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RESUME

Sur une variété complexe kidhlérienne X, on introduit les notions de courbure scalaire a
poids et de métrique kihlérienne & courbure scalaire & poids constante, dépendant d’un
tore réel fixé T dans le groupe réduit des automorphismes de X, et de deux fonctions
lisses (poids) v > 0 et w, définies sur le polytope moment de X (par rapport & une
classe de Kahler fixée sur X) dans l'algébre de Lie du tore T. Pour des choix spécifiques
des fonctions poids v et w, la recherche de métriques kadhlériennes a4 courbure scalaire
pondérée constante dans une classe de Kahler o, correspond a des problémes bien con-
nues de recherche de métriques spéciales en géométrie kidhlérienne, tels que 'existence
de métriques kahlériennes extrémales, des solitons de Kéahler-Ricci, des métriques kih-
lériennes conformes & une métrique hermitienne d’Einstein-Maxwell, ou la prescription
de la courbure scalaire sur une variété torique.

On montre que la plupart des résultats connues sur l'obstruction a l’existence des
métriques kihlériennes a courbure scalaire constante (cscK) peuvent s’étendre au cadre
pondéré. En pariculier, en introduisant une fonctionelle M, ,, sur I’espace des métriques
kihlériennes T-invariantes dans «, qui généralise la fonctionnelle de Mabuchi dans le cas
cscK, on montre que lorsque a est une class de Hodge, les métriques kdhlériennes a cour-
bure scalaire pondérée dans o minimisent My ,,. Nous définissons un invariant de Futaki
(v, w)-pondéré pour des configurations test lisses T-compatibles associées a (X, T, ), et
on montre que si ’énergie de Mabuchi pondérée M, , est bornée inférieurement, alors
ceci impliquera une notion de K-semistabilité (v, w)-pondérée.

Nous illustrons cette théorie sur des variétés toriques et sur des fibrations toriques prin-
cipales. Comme application, nous obtenons une correspondance de Yau-Tian-Donaldson
pour les métriques extrémales (v, w)-pondérées sur des P!-fibrations au dessus d’un pro-
duit de variétés de Hodge cscK, et une description des classes de Kéhler sur les surfaces
complexes réglées de genre 2, qui admettent une métrique kdhlérienne conforme & une
métrique hermitienne d’Einstein-Maxwell.

Mots clés : Métriques kiahlériennes extrémales, Courbure scalaire a poids, K-semistabilité,
Variétés toriques, Fibrations toriques principales, Métriques d’Einstein-Maxwell, Soli-
tons de Kéhler-Ricci.






ABSTRACT

We introduce a notion of a Kéhler metric with constant weighted scalar curvature on a
compact Kihler manifold X, depending on a fixed real torus T in the reduced group of
automorphisms of X, and two smooth (weight) functions v > 0 and w, defined on the
momentum image with respect to a given Kéhler class & on X in the dual Lie algebra of
T. A number of natural problems in Kéhler geometry, such as the existence of extremal
Kahler metrics and conformally Kéhler Einstein—-Maxwell metrics, Kahler-Ricci solitons,
or prescribing the scalar curvature on a compact toric manifold reduce to the search of
Kahler metrics with constant weighted scalar curvature in a given Kéahler class «, for
special choices of the weight functions v and w.

We prove that a number of known results obstructing the existence of constant scalar
curvature Kahler (cscK) metrics can be extended to the weighted setting. In partic-
ular, we introduce a functional My, on the space of T-invariant Kéhler metrics in
a, extending the Mabuchi energy in the cscK case, and show that if o is Hodge, then
constant weighted scalar curvature metrics in o are minima of M, ,,. We define a (v, w)-
weighted Futaki invariant of a T-compatible smooth Kéhler test configuration associated
to (X, a, T), and show that the boundedness from below of the (v, w)-weighted Mabuchi
functional M, y implies a suitable notion of a (v, w)-weighted K-semistability.

We illustrate our theory with specific computations on smooth toric varieties and on the
toric fibre bundles. As an application, we obtain a Yau-Tian—Donaldson type correspon-
dence for (v, w)-extremal Kihler classes on Pl-bundles over products of compact Hodge
cscK manifolds, and a description of the Kahler classes on geometrically ruled complex
surfaces of genus greater than 2, which admit Kéhler metrics conformally equivalent to
Einstein-Maxwell metrics.

Keywords : Extremal Kéahler metrics, Weighted scalar curvature, K-semistability, Toric
varieties, Toric fibre bundles, Einstein-Maxwell metrics, Kahler-Ricci solitons.







CHAPTER I

INTRODUCTION

Recently, research activities in K&hler geometry were primarily concerned with so-called
Yau-Tian-Donaldson (YTD) conjecture which relates the existence of constant scalar
curvature Kdhler metrics (cscK) on a projective manifold to K-stability, an algebro-
geometric condition in the sense of geometric invariant theory (GIT) of the underlying
projective manifold. The efforts of many mathematicians culminated in the resolution
of the YTD conjecture in the case of Fano manifolds, where the cscK property of the
metric is equivalent to being Kdahler-Einstein (KE). The cscK metrics can be also viewed
as a higher dimensional generalization in Riemannian signature of Einstein’s equations

describing the space-time in 4 dimensions.

On a 4-dimensional Riemanian manifold (X, §), another natural generalization of the

Einstein equation Ricg = 0 is given by the FEinstein-Mazwell equations
d® =0, x3® =9,
d¥ =0, x3¥ = -V, (1.1)
Ric) = @ o WH.

where Ricg is the trace free part of the Ricci endomorphism, &, ¥ € A%(X) is a pair of

2-forms on X, x5 is the Hodge star operator of g, and o T¥ are the skew-symmetric

endomorphisms associated to @, ¥ by g.

Apostolov-Calderbank—Gauduchon [4] and LeBrun [65,66] observed that on a Kihler

surface (X, J, g,w) with complex structure J, Kéahler metric ¢ and Kahler form w, a



Hermitian metric § := f2¢ conformaly equivalent to a Kihler metric g with positive
conformal factor f > 0, is a solution to the Einstein-Maxwell equations with & = w if

and only if

¢ := Jgrad (f) is a Killing field for g,
(1.2)

Scalz = const,
where Scal; is the scalar curvature of §g. The Kahler metrics g satisfying the condi-
tion (1.2) are called conformally Einstein-Mazwell Kdhler metrics (cKEM for short).
The condition (1.2) provides a natural generalization of cscK metrics (corresponding to
the case when f = 1), and allows one to define an extension of the Einstein-Maxwell

equations to higher dimensionsional K&hler manifolds.

The initial motivation of this thesis was the systematic study of conformally Einstein-
Maxwell metrics in line with the YTD conjecture alluded to above. To this end, we
propose to study the more general notion of Kdhler metrics with weighted constant
scalar curvature (weighted cscK for short), which contains the Kéhler metrics conformal

to Einstein-Maxwell metrics (1.2) as a special case.

To define a weighted cscK metric we first introduce a "weighted" version of the scalar
curvature. More precisely, on a compact Kahler manifold (X, «) of complex dimension
m > 1 with a Kéhler class «, and a Hamiltonian torus action T with momentum polytope
P, C Lie(T)*, for any posifive smooth v € C®(P,,R) (called weight function), we define
the v-scalar curvature Scal, : K(X,a)T — R on the space K(X, )T of T-invariant Kihler

metrics in the Kahler class «, by
Scaly (w) := v(my,)Scal(w) + 2A,,(v(my,)) + tr(G, o (Hess(v) o my,)). (1.3)

Here Scal(w) is the usual scalar curvature, m,, : X — Lie(T)* is the w-moment map of
the T-action normalized by m,(X) = Py, A, is the Riemannian Laplacian of the K&hler
metric g, and Hess(v) is the hessian of v, viewed as a bilinear form on Lie(T)* whereas
G, is the bilinear form with smooth coefficients on Lie(T), given by the restriction of

the Kéahler metric g, on fundamental vector fields. We say that a T-invariant K&hler




metric w € « is a weighted cscK metric if
Scaly (w) = ¢y w(a@)w(my,), (1.4)

for a couple (v, w) of weight functions on the polytope P, (with v > 0), where ¢, ()
is a suitable constant. The above definition may appear rather tedious at first glimpse,
but it turns out that for suitable choices of the weight functions v, w on P, the problem
of finding a (v, w)-weighted cscK metric in the Kéahler class «. corresponds to some well

studied problems in Kéhler geometry. There is a list of such examples:

1. Letting v = 1, and w = const we obtain the Calabi problem of finding cscK metrics

in o;

2. Letting T be a maximal torus in the group Auteq(X) of reduced automorphisms
of X, v =1 and w be the affine-linear function on P, given by the extremal vector
field of «, the solutions of (1.4) are the extremal Kéahler metrics in the sense of

Calabi [22] in o;

3. If X is a Fano manifold equipped with the Kahler class o = 2m¢; (X), v(p) = eléP)
and w(p) = 2{6P)((¢,p) + a) for £ € t, a € R, then solutions of (1.4) are Kahler-
Ricci solitons on X (see [58,59]);

—2m-1 foré etanda e R

4. Letting v(p) = ((§,p) +a) """, w(p) = ((¢,p) +a)
such that (¢,p) +a > 0 over P,, (1.4) describes the Kahler metrics in «, which

are conformal to Einstein-Maxwell metrics in the sense of [9,64-66];

5. If @« = 2me; (L) is the Kéhler class associated to an ample holomorphic line bundle
Lover X, v(p) = ((&,p) + a) "7, w(p) = ((&,p) + &) " Weu(p) for € € t,
Wext (P) is a suitable affine linear function on P, and @ € R such that (¢,p)+a > 0
over P,, then (1.4) describes Kahler metrics on X giving rise to extremal Sasaki

metrics on the unit circle bundle associated to L1, see [5];

6. The search for extremal K&hler metrics, or more generally, prescribing the scalar

curvature of a class of Kéhler metrics on toric fibre-bundles given by the generalized




Calabi ansatz [8] or on manifolds with free multiplicity [45] reduces to finding
solutions of (1.4) on the (toric) fibre. In this toric setting (1.4) is known as the

generalized Abreu equation, see [70,71].

Instead of (1.4), one can more generally consider the condition
Scal, (w) = w(my,)(mé + ¢) (1.5)

for a T-invariant Kéhler metric w in a, where £ € ¢, ¢ € R and m& := (my, &) is the
Killing potential associated to £. A T-invariant Kahler metric satisfying (1.5) generalizes
the notion of an extremal Kahler metric (see 2 above), and will be referred to as a
(v, w)-weighted ertremal Kahler metric. As it is apparent from the example 2 above,
and as we establish more generally in Section 2.2, when w > 0 the smooth function
(m€, + ¢) in the RHS of (1.5) must be of the form wex;(m,,) for an affine-linear function
Wext(p) = (€,p) + ¢ on t* defined in terms of (T,,P,v,w). Thus, the problem (1.5)
of finding (v, w)-extremal Kéhler metrics in « reduces to the problem (1.4) of finding

(V, WWext )-cscK metrics.

Besides the above mentioned list of examples, our intrinsic motivation for defining the
v-scalar curvature is twofold. On the one hand, in the cases 1 and 2 above, there is a
well known interpretation, due to Donaldson [40] and Fujiki [48], of the scalar curvature

as a formal moment map
Scal : AC(X,w) — Lie(Ham(X,w))",
(Scal(d), ) = [ Seal(gs) ful,
X

for the action of the group of Hamiltonian transformations Ham(X,w), on the space
of all w-compatible almost complex structures AC(X,w), where Scal(gy) is the scalar
curvature of the Kéhler metric g; := w(-, J-), and the identification of Lie(Ham(X,w))

with the space of smooth functions of zero average is obtained by using the global L?

] . W

inner product with respect to w T

Following an idea due to Apostolov—Mashler in [9], on a Kéahler manifold (X,w) with

a Hamiltonian torus action T, one can use two positive weight functions v,w on the




momentum polytope P := m,,(X) of the T-action on X to modify the formal symplectic
structure on AC(X,w)T on the subspace of T-invariant almost complex structures, and
the L? inner product on the Lie algebra of T-equivariant Hamiltonian transformations
Lie(Ham(X,w)T). This modification yields a modified formal momentum map for the
action of Ham(X,w)T on AC(X,w)T, given in terms of the v-scalar curvature and the

function w
Scaly,

) t AC(X,w)T — Lie(Ham(X,w))*.

This formal momentum map picture for the v-scalar curvature suggests the existence
and uniqueness for solutions g; := w(-,J-) of the problem (1.4) in each ‘complexified’
orbit for the action of Ham(X,w)T, under suitable stability conditions. However, it
is well known that such a complexification of the group Ham(X,w)T does not exist,
but it is possible to identify its orbits with the space K(X,a)T of T-invariant Kahler
metrics in the class o = [w]. Following the analogy with the case of cscK metrics, a
direct consequence of the momentum map picture provides the definition of a (v, w)-
Futaki invariant defined on the space b?ed of real holomorphic vector fields with zeroes
commuting with Lie(T),

T
f\(iw:hred—)R,

giving a natural obstruction to the existence of weighted cscK metrics in a Kahler class
«, similar to the famous Futaki invariant. Also, the momentum map interpretation
allows us to introduce a weighted (v, w)-Mabuchi functional M, ,, whose critical points

are the (v, w)-cscK metrics, extending the well known Mabuchi functional [76].

On the other hand, our second motivation for introducing the v-scalar curvature comes
from the Donaldson quantization of cscK metrics, based on the Catlin [24], Ruan [84],
Tian [91] and Zelditch [98] asymptotic expansion of the Bergman Kernel Bg(h) of a

hermitian metric h on a prequantization line bundle L — X:

Scal(ws)

(2m)"Bi(h) = 1+ =

1
+O(ﬁ),

where wy, is the curvature 2-form of h. In the case where the polarized manifold (X, L)

carries a torus action T C Aut(X, L) in the automorphism group of the pair (X, L) with



momentum polytope P (in this case P is determined by the lifted action of T on L), one
can associate to each smooth strictly positive weight function v on P, a v-equivariant
Bergman kernel By (v,h) defined by the restriction to the diagonal of X x X of the

Schwartz kernel of the operator
—1 4k —1 4 (k
v(k 1A§1),~~ K 1Aée)) o Ik,

where Ag:), e ,Aé’:) are the infinitisimal actions on the space of global holomorphic
sections Hy, of L*, induced from a basis (&1, -- ,&) of Lie(T), and ¥ is a v-weighted
orthogonal projection on Hy. We show, using the theory of functional calculus of Toeplitz
operators developed by Charles in [25], that the v-equivariant Bergman kernel admits

an asymptotic expansion given by

Scaly, (wp) 1
— T (9(-k—2).

(2m)™ B (v, h) = v(my,) +
The above asymptotic expansion will be used to extend the Donaldson quantization
scheme via approximations by balanced metrics. Also, it provides an asymptotic expan-
sion for the trace tr(v(Agf), e ,Aé’:))), which allows us to give a quantized version for
the (v, w)-Futaki invariant on a smooth polarized variety (X, L), and leads to a notion of

(v, w)-weighted K -stability extending the usual K-stability obstruction to the existence
of cscK metrics on (X, L) [89].

Thus motivated, the main achievement of this thesis is the proposition of a suitable gen-
eralization of the YTD correspondence for the problem of finding weighted cscK metrics,
by extending the corresponding notion of K-stability in the cscK and the extremal cases,
introduced by Donaldson [42], Tian [92,94], and Székelyhidi [88]. We shall also establish
one direction in this correspondence, by showing that a (v, w)-cscK metric is a minimum
of the (v,w)-Mabuchi energy, and that the boundedness of the (v, w)-Mabuchi energy

implies (v, w)-K-semistability.

In light of the recent generalization of the YTD conjecture to arbitrary Kahler manifolds
by Dervan-Ross [36,37] and Dyrfelt [46,47], a definition of K-stability can be obtained

from the intersection theoretic formula for the Donaldson—Futaki invariant due to Odaka




[80] and Wang [97]. However, it is not clear how to generalize directly the approaches of
Odaka and Wang to define a (v, w)-Futaki invariant for T-equivariant test configurations.
We overcome this problem by defining the (v, w)-Futaki invariant as a global differential
geometric quantity of the test configuration, given by the slope of the weighted Mabuchi

energy on a family of Kahler potentials associated to the test-configuration.

A natural question that arises in the case when the test-configuration is a polarized
projective variety is the interpretation of the (v, w)-Futaki invariant in terms of a purely
algebraic invariant defined on the central fibre. This was in fact the initial approach
of Tian [94] and Donaldson [44] in the cscK case for defining an invariant of a test
configuration, and a similar definition of a (v,w)-Donaldson-Futaki invariant on the
central fiber has been proposed in [9] (regarding the cases 4 and 5). We review this
approach in Section 4.2. At this point, it is not clear to us whether or not such an
algebraic definition of a (v, w)-Donaldson-Futaki invariant can be given for any central
fibre, nor that it would agree with the differential geometric definition on the total space
of a smooth test configuration we propose in this thesis. In fact, when v,w are not
polynomials, the proposed algebraic definition of a (v, w)-Donaldson-Futaki invariant
of Xy involves transcendental quantities leading to difficulties reminiscent to the ones
involved in the definition of the LP-norm of a test configuration for positive real values

of p, see the discussion at the end of [43].
Now, we give an outline of the principal results of this thesis.

In Chapter 2, we introduce the notion of weighted cscK metrics and describe the relevant
examples. We recast the problem of finding weighted cscK metrics within the framework
of moment maps, extending the momentum map picture of Donaldson [40] and Fujiki
[48] in the cscK case. We also define a first obstruction to the existence of a weighed
cscK metric in a Kéahler class, in terms of a differential geometric Futaki invariant,
and set a variational formulation for the problem of finding weighted cscK metrics in a
Kahler class, in terms of minimizing a modified Mabuchi energy. The main results of

this chapter are extensions of two fundamental results in the theory of extremal Kéhler




metrics to the more general (v, w)-cscK context. The first result is a generalization of
Calabi’s Theorem [22, 78] on the structure of the group of holomorphic automorphisms
of a compact extremal manifold.

