployment technologies, six different databases technology,
six messaging technology, and two embedded dynamic trace mech-
anisms. These projects gathered different development teams, were
developed in various ways, following their guidelines and stan-
dards, which adds to the high-level of technological heterogeneity.
Thus, in the context of analyzing microservices, the quest for a
fully-automated and perennial tool that can reverse-engineer any
microservices architecture is pointless by design. On the one hand,
considering the high heterogeneity in the existing technologies,
and the ever-faster growing number of new frameworks, static
code analysis approaches will quickly reach a limit. On the other
hand, dynamic approaches (e.g., , analyzing traces of execution)
exist but are tied-up to the scenarios used as input. Thus, these
issues prevent the definition of a silver-bullet approach that would
exhaustively reverse-engineer any microservice architecture.

Therefore, a semi-automated (hence, semi-manual) extraction
step is required. One can take advantage of the relative existence of
standards to extract potentially useful information automatically.
Automation can help by reducing the search space and speeding-up
such analysis at the human scale (e.g., by spotting keywords). It
is also possible to leverage development frameworks. Our team
is developing the Anaximander tool to support microservices’
architects while exploring architectures,1 providing static analyses
used to extract information from the source code.

We first looked for structural elements that match particular
regular expressions: e.g., folders or filenames that end with 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 .
Then, we identified if the microservice under study follows any
particular standard regarding API specification. For example, the
existence of a swagger’s open API specification drastically reduces
the search space and speeds up the analysis which is something our
tool leverages. Language-specific strategies also eased the search for
other projects, e.g., NodeJS/Express projects often have a server.js
file that describes the API endpoints using HTTP routes, whereas
Java projects may use RPC in which case a folder dedicated to RPC
specification is present. Anaximander can also automatically parse
the deployment descriptors (e.g., Docker-compose, Kubernetes) that
describe the services or leverage the internal DNS or the service
registry used to support runtime service resolution even if we did
not explore this path.

2.2 Services Dependencies
Now that we know the mapping between services and features, we
need to establish the relationship, exchanges, and calls between
services. Mapping these exchanges will allow us to chart the mi-
croservices architecture and the communication technologies used.
We build a call-graph G which is a directed graph where nodes
are services, and vertices are exchanges between those services.
These exchanges can be coarse-grained, i.e., establishing commu-
nications between microservices, or fine-grained, i.e., establishing
communications at the endpoints level. A more precise analysis

1https://github.com/ace-design/anaximander-microservices

will necessarily provide a more accurate map and enable more pre-
cise reasonings. However, it is less feasible in practice, requires a
non-negligible amount of work, and faces a high heterogeneity of
technologies and languages. Nevertheless, one can leverage this
cartography to partially assess a given microservice’s isolation,
i.e., the dependency of a feature regarding the others.

Coarse-grained call-graphs are already available as documenta-
tion in some of the six use-cases.2 To the best of our knowledge,
no fine-grained call-graph are available.

To build such dependencies graph one can :

• leverage standards that may be adopted by the use-case
(e.g., microservices-demo3 make use of Swagger that lever-
ages the OpenAPI standard [14],

• leverage common practices and frameworks.

Type of communication. Then, another critical aspect is the type
t of a communication C. Asynchronous communications, via mes-
sages exchanges, are less prone to create a services-dependency as
the one sending out the message does not know the recipient, if one
is even available. By essence, synchronous communications that
trigger a specific function (in a broad meaning) of a remote service,
create a dependency between these services. Thus, the type ASYNC,
SYNC of the communication should be retrieved as it is an essential
factor that weight the communication itself. Two microservices
communicating via Remote Procedure Call (RPC), HTTP REST
calls, or via a message-channel, do not have the same level of
(in)dependence. We argue that exchanging messages through a
channel is the most relaxed dependency and the most adaptable
one, as the messages can be adapted quite merely to enable mi-
croservices interoperation. In contrast, one cannot adapt REST APIs
quickly, and must develop a proxy in order to enable interoperation.

2.3 Service codevelopment at the Versioning
Level

Services are supposed to be developed independently, at least at
the technological and feature level. However, frequent joint modi-
fications of a set of services, called codevelopment, can occur. In
real-life scenarios, services are not systematically codeveloped or
never codeveloped; it is a spectrum which is an indicator among
others of dependencies and should be considered as that: an indica-
tor.

