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RÉSUMÉ 

Sur une variété complexe kahlérienne X, on introduit les notions de courbure scalaire à 
poids et de métrique kahlérienne à courbure scalaire à poids constante, dépendant d'un 
tore réel fixé 1r dans le groupe réduit des automorphismes de X, et de deux fonctions 
lisses (poids) v > 0 et w, définies sur le polytope moment de X (par rapport à une 
classe de Kahler fixée sur X) dans l'algèbre de Lie du tore 'lr. Pour des choix spécifiques 
des fonctions poids v et w, la recherche de métriques kahlériennes à courbure scalaire 
pondérée constante dans une classe de Kahler a, correspond à des problèmes bien con­
nues de recherche de métriques spéciales en géométrie kahlérienne, tels que l'existence 
de métriques kahlériennes extrémales, des solitons de Kahler-Ricci, des métriques kah­
lériennes conformes à une métrique hermitienne d'Einstein-Maxwell, ou la prescription 
de la courbure scalaire sur une variété torique. 

On montre que la plupart des résultats connues sur l'obstruction à l'existence des 
métriques kahlériennes à courbure scalaire constante ( cscK) peuvent s'étendre au cadre 
pondéré. En pariculier, en introduisant une fonctionelle Mv,w sur l'espace des métriques 
kahlériennes 'lr-invariantes dans a, qui généralise la fonctionnelle de Mabuchi dans le cas 
cscK, on montre que lorsque a est une class de Hodge, les métriques kahlériennes à cour­
bure scalaire pondérée dans a minimisent Mv,w· Nous définissons un invariant de FU.taki 
(v, w)-pondéré pour des configurations test lisses 'lr-compatibles associées à (X, 'lr, a), et 
on montre que si l'énergie de Mabuchi pondérée Mv,w est bornée inférieurement, alors 
ceci impliquera une notion de K-semistabilité (v, w)-pondérée. 

Nous illustrons cette théorie sur des variétés toriques et sur des fibrations toriques prin­
cipales. Comme application, nous obtenons une correspondance de Y au-Tian-Donaldson 
pour les métriques extrémales (v, w)-pondérées sur des JP>1-fibrations au dessus d'un pro­
duit de variétés de Hodge cscK, et une description des classes de Kahler sur les surfaces 
complexes réglées de genre 2, qui admettent une métrique kahlérienne conforme à une 
métrique hermitienne d'Einstein-Maxwell. 

Mots clés : Métriques kahlériennes extrémales, Courbure scalaire à poids, K-semistabilité, 
Variétés toriques, Fibrations toriques principales, Métriques d'Einstein-Maxwell, Soli­
tons de Kahler-Ricci. 





ABSTRACT 

We introduce a notion of a Kahler metric with constant weighted scalar curvature on a 
compact Kahler manifold X, depending on a fixed real torus 1f in the reduced group of 
automorphisms of X, and two smooth (weight) functions v > 0 and w, defined on the 
momentum image with respect to a given Kahler classa on X in the dual Lie algebra of 
11'. A number of natural problems in Kahler geometry, such as the existence of extrema! 
Kahler metrics and conformally Kahler Einstein-Maxwell metrics, Kahler-Ricci solitons, 
or prescribing the scalar curvature on a compact tarie manifold reduce to the search of 
Kahler metrics with constant weighted scalar curvature in a given Kahler class a, for 
special choices of the weight fun etions v and w. 

We prove that a number of known results obstructing the existence of constant scalar 
curvature Kahler ( cscK) metrics can be extended to the weighted setting. In partic­
ular, we introduce a functional Mv,w on the space of 11'-invariant Kahler metrics in 
a, extending the Mabuchi energy in the cscK case, and show that if a is Hodge, then 
constant weighted scalar curvature metrics in a are minima of Mv,w· We define a (v, w)­
weighted Futaki invariant of a 1f -compatible smooth Kahler test configuration associated 
to (X, a, 11'), and show that the boundedness from below of the (v, w)-weighted Mabuchi 
functional Mv,w implies a suitable notion of a (v, w)-weighted K-semistability. 

We illustrate our theory with specifie computations on smooth tarie varieties and on the 
tarie fibre bundles. As an application, we obtain a Yau-Tian-Donaldson type correspon­
dence for (v, w)-extremal Kahler classes on IP'1-bundles over products of compact Hodge 
cscK manifolds, and a description of the Kahler classes on geometrically ruled complex 
surfaces of genus greater than 2, which admit Kahler metrics conformally equivalent to 
Einstein-Maxwell metrics. 

Keywords : Extrema! Kahler metrics, Weighted scalar curvature, K-semistability, Tarie 
varieties, Tarie fibre bundles, Einstein-Maxwell metrics, Kahler-Ricci solitons. 





CHAPTER I 

INTRODUCTION 

Recently, research activities in Kahler geometry were primarily concerned with so-called 

Yau-Tian-Donaldson (YTD) conjecture which relates the existence of constant scalar 

curvature Kahler metrics ( cscK) on a projective manifold to K -stability, an algebro­

geometric condition in the sense of geometrie invariant theory (GIT) of the underlying 

projective manifold. The efforts of many mathematicians culminated in the resolution 

of the YTD conjecture in the case of Fano manifolds, where the cscK property of the 

metric is equivalent to being Kahler-Einstein (KE). The cscK metrics can be also viewed 

as a higher dimensional generalization in Riemannian signature of Einstein's equations 

describing the space-time in 4 dimensions. 

On a 4-dimensional Riemanian manifold (X, g), another natural generalization of the 

Einstein equation Ricg = 0 is given by the Einstein-Maxwell equations 

dèf? = 0, *gèf? =cf?, 

d'Il= 0, *g'I! = -'I!, 

Ricg = èf?U o wU. 

(1.1) 

where Ricg is the trace free part of the Ricci endomorphism, cf?, 'Il E A2 (X) is a pair of 

2-forms on X, *§ is the Hodge star operator of g, and cJ?U, wU are the skew-symmetric 

endomorphisms associated to cf?, 'Il by g. 

Apostolov-Calderbank-Gauduchon [4] and LeBrun [65, 66] observed that on a Kahler 

surface (X, J, g, w) with complex structure J, Kahler metric g and Kahler form w, a 
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Hermitian metric g := j 2g conformaly equivalent to a Kahler metric g with positive 

conformai factor f > 0, is a solution to the Einstein-Maxwell equations with <I> = w if 

and only if 

{

Ç := Jgrad
9
(f) is a Killing field for g, 

Scal_g = const, 
(1.2) 

where Scal9 is the scalar curvature of g. The Kahler met ri cs g satisfying the condi­

tion ( 1. 2) are called conformally Einstein-Maxwell K iihler metrics ( cKEM for short). 

The condition (1.2) provides a natural generalization of cscK metrics ( corresponding to 

the case when f = 1), and allows one to define an extension of the Einstein-Maxwell 

equations to higher dimensionsional Kahler manifolds. 

The initial motivation of this thesis was the systematic study of conformally Einstein­

Maxwell metrics in line with the YTD conjecture alluded to above. To this end, we 

propose to study the more general notion of K iihler metrics with weighted constant 

scalar curvature ( weighted cscK for short), which con tains the Kahler met ri cs conformai 

to Einstein-Maxwell metrics (1.2) as a special case. 

To define a weighted cscK metric we first introduce a "weighted" version of the scalar 

curvature. More precisely, on a compact Kahler manifold (X, a) of complex dimension 

m 2:: 1 with a Kahler classa, and a Hamiltonian torus action 1I' with momentum polytope 

Pa c Lie(1I')*, for any positive smooth v E C 00 (P a, IR) ( called weight function), we define 

the v-scalar curvature Scalv : JC(X, a)'ll'--+ IR on the space JC(X, a)'ll' of 11'-invariant Kahler 

metrics in the Kahler class a, by 

Scalv(w) := v(mw)Scal(w) + 2~w(v(mw)) + tr(Gw o (Hess(v) o mw)). (1.3) 

Here Scal(w) is the usual scalar curvature, mw : X--+ Lie(1I')* is the w-moment map of 

the 11'-action normalized by mw(X) =Pa, ~w is the Riemannian Laplacian of the Kahler 

metric 9w and Hess(v) is the hessian of v, viewed as a bilinear form on Lie(1I')* whereas 

Gw is the bilinear form with smooth coefficients on Lie(1I'), given by the restriction of 

the Kahler metric 9w on fundamental vector fields. We say that a 11'-invariant Kahler 
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metric w E a is a weighted cscK metric if 

Scalv(w) = Cv,w(a)w(mw), (1.4) 

for a couple (v, w) of weight functions on the polytope Pa (with v > 0), where Cv,w(a) 

is a suitable constant. The above definition may appear rather tedious at first glimpse, 

but it turns out that for suitable choices of the weight functions v, won Pa, the problem 

of finding a (v, w)-weighted cscK metric in the Kahler class a, corresponds to sorne well 

studied problems in Kahler geometry. There is a list of such examples: 

1. Let ting v = 1, and w = const we ob tain the Cala bi problem of fin ding cscK met ries 

in a; 

2. Letting 1f be a maximal torus in the group Autred(X) of reduced automorphisms 

of X, v= 1 and w be the affine-linear function on Pa given by the extrema! vector 

field of a, the solutions of (1.4) are the extremal Kahler metrics in the sense of 

Calabi [22] in a; 

3. If X is a Fano manifold equipped with the Kahler classa= 21rc1 (X), v(p) = e(f.,p) 

and w(p) = 2e(f.,p)((Ç,p) +a) for Ç Et, a E IR, then solutions of (1.4) are Kahler­

Ricci solitons on X (see [58, 59]); 

4. Letting v(p) = ((Ç,p) + a)-2
m+

1 
, w(p) = ((Ç,p) + a)-2

m-
1 for Ç Et and a E IR 

su ch th at ( Ç, p) + a > 0 over Pa, ( 1.4) descri bes the Kahler met ries in a, w hi ch 

are conformai to Einstein-Maxwell metrics in the sense of [9, 64-66]; 

5. If a= 21rc1 (L) is the Kahler class associated to an ample holomorphie line bundle 

Lover X, v(p) = ((Ç,p) + a)-m-1
, w(p) = ((Ç,p) + a)-m-3Wext(P) for Ç E t, 

w ext (p) is a sui table affine linear function on Pa and a E IR su ch th at ( Ç, p) + a > 0 

over Pa, then (1.4) describes Kahler metrics on X giving rise to extrema! Sasaki 

metrics on the unit circle bundle associated to L - 1, see [5]; 

6. The search for extrema! Kahler metrics, or more generally, prescribing the scalar 

curvature of a class of Kahler metrics on toric fibre-bundles given by the generalized 
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Calabi ansatz [8] or on manifolds with free multiplicity [45] reduces to finding 

solutions of ( 1.4) on the ( toric) fibre. In this toric set ting ( 1.4) is known as the 

generalized Abreu equation, see [70, 71]. 

Instead of (1.4), one can more generally consider the condition 

Scalv(w) = w(mw)(m~ + c) (1.5) 

for a 'Ir-invariant Kahler metric w in a, where Ç E t, c E IR and m~ .- (mw, Ç) is the 

Killing potential associated to Ç. A 'Ir-invariant Kahler metric satisfying (1.5) generalizes 

the notion of an extremal Kahler metric (see 2 above), and will be referred to as a 

(v, w)-weighted extremal Kahler metric. As it is apparent from the example 2 above, 

and as we establish more generally in Section 2.2, when w > 0 the smooth function 

(m~ + c) in the RHS of (1.5) must be of the form Wext(mw) for an affine-linear function 

Wext(P) = (Ç,p) +con t* defined in terms of ('TI',a,P,v,w). Thus, the problem (1.5) 

of finding (v, w)-extremal Kahler metrics in a reduces to the problem (1.4) of finding 

(v, WWext)-cscK metrics. 

Besicles the above mentioned list of examples, our intrinsic motivation for defining the 

v-scalar curvature is twofold. On the one hand, in the cases 1 and 2 above, there is a 

well known interpretation, due to Donaldson [40] and Fujiki [48], of the scalar curvature 

as a formai moment map 

Scal: AC(X,w)---+ Lie(Ham(X,w))*, 

(Scal( J), f) = L Scal(gJ) f win[, 

for the action of the group of Hamiltonian transformations Ham( X, w), on the space 

of all w-compatible almost complex structures AC(X, w), where Scal(gJ) is the scalar 

curvature of the Kahler metric 9J := w(-, J·), and the identification of Lie(Ham(X,w)) 

with the space of smooth functions of zero average is obtained by using the global L2 

inner product with respect to w[n] := ~~ . 

Following an idea due to Apostolov-Mashler in [9], on a Kahler manifold (X,w) with 

a Hamiltonian torus action 'Ir, one can use two positive weight functions v, w on the 
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momentum polytope P := mw(X) of the 1I'-action on X to modify the formai symplectic 

structure on AC(X, w)1" on the subspace of 1I'-invariant almost complex structures, and 

the L2 inn er product on the Lie algebra of 1I' -equivariant Hamiltonian transformations 

Lie(Ham(X, w)'li} This modification yields a modified formai momentum map for the 

action of Ham(X,w)'IT' on AC(X,w)'R', given in terms of the v-scalar curvature and the 

function w 

Scalv ( )'[' . ( * -( -) :AC X,w ---+ L1e Ham(X,w)) . 
w mw 

This formai momentum map picture for the v-scalar curvature suggests the existence 

and uniqueness for solutions gJ := w(·, J·) of the problem (1.4) in each 'complexified' 

orbit for the action of Ham(X,w)'IT', under suitable stability conditions. However, it 

is weil known that such a complexification of the group Ham( X, w)'IT' does not exist, 

but it is possible to identify its orbits with the space K(X, a)'IT' of 1I'-invariant Kahler 

metrics in the class a := [w]. Foilowing the analogy with the case of cscK metrics, a 

direct consequence of the momentum map picture provides the definition of a (v, w )­

Futaki invariant defined on the space ~Jed of real holomorphie vector fields with zeroes 

commuting with Lie('JI'), 

F~ w : ~Jed ---+IR, 
' 

giving a natural obstruction to the existence of weighted cscK metrics in a Kahler class 

a, similar to the famous Futaki invariant. Also, the momentum map interpretation 

ailows us to introduce a weighted (v, w)-Mabuchi functional Mv,w, whose critical points 

are the (v, w)-cscK metrics, extending the weil known Mabuchi functional [76]. 

On the other hand, our second motivation for introducing the v-scalar curvature cornes 

from the Donaldson quantization of cscK metrics, based on the Catlin [24], Ruan [84], 

Tian [91] and Zelditch [98] asymptotic expansion of the Bergman Kernel Bk(h) of a 

hermitian metric h on a prequantization line bundle L ---+ X: 

(2 )nB (h) = 1 Scal(wh) O(]__) 
7r k + 4k + k2 ' 

where Wh is the curvature 2-form of h. In the case where the polarized manifold (X, L) 

carries a torus action 1I' c Aut(X, L) in the automorphism group of the pair (X, L) with 
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momentum polytope P (in this case P is determined by the lifted action of 1f on L), one 

can associate to each smooth strictly positive weight function v on P, a v-equivariant 

Bergman kernel Bk(v, h) defined by the restriction to the diagonal of X x X of the 

Schwartz kernel of the operator 

(k -lA(k) .. . k-lA(k)) rrkcf> 
v 6 ' ' f.t 0 v ' 

where A~~),··· , A~~) are the infinitisimal actions on the space of global holomorphie 

sections 1-lk of Lk, induced from a basis (6, · · · ,Çf) of Lie('Jf), and rr~4> is a v-weighted 

orthogonal projection on 1-lk. We show, using the theory of functional calcul us of Toeplitz 

operators developed by Charles in [25], that the v-equivariant Bergman kernel admits 

an asymptotic expansion given by 

The above asymptotic expansion will be used to extend the Donaldson quantization 

scheme via approximations by balanced metrics. Also, it provides an asymptotic expan­

sion for the trace tr(v(A~~), · · · , A~~))), which allows us to give a quantized version for 

the (v, w)-Futaki invariant on a smooth polarized variety (X, L), and leads to a notion of 

(v, w) -weighted K -stability extending the usual K -stability obstruction to the existence 

of cscK metrics on (X, L) [89]. 

Thus motivated, the main achievement of this thesis is the proposition of a suitable gen­

eralization of the YTD correspondence for the problem of finding weighted cscK metrics, 

by extending the corresponding notion of K-stability in the cscK and the extrema! cases, 

introduced by Donaldson [42], Tian [92, 94], and Székelyhidi [88]. We shall also establish 

one direction in this correspondence, by showing that a (v, w )-cscK met rie is a minimum 

of the (v, w )-Mabuchi energy, and that the boundedness of the (v, w )-Mabuchi energy 

implies (v, w)-K-semistability. 

In light of the recent generalization of the YTD conjecture to arbitrary Kahler manifolds 

by Dervan-Ross [36, 37] and Dyrfelt [46, 47], a definition of K-stability can be obtained 

from the intersection theoretic formula for the Donaldson-Futaki invariant due to Odaka 
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[80) and Wang [97). However, it is not clear how to generalize directly the approaches of 

Odaka and Wang to define a (v, w)-Futaki invariant for 11'-equivariant test configurations. 

We overcome this problem by defining the (v, w)-Futaki invariant as a global differentiai 

geometrie quantity of the test configuration, given by the slope of the weighted Mabuchi 

energy on a family of Kahler potentials associated to the test-configuration. 

A natural question that arises in the case when the test-configuration is a polarized 

projective variety is the interpretation of the (v, w)-Futaki invariant in terms of a purely 

algebraic invariant defined on the central fibre. This was in fact the initial approach 

of Tian [94) and Donaldson [44) in the cscK case for defining an invariant of a test 

configuration, and a similar definition of a (v, w)-Donaldson-Futaki invariant on the 

central fiber has been proposed in [9) (regarding the cases 4 and 5). We review this 

approach in Section 4.2. At this point, it is not clear to us whether or not such an 

algebraic definition of a (v, w)-Donaldson-Futaki invariant can be given for any central 

fibre, nor that it would agree with the differentiai geometrie definition on the total space 

of a smooth test configuration we propose in this thesis. In fact, when v, w are not 

polynomials, the proposed algebraic definition of a (v, w)-Donaldson-Futaki invariant 

of X 0 involves transcendental quantities leading to difficulties reminiscent to the ones 

involved in the definition of the LP-norm of a test configuration for positive real values 

of p, see the discussion at the end of [43). 

Now, we give an outline of the principal results of this thesis. 

In Chapter 2, we introduce the notion of weighted cscK metrics and describe the relevant 

examples. We recast the problem of finding weighted cscK metrics within the framework 

of moment maps, extending the momentum map picture of Donaldson [40) and Fujiki 

[48) in the cscK case. We also define a first obstruction to the existence of a weighed 

cscK metric in a Kahler class, in terms of a differentiai geometrie Futaki invariant, 

and set a variational formulation for the problem of finding weighted cscK metrics in a 

Kahler class, in terms of minimizing a modified Mabuchi energy. The main results of 

this chapter are extensions of two fundamental results in the theory of extrema! Kahler 
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metrics to the more general (v, w)-cscK context. The first result is a generalization of 

Calabi's Theorem [22, 78] on the structure of the group of holomorphie automorphisms 

of a compact extremal manifold. 

Theorem 1. Let (X, w, g) a compact Kahler manifold and g a (v, w)-extremal metric 

with v, w positive. Then the group Isoml(X,g) of 'Jf-equivariant isometries of X is 

a maximal compact connected subgroup of the identity component of the 1I' -equivariant 

automorphisms Autl(X) of X. In particular, if the metric g is a (v, w)-cscK metric 

(with w > 0), then Autl(X) is a reductive complex Lie group. 

This result was independently proved in (51] and [61] in the case 4 of cKEM metrics. 

The case 3 is originally established by Tian-Zhu in (95]. 

Our second result is a suitable modification of the stability of the existence of extremal 

Kahler metrics under deformations of the Kahler class, proved by LeBrun-Simanca in 

(67, 68]. In the weighted setting, we show that if a compact Kahler manifold admits a 

(v, w)-extremal Kahler metric in a Kahler classa, then a small deformation of a admits 

a (v, w)-extremal metric with weights (v, w) close to (v, w). 

Theorem 2. Suppose that w E a is a (v, w)-extremal Kahler metric invariant with 

respect to a maximal torus 1I'max C Autred(X) with momentum polytope Pa and v, w > 

0 smooth functions over an open set U C t* su ch that Pa C U. Th en for v, w E 

C00 (U, lR>o), there existé > 0, such that for any Jsl < é, Jtl < é, Jrl < é, there exists 

a (v + tv, w + sw)-extremal Kahler metric in the Kahler class a + r(3, associated to 

(v+ tv, w + sw) and momentum polytope p a+r,B· 

In Chapter 3, we extend Donaldson's quantization scheme of cscK metrics. The basic 

tool is the use of the asymptotic expansion of equivariant weighted Bergman kernels 

on the finite dimensional spaces Hk of holomorphie sections of a prequantization line 

bundle line bundle L0 k -t X, k >> 1. Our main result gives an obstruction to the 

existence of weighted cscK metrics in an integral Kahler class a = 21rc1 (L) in terms of 

the boundedness of the (v, w)-Mabuchi functional introduced in Chapter 1. 

Theorem 3. Let (X, L) be a compact smooth polarized projective variety, 1I' C Autred (X) 
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a real torus, and suppose that X admits a (v, w) -cscK me tric w in a = 21rc1 ( L) for some 

smooth fu ne tians v > 0 and w on the momentum image PL C t*. Th en, w is a global 

minima of the (v, w)-Mabuchi energy Mv,w of (a, 'lf, PL, v, w). 

In Chapter 4, we introduce the notion of (v, w)-K-stability associated to (X, a, 'lf, Pa, v, w), 

extending the corresponding notions in the cscK and the extremal cases, introduced by 

Donaldson [42], Tian [92, 94], and Székelyhidi [88]. We define the (v, w)-Futaki invariant 

Fv,w(X, A) of a smooth Kahler test configuration (X, A, Î) with reduced central fibre, 

compatible with (X, a, 'lf), as a global differentiai geometrie quantity on the total space 

X and show that it must be non-negative should the (v, w)-Mabuchi energy associated 

to (a, 1f, P, v, w) be bounded from below. This, combined wi th Theo rem 3 yields one 

direction of a YTD type correspondence for the existence of (v, w )-cscK metrics. 

Theorem 4. Let (X, L) be a compact smooth polarized projective variety, 1f C Aut(X, L) /C* 

a real torus, and suppose th at X admits a (v, w) -cscK me tric in a = 21rc1 ( L). Th en 

X is (v, w)-K-semistable on smooth, 1f -compatible Kahler test configuration with reduced 

central fibre associated ta (X, a), i.e. the (v, w)-Futaki invariant of any such test con­

figuration is non-negative. 

In Chapt er 5, we give specifie applications of the results of the previous chapters to the 

problem of the existence and uniqueness of cKEM metrics. 

Theorem 1 combined with the results in [9] and [65], where conformally-Kahler, Einstein­

Maxwell metric on CIP'1 x CIP'1 are constructed, leads to 

Corollary 1. Any conformally-Kiihler, Einstein-Maxwell metric on CIP'1 x CIP'1, must 

be tarie, and if it is not a product of Fubini-Study metrics on each factor, it must be 

homothetically isometric to one of the metrics constructed by LeBrun in [65]. 

We can consider the case when (X, a, 'lf) is a IP'1-bundle over the product of cscK smooth 

projective manifolds, given by the Calabi construction of [8]. We compute the (v, w)­

Futaki invariant of certain test configurations of (X, a, 'lf), which together with Theo­

rem 2 and 3 yields to the following classification result. 

Corollary 2. Let X = IP'( 0 EB 12) ---+ C be a geometrically ruled camp lex surface over a 
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compact complex curve C of genus g ~ 2, where L is a holomorphie line bundle over C 

of positive degree, and ali= 27r (cl(0(2)!P'(OEB.C)) + (1 + K,) · c1(C)), K, > 1 is the effective 

parametrization of the Kahler cane of X, up to positive scales, see e.g. [11, 49]. Then, 

the re exists a real constant K,o (X) > 1, su ch th at for each K, > K,o (X), ali admits a cK EM 

metric (see [60]), whereas for any K, E (1, K,o(X)], ali does not admit a cKEM metric. 



CHAPTER II 

AUTOMORPHISMS AND DEFORMATIONS OF KAHLER METRICS WITH 

CONSTANT WEIGHTED SCALAR CURVATURE. 

2.1 The v-scalar curvature 

Let X be a compact Kahler manifold of complex dimension n ~ 2. We denote by 

Autred(X) the reduced automorphism group of X whose Lie algebra ~red is the ideal of 

the real holomorphie vector fields with zeros on X (see [53]). Let 1I' be an .€-dimentional 

real torus in Autred(X) with Lie algebra t, and w a 1I'-invariant Kahler form on X. We 

denote by K3 the space of 1I'-invariant Kahler potentials with respect to w, and for any 

cp E K3, we let Wc~J = w + ddccp be the corresponding Kahler form in the Kahler classa. 

It is well known that for any cp E K3 the 11'-action on X is WcfJ-Hamiltonian (see [53]) and 

we choose mc/J : X ---t t* to be a WcfJ-momentum map of 11'. It is also known [13, 56] that 

P c/J := mc/J(X) is a convex polytope in t*. Furthermore, the following is true. 