Theorem 1. Let (X,w,g) a compact Kihler manifold and g a (v, w)-extremal metric
with v,w positive. Then the group Isorng(X,g) of T-equivariant isometries of X is
a maximal compact connected subgroup of the identity component of the T-equivariant
automorphisms Autd (X) of X. In particular, if the metric g is a (v,w)-cscK metric

(with w > 0), then Autd (X) is a reductive complex Lie group.

This result was independently proved in [51] and [61] in the case 4 of cKEM metrics.
The case 3 is originally established by Tian-Zhu in [95].

Our second result is a suitable modification of the stability of the existence of extremal
Kahler metrics under deformations of the Kahler class, proved by LeBrun—Simanca in
[67,68]. In the weighted setting, we show that if a compact Kahler manifold admits a
(v, w)-extremal Kahler metric in a Kahler class «, then a small deformation of « admits
a (¥, Ww)-extremal metric with weights (¥, W) close to (v, w).

Theorem 2. Suppose that w € « is a (v,w)-extremal Kdihler metric invariant with
respect to a mazimal torus Tmax C Autreq(X) with momentum polytope Py and v,w >
0 smooth functions over an open set U C t* such that P, C U. Then for v,w €
C*®(U,Rsq), there exist ¢ > 0, such that for any |s| < €, |t| < &, |r| < €, there exists
a (v + tV,w + sw)-extremal Kdahler metric in the Kdhler class a + rf3, associated to

(v +t¥,w + sW) and momentum polytope Py irp.

In Chapter 3, we extend Donaldson’s quantization scheme of cscK metrics. The basic
tool is the use of the asymptotic expansion of equivarianﬁ weighted Bergman kernels
on the finite dimensional spaces Hj, of holomorphic sections of a prequantization line
bundle line bundle L® — X, k > 1. Our main result gives an obstruction to the
existence of weighted cscK metrics in an integral Kahler class a = 2m¢;(L) in terms of
the boundedness of the (v, w)-Mabuchi functional introduced in Chapter 1.

Theorem 3. Let (X, L) be a compact smooth polarized projective variety, T C Autyedq(X)




a real torus, and suppose that X admits a (v, w)-cscK metric w in a = 2mey (L) for some
smooth functions v > 0 and w on the momentum image Py C t*. Then, w is a global

minima of the (v,w)-Mabuchi energy My v, of (a,T,Pr,v,w).

In Chapter 4, we introduce the notion of (v, w)-K-stability associated to (X, o, T, Py, v, w),
extending the corresponding notions in the cscK and the extremal cases, introduced by
Donaldson [42], Tian [92,94], and Székelyhidi [88]. We define the (v, w)-Futaki invariant
Fuvw(X,A) of a smooth Kahler test configuration (X, A, T) with reduced central fibre,
compatible with (X, «,T), as a global differential geometric quantity on the total space
X and show that it must be non-negative should the (v, w)-Mabuchi energy associated
to (o, T,P,v,w) be bounded from below. This, combined with Theorem 3 yields one
direction of a YTD type correspondence for the existence of (v, w)-cscK metrics.
Theorem 4. Let (X, L) be a compact smooth polarized projective variety, T C Aut(X,L)/C*
a real torus, and suppose that X admits a (v,w)-cscK metric in o = 2mcy(L). Then
X is (v, w)-K-semistable on smooth, T-compatible Kihler test configuration with reduced
central fibre associated to (X, ), i.e. the (v,w)-Futaki invariant of any such test con-

figuration is non-negative.

In Chapter 5, we give specific applications of the results of the previous chapters to the

problem of the existence and uniqueness of cKEM metrics.

Theorem 1 combined with the results in [9] and [65], where conformally-Kéahler, Einstein—-
Maxwell metric on CP! x CP! are constructed, leads to

Corollary 1. Any conformally-Kéhler, Einstein-Mazwell metric on CP' x CP', must
be toric, and if it is not a product of Fubini-Study metrics on each factor, it must be

homothetically isometric to one of the metrics constructed by LeBrun in [65].

We can consider the case when (X, @, T) is a P!-bundle over the product of cscK smooth
projective manifolds, given by the Calabi construction of [8]. We compute the (v, w)-
Futaki invariant of certain test configurations of (X, a, T), which together with Theo-
rem 2 and 3 yields to the following classification result.

Corollary 2. Let X = P(O & L) — C be a geometrically ruled complex surface over a
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compact complex curve C of genus g > 2, where L is a holomorphic line bundle over C
of positive degree, and au, = 27 (c1(O(2)poer)) + (1 + &) - c1(L)), £ > 1 is the effective
parametrization of the Kdahler cone of X, up to positive scales, see e.g. [11,49]. Then,
there exists a real constant ko(X) > 1, such that for each k > ko(X), ax admits a cKEM

metric (see [60]), whereas for any k € (1, ko(X)], ax does not admit a cKEM metric.



CHAPTER II

AUTOMORPHISMS AND DEFORMATIONS OF KAHLER METRICS WITH
CONSTANT WEIGHTED SCALAR CURVATURE.

2.1 The v-scalar curvature

Let X be a compact Kéahler manifold of complex dimension n > 2. We denote by
Autreq(X) the reduced automorphism group of X whose Lie algebra byeq is the ideal of
the real holomorphic vector fields with zeros on X (see [53]). Let T be an £-dimentional
real torus in Autreq(X) with Lie algebra t, and w a T-invariant Kéhler form on X. We
denote by KT the space of T-invariant Kéhler potentials with respect to w, and for any
¢ € KT, we let wy = w + dd°¢ be the corresponding Kéahler form in the Kihler class a.
It is well known that for any ¢ € K the T-action on X is wg-Hamiltonian (see [53]) and
we choose my : X — t* to be a wg-momentum map of T. It is also known [13, 56] that
P4 := mg(X) is a convex polytope in t*. Furthermore, the following is true.
Definition 1. Let 6 be a T-invariant closed (1,1)-form on X. A #-momentum map for
the action of T on X is a smooth T-invariant function mg : X — t* with the property
0(,-) = —dm} for all € € t.

Lemma 1. The following facts are equivalent:

1. For any ¢ € KY we have Py =P,,.

(]

2. For any ¢ € ICE we have fX m¢,w([;] = fX mww["], where Wy = %ﬁ is the volume

form.
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8. For any £ € t and ¢ € KT we have mi =mé + d°¢(€), where mi = (my,§).

Proof. Presumably, Lemma 1 is well-known, see e.g. [12, Section 4] and [90, Section 3.1]
for the case of a single hamiltonian. We include here an argument covering the general
case for the sake of completeness. We start by proving that 2 is equivalent with 3. By
the very definition of the momentum map, Cartan’s formula and the fact that £ is a real

holomorphic vector field we have
d(mé, —m§) = —d(d°¢(€)). (2.1)
Thus, there exist a Ay € t* such that
m, = mf, + d°B(€) + A (£). (2:2)
Suppose that 2 holds. Then Ay is given by
1
- - €, ln] _ 3 c [n]
36 = ey (L meet = [ S+ o).
For a variation QS of ¢ in }CE, the corresponding variation of A\, is given by
—Vol(X, a)g(€) = / médded A w4 / dP(€)wl + / d°p(€)dd p Al
X ; X X
- / d°p(€)ddd Awl ™M + / dm A dp Awl Y
X X
+ / (—dm§, + d(d°p(€))) A d° AWl
X
= / d(d°p(e)) Add Awl ™+ / dp(€)ddd Al =0,
X X

where we have used (2.1), the fact that d°¢(¢ )w([ﬁ"] = dmg AdCP A w(&"_l], and integration
by parts. It follows that Ay = A, = 0 which gives the implication “2=3". Conversely if

we suppose that 3 holds, then for any variation ¢ of ¢ in KT, we get

d

G | mb el = [ mEaadnnli v el o

It follows that f ¥ miw&"} = f ¥ mgw["] for any £ € t, which yields 2 .
Now we prove the equivalence between 1 and 3. Suppose that 1 is true and let z € X

be a fixed point for the T-action on X. Then we have

mg(2) = ma(@) = (&) + Ao = o (2.3)



13

By a result of Atiyah and Guillemin-Sternberg (see [13,56]) P4 (resp. P,,) is the convex
hull of the image by mg (resp. my,) of the fixed points for the T-action. It then follows
from (2.3) that Py = P, + A4. Using P, = Py, we get Ay = 0 which proves 3. For the
inverse implication, if my(z) — my,(z) = (d°¢), for any z € X, then my(z) = my,(z) for

any point z € X fixed by the T-action and we have P4 = P, by [13,56]. O

It follows from Lemma 1 that for each ¢ € K, we can normalize m, such that the mo-
mentum polytope P = myg(X) C t* is ¢-independent. This will be an overall assumption
through this work.

Definition 2. For v € C*®(P,R() we define the v-scalar curvature of the Kahler metric

9p = wg(-,J-) for ¢ € KT to be the function
Scaly (@) := v(mg)Scal(gey) + 284 (v(me)) + tr(Gy o (Hess(v) o my)), (2.4)

where my is the momentum map of wy normalized as in Lemma 1, Scal(gy) is the scalar
curvature, Ay is the Riemannian Laplacian on functions of the Kahler metric wg and
Hess(v) is the hessian of v, viewed as bilinear form on t* whereas Gy is the bilinear form
with smooth coeflicients on ¢, given by the restriction of the Riemannian metric g4 on

fundamental vector fields.

In a basis £ = (&;)i=1,... ¢ of t we have

tr(Gy o (Hess(v) omg)) i= Y v.i(mg)ge(&i &),
1<i,j<e
where v ;; stands for the partial derivatives of v with respect the dual basis of &.
Lemma 2. Let 0 be a fized T-invariant closed (1,1)-form with momentum map mg

and v € C®(X,Rsg), w € C®(X,R). Then with the normalization for mg given by

Lemma 1, the following integrals are independent of the choice of ¢ € KL,
Au(@) = [ wimgu,
X
BUO) i= [ v(me)p Al + (@) ) mope’
X

Cyp) == /X Scalv(q&)w([ﬁ"].
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Proof. The fact that Ay (¢) is constant is well known, see e.g. [36, Theorem 3.14].
The constancy of B%(¢) can be easily established by a direct computation, but it also
follows from the arguments in the proof of Lemma 4 below. Indeed, we note that
BY(¢) = (BY) (1) where BY is the 1-form on KT given by (2.22). By taking ¢ = 1
in (2.23) we get (633)¢(1j)) = 0 where 9 is a T-invariant function on X defining a T-
invariant variation & = dd®y of wg. From this we infer that BY(¢) is constant. For
the last function C (@), we will calculate its variation (8Cy)s(¢) with respect to a T-
invariant variation w = dd°¢ of we. For this, we use that the variation of Scaly(¢) is

given by
(8Scal,)g(d) = ~2D~d)" (v(my)(D~d)3) + (dScaly(#), d)s,  (2.5)

where D is the Levi-Civita connection of wg, (D~ d)¢ denotes the (2, 0)+ (0, 2)-type part
of (Dd¢) and (D~d)* is the formal adjoint operator of (D~d) (see [53, Section 1.23]).
The above formula (2.5) is established in Lemma 9 below. By (2.5), we calculate

(6C)o(d) = /X ~2(D~d)*v(my)(D~d) (Sl + /X dScal, (¢) A d°d AWl
Scal, (#)dd¢ A WY,
+/X caly (¢)dd P A wy

Integration by parts yields (6Cy)s = 0. Thus C, does not depend on the choice of
¢ € KL, O

Definition 3. Let (X, o) be a compact Kéhler manifold, T C Auteq(X) a real torus
with momentum image P C t* associated to « as in Lemma 1, and v € C®(P,Rsg),

w € C*(P,R). The (v,w)-slope of (X, a) is the constant given by

[ Scaly (w)w!™

g i [y wlma)wl # 0

C(v,w)(a) =
) if [y w(me)wl =0,

1
which is independent from the choice of w € a by virtue of Lemma 2.
Remark 1. If ¢ € KL defines a Kihler metric which satisfies Scaly(¢) = cw(my) for
some real constant ¢ and [y w(my,)wl™ # 0, then we must have ¢ = C(vwy(@) with

cv,w() given by (2.6). o
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Because of Remark 1 above, and to simplify the notation in the case when [ w(my,)wl™ =
0, we adopt the following definition

Definition 4. Let (X,a) be a compact Kéhler manifold, T C Aut.q(X) a real torus
with momentum image P C t* associated to « as in Lemma 1, and v € C*®(P,Rs),
w € C®(P,R). A (v,w)-cscK metric w € « is a T-invariant Kahler metric satisfying

(1.4), where ¢, w(a) is given by (2.6).

2.2 Examples

We list below some geometrically significant examples of (v, w)-cscK metrics, obtained

for special values of the weight functions v, w.

2.2.1 Constant scalar curvature and extremal Kahler metrics

When v = 1, Scal,(¢) = Scal(¢) is the usual scalar curvature of the Kahler metric
wg € KT, so letting w = 1 the problem (1.4) reduces to the Calabi problem of finding
a cscK metric in the Kahler class @ = [w]. In this case, we can take T C Autreq(X)
to be a maximal torus by a result of Calabi [22]. More generally, for a fixed maximal
torus T C Autreq(X) we can consider the more general problem of the existence of an
extremal Kdhler metric in KY, i.e. a Kéhler metric wy such that Scal(¢) is a Killing
potential for wy. As the Killing vector field &ex; generated by Scal(¢) is T-invariant, it
belongs to the Lie algebra t of T (by the maximality of T). More generally, Futaki—
Mabuchi [50] observed that for any ¢ € KZ, the L? projection Scal(¢) (with respect to
the global inner product on smooth functions defined by wy) of Scal(¢) to the sub-space
{mfb + ¢, ¢ € R} of Killing potentials for £ € t defines a ¢-independent element £qxt € t,
ie. Scal(¢) = ie’“ + ¢y. The vector field & is called the eztremal vector field of

(X,a, T). Furthermore, using the normalization for the moment map mg in Lemma 1,
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we see that
4mer (X) U alm—l) :/ Scal(qﬁ)wgn] =/ Séal(qﬁ)w‘[ﬁn]
X b's
= /Xmgf"‘w([;] + ¢4 Vol(X, o),

showing that the real constant cexy = ¢4 is independent of wg too. Thus, there exists an
affine-linear function Wex(p) = (ext,P) + Cext On t*, such that wy € KT is extremal if
and only if Scaly (¢) = Wext(my) i.e. if and only if wy is (1, Wext)-cSCK (a8 €1,wey () =1

by definition of weyt).

2.2.2 (v, w)-extremal Kéhler metrics

As mentioned in the Introduction one can consider instead of (1.4) the more general
problem (1.5) of finding a (v, w)-extremal Kihler metric wy for ¢ € K. It turns out
that if w(p) > 0 on P, similarly to the previous example, one can reduce the problem
(1.5) to the problem (1.4) with the same v but a different w. This essentially follows from
Theorem 5 below, which implies that for any T-invariant, w-compatible Kihler metric
g, the orthogonal projection of Scal, (g)/w(m,,) to the space of affine-linear functions in
momenta with respect to the w-weighted global inner product (2.17) is independent of g.
Using the T-equivariant Moser lemma for a Kéhler metric wy € IC?‘TJ and the normalization
for my given by Lemma 1, one can conclude as in the proof of [9, Cor. 2] that there exist a
¢-independent affine-linear function weyt(p) such that mi + ¢ = Wext (M) for any metric
in K7 satisfying (1.5). In other words, if ¢ € KT is (v, w)-extremal then w is (v, WWext)-
cscK. Conversely if wy is (v, WWext )-cscK, then Scaly(we) = €y wwex (Q)W(Mg)Wext (M)
where ¢y wwey, (@) is given by (2.6). We claim that ¢y wwe, (@) = 1, which in turn implies
that wy is (v, w)-extremal. Indeed, if [y w(mg)Wext (m¢)w([b"] = 0, then ¢y wwe (@) =1

by Definition 3. Otherwise, if [y W(mg)Wext (m¢)wgl] # 0, we get
s () /X W(img)Wext (M) = /X (Scaly(9) /w(mg))w(mg )y
= /X wext(mqb)w(mq))w([b"],

showing again that ¢y wwe,, (@) = 1.
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2.2.3  The Kahler-Ricci solitons

This is the case when X is a smooth Fano manifold, o = 2m¢;(X) corresponds to the
anti-canonical polarization, T C Aut,eq(X) is a maximal torus with momentum image
P, and v(p) = w(p) = eé?) for some £ € t. It was shown recently in [58] that a (v, w)-
extremal metric with wext(p) = 2({¢,p) + ¢) (for some real constant c) corresponds to
a Kahler metric w € « which is a gradient Kdhler-Ricci soliton with respect to &, i.e.
satisfies

Ric(w) —w = —%L:JECO, (2.7)

where Ric(w) is the Ricci form of w. We include the verification of this claim for the
convenience of the reader. We start by supposing that w is a gradient Kahler—Ricci

soliton, then we can rewrite (2.7) as
Ric(w) —w = %ddcmf,. (2.8)
Taking the trace with respect to w of (2.8), we get
Scal(w) — 2n = —A,,(mf). (2.9)
Taking the Lie derivative of (2.8), we obtain
—%dd"’Aw(mE,) + dd°m, = —%ddc|£|f,,
which yields the following identity

Ay(ms) — €12 = 2mf, + ¢, (2.10)

w

where ¢ is a constant. Now, using (2.9) and (2.10), it follows that

Scaly (w)

w(mo) = Scal(w) + 24, (mé) — €2

=2(mf, + ),

i.e. wis a (v,w)-extremal metric with wext(p) = 2((£,p) + ¢). Conversely, suppose that
w is a (v, w)-extremal metric such that

Scal, (w)

= 2((En) + o) (211)
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and let p, be a T-invariant function such that
Ric(w) — w = %ddc . (2.12)

As before, taking the trace and the Lie derivative of (2.12), we obtain the following
identities

Scal(w) — 2n = ~Ay(p), Auw(mb) + Lyep, =2mé + ¢, (2.13)
where ¢’ is a constant. Using (2.11) and (2.13) we get

_ Scaly (w)

2c w(my)

— 2m5 =2n+c)+ AL+ .CJg](mf, — Duw)-

Thus [Ay + Le](mS — po) = cst. It follows that m& — p,, is a constant function by the

maximum principle. Consequently, w is a gradient Kahler-Ricci soliton.