Considering a git-based versioning system, as it is the one used
by the six selected use-cases, we extract information contained in
commits. A commit is an identified set of modifications, each one
targeting a specific file. We need to:

(1) analyze the versioning of each system: this implies retrieving
the whole versioning history, and going through commits,

(2) map the commit to a set of services modified: as commits
contain modifications, each one targeting a specific file, we
need to assess if a givenmodified file is part of a given service
or not,

(3) keep the commits that modify at least two services,

2GoogleCloudPlatform/microservices-demo
3https://github.com/microservices-demo/payment/blob/master/api-spec/payment.
json
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(4) perform a codevelopment analysis by computing the number
of times a set of services has been modified together. This
computation is a pourcentage over all commits.

A high level of codevelopment indicates that two services may
have hidden dependencies; more hidden dependencies than services
with low level of codevelopment.

2.4 A Metric for Interchangeability
This section leverages the elements extracted by the steps presented
previously.

Given the features offered by some services, their respective
calls to other services and the technology used to communicate,
and more originally given their respective versioning history, we
establish an interchangeability metric, where the definition of inter-
changeability is the one specified in Sec. 1. This composed metric
is not a number but can only be a gradient that indicates if two
services are likely to be highly interchanged or not.

Two services that offer the same features, are connected to the
same services, can be called using the same technology, and that
have a low codevelopment level (in their respective history) have
a high level of interchangeability, higher than two other services
that have a high level of codevelopment, and that use different
technologies to communicate with the remainder of their respective
systems, which will have a low level of interchangeability.

3 RESULTS
3.1 Applying methodology
This subsection details the application of the methodology de-
scribed in the previous section on one of the use-cases, namely
GoogleCloudPlatform/microservices-demo,4 focusing on how
concretely we retrieved the data, leveraged the existing standards or
the technologies used. The validation material and the information
described in this section can be found on the companion webpage
on this paper [7].

Feature mapping. At a coarse-grained level, the mapping from
feature-to-service can be quickly done by analyzing the documen-
tation at our disposal.5. This documentation allows us to (i) list the
available services in the system, (ii)map each service to a high-level
feature, (iii) enable technology-specific search as the language in
which each service has been developed is provided. In this use-case,
no particular API-definitions standard seems to have been used.
While other projects may take advantage of OpenAPI specification,6
speeding up the whole fine-grained cartography, a more manual
time-consuming approach seems to be needed here.

As it is often the case, the repository layout is helpful to nav-
igate through services’ definitions quickly. Here, a folder named
xxxservice, under the src folder at the root of the repository, wraps
the files related to it, where xxx is the service name.

At this step, analyzing a specific microservice will depend on the
language and technologies used. Let us take the checkoutservice

4https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/tree/
GoogleCloudPlatform/microservices-demo
5https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/README.md#service-architecture
6https://github.com/microservices-demo/catalogue/blob/
97545f4ae068250190491a970a8940c44f1cd2a5/api-spec/catalogue.json

as an example. It is written in Go and does not define a specific
communication interface. We first need to localize the main file,
which is, as usual in a Go project, main.go. We manually browsed
this file and looked for the methods’ names to map them to fea-
tures: e.g., a PlaceOrder method exists in the main.go file; thus
we assume that the service allows one to place an order.7

Another example is the payment service, which is written in
Javascript in the Node ecosystem, using the Express framework.
This is a common association in the JS-based web backend devel-
opment. As usual, in this language, a server.js file defines the
endpoints of the server. Here, a quick manual analysis reveals that
only one endpoint (i.e., one feature) is present: charge8: one can use
this service to charge a customer. Further analysis at the function-
level will point us toward the charge.js, which is imported by
the main file. This specific file details the different features of the
charge one,9 for instance, which type of credit card it accepts.

Table 1 summarizes the feature mapping that we found by guided
manual extractions following the described methodology.