Definition 1. Let (}be a 1I'-invariant closed (1, 1)-form on X. A B-momentum map for 

the action of 1I' on X is a smooth 11'-invariant function me : X ---t t* with the property 

B(Ç, ·) =-dm~ for all Ç Et. 

Lemma 1. The following facts are equivalent: 

1. For any cp E K3 we have P cP= Pw. 

2. For any cp E K3 we have fx mc/Jw~n] = fx mww[n], where w~n] := '{§. is the volume 

form. 
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3. For any Ç E t and cp E JC3 we have m~ = m~ + dccp(Ç), where m~ := (m<P, Ç). 

Proof. Presumably, Lemma 1 is well-known, see e.g. [12, Section 4] and [90, Section 3.1] 

for the case of a single hamiltonian. We include here an argument covering the general 

case for the sake of completeness. We start by proving that 2 is equivalent with 3. By 

the very definition of the momentum map, Cartan's formula and the fact that Ç is a real 

holomorphie vector field we have 

(2.1) 

Thus, there exist a À<!J E t* such that 

(2.2) 

Suppose that 2 holds. Then À<!J is given by 

Àq,(Ç) = Vol(~, a) (L m~wln[-L (m~ + dccf>(Ç))w!;l) . 

For a variation ~ of cp in JC3, the corresponding variation of À<!J is given by 

-Vol( X, a).\<P(Ç) = { m~ddc~ 1\ w[n- 1
] + { dc~(Ç)w[n] + { dccp(Ç)ddc~ 1\ w[n-1

] 
lx <P lx <P lx <P 

= { dccp(Ç)ddc~ 1\ W[n-1] + { dmç 1\ de~ 1\ w[n- 1] 
lx <P lx <P <P 

+ L (-dm~+ d(dccf>(Ç))) Il dc,P Il w~n- 1] 

= L d(dc</>(Ç)) Il dc,P Il w!;'- 11 + L dccf>(Ç)M',P Il w!;'- 11 = 0, 

where we have used (2.1), the fact that dc~(Ç)w1n] =dm~l\dc~l\w1n- 1l, and integration 

by parts. It follows that À<!J = Àw = 0 which gives the implication "2::::;.3". Conversely if 

we suppose that 3 holds, then for any variation ~of cp in JC3, we get 

.!!._ { mf, w[n] = { mf, ddc~ 1\ w[n- 1] + dc~(Ç)w[n] =O. 
dt 1 x <Pt <Pt 1 x <Pt <Pt <Pt 

It follows that J x m~w1n] = J x m~w[n] for any Ç E t, which yields 2 . 

Now we prove the equivalence between 1 and 3. Suppose that 1 is true and let x E X 

be a fixed point for the 1r -action on X. Th en we have 

(2.3) 
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By a result of Atiyah and Guillemin-Sternberg (see [13, 56]) P </> (resp. P w) is the convex 

hull of the image by mq, (resp. mw) of the fixed points for the 'F-action. It then follows 

from (2.3) that P </> = P w + Àq,. Using P w = P q,, we get Àq, = 0 which proves 3. For the 

inverse implication, if mq,(x)- mw(x) = (dccp)x for any xE X, then mq,(x) = mw(x) for 

any point x E X fixed by the 1f -action and we have P </> = P w by [13, 56]. D 

It follows from Lemma 1 that for each cp E K3 we can normalize mq, such that the mo­

mentum polytope P = mq,(X) Ct* is cp-independent. This will be an overall assumption 

through this work. 

Definition 2. For v E C00 (P, lR>o) we define the v-scalar curvature of the Kahler metric 

gq, = wq,(·, J·) for cp E K3 to be the function 

where mq, is the momentum map of wq, normalized as in Lemma 1, Scal(gq,) is the scalar 

curvature, tl.4> is the Riemannian Laplacian on functions of the Kahler metric wq, and 

Hess( v) is the hessian of v, viewed as bilinear form ont* whereas Gq, is the bilinear form 

with smooth coefficients on t, given by the restriction of the Riemannian metric gq, on 

fundamental vector fields. 

In a basis ~ = (Çi)i=l,-·· ,l of t we have 

tr(Gq, o (Hess(v) o mq,)) := 2: v,ij(mq,)gq,(Çi, Çj), 
l~i,j~f_ 

where v,ij stands for the partial derivatives of v with respect the dual basis of~· 

Lemma 2. Let () be a fixed 'F-invariant closed (1, 1)-form with momentum map me 

and v E C 00 (X, lR >0), w E C 00 (X, lR). Th en with the normalization for mq, given by 

Lemma 1, the following integrais are independent of the choice of cp E K3, 

Aw(</>) := L w(m~)w~l, 
B~(</>) := L v(m~)IJ A w~-!J + ((dv)(m~), mo)w~nl, 

Cv(</>) := L Scalv(</>)w~n] 
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Proof. The fact that Aw(cP) is constant is well known, see e.g. [36, Theorem 3.14]. 

The constancy of B~(cj>) can be easily established by a direct computation, but it also 

follows from the arguments in the proof of Lemma 4 below. Indeed, we note that 

B~(cj>) = (B~)c~>(1) where B~ is the 1-form on K3 given by (2.22). By taking ~ = 1 

in (2.23) we get (t5B~)c~>(~) = 0 where ~ is a 'Ir-invariant function on X defining a 'Ir­

invariant variation w = ddc~ of wc/>. From this we infer that B~ ( 4>) is constant. For 

the last function Cv ( 4>), we will calcula te i ts variation ( t5Cv) cl> ( ~) wi th respect to a 'Ir­

invariant variation w = ddc~ of wc/>. For this, we use that the variation of Scalv(4>) is 

given by 

where Dis the Levi-Civita connection of wc/>, (D- d)~ denotes the (2, 0) + (0, 2)-type part 

of (Dd~) and (D-d)* is the formai adjoint operator of (D-d) (see [53, Section 1.23]). 

The above formula (2.5) is established in Lemma 9 below. By (2.5), we calculate 

(8Cv)<t>(tft) = L -2(D-d)'v(m<t>)(D-d)(tft)w~n] + L dScalv(</>) 1\ dctft 1\ w~n- 1] 

+ L Scalv(</>)Mtft 1\ wr-11 

Integration by parts yields ( t5Cv )c~> = O. Thus Cv does not depend on the choice of 

D 

Definition 3. Let (X, a) be a compact Kahler manifold, 'Ir c Autred(X) a real torus 

with momentum image p c t* associated to Œ as in Lemma 1, and v E C 00 (P' IR>o), 

w E C 00 (P,IR). The (v,w)-slope of (X, a) is the constant given by 

{ 

fx Scalv(w)w[n] "f J ( ) [n] _j_ 0 
J w(mw)wln]' 1 XW mw W 1 

C(v,w)(a) := x 

1, if fx w(mw)w[n] = 0, 
(2.6) 

which is independent from the choice of w E a by virtue of Lemma 2. 

Remark 1. If 4> E K3 defines a Kahler metric which satisfies Scalv(4>) = cw(mc~>) for 

sorne real constant c and fxw(mw)w[n] # 0, then we must have c = C(v,w)(a) with 

Cv,w(a) given by (2.6). 
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Because ofRemark 1 above, and to simplify the notation in the case when fx w(mw)w[n] = 

0, we adopt the following defini ti on 

Definition 4. Let (X, a) be a compact Kahler manifold, 1r C Autred(X) a real torus 

with momentum image P c t* associated to a as in Lemma 1, and v E C 00 (P, ffi.>o), 

w E C00 (P, ffi.). A (v, w)-cscK metric w E a is a 'Ir-invariant Kahler metric satisfying 

(1.4), where Cv,w(a) is given by (2.6). 

2.2 Examples 

We list below sorne geometrically significant examples of (v, w )-cscK met ri cs, obtained 

for special values of the weight functions v, w. 

2.2.1 Constant scalar curvature and extremal Kahler metrics 

Wh en v = 1, Scalv ( </>) = Sc al ( </>) is the usual scalar curvature of the Kahler metric 

Wqy E JC3, so letting w = 1 the problem (1.4) reduces to the Calabi problem of finding 

a cscK metric in the Kahler class a = [w]. In this case, we can take 1r C Autred(X) 

to be a maximal torus by a result of Calabi [22). More generally, for a fixed maximal 

torus 1r C Autred(X) we can consider the more general problem of the existence of an 

extremal Kahler metric in JC3, i.e. a Kahler metric Wqy such that Scal(</>) is a Killing 

potential for Wqy. As the Killing vector field Çext generated by Scal( <P) is 'Ir-invariant, it 

belongs to the Lie algebra t of 1r (by the maximality of 'Ir). More generally, Futaki­

Mabuchi [50) observed that·for any</> E JC3, the L2 projection Scal(</>) (with respect to 

the global inner product on smooth functions defined by wqy) of Scal(</>) to the sub-space 

{m~ + c, cE ffi.} of Killing potentials for Ç Et defines a </>-independent element Çext Et, 

i.e. Scal( </>) = m~ext + Cqy. The vector field Çext is called the extremal vector field of 

(X, a, 'Ir). Furthermore, using the normalization for the moment map mqy in Lemma 1, 
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we see that 

4Trc1 (X) u etln-tl =lx Scal(<f>)w~nl =lx SCai(<f>)w~nl 
=lx m~e"'wf1 + c,p Vol( X, et), 

showing that the real constant Cext = C<f> is independent of W<f> too. Thus, there exists an 

affine-linear fun ct ion w ext (p) = ( Çext? p) + Cext on t*, su ch th at w </> E K3 is extrema! if 

and only if Scalv ( <P) = Wext (m<t>) i.e. if and only if W<f> is (1, Wext)-cscK (as cl,wext (a) = 1 

by defini ti on of w ext). 

2.2.2 (v, w)-extremal Kahler metrics 

As mentioned in the Introduction one can consider instead of (1.4) the more general 

problem (1.5) of finding a (v, w)-extremal Kahler metric W<f> for <P E K3. It turns out 

that if w(p) > 0 on P, similarly to the previous example, one can reduce the problem 

(1.5) to the problem (1.4) with the same v but a different w. This essentially follows from 

Theorem 5 below, which implies that for any 1I'-invariant, w-compatible Kahler metric 

g, the orthogonal projection of Scalv(g)/w(mw) to the space of affine-linear functions in 

momenta with respect to the w-weighted global inner product (2.17) is independent of g. 

Using the 1I'-equivariant Moser lemma for a Kahler metric W<f> E K3 and the normalization 

for m</> given by Lemma 1, one can conclude as in the proof of (9, Cor. 2] that there exista 

<P-independent affine-linear fun ct ion w ext (p) su ch th at m ~ + c = w ext ( m</>) for any me tric 

in K3 satisfying (1.5). In other words, if <P E K3 is (v, w)-extremal then w is (v, WWext)­

cscK. Conversely if W<f> is (v, WWext)-cscK, then Scalv(w<t>) = Cv,wwext (a)w(m<t>)Wext(m<t>) 

where Cv,wwext (a) is given by (2.6). We daim that Cw,wwext (a) = 1, which in turn implies 

that w</>is (v, w)-extremal. Indeed, if fx w(m<t>)Wext(m<t>)w~n] = 0, then Cv,wwext (a) = 1 

by Definition 3. Otherwise, if fx w(m<t>)Wext(m<t>)w~n] #- 0, we get 

Cv,wwex< (et) lx w(m,p)Wext(m,p)w~n] =lx (Scalv( </>)/w(m,p))w(m,p)wf1 

=lx Wext(m,p)w(m,p)w~n], 
showing again that Cv,wwext (a) = 1. 
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2.2.3 The Kahler-Ricci solitons 

This is the case when X is a smooth Fano manifold, a = 2?rc1 (X) corresponds to the 

anti-canonical polarization, 11' C Autred(X) is a maximal torus with momentum image 

P, and v(p) = w(p) = e(Ç,p) for sorne Ç Et. It was shown recently in [58] that a (v, w)­

extremal metric with Wext(P) = 2( (Ç,p) + c) (for sorne real constant c) corresponds to 

a Kahler metric w E a which is a gradient Kahler-Ricci soliton with respect to Ç, i.e. 

satisfies 

(2.7) 

where Ric(w) is the Ricci form of w. We include the verification of this claim for the 

convenience of the reader. We start by supposing that w is a gradient Kahler-Ricci 

soli ton, then we can rewrite (2. 7) as 

Ric(w)- w = ~ddcm~. 
2 

Taking the trace with respect to w of (2.8), we get 

Scal(w)- 2n = -~w(m~). 

Taking the Lie derivative of (2.8), we obtain 

which yields the following identity 

where c is a constant. Now, using (2.9) and (2.10), it follows that 

=2(m~ + c), 

(2.8) 

(2.9) 

(2.10) 

i.e. w is a (v, w)-extremal metric with Wext(P) = 2((Ç,p) + c). Conversely, suppose that 

w is a (v, w )-extremal metric su ch that 

Scalv (w) = 2((C ) ) 
( ) 

~,p + c ' 
wmw 

(2.11) 



18 

and let Pw be a 'TI'-invariant function such that 

. 1 
R1c(w)- w = 2ddcPw· (2.12) 

As before, taking the trace and the Lie derivative of (2.12), we obtain the following 

identities 

(2.13) 

where c' is a constant. Using (2.11) and (2.13) we get 

_ Scalv(w) ç _ , ç 
2c- ( ) - 2mw - (2n + c) + [~w + LJç](mw - Pw)· 

wmw 

Thus [~w + LJç](m~- Pw) =est. It follows that m~- Pw is a constant function by the 

maximum principle. Consequently, w is a gradient Kahler-Ricci soliton. 

Thus, the theory of gradient Kahler-Ricci soli tons (see e.g. [16, 23, 95, 96]) fits in to our 

setting too. Further ramifications of this setting appear in [58]. 

2.2.4 Kahler metrics conformai to Einstein-Maxwell metrics ( cKEM) 

These are the metrics introduced by (1.2) in the Introduction. They have been studied 

in [9, 10, 51, 52,60-62, 64-66). One can easily check that a Kahler metric satisfies (1.2) if 

and only if it is a (v, w )-cscK met ries with 

v(p) = ( (Ç,p) + a)-2m+l and w(p) = ( (Ç,p) + a)-2m-1, 

where (Ç,p) +a is positive affine-linear function on P. In this case, Scalv(<P)/w(m<t>) 

equals to the usual scalar curvature of the Hermitian metric g1> = ( / )2 91>· Thus, a 
mq,+a 

(v, w)-cscK metric W<f> gives rise to a conformally Kahler, Hermitian metric fl<t> which has 

Hermitian Ricci tensor and constant scalar curvature. The latter include the conformally 

Kahler, Einstein metrics classified in [28, 35]. 

2.2.5 Extremal Sasaki metrics 

Following [3], let (X, L) be a smooth compact polarized variety and a = 21rc1 (L) the 

corresponding Kahler class. Recall that for any Kahler metric w E a, there exits a unique 
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Hermitian metric hon L, whose curvature is w. We denote by h* the induced Hermitian 

metric on the dual line bundle L *. It is well-known (see e.g. [21]) that the principal 

circle bundle 1r: S ---t X of vectors of unit norm of (L*, h*) has the structure of a Sasaki 

manifold, i.e. there exists a contact 1-form B on S with dB = 1r*w, defining a contact 

distribution D c T S and a Reeb vector field x given by the genera tor of the § 1-action 

on the fibres of S, and a CR-structure J on D induced from the complex structure of 

L *. The Sasaki structure ( B, x, D, J) on S in turn defines a transversal Kahler structure 

(gx, wx) on D by letting Wx = (dB) D and gx = - (dB) Do J, where the subscript D denotes 

restriction to D C TS; it is a well-known fact that (gx,wx) coïncides with the restriction 

to D of the pull-back of the Kahler structure (g,w) on X or, equivalently, that (gx,wx) 

induces the initial Kahler structures (g, w) on the or bit space X = S j§~ for the § 1-action 

§~ generated by X· 

Let 1l' C Autred (X) be a maximal torus, with a fixed momentum polytope P C t* 

associated to the Kahler class a as in Lemma 1. We suppose that w is a 11'-invariant 

Kahler metric in a. For any positive affine-linear function (Ç,p) +a on P, we consider 

the corresponding Killing potential f = m~ + a of w and define the lift f,J of the Killing 

vector field Ç E t on X to S by 

where the super-scrip D stands for the horizontal lift. It is easily checked that ç1 

preserves the contact distribution D and the CR-structure J, and defines a new Sasaki 

structure (('rr* f)- 1 B, ç,, D, J) on S. In general, the flow of f,J is not periodic, and the 

or bit space of f,J is not Hausdorff, but wh en it is, X f := S /§~1 is a compact complex 

orbifold endowed with a Kahler structure (gJ,WJ)· In [3], the triple (X1,g1,w1) is 

referred to as a CR !-twist of (X,w,g) and it is shown there that (Xf,gf,WJ) is an 

extremal Kahler manifold or orbifold in the sense of Sect. 2.2.1 iff (X,w,g) is (v,w)­

extremal in the sense of Sect. 2.2.2 with 

v(p) = ((Ç,p) + a)-m-1 and w(p) = ((Ç,p) + a)-m-3 . (2.14) 

In general, by using the 11'-equivariant Moser lemma, a (v, w)-extremal metric W4J E JC3 
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(with v, w given by (2.14)) gives rise to an extremal Sasaki structure (Çf, D, Jq;) on S 

within a class of (ÇJ, D)-compatible CR structures parametrized by cp E K3. By the 

discussion in Sect. 2.2.2, Theorem 4 provides an obstruction to the existence of such 

Sasaki structures. We note that a similar obstruction theory has been developed in [32] 

and [21] in terms of the complex affine variety Y 2n+l := L* \ {0} viewed as the corre 

over X. 

2.2.6 The generalized Calabi construction and manifolds without multiplicities 

In [8], the authors consider smooth compact manifolds X which are fibre-bundles over 

the product of cscK Hodge manifolds (B,wB) = (B1,w1) x··· x (BN,WN) with fibre a 

smooth R-dimensional compact toric Kahler manifold (V, wv, 'Ir). More precisely, X is a 

V-fibre bundle associated to a certain principle 'Ir-bundle over B. They introduce a class 

of 'Ir-invariant Kahler metrics on X, compatible with the bundle structure, which are 

parametrized by wv-compatible toric Kahler metrics on V, and refer to them as Kahler 

metrics given by the generalized Calabi construction. The condition for the metric w on 

X to be extremal is computed in [8] and can be re-written in our formulation as (see 

(5.3) below) 

Scalv(gv) = w(m), 

where gv is the corresponding toric Kahler me tric on (V, wv), with 

N 

v(p) = IJ((Çj,p) +cj)dj, 
j=l 

() _ (( ) ) IJN (( . ) ·)dj ~ ·(TI~=l((Çk,P) +ck)dj) 
w p - f.o,p +co j=l Ç1 ,p + c1 - ~ Scal1 ( (Çj,p) + cj) . 

(2.15) 

(2.16) 

In the ab ove expressions m : V ---+ t* stands for the momentum map of (V, wv, 'Ir), dj 

and Scalj denote the complex dimension and (constant) scalar curvature of (Bj,Wj), 

respectively, whereas the affine-linear functions ((Çk,P) + ck),k = 1,··· ,Non t* are 

determined by the topology and the Kahler classa= [w] of X, and satisfy ((Çj,p)+cj) > 

0 for j = 1, · · · , Non the Delzant polytope P = m(V). Thus, a Kahler metric won X 

given by the generalized Calabi ansatz is extremal if and only if the corresponding toric 
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Kahler metric gv on V is (v, w)-extremal for the values of v, w given in (2.16). More 

generally, considering an arbitrary weight function w in (2.15) allows one to prescribe 

the scalar curvature of the Kahler metrics given by the geberalized Calabi construction 

on X. We note that a very similar equation for a toric Kahler metric on V appears in 

the construction of Kahler manifolds without multiplicities, see [45, 82). We refer the 

Reader to [70, 71) for a comprehensive study of the equation (2.15) on a toric variety, 

for arbitrary weight functions v(p) > 0 and w(p), which is referred to as the generalized 

.A breu equation. 

2.3 A formai momentum map picture 

In this section we extend the momentum map interpretation, originally introduced Don­

aldson [40) and Fujiki [48) in the cscK case and generalized by Apostolov-Maschler [9) 

to the case of conformally Einstein Maxwell, Kahlerian metrics, to arbitrary positive 

weights v, won P. 

In the notation of Section 2.1, let AC3 be the space of all w-compatible, 1I'-invariant 

almost complex structures on (X, w) and C3 c AC3 the subspace of 1I'-invariant Kahler 

structures. We consider the natural action on AC3 of the infinite dimensional group 

Ham'll'(X,w) of 1I'-equivariant Hamiltonian transformations of (X,w), which preserves 

C3. We identify Lie (Ham'll'(X,w)) ~ C00 (X,JR)'ll' /lR where C00 (X,JR)'ll'/JR is endowed 

with the Poisson bracket. 

For any v E C00 (P, 1R >O), the space AC3 car ries a weighted formai Kahler structure 

(J' nv) given by ([9, 40, 48]) 

O.'J(jl, j2) :=.!_ { Tr(J jlj2)v(mw)w[n], 
2 lx 

JJ(j) :=Jj, 

in which the tangent space of AC3 at J is identified with the space of smooth 1I'-invariant 
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sections j of End(T X) satisfying 

In what follows, we denote by gJ := w(·, J·) the almost Kahler metric corresponding to 

J E AC3, and index all abjects calculated with respect to J similarly. On C00 (X, JR)'ll', 

for w E C 00 (P, IR>o), we consider the Ad-invariant scalar product given by, 

(2.17) 

Theorem 5. [9, 40, 48] The action of Ham 'JI' (X, w) on (AC3, J, fF) is a Hamiltonian · 

action whose momentum map at JE C3 is the(., .)w-dual of ( 8~(~~)) -cv,w([w]))J where 

Scalv(J) is the v-scalar curvature of gJ given by (2.4) and the real constant Cv,w([w]) is 

given by (2.6). 

Proof. The proof follows from the computation of [9, 53] but we give the details for sake 

of clarity. Let h E C00 (X, JR)'ll'. Integration by parts gives 

(Scalv(J)/w(mw), h)w 

= L Scal(J)hv(mw)wln] + 2 L !:;.J (v(mw)) hwlnJ + L tr [GJ o (Hess(v) o mw)] hwln[ 

= L Scal(J)v(mw)hwlnl + 2 L 9J (d(v(mw)), dh) win[ 

+ L tr [GJ o (Hess( v) o mw)] hw[nJ. 

Let Jt E AC'll' (X, w) be a path of almost complex structures with J0 = J and first 

variation j = ftJt. Then, !JJ = gJ(-, j J·). According to [53, Proposition 9.5.2], the first 

variation of ScalJt is given by S~alJ = -t5J(t5j). It follows that 

d 
dt (Scalv(Jt)/w(mw), h)w 

=-L (OJ.Ü)v(mw)hwin] + 2 L 9J(d(v(mw)), jJdh)wln[ 

+ L tr[GJ o (Hess( v) o mw)]hwin] (2.18) 

= L 9J(j, DJd(v(mw)h))wln[ + 2 L 9J(d(v(mw)), j Jdh)wln] 

+ L tr[GJ o (Hess(v) o mw)]hwlnl, 
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where G J is the restriction of !JJ to the fundamental vector fields of the 1r -action, and 

D is the Levi-Civita connection of g. We have 

9J(i, DJd(v(mw)h)) =v(mw)9J(i, DJdh) + 9J(i, d(v(mw)) 0 Jdh) 

+ 9J(i, dh 0 Jd(v(mw))) + hgJ(i, DJd(v(mw))) 

=v(mw)9J(i, DJdh)- 2gJ(d(v(mw)), iJdh) 

+ hgJ(i, DJd(v(mw))). 

For a family of § 1 generators ~ := (6, · · · ,Çt) of 1r, we compute 

i 

9J(i,DJd(v(mw)) = 'Lv,i(mw)9J(i,DJdm~) + L v,ij(mw)9J(i,dm~ 0 Jdm~) 
i=l l~i,j~i 

~ . ç Ç· = ~ V,ij(mw)9J(J, dmcJ 0 JdmJ) 
l~i,j~i 

=- tr[GJ o (Hess(v) o mw)]. 

where we have used DJ dm?; = 0 (since the vector fields Çi are Killing with respect to 

9J ). It follows that 

9J(i, DJd(v(mw)h)) =v(mw)9J(i, DJdh)- 2gJ(d(v(mw)), j Jdh) 

- tr[GJ o (Hess(v) o mw)]. 

Substituting back in (2.18), we obtain 

d - r . [n] 
dt (Scalv(Jt)w(mw), h)w- Jx 9J(J, DJdh)v(mw)w . 

For any h E C00 (X,~)1l', the induced vector field on AC']['(X,w) is given by ZJ 
-.CzJ = -2J(DJdh~), where Z = Jdh~ is the Hamiltonian vector field corresponding 

to h. Thus, 

The Ham'll'(X,w)-equivariance of the map J f-t (Scalv(J)/w(mw), ·) follows from the 

Ad-invariance of(·, ·)w with respect to Ham'll'(X,w). D 
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2.4 A variational setting 

2.4.1 The (v, w)-Mabuchi energy 

In this section we suppose that v E C 00 (P,lR.>o) and w E C 00 (P,JR.) is an arbitrary 

smooth function. We consider K3 as a Fréchet space with tangent space Tc/JK3 = 

C00 (X, JR.)'ll' the space of 'Ir-invariant smooth functions ~on x. 
Definition 5. The (v, w)-Mabuchi energy Mv,w : K3 ---7 lR. is defined by 

f (dMv,w)~(~) =- L ~(Sca!v(</>)- C(v,wj(a)w(m~))winl, 
l Mv,w(O) = 0, 

for all ~ E TcPK3, where C(v,w)(a) is the constant given by (2.6). 