Thus, the theory of gradient Kahler-Ricci solitons (see e.g. [16,23,95,96]) fits in to our

setting too. Further ramifications of this setting appear in [58].

224 Kihler metrics conformal to Einstein-Maxwell metrics (cKEM)

These are the metrics introduced by (1.2) in the Introduction. They have been studied
in [9,10,51,52,60-62,64-66]. One can easily check that a Kéahler metric satisfies (1.2) if

and only if it is a (v, w)-cscK metrics with

v(p) = ((¢&,p) +a) > and w(p) = ((¢,p) +a) 7>,

where (£,p) + a is positive affine-linear function on P. In this case, Scal,(¢)/w(mgy)
i s~ 1

equals to the usual scalar curvature of the Hermitian metric g, = 7(7”55 +a)2g¢. Thus, a

(v, w)-cscK metric wy gives rise to a conformally Kahler, Hermitian metric §, which has

Hermitian Ricci tensor and constant scalar curvature. The latter include the conformally

Kaihler, Einstein metrics classified in {28, 35].

2.2.5 Extremal Sasaki metrics

Following [3], let (X, L) be a smooth compact polarized variety and a = 27c1(L) the

corresponding Kéhler class. Recall that for any Kéahler metric w € «, there exits a unique
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Hermitian metric A on L, whose curvature is w. We denote by h* the induced Hermitian
metric on the dual line bundle L*. It is well-known (see e.g. [21]) that the principal
circle bundle 7 : S — X of vectors of unit norm of (L*, h*) has the structure of a Sasaki
manifold, i.e. there exists a contact 1-form 6 on S with df = n*w, defining a contact
distribution D C T'S and a Reeb vector field x given by the generator of the S!-action
on the fibres of S, and a CR-structure J on D induced from the complex structure of
L*. The Sasaki structure (6, x, D,J) on S in turn defines a transversal Kihler structure
(gx, wy) on D by letting wy, = (df)p and g, = —(df) po J, where the subscript D denotes
restriction to D C T'S; it is a well-known fact that (g,,w,) coincides with the restriction
to D of the pull-back of the Kéhler structure (g,w) on X or, equivalently, that (gy,wy)
induces the initial Kéhler structures (g, w) on the orbit space X = .S /§;< for the S'-action

1
Sy generated by x.

Let T C Autrd(X) be a maximal torus, with a fixed momentum polytope P C t*
associated to the Kahler class a as in Lemma 1. We suppose that w is a T-invariant
Kahler metric in o. For any positive affine-linear function (£,p) + a on P, we consider
the corresponding Killing potential f = mé, + a of w and define the lift &y of the Killing
vector field £ € t on X to S by

& =€+ (" fx,

where the super-scrip D stands for the horizontal lift. It is easily checked that &g
preserves the contact distribution D and the CR-structure J, and defines a new Sasaki
structure ((m*f)~16,&7,D,J) on S. In general, the flow of & is not periodic, and the
orbit space of {; is not Hausdorff, but when it is, Xy := S/Séf is a compact complex
orbifold endowed with a Kahler structure (gf,wys). In [3], the triple (X, gy, wy) is
referred to as a CR f-twist of (X,w,g) and it is shown there that (Xy, gy, wy) is an
extremal Kéhler manifold or orbifold in the sense of Sect. 2.2.1 iff (X,w,g) is (v, w)-

extremal in the sense of Sect. 2.2.2 with

v(p) = ((¢,p) +a)™™ ! and w(p) = ((£,p) +a)™™ . (2.14)

In general, by using the T-equivariant Moser lemma, a (v, w)-extremal metric wy € KJ
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(with v,w given by (2.14)) gives rise to an extremal Sasaki structure ({7, D, Js) on S
within a class of ({f, D)-compatible CR structures parametrized by ¢ € ICE. By the
discussion in Sect. 2.2.2, Theorem 4 provides an obstruction to the existence of such
Sasaki structures. We note that a similar obstruction theory has been developed in [32]
and [21] in terms of the complex affine variety Y2"+! := L*\ {0} viewed as the cone

over X.

2.2.6 The generalized Calabi construction and manifolds without multiplicities

In [8], the authors consider smooth compact manifolds X which are fibre-bundles over
the product of cscK Hodge manifolds (B,wp) = (Bi,w;) X - -+ X (By,wn) with fibre a
smooth ¢-dimensional compact toric Kéhler manifold (V,wy,T). More precisely, X is a
V-fibre bundle associated to a certain principle T-bundle over B. They introduce a class
of T-invariant Kéahler metrics on X, compatible with the bundle structure, which are
parametrized by wy-compatible toric Kéhler metrics on V, and refer to them as Kéhler
metrics given by the generalized Calabi construction. The condition for the metric w on
X to be extremal is computed in [8] and can be re-written in our formulation as (see
(5.3) below)

Scaly (gv) = w(m), (2.15)

where gy is the corresponding toric Kahler metric on (V,wy), with

N
v(p) = H(<£j’p> + er)dj,
=t (2.16)

N N i
w01 = o e [T+ 3 s (Bt 56,

In the above expressions m : V — t* stands for the momentum map of (V,wy,T), d;

and Scal; denote the complex dimension and (constant) scalar curvature of (Bj,w;),
respectively, whereas the affine-linear functions ({{x,p) + ck),k = 1,--- ,N on t* are
determined by the topology and the Kéhler class o = [w] of X, and satisfy ((§;,p)+c¢;) >
0for j =1,---, N on the Delzant polytope P = m(V'). Thus, a Kahler metric w on X

given by the generalized Calabi ansatz is extremal if and only if the corresponding toric
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Kihler metric gy on V is (v, w)-extremal for the values of v,w given in (2.16). More
generally, considering an arbitrary weight function w in (2.15) allows one to prescribe
the scalar curvature of the Kahler metrics given by the geberalized Calabi construction
on X. We note that a very similar equation for a toric Kahler metric on V appears in
the construction of Kihler manifolds without multiplicities, see [45,82]. We refer the
Reader to [70, 71] for a comprehensive study of the equation (2.15) on a toric variety,
for arbitrary weight functions v(p) > 0 and w(p), which is referred to as the generalized

Abreu equation.

2.3 A formal momentum map picture

In this section we extend the momentum map interpretation, originally introduced Don-
aldson [40] and Fujiki [48] in the cscK case and generalized by Apostolov—Maschler (9]
to the case of conformally Einstein Maxwell, Kihlerian metrics, to arbitrary positive

weights v,w on P.

In the notation of Section 2.1, let ACE be the space of all w-compatible, T-invariant
almost complex structures on (X,w) and C} C ACE the subspace of T-invariant Kéhler
structures. We consider the natural action on ACY of the infinite dimensional group
HamT(X,w) of T-equivariant Hamiltonian transformations of (X,w), which preserves
CI. We identify Lie (HamT(X,w)) = C°(X,R)T/R where C*°(X,R)T/R is endowed

with the Poisson bracket.

For any v € C®(P,Rsg), the space ACT carries a weighted formal Kéhler structure

(J,2V) given by ([9,40,48])

.. 1 .
(1, J2) = / Te(J 1 Jy)v(me, )l
X

Jy(J) :=JJ,

in which the tangent space of ACY at J is identified with the space of smooth T-invariant
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sections J of End(TX) satisfying

JI+JJ=0, wlJ,)+w(,J)=0.
In what follows, we denote by g5 := w(:, J-) the almost Kahler metric corresponding to
J € ACT, and index all objects calculated with respect to J similarly. On C®(X,R)T,
for w € C*°(P,R5q), we consider the Ad-invariant scalar product given by,
@b i= [ dbwlm. )l (2.17)

Theorem 5. [9,40,48] The action of Ham™ (X,w) on (.ACI,J,Q") is a Hamiltonian
action whose momentum map at J € CJ is the (., .)w-dual of (Sﬁ%‘? —cv,w([w])>, where
Scaly(J) is the v-scalar curvature of gy given by (2.4) and the real constant cy w([w]) s

given by (2.6).
Proof. The proof follows from the computation of [9,53] but we give the details for sake
of clarity. Let h € C*(X,R)T. Integration by parts gives
(Scaly (J)/w(my), h)w
=/X Scal(J)hv(m,,)wl™ + 2/X Ay (v(my,)) hwt™ + /;( tr [G s o (Hess(v) o my,)] hw!™
= /X Scal(J)v(my,)hw!™ + 2 /X g7 (d(v(my,)), dh) w!™
+ A tr G o (Hess(v) o my,)] hw!™.

Let J; € ACT(X,w) be a path of almost complex structures with Jy = J and first
variation J = %Jt. Then, g7 = gs(-, JJ-). According to [53, Proposition 9.5.2], the first

variation of Scaly, is given by Scaly = —6J (5J). It follows that

d
d—t(Scalv (Jp)/w(my), h)w
S / (6J6J)v(my,)hw!™ + 2 / 97(d(v(my,)), JJdh)w!™
X X
+/ tr[G o (Hess(v) omw)]hw["] (2.18)
X
= / 97(J, DJd(v(my)h))w!™ + 2 / g7(d(v(my)), J Jdh)w!™
X X

+ / tr[Gy o (Hess(v) o my,)]hw!™,
X
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where G is the restriction of §; to the fundamental vector fields of the T-action, and

D is the Levi-Civita connection of g. We have

g;(J, DJd(v(my)h)) =v(m,)g;(J, DJdR) + g;(J,d(v(my)) ® Jdh)
+9s(J, dh ® Jd(v(my,))) + hgs (J, DJd(v(my,)))
=v(my,)g;(J, DJdh) — 2¢;(d(v(m.,)), J T dh)
+ hgs(J, DJd(v(my))).

For a family of S! generators £ := (£1,---,&;) of T, we compute

14
95(J, DJd(v(my,)) = vi(mu)gs(J, DIdmE) + Y vii(mu)gs(J, dm& ® Jdm3)

=1 1<i,j<t
= Z V,ij(mw)gJ(j,dmei@Jdmfj)
1<i,j<8

- _ tr[GJ o (Hess(v) o my,)].

where we have used DJdm& = 0 (since the vector fields &; are Killing with respect to
g7). It follows that

gs(J, DJd(v(my,)h)) =v(my,)gs(J, DJdh) — 2g;(d(v(my)), J Jdh)

— tr[Gy o (Hess(v) omy)].
Substituting back in (2.18), we obtain
d : )
%(Scalv(Jt)w(mw), hw = [ gs(J, DJdh)v(m,)w™.
X

For any h € C®(X,R)T, the induced vector field on ACT(X,w) is given by Z; =
—LzJ = —2J(DJdh*), where Z = Jdht is the Hamiltonian vector field corresponding
to h. Thus,

QY(J,Z)) = — /X 97(J, DJdh)v(my)wl™ = —%(Scalv(Jt)/w(mw),h)w.

The Ham” (X, w)-equivariance of the map J ~— (Scal,(J)/w(my),-) follows from the

Ad-invariance of (-, )y, with respect to HamT(X,w). O
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24 A variational setting

2.4.1 The (v, w)-Mabuchi energy

In this section we suppose that v.€ C®(P,Rso) and w € C®(P,R) is an arbitrary
smooth function. We consider ICE as a Fréchet space with tangent space Td,ICE =
C*(X,R)T the space of T-invariant smooth functions ¢ on X.

Definition 5. The (v, w)-Mabuchi energy M, ,, : KT — R is defined by

(AMy w)g(F) = — /X $(Scaly(4) — ciyvw) (a)w(md)))wg[bn]’

My (0) =0,

(2.19)

for all ¢ € TyKT, where C(v,w)(@) is the constant given by (2.6).
Remark 2. The critical points of M, y, are precisely the T-invariant Kéhler potentials

€ KT such that wy is a solution to the equation (1.4). o
w ¢

We will show that the (v, w)-Mabuchi energy is well-defined by establishing in Theorem 6
below an analogue of the Chen-Tian formula (see [26,31,94]. We start with few lemmas.

Lemma 3. The functional &, : KL — R given by

(dEw), (8) = /X dwmg)ll,

(2.20)
£w(0) =0,
for any ¢ € T,KE is well-defined.
Proof. See e.g. [16, Lemma 2.14]. O

Lemma 4. Let 6 be a fized T-invariant closed (1,1)-form and mg : X — t* a momentum

map with respect to 6, see Definition 1. Then the functional £ : KX — R given by

(d€s(0) = /X é [v(ma)8 Al ™+ ((dv)(mg), ma)uf],

gl(0) =0,

(2.21)

for any ¢ € T¢ICE is well-defined.
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Proof. As the Fréchet space }CE is contractible, we have to show that the 1-form on ICE

(By)o(¢) 3=/ ¢ [v(mg)8 /\w([bn_l] + ((dv)(m¢),m9)w£b"]}

(2.22)
:/X [v(m¢)9 /\w([b" Uy Zv (m¢)m0 wd,"]

1=1

is closed. Let ¢, 1) € T,KE. Using the identity

d ¢ . .
G V) = S vsma) @ )E) = (dlvma), b
= =
we compute
) . d .
(8Bu(6))a(3) = ELO (B)yors(9)
= / d(d(v(mg)), d)g8 Al + / v(mg)8 A ddo A Wl
/ Z ¢m v ;(mg)), di) ¢w¢ / Z oV ;( m¢)m ' dd®y A w([pn—l]
/ $(d(v(my)), d)gh Al + / v(my)0 A dd* A w2
X
. . . e . . .
+ ~/X Z ¢m§’ d(v;(mg)) AdyP A w([:_ll + /X Z oV (md,)mg’ dd® A w([#"_l]
i=1 i=1
- / $(d(v(mey)), dh)gf AWl + / dv(me)B A dd AWl
X
¢
-/ > v tme) )l + [ (@) ) g
i=
where £ := (§)j=1,-. ¢ is a basis of t. Integrating by parts, we obtain

2]

/ $v(my)8 A ddo AWl
= / v(mg)8 A dg A doo AWl / 30 A d(v(mg)) A d AWl

/ (dd, d)gv(m)8 Al / (8, dé A d°)gv(mes )l

/ H(d(v(mg)), )¢ Al / Zdw mg)(dmS, ) gl
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where we have used that

6 A d(v(mg)) A dy Aw ™

=(d(v(mg)), d)eb AWl — (e d(v(mg)) A d°9) gl

=(d(v(mg)), dv)e0 AWl Zv (mg) (0, dm$ A d) 4o
j=1

=(d(v(my)), dip)od Al Zv (mg)(dmg’, dip) o

It follows that

(BBu())o() = — [ v(my)(dd, di)sd Awlr ™

J;
- [ (@b, @)@ me), ma)e! (2.23)
[ (646 navi)gutmea,

and hence

(dBy)g(d,%) = (8B4 (¥))6(9) — (6Bu())6(¥) — (Bu)o([9,¥]) =

where [qb 1/)] = 0, since ¢, 71) are constant vector fields on KL. Thus, B, is closed and

therefore 50 ICUr — R is well-defined. |

Definition 6. We let
wn
— ¢ [n]
Ho(p) = /X log (w") v(mg)wy

be the v-entropy functional H, : KT — R.
Remark 3. If i is an absolutely continuous measure with respect to g, := w!™, then

the entropy of [i relatively to u is defined by,

"
o .
Ent (1) := /x tog (duw)

The entropy is convex on the space of finite measures i endowed with its natural affine
structure. In the case when v € C*°(P,R~¢), the v-entropy functional in Definition 6 is
given by

H.(¢) = Ent,, (v(mqg)w([:]) + c(a,v)
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for all ¢ € KT, where c(a,v) = [y (vlog ov)(m¢)w<[bn] is a constant depending only on

(a,v) (see Lemma 2). o

Lemma 5. 1. For any T-invariant Kdihler form w on X, we have

Ric(w)(&,-) = “';‘d<Aw(mw)7£>~

2. For any ¢ € KT and £ € t, we have

Ric(ws) =Ric(w) — %ddc%,
1
3 —mb
MRicwe) ~ M Ric(w) §(dcllj¢) (8,
where MRic(w) = LA, (my) is the Ric(w)-momentum map of the action of T on X

2
and ¥y = log (:—’% .

Proof. The statement 1 is well known (see e.g. [53, Remark 8.8.2] and [90, Lemma 28]).
We will give here a short argument for the statement 2. Let ¢ € KT and ¢ € t. Using
that Ljewy = —ddcmfs we obtain

'CJE‘%[:] = A¢(m§5)w£5n].

It follows that

[n]
1, .. 1 C1Lgewy 1Ly ¢
—5(d¥s)(€) = 5Lse¥s = 5 oL T oM T MRiclws) ~ MRicw)”

We now extend a formula obtained in the case v =w = 1 by Chen-Tian (see [26,31,94])
to general values of v and w > 0.

Theorem 6. We have the following ezpression for the (v, w)-Mabuchi energy,

Mv,w =Hy — Qg\l}ic(w) + c(v,w)(a)gw' (224)
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Proof. We denote ¥y := log( ) We compute
(@H)o(6) = [ Be(@vima)ly! + [ Wo(dv(me)). dd)ow
- /X Tyv(mg) Ag(P)wl

_ /X A g(v(me))ll’ — / (44, dd)sv(me )l

14
—/Xzév,j(mqs)%(m wln] /Z(fww(mas fuéj)asqu

=1
/ Zqﬁ (d¥y, dm¢ V,j(me)w / PAH(Ty)v(my) fb}
where & := (§;);=1,.. ¢ is a basis for t. Using Lemma 5 and the fact that
Ay (Vy) = —Ay,dd° ¥y = 2A,, (Ric(wy) — Ric(w)) = Scaly — 2A,, Ric(w),

we get

4
(@068) == [ 63 v sm) 8o+ [ 3 Gslme) &l

j 1 hy=1
+ [ qu Ao(m)) v s (me)sl!
_ /X & (Scaly — 2, Ric(w)) v(mg)wll”.
It follows that
d(H, — 26R@) () = / gScal, ()i,

which yields (2.24) via (2.25) and (2.20).