Table 1: Features identified in the
GoogleCloudPlatform/microservices-demo use-case

Service Features
Ad Get ads, random, or per category
Cart Basic cart management
Currency Convert and List supported currencies
Email Send order confirmation
Payment Charge (Visa + Mastercard)
Product Catalog List and search for product(s)
Shipping Get a quote or ship an order

Service communications and technologies. The documentation,
again, quickly helped us to obtain a coarse-grained cartography 10.
This technology-agnostic map is useful to map the overall archi-
tecture and links between services but does not specify how they
communicate. The technology used is indicated in the documen-
tation11 and is supposed to be Remote Procedure Call (RPC). As
always, with documentation, we should be cautious of the informa-
tion that we found. Analyzing each service will allow us to confirm
the documentation information. RPC is a synchronous protocol in
the sense that the sender must know the address of the recipient
in order to trigger a procedure remotely. Analysis of services such
as checkout will confirm the use of RPC, as the services used are
listed, and will allow us to build a fine-grained cartography.12

Knowing that it is a Go service that uses RPC to communicate
and that the potentially used services are listed, a textual search
7https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go#L199
8https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/paymentservice/server.js#L47
9https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/paymentservice/charge.js#L71
10https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/docs/img/architecture-diagram.png
11https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/tree/
c472bd3548032403bbd92127ee98d4831bb4ab23#features
12https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go#L63
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using traditional tools (i.e., Ctrl+F) will allow us to map which
checkout endpoints call which other service’s endpoint. Looking
for productCatalogSvcAddrwill inform us that checkout calls the
products catalog service only to retrieve items’ information when
an order is placed;13 that the user’s cart service is called twice as
the checkout service allows one to retrieve or empty a cart 14.

Codevelopment. We analyzed the versioning history of the use-
case and extracted a script-friendly log to incorporate as much au-
tomation as possible.We run the command git log –name-status
–oneline that returned each commit, and grouped the files this
commit has modified on a per-line basis.

Again, using keywords (e.g., names contain ’service‘) and folder
structures (e.g., the modified file is in ./Services), we could assess
which services are modified in a given commit. This is a use-case
specific and technology-specific extraction step. In the case of the
GoogleCloudPlatform/microservices-demo project, we devel-
oped a script that automatically extracts the commits that contain
modifications that target at least two different identified services. If
you perform such analysis on all commits, for all services, you will
have an overview of how many times a set of services have been
modified together, i.e., have been codeveloped.

Figure 2 is an UpSet plot [11] that displays the intersection be-
tween sets of commits where multiple services have been modified.
It can be read as follows: the first column states that all services have
been modified together in 3 commits (the height of the first vertical
bar, at the top of the chart) and that payment,recommendation, and
checkout has beenmodified in more than five commits (7𝑡ℎ vertical
bar). The horizontal bar (at the right side of the figure) shows that
the shipping service is the most modified one, whereas payment is
the least modified.

This visualization quickly shows that the three services checkout,
productCatalog, and shipping are modified together more than
20 times, which is more than half the number of commits for each
service (i.e., 20 over 30). Moreover, productCatalog, and shipping
have been modified together around 30 times, which is the number
of commits that modifies those services. Those two services have a
high codevelopment level, and checkout is also tightly codeveloped
with them. According to our definition, this means that swapping
one of these three services for another version will more likely be
a hard and tedious process if even possible at all.

3.2 Meta-analysis
We applied the same methodology we described in the previous
section to the six selected use-cases. Instead of repeating the de-
scription of the same analysis and only changing the use-case, this
section describes the analysis of the results of all use-case analyses.

We analyzed the feature-mapping, the service calls and the code-
velopment for each use-case on which we kept the 5𝑡ℎ most codevel-
oped services. These information can be found on the companion
website of this paper [7].

Once we aligned the vocabulary (e.g., cart ≡ basket) and that
we looked to services as a features-set, we found out that the pair

13https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go/#L330
14https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/
c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go#L301
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(𝑐𝑎𝑡𝑎𝑙𝑜𝑔, 𝑜𝑟𝑑𝑒𝑟 ) was highly codeveloped. This pair of services ranks
successively 3𝑟𝑑 , 1𝑠𝑡 , 4𝑡ℎ, 1𝑠𝑡 , and 3𝑟𝑑 in terms of co-developpement.
Adding to this that half of the use-cases have a synchronous commu-
nication method between their catalog and order services (i.e., via
REST API calls, or RPC) allows us to conclude that, regardless of
the use-case you chose, taking the catalog service without the order
one may be a difficult and error-prone task that would most likely
need additional integration steps.

The same way, when available, the cart and order services are
tightly codeveloped, ranked 2𝑛𝑑 , 1𝑠𝑡 , and 1𝑠𝑡 in the most codevel-
oped services in half of the use-cases. Again, they use synchronous
communications in half of the use-cases leading to the same con-
clusion than the previous results.

Adding more automation in the process and growing the number
of use-cases studied may allow us to obtain further findings that
we think are of significant interest for a safe reuse purpose.