(2.19) 

Remark 2. The critical points of Mv,w are precisely the 'Ir-invariant Kahler potentials 

cjJ E K3 such that Wcfi is a solution to the equation (1.4). o 

We will show that the (v, w)-Mabuchi energy is well-defined by establishing in Theorem 6 

below an analogue of the Chen-Tian formula (see [26,31, 94]. We start with few lemmas. 

Lemma 3. The functional Ew : K3 ---7 lR. given by 

f (dEw)~ (~) = L ~w(m~)wr;l, 
l Ew(O) = 0, 

for any ~ E Tc/JK3 is well-defined. 

Proof. See e.g. [16, Lemma 2.14]. 

(2.20) 

D 

Lemma 4. Let() be a fixed 'Ir -invariant closed (1, 1)-form and me :X ---7 t* a momentum 

map with respect to (), see Definition 1. Th en the functional E~ : K3 ---7 lR. given by 

f (dE%)~(~)= L ~ [v(m~)O Il wr;-lJ + ((dv)(m~), me)wr;l], 

l E%(0) = 0, 

for any ~ E Tc/JK3 is well-defined. 

(2.21) 
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Proof. As the Fréchet space JC3 is contractible, we have to show that the 1-form on JC3 

(Bv),p(~) := L ~ [v(m,p)O /\ w~n-i] + ((dv)(m,p), me)w~n]] 

= 1 ~ [v(m,p)O 1\w~-i] + tv.;(m,p)m~;w~]J 
x J=l 

(2.22) 

is closed. Let ~' ~ E T<PJC3. Using the identity 

we compute 

( 5Bv( ~) ),p( ,j,) = :t ~t~o (Bv) <i>+"i' ( ~) 
= L ~(d(v(m,p)),d.}),pO 1\w~-i] + L ~v(m,p)O /\ ddc,j, /\w~-21 

f f 

+ L f.;; <Ï=~; (d(v ,;(m,p)), d.}),pw~l + L 'f ~v,;(m,p)m~; M.}/\ w~-IJ 

= L ~( d( v( m,p)), d,j, ),pO /\ w~-l] + L ~v( m,p )0 /\ ddc,j, /\ w~-2
1 

f f 

+ L f.;; <Ï=~; d(v ,;(m,p)) /\tf'.}/\ w~n-i] + L 'f ~v.; (m,p)m~; da:'.}/\ w~-IJ 

= L ~(d(v(m,p)), d.}),pO /\ w~-l] + L ~v(m,p)O /\M.}/\ w~n-21 
f -1 L ~v,j(m<P)(dm~j, d~)<Pw~n] + 1 (d~, d~)<P((dv)(m<tJ), me)w~n], 

xj=l x 

where e := (Çj )j=l,··· ,e is a basis of t. Integrating by parts, we obtain 

L ~v(m,p)O /\ ddc,j, /\ w~-21 

=- L v(m,p)O /\ d~ /\ dc,j, /\ w~n-2]- L ~0 /\ d(v(m,p)) /\ dc,j, /\ w~n-21 

=-L (d~, d,f),pv(m,p)O /\ w~-IJ + L (0, d~ /\ dc.}),pv(m,p)w~l 
f -1 ~( d(v(m,p)), d.}),pO /\ w~n-i] - 1 L ~v.; (m,p)(dm~i, d.}),pw~n], 

x x j=l 
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where we have used that 

(} 1\ d(v(mc~>)) 1\ dc;p 1\ w1n-2
] 

=(d(v(mc~>)), d;p)ct>(} 1\ w1n-l]- ((}, d(v(mc~>)) 1\ dc;p)ct>w1n] 

€ 

=(d(v(mc~>)), d;p)ct>(} 1\ w1n-l]- L V,j(mc~>)((}, dm~ 1\ dc;p)ct>w1n] 
j=l 

€ 

=(d(v(mc~>)), d;p)ct>(} 1\ w1n-l]- L V,j(mc~>)(dm~j, d;p)ct>w1nl. 
j=l 

It follows that 

and hence 

(8Bv(~))~(,f) =- L v(m~)(d~, d,f)~f} A wr;-l] 

-L (d~, d,f )~((dv) (m~), mo)wr;1 

+ L (8, d~ A dc,f)~v(m~)wr;l, 

( dBv) 4> ( ~, ;p) = ( ~ Bv ( ;p)) 4> ( ~) - ( ~ Bv ( ~)) 4> ( ;p) - ( Bv) 4> ( [ ~, ;p] ) = 0, 

(2.23) 

where [~, ;p] = 0, since ~' ;p are constant vector fields on K3. Thus, Bv is closed and 

therefore E~ : K3 ----7 IR is well-defined. D 

Definition 6. We let 

Hv(</>) := L log C~) v(m~)w~n] 
be the v-entropy functional Hv : K3 ----7 IR. 

Remark 3. If il is an absolutely continuous measure with respect to J-lw := w[n], then 

the entropy of il relatively to J1 is defined by, 

The entropy is convex on the space of finite measures il endowed with its natural affine 

structure. In the case when v E C 00 (P, IR>o), the v-entropy functional in Definition 6 is 

given by 
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for ail <P E K3, where c(a, v) = fx(v log ov)(mct>)w~n] is a constant depending only on 

(a, v) (see Lemma 2). o 

Lemma 5. 1. For any 1f -invariant Kahler form w on X, we have 

2. For any <P E K3 and Ç Et, we have 

where mruc(w) := ~~w(mw) is the Ric(w)-momentum map of the action of1f on X 

and W4> =log(~). 

Proof. The statement 1 is weil known (see e.g. [53, Remark 8.8.2] and [90, Lemma 28]). 

We will give here a short argument for the statement 2. Let <P E K3 and Ç E t. Using 

that .CJçWct> = -ddcm~ we obtain 

I t foilows th at 

D 

We now extend a formula obtained in the case v= w = 1 by Chen-Tian (see [26,31,94]) 

to general values of v and w >O. 

Theorem 6. We have the following expression for the (v, w)-Mabuchi energy, 

(2.24) 
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Proof. We denote "W 4> := log ( ~~). We compute 

(d1lv)<t>(~) =-L D.<t>(~)v(m<t>)w!;'l + L W<t>(d(v(m<t>)), d~)<t>w!;'l 

-L W<t>v(m<t>)D.<t>(~)w!;'l 
=-L ~D.<t>(v(m<t>))w!;'l- L (d\li4>, d~)<t>v(m<t>)w!;'l 

f f 

= -1 L~v,j(m4>)~4>(m~)w[n] + 1 L ~V,ij(m4>)(Çi,Çj)4>w~n] 
x j=l x i,j=l 

f 

+ 1 L~(d"W4>,dm~)4>v,j(m4>)w~n]_1 ~~4>("W4>)v(m4>)w~nl, 
xj=l x 

where ~ := (Çj)j=l,··· ,fis a basis fort. Using Lemma 5 and the fact that 

we get 

f f 

(dHv)4>(~) = -1 ~ 2:v,j(m4>)~4>(m~)w[n] + 1 L ~V,ij(m4>)(Çi,Çj)4>w~l 
x j=l x i,j=l 

f 

+ 1 L ~ ( ~w(m~)- ~4>(m~)) V,j(m4>)w~n] 
x j=l 

-L ~ (Scal<l>- 2Aw.;Ric(w)) v(m<t>)w1nl. 

It follows that 

which yields (2.24) via (2.25) and (2.20). 

(2.25) 

D 

By the work of Mabuchi [76, 77], the space of 'IT'-invariant Kahler potentials K3 is an 

infinite dimensional Riemannian manifold with a natural Riemannian metric, called the 

M abu chi me tric, defined by 
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for any ~1, ~2 E Tq)C3. The equation of a geodesie ( (Pt)tE[o,1] E K3 connecting two points 

cpo, cp1 E K3 is given by (see e.g. [53, Section 4.6] for more references) 

The following result is a straightforward extension of an observation of Guan [54] (see 

e.g. [53, Proposition 4.6.3]). 

Proposition 1. Let X be a compact Kahler manifold with a fixed Kahler class a, 'Ir c 

Autred(X) a real torus and suppose that w E a is a (v, w)-cscK metric for smooth 

functions v E C 00 (P, lR >0), w E C 00 (P, lR) on the momentum image P C t* associated to 

('Ir, a). Then for any (v, w)-cscK metric W<f> E a connected to w by a geodesie segment in 

K3, there exists ci> E Autred(X) commuting with the action of 'Ir, such that W<f> = ci>*w. 

Proof. By a straightforward calculation using the formula (2.40) in Lemma 9 below, we 

obtain the following expression for the second variation of the (v, w)-Mabuchi energy 

along a 'Ir-invariant segment of Kahler potentials (cpt)tE[o,1] E K3: 

(2.26) 

Suppose now that W<f>, cp E K3 is a (v, w)-cscK metric connected to w by a smooth 

geodesie ( cpt)tE[0,1], such that cpo = 0 and cp1 = cp. Then dMv,w(<Pt) 1 - dMv,w(<Pt) 1 -
dt t=O - dt t=1 -

0, and using (2.26) we obtain 

d2 M (<1> ) • It follows that d,i2 t = 0 and n-dcpt = O. Thus, we have a family of real holomor-

phie vector vector fields Vt := -grad9 t ~t, t E [0, 1]. By [53, Proposition 4.6.3], Vt = Vo 

for ali t, and W<f> = (ci>i0 )*w where ci>i0 E Autred(X) is the flow of the real holomorphie 

vector field Vo. 0 

Remark 4. In general, the space K3 is not geodesieally convex by smooth geodesies 

(see [33, Theorem 1.2]). However, by a result of Chen [27], with complements of Blocki 
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[19], the space K3 is geodesically convex by 1I'-invariant weak C 1,1-geodesics, i.e. in the 

space (K~' 1 ) 1I' of 1I'-invariant real valued functions cp such that w + ddccp is a positive 

current with bounded coefficients. Using the formula mc/> =mw+ dccp and Theorem 6, 

one can extend the (v, w)-Mabuchi energy to a functional Mv,w : (K~' 1 ) 1I' ---tIR. <> 

2.4.2 The relative (v, w)-Mabuchi energy 

In this section we assume that both v and w are positive smooth functions on P. 

Definition 7. The (v, w)-relative Mabuchi energy M~~~ : K3 ---tIR is defined by 

\ 

(dM~~U~( J,) = -ix J,(Scalv(</> )/w(m~) - Wext(m~) )w(m~Jw!;l, 
Mrel (0) = 0 

(2.27) 

v,w ' 

for any ~ E T4>K3, where Wext is the affine linear function on P defined in Section 3.2. 

Lemma 6. We have M~~~ = Mv,wwext. 

Proof. In Section 3.2, we will show that Cv,wwext (a) = 1. From the definitions of Mv,w 

and M~~~' it then follows that M~~~ = Mv,wwext +c and using M~~~(O) = Mv,wwext (0) = 

0 we get c =O. D 

2.4.3 Boundednes of the (1, w)-Mabuchi energy 

Now we show how the results of Berman-Berndtsson in [15] can be extended to the 

(1, w)-cscK metrics. 

Theorem 7. Let X be a smooth compact Kahler manifold, 1I' C Autred(X) a real torus, 

and suppose that X admits a (l, w)-cscK metric w in the the Kahler class a for some 

smooth function w on the momentum image P C t* associated to ('JI', a). Then, w is a 

global minima of M1,w. 

Proof. We denote by Mw the (1, w)-Mabuchi energy and by M the (1, cl,w(a))-Mabuchi 
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energy. From the definition of the Mabuchi energy we have the following relation 

Mw= M +E-w, 

where w := cl,w(a)(1 - w) and E.-w is the functional (2.20). Let ~o, (PI E JC3 be two 

smooth Kahler potentials and ~t the weak geodesie connecting c/Jo and ~1 (see [15, 31] 

and the references therein for the definition of a weak geodesie). By [17, Proposition 

10.d] the function t f--t E.-w(~t) is affine on [0, 1], whereas by [15, Theorem 3.4], the 

function t f--t M(~t) is convex. It follows that t f--t Mw(~t) is convex. By [15, Lemma 

3.5] and its proof, we get 

1. Mw(~t)- Mw(~o) > 1 (S l(A. ) _ ( ) ( ))l [n] Im _ ca 'f/0 c1,w Œ w m4>0 'f/w4> . 
t-+O+ t X 0 

where ~ := dftt it=o+. Using the sub-slope inequality for convex functions and the 

Cauchy-Shwartz inequality we get 

Mw(cPI)- Mw(~o) ~ lim Mw(~t)- Mw(~o) 
t--+0+ t 

~ L (Scal(</.>o)- CJ,w(o:)w(m<Po))<Î>w~ 

~- d(</.>o, </.>1) ( L (Scal( <Po) - C(J,w) ( o:)w(m~0 ) ) 2w1~)!, 

where d(~0 , ~1 ) 2 = fx ~2w1~ is the Mabuchi distance between ~o and ePI· In particular, 

if Wcf>o is a ( 1, w )-cscK met rie in the Kahler class a, th en Mw (cP) ~ Mw ( ~o) for any 

~ E JC3. D 

2.5 The (v, w)-Futaki invariant for a Kahler class 

Let (X, a) be a compact Kahler manifold and 1f c Autred(X) a real torus with momen­

tum polytope P with respect to a as in Lemma 1. For any ~ E JC3 and V E ~~ed in the 

Lie algebraofthe centralizer of1f in Autred(X), we denote by h~ +yC!f'/ E ccrc!>(X,C) 

the normalized holomorphy potential of Ç, i.e. h~ and r: are smooth functions such 
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that, 

v= grad9<~> (hr) + Jgrad9<~> (/%), 

fx t't w1nJ = fx hrw1nJ =o. 

Using that the tangent space in cp of K3 is given by T<t>(K3) ~ ccr<t>(X, JR)'ll' E9 ffi., the 

vector field JV defines a vector field JV on K3, given by: 

so that JV </> = f%. We consider the 1-form a on K3, defined by 

where Mv,w is the (v, w)-Mabuchi energy associated to the smooth functions v E 

C00 (P, ffi.>o) and w E C00 (P, ffi.) (see (2.19) ). By the invariance of a under the Aut;ed (X)-

action and Cartan's formula, we get 

Th en cp M a</> (lV) is constant on K3, and we define 

Definition 8. We let 

(2.28) 

be the real constant associated to V E l:J;ed. We thus get a linear map F::,w : l:J;ed --+ ffi. 

called the (v, w)-Futaki invariant associated to (a, P, v, w). 

By its very definition, we have 

Proposition 2. If (X, a, 1r) admits a (v, w)-cscK metric then 

L Scalv(w)wlnJ = C(v,w)(a) L w(mw)wln[ and F~w =O. (2.29) 

Remark 5. The first condition in (2.29) is satisfied when fx w(mw)w[n] # 0 by the very 

definition of Cv,w(a) (see Definition 3). Furthermore, in the case of a (v, w)-extremal 

Kahler metric considered in Section 3.1, bath conditions in (2.29) hold true with respect 

to the weights v and ww ext . <> 



33 

Following (50] and(53, Proposition 4.11.1] we have, 

Definition 9. For any VI, v2 E ~Jed' with normalized holomorphy potentials Ff, F/f, 

we define the w-Futaki-Mabuchi bilinear form by the following expression, 

which is independent from the T-invariant w E a. 

We have the following characterization of the extrema! vector field Çext of (X, a, Pa, v, w) 

(see section 2.2.2), 

Lemma 7. The extrema[ vector field Çext Et of (a, Pa, v, w) is the unique element of t 

such that 

(2.30) 

for any Ç Et. 

2.6 The structure of the automorphism group of a manifold with weighted cscK 
metric 

In the following section we give the proof of Theorem 1 from the Introduction. We 

need first to establish a couple of lemmas. In what follows, (X, a) is a compact Kahler 

manifold and TC Autred(X) is a real torus with momentum image Pa, as in Lemma 1. 

Lemma 8. For any T-invariant 1-form Bon X, and smooth function v E C00 (Pa,ffi.), 

we have 

e 
288 (v(mw)D-o) =2v(mw)88(D-B) + 2:2::: v,i(mw)(~B, (JÇi)~) 

i=l 
e e 

- :2::: 2v, i (mw) ( ~ ( J Çi) ~, B) - :2::: 2v, i (mw) ( 8dB, ( J Çi) ~) (2.31) 
i=l i=l 

e e 
+ :2::: V,ij(mw)(JÇi)(B(JÇj))- :2::: V,ij(mw)(B,d(Çi,Çj)) 

i,j=l i,j=l 

where ( ·, ·) stand for the inner product of tensors induced by the K iihler metric w, 
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(6, · · · , Çc) denote a basisfor t and v,i {resp. v,ij) denotes {resp. mixed) partial deriva­

tives of v. 

Proo f. In fact, 

v(mw)88(D-B) + v,i(mw)(8D-B)(JÇi) 

+v,i(mw)8 ((D-B)(JÇi, ·))- V,ij(mw)(D-B)(Çi,Çj)· 

We consider the decomposition of the tensor n-B in symmetric and skew-symmetric 

parts W and <I>, respectively, 

For any vector field X on M we have 

8 (\li(X, .)) = -(w, DX~) + (8\ll) (X), 

8 (<I>(X, .)) = (<I>, DX~)- (8<I>) (X). 

Using (2.32) for X = JÇi we get 

8 (w(Jçi, .)) = (8w)(Jçi), 

8 (<I>(JÇi, .)) = -(8<I>)(JÇi)· 

Th us, 

Using (53, Lemma 1.23.4] and 2<I> = dB- J dB we have 

(8w)(JÇi) = (8D-B, (Jçi)~)- (8<I>)(Jçi) 

= ~(~B, (JÇi)~)- Ric(w)(JÇi, B~)- ~(8dB, (JÇi)~) + ~(b"JdB, (JÇi)~) 

= ~ (~B, ( JÇi)~) - (~( JÇi)~, B) + ( 8D+ d( JÇi)~, B) - ~ ( 8dB, ( JÇi)~) 
1 ~ 1 ~ 1 ~ = 2(~B, (JÇi) ) - 2(~(JÇi) , B)- "2(8dB, (JÇi) ) 

(2.32) 

(2.34) 
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where we have used the identity (8Jd(}, (JÇâ') = -(8cdB)(Çi) = L-çi8c(} = 0 which holds 

since Çi is Killing. Furthermore, 

2(D- B) (Çi, Çj) = (Dçi B) (Çj) - (D Jçi B) ( JÇj) 

= Çi(B(Çj))- (JÇi)(B(JÇj))- 20 (DçjÇi) 

= -JÇi(B(JÇj)) + (B, d(Çi, Çj)) 

= -(JÇi)(B(JÇj)) + (B,d(Çi,Çj)), 

(2.35) 

since Çi(B(Çj)) = 0 by the 'Jr-invariance of B. The result follows by substituting (2.34) 

and (2.35) in (2.33). This completes the proof. D 

Corollary 3. For any 1r -invariant function </Y E C00 (X, JR)'ll', we have 

where Lçext denotes the Lie derivative along the vector field Çext := Jgrad(Scalv(w)/w(mw)). 

Proof. We have, 

f f 

Scalv(w) = v(mw)Scal(w) + 2 :Lv,i(mw)~w(m~)- L V,ij(mw)(Çi,Çj)· 
i=l i,j=l 

By 'Jr-invariance of <fy, we obtain 

w(mw)Lçext<P = -(dScalv(w), dc<fy) 

f f 

= -v(mw)(dScal(w), dc<P)- 2 L V,i(mw)(d~(m~), dc<P) + L v,ij(mw)(dc<fy, d(Çi, Çj)). 
i=l i,j=l 

By taking (} = dc<P in (2.31) and using the fact that 88(D- dc)<P = ( dScal(w ), dc<P) (see 

[53, p.63, Eq.(1.23.15)]), we get, 

e e 
=2v(mw)88(D- dc)<P + 2 L V,i(mw)(d~(m~), de </Y)- L V,ij(mw)(dc<fy, d(Çi, Çj)) 

i=l i,j=l 
e e 

=v(mw)(dScal(w ), de </Y)+ 2 L V,i(mw)(d~(m~), dc<P) - L V,ij(mw)(dc<fy, d(Çi, Çj)) 
i=l i,j=l 
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where we have used the 11'-invariance of cf;. D 

For a 1-form () we denote by D2 ,0 () (resp. D0 ,2()) the (2, 0)-part (resp. (0, 2)-part) of the 

tensor D(). We define the (v, w)-Calabi's operators IL±( ) on C00 (M, C)'li' by v,w 

IL(- ) (F) = v,w 

2(D0,2d)*v(mw)D0,2dF 

w(mw) 

2(D2,0d)*v(mw)D2,0dF 

w(mw) 

and we define the (v, w)-Lichnerowicz operator by 

IL(v w) :=IL+( ) +IL-( ) . , v,w v,w (2.36) 

Recall that the space of hamiltonian Killing vector fields is given by (see (53, Chapter 

2]) 

The following proposition follows from the arguments in (53, Proposition 2.5.1], and will 

be left to the reader. 

Proposition 3. 

1. Let V= grad9 (h) + Jgrad9 (f), where f,h E C00 (X,JR)1I'. Then V E ~red if and 

only if IL+( )(h + v'-f.f) = 0, i.e. we have v,w 

~~ed ~ ker(IL +( )) n C~(M, C)~. v,w 

where C~(M, C)~ is the space of smooth 1I' -invariant functions on X normalized 

by fx fw(mw)wn =O. 

2. The (v, w)-Lichnerowicz operator satisfies 

± v'-1 
IL(v,w) = IL(v,w) ± -2-Lf.ext' 

where Çext := Jgrad(Scalv(w)/w(mw)). 

3. Let t~am be the Lie algebra of 1I' -equivariant Hamiltonian isometries of X. Then 

V E t~am if and only if there exists hE C 00 (M, IR) 'li' such that V= Jgrad9 (h) and 

IL(v,w)(h) =O. 
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The next result was first established by Calabi in [22) in the case of extremal metrics, and 

was recently generalized independently by Futaki-Ono [51) and the author [61) to the 

case of manifolds admitting Kahler metrics conformally equivalent to Einstein Maxwell 

metrics. 

Theorem 8. If X admits a (v, w)-extremal Kahler metric with v, w E C00 (P,~>0 ). 

Then the complex Lie algebra of 1I' -equivariant automorphisms of X admits the following 

decomposition 

~'li'= (a œ ~~am EB J~~am) EB (EB ~!>.)) ' 
>.>0 

(2.37) 

where a is the abelian Lie algebra of parallel vector fields, ~~am is the real Lie algebra 

of 1I' -equivariant Hamiltonian isometries of X and ~!À)' À > 0 denote the subspace of 

elements V E ~ 1!' such that Lf.ext V = ÀJV. Moreover, the Lie algebra of 1I' -equivariant 

isometries of X admits the following decomposition 

(2.38) 

Proof. The proof follows the arguments in [53, Theorem 3.4.1]. Let (g,w) denote V:= 

VH + grad9 (h) + Jgrad9 (f) E ~'li', where VH is the dual of the harmonie part of(}:= V~;~ 

denoted (}H, and j,g E C00 (X,~)'ll' with fx fw(mw)wn = fx hw(mw)wn =O. By (2.31) 

in Lemma 8, the fact that (} H is harmonie and the identity 288 ( D- (} H) = ( dScal( w), (} H) 

which follows from [53, Lemma 1.23.5), we obtain 

i 

288(v(mw)D-BH) =2v(mw)88(D-BH)- 2:: 2v,i(mw)(~(JÇi)~;~, BH) 
i=l 

i 

- 2:: V,ij(mw)(BH,d(Çi,Çj)) 
i,j=l 

f 

=v(mw)(dScal(w), BH) + 2:: 2v,i(mw)(d~(m~), BH) 
i=l 

i 

- 2:: V,ij(mw)(BH,d(Çi,Çj)) 
i,j=l 

=J Lf.ext B H = 0 sin ce (g, w) is (v, w )-extrema!. 
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It follows that 

O = 288(v(mw)D-B) = 288(v(mw)D-(dh + dcf) =Re (IL+ (h + ~f)). 
w(mw) w(mw) (v,w) 

Starting from JV instead of V we similarly get 

It follows that IL+( ) (h + ~f) = 0, then by 1 in Proposition 3 we have that VH and v,w 

grad
9

(h) + Jgrad
9
(f) are real holomorphie vector fields, which proves that 

(2.39) 

Using the fact that tham := t n ~red and t na= a, we obtain the decomposition (2.38). 

Since Çext is Killing and commutes with 1I', the operators IL±( ) commute. Th en IL-( ) v,w v,w 

acts on ~;ed and by Proposition 3 2, this action is given by -~L:~ext. Since IL~,w) is 

(-, ·)w-self-adjoint and semi-positive, ~:ed splits as 

where ~;ed,(O) is the kernel of Lf.ext in ~:ed whereas, for each À > 0, ~ C>-.) is the subspace 

of elements V E ~1!' such that Lf.ext V = ÀJV. Using the splitting (2.39) we get (2.37) 

(Notice that ~(>-.) = ~;ed,(>-.) since Çext is Killing and commutes with 1'). 