By the work of Mabuchi [76,77], the space of T-invariant Kahler potentials KT is an

infinite dimensional Riemannian manifold with a natural Riemannian metric, called the

Mabuchi metric, defined by

(¢1,¢2)¢=/X¢1¢2w§],
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for any ¢, o € T4KE. The equation of a geodesic (Bt)eefo,) € KT connecting two points

#0,¢1 € KT is given by (see e.g. [53, Section 4.6] for more references)
b = |de3,-

The following result is a straightforward extension of an observation of Guan [54] (see
e.g. [53, Proposition 4.6.3]).

Proposition 1. Let X be a compact Kéihler manifold with a fized Kéhler class o, T C
Autreq(X) a real torus and suppose that w € a is a (v,w)-cscK metric for smooth
functions v € C®(P,R5q), w € C®(P,R) on the momentum image P C t* associated to
(T, ). Then for any (v, w)-cscK metric wy € o connected to w by a geodesic segment in

KT, there exists ® € Autyeq(X) commuting with the action of T, such that wy = ®*w.

Proof. By a straightforward calculation using the formula (2.40) in Lemma 9 below, we
obtain the following expression for the second variation of the (v, w)-Mabuchi energy

along a T-invariant segment of Kahler potentials (ét):c[0,1] € KT

d2MvW d) ~dd A
d—t’z(t) =2 /X [D=dul3, v(mo, g,

(2.26)
B /X (& — 1ddul2, ) (Seal (1) — w(me,)) i

Suppose now that wy, ¢ € ICE is a (v, w)-cscK metric connected to w by a smooth
geodesic (¢)¢co,1], such that ¢o = 0 and ¢1 = ¢. Then %‘t”—@ﬁ o= de&_;th) =
0, and using (2.26) we obtain

PP My w(t) ey [n]
— :2/X|D di |3, v(mg,)wg, > 0.

It follows that 'F—A/ti‘ﬁ“m =0 and D—d¢; = 0. Thus, we have a family of real holomor-

phic vector vector fields V; := —grad,, 1, t € [0,1]. By [53, Proposition 46.3], V; =V
for all ¢, and wy = (<I>‘1/°)*w where ®° € Aut,eq(X) is the flow of the real holomorphic
vector field Vj. O

Remark 4. In general, the space ICE is not geodesically convex by smooth geodesics

(see |33, Theorem 1.2]). However, by a result of Chen [27], with complements of Blocki
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[19], the space KT is geodesically convex by T-invariant weak C!-geodesics, i.e. in the
space (K&,’I)T of T-invariant real valued functions ¢ such that w + dd°¢ is a positive
current with bounded coefficients. Using the formula my = m,, + d°¢ and Theorem 6,

one can extend the (v, w)-Mabuchi energy to a functional M,y : (ICL},’I)Tr — R. o

2.4.2 The relative (v, w)-Mabuchi energy

In this section we assume that both v and w are positive smooth functions on P.

Definition 7. The (v, w)-relative Mabuchi energy M{,e{v : KT — R is defined by

(ML) o(3) = — / $(Scal, (9) /w(mg) — Wext(mg)) w(mg)wll,
X

M2 (0) =0,

(2.27)

for any ¢ eT ¢ICE, where Weyt is the affine linear function on P defined in Section 3.2.

el __
Lemma 6. We have MY, = My wwey, -

Proof. In Section 3.2, we will show that ¢y wwe, () = 1. From the definitions of M, ,,
and M, | it then follows that M, = My ywe,, +¢ and using ML, (0) = My vy, (0) =

0 we get c=0.
2.4.3 Boundednes of the (1, w)-Mabuchi energy

Now we show how the results of Berman-Berndtsson in [15] can be extended to the
(1, w)-cscK metrics.

Theorem 7. Let X be a smooth compact Kihler manifold, T C Autreq(X) a real torus,
and suppose that X admits a (1,w)-cscK metric w in the the Kihler class a for some
smooth function w on the momentum image P C t* associated to (T,a). Then, w is a

global minima of My y.

Proof. We denote by My, the (1, w)-Mabuchi energy and by M the (1, ¢; w(a))-Mabuchi



31

energy. From the definition of the Mabuchi energy we have the following relation

where W := c1w(a)(1 — w) and &g is the functional (2.20). Let ¢o,¢1 € KT be two
smooth Kihler potentials and ¢; the weak geodesic connecting ¢o and ¢1 (see [15,31]
and the references therein for the definition of a weak geodesic). By [17, Proposition
10.d] the function t — Ex(¢¢) is affine on [0, 1], whereas by [15, Theorem 3.4], the
function t — M(¢;) is convex. It follows that t — My (¢:) is convex. By [15, Lemma

3.5] and its proof, we get

Mu() = Mu(d0)

lim > /X (Scal(¢o) —Cl,w(a)w(m¢0))¢ng'

t—0+ t

where ¢ = Using the sub-slope inequality for convex functions and the

doy
dt |t=0%"
Cauchy—Shwartz inequality we get

Mw(¢t) - Mw(¢0)
t

2./X (Scal(go) — Cl,w(a)w(m¢0))q3w<[b7:)]

My (¢1) — My (o) Zﬁ%ﬁ

> — d(¢o, $1) ( /X (Scal(¢o) — C(l,w)(a)W(m¢0))2wL’;]) %’

where d(¢o, ¢1)? = [ X ¢.$2wg;] is the Mabuchi distance between ¢g and ¢;. In particular,
if wg, is a (1,w)-cscK metric in the Kahler class a, then My (¢) > My (o) for any
e KL O

2.5 The (v, w)-Futaki invariant for a Kéhler class

Let (X, a) be a compact Kahler manifold and T C Autyeq(X) a real torus with momen-
tum polytope P with respect to « as in Lemma 1. For any ¢ € ICE and V € l‘]};d in the
Lie algebra of the centralizer of T in Aut,eq(X), we denote by hg +v-1 f;/ € Cgf’¢(X ,C)

the normalized holomorphy potential of &, i.e. hg and fq‘s/ are smooth functions such



V = grad, (h¢ + Jgrad, (f¢)

/ f¢ / hV [n]

Using that the tangent space in ¢ of KT is given by Ty (ICE) &~ Cg";(X ,R)T &R, the
vector field JV defines a vector field JV on KT, given by:

¢ Livwy = —dd°f
so that 7—17(1, = fq‘s/ We consider the 1-form o on KT, defined by
74(8) = (M), (9)

where M,y is the (v,w)-Mabuchi energy associated to the smooth functions v €
C®(P,Rso) and w € C®(P, R) (see (2.19)). By the invariance of o under the Aut”,,(X)-
action and Cartan’s formula, we get

Lso= d(o(jv)) =

Then ¢ — J¢(jl7) is constant on KT, and we define
Definition 8. We let

Fea(V) = aw(ﬁ) = / (Scaly (w) — c(v,w)(a)w(mw))fgw["], (2.28)
X
be the real constant associated to V & l‘)red We thus get a linear map F, f)red - R

called the (v, w)-Futaki invariant associated to (o, P,v,w).

By its very definition, we have

Proposition 2. If (X,a,T) admits a (v,w)-cscK metric then

/ Scal, (w)w(™ = C(V,W)(a)/ w(my)w™ and Fow=0. (2.29)
X X

Remark 5. The first condition in (2.29) is satisfied when [, w (my)w™ # 0 by the very
definition of ¢y () (see Definition 3). Furthermore, in the case of a (v, w)-extremal
Kéhler metric considered in Section 3.1, both conditions in (2.29) hold true with respect

to the weights v and wwey. o
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Following [50] and[53, Proposition 4.11.1] we have,
Definition 9. For any Vi,V € L, with normalized holomorphy potentials Fi*, Fy,

red’

we define the w-Futaki-Mabuchi bilinear form by the following expression,
By(i, V) = [ FYFyw(m, )l
X
which is independent from the T-invariant w € a.

We have the following characterization of the extremal vector field &ext of (X, @, Py, v, w)
(see section 2.2.2),

Lemma 7. The extremal vector field €ext € t of (a, Py, v, W) is the unique element of t

such that
Fow(&) =BG (€ext, £, (2.30)
for any € € t.
2.6 The structure of the automorphism group of a manifold with weighted cscK
metric

In the following section we give the proof of Theorem 1 from the Introduction. We
need first to establish a couple of lemmas. In what follows, (X, a) is a compact Kahler

manifold and T C Auteq(X) is a real torus with momentum image P, as in Lemma, 1.

Lemma 8. For any T-invariant 1-form 8 on X, and smooth function v € C*°(P,,R),

we have

4
286 (v(mu)D™0) =2v(my,)08(D6) + 2y vi(mu) (A6, (J&)")

=1
I3 I3
=D 22i(m)(A(JE),0) = D 2v,i(my,)(6d6, (J&))  (2.31)
=1 1=1
4 I4
+ Y v (M) (J&)(0(J€) — Y v (muw)(6,d(&:,€5))
i,j=1 i,j=1

where (-,-) stand for the inner product of tensors induced by the Kdhler metric w,
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(€1,--- ,&) denote a basis for t and v; (resp. v ;) denotes (resp. mized) partial deriva-

tives of v.

Proof. In fact,

55 (v(mw)D™8) = v(m)86(D"6) + v i(mu)(ED6)(JE:)
+v,i(mw)8 (D0)(J&, ) — v,ij(my)(D0)(&,&5).

We consider the decomposition of the tensor D~6 in symmetric and skew-symmetric

parts ¥ and ®, respectively,

D=0+
For any vector field X on M we have

S (U(X,.)) = —(¥,DX") + (6%) (X), 2.32)
5(3(X,.) = (&, DX’) — (68) (X). '

Using (2.32) for X = J& we get
5 (2(J&, ) = (0¥)(J&),
§(2(J&,.) = —(62)(J&).
Thus,
86 (v(muw)D™6) = v(my,)86(D~0) + 2vi(mu,) (80)(J&) — vi;(mu)(D76) (&, €;). (2.33)
Using (53, Lemma 1.23.4] and 2& = df — Jd6 we have

(0T)(J&) = (6D76,(J&)°) — (6®)(J&)

(6Jd, (J&)")

(A8, (J&)") — Ric(w)(J&, ) — %(&w, (J&)) +
(2.34)

N = o] —

(6d8, (J&)")

(Aea (J&)b) -

(A8, (J&)") -

—~

A(JE), ) + (5D+d(J§i)b,0> -

(A& ,6) — 5(848, (J&:))

N |

1
2
1
2
1
2
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where we have used the identity (8Jd8, (J&)?) = —(6°d6) (&) = L¢,8°0 = 0 which holds
since &; is Killing. Furthermore,
2(D70)(&:,&5) = (De,0) (&) — (Due,b) (J&;)

=&(0(5)) — (J&)(0(J&))) — 26 (Dg;&:)

= —J&(0(J&)) + (0,d(%i, &)

= —(J&)(0(J&)) + (6,d(%, &),
since &;(#(¢;)) = 0 by the T-invariance of §. The result follows by substituting (2.34)
and (2.35) in (2.33). This completes the proof. O

(2.35)

Corollary 3. For any T-invariant function ¢ € C®(X,R)T, we have

Lo o= “20mID(E9)

w(my,)

where L., denotes the Lie derivative along the vector field €yt := Jgrad(Scal, (w)/w(m,,)).

Proof. We have,
¢

¢
Scal, (w) = v(my,)Scal(w) + 2> vi(mu)Au(m&) — Y vii(mw)(&, &)

i=1 ij=1

By T-invariance of ¢, we obtain
W(my)Lee @ = —(dScaly(w), d°®)

¢ ¢
= —v(m,)(dScal(w), d°¢) — 2> " vi(my,)(dA(mE), d°®) + Y v i(mu)(d, d(&, &)))-
i=1 i,j=1

By taking 8§ = d°¢ in (2.31) and using the fact that §6(D~d¢)¢ = (dScal(w),d®¢) (see
[53, p.63, Eq.(1.23.15)]), we get,

266v(my) (D~ d%)¢

£ £
=2v(m,,)88(D™d)¢ +2 ) vi(mu)(dA(mE),d°¢) — Y v,ii(mu)(d°d, d(€, &)

i=1 i,j=1

14 ¢
=v(my)(dScal(w), d°¢) + 2 ) _ v,i(mu,)(dA(mE),d°¢) — > vij(mu)(d°e, d(&, &)

i=1 i,j=1

=- W(mw )‘C'Eext ¢
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where we have used the T-invariance of ¢. O

For a 1-form 6 we denote by D%06 (resp. D%28) the (2,0)-part (resp. (0, 2)-part) of the

tensor DO. We define the (v, w)-Calabi’s operators ]L(iV w) on C>(M,C)T by

2(DO2d)*v(m,,) DO2dF

]L+

(v’w)(F) w(my,) ’
2,0 7\k 2,0

L () - ADPd)yvmg)D2dE

(v,w) W(mw)

and we define the (v, w)-Lichnerowicz operator by

]L(v,w) =L + ]L&,w). (2.36)

(v,w)
Recall that the space of hamiltonian Killing vector fields is given by (see [53, Chapter
2])
tham = Brea N £
The following proposition follows from the arguments in [53, Proposition 2.5.1], and will
be left to the reader.

Proposition 3.

1. Let V = grad,(h) + Jgrad,(f), where f,h € C®(X,R)T. Then V € Breq if and
only if LY (h++/=1f) =0, i.e. we have

(v,w)

brea = ker(L{, ) N O (M, C)g.

where C(M,C)} is the space of smooth T-invariant functions on X normalized

by [y fw(my,)w™ =0.

2. The (v,w)-Lichnerowicz operator satisfies

/I

-1
_T7=*
H"(Vuw) - IL"(v,w) + 2 [’{exc?

where €ext, := Jgrad(Scaly (w)/w(my)).

8. Let Egam be the Lie algebra of T-equivariant Hamiltonian isometries of X. Then
V e €f  if and only if there exists h € C®°(M,R)T such that V = Jerad,(h) and

]L(v,w)(h) =0.
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The next result was first established by Calabi in [22] in the case of extremal metrics, and
was recently generalized independently by Futaki-Ono [51] and the author [61] to the
case of manifolds admitting Kédhler metrics conformally equivalent to Einstein Maxwell
metrics.
Theorem 8. If X admits a (v,w)-extremal Kihler metric with v,w € C*(P,Rsg).
Then the complex Lie algebra of T-equivariant automorphisms of X admits the following
decomposition

b7 = (0 & thop © JEL,) ® (@ b&) , (2.37)

A>0

where a is the abelian Lie algebra of parallel vector fields, Egam is the real Lie algebra
of T-equivariant Hamiltonian isometries of X and h%r/\), A > 0 denote the subspace of
elements V € BT such that Leo.V = AJV. Moreover, the Lie algebra of T-equivariant

isometries of X admits the following decomposition

T =a@el,. | (2.38)

Proof. The proof follows the arguments in [53, Theorem 3.4.1]. Let (g,w) denote V :=
Vi + grady(h) + Jgrad,(f) € T, where Vy is the dual of the harmonic part of § := V?
denoted 0, and f,g € C®(X,R)T with [, fw(my)w™ = [y hw(m,)w™ = 0. By (2.31)
in Lemma 8, the fact that 8y is harmonic and the identity 266(D~60g) = (dScal(w), 6x)

which follows from [53, Lemma 1.23.5], we obtain

l
206(v(my,) D™ 0) =2v(my,)66(D~60) — > 2vi(mu)(A(J&), 0p)

i=1

¢
- Z vij(mw)(0m,d(&, &)
i=1
¢
=v(my)(dScal(w),0g) + Z 2v i(my)(dA(mE), 0n)

=1
¢
- Z V,ij(mw)(eHy d(€i3 f]))
1,7=1

=JL¢,..01 = 0 since (g,w) is (v, w)-extremal.
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It follows that

_265(v(m,)D=0) _ 268(v(m,,)D~(dh +d°f) N
= e = ) —Re (]L

(v.w)

0

(h+ \/—l'f)) .
Starting from JV instead of V we similarly get

im (L, ) (h+ V=11)) =0.

(v,w

It follows that ]LE"’,

grad,(h) + Jgrad,(f) are real holomorphic vector fields, which proves that

w)(h ++/—1f) =0, then by 1 in Proposition 3 we have that Vg and

hT = a@hLy. (2.39)

Using the fact that €., := €M bhreq and €N a = a, we obtain the decomposition (2.38).

Since &gyt is Killing and commutes with T, the operators H‘E_i/,w) commute. Then ]L(v’w)

acts on b?ed and by Proposition 3 2, this action is given by —v/—1L¢,,,. Since ]L(_ ) is

v, W

(-, yw-self-adjoint and semi-positive, bll;d splits as
Bred = Dred,(0) @ (@ f)?(r,\)> ;
A>0
where bll; 4,(0) is the kernel of L, in l‘)ll;d whereas, for each A > 0, b'g)\) is the subspace
of elements V € hT such that Le...V = AJV. Using the splitting (2.39) we get (2.37)

(Notice that f)}r)\) = b;lre a4, Since Eext i Killing and commutes with T).

ham

We have a ® €] @ JEI hj(ro)'. By 2 in Proposition 3 the restriction of L, to

ker (ILE"',’W)> N CP(M,C)T coincides with the restriction of L(v,w) to the same space.

Then, using 3 in Proposition 3, we obtain the converse inclusion, which proves that
T T T
b(O) =a®¥,, @ Jeham'
This completes the proof. O

Now we are in position to give a proof for Theorem 1 from the introduction.

Proof of Theorem 1. This is done as in the case v =1, w =1 (see [53, Section 3.5]).

Let s be the Lie algebra of a connected, compact Lie subgroup, S C Autg (X) containing
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Isom{ (X, g). Suppose, for a contradiction, that there exists V € s that doesn’t belong

to ¢T. By Theorem 8, we have the splitting

hT =T @ JeL,, @ (@ h&) ,

A>0

then we can assume that V € J&f @ (®A>0 bg)). Let V = Vo + > 550 Vh be the

ham

corresponding decomposition of V, then for any positive integer r we have

(Lew) V== MVes.
A>0

It follows that each component V) of V is in s. We can therefore assume that V ¢
sy = 85N f]g&) or V € tham C sg. Suppose that V € sy for some A > 0. Let B
denote the Killing form of 5. Since S is a compact Lie group, B is semi-negative and

it’s kernel coincides with the center of s. On the other hand V belongs to the kernel

of B, indeed for any W € s), and U € s),, by Jacobi identity we can easily show that

(VL [W,U]] € Sata,+2; 7 Sa, then sx4x, 42, = {0} and by consequence [V, [W,U]] = 0.