Given semi-manual and guided processes, we successfullymapped
features to microservices, providing an answer to the challenge
1 identified by the SPLC community. Then, thanks to this new
mapping, and with three other indicators (communication and tech-
nological compatibility, and codevelopment level) we proposed
an answer to challenge 4 by assessing interchangeability of two
microservices.

4 THREATS TO VALIDITY
The first threat to validity is related to the lack of validation of the
results outside of the carefully picked six reference use-cases. Those
use-cases all target the same business domain, lacking domain-
heterogeneity, an aspect that may be interesting to consider. This
would hardly be mitigated as open-source microservices may be
particularly hard-to-find in the wild; as they are at the core of the
business logic, companies are reluctant to share those artifacts.

Moreover, sharing the code versioning is a step further that
may be hard to find in real-life use-cases. In addition to that, our
approach assumes that a single code repository hosts the whole
code and that all microservices are developed in this code repository.
This was true for 5 out of 6 of our use-cases but is a threat to validity
for our approach.

Moreover, these six use-cases that we studied were meant for
demonstration purposes, where one of those would incorporate
as many technologies and languages as possible on prupose; or

https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go/#L330
https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go/#L330
https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go#L301
https://github.com/jacobkrueger/SPLC2020-Microservices-Challenge/blob/c472bd3548032403bbd92127ee98d4831bb4ab23/src/checkoutservice/main.go#L301
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redevelop the same task using different implementations (e.g., de-
ployment artifacts for each provider). This “show-off” effect does
not reflect the actual and real way of developing microservices
at the enterprise level but in itself covers a lot of variations and
different scenarios in a small size of the sample.

5 RELATEDWORK
Codevelopment. It is a kind of relationship that establishes that a

set piece of software evolves together in time. This evolution does
not take the form of strong dependency (e.g., import, method call),
but is a form of “soft” dependency when evolving an artifact implies
a modification on the other. Work has been done toward analyzing
such codevelopment, notably in the context of Linux [15], exploiting
code-versioning to understand how variability models and related
artifacts coevolve in this context. In our work, we use codevelop-
ment factor as an indicator among others of how “easy” it may be
to reuse features implementations, i.e., to reuse a microservice.

Feature location. It is the activity of identifying a feature at the
code-level that implements the functionality of a given system. This
can be done using various techniques (e.g., static analysis, semantic-
based information retrieval, traces analysis), including exploiting
version control systems [6], and newly analysis on object-oriented
code seems to bring interesting outcomes [13]. In the case of family
of systems, the feature mapping (or absence of mapping) in a given
system is, most of time, known beforehand [12]. While state-of-
the-art techniques use development history to localize and identify
features, we used it to detect feature interactions by assessing the
codevelopment of microservices.

Service extraction. Work has been done toward microservices
extraction by breaking down a monolithic system into manage-
able microservices. The extraction process seems to work well in
practice [10] but may not be well documented as how researchers
actually identified those services, and that variability is “a key crite-
rion for structuring the microservices” [5]. Properly identified criteria
have been identified (and more and less successfully applied) to
decompose those systems [8]. Reengineering legacy applications
using SPL is a trend that still faces research challenges [2]. Other
researchs argue that static code analysis reach a limit as to properly
identified functionalities and that dynamic search are needed [9].
Human expertise is often the key to successful extraction and in-
terviews must be lead to first extract this knowledge before using
it [4].

6 CONCLUSION
A microservices architecture eases development as each service is
developed in isolation, giving much flexibility to the development
team. As a microservice implement a set of domain-features, one
should be able to reuse a microservice, or replace it by an equivalent
one. Those aspects bridge with the SPL research field whose goal
is to organize features, and engineer features-based solutions. To
assess the feasibility of service replacement, i.e., feature implemen-
tation selection, we highlighted the need to assess their technical
and functional compatibility and their independency regarding the
other services at the code-source, and code-evolution level. The
originality of our approach was to leverage classic semi-automated

static code analysis and mixing its results with an analysis of code-
velopment at the versioning level. We found out that, over six
selected use-cases, two-pairs of microservices were dependent on
each other, preventing any straight-forward reuse or inclusion in
another software system. In future work, we plan to assess how
state-of-the-art tools and approach manages the highly and intrin-
sic polyglots aspect of microservices architecture and development,
as this seems a necessary step towards reusing state-of-practise
results in the microservices architecture area.
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