We have a EB t~am EB Jt~am C ~(o)· By 2 in Proposition 3 the restriction of Lf.ext to 

ker ( ILt,w)) n C~(M, C)1!' coïncides with the restriction of IL(v,w) to the same space. 

Then, using 3 in Proposition 3, we obtain the converse inclusion, which proves that 

This completes the proof. D 

Now we are in position to give a proof for Theorem 1 from the introduction. 

Proof of Theorem 1. This is done as in the case v= 1, w = 1 (see [53, Section 3.5]). 

Let .s be the Lie algebra of a connected, compact Lie subgroup, S c A ut~ (X) containing 
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Isom~ (X, g). Suppose, for a contradiction, that there exists V E .s that doesn't belong 

to t'li'. By Theorem 8, we have the splitting 

then we can assume that V E Jt~am EB ( EBÀ>O ~fÀ)). Let V= Vo + LÀ>O VÀ be the 

corresponding decomposition of V, then for any positive integer r we have 

(.Cçext)2r V= - L À2rVÀ E .5. 
À>O 

It follows that each component VÀ of V is in .s. We can therefore assume that V E 

.sÀ := .s n ~fÀ) or V E Jt~am c .sa. Suppose that V E .sÀ for sorne À > O. Let B 

denote the Killing form of .s. Since S is a compact Lie group, B is semi-negative and 

it's kernel coincides with the center of .s. On the other hand V belongs to the kernel 

of B, indeed for any W E .SÀ1 and U E .sÀ2 , by Jacobi identity we can easily show that 

. [V, [W, U]] E .SÀ+À1 +Àz =F .5À2 then .SÀ+À1 +Àz = {0} and by consequence [V, [W, U]] = O. 

It follows that for any W E .s we have B(V, W) =O. Renee V belongs to the center of 

.s, but we have Çext E t'li' C .s and [V, Çext] = -ÀJV # 0, a contradiction. 

It follows that V E Jt~am. Th en V = grad9 ( h) for sorne real fun ct ion h. By the 

hypothesis, the flow <PY of Vis contained in a compact connected subgroup of Aut~(X). 

It follows that V is quasi-periodic with a flow closure in A ut~ (X) given by a torus Tk 

of dimension k ~ 1. Note that k =F 1 since a gradient vector field does not admit any 

non-trivial closed integral curve, as fth ( <Pf (x)) = IVI~y (x) 2:: O. It follows that k > 1. 

Let x E X such that Vx =F O. We have that h( <Pf (x)) is an increasing function of t, so 

that h(<PY(x))- h(x) > c, fort> 1, where c >O. But by density of <PY in the torus Tk, 

<PY meets any small neighborhood U of x, which is a contradiction. We conclude that 

.5 =t'li'. 

If the (v, w)-scalar curvature is constant then by Theorem 8, ~1!' splits as 
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since Çext = 0 and by consequence ~ 7-\) = { 0}. In particular ~ 1!' is a reductive complex 

Lie algebra. D 

We have the following immediate consequences of Theorem 1. 

Corollary 4. Any (v, w)-extremal metric is invariant under the action of some maximal 

torus 11'max of Autred(X). 

Using an argument of Guan [54] (applied originally to the case (v, w) = (1, 1)), we obtain 

as in [9] the following uniqueness result in the toric case (i.e. when dim(1r) = dimc(X) = 

n). 

Corollary 5. Let g and g be two (v, w)-extremal metrics on X. Then there is <I> E 

Aut~(X) such that Isom~(X,g) = Isom~(X,<I>*g). Furthermore if X is a tarie manifold 

and g and g are two (v, w)-extremal metrics in the same Kahler class a, then they are 

isometric. 

2. 7 Deformations of weighted cscK metrics 

In this section we give the proof of Theorem 2 from the Introduction. Let X be a 

compact Kahler manifold, a a Kahler class, 11'max C Autred(X) a maximal torus and 

Pa c t* a momentum polytope for a as in Lemma 1. Let (3 E H 1'1 (X) and U an open 

subset of t* with Pa c U. Then there exist a > 0 such that for any lrl < a we can 

choose P a+rf3 C U to be the momentum polytope of 11'max with respect to a+ r(3. With 

these choices, we now suppose that v, w are positive smooth functions on U and v, w 
are arbitrary smooth non vanishing functions on U. Let () be a 1r -invariant g-harmonic 

representative of (3 and w a 11'-invariant Kahler metric in a. We take (w, B) = 0 to avoid 

trivial deformations of the form () = Àw. We denote by 

Wr,c/> := w +rB+ ddcq;, 

a 1r-invariant deformations of w for r E IR and cp E C00 (X, IR) 11'. We consider the 

following map, 
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defined by, 

S( .+.) ·= Scalv+tv(Wr,c/J) 
t,s,r,"P. ( _)( )' w+ sw mr,c/J 

where m(r,c/J) := mwr,<f> :X--+ P a+rf3 denotes the Wt,c/J-momentum map with momentum 

image P a+rf3 and v, v, w, w E C00 (U, ffi.>o). We take k > .n such that the Sobolev 

space L2,k(X, ffi.) 'li' form an algebra for the usual multiplication of functions, embadded 

in C4 (X, ffi.) 'li'. Then S defines a map 

We will start by giving the linearization of the w-scalar curvature with respect to the 

Kahler potential c/J. 

Lemma 9. For any 1f -invariant Kahler metric w E a and any variation~ E T4>K3 we 

have 

ô ( 8;~;.~)) (~) = -21Lv,w(~) + d"~(Çext), (2.40) 

h C J d (Scalv(w)) diL h ll f h d d'l+ l w ere ~.:,ext := gra g w(mw) an v,w is t e e iptic Jourt o~ er iJJerentia operator 

given by 

here, D is the Levi-Civita connection of g and n- ( d~) is the J -anti-invariant part of 

the tensor D( d~). 

Proof. Let (6, · · · , Çg) be a familly of § 1-generators of 1f. For a 1f-invariant variation 

w = ddc~, the corresponding variations of mw, ~w, Scalw are given by (see e.g. [53]): 

mw =d~ 

Aw =(ddc~, ddc·) (2.41) 

Scalw =- 2IL9 (~) + (dScal(w),d~), 

where JL9(~) = <5<5(D-d~) is the usual Lichnerowicz operator. Then the first variation 
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of the v-scalar curvature in the direction ~ is given by: 

<5Scalv(~) =- 2v(mw)IL9 (~) + v(mw)(dScal(w), d~) + Scal(w)(d(v(mw)), d~) 
f f 

+ 2 L V,i(mw)Llw(dm~, d~) + 2 L V,ij(mw)(dm~, d~)Llw(m~) 
i=l i,j=l 

f f 

+ 2 L V,i(mw)(ddcm~, ddc~)- L v,ijk(mw)(dm~k, d~)(Çi, Çj) 
i=l i,j,k=l 
f 

+ L V,ij(mw)Çj((dc~)(Çi)). 
i,j=l 

By (2.32) and the li-invariance of cp we have 

( ddc~, ddcm~) = -.6.( dm~, d~) + ( d.6.~, dm~). 

Th us, 

<5Scalv(~) =- 2v(mw)IL9 (~) + v(mw)(dScal(w), d~) + Scal(w)(d(v(mw)), d~) 
f f 

+ 2 L V,i(mw)(d.6.~, dm~)+ 2 L V,ij(mw)(dm~, d~)Llw(m~) 
i=l i,j=l (2.42) 

f f 

- L v,ijk(mw)(dm~k,d~)(Çi,Çj) + L V,ij(mw)Çj((dc~)(Çi)). 
i,j,k=l i,j=l 

On the other hand we have 

(dScalv(w), d~) =v(mw)(dScal(w), d~) + (d(v(mw)), d~)Scal(w) 
f f 

+ 2 L .6.(m~)v,ij(mw)(dm~, d~) + 2 L V,i(mw)(d.6.(m~), d~) 
i,j=l i=l 
f f 

- L v,ijk(mw)(dm~k, d~)(Çi, Çj)- L V,ij(mw)(d~, d(Çi, Çj)). 
i,j,k=l i,j=l 

(2.43) 

By taking the difference (2.42)-(2.43) we get exactly (2.31) for a= d~, which, in turn, 
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is equal to -288(v(mw)(D-d)~). The expression (2.40), follows from the following 

(
Sc al v ( w) ) · 1 ( ) · ( 1 ) · 

8 w(mw) (cp)= w(mw) 8 Scalv(w) (cp)+ Scalv(w)8 w(mw) (cp) 

1 . . 1 . 
( ) [-2o8(v(mw)(D-d)cp) + (dScalv(w),dcp)] + (d(-(-)),dcp) 

wmw wmw 

=- 21Lv,w(~) + dc~(Çext)· 

D 

Using the Lemma 9, we obtain 

Lemma 10. The map S is C 1 with Fréchet derivative in 0 given by 

where S1 (i), S2 (s), S3 (r), S4(~) are the derivatives with respect tot, s, r, cp respectively 

and 

S ( .) = (Scalv(w)) . 
1 t ( ) t, wmw 

S ( ') = _ (w(mw)Scalv(w)) . 
2 s (w(mw) )2 s, 

S3(f) =[- (:~r;:~()scalv(w) + (v(mw))8Scal(mw)- 2v(mw)(O,llic(w)) 

f. f. . 

+ 2 ~(v,,(mw))8 ~w(m~)- i~l (v,ij(mw))
8
8(Ç,, Jç,J] w(:w), 

S4(~) =- 21Lv,w(~) + (dc~)(Çext)· 

where (6, · · ·Çe) is a family of§1-generators of1f, and for u E C00 (U,JR.) we denote 

f. 

(u(mw)) 8 
:= ! lr=O [u(mw+re)] =-~ u,,(mw)CGw(O, dd"m~), (2.44) 

with Gw is the Green opera tor relative to w for the Laplacian ~w. 

Proof. The expressions of S1 and S2 are straightforward. The expression of S4 follows 

from Lemma 9. For 83 , we use the following variation formulas contained in [53, Chapter 
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5] and [68], 

! ~r~o Scal(w + rO) = -2(0, Ric(w)), 

:r ~r~o flw+re(f) = -(da:' f, 0), 

d
d 1 m~+rB = -Gw(B, ddcm~), 
r r=O 

! ~r~o IÇI~+rO = O(Ç, JÇ). 

We consider the inner product (-, ·)w,w, given by 

(!, h)w,w = L fhw(mw)wlnJ. 

0 

Let tw be the space of w-Killing potentials of the elements of t := Lie(1I'max) normalized 

by (f, l)w,w =O. We denote L3_:k(X,IR)'][' the orthogonal complement tw in L2•k(X,IR)'][' 

with respect to the inner product (-, ·)w,w· Let Ils,r,<P (resp. Ilw,w := IIco,o,o)) denote the 

orthogonal projections on twr,<f> (resp. fw) with respect to (-, ·)w+sw,wr,<t> (resp. (·, ·)w,w)· 

As in [68], taking (s,r) E (-E,E)2 close to zero, and 4J EU in a neighborhood U C 

L3_:k+4 (X, IR)'][' of the origin, we have 

ker (Id- Ilw,w) o (Id- Ils,r,cj>) =ker (Id- Ils,r,cj)). 

Now, we consider the Lebrun-Simanca map 

defined by 

w(t, s, r, 4J) := (t, s, r, (Id- Ilw,w) o (Id- Ils,r,ct>) S(t, s, r, 4J)). (2.45) 

We have w(O, 0, 0, 0) = 0 and w(t, s, r, qy) = (t, s, r, 0) if and only if Wr,cj> is (v+tv, w+sw)­

extremal. We shall th us use the inverse fun ct ion theo rem for the map W. 

To calculate the derivative of w in 0, we will need sorne technical Lemmas. 
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We denote by Fl,s the (v+ tv, w + sw)-Futaki invariant of (a+ r,B, P a+r!3) (see Defi­

nition 8), and by .B~ the w + sw-Futaki-Mabuchi bilinear form of (a+ r,B, P a+r!3) (see 

Definition 9). 

Lemma 11. Let Ç, TJ E t, with killing potentials f~, f:J normalized by having zero mean 

value. The partial derivatives of F[, 8 (Ç), with respect to the variables (t, s, r) in (0, 0, 0) 

are given by 

! lo Ft,s(Ç) =n,w(Ç), 

:s lo Ft,s(Ç) =Ü, 

:r lo Ft,s(Ç) =(S3(l), f~)w,w + (IJ, (w(mwW11Gw(S(O)w(mw))dd" f~)w,w 
f_ 

+ L(B, (w(mw))- 1 Gw(S(O)f~w,i(mw))ddcm~)w,w· 
i=l 

where 83 is given in Lemma 10. 

The partial derivatives of .B~(Ç, TJ), Ç, TJ Et with respect to the variables (s, r) in (0, 0, 0) 

are given by 

:s lo fY.(Ç, '7) =B~(Ç, '7), 

:r 1

0 
fY. ( Ç, '7) = ( IJ, ( w( mw W 1 [f~dd"IGw (!Jw( mw) )])w ,w 

+ (0, (w(mw))- 1 Gw(f~w(mw))ddc f~)w,w 
f_ 

+ L(B, (w(mw))- 1 Gw(f~f~w,i(mw))ddcm~)w,w· 
i=l 

Proof. We have 

Ft,s(Ç) = L S(t, s, r, O)f~+rO(w + sW)(mw+ro)(w + riJ)InJ, 

s: (Ç, '7) = L f~+r9f~+r9(w + sW)(mw+rO)(w + riJ)InJ. 

The partial derivatives with respect to t, s of Ft,s and .B~ are straightforward. The 
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r-derivative of Fl,s (f;,) is given by 

:r lo F,,(Ç) = L S3(1)j~w(mw)win]- L S(O)IGw(<5(0(JÇ)))w(mw)win] 

f 

- ~ L S(O)j~w,,(mw)1Gw(8(0(J@)win] 

= L S3(1)f~w(mw)win] - L (d!Gw(S(O)w(mw) ), O(JÇ))win] 

f -~ L (IGw[S(O)f~w,i(mw)J, B(JÇ,) )win] 

= L S3(1)j~w(mw)win] - L (de f~ 1\ d!Gw(S(O)w(mw) ), O)win] 

f 

- ~ L (dem~ 1\ diGw[S(O)f~w,i(mw)J, O)win] 

= L ( S3(l)j~w(mw) + S(O)(w(mw) )8 + (0, dde f~)IGw(S(O)w(mw))) win] 

f 

+ ~ L (ddem~, O)IGw[S(O)j~w,i(mw)]winJ. 

It follows that 

:r lo P,,(Ç) =(S3(l), f~)w,w + (0, (w(mwW11Gw(S(O)w(mw) )M fDw,w 

f 

+ L(B, (w(mw))- 1 Gw(S(O)f~w,i(mw))ddcm~)w,w· 
i=l 

Now, we consider the r-derivative of B~(Ç, 77). We compute 

:r lo 13~(Ç, 1/) =- L J:!,1Gw(80(JÇ) )w(mw)win] - L f~IGw(80(J'I))w(mw)win 
f 

- L 1 f~fJw,i(mw)CGw(8B(JÇi))w[n] 
i=l x 

= - L (tf f~ 1\ diGw (f;]w( mw)), 0 )win] - L (de f;] 1\ diGw (!~ w( mw)), O)win] 

f 

- ~ L ( dem~ 1\ diGw (J~f;]w,i (mw)), O)win 

= L (0, ddeiGw(f;]w(mw)) )J~win] + L (0, dde j;])IGw(w(mw)f~)win] 
f 

+ ~ L(Mm~,O)IGw(JU:!,w,i(mw))winl. 
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! lo W.(Ç, 77) =(8, (w(mwW1 [f~ddcGw(f~w(mw))])w,w 

+ (B, (w(mw))- 1 Gw(f~w(mw))ddcf:J)w,w 
f_ 

+ L(B, (w(mw))- 1 Gw(f~f:Jw,i(mw))ddcm~)w,w· 
i=l 

47 

D 

Now, we compute the derivatives of the (v+tv, w+ sw)-extremal vector field Çext(t, s, r) 

of (a+ r,B, P a+r,B)· 

Lemma 12. Suppose that (g, w) is a (v, w)-extremal metric. The partial derivatives of 

Çext(t, s, r) are given by 

a 1 ( (Scalv,w(w))) at 0 çext(t, s, r) =Jgradg Ilw,w w(mw) ' 

!lo Çext(t, s, r) =Çext, 

:r lo Çext(t, s, r) =Jgrad9 (Ilw,w(S3(1) - Gw(B, dd"S(O))) ). 

Proof. We denote the r-partial derivative of Çext(t, s, r) in 0 by ~ext and Zw its Killing 

potential with zero mean value. Using (2.30), we have 

FJ",s(Ç) = B~(Çext(t, s, r),Ç) 

for any Ç E t. Differentiating with respect to r, we obtain 

Sin ce w is extrema!, using (11) we ob tain 

(83(1)- Zw, J~)w,w =(B, w(mw)- 1 S(O)ddcGw(f~w(mw)))w,w 

= L S(O)(B, ddcGw(f~w(mw))wln] 

= L Gw(B,ddcS(O))f~w(mw)wln] 
=(Gw(B, ddcS(O)), J~)w,w· 
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Thus Zw = S3(1)- Gw(B, ddcS(O)), and by consequence 

The remaining derivatives follows using the same argument. D 

Lemma 13. Suppose that w is a (v, w)-extremal metric. The Lebrun-Simanca map 

(2.45) is C 1, with Fréchet derivative at the origin given by 

1 0 0 

0 1 0 

0 0 1 

0 

0 

0 

0 0 0 Id - Ilw ,w 

1 0 

0 1 

0 0 

0 

0 

1 

0 

0 

0 

where S1 , S2 , S3 are given in Lem ma 10, and Gw is the Green opera tor relative to w. 

Proof. We calculate the partial derivatives in 0 of Z(t, s, r, cp) :=(Id- IIs,r,ct>) S(t, s, r, cp). 

For the derivative with respect to cp, using the fact that 

Çext(t,s,r) := Jgrad9r,<J> (IIs,r,cj>S(t,s,r,cp)) = Jgrad9r,,p((S- Z)(t,s,r,cp)), 

is the (v+ tv, w + sw)-extremal vector field of (X, a+ r/3), we obtain 

From this we deduce that 

where S4 is the cp-derivative of S (see Lemma 10). Now we compute the r-derivative of 

Z in O. Differentiating the relation (2.7) with respect tor, we obtain 

: lo Çext =J( :r lo grad)((S- Z)(O)) + Jgrad9 ( :r lo (S- Z)) 

=(O(Çext(O)))n + Jgrad9 ( :r lo (S- Z)) 

=- Jgrad9 (<Gw(9, ddcS(O)) + :r lo (S- Z)). 
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Using Lemma 12, we obtain 

! lo (S- Z) = Ilw,w(S3(1)) +(Id- Ilw,w)<Gw(B, dd"S(O))). 

I t follows th at 

:r lo [(Id- Ilw,w)Z](r) = (Id- Ilw,w)(S3(T) + <Gw(B, ddcS(O))T). 

The remaining derivatives with respect to t, s follows using a similar argument. D 

The operator ILv,w is a fourth order (·, ·)w,w-self adjoint 1r-invariant elliptic linear opera­

tor. By standard elliptic theory we have the following decomposition (-, ·)w,w-orthogonal 

decomposition 

(2.46) 

We have Ker(ILv,w) = tw since 1r is a maximal torus, and Im(ILv,w) = L1k(X, IR)'ll'. Thus, 

IL · L 2,k+4 (X IR) 'li' ---+ L 2'k (X IR) 'li' v,w . ..l ' ..l ' 

is an isomorphism. By consequence, 

is an isomorphism. 

Corollary 6. There exists c > 0 s.t. for lrl < cJ lsl < cJ ltl < c there exist <P E C 4 (X, IR) 

and f a smooth affine linear function on U C t* (P a+rf3 C U} such that 

Scalv+tv(Wr,<t>) = f(mr ) 
(w + sw)(mr,<t>) ,</> • 

Proof. By the inverse function theorem, it follows that W is an isomorphism in a neigh­

borhood ( -E, E) 3 x U of 0 E IR3 x L1k+4 (X, IR) 'li', and using the Sobolev embbeding 

theorem, we can assume that L2,k+4 (X, IR) c C 4 (X, IR) for k >> 1. Thus, for any lrl < c, 

lsl < c, ltl < c there exist <P E C 4 (X, IR) such that wr,</> is (v+ tv, w + sw)-extremal. D 

To complete the proof of Theorem 2, we need to conclude that the metric is actually 

C 00
• This follows form a bootstraping argument similar to the case of extrema! met ri cs 

[68, Proposition 4]. 
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Lemma 14. A (v, w)-extremal metric of regularity C4 is smooth. 

Proo f. If the Kahler met rie (g, w) is of regulari ty C 4 , th en the scalar curvature Scal9 

has C 2 regularity. Let (6, · · · , Çe) be a family of § 1 generators of the torus 'If acting 

holomorphicaly on X. Then the vector fields (6, · · · , Çe) are real analytic, being the real 

parts of holomorphie sections of T 1'0 X. Therefore, there duals (dm~1 , • • • , dm~e) with 

respect to w have C 4 regularity. Thus, the momentum map mw: X-+ t* 

has cs regulari ty in holomorphie coordinat es. U sing ( 2.4), the vector field grad9 ( 
8~(~:)) ) 

is of regularity C 1 . By (v, w )-extremality of (g, w), the vector field grad9 ( 
8~(~:))) is real . 

analytic. It follows that Sca(lv(w)) is of regularity cs in holomorphie coordinates. In 
w mw 

holomorphie coordinates we have 

~w log ( ~n ) = w(mw) (Scalv(w) _ 2 t V,i(mw) ~w(m~) + t V,ij(mw) (Çi, Çj)), 
wflat v(mw) w(mw) i=l w(mw) i,j=l w(mw) 

(2.4 7) 

where Wflat is the local flat Kahler metric. Since the RHS of (2.47) has regularity C 3 ' 

and ~w is elliptic, then w has cs regularity. It follows, that (g, w) is smooth. D 



CHAPTERIII 

QUANTIZATION OF KAHLER METRICS WITH CONSTANT WEIGHTED 

SCALAR CURVATURE AND BOUNDEDNESS OF THE WEIGHTED MABUCHI 

ENERGY 

In this chapter we give the proof of Theorem 3 from the introduction. Our method relies 

on the approach introduced by Donaldson [41, 44] and developed by Li [72] and Sano­

Tipler [85], via finite dimensional approximations and generalized balanced metrics. 

3.1 The (v, w)-equivariant Bergman kernels and (v, w)-balanced metrics 

Let (X, L) be a smooth compact polarized projective manifold, where L is an ample 

holomorphie line bundle on X and 1r c Aut(X, L) is an R-dimensional real torus acting 

on the total space of L, which covers an R-dimensional torus action (still denoted by 

1r) in Autred(X) ~ Aut(X, L)/C*. Let~= (6, · · · , Çt) E t be a basis of § 1-generators 

of 1r and Akk) := (A~7), ... , A~~)) the induced infinitesimal actions of Çi on the finite 

dimensional space 1-lk := H 0 (X, Lk) of global holomorphie sections of Lk for k >> 1. For 

a 11'-invariant Hermitian metric hon L with curvature two form w E 21rc1 (L) we have 

(see e.g. [53, Proposition 8.8.2]) 

(3.1) 

where \7 is the Chern connection of hk := h®k and m~ is a w-Hamiltonian function 

of Çi. Using the basis ~ we identify t ~ JRl and get a natural momentum map mw := 

(m~1 , · · · , m~J) :X---+ JRl for the action of 1r on X with momentum image P := mw(X). 
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Notice that if he/> := e-2cf>h is another 'Ir-invariant Hermitian metric on L with positive 

curvature Wcf> > 0, the corresponding momentum map satisfies m~i = m~ + (dccjJ)(Çi), 

thus showing, by virtue of Lemma 1 3, that the image mct>(X) = P is independent of 

the metric he/>. We thus have a polytope PL C t* associated to the polarized manifold 

(X, L) and the lifted action 'II' C Aut(X, L). 

The spectrum of k- 1 A~~) is given by {,\~k)(ÇJ), À~k) E Wk} where Wk := {À~k)' i = 

1, · · · , Nk} C A* is the finite set of weights of the complexified action of 'II' on 1-lk and 

A* is the dual of the lattice A c t of circle subgroups of 'II' (see e.g. [9, 16]). 

Lemma 15. The set of weights Wk is contained in the momentum polytope PL of the 

action of 'II' on (X, L). 

Proof. This lemma is well known (see e.g. [9, Section 5], but we give the proof for 

the sake of clarity. Let À~k) E Wk, é,j E ~ an § 1-generator for the 'Ir-action on X, and 

s)~) E 1-lk an eigensection associated to the eigenvalue À~k\çj) of k-1 A~~). Using (3.1), 

we have 

At a point of global maximum xo of the smooth function ls)~) l~k on X, we obtain 

lt follows that Wk C pL. D 

Using the weight decomposition of 1-lk 

1-lk = EB 1-l(À~k)), (3.2) 
À~k)EWk 

and Lemma 15, for any smooth function v E C00 (P L, JR) we can define the operator 

v(k- 1 Akk)) : 1-lk ---+ 1-lk by 

( -1 A (k)) ·- ( -1 (k)) 
v k e IH(À~k)) .- v k \ Id1-l(À~k)). (3.3) 
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Let h be a 'Ir-invariant- Hermitian metric on L with curvature 2-form w E 2?Tc1(L). We 

identify the space of 'Ir-invariant Hermitian metrics hc/J := e-2c/Jh with positive curvature 

forms wc/J with the space K3 of 'Ir-invariant Kahler potentials cp on X. 