It follows that for any W € s we have B(V, W) = 0. Hence V belongs to the center of
s, but we have £eq € €T C 5 and [V, €ext] = —AJV # 0, a contradiction.

It follows that V € J¢L . Then V = grad,(h) for some real function h. By the
hypothesis, the flow ®} of V' is contained in a compact connected subgroup of Autg(X ).
It follows that V is quasi-periodic with a flow closure in Aut}(X) given by a torus T*
of dimension k > 1. Note that k # 1 since a gradient vector field does not admit any
non-trivial closed integral curve, as %h (@& (z)) = |Vlit" () 2 0 It follows that &k > 1.
Let z € X such that V, # 0. We have that h(®;*(z)) is an increasing function of ¢, so
that h(®Y (z)) — h(x) > ¢, for t > 1, where ¢ > 0. But by density of &} in the torus T*,
®Y meets any small neighborhood U of z, which is a contradiction. We conclude that

s=tT.

If the (v, w)-scalar curvature is constant then by Theorem 8, hT splits as

b = a @ thym © JE o,
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since eyt = 0 and by consequence b, = {0}. In particular hT is a reductive complex
A\

Lie algebra. O

We have the following immediate consequences of Theorem 1.
Corollary 4. Any (v, w)-extremal metric is invariant under the action of some mazimal

torus Tmax of Autreq(X).

Using an argument of Guan [54] (applied originally to the case (v,w) = (1,1)), we obtain
as in [9] the following uniqueness result in the toric case (i.e. when dim(T) = dim¢(X) =
Corollary 5. Let g and § be two (v,w)-extremal metrics on X. Then there is ® €
Aut] (X) such that Isomg (X, g) = Isomg (X, ®*§). Furthermore if X is a toric manifold
and g and § are two (v, w)-extremal metrics in the same Kahler class o, then they are

1sometric.

2.7 Deformations of weighted cscK metrics

In this section we give the proof of Theorem 2 from the Introduction. Let X be a
compact Kahler manifold, a a Kahler class, Tmax C Autreq(X) a maximal torus and
P, C t* a momentum polytope for a as in Lemma 1. Let 8 € HY!(X) and U an open
subset of t* with P, C U. Then there exist a > 0 such that for any |r| < a we can
choose P,4r3 C U to be the momentum polytope of Tmax With respect to a4 r3. With
these choices, we now suppose that v,w are positive smooth functions on U and ¥, W
are arbitrary smooth non vanishing functions on U. Let § be a T—invariant g-harmonic
representative of 8 and w a T-invariant Kahler metric in a. We take (w,6) = 0 to avoid

trivial deformations of the form 8 = Aw. We denote by
Wre = w + 10 + dd°®,

a T—invariant deformations of w for r € R and ¢ € C®(X,R)T. We consider the

following map,

S: R x C®(X,R)T - C®(X,R)T
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defined by,

S(t,s,r,g) = obvitr(rng)
(W + sW)(mrg)

where m(,. 4) = My, , : X = Pairp denotes the wyy-momentum map with momentum
image Pyirp and v, ¥, w,w € C®(U,R5p). We take k > n such that the Sobolev
space L?>*(X,R)T form an algebra for the usual multiplication of functions, embadded

in C*(X,R)T. Then S defines a map
S: R x L2 X, R)T - L¥*(X,R)T.

We will start by giving the linearization of the w-scalar curvature with respect to the
Kéhler potential ¢.
Lemma 9. For any T-invariant Kdhler metric w € a and any variation beT, WKL we

have

5(%)@5) = —QILV,W(QB) + dCd’(fext% (2.40)

w(my)

where Eext := Jgrad, (M) and Ly v s the elliptic fourth order differential operator

w(my)

given by

}Lv,wd.) =

here, D is the Levi-Civita connection of g and D~ (d) is the J-anti-invariant part of
the tensor D(d).

Proof. Let (£1,---,&) be a familly of S'-generators of T. For a T-invariant variation
@ = dd¢, the corresponding variations of my,, A, Scal, are given by (see e.g. [53]):
mw :d¢
A, =(dd°¢, dd°") (2.41)

Scal,, = — 21L9(4) + (d Scal(w), d¢),

where L9(¢) = 66(D~d¢) is the usual Lichnerowicz operator. Then the first variation
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of the v-scalar curvature in the direction ¢ is given by:

8Scal, (¢) = — 2v(mw)]Lg (¢) + v(my)(dScal(w), dd) + Scal(w)(d(v(my,)), dd)

¢
-|-2ZV mw d'ITL£l d¢ +2 Z Viij mw)(dm d¢) ( )
1,7=1
¢
+2Zv my)(dd°mg, dd°g) — ) | v,ijk(mu)(dmF, dd)(&:,€;)
1,J,k=1

b3 vama e (@8)E),

1,7=1

By (2.32) and the T-invariance of ¢ we have
(dd°h, dd°m&) = —A(dm& ,dd) + (dAd, dmb).
Thus,

dScaly (¢) = — 2v(my, )LI(d) + v(my,)(dScal(w), dé) + Scal(w)(d(v(my)), do)
£ 14
+2)_vi(mw)(dAd, dm) +2 3 vi(mw)(dm, dd) A (m)
i=1 3,j=1
£
= > vak(mo)(dmbE,dd) (&, &) + Z Vi (mw)&;((d°$) (€4))-

i,5,k=1 i,j=1

(2.42)

On the other hand we have

(dScaly (W), dp) =v(my,)(dScal(w), dd) + (d(v(my,)), dd)Scal(w)
4 V4
+2 3" A(mE)vii(mw)(dm, dé) +2 3 vi(mu,)(dA(mE), dé)

i,j=1 =1
£
- Z V,ijk(mw)(dmgk d¢) gz»é] ZVU mw d(,‘b, (é’t)g]))
i,5,k=1 i,j=1

(2.43)

By taking the difference (2.42)-(2.43) we get exactly (2.31) for a = d¢, which, in turn,
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is equal to —244 (v(mw)(D‘d)gz;). The expression (2.40), follows from the following

5 (Scal v(Ww)

v )@=

( ) <Scalv(w)>(<;5)+Scalv(w)6(w(;w))(¢'5)

)[ 265(v(m.,)(D~d)¢) + (dScaly(w), )] + (d( )) ,d9)

( M

w(mw

= — 2Ly w (@) + d°b(Eext)-

Using the Lemma 9, we obtain

Lemma 10. The map S is C' with Fréchet derivative in 0 given by
ToS = (Sl Sg Sg 54)

where S1(t), S2(3), S3(7), S4(d) are the derivatives with respect tot, s, r, ¢ respectively
and

S2(8) =~ (_W%(Eia;fz(w_))é’

w{m 0
Ss(f) =| - <M>Scalv(w) + (v(m.))Scal(m,,) — 2v(m.,)(6, Ric(w))

w(my)
£ £
23 (valma))?Bu(mE) = 3 (s (ma)) 006, J6) | o,
i=1 i,5=1 M

S4(¢) = - 21Lv,w (¢) + (dCQ‘s) (&ext)'

where (£1,--- &) is a family of S'-generators of T, and for u € C*®°(U,R) we denote

(u(my,))? == d% . [W(mure)] = Euz(mw (6, dd°mS), (2.44)

with G, is the Green operator relative to w for the Laplacian A,,.

Proof. The expressions of S; and Sy are straightforward. The expression of Sy follows

| from Lemma 9. For S3, we use the following variation formulas contained in [53, Chapter
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5| and [68],

— Scal(w + rf) = —2(0, Ric(w)),
dr| _q

% o Aw+r9(f) = _(ddcfv 0))

—| m&, s = —Gu(8, dd°mS),

r=0

—| &R = 0(¢,J8).

r=0

We consider the inner product (-, -)ww, given by

<f7 h’>w,w = /X fhW(mw)w["]

Let t, be the space of w-Killing potentials of the elements of t := Lie(Tpax) normalized
by (f,1)ww = 0. We denote Li’k(X,R)T the orthogonal complement t,, in L%*(X,R)T
with respect to the inner product (-, -)w. Let IL; 4 (vesp. Iy := I 00)) denote the
orthogonal projections on t,, , (resp. t,) with respect to (-, ")w+sww, s (T€SP- {, Dww)-
As in [68], taking (s,r) € (—¢,¢€)? close to zero, and ¢ € U in a neighborhood U C

LikH(X,IR)'Jr of the origin, we have
ker (Id — Iy ) o (Id — TIs r ) = ker (Id — L5 1 0) -
Now, we consider the Lebrun-Simanca map
U (—e,€)® xU = (=, €)% x LPF(X,R)T,
defined by
U(t,s,r,¢):=(t,s,7,(Id = Iy ) o (Id = s, 4) S(t, 8,7, P)) . (2.45)

We have ¥(0,0,0,0) = 0 and ¥(t,s,7,¢) = (t,s,7,0) if and only if wy 4 is (V+1¥, w4 sW)-

extremal. We shall thus use the inverse function theorem for the map V.

To calculate the derivative of ¥ in 0, we will need some technical Lemmas.
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We denote by Fi; the (v + t¥,w + sW)-Futaki invariant of (a + 78,Pa4rg) (see Defi-
nition 8), and by B} the w + sw-Futaki-Mabuchi bilinear form of (o + 78, Payrg) (see
Definition 9).

Lemma 11. Let &,n € t, with killing potentials ff,, £ normalized by having zero mean
value. The partial derivatives of Fi ;(§), with respect to the variables (t,s,r) in (0,0,0)

are given by

O}Zs(ﬁ) =F5w (&),

Fis() =0,

1s)
ot
J
5,
;% Of?,s(ﬁ) =(S3(1), f&)ww + (8, (W(mw)) " Gu (S(0)w(m))dd® £S)w

4
+ D (8, (W(mw)) T G (S(0) fEw i(m))ddm v -

i=1

where S3 is given in Lemma 10.

The partial derivatives of BL(€,m), €, € t with respect to the variables (s,r) in (0,0,0)

are given by

O\ pr _pe
'5;‘033(5777) _B\Tv(fan)y

2| B5€m) =6, () G
16, (M) G (G (m)) A ) s

12
+ 3 (6, (W(mw)) T Gu (£ £Iw i (M) ddmS Y -
=1

Proof. We have

(€)= /X St 5,7,0) 55 (W + 55) (Msirg) (w0 + 7O)),

BI(E,n) = /X FE o f ™o (0 $5) (Mirg) (0 + 7)1,

The partial derivatives with respect to t,s of J;, and By are straightforward. The
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r-derivative of F7 (£) is given by

FLL(€) = /X S3(1) f&w ()l — /X S5(0)Gw (5((T)))w(my,)ul™

l
— £w< i w["]
; /X S(0) fow i(mw)Gy,(6(8(J&:)))
= [ Sa()fEw(m o ~ [ (@G (SOw(m.), 6Ol
X X
?
- {W,mw 3 1 w[n]
> [ (Buls0)5wirm)) 00
= [ ssEwmel — [ (@558 dGu(SOw(m.), o)l
X X
?
=3 [ (@EmE n dG SO 5w ), 6)
— Jx
= /X (S (1) few(me) + S(0)(w(my))? + (6, dd® fg)Gw(S(o)w(mw))) Wl

+Z / (dd°méi, 0)G[S(0) fEw i(my)|w!™.

It follows that

%‘ ts(ﬁ) =(S3(1), fg)ww“i‘ (0, (w(my))™ le(S(O)W(mW))ddcfé)w,w

14
+ ) (0, (w(mw)) T Gu(S(0) fEw i () dd°mS ) o
i=1
Now, we consider the r-derivative of Bf(£,n). We compute

0 T _ n n| wlm n
or| B6m) == [ CLOUEN W) — [5G (@0 wlme )t

¢
—g /X FE 19 () G (80(TE:)eol™
=— / (d°fE A dGo (fTw(my,)), §)w™) — / (df2 A Gy (fEw(my)), 0)w!™
X X
¢
_ dembi (e fw 5 (my,)), 6)w!™
> /X (dm A dGo(f8 11w 1 (1), B)w
- / (8, dd°G, (fw(my))) féw™ + / (8, dd fM)Geo (w(me) £5)w!™
X

+Z [ s 010 2wt
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It follows that
5]

or

; BL(&,m) =(6, (w(my)) ™ [f5ddGu, (£2%(1m0))])ww

+ (6, (W(ma)) 7 G (fEw(ma))dd® f2)we
£
+ E(ea (W(mw))_le (féfgw,i(mw))ddcm§j>w,w-

i=1

a

Now, we compute the derivatives of the (v +t¥, w + sw)-extremal vector field &ext (2, s, 7)
of (a + T/B; Pa-}-Tﬁ)'
Lemma 12. Suppose that (g,w) is a (v, w)-extremal metric. The partial derivatives of

Eext(t, 8,7) are given by

9 S 1\7,w

58; ; gext (t, S, T‘) =£ext7

% Eext(t, 8,7") =Jgradg(Hw,w(53(1) - Gw (6’ dch(O))))
0

Proof. We denote the r-partial derivative of £ext(¢,s,7) in O by E'ext and z, its Killing

potential with zero mean value. Using (2.30), we have

}-;rs(é) = B‘:(éext(ty S, T)a 6)

»

for any £ € t. Differentiating with respect to 7, we obtain

15] 0
§’O]:ZS(€) = (5

Since w is extremal, using (11) we obtain

0 B;) (oxts €) + B (ot €)

(S3(1) — zw’ff;)w,w :<0,W(mw)“IS(O)ddC(Gw(ffw(mw)»ww
= [ 506,456 (fEwlma))o"
X
= / Go (8, dd°S(0)) féw(my,)w!™
X

=(Gu(8,dd°S(0)), f$)ww
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Thus 2, = S3(1) — G,(8,dd°S(0)), and by consequence
£ext = Jgrad,(S3(1) — Gy, (8, dd°S(0))).

The remaining derivatives follows using the same argument. O

Lemma 13. Suppose that w is a (v,w)-extremal metric. The Lebrun-Simanca map

(2.45) is O, with Fréchet derivative at the origin given by

1 0 0 0 1 0 0 0

010 0 0 1 0 0
TV =

0 01 0 0 O 1 0

0 0 0 Id- HWM S1 Sy S3+ Gw(é), ddCS(O)) -—2]Lv7w

where S1, Sa, Ss are given in Lemma 10, and G,, is the Green operator relative to w.

Proof. We calculate the partial derivatives in 0 of Z(t, s, 7, ¢) 1= (Id — I5 » ») S(t, 8,7, 9).

For the derivative with respect to ¢, using the fact that

fext(t, 8,7) := Jgrad,_ , (s r¢S(t,s,7,9)) = Jgrad, (S — Z)(t,s,7,9)),

is the (v 4 t¥,w + sW)-extremal vector field of (X, a + rf3), we obtain

55| (5= 2)6) = Leoud = (80, d1.5(0) = (@) (e ).
From this we deduce that
3% [(Id — My w) Z)(¢) = (Id — My,) (Sa(d) — (d°¢) (ext)) = —2Low,
0

where Sy is the ¢-derivative of S (see Lemma 10). Now we compute the r-derivative of

Z in 0. Differentiating the relation (2.7) with respect to r, we obtain

grad)((S — Z)(0)) + Jgrad( %
0

d d
50&’“:'](5 O(S—Z))

= (o 0))° + Jgrad, (| (S~ 2))

0
=— Jgradg(Gw(Q, dd*S(0)) + %

(S - 2)).
0
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Using Lemma 12, we obtain

d

dr

(§—2Z) =11,,(S53(1)) + (Id — [Ty )G, (0, dd°S5(0))).
0

It follows that

d . . .
o | [(Id = Il w)Z](7) = (Id — Lww)(S3(7) + Gu (6, dd°S(0))r).
0
The remaining derivatives with respect to ¢, s follows using a similar argument. O

The operator Ly y, is a fourth order (-, )w ,-self adjoint T-invariant elliptic linear opera-
tor. By standard elliptic theory we have the following decomposition (-, -)w w-orthogonal
decomposition

L**(X,R)T = Ker(Ly, ) ® Im(Ly ). (2.46)
We have Ker(Ly w) = t, since T is a maximal torus, and Im(Ly w) = Lik (X,R)T. Thus,
Ly : L2*M(XR)T - L2F(X,R)T
is an isomorphism. By consequence,
To¥ : R® x L**(X,R)T = R® x L2 (X, R)T

is an isomorphism.
Corollary 6. There ezistse > 0 s.t. for |r| <e, |s| <e, |t| < e there exist ¢ € C4(X,R)
and £ a smooth affine linear function on U C t* (Pyyrg C U) such that

Scaly 443 (wr,¢)

CERTICE

Proof. By the inverse function theorem, it follows that ¥ is an isomorphism in a neigh-
borhood (—¢,€)® x U of 0 € R3 x Lik“(X, R)T, and using the Sobolev embbeding
theorem, we can assume that L2*+4(X,R) ¢ C*(X,R) for k > 1. Thus, for any |r| < €,

|s| < e, [t| < € there exist ¢ € C*(X,R) such that wy ¢ is (v + 7, W + sW)-extremal. O

To complete the proof of Theorem 2, we need to conclude that the metric is actually
C®. This follows form a bootstraping argument similar to the case of extremal metrics

[68, Proposition 4].
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Lemma 14. A (v, w)-eztremal metric of reqularity C* is smooth.

Proof. If the Kéhler metric (g,w) is of regularity C*, then the scalar curvature Scaly
has C? regularity. Let (£1,---,&) be a family of S' generators of the torus T acting
holomorphicaly on X. Then the vector fields (&1, -+ , &) are real analytic, being the real
parts of holomorphic sections of T19X. Therefore, there duals (dmi‘,~-- ,dmgl ) with

respect to w have C? regularity. Thus, the momentum map m,, : X — t*
_ &1 . e
mw(m) - (mw (IL’), ’me (I))

has C? regularity in holomorphic coordinates. Using (2.4), the vector field grad, (S—vi%%ﬁ))

Scaly (w)
w(mw

is of regularity C*. By (v, w)-extremality of (g,w), the vector field grad, ( ) is real
analytic. It follows that Svia:;’l:’ is of regularity C® in holomorphic coordinates. In

holomorphic coordinates we have

n

¢ ¢
A, log( a; ) _ w(mw) (SC&IV(L‘;) . 22 v,i(mw)Aw(mg) + Z M(gi,gj)>,
w i=1

Wt v(my) \ w(m, w(my,) w(my)

,7=1
(2.47)

where wpa is the local flat Kahler metric. Since the RHS of (2.47) has regularity C3,

and A, is elliptic, then w has C% regularity. It follows, that (g,w) is smooth. O




CHAPTER III

QUANTIZATION OF KAHLER METRICS WITH CONSTANT WEIGHTED
SCALAR CURVATURE AND BOUNDEDNESS OF THE WEIGHTED MABUCHI
ENERGY

In this chapter we give the proof of Theorem 3 from the introduction. Our method relies
on the approach introduced by Donaldson [41,44] and developed by Li [72] and Sano—

Tipler [85], via finite dimensional approximations and generalized balanced metrics.

3.1 The (v, w)-equivariant Bergman kernels and (v, w)-balanced metrics

Let (X, L) be a smooth compact polarized projective manifold, where L is an ample
holomorphic line bundle on X and T C Aut(X, L) is an ¢-dimensional real torus acting
on the total space of L, which covers an ¢-dimensional torus action (still denoted by
T) in Autreq(X) = Aut(X,L)/C*. Let & = (£1,---,&) € t be a basis of S'-generators
of T and Aék) = (Agf), .. ,Ag)) the induced infinitesimal actions of &; on the finite
dimensional space Hj, := H°(X, L*) of global holomorphic sections of L* for k£ >> 1. For
a T-invariant Hermitian metric A on L with curvature two form w € 2we1(L) we have

(see e.g. [53, Proposition 8.8.2])
AL + V=1V, = km§i1dy, (3.1)

where V is the Chern connection of h*¥ := h®* and mf} is a w-Hamiltonian function
of &. Using the basis & we identify t = Rf and get a natural momentum map m,, :=

(mf}, ‘e ,mff) : X — R for the action of T on X with momentum image P := m,,(X).
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Notice that if hy := e 2®h is another T-invariant Hermitian metric on L with positive
curvature wy > 0, the corresponding momentum map satisfies mg =mf + (d°®)(&),
thus showing, by virtue of Lemma 1 3, that the image m4(X) = P is independent of
the metric hy. We thus have a polytope Py C t* associated to the polarized manifold
(X, L) and the lifted action T C Aut(X, L).

The spectrum of k~ 1A( ) is given by {/\ (£J /\(k) € Wi} where Wy : {/\gk), 7

s Nk} C A* is the ﬁmte set of weights of the complexified action of T on Hj and
A* is the dual of the lattice A C t of circle subgroups of T (see e.g. [9,16]).
Lemma 15. The set of weights Wy is contained in the momentum polytope Py, of the
action of T on (X, L).

Proof. This lemma is well known (see e.g. [9, Section 5], but we give the proof for
the sake of clarity. Let )\(.k) €Wy, & €& an Sl-generator for the T-action on X, and
(k) € Hj an eigensection associated to the eigenvalue /\ (5]) of k~ 1A(k) Using (3.1),

we have

k j k k k
NI (€) =)l e =67 AL 55508500 me = 1557 s

LR - 2B ).

At a point of global maximum x( of the smooth function |s§kl) |ik on X, we obtain

2P (&) = m (o) € Py

It follows that W), C Py. O

Using the weight decomposition of Hy,
P HOWY), (3.2)
)\Ek)GWk
and Lemma 15, for any smooth function v € C®°(Pr,R) we can define the operator

v(ETTAP)  Hy - Hy by

v(k1AY v(k~IA¥)1d (3.3)

gy =

HO®)
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Let h be a T-invariant Hermitian metric on L with curvature 2-form w € 2me;(L). We
identify the space of T-invariant Hermitian metrics hy := e~??h with positive curvature

forms wy with the space KT of T-invariant Kahler potentials ¢ on X.

For v € C®(Pr,Rs¢) we consider the following weighted L2-inner product on C®(X, L¥)
(5. o = " [ (5.8 hgv(me)uf.

where (s, )kp = h’;(s, s'). The operators (Ag‘,:))j=1,...’e are Hermitian with respect to
(*,")v ke Following [16,89,100], we have the following definition.

Definition 10. Let ¢ € KL, {s; | i = 0,---,Nx} be a (-, )y yg-orthonormal basis of
H and w € C*°(P,R). Then the (v, w)-equivariant Bergman kernel of the Hermitian
metric h’(; on L*, is the function defined on X by,

Ny
By (v, k) := v(my) Z (W(k_lAék))(si),si)kqs, (3.4)
=0

where w(k‘lAgc)) is given by (3.3).

Equivalently, By (v,k¢) is the restriction to the diagonal {z = 2’} € X x X of the
Schwartz kernel of the operator W(k_lAgk))Hl\fd’, where 1% L?(X,LF) - H denote

the orthogonal projection with respect to the inner product (-, )y k4.

Asymptotic expansions of (3.4) in k > 1 are known to exist in many special cases,
see e.g. [16,74,89,100]. For the general case, we will use results on the functional
calculus of Toeplitz operators which follows essentially from [25], with a ramification

from [38, 74, 75].

We start by recalling the definition and properties of Toeplitz operator (see [74, Chapter
7] and [25]).

Definition 11. Let ¢ € KT and v € C®(P,Rsg). A v-Toeplitz operator is a family
T®) .= T(v,ke) of operators T*) : L2(X, L*¥) — L?*(X, L) such that

Tk) — H’jd’f(k)l'["f‘ﬁ +R®),
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where

e fk) € C™(X,R) is a sequence of smooth functions which admits an asymptotic
expansion ijo k=7 f; in the C™-topology with f; € C*®°(X,R) i.e. for any d,£ > 0
there exist a constant Cy, > 0 such that for any k£ > 0

d
IF® =D k7 i llge< Cae/k™

=0

e R®) .= O(k=>) is a negligible v-Toeplitz operator, that is there exist a sequence
of r*) € C°°(X,R) such the R® = ITE%+(MII5? and for any j,£ > 0 there exist a

constant C}, > 0 such that

| 7% || ce< Cye/K.

We denote the space of v-Toeplitz operators by 7, and the space of negligible v-Toeplitz
operator by 7, N O(k~°).

A v-Toeplitz operator {T*)} € T, on L?(X, L*) we defined above is a Toeplitz operator
on L?(X, L* ® Ep), as defined in [74, Definition 7.2.1], where the twisting bundle Ey (in
the notation of [74]) is the trivial line bundle X xC on X, endowed with Hermitian metric
| ‘1B := v(mg)|-|, where || is the hermitian product of C. Using [74, Section 4.1.1], the
restriction to the diagonal {z = 2’} C X x X of the Schawrtz kernel of the projection
operator IT%? : L%*(X,LF) — Hy, seen as projection operator from L?(X,L* ® Ep) to

Hi, admits an asymptotic expansion in C*°-topology given by

% (z,z) =1+ SVTw) + O(k7?), (3.5)
where S, (¢) is defined by
Sy (4) = %(scal(,) 1+ 204 (log(v(ma)))), (3.6)

for any ¢ € KT. It follows from (3.5) that the restriction to the diagonal {z = z'} C

X x X of the Schawrtz kernel of a v-Toeplitz operator T¥) admits an asymtotic expansion




in the C*°-topology
@2m)"T®) (z, ) Zk ai(z) + O(k~), (3.7)

where a; € C*°(X,R) are smooth functions.
Definition 12. The full symbol map o : 7, — C*°(X,R)[[h]] with values in the algebra
of formal series with coefficients in C*°(X, R), is defined by
o(TW) =" ai(z)H, (3.8)
i>0

for any T®) € T, such that T®*)(z, z) is given by (3.7).

The following proposition is a simple application of [75, Theorem 0.2] to v-Toeplitz
operators.

Proposition 4. For any f,g € C®(X,R), we have Hic,‘tfl'lffd’gl'l{“,‘ﬁ € Ty, and the restric-
tion to the diagonal {x = 2’} C X x X of its Schawrtz kernel admits a C*-asymptotic

expansion given by
1
(2 fIPQTIE) (2, 2) = fg + [5(df, dg)g + Su(@) Fa] k™" + O(K™2),
where Sy (@) is given by (3.6).

For every f,g € C®°(X, ]R), we define the v-star product f %, g of f and g by
f*xvg ::a(H§¢fH"f¢gH§¢)
1
—fa+ b |3 do)e + S.(6)5] + O

We define the v-star product to C*°(X,R)[[#]], using the Cauchy product
s
(D_£i) e (D_g) =D (D fixv gaj) °
Jj=20 Jj=20 520 j=0

The unit 1,, of (C*°(X,R)[[A]],*v) is given by the symbol O‘(Héd)).

Theorem 9. The full symbol map o : (Ty,+,0) = (C®(X,R)[[A]], +, %) defines an
isomorphism from the algebra Ty of v-Toeplitz operators modulo the ideal of negligible
operators T, NO(k~), into the algebra C°°(X,R)[[h]] endowed with the associative star

product *y.
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Proof. The fact that o : 7, — C*(X,R)[[A]] is surjective with kernel 7, N O(k~>)

follows from (25, Proposition 3]. .
Proposition 5. Let (Tj(k))j:l,‘.. £ be a family of (-, -)y ke-self adjoint commuting Toeplitz
operators, such that the set of joint eigenvalues of (Tj(k))jzlyg s contained in P. Suppose
that the symbol of Tj(k), j=1,---,f is given by

o(TM) = 3" hifP e °(X)|[n]).

>0

Then for any smooth function w with compact support containing P, the operator W(Tl(k), R Te(k))

18 a Toeplitz operator with symbol
a(w(Tl(k), e ,TZ()C))) = so(v,w) + s1(v,w)h + O(h?),
where so(v,w),s1(v,w) are given by
so(v,w) =w(fg", -, 15),

s1(v,w) =w(f$D, -, £0)S0( ¢>+Zw B - 15950(9))

71=1
¢
1 ? . .
3 Z SISV A df) g

with Sy(¢) given by (3.6).

Proof. In the case of one (-, -} kg-self adjoint Toeplitz operator T' (*) and a smooth func-
tion of one variable w, the fact that W(T(k)) is again a Toeplitz operator is established
in [25, Proposition 12|. The proof given in [25| relies on the Helffer-Sjostrand formula,
see e.g. [38, Theorem 8.1]. Using its multivariable generalization [38, Equation 8.18] the
proof in [25] readily generalizes to show that w(T l(k), - T, Z(k)) is a Toeplitz operator
for any smooth function on P, and family of (:,-), rs-self adjoint commuting Toeplitz

operators (Tj(k)) j=1, ¢ such that the set of joint eigenvalues of (Tj(k))jzlyg is contained

in P.

We shall now compute the symbol of the Toeplitz operator W(Tl(k), e ,Tz(k)). Following
[25], the symbol of W(Tl(k), e ,Tg(k)) is given by the Taylor series expansion of w at the
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point a = (f, (1)( ), - ,foe)(x)) = f(J)(z) as follows:

j=1 i>0

e .
o(w(TP, -\ T?)) = w(a)l., () + > w;(a) (Z R 9 (y) - agl,, (y))
ly==z

o Z W pq(@) (Z K P (y) - apl,, y)) (Z B (y) - aql*v(y)) +o
ly==

p,q=1 >0 i>0

(3.10)

On the other hand, we compute

(Z BEP W) = apla, (1)) * (Z OB RO

= ((fé”) (v) — ap) + h(FP () - sv<y)>) w ((870) — ag) + (P @)~ Suw))) _ +OR)
() = ap) % (F0 W) — ag)y=e + H(FE () — ap) (fP(z) - Sy (2))
+ h(f§2 (@) — ag) (fP () - Su(2)) + O(R?)

h
=5 (A, dfg?)s + O(R).

=T

Substituting back in (3.10), we obtain the symbol o(w(Tl(k), e ,T(k))) up to O(R?). O
Lemma 16. For any £ € t, we have

TV = kAP e T,

Proof. This follows from the fact that

5% (v(m )dmb)
(k) _ 1qko [ € ¢/7" ke
T; I3 <m¢ + 2 (me) 5%,

where ¢ is the gg-codifferential. To get the above equality, using (3.1) it is enough to

check that for any s € Hy we have

6¢(v(mg)dmS)
Vos, S>v,k¢ - <Ws’s>v,k¢'

(ko Ve

The above equation follows from a straightforward integration by parts. O
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Theorem 10. Let w € C*°(P,R). The (v,w)-equivariant Bergman kernel of the T-
invariant Hermitian metric hg on L* admits an asymptotic expansion when k > 1,
given by

w(m 1
(27)" By (v, k¢) = (mg) + O(z),

v(mg) + 7xScaly (¢) + O(7), fw=v. '

Moreover, the above expansions holds in C*°, i.e. for any integer £ > Q there exist a

constant Cy(v,w) > 0 such that,

2 B, ) = wlme) | o < S22,
|23,k = vimg) - goscan o) < o,

Proof. Since the symbol map o is surjective with kernel given by the ideal of negligible
Toeplitz operators O(k~>) N T it suffices to calculate o (w (k‘lAék))Hléd’). We consider
the special case of (-,-)y gg-self-adjoint v-Toeplitz operators Tj(k) = k—lAéf)H5¢. We

have
Ni
k - k
Tj( )(x,a:) = v(mgy) Z (k IAS. )si, si)k¢.
1=0
By a straightforward calculation using (3.1) the symbol of Tj(k) is given by

14

k ; ; 1
o(TF) = m§ + [m§ 5.(¢) — 5 D (logov).a(my) (€, &)s | b
=1
Using Proposition 5 we get
o (w(APYIE) = so(v,w) + s1(v,W)h + - -

where

so(v,w) =w(mgy),

.-lkl'—'

£ £
Sl(V,V) =V(m¢)5 - Z M 51,,5] Z Viij qu gu‘ﬁj)

v(mg) —

Replacing Sy (¢) by its expression (3.6), we obtain s;(v,v) = Scal, (¢). a




59

Definition 13. We define the v-weight of the action of T on Hy by
Wy (LF) == tr(v(k714P)). (3.11)

Lemma 17. The v-weight of the action of T on Hy admits the following asymptotic

erpansion

n—1

(2m)" W (LF) = k™ /X v(mo )l + ¥ /X Scal, (W)ol™ + O(™2).  (3.12)

for any smooth function v with compact support containing P.

Proof. This is a direct consequence of Theorem 10, by letting w = v in (3.4), and
integrating in both sides over X. O

3.2 The quantization maps

Let W), denote the set of weights for the complexified action of T on ;. We consider the
following direct sum decomposition of the space BT(Hy) of T-invariant positive definite
Hermitian forms on Hy,

Hk) @ B'JI‘ /\(k))

AP ew,

where BT(’H()\Z(k) )) is the space of T-invariant positive definite Hermitian forms on
HO®)
Definition 14. Let v € C®(P,R59), w € C*(P.,R). We introduce the following

quantization maps:

1. The (v,w)-Hilbert map Hilb"f’w : KT — BT(H,) which associates to every T-
invariant Kéahler potential, the T-invariant Hermitian inner product on Hy, given

by
(('7 '>v,kd))|7{k()\£k))

k v,w !
() - 2w (a)

(HilbY , (#) () == Y

AP ew, ¥
where c¢(,w)() is given by (2.6) (Notice that for & big enough the expression

v()\gk) ) — 5“—’2’,i(—azw(/\§k)) > 0 since v > 0 and w are bounded functions on Py ).
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2. The (v, w)-Fubini-Study map FS&W : BT (Hy) — KT given by

Ni.

1 log(ck(v,w

Pk, (H) = 5. log <2 lsi|,%k> - lglarlvw))
=0

where {s;} is an adapted H-orthonormal basis of Hy and cx(v,w) is a constant
given by:

1

w) (a)
k™ [y v(mg)wln

(v,
cr (v, W) 1= [WV(Lk)— (4k

Ww(Lk)] , (3.13)

with W, (L¥) the v-weight of the action of T on L* given by (3.11).
Theorem 10 yields
Lemma 18. For ¢ € KT, the Bergman kernel py (k®) of Hilby w (ko) satisfies

pv,w(k¢) = Bv(va k¢) - C(V+I)C(Q)Bw(v,k¢)a

and has an asymptotic expansion,

(2m)"py w(ko) = v(mg) + lel; (Scaly(¢) — c(v.w)(@)W(mg)) + O (%) .

The above asymptotic expansion holds in C*, i.e. for any integer £ > 0 we have,

< CZ(V7W).
ce K

H(Qﬂ)npv’w (k¢) — V(m¢) - i (SC&IV ((;b) = C(v,w) (a)w(m¢))’
where Cy(v,w) > 0.

Following [41,85,101], we give the following definition

Definition 15. We say that a metric ¢ € K" is (v, w)-balanced of order k if it satisfies:
FS} , o Hilb} . (¢) = ¢.

or equivalently
pv.w (k@) = cx (v, w)v(mg),

where ci(v,w) is given by (3.13).

Similarly to [41,42] we have
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Proposition 6. Let (¢;);>0 be a sequence in K, such that every ¢; is a (v, w)-balanced

metric of order j and ¢; converge in C™ to ¢. Then wy is a (v, w)-cscK metric.

Proof. By Lemma 18 for £ > 1,

|01 (h65) = vOm,) — 2 S (05) = cumewlrns, )| < ZE¥,
ce
Letting j = k, we get
n 1 Co(v,w)
' (2m)" ek (v, w)v(mg,) — v(mg,) — 4—k(scalv(¢k) — ¢y ) (@)W(mg, ) » S—f0
(3.14)

From (3.13) and Lemma 18 we get
(%WAMWMWWW
/ v(my,) (k)
X

=14+ 0O(k™?).