For v E C00 (PL, lR >O) we consider the following weighted L 2-inn er prod uct on C00 (X, L k) 

(s, s')v,k<P := kn L (s, s')kq,v(mq,)w1n] 

where (s, s')kc/J := h~(s, s'). The operators (A~:))j=1,··· ,e are Hermitian with respect to 

(-, · )v,kc/J· Following [16, 89, 100], we have the following definition. 

Defini ti on 10. Let cp E K3, {Si 1 i = 0, · · · , N k} be a (-, ·)v ,kc/J-orthonormal basis of 

1-l and w E C00 (P L, JR). Then the (v, w)-equivariant Bergman kernel of the Hermitian 

metric h~ on Lk, is the function defined on X by, 

(3.4) 

where w(k- 1 A~k)) is given by (3.3). 

Equivalently, Bw(v, kcp) is the restriction to the diagonal {x = x'} c X x X of the 

Schwartz kernel of the operator w(k-1 A~k))II~c/J, where II~c/J : L 2 (X, Lk) ---7 1-lk denote 

the orthogonal projection with respect to the inner product (-, ·)v,kc/J· 

Asymptotic expansions of (3.4) in k >> 1 are known to exist in many special cases, 

see e.g. [16, 7 4, 89, 100]. For the general case, we will use results on the functional 

calculus of Toeplitz operators which follows essentially from [25], with a ramification 

from [38, 74, 75]. 

We start by recalling the definition and properties of Toeplitz operator (see [74, Chapter 

7] and [ 25]). 

Definition 11. Let cp E K3 and v E C00 (PL, lR >0). A v- Toeplitz opera tor is a family 

T(k) := T(v, kcp) of operators T(k) : L 2 (X, Lk) ---7 L 2 (X, Lk) such that 
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where 

• j(k) E C 00 (X, IR) is a sequence of smooth functions which admits an asymptotic 

expansion l:::j20 k-j fj in the C 00-topology with fj E C 00 (X, IR) i.e. for any d, f ~ 0 

there exist a constant cd,f > 0 such that for any k > 0 

d 
(k) "'""' . d 1 Il f - ~ k-J fj lice~ Cd,t_/k + . 

j=O 

• R(k) := O(k-00
) is a negligible v-Toeplitz operator, that is there exist a sequence 

of r(k) E C 00 (X, IR) such the R(k) = I1~4>r(k)IJ~4> and for any j, f > 0 there exist a 

constant Cj,f > 0 such that 

Il r(k) lice~ Cj,f/kj. 

We denote the space of v-Toeplitz operators by Tv and the space of negligible v-Toeplitz 

operator by Tv n O(k-00
). 

A v-Toeplitz operator {T(k)} E Tv on L2 (X, Lk) we defined above is a Toeplitz operator 

on L2(X, Lk 0 E0 ), as defined in [74, Definition 7.2.1], where the twisting bundle E0 (in 

the notation of [7 4]) is the trivialline bundle X xC on X, endowed with Hermitian me tric 

I·IEo := v(mq,)l·l, where 1·1 is the hermitian product of C. Using [74, Section 4.1.1), the 

restriction to the diagonal {x = x'} C X x X of the Schawrtz kernel of the projection 

operator II~4> : L2 (X, Lk) --+ Hk, seen as projection operator from L2 (X, Lk 0 E0 ) to 

'Nk, admits an asymptotic expansion in C 00-topology given by 

rr~ct> (x, x) = 1 + Sv~ <P) + 0 ( k-2 ), (3.5) 

where Sv ( <P) is defined by 

1 
Sv(<P) := 4(Scalq, + 2~q,(log(v(mq,)))), (3.6) 

for any <P E K3. It follows from (3.5) that the restriction to the diagonal {x = x'} c 

X x X of the Schawrtz kernel of a v-Toeplitz opera tor T(k) admits an asymtotic expansion 
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in the C00
- topology 

(3.7) 

where ai E C00 (X, IR) are smooth functions. 

Definition 12. The full symbol map Œ : Tv ---+ C00 (X, IR) [[n]] with values in the algebra 

of formai series with coefficients in C 00 (X, IR), is defined by 

Œ(T(k)) := L ai(x)ni, 

i~O 

for any T(k) E Tv, such that T(k)(x, x) is given by (3.7). 

(3.8) 

The following proposition is a simple application of [75, Theorem 0.2] to v-Toeplitz 

operators. 

Proposition 4. For any f,g E C00 (X,IR), we have n~<t>fn~<~>gn~<t> E /v, and the restric­

tion to the diagonal {x = x'} C X x X of its Schawrtz kernel admits a C 00 -asymptotic 

expansion given by 

where Sv ( cjJ) is given by (3.6). 

For every f, gE C00 (X, IR), we define the v-star product f *v goff and g by 

f *v g :=Œ (n~<t> fiT~<i> giT~<i>) 

=fg +li [~(df,dg)q, + Sv(<P)fg] + O(li2
). 

(3.9) 

We define the v-star product to C00 (X, IR) [[n]], using the Cauchy product 

s 

(LiJnJ) *v (LgJnJ) := L (LfJ*v9s-J)n
8

• 

s~O j=O 

The unit l*v of (C00 (X,IR)[[n]J,*v) is given by the symbol Œ(ll~<t>). 

Theorem 9. The full symbol map Œ: (Tv,+,o)---+ (C00 (X,IR)[[n]],+,*v) defines an 

isomorphism from the algebra Tv of v- Toeplitz operators modulo the ideal of negligible 

operators Tv n O(k-00
), into the algebra C00 (X, IR) [[n]] endowed with the associative star 

product *v· 
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Proof. The fact that CJ : Tv -+ C00 (X, IR) [[n]] is surjective with kernel Tv n O(k-oo) 

follows from [25, Proposition 3]. D 

Proposition 5. Let (T}k))j=I,··· ,f be a family of(·, ·)v,kc/J-self adjoint commuting Toeplitz 

operators, such that the set of joint eigen values of (T}k))j=I,f is contained in P. Suppose 

that the symbol of T}k), j = 1, · · · , R is given by 

CJ(T}k)) := L ni JiU) E coo (X) [[n]J. 
i2':0 

Th en for any smooth function w with compact support containing P, the opera tor w(T}k), · · · , Tjk)) 

is a Toeplitz operator with symbol 

(k) (k) 2 CJ(w(TI , · · · , Tp )) = so(v, w) + s1(v, w)lï + O(n ), 

where so(v, w), SI (v, w) are given by 

- (I) (f) so(v, w) -w(f0 , · · · , fo ), 

f 

( ) 
(I) (f) '"""' (I) (f) (j) (j) SI v,w =w(f0 ,··· ,!0 )Sv(cl>)+ ~w,j(fo ,···,Jo )(JI -Jo Sv(cp)) 

j=I 

f 

+ ~ '"""'w "( ;(I) . . . ;(f))(d;(i) d;(j)) 
4 ~ ,~J JO ' 'JO JO ' JO cj:J, 

i,j=I 

with Sv(cp) given by (3.6). 

Proof. In the case of one (·, ·)v,kc/J-self adjoint Toeplitz operator T(k) and a smooth func­

tion of one variable w, the fact that w(T(k)) is again a Toeplitz operator is established 

in [25, Proposition 12]. The proof given in [25] relies on the Helffer-Sjostrand formula, 

see e.g. [38, Theorem 8.1]. Using its multivariable generalization [38, Equation 8.18] the 

proof in [25] readily generalizes to show that w(T}k), · · · , Tp(k)) is a Toeplitz operator 

for any smooth function on P, and family of (·, ·)v,kc/J-self adjoint commuting Toeplitz 

operators (T}k))j=I,··· ,f such that the set of joint eigenvalues of (T}k))j=I,f is contained 

in P. 

We shall now compute the symbol of the Toeplitz operator w(T}k), · · · , Tp(k)). Following 

[25], the symbol of w(T}k), · · · , Tjk)) is given by the Taylor series expansion of w at the 
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On the other hand, we compute 

(~n' J,(p) (y) - apl*v (y)) *v (~n'Ji") (y) - aql • .(y)) iy~x 

= ((JJP)(y)- ap) + n(J}P)(y)- Sv(Y))) *v ((JJq)(y)- aq) + n(J}q)(y)- Sv(Y)))iy=x + O(n2
) 

=(JJP)(y)- ap) *v (JJq)(y)- aq)iy=x + n(JJP)(x)- ap)(J}q)(x)- Sv(x)) 

+ n(JJq)(x)- aq)(J}P)(x)- Sv(x)) + O(n2 ) 

=~(dfcip), dfciq))c~> + O(n2
). 

Substituting back in (3.10), we obtain the symbol a(w(T}k), · · · , Tl(k))) up to O(n2). D 

Lemma 16. For any Ç Et, we have 

Proof. This follows from the fact that 

where 84> is the 94>-codifferential. To get the above equality, using (3.1) it is enough to 

check that for any s E 1-lk we have 

The above equation follows from a straightforward integration by parts. D 
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Theorem 10. Let w E C00 (P,JR). The (v, w)-equivariant Bergman kernel of the '1I'­

invariant Hermitian metric h~ on Lk admits an asymptotic expansion when k >> 1, 

given by 

Moreover, the above expansions holds in C 00
, i.e. for any integer .e 2': 0 there exist a 

constant Ce (v, w) > 0 such that, 

ll(27r)nBw(v,k<j:>) -w(mcP)IIc~::; Ce(~,w), 

Il (21ft Bv(v, kc/J) - v(m.p) - 4~ Scalv(c/J) lie, :<: Ce~v; v) 

Proof. Since the symbol map a is surjective with kernel given by the ideal of negligible 

Toeplitz operators O(k-00
) nTv it suffices to calculate a(w(k- 1 Akk))II~cP). We consider 

the special case of (·,·)v,kcP-self-adjoint v-Toeplitz operators T}k) := k- 1 A~:)rr~cP. We 

have 
Nk 

r}k) (x, x) = v(mcP) 2:: (k-1 AY) si, si) kcP. 
i=O 

By a straightforward calculation using (3.1) the symbol of T}k) is given by 

f 

a(T}k)) = m~ + [m~Sv(<P)- ~ l:::(logov),i(mcP)(Çi,Çj)cP]n+ · · · 
i=l 

Using Proposition 5 we get 

where 

Replacing Sv(<P) by its expression (3.6), we obtain s1(v, v)= Scalv(<P). D 
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Definition 13. We define the v-weight of the action of'][' on Hk by 

(3.11) 

Lemma 17. The v-weight of the action of'][' on Hk admits the following asymptotic 

expansion 

for any smooth function v with compact support containing P. 

Proof. This is a direct consequence of Theorem 10, by !etting w 

integrating in both si des over X. 

3.2 The quantization maps 

(3.12) 

v in (3.4), and 

D 

Let Wk denote the set of weights for the complexified action of'][' on Hk. We consider the 

following direct sum decomposition of the space BT (Hk) of 'Jl"-invariant positive definite 

Hermitian forms on Hk, 

BT(Hk) := E9 BT(H(>..~k))), 
À~k)EWk 

where BT(H(>..~k))) is the space of 'Jl"-invariant positive definite Hermitian forms on 

H(>..~k)) 

Definition 14. Let v E C 00 (PL,ffi.>o), w E C 00 (PL,ffi.). We introduce the following 

quantization maps: 

1. The (v, w)-Hilbert map Hilb~,w : K3 ---t BT(Hk) which associates to every 'Jl"­

invariant Kahler potential, the 'Jl"-invariant Hermitian inner product on Hk, given 

by 

(Hilb~,w(~))(-, ·) := 

where C(v,w)(a) is given by (2.6) (Notice that for k big enough the expression 

v(>..~k))- ccv,;k(a)w(>..~k)) > 0 since v> 0 and w are bounded functions on PL)· 
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2. The (v, w)-Fubini-Study map FS~,w : B'IT'(Hk)---+ K3 given by 

FSk (H) ·= ~ 1 (~ l _12 ) _ log(ck(v, w)) 
v,w . 2k og ~ s"l. hk 2k ' 

i=O 

where {Si} is an adapted H -orthonormal basis of 1-lk and Ck (v, w) is a constant 

given by: 

1 [ k C(v,w)(a) k ] 
ck(v, w) := kn fx v(mw)w[n] Wv(L ) - 4k Ww(L ) ' (3.13) 

with Wv(Lk) the v-weight of the action of 'Ir on Lk given by (3.11). 

Theorem 10 yields 

Lemma 18. For cp E K3, the Bergman kernel Pv,w(kcp) of Hilbv,w(kcjJ) satisfies 

C(v,w)(a) 
Pv,w(kcp) = Bv(v, kcp)-

4
k Bw(v, kcp), 

and has an asymptotic expansion, 

(27r)nPv,w(k</>) = v(m~) + 4~ (Scalv(</>)- C(v,w)(<>)w(m~)) + 0 (:2 ). 

The above asymptotic expansion holds in C00
, i.e. for any integer .e ~ 0 we have, 

where Ce( v, w) >O. 

Following [41, 85, 101], we give the following definition 

Definition 15. We say that a metric cp E K3 is (v, w)-balanced of order kif it satisfies: 

or equivalently 

Pv,w(kcp) = ck(v, w)v(mcj>), 

where ck(v, w) is given by (3.13). 

Similarly to [41, 42] we have 
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Proposition 6. Let (qyj)j?:.O be a sequence in K3 such that every c/Ji is a (v, w)-balanced 

metric of arder j and c/Jj converge in C00 to cp. Then WcfJ is a (v, w)-cscK metric. 

Proof. By Lemrna 18 for k >> 1, 

Let ting j = k, we get 

ll(21rtck(v, w)v(m~k)- v(m~k)- }k (Scalv(<!>k)- C(v,w)(a)w(m~k))llc, :ô Ct~; w). 

(3.14) 

From (3.13) and Lemma 18 we get 

(27r)m L P(v,w)(hk)(kw)ln] 

L v(mw)(kw)ln] 

=1 + O(k-2). 

Taking alimit when k goes to infinity in (3.14), we obtain that Scalv(<P) = C(v,w)(a)w(mw)· 

D 

3.3 Boundedness of the (v, w)-Mabuchi energy as an obstruction to the existence of 
(v, w )-cscK metrics 

In this section we prove Theorem 3, following the method of [42, 72, 85]. To this end, 

for each k >> 1, we introduce appropriate functionals on the fini te dimensional space 

of FU.bini-Study metrics on IP'(1ik), which when identified with a subspace of K3 via 

the Kodaira embedding, will quantize the (v, w)-Mabuchi functional of a = 21rc1 (L). 

FU.rthermore, following the main ideas of [42, 72,85], we will show that the (v, w)-balanced 

metrics are minima of these functionals, and that a Kahler metric with constant (v, w)­

scalar curvature induces almost (v, w)-balanced FU.bini-Study metrics on IP'(1ik) for k >> 

1, i.e. minimizes the corresponding functionals up to an error that goes to zero. 
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3.3.1 Quantization of the (v, w)-Mabuchi energy 

We start with introducing finite dimensional analogues of the (v, w)-Mabuchi energy 

(2.19), given by (3.21) on the spaces B'IT' (Hk) and FSZv,w) (B'IT' (Hk)) (see Definition 14), 

respectively, thus setting the framework for the proof of Theorem 3 along the lines of 

[42, 72, 85]. 

We introduce the functional E~,w : B'IT' (Hk) ---t IR by 

E~,w(H) = L ( v(À~k))- C(v,:~(a) w(À~k))) log ( det H>.~k)). (3.15) 

À~k)EWk 

where H := (H>.~k))>.~k)EWk E B'IT'(Hk)· 

Lemma 19. 1. We have the following expression for the variation of 2kn+lck(v, w)Ev 

{see Lemma 3} and E~,w: 

2kn+lck(v, w) (dEv)~ (<f) =2kck(v, w) L <f ( 1 + ~:) v(m~)(kw~)[n[ 

- Ck(v, w) L (d<f, d(log ov(m~)))~v(m,p)(kw~)[n[, 
(3.16) 

( dEk ) (H) = '"'"' (v(À~k))- C(v,w)(a) w(À~k)))tr(H- 1 if ) v,w H L.....,; ~ 4k ~ >.(k) )..~k) ' 
À~k)EWk t 

(3.17) 

where cp E K3 and H = (H>.~k))>.~k)EWk E B'IT'(Hk)· 

2. The second variation of Ev along a path cpt E K3 is given by 

(3.18) 

3. For cp E K3 and k >> 1, the functional Ev is concave along the path (cpk(t))tE[O,l] of 

K3 given by: 

,..~,. (t) ·= ,..~,. + _!__ l ( P(v,w) (kcp)) 
'f'k · '+' 2k og v(m<t>) · (3.19) 
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4. The variation of (v, w)-Hilbert map Hilb~,w is given by, 

( dHilb~,w) r/J (~)(s, s')= 

_ """" fx(s(À~k)), s'(À~k)))kr/J[2k~- (d(log ov(mr/J)), d~)r/J + ~r/J~]v(mr/J)(kwr/J)[n] 
L.....t v(À~k)) _ C(v,w)(a) w(À~k)) ' 

À~k) EWk ~ 4k ~ 

(3.20) 

where cp E K3 and s, s' E 1-lk admitting decompositions adapted to (3.2) 

s = 2:, (k) w s (À~ k)), s' = 2: dk) w s' (À~ k)) . 
"i E k "i E k 

Proof. 1. The expression (3.16) follows from 

2kck(v, w) L ci; ( 1 + ~:) v(mq,)(kwq,)ln] 

=2kck(v, w) L ci;v(mq,)(kwq,)[n] + ck(v, w) L ci;~q,(v(mq,))(kwq,)ln] 
=2kn+l (dêv)q, (ci;)+ Ck(v, w) L (dei;, d(v(mq,)))q,(kwq,)lnl 

=2kn+l (dêv )q, (ci;) + Ck(v, w) L (dei;, d(log ov(mq,)) )q,v(mq,)(kwq,)lnl, 

in the second line we integrated by parts in the second integral. The variation of E~,w 

follows from the calculation 

( k) . dl k . 
d Ev,w H (H) = = dt t=O Ev,w(H +tH) 

"""" ( (k) C(v,w)(Œ) (k) ) d 1 ( ( · )) = L.....t v(\ ) -
4

k w(\ ) dt log det H>.~k) + tH>.(k) 
(k) t=O t 

\ EWk 

_ """" ( ( (k)) C(v,w)(Œ) ( (k))) d 1 ( -1 · ) - L.....t v \ -
4

k w \ -d clet Id.>.(k) +tH (k)H>.(k) 
t t-0 t \ t 

À~k)EWk -

= """" ( (\~k)) _ C(v,w)(Œ) (\~k)))t (H-1 H. ) L.....t v /\~ 4k w /\~ r (k) >.(k) . 
),. t 

À~k)EWk t 
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2. Let c/Jt E K3, we compute 

This completes the proof of (3.18). 

3. The second variation of Ev along the path c/Jk(t) is given by 

showing that Ev is concave along the path (cj;k(t))tE[ü,l]· 

4. For cp,~ E K3 and s, s' E Hk admitting decompositions adapted to (3.2) s 

L>.~k)EWk s(À~k)), s'= L>.~k)EWk s'(.X~k)), we have 

using the fact that 

the equation (3.20) follows from a straightforward calculation. D 

We now consider the functionals L~,w : K3 --t ffi. and z~,w : B1f (Hk) --t ffi. defined by 

L~,w := E~,w o Hilb~,w + 2kn+lck(v, w)Ev, 

Z~,w := 2kn+lck(v, w)Ev o FS~,w + E~,w' 
(3.21) 

where E~,w is given by (3.15) and Ev is given in Lemma 3. In what follows we will relate 

these functionals to the (v, w)-balanced metrics, similarly to [43, 72,85], and we will show 

that they quant ize the (v, w )-Mabuchi energy. 
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Proposition 7. The (v, w)-balanced metrics of arder k are critical points of the func­

tional C~,w· Furthermore, there exist real constants bk such that, 

. [ 2 k l hm -k [,vw +bk = Mvw, 
k-+oo n ' ' 

where the convergence holds in the C00 -norm. 

Proof. Let { s'"Y(À~k)) 1 À~k) E Wk, 1 = 1, · · · , n(À~k))} of Hk be a Hilb~,w-orthonormal 

basis adapted to the decomposition (3.2). Using (3.17) and (3.20) we have, 

d Ev w o Hilbv w (cp) ( 
k k ) . 

' ' 4J 

n(>.~k)) 

=- L 0 lx ]s-,(.Xjkl)]~.p[2k~- (d(log ov(m.p)), d~).p + ~.p~]v(m.p)(kw.p)ln] 
.À~k) EWk 1'-1 

=lx Pv,w(k</>) [2k~- (d(log ov(m.p)), d~).p + ~.p~] (kw.p)[n] 

=- 2k lx~ ( 1 + ~:) Pv,w(k<f>)(kw.p)[n] +lx Pv,w(k<f>)(d(iog ov(m.p)), d~).p(kw.p)lnl. 

By (3.16) we get 

( dce,w) 4> (~) =- 2k lx~ ( 1 + ~:) [Pv,w(k<f>)- ck(v, w)v(m.p)] voikw• 

+lx [Pv,w(k</>)- Ck(v, w)v(m.p)] (d(log ov(m.p)), d~).p(kw.p)lnl. 

From the above expression it is clear that a (v, w)-balanced metric of arder k is critical 

point of C~,w· By the asymptotic expansion in Lemma 18 we get 

and 

lx [Pv,w(k</>)- Ck(v, w)v(m.p)] (d(log ov(m.p), d~).p(kw.p)[n] = O(kn-I ), 

2k lx~ ( 1 + ~:) [P(v,w)(k<f>)- Ck(v, w)v(m.p)] (kw.p)[nj 

=2kn lx (Scalv(</>) - Cv,w(<>)w(m.p))Jw.pln] + O(kn-I) 

=2km (dMv,w)4J (~) + O(kn- 1
). 

The proof is complete. D 
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Lemma 20. For all cp E K3 we have {in the C 00 sense), 

lim k-n [.c~ w(cj;)- Z~ ~ o Hilb~ w(cj;)] =O. 
k-+oo ' ' · ' 

(3.22) 

The functional z~,w is eonvex along the geodesies of B'F (Hk). 

Proof. Using (3.21), we get 

k-n [.c~,w(cj;)- Z~,w o Hilb~,w(cj;)] =- 2kek(v, w) [Ev(FS~,w o Hilb~,w(cj;))- Ev,w(cj;)] 

=- 2kek(v, w) [Ev(cj;k(1))- Ev(cj;k(O))] 

where cpk(t) E K3 is the path given by (3.19). Using that Ev(cpk(t)) is concave (see 

Lemma 19), we deduce 

k~n [ .C~,w(<l>) - Z~,w o Hilbe,w(<l>)] > -2kck(v, w) ( dEv )~,(o) ( 2~ log c;c~:j))) 
~ { Scalv(cj;)- Cv,w(a)w(mct>) w[n] 

4k} x v( met>) ct> ' 

where we used the following smooth expansions to get the second line (see Lemma 18) 

wcl>k(t) =Wct> + O(k-2
) 

[n] _ [n] + O(k-2) 
wct>k(t) -wc/> 

mct>k(t) =met>+ O(k-2
) 

d (P(v,w)(kcp)) = -1 d (Scalv(cj;)- Cv,w(a)w(mct>)) + O(k-2). 
v(mr~J) 4k v(mct>) 

On the other hand 

k~n [ .C~,w(<l>)- Z~,w o Hilb~,w(<i>)] < -2kck(v, w) (dEv)Ml ( 2~ log (P~~:j))) 
~ { Scalv(cj;) - Cv,w(a)w(mct>) w[n] 

4k lx v(mct>) ct> ' 

which completes the proof of (3.22). D 

Lemma 21. The funetional z~,w is eonvex along the geodesies of B'F (tik). 
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Proof. We follow closely the arguments of [44, Propostion 1] and [85, Propostion 3.2.3]. 

Let H(t), tE IR be a geodesie in BT(Hk) such that h = FS~,w(H(O)). For a choice of an 

H(O)-orthonormal basis of Hk 

(k) (k) (k) 
{s-y(\ ) 1 \ E Wk, 1 = 1, · · · ,n(\ )}, 

adapted to the splitting 3.2, we have the following expression for H(t), 

H(t) = diag etA(\ ) 
( 

(k) ) 

À~k)EWk 

with A(À~k)) = diag(a-y(À~k)))-y=l,n(>.~k))' ai(À) E IR and tr(A-y(À~k))) =O. We consider 

the family of Kahler potentials given by cjJ(t) := FS~,w(H(t)). The collection 

(k) 
-ta-y(>,· ) (k) (k) (k) 

{e 2 S-y(\ ) 1 \ E Wk, 1 = 1, · · · ,n(\ )} 

is an H(t)-orthonormal base of Hk adapted to (3.2). So we have 

By (3.18), we get 

d
2

1 k _ n+l h ( ·· · 2) [n] -d 2 Zv,w(H(t))- 2k Ck(v, w) c/J- ldc/Jiw v(mw)w . 
t t=O X 

Using h = FS~,w(H(O)), we obtain 

n(À~k)) 

L:: L:: ls-y(À~k))l~k = 1. 
À~k) EWk -y=l 

I t follows th at 
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We compute, 

1 d21 k 
knck(v, w) dt2 t=O zv,w(H(t)) 

= L -2kld<i>l~v(mw)wln] 
n(À~k)) 

+ L L ~ a-y(>.lk))21s,(>.lk))l~,v(mw)wlnl 
· À~k) EWk 1-l 

n(,\~k)) 2 

- /, ( L L a,(À~k))is,(À~k))l~k) v(mw)w[n] 
X ,\~k) EWk r=l 

n(À~k)) 

= L L L 14v'k(V'<i>, V's,(>.lk)))- (a-y(>.lk))- 4v'k<i>)s,(>.lk)) I:.V(mw)wln] 2 O. 
À~k)EWk r=O 

To get the last equality we used that for any smooth function cp on X, we have (see 

[44, Proposition 1]) 

n(À~k)) 

l~c/JI~=2 L: L: J(~q;,~s,(À~k)))J:k. 
À~k)EWk r=l 

D 

Corollary 7. A (v, w)-balanced metric of arder k minimizes the functional ztv,w) on 

BT (1-lk). 