2m)"ep(v,w) =

Taking a limit when & goes to infinity in (3.14), we obtain that Scal, (¢) = c(y w)(@)w(my).
O

3.3 Boundedness of the (v, w)-Mabuchi energy as an obstruction to the existence of
(v, w)-cscK metrics

In this section we prove Theorem 3, following the method of [42,72,85]. To this end,
for each k > 1, we introduce appropriate functionals on the finite dimensional space
of Fubini-Study metrics on P(H}), which when identified with a subspace of KL, via
the Kodaira embedding, will quantize the (v, w)-Mabuchi functional of a = 27¢;(L).
Furthermore, following the main ideas of [42,72,85|, we will show that the (v, w)-balanced
metrics are minima of these functionals, and that a Kéahler metric with constant (v, w)-
scalar curvature induces almost (v, w)-balanced Fubini-Study metrics on P(#;;) for k£ >

1, i.e. minimizes the corresponding functionals up to an error that goes to zero.
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331 Quantization of the (v, w)-Mabuchi energy

We start with introducing finite dimensional analogues of the (v,w)-Mabuchi energy
(2.19), given by (3.21) on the spaces BT (Hy) and FS’(C\,,W) (BT(Hk)) (see Definition 14),

respectively, thus setting the framework for the proof of Theorem 3 along the lines of

42,72, 85).

We introduce the functional £¥, : BT(H;) — R by

K _ )y Com) (@) k)
SV’W(H)_WZW (V(/\i ) — L )) log (detH/\Ek)). (3.15)
i €Wk

where H := (H/\gk))/\gk)ewk € BT(H,).
Lemma 19. 1. We have the following expression for the variation of 2k™ (v, w)&y

(see Lemma 3) and EF ,:

n+l. (v w h) =2kcr (v, w ; éﬂvm wg) ™
2™y (v, w) (dE,), () =2kei (v, )/X¢(1+ 2k> (mig) (husg) (3.16)

— (v, W) /X (d, d(log ov(me)))gv(me) (k) ™,

: Cv,w (a) — g
(debu), (B = 32 (v = E=wO) )oH G By, (37)
/\Ek)GWk '

where ¢ € KX and H = (H/\(k))/\(k)ewk € BT(Hy).

2. The second variation of £, along a path ¢; € KL is given by

d2 . .

T8 = [ (6= 1) vima . (3.18)
3. For ¢ € KT and k > 1, the functional £, is concave along the path (#x(t))tecio,1) of
KT given by:

Plvw) PP (V’W)(k‘ﬁ)). (3.19)

or(t) =+ 2—% log ( v(meg)
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4. The variation of (v,w)- Hzlbert map Hllb‘,W is given by,
(amibf,, ), (@)(s.5) =
s L (s, 8 OF))uo[2kd — (d(log ov(ms)), dB)s + Agdlv(mis) (k)™
AP W, v(OP) - L@y ()
(3.20)

where ¢ € KX and s,s' € Hy, admitting decompositions adapted to (3.2)
k k
s = Z/\Ek)GWk 3(/\1( )), s = Z)\Ek)GWk S/(/\l( ))

Proof. 1. The expression (3.16) follows from

2kck (v, w)/ (1 + —) V(m¢)(kw¢)["]
=2kck(v,w)/X¢v(m¢)(kw¢)[n] +ck(v,w)/}(¢A¢(v(m¢))(kw¢)[n]
—2k™ (dE,), (6) + ck(v,w) /X (4, d(v(mg)))o (kg™

=2k™*1 (d€y) 4 () + cr(v, W) /X (dé, d(log ov(my)))sv(me) (kwge) ™,

in the second line we integrated by parts in the second integral. The variation of S\’,“Yw

follows from the calculation

k N d & ) .
(agk,), t==2 _ Eu(H el
¢ V,W a d .
=Y (v(/\f'“)) _ %W(A§k>)) —| log (det (H, +tH)\(k)))
t=0 : i
AR ew,
v,2w d
= > (vo®) - %w(xg’“)) gi| det (14, +tH § Hw)
t=0 i
A®ew,

=y (v(/\,(k))—c(v—’zlw])c(—alw(/\gk)))t( (k) ("))

Agk)GWk
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2. Let ¢y € K, we compute

dtzg v(0) = / ¢tV(m¢t)W[n]
=/X¢tw /¢t(d¢t, (mg,) )du /¢t(A¢t(¢t))v(m¢t)w
= [ (b= 1ddul, ) vimeol

This completes the proof of (3.18).
3. The second variation of &, along the path ¢ (¢) is given by

2k u(oult) = - | |aiog (”‘35;(:@)

showing that &, is concave along the path (¢(t)):co,1-

v(mg, ) )wgﬁ(t) <0,
or(t)

4. For ¢,¢ € KT and s,8' € Hi admitting decompositions adapted to (3.2) s =
k k
Zz\gk)eWk 5(/\1(‘ )), s = Zkgk)ewk 5’(/\1( )), we have

s’ (/\Ek)))k(¢+t¢'>)v(m¢+t<£) (kw¢+t¢)[nl

. Jx(s(OAF,
Hilb® , (¢ + t)(s, s") =
! 2 v(A(F)) — Ganle) g\ (k)

AR ew,

using the fact that

d

d o
a (S(Az(k))v SI(/\Z(k)))k(‘t,_Hq},) = E e 2k(p+to) hk (s(/\l(k)), 8/(/\z(k)))
t=0

t=0

= (~2k$) s\, S A)) kg

the equation (3.20) follows from a straightforward calculation. O

We now consider the functionals E"iw KT - R and Z"f)w : BT (Hy) — R defined by

Lk = EF o HilbE | + 2k e (v, w)Ey,

’ (3.21)
zE =2k (v, w)E o FSE L+ EF

where E‘lfyw is given by (3.15) and &, is given in Lemma 3. In what follows we will relate

these functionals to the (v, w)-balanced metrics, similarly to [43,72,85], and we will show

that they quantize the (v, w)-Mabuchi energy.
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Proposition 7. The (v, w)-balanced metrics of order k are critical points of the func-

tional E"i’w. Furthermore, there exist real constants by such that,

2
lim [Fﬁ“f’w + bk:| = Mv,w,

k—o0

where the convergence holds in the C*®-norm.

Proof. Let {s,,(/\z(-k)) | /\gk) € Wg, y=1,--- ,n(/\gk))} of Hi, be a Hilbfyw—orthonormal
basis adapted to the decomposition (3.2). Using (3.17) and (3.20) we have,

d (e, o Hilb\’f,w)d) )

n(/\(k))
—— T % /m )2, (266 — (d(og ov(me)), d)s + Dgdlv(mig) (ki)™
AWew,, =1

= [ pun()(2k — (d10g ov(me)). 48 + Agd (k)"
—— 2 [ 4 (1 ¥ ﬁ,j) o 8) () )+ [y () 105 0¥(m), 48 (bise) .
By (3.16) we get
(d‘c\k/:,w)qb (¢) = 2k/;{ ¢ (1 + ?k) [pv w(k¢) - Ck(V W) (m¢)] VOlkw¢
+ [ lpun(k0) = uv,w)v(me)] (d10g ov(me), d)g(hice) .

From the above expression it is clear that a (v, w)-balanced metric of order k is critical

point of £% . By the asymptotic expansion in Lemma 18 we get
- [ous(k8) = cutv. wyv(me)] (dlog ov(me), d)o(huse) ) = O™,
and
2k/ (1 + —) [(v.w) (k@) — ek (v, w)v(my)] (kwg)™
_ok” / (Scaly () — ey (@)w(me))duws™ + OF™)
—2k™ (A M), (9) + O(K™Y).

The proof is complete. O
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Lemma 20. For all ¢ € K, we have (in the C® sense),
lim k" [E'\f’w(gb) -k, qulb’j’W(qﬁ)} =0. (3.22)

k—o0

The functional Zf,w is convex along the geodesics of BT (Hy).

Proof. Using (3.21), we get

K [£5,0(6) = 2, o Hilbk 1, (9)] = - 2ker(v, w) [, (FSE , o HilbE (9)) — Evw(9)]

= — 2ker (v, w) [Ey (dr(1)) — Ev(6%(0)))]

where ¢ (t) € KT is the path given by (3.19). Using that & (éx(t)) is concave (see

Lemma 19), we deduce

V,W k
K [z:’v“,w(aﬁ) —Zk o Hﬂb’:,w(aﬁ)] > —2ke(v,w) (d&y) (o) (% log (M ))

v(mg)
L [ Scal(9) — evw(@)w(mg) n)
4k Jx V(m¢) -

where we used the following smooth expansions to get the second line (see Lemma 18)

Wty =Wp + O(k™2)

wg;](t) :wgl] + Ok

Mg, () =mg + O(k™2)

d (%ﬁg@) L (Sl —eonlainlne)) | s

On the other hand

o [c’i,w(d»—Ziionnb’:,w(as)] < —2ker(v,w) (dE€y) g, ) (%log <pv,w(k¢))>

v(me)
1 / Scaly (¢) — ¢y w(@)W(mg) [n]
~ —_— w y
4k Jx v(mg) ¢
which completes the proof of (3.22). a

Lemma 21. The functional Z"f’W is convez along the geodesics of BT (Hy,).
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Proof. We follow closely the arguments of [44, Propostion 1] and [85, Propostion 3.2.3].
Let H(t),t € R be a geodesic in BT (H}) such that h = FSE)W (H(0)). For a choice of an
H (0)-orthonormal basis of H;

{S’Y()‘gk)) | /\Ek) eEWg, v=1,--- ’n(/\gk))}y
adapted to the splitting 3.2, we have the following expression for H(t),

- ()
i €Wk

with A(/\gk)) = diag(au,()\gk)))w___1 NCN a;(A) € R and tr(AA,(/\Ek))) = 0. We consider
the family of Kéhler potentials given by ¢(t) := FS¥ | (H(t)). The collection

—ta'y()\(

T 00) AP e Wi, v =1, 00
is an H (t)-orthonormal base of H; adapted to (3.2). So we have
Z§ W (H(2)) = 2™ e (v, w)Ew (8(2)).

By (3.18), we get

d2
dt? |,

k = 2" ep(v, w b — |do|2 ) v(my)w!™.
ZEu(H(0) =2 ae,w) [ (6= 1492) v(m.)

Using h = FSE’W (H(0)), we obtain

n(AF)

> 2 IO =1

/\gk) eWg =1

It follows that

n()\(k))
b= —5 2 > aOs0k
(’”ew =1
n(AF) n(A(®)

b= 5] 2 w00k -( X3 «0®)s0®E)]

AB ey, =1 AW ew, =1
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We compute,

1 d?
kreg(v,w) dt?

- / —2k|dd v (my, )l
X

n(A®)

k k n

33 4,005,002 (my)wl
APew, =1
(k)

/ ( 2 z CRIENEN k))lh) v(my,)w™

APew, =1

Z{ W (H(1))
t=0

X

n(AR))
- XX / [4VE(8, 75, () - (a,(A) = aVEd)s, (\) ikV(mw)w["] > 0.

A ey, 7=0

To get the last equality we used that for any smooth function ¢ on X, we have (see

[44, Proposition 1))

n(A®)
vez=2 3 3 |(ve. s,
(k)eW y=1

Corollary 7. A (v,w)-balanced metric of order k minimizes the functional Zé“v w) on

BY(Hy).

Proof. We show that (v, w)-balanced metrics of order k are critical points of Z é“v w)' Let

H(t) be a geodesic in BT(#y) as in the proof of Lemma 21, such that h = FS% _(H(0))
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is (v, w)-balanced of order k. We have

-1 d

- ¢ k
2k"+1ck(v,w) dt 0 ZV,W(H(t))
(AR
k k "
= / > > aOMls ) hvim )l
X xFew, =1
n(A*)) (@)
k v,W k k k
= 33 (v - 2w 0))ay 00) 5y It ess oy
A\Few, =1
cvw) (@) k &
= > (V(/\Ek))—%w(x\g )))tr(A(Ag ") =0,
)\gk)EWk

where we used that H is (v, w)-balanced Hilb"fyw(FS"f’w(H)) = H and (s.,(/\z(k))) is an
H-orthonormal basis of Hy. Thus, H is a critical point of Z"fw and by the convexity,

we deduce that H is a minimum. O

Now we suppose that KT contains a (v, w)-cscK metric ¢*. We will show in the following
proposition that the metrics Hilbé,w(qb*) are almost balanced in the sense that they

minimizes Zk up to an error that goes to zero.

v,W)

Proposition 8. For all ¢ € K7, there exists a smooth function es(k), such that klim eo(k) =
—00
0 in C*(X,R) and,

k" ZE, o HilbE (¢) > k™" ZF o HilbE  (¢*) + e4(k).

Proof. We denote Hy, = Hllbk () and H} = Hilb¥ w(¢*). For a choice of an adapted

H,:-orthonormal basm {37(/\,510))|/\§k) EWr,y=1,--- ,n(/\gk))} of Hy we can write
. k . k

= diag(e*™) . @ With AOM) = diag(a, (A D) senx®y tr(A(A®)) =0, and

consider the geodesic that joins H}; to H,

. ®
Hi(t) = diag (etA(’\t )>A(.k)eWk .

Let Py(t) := Z"f’w( Hi(t)). Pi(t) is a convex function by Lemma 21. It follows that,

K (28, (Hi) — 28 (H)) 2 k™" PL(0).




70

Letting e4(k) := k™™ P;(0), we have

; n k¢*) )
PL(0) = 2k™1 ¢ V,W/ v(mg )™ = —cp(v, w)k™ pal M) )Wgs s
£(0) (o) [ dvimen i) = —eue i [ LAEE ym
where
n(AM)
= 5 Y ¢, 0F)wmg)ls, AP 2 (3.23)
/\Ek)GW y=1

By Lemma 18, since ¢* is a (v, w)-cscK metric we get
Py (k™) = v(mge) + O(k™2), (3:24)
and therefore we obtain
PUO) = —en(rowk™ [ pa(ken)O0s )l
We have
O = 5,0) |1,

v,w n 2
—n Z (V(/\gk)) ¢ 4;6 /\k) /Is7 v (me) g[b] (3.25)

AR ew,

As hf; = e‘2k(¢*_¢)h§*, there exists a constant Cy > 0 such that
e~ KCopk, < hk < eCopk,. (3.26)

By the fact that v(mg)/v(mg«) is bounded by positive constants (independent from ¢),
and w([b"] /w([;] is bounded by positive constants depending only on ¢, using (3.26) we

obtain from (3.25) the following estimate
~2C4k + Bl < a, (W) < 2C4k + By, (3.27)

where Bd,,B; are real constants depending only on ¢, ¢*. We derive from (3.23) and
(3.27) that,

(—2Csk + Bg)pv,w (k") < pa(kd™) < (2Cpk + By)py,w (k™).
Using (3.24) we infer

(—2Cgk + By)v(mg:) + O(k™") < pa(k¢*) < (2C3k + By)v(mgs) + Ok,

which shows that lim e4(k) = 0. |

k—o0
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3.3.2 Proof of Theorem 3

Now we are in position to give the proof of Theorem 3 which is very similar to [85,

Theorem 3.4.1].

Proof. Let ¢* € KT the Kahler potential of a (v, w)-cscK metric. For any ¢ € KT, by
Corollary 7 we have

LEu(®) = Z&y(Hilbyw(kg)) + [£5,(9) — 25, (Hilb (ke))]
Z5 o (Hilby o (k6")) + K™ (k) + [ £5,(9) — 2., (Hilby  (k4)]

v

Thus,

2 2 \ 2 . . .
SLEL (@) F b 2 L (97) + bt o [ 2 (Hilby o (k6%)) - £5,(67)]

2 [5(6) — 25 (Rl ()]

+6¢(k) +
Using Proposition 7 and Proposition 8 together with Lemma 20, by letting k£ go to
infinity we get,

Myw(8) = Myw(¥).

3.3.3 A momentum map picture for the (v, w)-balanced metrics

There is a natural extension of the momentum map interpretation of balanced Fubini-
Study metrics given by S. K. Donaldson in [41] to (v, w)-balanced metrics. Indeed, let
us identify BT(H;) with the space of bases of H;, compatible with the splitting (3.2),
and denote by AutT(X, L) the centralizer of T in the Lie group of automorphisms of the
pair (X, L). Let 6; denote the group representation of AutT(X, L) in GL(Hy), given by

Ok(0)s := g osop(o)t,

where p : Aut(X,L) — Auteq(X) is the natural projection. For each k we have the

following group actions on BT (#Hy):
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e C* by scalar multiplications;
o AT =9, (AutT(X, L));

(k)
° QE = {g € H/\gk)ewk U(’Hk(/\gk))) | H}\Ek) det(g/\gk))ki (v,w) — 1}7 where we de-
note (" (v, w) 1= v(A{")) — 2@w ().

We consider the quotient space,
2T (1) = B ) / (c* x A7),

on which we have a natural action of g}j. The quotient ZT(’Hk) carries a natural Kahler

structure, defined as follows:

e The multiplication by v/—1 defines an integrable complex structure on BT(H)
invariant under the action of C* x A7, so it descends to a complex structure J gc)

on the quotient ZT(Hy).

e There is a natural Kéhler form on BT (H;) given by

o) = dd° zk

v,w?

where d° := ch)d. The form wgc) is invariant under the group actions of C* x A}Cr

and GF, so it defines a Gf -invariant Kéahler form on ZT(H).

We endow Lie(G7) with the pairing
k Cy wlQ k
(@, v = 3. (V(Ag )y — %m ) )) tr (awb’;@) ,
At(-k)€ch : :
and identify Lie(GF) with the dual vector space by using (-, )y w. For any a € Lie(G})
we denote,
<(J,, Id)v,w,k

=g — b Cvwk g
(a)o = (Id, TdYy v

The action of G on ZT(H,) is Hamiltonian with wfzk)—moment map Eﬁk& 2T (Hy) —

Lie(gg) given by

wP(s):=v-1| D (Hilb’j’W (st’w(s)) (s, (A, Sn(/\,(k))))

AR ewy,

)

ym=1 »n(’\gk))
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where n(/\gk)) = dim(?—l()\gk))) and for any s € BT(H;) we identify s with the unique
positive definite Hermitian form so that s is orthonormal. Thus the zeroes of the moment

map E\(,ka, are the (v, w)-balanced elements of ZT(#,,).