Proof. We show that (v, w)-balanced metrics of order k are critical points of z(k )" Let v,w 

H ( t) be a geodesie in B1f ( Hk) as in the pro of of Lemma 21, su ch th at h = FS~ w ( H ( 0)) 
) 
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is (v, w)-balanced of order k. We have 

-1 d 1 zk (H( )) 
2kn+lck(v, w) dt t=O v,w t 

n(À~k)) 

= 1 L L a1 (À~k))ls1 (À~k))l~kv(mw)w[n] 
X À~k) EWk ï=l 

n(À~k)) 

_ ""' ~ ( (k) C(v,w)(a) (k) ) (k) (k) 2 
- ~ ~ v(\ ) - 4k w(\ ) aï(\ ) Il 81(\ ) IIHilbe,w(Fst,w(H)) 

À~k)EWk ï=l 

= L ( v(À~k))- C(v,:~(a) w(À~k)) )tr(A(.X~k))) = 0, 

À~k)EWk 

where we used that His (v, w)-balanced Hilb~,w(FS~,w(H)) = H and (s1 (.X~k))) is an 

H-orthonormal basis of 1ik· Thus, H is a critical point of z~,w and by the convexity, 

we deduce that H is a minimum. D 

Now we suppose that K3 contains a (v, w)-cscK metric cp*. We will show in the following 

proposition that the metrics Hilb~,w (cp*) are almost balanced in the sense that they 

minimizes z~,w' up to an error that goes to zero. 

Proposition 8. For all cp E K3 there exists a smooth function E<fJ ( k), su ch that lim é<fJ ( k) = 
k-+oo 

0 in ct(x, JR) and, 

Proof. We denote Hk = Hilb~,w(cp) and Ht. = Hilb~,w(cp*). For a choice of an adapted 

Ht.-orthonormal basis { s1 (.X~k)) I.X~k) E Wk, r = 1, · · · , n(À~k))} of 1ik we can write 

H d. ( A(À(k))) . hA(\ (k)) d" ( ( \ (k))) (A( dk))) d 
k = mg e 1 ÀEAk(t) w1t /'i = mg a1 /\i r=l,n(À~k)), tr /\i = 0, an 

consider the geodesie that joins Ht. to H k, 

Let Pk(t) := z~,w(Hk(t)). Pk(t) is a convex function by Lemma 21. It follows that, 

k-n (zk (H ) - zk (H*)) ~ k-n P' (0). v,w k v,w k k 
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Letting EcfJ(k) := k-n P~(O), we have 

P'( ) kn+l ( ) { j ( ) [n] ( )kn { PA(kcp*) ( ) [n] 
k 0 = 2 Ck v, w lx <pV mc/J* wc/J* = -ck v, w lx Pv,w(kcp*) v mc/J*) wc/J*, 

where 
n(>.~k)) 

PA(kcp*) = L L a-y(À~k))v(mc/J*) ls-y(À~k)) l~c/J*. (3.23) 

À~k) EWk -y=l 

By Lemma 18, since cp* is a (v, w)-cscK metric we get 

(3.24) 

and therefore we obtain 

We have 

ea-r(>.~k)) = Il s-y(À~k)) llkk 

-kn ~ ( (dk)) _ C(v,w)(a) (dk)))-l { 1 (dk))l2 ( ) [n] 
- ~ V Ai 

4
k W Ai 1 X S-y Ai kc/JV fficjJ Wc/J . 

À~k)EWk 

(3.25) 

As h~ = e-2k(4J*-4J)h~*' there exists a constant Cc/J > 0 such that 

(3.26) 

By the fact that v(m4J)/v(mc/J*) is bounded by positive constants (independent from cp)-, 

and w1n] /w1~] is bounded by positive constants depending only on cp, using (3.26) we 

obtain from (3.25) the following estimate 

(3.27) 

where BcfJ, B~ are real constants depending only on cp, cp*. We derive from (3.23) and 

(3.27) that, 

Using (3.24) we infer 

which shows that lim EcfJ(k) =O. 
k-+oo 

D 
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3.3.2 Proof of Theorem 3 

Now we are in position to give the proof of Theorem 3 which is very similar to [85, 

Theorem 3.4.1]. 

Proof. Let 4;* E K3 the Kahler potential of a (v, w)-cscK metric. For any cp E K3, by 

Corollary 7 we have 

.C~,w (cp) Z~,w(Hilbv,w(kcp)) + [ .C~,w( cp) - Z~,w(Hilbv,w(kcp))] 

Th us, 

> Z~,w(Hilbv,w(kcp*)) + kméc~J(k) + [.c~,w(<P)- Z~,w(Hilbv,w(kcp))]. 

k
2
n .C~,w(<P) +bk > :n .C~,w(<P*) +bk+ :n [z~,w(Hilbv,w(kcp*))- .C~,w(<P*)] 

+éc~J(k) + k
2
n [.c~,w(<:P)- Z~,w(Hilbv,w(kcp))] . 

Using Proposition 7 and Proposition 8 together with Lemma 20, by letting k go to 

infinity we get, 

Mv,w(</J) ~ Mv,w(</J*). 

D 

3.3.3 A momentum map picture for the (v, w)-balanced metrics 

There is a natural extension of the momentum map interpretation of balanced Fubini­

Study metrics given by S. K. Donaldson in [41] to (v, w)-balanced metrics. Indeed, let 

us identify BT(1-lk) with the space of bases of 1-lk compatible with the splitting (3.2), 

and denote by AutT(X, L) the centralizer of 1I' in the Lie group of automorphisms of the 

pair (X, L). Let fh denote the group representation of AutT (X, L) in GL(1-lk), given by 

fh(a)s :=a os o p(a)-1 , 

where p : Aut(X, L) ---+ Autred(X) is the natural projection. For each k we have the 

following group actions on BT (1-lk): 
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• C* by scalar multiplications; 

• AI:= fh (Aut'll'(X, L)); 

• 9J := { 9 E TIÀ~k)EWk 1U(1-lk(À~k))) 1 TIÀ~k) det(gÀ~kl)À~k)(v,w) = 1 }, where we de­

note À~k)(v, w) := v(,\~k))- cv,;~a)w(,\~k)). 

We consider the quotient space, 

on which we have a natural action of 9J. The quotient z'll' (1-lk) carries a natural Kahler 

structure, defined as follows: 

• The multiplication by y'=I defines an integrable complex structure on B'll' (1-lk) 

invariant under the action of C* x AI, so it descends to a complex structure J};) 

on the quotient z'll' (1-lk). 

• There is a natural Kahler form on B'll' (1-lk) given by 

where de := J~k) d. The form w1k) is invariant under the group actions of C* x AI 
and 9J, soit defines a ÇJ-invariant Kahler form on z1I'(1-lk)· 

We endow Lie(ÇJ) with the pairing 

(a, b)v,w,k = L ( v(Àjkl) - Cv,;~<>) w(Àjk})) , tr ( a.x;•)b~jk)) , 
À~k)EWk 

and identify Lie(9f) with the dual vector space by using (·, ·)v,w,k· For any a E Lie(ÇJ) 

we denote, 

( ) ·= _ (a, Id)v,w,k Id 
ao. a ( ) . 

Id, Id v,w,k 

The action of 9J on z'll' (1-lk) is Hamiltonian with tv~) -moment map JL(k) : z'll' (1-lk) ---+ 
-V,W 

Lie(9J) given by 

JL(k) (s) := v'=1 ( ffi (Hilb~ w (Fs~ w(s)) (s1 (,\~k)), srJ(,\~k)))) (k) ) , 
-v,w W ' ' !'Yl=l n(À. ) 

(k) ,., ' t 

\ EWk 0 
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where n(À~k)) := dim(H(À~k))) and for any s E B'If(Hk) we identify s with the unique 

positive defini te Hermitian form so that sis orthonormal. Thus the zeroes of the moment 

map JL(k) are the (v, w)-balanced elements of z'Ir(Hk)· 
-V,W 





CHAPTERIV 

WEIGHTED K-STABILITY AS AN OBSTRUCTION TO THE EXISTENCE 

KÀHLER METRICS WITH CONSTANT WEIGHTED SCALAR CURVATURE. 

We are going to establish in this chapter Theorem 4 from the introduction. 

4.1 The (v, w)-Futaki invariant of a smooth test configuration 

Let X be a compact Kahler manifold endowed with an f-dimensional real torus 1r c 

Autred(X) and a Kahler classa E H1 , 1 (X,~). Following [37,46,47] we give the following 

Definition 16. A smooth 'lr-compatible Kahler test configuration for (X, a) is a compact 

smooth (n+ 1)-dimensional Kahler manifold (X, A), endowed with a holomorphie action 

of a real torus 'ft' C Autred(X) with Lie algebra t and 

• a surjective holomorphie map 1r : X ---+ IP'1 such that the torus action 'ft' on X 

preserves each fiber X 7 := 1r-
1(r) and (Xr, A1xl' Y)~ (X, a, 'JI'), 

• a C*-action p on X commuting with 'ft' and covering the usual C*-action on IP'1 , 

• a biholomorphism 

À : X\ X 0 ~X x (IP'1 
\ {0}) , (4.1) 

which is equivariant with respect to the actions of G :='ft' x §1 on X\ Xo and the 

action of G := 1r x § 1 on X x (IP'1 
\ {0}). 

In what follows we shall tacitly identify 'ft' with 1r and G with G. 
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Definition 17. A smooth 1I' -compatible Kahler test configuration (X, A, p, 1I') for (X, a, 1I') 

is called 

• trivial if it is given by (Xo = X x IP'l, Ao = 7rxa + 1r;dwFs], 1I') and C*-action 

po(r)(x, z) =(x, rz) for any TE C* and (x, z) EX x IP'1. 

• productif it is given by (Xprod, Aprod, Pprod, 1I') where Xprod is the compactification 

(in the sense of [80, 97], see also [20, Example 2.8] and [79, p. 12-13]) of X x C 

with C*-action Pprod(r)(x, z) = (px(r)x, rz) where px is a C*-action on X and 

Aprod is a Kahler class on Xprod which restricts to a on xl ~x. 

Let (X, A, 1I') be a smooth 1I'-compatible Kahler test configuration for (X, a, 1I') and n E 

A a CG-invariant Kahler form. The action of 1I' on X is Hamiltonian with !1-momentum 

map mn :X---tt*, normalized by mn(X1) = P, where Pis a fixed momentum polytope 

for the induced 1I' -action on X 1 ~ X. 

For any T E C*, we denote by 

(4.2) 

where p( T) : X 1 ~ X 7 is the restriction of p( T) E A ut red (X) to X 1· The action of 1I' on 

XT is Hamiltonian with nT-momentum map (mn)JXT· Pulling the structure on XT back 

tO X1 Via p(7), We geta W7 -ffi0ffientum map for the 1f-action On X1, given by 

(4.3) 

Lemma 22. For any T E C*, we have 

{ mn,TnLnl = { mTwtnJ = { m1w[n]. 
lxT lx1 lx1 

It follows that P 7 = P for any T E C*, where P 7 := mn(X7 ) = m 7 (X1) is the momentum 

polytope of the induced action of 1I' on XT and nT := nJXT. 

Proof. Since n is §~-invariant, the following integral depends only ont= -log iri, 

r mn,
7

nLnJ = r mTwtnJ = r mT(w + ddc<j>T)[nJ. 
lxT lx1 lx1 
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Let Vp be the generator of the §~-action. By (4.3) we have 

:tmr = :t(mn o 'PYv) = ('PYv)*(dmn,J'Vp)n = -(<pYv)*(dmn,dhP)n, 

where J' denotes the complex structure on X, 'PYvP = p( e-t) is the flow of J'Vp and hP 

is a 0-Hamiltonian function for Vp. On the other hand, we have 

I t follows th at 

! { m 7 w}nJ =! { m 7 ((p(7)*0)ixJ[n] 
lx1 lx1 

=- r ((dmn, dhP)n)ixTn~n]- r mnTddchfxT A n~n-l] 
lxT lxT 

=- r ((dmn, dhP)n)IXTn~n] + r mnT~nT (hfxJn~n] 
lxT lxT 

=- r ((dmn, dhP)n)IXTnfl + r (dmnT, dhpiX )n n~nj = Ü, 
lxT lxT T T 

where we have used that ((dmn,dhP)n)IXT = (dmnT,dhfxJnT since the symplectic 

gradient of mn : X ---+ t* is given by the t-valued fundamental vector field for the 

1r -action, and th us is tangent to the fi bers. It follows that 

0 

Since mn :X---+ t* is continuous it follows from Lemma 22 that mn(X) =P. 

Definition 18. Let (X, A, 'lr) be a smooth 1r -compatible Kahler test configuration for 

the compact Kahler manifold (X, a) and v E C00 (P, :IR >O), w E coo (P, :IR). The (v, w )­

Futaki invariant of (X, A, 'lr) is defined to be the real number 

Fv,w(X,A) =- L (Scalv(!1)- C(v,w)(a)w(mn))nln+l] 

+ 2 L v(mn)rr*WFS Il nin] 
(4.4) 

where n E Ais a 'lr-invariant representative of A, WFS is the Fubini-Study metric on JP1 

with Ric(wps) = Wps, and C(v,w)(a) is the (v, w)-slope of (X, a) given by (2.6). 
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Remark 6. 1. By Lemma 2, (4.4) is independent from the choice of a 1I'-invariant 

Kahler form 0 E A. For v = w = 1 we also recover the Futaki invariant of a 

smooth test configuration introduced in (37,46,47]. 

2. It is easy to show that 

where for passing from the second line to the third line we used that p(T)*OT and 

w are in the same Kahler class A1x
1 

on X 1 , see Lemma 2. Thus, we obtain the 

following equivalent expression for the (v, w)-Futaki invariant 

Fv,w(X,A) =- L (Scalv(!1)- C(v,w)(a)w(mn))!11n+l 

+ (81r) L v(mw)wlnl. 
(4.5) 

3. It is easy to compute the (v, w)-Futaki invariant of the trivial test configuration 

(Xo, Ao) (see Definition 17), using that for a product Kahler form 0 0 := 7rxW + 
7rwtWFS we have Scalv(Oo) = Scalv(w) + 2v(mw), then (4.4) reduces to 

Fv,w(Xo, Âo) = -47r L (Scalv(w)- C(v,w)(a)w(mw))wlnJ. 

<> 

Definition 19. (36, 47] We say that (X, a, 'JI') is 

1. (v, w)-K-semistable on smooth Kahler test configurations if Fv,w(X, A) 2:: 0 for 

any 1I'-compatible test configuration (X, A, 'JI') of (X, a, 'JI') and Fv,w(Xo, Ao) = 0 

for the trivial test configuration (Xo, Ao). 

2. (v, w)-K-stable on smooth Kahler test configuations if it is (v, w)-K-semistable and 
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Fv,w(X, A) = 0 if and only if (X, A) = (Xprod, Aprod) is a product in the sense of 

Definition 17. 

Following [37, 46], there is a family of 1r-invariant Kahler potentials c/>r E K3(X1), T E 

C* C JP>1 given by the following lemma. 

Lemma 23. Let nE A be aG-invariant Kahler form on X. 

1. On X* := X \ Xo we have 

(4.6) 

where w := (1rx o >.)*w with À the map given by (4.1) and 1rx is the projection on 

the first factor of X x (JP>1 
\ {0} ), and <I> is a smooth G-invariant function on X*, 

such that for all T E C*, 

(4.7) 

satisfies 

where we recall that Wr is defined in ( 4.2). 

2. mi:= m~- (dc<I>)(Ç), Ç Et is a moment map of w restrected to a fiber Xr for the 

11'-action on X*, satisfying mw(X*) =P. 

Proof. (i) Using [46, Proposition 3.10] we can find a smooth function <I> on X* such that 

n = w + ddc<I> on X*. Taking the restriction of the latter equality to Xr ( T =!= 0) we have 

nT= p(r-1)*w + ddc(<I>jxT), pulling back by p(r) yields Wr- w = ddccPT· 

(ii) By the relation ( 4.6) and the fact that the action of 1r preserves the fi bers we obtain 

that mi := m~ - (dc<I>)(Ç) is a momentum map of (Xr, wixr). It thus follows from 

Lemmas 1 and 22 that mw(Xr) =P. D 

The main result of this section is the following theorem which extends the results from 

[37, 46] to arbitrary values of v, w: 
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Theo rem 11. Let (X, A, 11') be a smooth 1I' -compatible K iihler test configuration, for 

a compact K iihler manifold (X, a, 11') and v E C 00 (P, IR >0), w E C 00 (P, IR) are weight 

functions. If the central fiber Xo is reduced, then 

lim Mv,w(cPt) = Fv w(X, A). 
t-++oo t ' 

where cPt := cPT with T = e-t+is is given by ( 4. 7). In particular, if Mv,w is bounded from 

bellow, then Fv,w(X, A) ~O. 

Before we give the proof we need a couple of technicallemmas. 

Lemma 24. Under the hypotheses of Theorem 11, we have 

lim Ew(cPt) = { w(mo)n[n+ll. 
t-++oo t } X 

Proof. We will start by showing as in [37, 46, 92] that, 

1r* (w(mo)n[n+ll) = ddcEw( cPT) 

(4.8) 

(4.9) 

on C* C P 1, in the sens of currents. From the very definition of the functional Ew (see 

(2.20)) we have 

Ew(</>r) = l (L </>rw(m«l>r)w!~~) dE 

= l (L </>rw(Emr + (1- E)mw)(EWr + (1- E)w)ln[) dE 

= l (Lr (<T>w(mnJfllnl)[Xr) dE 

where nE:= ED + (1- E)w, moE := Emo + (1- E)mw, and w, <I> are given in Lemma 23. 

It th us follows that Ew (cPT) extends to a smooth fun ct ion on P 1 \ { 0}. Let f ( T) be a 



smooth function with compact support in C* C IP'1 . Letting j := 1r* f we have 

(M'êw(</>r), f) = l (LM' f(r) L (<T>w(mnJ!!~nl)]Xr) d. 

= l (L. <T>w( mn,) M' Î !\ n~n]) dE 

= -l (fx. <T>dÎ !\ d"w(mnJ !\ n~n]) dE 
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-l (L. w(mnJdÎ A dc<T> A n~nJ) dE (4.10) 

= - l (fx. <T>dÎ !\ d"w(mnJ !\ n~n]) dE 

+ l (fxJwCmn,JM<T> !\ n~nJ) dE 

+ l (fx. Îdw(mnJ !\ d"<T> !\ n1nl) dE. 

The first integral in the last equality vanishes. Indeed, for a basis (Çi)i=l,-·· ,f of t we have 

f 

d] 1\ dcw(mô_) 1\ nlnl = L W,i(mnJ(df)(7r*Çi)nln+l] = 0, 
i=l 

since the action of 1r preserves the fi bers of X ---+ IP'1 . For the remaining integrais in the 

last equality in (4.10), integration by parts in the variable E gives 

l (L. Îw( mn,)dd"<T> A n1nl) dE 

= fo' (L. Îw(mnJ! n~n+l]) dE (since !1, := w + EddC<J>) 

= L. Îw(mn)nln+l]_l (L. Î (! w(mnJ) n~n+l]) dE 

= L. Îw(mn)nln+l] -l (L. Îdw(mn.) !\ d"<T> !\ n1nl) dE, 

where for passing from the third line to the last line we used the following 

f 

( :E w(mnJ) n1n+l] = ~ w,,(mnJd"<T>(Ç,)!11n+l] 

f 

= L W,i ( mn€ )dmÎL 1\ dc<P 1\ nlnl 
i=l 

( 4.11) 
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By substituting (4.11) in (4.10) we get (4.9). 

Now we establish (4.8) using (4.9), following the proof (46, Theorem 4.9]. Let ID\ C C 

be the dise of center 0 and radius E >O. Using the change of coordinates (t, s) given by 

T = e-t+is E C and the § 1-invariance of Ew( cpT) we calculate 

r w(mn)n[n+l] =lim r w(mn)n[n+l] 
lx E-+O}x\-rr-l(IDJ€) 

=lim r 1!'* (w(mn)n[n+ll) 
E--+0 Ifl'l \ID!€ 

=lim { ddcEw(c/>T) by (4.9) 
E--+0 JJF'l \JfJJ€ 

=lim ( dd 1 Ew(c/>t)) by the Green-Riesz formula 
E-+O t t=-log E 

-l' :!_c (-i..)- l' Ew(c/>t) - lill '-'w <.pt - lill . 
t-++oo dt t-++oo t 

D 

Let 0 E A be G-invariant Kahler form. We consider the Kahler metric on X* given 

by w + 7r*wFs = >.*(7rxW + 7r;1 wFs) (by the equivariance of>.), where w := (7rx o >.)*w 

with À the map defined by (4.1) and 7rx, 1l'JP1 denote the projections on the factors of 

X x (.!P'1 \ {0} ). Then we have on X* 

- 1 Ric(O)- 7r*WFS- Ric(w) = 2ddc'I!, (4.12) 

where 'I! =log (wn~:~~Fs) and Ric(:;) := (7rx o >.)*Ric(w). Using (4.12) and Lemma 5 

2, we obtain on X* 

mç~ =mt (n) + ~(dc'I!)(~), R1c(w) lC 2 
(4.13) 

for any ~ E t, where mllic(n) := ( 7l'X o >.)*mRic(w). 

Lemma 25. Under the hypotheses of Theorem 11, we have 

Proof. From the very definition of E~ic(w) (see (2.21)) we have 

E~ic(w) (</>r) = l ( L [ <l>(v(mnJRic(:;) (\ nln-l] + ((dv)(mnJ, mllic(;;;))n!nl) l]xJ dE, 
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where nE := En+ (1 - E)w, mn€ := Emn + (1- E)mw, and w, <I> are given in Lemma 23. 

As in the proof of Lemma 24, we see that ê~ic(w) ( </>r) extends to a smooth function on 

JP>1 \ {0}. Furthermore, for any smooth function j(T) with compact support in C* C JP>l, 

we have 

(ddeê~ic(w)(</>r), J) = { ê~ic(w)(</>r)ddej = 
le* 

= l ( L dd" 1 L [<I>(v(mnJ~) A nln-1
] + ((dv)(mnJ, mR.ic(;;;))nlnl)]IXr )d· 

= l ( L Îdd"[<I>(v(mn.)~) A nln-1
] + ((dv)(mnJ, mR.ic(;;;))nlnl)] )d• 

= - l ( l. <I> [ dÎ A d" (v( mn.)) A IÛc(~) A n!n-11 + dÎ A d" ( ( ( dv) (mn.), mR.ic(;;;))) A n!nl]) d< 

+ l ( l. Î[ d( ((dv)(mn.), mR.ic(;;;))) A d"<I> A n!nl + d(v(mnJ) A d"<I> A ii:ic"Ç) A n!n-11]) d< 

+ l ( l. Î[v(mn,)ii:ic"Ç) A (dd"<I>) A n!n- 1
] + ((dv)(mnJ, mR.ic(;;;))(M<I>) A n!nl)]) d< 

where h, h, h respectively denote the integrais on the first, second and third lines of 

the last equality. Now we compute each integral individually. We have 

dj (\de( ((dv)(mnJ, m~))) (\ n~n] + dj (\ de(v(mnJ) (\ ii:ic"Ç) (\ n~n-l] 

=""'v ··(mn )(dfA)(è·)mt.!.- n[n+l] +""'v ·(mn )dfA (\demE.!.- (\ n[n] 
~ ,tJ H" "'1 Ric(w) E ~ ,t " Ric(w) E 

tJ '/, 

+ L v,i (mnJ ( dj) (Çi)(An"ii:ic"Ç) )n~n+l] - ( dj 1\ de(v(mnJ ), ii:ic"Ç) )n"n~n+l] 
i 

= ~v,i(mnJ(dj 1\ dem?t,ii:ic"Ç))n~n+l]- (dj 1\ de(v(mnJ),ii:ic"Ç))n~n+l] = 0, 
i 

where e = (Çi)i=l,··· ,f. is a basis of t. It follows that h =O. For the integral h, a similar 

calculation gives 

Now we consider the integral h. Using the fact that nE = w + Edde<I>, an integration by 
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parts with respect to E gives 

By Lemma 23 2 the integral on the last line is given by of the last equality is given by 

=h. 

It follows that 

ft+ h + h = { ][v(mn)~) 1\ n[n] + ((dv)(mn), mR-:----( ))n[n+l]]. lx* 1c w 

This completes the proof. 

Lemma 26. Und er the hypotheses of Theorem 11, 

lim ~ ( { '1/Jtv(mcPt)w~n]- 2E~ic(w)(<Pt)) 
t---++CXJ t 1 xl t 

=- 21 v(mn)(fuc(f!) - rr*wps) 1\ f![n] + ((dv)(mn), mRic(r>j)f![n+l] 

where c/Jt is given by ( 4. 7) and '1/Jt = '1/JT with T = e-t+is is given by 

D 

(4.15) 

(4.16) 

Proof. We define on <C* the function 1-l(T) := fx'l/JTv(mT)w~nl. Let j(T) be a test 

function with support in <C* c IP'1 and j := 1r* f. We have 

(ddc1-l, f) = f dde f { (wv(mn)n[nl)IXT 
le* lxT 

= f wv(mn)dde j 1\ n[n] 
lx* 

= f wd(v(mn)) 1\ de j 1\ n[n] - f v(mn)dw 1\ de j 1\ n[n] 
lx* lx* 
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Notice that d(v(mn)) 1\ de j 1\ nn = 0 since the 1-form de j is zero on the fundamental 

vector fields of the 'IT'-action. Integration by parts gives 

Using the equations (4.12) and (4.13) we obtain 

(dde1-l, f) =- 2 { ]((dv)(mn), mRic(n)- mR-:---( ))n[n+l] lx* 1c w 

- { ]v(mn)(Ric(n)- 27r*WFS- ~)) 1\ n[nJ. 
lx* 

Combining (4.14) and (4.17) gives 

dde(H(T)- 2t'~ic(w)(</>r)) 

(4.17) 

=- 27r* ( v(mn)(Ric(n)- 7r*WFS) 1\ n[n] + ((dv)(mn), mRic(n))n[n+l]) . 

We conclude in the same way as in the proof of Lemma 24. 0 

Let us now consider the following function on C*: 

M~w(<Pr) := L 7/Jrv(m~")wi~- 2E~c(w)(</>r) + C(v,w)(a)Ev(</>r), (4.18) 

where </>7 and 'I/J7 are given by (4.7) and (4.16) respectively. From the definition of 

M;, w ( 4>r) and Lernrnas 24 and 26 we see that 

lim M;,w(4>t) = Fv w(X, A). 
t-++oo t ' 

(4.19) 

Lemma 27. If the central fiber Xo is reduced, then the integral 

·- { (nn 1\ 7r*WFS) [n] 
Y(T) .- lxT log nn+l v(mn)nT ' 

is bounded on C*. 

Proof. The integral Y(T) is bounded from above since Z(x) = nn~;:-:crFs is a non­

negative smooth function on X and the integral fxT v(mn)n~n] is independent from 

T (see Lemma 22). Notice that Y(T) is bounded if and only if fxT llog(Z)Iv(mn)n~n] is 

bounded. Indeed, if Y(T) = 0(1) then 

f llog(Z)Iv(mn)n~nJ = f (log(Z) + llog(Z)I)v(mn)n~nl- Y(T) = 0(1). 
lxT lxT 
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It follows that fxT llog(Z)Iv(mo)nLnl = 0(1). The converse follows from 

I1(T)I ~ f llog(Z)Iv(mo)nLnl. 
lxT 

Using that v(mo) is a smooth function on X we see that fxT llog(Z)Iv(mo)nLnl = 0(1) 

if and only if fxT llog(Z)InLnl = 0(1), which is also equivalent to fxT log(Z)nLnl = 0(1). 

By [37, Remark 4.12], if the central fiber X 0 is reduced then fxT log(Z)nLnl = 0(1) which 

implies that 1(T) = 0(1). D 

Now we are in position to give a proof for Theorem 11. 

Proof of Theorem 11. From the modified Chen-Tian formula in Theorem 6, (4.18) 

and by Lemma 27 we get 

Mv,w(</>r)- M~w(1>r) = L (log(~~) -1/J7 ) v(m7 )w}n 

= f (log (~n 1\ 7r*Wpg) - \lf) p(T- 1 )*(v(m7 )W~n]) 
} XT wn 1\ 7r*Wpg 

= L" log (fln ~n":!WFS) v(mn)fl~nl = 0(1). 

Dividing by t (where we recall T = e-t+is) and passing to the limit when t goes to 

infinity concludes the proof. D 

Proof of Theorems 4. This is a direct corollary of Theorem 3 from the introduction, 

together wi th Theorem 11. D 

Proposition 9. If (X, A, 11") is a Kahler test configuration of (X, a, 11") such that 1r : 

X --+ IP'1 is a smooth submersion then 

where Vp is the generator of the §~-action on Xo, and F~w(Vp) is the (v, w)-Futaki 

invariant of the smooth central fibre (Xo, a) introduced in Definition 8. In particular if 

(X, a, 11") is (v, w)-semistable on smooth test configurations, then 

L Scalv(w)wlnl = C(v,w}(a) L w(mw)wlnl and F;:,w =O. 
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Proof. We just adapt the arguments from [39] to our weighted setting. From Definition 5 

we have 

:tMv,w(cPT) =- r ~T(Scalv(wT)- Cv,w(a)w(mT))w}nJ, 
lx1 

=- r p(T- 1 )*~T(Scalv(nT)- Cv,w(Œ)w(mnT))n[nJ, 
lxT 

(4.20) 

where t =-log ITI, ~T = 1:!Jt and Wn cPT, mT are given by (4.7) and (4.3). Note that the 

flow of the vector field JVp is <pjvP = p(e-t) where J denotes the complex structure 

of X. Let hP be a Hamiltonian function of Vp with respect ton. We have ftp(T)*n = 

-ddc(p(T)*hP). On the other hand, using (4.7) we get ft(p(T)*n) 1x 1 
= ddc~T· By taking 

the restriction on X 1 of the first equality and comparing to the secon, we get 

(4.21) 

where a( T) E ffi. is a constant depending on T E C*. By ( 4.21) and Lemma 3, we have 

a( T) = 1 ( r hPn[n] + dEl (cPT)). 
Vol( X, a) } xT dt 

Using that 1r: X--+ IP1 is a smooth submersion and Lemma 24, we get 

Substituting (4.21) in (4.20), we obtain 

:tMv,w(cPT) = r (Scalv(nT)- Cv,w(a)w(mnT))hPn[n] 
lxT 

- a(T) r (Scalv(nT)- Cv,w([nT])w(mnT))n[nJ. 
lxT 

( 4.22) 

(4.23) 
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Passing to the limit when t-+ oo in (4.23) and using Theorem 11, we obtain 

Fvw(X,A) = lim dd Mvw(cPT) 
' t-+oo t ' 

= { (Scalv(ilo)- Cv,w(a)w(mn0 ))hPi1[n] 
lxo 

- Vol(~,<>) ( Lo hPfl[n[ +Vol( X, A)) Lo (Scalv(flo) - Cv,w([flo])w(mn0 ) )nin] 

= { (Scalv(ilo)- Cv,w(Œ)w(mn
0
)) (hP- 1 

{ hPil[nJ)n[n] 
Jx0 Vol(X,a) lxo 

Vol( X, A) f ( ) [nJ 
- Vol( X, a) J Xo Scalv(no)- Cv,w([ilo])w(mno) n 

- Œ ( ) - Vol( X, A) r ( ( ) - ( ) ( )) [n] - Fv,w Vp Vol( X, a) } X Scalv W Cv,w Œ w mw w . 

where no = niXo E AIXo' and we have used in the last equality that for any T E C* we 

have 

see Lemma 2. 

For the second statement, as fx (Scalv(w)- Cv,w(a)w(mw) )w[n] = 0 by the definition of 

semi-stability, we consider the product test configurations associated to V and -V for 

any V E ~red, we obtain F~ w(V) = -F~ w(V) 2:: 0 i.e. F~ w =O. 
' ' ' 

D 

Remark 7. In [36], Dervan defines a 1I'-relative Donaldson-Futaki invariant DF'll'(X, A) 

for a smooth 1I' -compatible Kahler test configuration X as follows 

where ~ := (Çi)i=l,··· ,Pis a basis of t with corresponding Killing potentials hi= fi(mn) = 

(mn, Çi) + Ài, such that (hi, hj)x0 = fxo hihjnn = 0 for i # j and fxo hinn = 0, where 

the integration on Xo is defined by fx := Li mi fcx<il) with [Xo] = Li miX~i) being 
0 0 reg 

the analytic cycle associated to Xo and (X~i))reg standing for the regular part of the 
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irreducible component Xdi) of Xo. Using Lemma 22, we have 

(4.24) 

for any T E C* c IP'1. As the family 1r : X ----+ IP'1 is proper and fiat, the current of integra­

tion along the fibers Xr is continuous and converges to the integration over the analytic 

cycle of the central fiber [Xo] (see [14]). Passing to the limit when T----+ 0 in (4.24), we 

thus obtain fx Wext(mw)w[n] = fxo Wext(mn)O[n] and F1,1(Çi) = (wext(mn), h(Pi,n))Xo· 

Th us, 

( 4.25) 

On the other hand, the (1, Wext)-Futaki invariant of (X, A) is given by 

Fl,w~,(X, A)=-L Scal(fl)nln+l[ + 2 L 'lr*WFS 1\ nin[+ L Wext(mn)nln+ll. (4.26) 

(Recall that C(l,wext)(a) = 1, see Section 2.2.2). From (4.25) and (4.26), we infer 

F1,w~• (X, A) - DFy(X, A) =(Wext(mn), hp) Xo + L (wext(mn) - c1,1 (a))nln+l[ 

( ( ) h ) l
. d[:jyext ( c/Jr) 

= Wext mn , p Xo + lill d 
t~oo t 

=(Wext(mn), hp)X0 + lim ( { ~rWext(mr)wJ_nl) 
t~oo J xl 

=(Wext(mn), hp)X0 - lim ( { hpwext(mn)O[n]) 
t~oo Jxr 

=(Wext(mn), hp)X0 - { hpWext(mn)O[n] = 0, 
lxo 

where in the second equality we used Lemma 24 for 

0 - ( ) - 1 r ( )n[n] Wext- Wext- Cl,l a - Wext- Vol(X, a) lxT Wext mn H ' 

for any T E C* and in the fourth equali ty we used ( 4. 21). It follows th at 

<> 
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4.2 Algebraic definition of a (v, w)-Donaldson-Futaki invariant 

4.2.1 The (v, w)-Donaldson-Futaki invariant of a smooth polarized variety. 

Let (X, L) be a smooth polarized projective variety endowed with a torus action 'JI' C 

Aut(X, L) with corresponding polytope PL ct* as in Section 3.1. For any C*-action p 

commuting with 'JI' and a family ~ of § 1-generators of 'JI', we consider the weight 

where A~k) is the induced infinitisimal action of p on Hk and v is a smooth weight 

function on PL. By Lemma 17, Ww(~, p) admits an asymptotic expansion 

Thus we obtain a quantized version of the (v, w)-Futaki invariant of (X, 21rc1(L)): 

Corollary 8. The (v, w)-Futaki invariant introduced in Definition 8 with respect to the 

Kahler class a := 21rc1 (L) satisfies 

where Vp is the generator of the §1-action on X, and Cv,w(L) is the (v, w)-slope of 

(X, 21rc1 (L)) defined in (2.6). 

4.2.2 The (v, w)-Donaldson-Futaki invariant of a polarized test configuration 

Following [42], we consider a (possibly singular) polarized test configuration of exponent 

rE N, compatible with (X, L, 'JI'), defined as follows: 

Definition 20. A 'JI'-compatible polarized test configuration (X, L-) of exponent r E N 

associated to the smooth polarized variety (X, L) is a normal polarized variety (X, L, Î) 

endowed with a torus 'ft' c Aut(X, L-) and 

• é1 flat morphism 1r : X -+ JID1 such that the torus action i on X preserves each fiber 

X 7 := 1r-1(r), and (Xl,LJXp Î) is equivariantly isomorphic to (X,Lr, 'JI'); 
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• a C*-action p on X commuting with i and covering the usual C*-action on JP>\ 

• an isomorphism 

( 4.27) 

which is equivariant with respect to the actions of G :=ix§~ on X\ X 0 and the 

action of 1I' x § 1 on X x (JP>1 \ {0}). 

To simplify the discussion, we shall assume in the sequel that r = 1 and that L is a very 

ample polarization on X. 

By the consideration in Section 4.2.1, for each T-=/= 0, (XT, .C1xT, Î) gives rise to a momen­

tum polytope PT C t*. Using the biholomorphism (4.27), we know that (XT, .C1xT, Î) 

and (X1,.CIXP Î) are equivariantly isomorphic polarized varieties, and thus PT= P1 = P 

for all T -=/= O. 

For any T E JP>1 , following Section 4.2.1, we let A~k)(T) := (A~~)(T), ... ,A~~)(T)) be 

infinitisimal generators of the § 1-actions on Hk(T) := H 0(XT,.crxJ, induced by the § 1-

generators Ç = (6, · · · ,Çg) for the Î-action, on the fiber (XT,.CixT). We daim that the 

spectrum of the operators A~~) ( T) is independent of T E JP>1 , and is contained in P. To see 

this, we canuse the observation from [42, Sect. 2.3] which associates to any 1I'-compatible 

polarized test configuration (x' .c, Î) a continuous family vk ( T) c Symk (eN+ 1 ) of rn­

planes in the Grassmanian Grm(Symk(cN+1)), where Symk denotes the vector space 

of symmetric homogeneous polynomials in N + 1 complex variables. In this picture, 

(XT, .C1xT) is seen as a polarized subvariety of (JP>N, 0(1)), and the space of sections 

Hk(T) := H 0(XT,(.C1xT)k) is identified to Symk(cN+1)/Vk(T). We can further assume 

that the action of i on (XT, .C1xT) cornes from the restriction to XT of a subtorus 

of i c SL(N + 1, C), and thus i also acts on Symk(cN+l ); furthermore, writing 

Âkk) := (Â~~), · · · Â~~)), where Â~~) is the infinitisimal generator of the circle action 

§t on Symk(cN+l ), the operators 
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must preserve the rn-planes Vk(r) (as the action preserves each X 7 viewed as the sub­

space of common zero es of elements in Vk ( T)), and th us 

are the linear maps induced by Â~k) on the quotient spaces Hk(r). Introducing a±­

invariant Hermitian product on Symk(cN+1 ), we thus obtain a continuous Â~:)-invariant 

decom position 

and the spectrum of A~~) ( T) is nothing but the spectrum of Â~~) restricted to Vf- ( T). 

Using that Vf-(r) vary continuously in the Gramsannian, we conclude that the spectrum 

of Â~:) restricted to Vf-(r) is constant. It is contained in P by Lemma 15. 

It follows that for any v E C00 (P,IR), we can define v(k-1 Akk)(O)), where Akk)(O) 

( A~7) ( 0), · · · , A~~) ( 0)) denote the the genera tors of circle actions corresponding to the 

central fibre ( Xo, .CIXo, T). Th us, for v E C00 (P, IR) we can consider the following v­

weight 

( 4.28) 

Definition 21. Let v E C00 (P,IR>o) and w E C00 (P,IR), and suppose that we have the 

following asymptotic expansions on the central fiber (Xo, Lo) 

W~k)(~,p) =a~)(~,p)kn + O(kn-1), 

wsk)(~, p) =a~O)(~, p)kn + a~1)(~, p)kn-1 + O(kn-2). 
( 4.29) 

Then we define the (v, w)-Donaldson-Futaki invariant of the normal 1f-compatible po­

larized test configuration (X, .C) to be the number 

DF (X .C) ·= a(l)(é p)- Cv,w(L) a(O)(é p) 
v,w ' . v ~' 4 w ~' ' ( 4.30) 

where Cv,w(L) is the (v, w)-slope of (X, 21rc1(L)) given by (2.6). 

U sing Corollary 8, we have the following 
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Corollary 9. If (X, .C) is a 1l' -compatible polarized test configuration with smooth central 

fiber, then the expansions (4.29) hold, and 

(27rtW~k)(e,p) =kn f hpw(mn
0
)0bn] + O(kn-1), 

lxo 
(27rtWSk)(e, p) =kn { hpv(mn

0
)0bn] + k:-l { hpScalv(Oo)nbn] + O(kn-2), 

lxo lxo 
where hp is the 0-Hamiltonian of the generator Vp of the action§~ on Xo with respect 

to aG invariant Kahler metric 0 E 21rc1 (.C) and Oo := OIXo. In particular, the (v, w)­

Donaldson-Futaki invariant (4.30) of (X, .C) is given by 

where F~w(Vp) the Futaki invariant of the classa:= 21rc1(L), introduced in Definition 8. 

We deduce from Corollary 9 and Proposition 9 

Corollary 10. If (X, .C) is a smooth 1l' -compatible polarized test configuartion such that 

1r : X ---t JP>1 is a smooth submersion, then 

where Fv,w(X, 21rc1(.C)) is the (v, w)-Futaki invariant of the 11'-compatible Kahler test 

configuration (X, 21rc1 ( .C)) introduced in Definition 18. 

4.3 The (v, w)-Futaki invariant of a toric test configurations 

In this section we consider the special case when X is a smooth toric variety i.e. 1l' C 

Autred(X) with dimiR 1l' = dimc X = n. Let w E a be a fixed 11'-invariant Kahler form, 

mw : X ---t t* a corresponding momentum map, and P = mw(X) the corresponding 

momentum polytope. By Delzant Theorem [34], (X, a) can be recovered from the labelled 

integral Delzant polytope (P, L) where L = (Lj)j=l,d is the collection of non-negative 

defining affine-linear functions for P, with dLj being primitive elements of the lattice A of 

circle subgroups of1l'. We denote by P 0 the interior ofP and by X 0 := mc::; 1 (P0 ) the dense 

open set of X of points with principle 1l' or bits. Let us consider the momentum/ angle 
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coordinates (p, t) E P 0 x 'IT' with respect to the Kahler metric (g, J, w). By a result of 

Guillemin (see [55]) 

g = (dp, Gu, dp) +(dt, Hu, dt), 

Jdt =-(Gu, dp), 

w = (dp 1\ dt), 

( 4.31) 

on X 0 , where u is a smooth, strictly convex function called the symplectic potantial of 

(w, J), Gu : P0 --t S2 t is the Hessian of u, Hu : P0 --t S2 t* is its point-wise inverse 

and (-, ·, ·) denote the contraction t* x S2t x t* --t IR or the dual one. Conversely if 

u is a strictly convex smooth function on P0 , ( 4.31) defines a Kahler structure on X 0 

which extends to a global 'IT'-invariant Kahler structure on X iff u satisfies the boundary 

conditions of Abreu (see [1]). We denote by S(P, L) the set of smooth strictly convex 

functions on P0 satisfying these boundary conditions. For u E S(P, L), we have the 

following expression for the scalar curvature of (g, J) (see [2]), 
n 

Scal(g) = - L Hij,ij, 
i,j=l 

where Hu= (Hij) in a basis of t. Let v E C 00 (P, IR>0 ). By the calculations in (9, Section 

3], the following expression for the v-scalar curvature of (g, J) is straightforward 

n 

Sc al v (g) = - "'"""" (v Hi1·) ... L......t ,tJ 
( 4.32) 

i,j=l 

We recall that by the maximality of 'JI', any 1I'-invariant Killing potential of (4.31) is the 

pull-back by mw of an affine-linear function on P. 

Lemma 28. Let v E C 00 (P, IR >0) and w E C 00 (P, IR). For any affine-lirear function f 

on P, the (v, w)-Futaki invariant corresponding to the 1I' -invariant Hamiltonian Killing 

vector field Ç := df is given by 

(27r)--cnF~w(Ç) = 2 { fvda- C(v,w)(o:) { fwdp, 
laP )p 

( 4.33) 

where dp is a Lebesgue measure on t*, da is the induced measure on each face Fi C 8P 

by Zetting dLi 1\ da= -dp and the constant C(v,w)(o:) is given by 

(
faP vda) 

C(v,w)(o:) = 2 fp wdp . ( 4.34) 
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Proof. Let u E S(P, L) and (g, J) be the corresponding w-compatible Kahler structure 

X given by (4.31). The (v, w)-Futaki invariant of the Kahler classa= [w] is given by 

F~w(Ç) = r Scalv(g)f(mw)w[n]- C(v,w)(a) r f(mw)w(mw)w[nl, ' lx lx 
where f is an affine linear function on t* with Ç = df E t. In the momentum-action 

coordinates (p, t) E P 0 x 1I' we have w[n] = (dp 1\ dt)[n] = dp1 1\ dt1 1\ · · · 1\ dpn 1\ dtn. By 

[9, Lemma 2], for any u E S(P, L) and any smooth functions cp, 'ljJ ont* we have 

Then, using (4.32) together with (4.35), we obtain 

(27r)-n F.:w(Ç) = -1, ct (vHij) ,ij) fdp- C(v,w)(a) l, fwdp 
t,J=l 

=2 r fvdŒ- C(v,w)(a) r fwdp. laP lP 
Similarly we deduce (4.34). D 

For any continuous function f E C0 (P, 1R) we define 

F~w(f) := 2 r fvdŒ- C(v,w)(a) r fwdp. laP lP ( 4.36) 

Using again [9, Lemma 2] we obtain 

for any u E S(P, L) and f E C00 (P, JR). It follows that 

Lemma 29. [9, 42] If there exist u E S(P, L) such that the corresponding w-compatible 

Kahler structure (g, J) salves Scalv(g) = C(v,w)(o:)w(mw), then F~w(f) 2:: 0 for any 

smooth convex function f on P. 

4.3.1 Toric test configuration 

We start by recalling the construction of toric test configurations introduced by Don­

aldson in [42, Section 4]. Let (X, L) be a smooth polarized toric manifold with integral 
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momentum polytope p c t* ~ ]Rn ( with respect to the lattice zn c ]Rn) and 

f := max(h, · · · , fr), ( 4.38) 

a convex piece-wise affine-linear function with integer coefficients, i.e. we assume that 

each fj in (4.38) is an affine-linear function fj(P) := (vj,p) +Àj with Vj E zn and Àj E Z. 

We also assume that the polytope Q defined by 

Q = {(p,p') E Px 1R : 0 '5_ p' '5_ R- f(p)}, ( 4.39) 

has integral vertices in zn+l, where R is an in te ger such that f '5_ R on P. By [42, 

Proposition 4.1.1] there exist an (n + 1)-dimensional projective toric variety (XQ, G) 

and a polarization LQ ---+ XQ corresponding to the labelled integral Delzant polytope 

Q c JRn+l and the lattice zn+l c JRn+l. In general, XQ is a compact toric orbifold 

(see [69]), but XQ can be smooth for a suitable choice of f. There is an embedding 

t- : X Y XQ such that t-(X) is the pre-image of the face P = Q n (1Rn x {0}) of 

Q, and the restriction of LQ to t-(X) is isomorphic to L. Notice that by the Delzant 

Theorem [34, 69] the stabilizer of t-(X) C XQ in G is §~ = §Cn+l), where §Cn+l) is 

the (n + 1)-th factor of G = ]Rn+l /27rzn+l so that G/§~ is identified with the torus 

action 'Ir = ]Rn /27rzn on X. Furthermore, Donaldson shows in [42] that there exist a 

C* -equivariant map 1r : XQ ---+ IP'1 such that (XQ, §~, LQ) is a 'Ir-compatible polarized 

test configuration. We consider the Futaki-invariant Fv,w(XQ, 27rc1 (,CQ)) given by (4.4) 

corresponding to (XQ, 21rc1 (,CQ) ), and notice that it makes sense even when XQ is just 

an orbifold. 

Proposition 10. Let f = max(h, · · · , fr) be a convex piece-wise linear function on P, 

with integer coefficients and XQ the tarie test configuration constructed as above. Then 

the (v,w)-Futaki invariant (4.4) of(XQ,27rc1 (,CQ)) is given by 

( 4.40) 

where F~w(f) is the integral defined in (4.36). Furthermore, the (v, w)-Donaldson-Futaki 

invariant (4.30) corresponding to (XQ, LQ) is well-defined, and is given by 

( 4.41) 
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Proof. We start by proving the first daim (4.40). Let 0 E 21rc1(.Cq) be aG-invariant 

Kahler form on Xq and w E 21rc1 (L) be the induced 1I'-invariant Kahler form on t.(X) c 

Xq. We have by Remark 6 2 

Fv,w(X, 2?TC! (.CQ)) =- l (Scalv(fl) - C(v,wj(27rCJ (L ))w(mn))f![n+l] 

+ (81r) l v(mw)wn. 
( 4.42) 

Let (p, p', t, t') E Q x 1I' x §~ be the momentum/ angular coordinates on X8 su ch that 

(p, t) E Px 1I' are the momentum/angular coordinates on X 0 . Then, 

( 4.43) 

and 

{ w(mn)n[n+lJ = (27rt+1 { w(p)dp 1\ dp' = (27rt+1 { w(p)(R- f(p))dp. (4.44) 
lxq }q . }p 

For the remaining term in (4.42), using (4.37) we have 

(21r)-(n+l) { Scalv(O)n[n+ll = 2 { vdaq 
lxq laQ 

=2 { vdp + 2;; vdf-t(R-f)(P) + 2 { (R- j)vdap (4.45) 
}p (R-f)(P) }ap 

=4 { vdp + 2 { (R- f)vdap, 
}p laP 

where the measure d~-t(R-f)(P) is defined by df 1\ d~-t(R-f)(P) = dp 1\ dp'. Substituting 

( 4.43)-( 4.45) into ( 4.42) yields 

(27r)-(n+l)Fv,w(Xq, 27rcl(.Cq)) =- 2 r (R- f)vdap + Cv,w(a) r (R- f)wdp 
laP }p 

=F;.w(f). 

Now we give the proof of the second daim ( 4.41). The central fi ber Xo is the reduced 

divisor on Xq associated to the preimage of the union of facets of Q corresponding to 

the graph of R-f. By a well-known fact in toric geometry (see e.g. [42]) the set of 

weights for the complexified torus ((;Con H 0 (X, .C~) is kQ n zn+l. It thus follows that 

the weights for the c;-action on H 0 (X0 , L~) are k(R- f)(kP) n Z. We conclude that 

wsk)(~,p)= L (R-f)(~)v(~), 
.ÀEkPnzn 
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where wSk) (~, p) is the v-weight defined by ( 4.28). By (56, 99], for any smooth function 

<I> on t* and k large enough we have 

Taking <I> := (R- f)v and using the above formula for any affine-linear piece of <I>, we 

get 

wSk)(~, p) = kn (R- j)vdp +- (R- j)vdap + O(kn-2
). 1 kn-21 

P 2 aP 

Analogously, for W~k) ( ~, p) we ob tain 

Using (4.30), it follows that 

D 

Remark 8. Instead of a convex piece-wise affine-linear function f with integer coeffi­

cients we can take a convex piece-wise affine-linear functions with rational differentiais, 

i.e. assuming that each fj in (4.38) is of the form with fj(P) = (vj,P) + Àj with Vj E Qn. 

The polytope Q such a function defines is not longer with rational vertices, but still 

defines a toric Kahler orbifold (XQ, AQ), see [69). This gives rise to a toric Kahler test 

configuration compatible with 'JI' and the formula ( 4.40) in Proposition 10 computes the 

corresponding (v, w)-Futaki invariant of (XQ, AQ)· 



CHAPTER V 

APPLICATIONS 

5.1 Existence of cKEM metrics and the automorphism group 

Let (X, a) be a compact Kahler manifold with Kahler class a and Ç E lJred is a real 

holomorphie vector generating a torus 1I'ç C Autred(X). For any 1I'ç-invariant Kahler 

metric w E a, the vector field is Hamiltonian with respect to w with w-Hamiltonian 

function f(ç,w,a) normalized by fx f(ç,w,a)W[n] =a where a> 0 is positive constant. One 

can always choose the constant a > 0 such that for 1I'ç-invariant Kahler metric w E a 

the w-Hamiltonian function f(ç,w,a) > 0 is positive. In the setting of Section 2.2.4, 

f(ç,w,a) = (Ç, mw)+ c for a fixed positive affine-linear function (Ç, mw)+ c over Pa, where 

Pa is a momentum polytope associated to (1I' ç, a) as in Lemma 1. 

As explained in the Introduction (see (1.2)), we say that 1I'ç-invariant Kahler metric 

w E a is a Kahler met rie conformai to a Einstein-Maxwell met rie ( cKEM) if the scalar 

curvature of the conformai metric !(~ 2 )9w is constant i.e . .,,w,a 

Scal(f(~2 )gw) = const, .,,w,a 

which is also equivalent to the Einstein-Maxwell equations (1.1). As we have noticed in 

Section 2.2.4, the cKEM metrics are (v, w)-cscK metrics for vç,a, wç,a E C 00 (P a, JR) such 

th at 

( ) f -2m+l d ( ) ~-2m-1 v ç a mw = (è ) an w ç a mw = (è ) , ' .,,w,a ' .,,w,a (5.1) 

where mw :X ---t tê is the w-momentum map with momentum image mw(X) =Pa· 
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Similarly to the cases of Kahler-Einstein and cscK metrics [73, 78], Theorem 1 places an 

obstruction for X to admit a weighted cscK metric in terms of the centraliser Aut~(X) 

of 'lfç in Aut0 (X). In particular this result applies to cKEM metrics. By [9, Theorem 

5] and by Corollary 4, any cKEM metric on the toric complex surfaces CJ!D1 x CJ!D1 and 

the Hirzebruch surfaces IFn = IP(O EB O(n)) ----t CJ!D1 must be given either by the Calabi 

Ansatz (60, 65, 66] or by the hyperbolic ambitoric ansatz [4] (a Riemannian analogue 

of the Plebanski-Damianski explicit solutions [81]). In practice, however, the algorithm 

of [9, Theorem 5] allowing one to decide whether or not a given Kahler class, a quasi­

periodic holomorphie vector field Ç and a constant a > 0 there exists a compatible cKEM 

metric is of considerable complexity, see (52]. The case CJ!D1 x CJ!D1 has been successfully 

resolved by [9, 65] (see also [52]) whereas the case of IF'n and Ç being tangent to the fibers 

is settled in [51]. The possibility of other choices of Ç and a > 0 on IF n is open. 

The following result completes the classification of cKEM metrics started in [9, 52, 65]. 

Corollary 11. Any conformally-Kiihler, Einstein-Maxwell metric on CJ!D1 x CJ!D1
, must 

be tarie, and if it is not a product of Fubini-Study metrics on each factor, it must be 

homothetically isometric to one of the metrics constructed in (65]. 

Proof. From Corollary 4 any cKEM metric g on CJP'1 x CJ!D1 must be toric. In this case 

[9, Proposition 6] yields that the metric g must be either a product of Fubini-Study 

metrics or one of the metrics found in (65]. D 

We illustrate our theory with a non existence result. 

Corollary 12. Let X = J!D(O EB O(l)E) ----t IFn where E = (0 EB O(n)) ----t CJ!D1 and 

IFn = J!D(E) is the n-th Hirzebruch complex surface. Denote by Ç the generator of the 

§ 1 -action on X corresponding to diagonal multiplications on the OE(l)-factor. Then X 

admits no cKEM metrics. 

Proof. We have the following exact sequence (see [6, Proposition 1.3]): 

0 ----t fJB(X) ----t [J(X) ----t [J(B) ----t 0 
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where B = 1Fn and ~B(X) denote the Lie algebra of holomorphie vector fields on X 

which are tangent to the fibers of 1r. The proof of [6, Proposition 1.3] also shows that 

where ~1(X) = spanc{Ç, JÇ} is the abelian sub-algebra generated by the vector fields Ç, 

JÇ and ~ç(X) is the centraliser of Ç in the Lie algebra ~(X). If X admits a Kahler metric 

(w, g) conformai to an Einstein-Maxwell metric with conformai factor f(ç,w,a) > 0, then 

~ç(X) must be reductive by Theorem 1. As ~1(X) is in the center of ~ç(X), it would 

follow that ~(B) is reductive, which is not the case for B = 1Fn (see e.g. [18]). It follows 

that X admits no cKEM metrics. D 

5. 2 The YTD correspondence of JP>1- bun dl es 

We start with the case 4 from the Introduction. Following [8], we consider X = V X'][' 

K ~ B be the total space of a fibre-bundle associated to a principle 1r-bundle K--+ B 

over the product B = Ilf=l (Bj, Wj, 9)) of compact cscK manifolds (Bj, Wj, 9j) of complex 

dimension dj, satisfying the Hodge condition [wj/27r] E H 2 (Bj, Z), and a compact 21!­

dimensional toric Kahler manifold (V, wv, gv, Jv, 1r) corresponding to a labelled Delzant 

polytope (P, L) in t*. We assume that K is endowed with a connection 1-form 8 E 

0 1(K, t) satisfying 
N 

d8 = LÇj 0Wj, Çj Et, j = 1,· ·· ,N. 
j=l 

and that the toric Kahler met rie (gv, wv, Jv) on V is given by ( 4.31) for a symplectic 

potential u E S(P,L) where the space ofsymplectic potentials S(P,L) is introduced in 

Section 4.3. As shown in [8], X admits a bundle-adapted Kahler metric (g,w) which, on 

the open dense subset X 0 = K x P 0 c X, takes the form 

N 

9 = L ( (Çj,P) + Cj )1r*gj + (dp, Gu, dp) + (8, Hu, 8), 
j=l 
N 

w = L ( (Çj,p) + Cj )7r*Wj + (dp 1\ 8), 
j=l 

(5.2) 
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where p E P 0 and Cj are real constants su ch that ( ( Çj, p) + Cj) > 0 on P. Su ch Kahler 

metrics, parametrized by u E S(P, L) and the real constants Cj, are referred to in [8] 

as given by the generalized Calabi ansatz in reference to the well-known construction of 

Calabi [22] of extrema! Kahler metrics on IP'1-bundles. 

We notice that the Kahler manifold (X, w, g) is invariant under the 1I'-action with mo­

mentum map identified with pEP. Furthermore, it is shown in [8, (7)] that the scalar 

curvature of (5.2) is given by 

N e a2 
( ) "'"" Scalj 1 "'"" ( ( ) u ) Scal g = ~ (Ç. ) . - -( ) ~ a a u p H TS 

j=l J,p + CJ U p r,s=l Pr Ps 

N Scalj 1 
= L (Çj,p) + Cj + u(p) Scalu(9v), 

j=l 

where we have put u(p) := rrf=l((Çj,p) +cj)dj and we have used (4.32) for passing from 

the first line to the second. Similarly, by [8, (12)], the g-Laplacian of (the pull-back to 

X) of a smooth function f(p) on P is given by 

1 e a ( aj u) 
l::igf = --(-) L -8 u(p)-a HTS • 

U p r,s=l Pr Ps 

Using the above formulae, we check by a direct computation that for any positive smooth 

function v on P we have 

N 

( 
"'"" Scalj ) 1 Scalv(g) = v(p) ~ (Ç. ) . + -( ) Scaluv(9v) . 1,p +c1 up 
J=l 

Using that the volume form of (5.2) is 

N 

w[n] = u(p) ( (\ w)dj]) 1\ (dp 1\ O)[il, 
j=l 

(5.3) 

and the integration by parts formula (4.35), we compute that the (v, w)-Futaki invariant 

on X acts on a vector field Ç E t by 

FJ~l(Ç) =2 { fvudŒ + { cf:. Scal; ) fvudp 
(27r)e(ITf=1 Vol(Bj,[wj])) laP }p j=I (Çj,P)+cj (5.4) 

- Cv,w([w]) 1 fwudp, 
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where f = (Ç,p) +À is a Killing potential of Ç. 

As in Section 4.3.1, we can construct a 11'-compatible smooth Kahler test configuration 

associated to X, defined by a convex piece-wise linear function f = max(h, · · · , fr), 

on t* such that the polytope Q c JR.f+ 1 given by (4.39) is Delzant with respect to the 

the lattice z/+1. Denote by (Vq, Aq) the corresponding smooth toric variety, and by 

JC = K x §Cf+1) ----* B the principal 1I'f+1-bundle over B with trivial (f + 1)-factor, and 

let X = V x']['Hl JC ----* B be the resulting V-bundle over B. We can now consider a 

Kahler form non X obtained by the generalized Calabi ansatz (5.2); as the connection 

1-form on JC has a curvature I:_f=1 Çj 0 Wj with Çj E t = Lie('II'f) c Lie('II'f+1), n induces 

on the pre-image X c X of the facet P c Q a Kahler form w given by (5.2) with the 

same affine linear functions ( (Çj, p) + Cj ). A similar computation to (5.4), performed on 

the total space (Xq, 0) by using Definition 18 (see also the proof of Lemma 28 above) 

leads to the expression (5.4) for the (v, w)-Futaki invariant associated to (Xq, Aq) with 

f being the piece-wise linear convex function defining Q. 

Let us now suppose that X = JP>( V EB L,) ~ B with B as ab ove, where V stands for 

the trivial holomorphie line bundle over B and C is a holomorphie line bundle of the 

form 1:, = ®.f=1 Lj for Lj being the pull-back to B of a holomorphie line bundle over 

Bj with c1(.Cj) = Çj(Wj/27r], Çj E Z. This is the so-called admissible setting (without 

blow-clowns) of [7], pioneered in [22) and studied in many works. In our setting above, 

such an X is a JP>1-bundle obtained from the principle §1-bundle over B associated to 

L,-1 . We can take P = (-1, 1) c JR, and suppose that v(z) > 0 and w(z) are smooth 

functions defined over [ -1, 1]. A Kahler met rie ( w, g) on X of the form ( 5. 2) can be 

equivalently written as 

N d2 
g = ~(ÇjZ + Cj)7r*gj + e~z) + 8(z)fP 

J=1 

N N 
(5.5) 

w = L(Çjz + cj)1r*wj + dz 1\ (), d() = LÇi1r*wj, 
j=1 j=1 

for positive affine-linear functions Çjz + Cj on (-1, 1). This is the more familiar Calabi 

ansatz, written in terms of the profile function 8(z) (see e.g. [57]) which must be smooth 
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on [-1, 1] and satisfy 

8(±1) = 0, 8'(±1) = ::r=2, (5.6) 

and 

8 ( z) > 0 on ( -1, 1) , (5.7) 

for (5.5) to define a smooth Kahler metric on X. We let u(z) = ITf=1 (Çjz + Cj)dj be the 

corresponding polynomial in z. 

We now take Q be the chopped rectangle with base P, corresponding to the convex 

piece-wise affine linear fun ct ion f zo ( z) = max ( z + 1 - zo, 1) w he re zo E ( -1, 1) is a gi ven 

point. We can construct as above an § 1-compatible Kahler test configuration (XQ, AQ) 

associated to (X, [w], §1 ). It is not difficult to see that the complex manifold XQ is the 

degenaration to the normal cone with respect to the infinity section 800 C X, see [7, 83] 

but the Kahler class AQ on XQ defines a polarization only for rational values of zo. 

Formula (5.4) shows that the (v, w)-Futaki invariant of (XQ, AQ) is a positive multiple 

of the quantity 

F(zo) := 2(fz0 (1)v(1)u(1)- fz0 (-1)v(-1)u(-1)) 

/_

1 
( ( ~ Scal· ) ) + _

1 
fz0 (z) v(z)u(z) f=;_ Çjz +Jcj - Cv,w([w])w(z)u(z) dz. 

(5.8) 

Let us now assume that there exists a smooth function 8(z) on [-1, 1], which satisfies 

(5.6) and 
N 

( ) " ( L Scalj ) vu8 (z) = v(z)u(z) Ç - Cv,w([w])w(z)u(z). 
·z+ c· 

j=1 J J 

(5.9) 

Substituting in the RHS of (5.8) and integrating by parts over the intervals [-1, zo] and 

[zo, 1] gives 

F(zo) = v(zo)u(zo)8(zo). (5.10) 

As v(z) and u(z) are positive functions on [-1, 1], we conclude that if (X, [w],§1
) is 

(v, w)-K-stable on smooth § 1-compatible Kahler test configurations with reduced central 

fibre, then 8(z) must also satisfy (5.7). By the formula (5.3), the corresponding Kahler 

metric (5.5) will be then (v, w)-cscK. 
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The existence of a solution of (5.9) satisfying (5.6) is in general overdetermined. Fol­

lowing [10), in the case when w(z) > 0 on [-1, 1] one can resolve the over-determinacy 

by !etting the constant Cv,w([w]) = 1 and introducing an affine-linear function Wext(z) = 

A1z + A2, such that 

N 

( )" ( 2: Scalj ) vue (z) = v(z)u(z) ç - w(z)wext(z)u(z) 
·z +c· 

j=l J J 

(5.11) 

admits a unique solution e;~';' (z) satisfying (5.6): the coefficients A1 and A2 , as weil 

as the two constants of integration in (5.9), are then uniquely determined from the 

four boundary conditions in (5.6). Furthermore, a straightforward generalization of 

[10, Lemma 2.4] shows that Wext(z) corresponds to the affine-linear function introduced 

in Section 3.2, i.e. (v, WWext)-cscK metrics are (v, w)-extremal. Combined with Theorem 

2, this allow us to obtain the following generalization of [10, Theorem 3]. 

Theorem 12. Let X = JP>( (] EB C) ~ B be a projective JP>
1 -bundle as above, endowed with 

the §}-action by multiplication on 0, and a = [w/27r] be the Kahler class of a Kahler 

metric in theform (5.5). We letP = [-1,1] be the momentumpolytope of(X,a,§1 ), 

v, w be smooth positive functions on [-1, 1] and e;;(z) the unique solution of (5.11) 

satisfying (5.6). Then, 

• If (X, a, § 1) is (v, WWext)-K-stable on § 1-compatible smooth Kahler test configu­

rations with reduced central fibre, then e;~';' (z) > 0 on ( -1, 1) and a admits a 

(v, w)-extremal Kahler metric of the form (5.5) with 8 = e;:. 

• If (X, a, § 1) admits a (v, w)-extremal Kahler metric, then (X, a, § 1) is (v, WWext)­

K-semistable on § 1-compatible smooth Kahler test configurations with reduced cen­

tral fiber and e;;(z) ~o. 

Proof. The first part follows from the identity (5.10) which shows that e;~';' must satisfy 

bath (5.6) and (5.7). The second part follows from formula (5.10) and Theorem 4, if 

the constants ( c1, ... , CN) in (5.5) are rational as in this case the corresponding Kahler 

class a is rational. To treat the case when ( c1, ... , CN) are not necessarily rational, we 

canuse Theorem 2 below (with fixed v, w and varying the constants Cj). Accordingly, 
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for any rational constants ( è1, ... , CN) sufficiently close to ( c1, ... , CN) the corresponding 

Kahler classa will admit a (v, w) extrema! Kahler metric, and hence the corresponding 

function e~~';'(z) will be non-negative on (-1, 1) by virtue of Theorem 4. As 8~~';'(z) 

depends smoothly on (cl, ... ,eN), it follows that 8~~';'(z) 2:0 too. D 

Remark 9. (i) We expect that Theorem 2 can be improved by showing that the existence 

of (v, w)-cscK metric in a implies (v, w)-K-stability, not only (v, w)-K-semi-stability. 

Accordingly, we expect Theorem 12 to be improved to a complete Yau-Tian-Donaldson 

type correspondence between (v, wwext)-K-stable and (v, w)-extremal Kahler classes on 

X of the form (5.5), in which either notion corresponds to the positivity condition (5. 7) 

for 8~~';' (z). 

(ii) In [10], the analogous statement of Theorem 12 is achieved by considering po­

larized test configuration (Xq, L-q) as above (corresponding to rational values of zo), 

and computing the relative version of the algebraic (v, w)-Donaldson-Futaki invariant 

DF v,w ( Xq, L-q). This provides a yet another instance where the differentiai-geometrie 

definition coïncides with the algebraic definition of the (v, w)-Futaki invariant. o 

5.3 The conformally Kahler, Einstein-Maxwell metrics on ruled surfaces 

In this section, we give the proof of the Corollary 2 from the Introduction. 

5.3.1 The Calabi construction of cKEM metrics on ruled surfaces 

Let X = JP( 0 E9 L-) ---t C be a geometrically ruled complex surface over a compact 

complex curve C of genus g 2: 2. Following [60], cKEM metrics can be constructed by 

using the Calabi ansatz. 

Let (ge, wc) be a Kahler metric on C with constant scalar curvature 4(1 - g), where 

f = deg(L-) > 0 is the degree of L. We denote by () the connection 1-form on the 

. principal § 1-bundle P over C, with curvature d() = fwc. Notice that P can be identified 

with the unitary bundle of (L-*, h*) over C, where h* is the Hermitian metric with Chern 
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curvature -Rwc; viewing equivalently X as a compactification at infinity of L,* ---+ C (i.e. 

X = JP>(L,* EB 0)). We have a class of Kahler metrics on X given by the Calabi ansatz 

dz2 

g = R(z + K)gc + e(z) + 8(z)tP, w = R(z + K)wc + dz A(), (5.12) 

where: z E [-1, 1] is a momentum variable for the § 1-action on L,*, 8(z) is the profile 

function satisfying the first order boundary conditions (5.6) and the positivity condition 

(5. 7). Here K > 1 is a real constant which parametrizes the Kahler class 

Notice that for the ruled surfaces we consider H 2 (X,JR) ~ JR2
, so that any Kahler class 

on X can be written as ÀaK for sorne À > 0 and "" > 1, see [49). Furthermore, aK is 

homothetie to a Hodge class if and only if"" E (1, +oo) n Q. 

For any Ici > 1, f = lz +cl is a positive Killing potential with respect to (5.12) which 

corresponds up to sign to the Killing vector field Ç generating the § 1-action on X = 

JP>( 0 EB L,) by multiplications of the first factor O. The main results of [60) can be 

summarized as follows 

Proposition 11. [60) Let X= JP>(O EB L,) ---+ C be a ruled complex surface as above and 

Fç,K,b := F;~b,wç,b the (vç,b, wç,b)-Futaki invariant of the Kahler class aK {see 8}, where 

(vç,b, wç,b) are given by (5.1). 

• For any K > 1, the Futaki invariant Fç,K,b vanishes if and only if b satisfies 

(5.13) 

We denote by bK > 1 the unique solution of (5.13) satisfying lbl > 1. 

• There exits a polynomial PK(z) of degree ::; 4 such that 8(z) = PK(z)/(z + K) 

satisfies the first arder boundary conditions (5.6) and, on any open subset when 

8(z) > 0, the metric (5.12) is conformal to a Einstein-Maxwell metric with con­

formai factor (z + bK)-2 . 
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• There exists Ko(X) E (1,+oo) such that 

(a) for each K E (Ko(X), +oo) the corresponding polynomial PK,(z) > 0 on ( -1, 1), 

i.e. a/'ô, admits a Kahler metric of the form (5.12) with 8(z) = PK,(z)/(z + K), 

such that (z + b/'ô,)-2g is cKEM; 

(b) for each K E (1, Ko(X)) the corresponding polynomial PK,(z) is negative some­

where on ( -1, 1); 

( c) for K = Ko (X) the corresponding polynomial PK, ( z) is non-negative and has a 

zero with multiplicity 2 on ( -1, 1). 

5.3.2 Proof of Corollary 2 

There are no cscK metrics on X (see e.g. [11]), so that we are looking for strictly 

conformally Kahler, Einstein-Maxwell metrics. As in our case Autred(X, J) = <C* (see 

e.g. [11]), the Killing vector field Ç must be a multiple of the vector field generating 

rotations on the factor 0. As the theory is invariant un der homothety of the Killing 

potential, without loss we assume that this multiple is ±1. Finally, as H 2 (X, JR) = JR2
, 

by rescaling the Kahler class we can also assume a l'ô,, K > 1. For a Kahler me tric w E a l'ô, 

of the form (5.12), the Killing potential of Ç is [z + b[ with [b[ > 1. The necessary 

condition FK,,f,,b = 0 then forces us to consider b =bK,, see Proposition 11. The existence 

of conformally Kahler, Einstein-Maxwell metrics for K E (Ko(X), oo) and conformai 

factor (z + b/'ô,)-2 follows from the statement in (a) of Proposition 11. 

We are left to show non-existence for K E (1, Ko(X)]. Again, by Proposition 11, we have 

to take b = bK, > 1. 

Consider first the case K E (1, Ko(X)). If K is rational, the result follows from Theo­

rem 12. Otherwise, if K E (1, Ko(X)) \ Q, we suppose for contradiction that a/'ô, admits a 

Kahler metric g/'ô, such that (z+b/'ô,)- 2g is Einstein-Maxwell. By Theorem 2, the same will 

hold for all (K', bK,') on the rational curve (5.13) which are sufficiently close to (K, bK,), in 

particular for all rational pairs (K', bK,') close to (K, bK,), a contradiction. Finally, consider 
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K = Ko(X) = Ko, b~0 = bo. Again, suppose for contradiction that a~0 admits a Kahler 

metric g0 such that (z + b0 )-2g0 is Einstein-Maxwell. We use again Theorem 2 to de­

duce that this holds also for all (K, b~) near (Ko, bo) and we can find again rational valued 

(K, b~) arbitrarily close to (Ko, bo) with "" < Ko, and still admitting a Kahler metric g~ 

such that Scal((z + b~)-2g) is a Killing potential, a contradiction. 





CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this thesis we have defined weighted cscK metrics on Kahler manifolds with symplec­

tic and variational interpretations. We have seen that the problem of finding a weighted 

cscK metric in a Kahler class, englobes a number of natural problems in Kahler geometry. 

We have defined a new notion of weighted K-stability for (X, a, 1r, P, v, w), consisting of 

a Kahler manifold X with Kahler class o:, a Hamiltonian torus action 1r with momen­

tum polytope P and two smooth weight functions v, won P. A Yau-Tian-Donaldson 

conjecture relating this stability notion with the existence of weighted cscK metrics has 

been stated and the direction existence implies stability has been proven in the special 

case of projective varieties. 

This thesis starts a programme, the one of studying weighted cscK metrics, and sets 

many open questions that will be considered in future work. Possible future directions 

are: 

1. Showing that the weighted Mabuchi energy is convex along weak geodesies in the 

space of Kahler potentials. Consider the question of uniqueness of weighted cscK 

metrics modulo the action of isometries. 

2. Showing the uniqueness of weighted cscK metrics on projective varieties using the 

momentum map picture for weighted balanced metrics. 

3. Develop a gluing construction of weighted cscK metrics on the blow up of a 

weighted cscK manifold. 
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4. Proving that the weighted Dondaldson-Futaki invariant can be expressed as an 

equivariant intersection number on the total space of a test configuration and 

showing that it agrees with the slope of the weighted Mabuchi energy. 
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