CHAPTER IV

WEIGHTED K-STABILITY AS AN OBSTRUCTION TO THE EXISTENCE
KAHLER METRICS WITH CONSTANT WEIGHTED SCALAR CURVATURE.

We are going to establish in this chapter Theorem 4 from the introduction.

4.1 The (v, w)-Futaki invariant of a smooth test configuration

Let X be a compact Kahler manifold endowed with an ¢-dimensional real torus T C

Aut,eq(X) and a Kahler class @ € H%!(X,R). Following [37,46,47] we give the following

Definition 16. A smooth T-compatible Kéhler test configuration for (X, ) is a compact
smooth (n+1)-dimensional Kihler manifold (X, .A), endowed with a holomorphic action

of a real torus T C Autreq(X) with Lie algebra t and

e a surjective holomorphic map 7 : X — P! such that the torus action T on X

preserves each fiber X, := 771(7) and (X1, A, T) = (X,o,T),
e a C*-action p on X commuting with T and covering the usual C*-action on P!,

e a biholomorphism

A X\ Xo~ X x (P'\{0}), (4.1)

which is equivariant with respect to the actions of G := T x S}, on X\ Xo and the

action of G :=T x S! on X x (P'\ {0}).

In what follows we shall tacitly identify T with T and G with G.
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Definition 17. A smooth T-compatible Kihler test configuration (X, A, p,T) for (X, a, T)

is called

o trivial if it is given by (X = X x P, Ay = nxa + mp1{wrs], T) and C*-action

po(7)(z,2) = (x,72) for any 7 € C* and (z,2) € X x PL.

o product if it is given by (Xprod, Aprod, Pprod, T) Where Xproq is the compactification
(in the sense of [80,97], see also [20, Example 2.8] and [79, p. 12-13]) of X x C
with C*-action pyrod(7)(2,2) = (px(7)r,72) where px is a C*-action on X and

Aprod is a Kahler class on Apr0q Which restricts to o on X1 = X.

Let (X,.A,T) be a smooth T-compatible Kahler test configuration for (X,a,T) and Q €
A a G-invariant Kahler form. The action of T on X is Hamiltonian with 2-momentum
map mq : X — t*, normalized by mq(X;) = P, where P is a fixed momentum polytope

for the induced T-action on X; = X.

For any 7 € C*, we denote by
Q= Qx,, U =wand w; = p(7)" L, (4.2)

where p(7) : X1 & X, is the restriction of p(7) € Auteq(X) to X;. The action of T on
X is Hamiltonian with Q,-momentum map (mgq)x,. Pulling the structure on X, back

to X1 via p(7), we get a wr-momentum map for the T-action on X, given by

m; =maq, o p(T). (4.3)
Lemma 22. For any 7 € C*, we have

mq, il = mewlt = mywl™.

Xr X1 X1
It follows that P, = P for any 7 € C*, where P := mq(X;) = m.(X1) is the momentum

polytope of the induced action of T on X; and 0 == Qx, .

Proof. Since  is S},-invariant, the following integral depends only on t = — log ||,

ma, QM = | mel = [ me(w+ ddo)M.
Xr X, X,
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Let V, be the generator of the S},-action. By (4.3) we have

d

d " ¥
7 = Zmacely,) = (¢lv,) ([dma, TV,)a = =(¢lv,)" (dma, dh¥)a,

where J denotes the complex structure on X, ‘P.tjv,, = p(e™?) is the flow of JV, and h?
is a 2-Hamiltonian function for V,. On the other hand, we have ’

d * * *

A1) = (P7v,)" Lav,Q = —(¢l7v,)" ddR".
It follows that

d
ol [n] & * [n]
it Jx. MW =— . m,((p(1)*)x,)

—— [ ((dma, dr)a)ye, O~ [ o, dahfy Aol
Xr Xr i
=~ [ (dma, w95+ [ ma B, (i, )
T /x ((dma, dh®)q) x, U + /X (dma, ,dhfy )q QU =0,

where we have used that ((dmq,dh?)q)x, = (deT,dhf XT)QT since the symplectic
gradient of mg : A — t* is given by the t-valued fundamental vector field for the
T-action, and thus is tangent to the fibers. It follows that

m.,w[T”] = mywl™.
Xl Xl

Since mgq : X — t* is continuous it follows from Lemma 22 that mq(X) = P.
Definition 18. Let (X, A, T) be a smooth T-compatible Kahler test configuration for
the compact Kahler manifold (X, ) and v € C®°(P,Rs¢), w € C*°(P,R). The (v,w)-
Futaki invariant of (X, A, T) is defined to be the real number
Fow(X,A) = — / (Scaly () — ¢(y w)(@)w(mg)) Q"+
X
(4.4)
+ 2/ v(mq)m wrg A Qnl
X
where © € A is a T-invariant representative of A, wrg is the Fubini-Study metric on P!

with Ric(wps) = wrs, and c(y,w)(e) is the (v, w)-slope of (X, @) given by (2.6).
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Remark 6. 1. By Lemma 2, (4.4) is independent from the choice of a T-invariant
Kahler form Q € A. For v = w = 1 we also recover the Futaki invariant of a

smooth test configuration introduced in [37,46,47].

2. It is easy to show that

2/ v(mg)m*wrs A Qlnl :2/ v(mg)m*wrs A ol
x X\Xo

=2/ (/ v(mQT)Q[T"]> WFS
P1\{0} \JX,

—2vol(P!) ( /X v(mu)l™)

1

=(87) /X v(mw)w[n],

where for passing from the second line to the third line we used that p(7)*€; and
w are in the same Kahler class A|x, on Xi, see Lemma 2. Thus, we obtain the

following equivalent expression for the (v, w)-Futaki invariant
Fo (X, A) = — / (Scaly () — c(yw)(@)w(mg)) Q1)
X

(4.5)
+(87r)/XV(mw)w["].

3. It is easy to compute the (v,w)-Futaki invariant of the trivial test configuration
(Xo,Aop) (see Definition 17), using that for a product Kéhler form Qg := 7w +

Tpwrs we have Scaly (€) = Scaly (w) 4 2v(my,), then (4.4) reduces to
Fow(Xo, Ao) = —477/ (Scaly (w) — c(v,w)(a)w(mw))w[nl.
X
Definition 19. [36,47] We say that (X, «,T) is

1. (v,w)-K-semistable on smooth Kahler test configurations if Fy (X,.4) > 0 for
any T-compatible test configuration (X, A, T) of (X,a,T) and Fy w(&Xp, Ag) =0

for the trivial test configuration (Xp,.Ag).

2. (v,w)-K-stable on smooth Kéhler test configuations if it is (v, w)- K-semistable and
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Fow(X,A) =0 if and only if (X, A) = (Xprod, Aprod) is a product in the sense of
Definition 17.

Following [37,46], there is a family of T-invariant Kahler potentials ¢, € KI(X1), T €
C* C P! given by the following lemma.
Lemma 23. Let 2 € A be a G-invariant Kéhler form on X.

1. On X* := X\ Xy we have
Q=+ dd°d, (4.6)

where @ 1= (mx o A)*w with A the map given by (4.1) and 7x is the projection on
the first factor of X x (P \ {0}), and ® is a smooth G-invariant function on X*,
such that for all T € C*,

¢r == p(7)*(®)x,) € KL(X1), (4.7)

satisfies

wr —w = dd¢-,
where we recall that w, is defined in (4.2).

mg = m?z — (d°®) (&), & € t is a moment map of & restrected to a fiber X, for the
T-action on X*, satisfying mg(X*) = P.

Proof. (i) Using [46, Proposition 3.10] we can find a smooth function ® on X* such that
Q =& +dd°® on X*. Taking the restriction of the latter equality to X, (7 # 0) we have
Q, = p(r71)*w + dd°(®|x, ), pulling back by p(7) yields w, — w = dd°¢,.

(ii) By the relation (4.6) and the fact that the action of T preserves the fibers we obtain
that me = m‘é — (d°®)(€) is a momentum map of (X;,&x,). It thus follows from

Lemmas 1 and 22 that mg(X,) = P. O

The main result of this section is the following theorem which extends the results from

[37,46] to arbitrary values of v, w:
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Theorem 11. Let (X, A, T) be a smooth T-compatible Kihler test configuration, for
a compact Kahler manifold (X,a,T) and v € C®(P,Rsg), w € C®°(P,R) are weight
functions. If the central fiber Xo is reduced, then

tim Me(@) _ gz v a),
t—+o0 t ’

where ¢y == ¢, with T = e~ is given by (4.7). In particular, if My , is bounded from

bellow, then F, (X, A) > 0.

Before we give the proof we need a couple of technical lemmas.

Lemma 24. Under the hypotheses of Theorem 11, we have

lim Eul2t) :/ w(mg)Qrt1l, (4.8)
X

t—+o00 t

Proof. We will start by showing as in [37,46, 92| that,
e (w(m@) Q) = dd°€,, (6r) (4.9)

on C* C P!, in the sens of currents. From the very definition of the functional &, (see

(2.20)) we have

euo) = [ ([ omvimes ol ) de

/01 (/x ¢rwlems + (1 — eJmy)(ewr + (1= e)w)[n]) de
N /o1 (/T((I)W(mﬂe)QL"]th) de

where Q¢ := eQ + (1 — €)@, mq, := emq + (1 — €)my, and @,  are given in Lemma 23.

It thus follows that £ (¢,) extends to a smooth function on P!\ {0}. Let f(r) be a
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smooth function with compact support in C* C P!. Letting f := 7* f we have

(@6 (6. ) = | 1 ( |arso [ T (@w(mmmL"mx,) de

=/ (/X dw(ma, )ddcf/\Q["]) de

®df A d°w(mg,) A QM ) de

-~ . nal)

/0 ( w(mgq,)df A d°® A Q["]> de (4.10)
/0 1 ( ®df A d°w(mq,) A QL"I) de

/0 ( fw(mg,)dd°® A Q["]) de

/ ( ” fdw(mq,) A d°® A QL"]> de

The first integral in the last equality vanishes. Indeed, for a basis (£;)i=1,... ¢ of t we have

l
df Adew(mg ) AQIM =" wi(mg,)(df)(m&)QMY = o,

i=1
since the action of T preserves the fibers of X — P!. For the remaining integrals in the

last equality in (4.10), integration by parts in the variable € gives
1
/ ( fw(mgq, )dd°® A QL"]) de
0 x*
! ; d
=/ ( fw(mgc)——QL”H]) de (since Q¢ := & + edd°®)
0 X* d€

1 [ ([ (o))

1
= fw(mg)Qin+t — / ( fdw(ma,) A d°® A Qﬁn]> de,
X+ 0 \Jx*

(4.11)

where for passing from the third line to the last line we used the following

£
d
(Gowtma) ) 9l = 3w (ma ()i

=1

= Z wi(ma,)dmg A d°® A QL

=w(mq,) Ad°®A Q.
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By substituting (4.11) in (4.10) we get (4.9).

Now we establish (4.8) using (4.9), following the proof [46, Theorem 4.9]. Let D, C C
be the disc of center 0 and radius € > 0. Using the change of coordinates (¢, s) given by

7 = e 't € C and the S'-invariance of £y (¢,) we calculate

/w(mQ)Q["H] =lim w(mgq)Qr+1l
x =0 Jx\r—1(D,)
_1; [n+1]
!1—% P\D, e (w(ma)® )
—L C
Hll—% o, dd°€w(¢r) by (4.9)

Ew(dt) by the Green-Riesz formula
t=—loge

=lim d
50 dt

lim —Ew(qﬁt) = lim (¢t).

t~>+ dt t—o+o0 ¢

O

Let © € A be G-invariant Kéahler form. We consider the Kahler metric on X™* given
by @ + m*wps = N (mkw + Thwrs) (by the equivariance of ), where & := (mx o A\)*w
with A the map defined by (4.1) and 7x,mp1 denote the projections on the factors of
X x (P'\ {0}). Then we have on X*

— 1
Ric(92) — m*wps — Ric(w) = §ddC\I/, (4.12)

where ¥ = log (%) and ﬁ;(:—(Z) := (mx o A\)*Ric(w). Using (4.12) and Lemma 5
2, we obtain on X™*

1
13 _ ¢ Lrge
mR/ic(\w) =My + 5 (d°0)(8), (4.13)

for any £ € t, where M@ = = (rx o )‘)*mRic(w)'

Lemma 25. Under the hypotheses of Theorem 11, we have

dd°ER) () = 7, (v(mg)ﬁi'c’@) A QP 4 (dv)(me), m /(\w)mlnﬂl) (4.14)

Proof. From the very definition of £8°) (see (2.21)) we have

8 6,) = [ ([ [0(vlma )Ricl) A 9P+ (av)m ) 19U )
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where Q. := e + (1 — €)@, mgq, := emq + (1 — €)mg, and @, ® are given in Lemma 23.
As in the proof of Lemma 24, we see that ghicw) (¢r) extends to a smooth function on
P!\ {0}. Furthermore, for any smooth function f(7) with compact support in C* C P!,

we have

(ddchlc(w ¢'r / gR.lc(w)(¢ )ddcf“

1
_ /0 / dd’f / & (v(mo,)Ric@) A O + ((dv) (ma,), e )0I)] ) de
- /0 ([ 7@ (vlma,JRic() A 0+ (@) (e ), mggey 1)) ) de

=- /01 (/ _@[df Ad(v(ma,) A Ric(w) A Q"1 4 df A de({(dv)(ma,), mige ) A QF] ) de

1 X - -
+/0 (/* f[d(«dv)(mas),mm))) A d°D /\QL 4 d(v(mg,)) A d°® A Ric(w) A QL 1]])de

1 f Ric(w c n— c n
+/0 (/X*f[V(mne)Rlc(w)/\ (dd°®) A QY + ((dv)(ma, ), Mg ) (dd°®) A Qf 1)])d5

=11 + I + I,

where I, I, I3 respectively denote the integrals on the first, second and third lines of
the last equality. Now we compute each integral individually. We have
df A d°(((dv)(me,), mg s A Qi 1 df A de(v(mg,)) A Ric(w) A Qlr=1

= S vaima) @€ A8 + 3 vilma )af A domi, naf!
YJ

+ Z vi(ma,)(df)(€)(Aq, Ric(@))Q 1 — (df A d*(v(ma,)), Ric(w))o, "+

—Zv (ma,)(df Ad°m§ , Ric(w Ric(w))Q+Y — (df A do(v(ma,)), Ric(w))Qr+l = o,

where £ = (&;);=1,... ¢ is a basis of t. It follows that I; = 0. For the integral I, a similar

calculation gives

1
12=/0 (/ Evz(mne (d%)(@)mc(w)m["brzVu<mne> a°2)(&;)"] ) de.

(

Now we consider the integral I3. Using the fact that 2 = & + edd®®, an integration by
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parts with respect to € gives

1 R — d . d i,
I3 :/0 </X* f[V(er)RIC(W) A (d_QL ]) +({(dv)(ma.),m M w)>(d Q£ +1])]) ¢

N /X f [v(me)Ric(w) A Q) 4+ ((dv)(mg), m g Y1)

(w

1 aeod Q["] d Q11 4
—/0 (/j[(; (mgq,))Ric(w) A + (5o A(@v) (ma.), mg)) O ]) e,

By Lemma 23 2 the integral on the last line is given by of the last equality is given by

e —

l f[(i‘f(mo ))Ric(w )/\Q[n]+(d((dv)( Dy )] )
0 de Ric(e)
=/01</ ZV ma,)(d°®)(6)Ric(w) A QL+ v.s(ma, Jmé—_ (@) (¢ mL"]])dé

Ric(w)
i,j

=JI.
It follows that

L+l+Ig= [ flvimg)Ric(w) A QM + ((dv)(mg),m yal+1].
X*

This completes the proof. O

Lemma 26. Under the hypotheses of Theorem 11,

t—+oot

lim 1( [ bvlmg, ”—26“”(“)(@))

1
- /X v(me) (Ric(Q) — m"wrs) A QM+ ((dv) (ma), mice) 2"+ Y
where ¢; is given by (4.7) and y; = ¥, with T = e™*1% is given by
by 1= plr)" (Tx,) € C=(X1, B)". (4.16)
Proof. We define on C* the function H(7) := [, ¥rv(m,)w W™ Let f(r) be a test

function with support in C* C P! and f := 7* f . We have
@@, = [ aas [ (@vmah
=/ Wv(mgq)dd®f A QP

=/ \Ild(v(mg))/\dcf/\Q["]—/ v(mg)d¥ A def A QM
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Notice that d(v(mq)) A d°f A Q™ = 0 since the 1-form d°f is zero on the fundamental
vector fields of the T-action. Integration by parts gives
(dd°H, ) = | fa¥ Adv(ma) AQM + [ fv(mgq)ddeT A QI
X* X+
Using the equations (4.12) and (4.13) we obtain

c __ ¢ . oy [n+1]
(dd H, f) 2 /X* f((dv) (mQ)’ MRic(Q) mRJc(w)>Q (417)
_ / Fo(me) (Ric() — 2r*wps — Ric(@)) A QI7.

X*

Combining (4.14) and (4.17) gives
dd°(H(r) — 2637 (¢,))
=—2m, (V(mQ)(RiC(Q) — mwps) A QM 4 ((dv)(mﬂ)’ijc(Q))Q[n+1]) _

We conclude in the same way as in the proof of Lemma, 24. O

Let us now consider the following function on C*:

MY (6r) = /X Yrv(mg, )l — 268 (6,) + ¢y iy (@)E(8r),  (4.18)

| where ¢, and 1, are given by (4.7) and (4.16) respectively. From the definition of
M&' w(®r) and Lemmas 24 and 26 we see that

li

. M\‘?,w (¢t)
t—>-I+-noo_T—— - V’W(X’A)' (4.19)

Lemma 27. If the central fiber Xq is reduced, then the integral

Q" AT*w
T(7) 1:/ log (—Qn—+—1FS) V(mn)ﬂ[rn],

1s bounded on C*.

Proof. The integral T(7) is bounded from above since Z(%) = Qns::“’ is a non-
negative smooth function on X and the integral [ X, v(mg)QLn] is independent from
7 (see Lemma 22). Notice that T(7) is bounded if and only if [, llog(Z)lv(mQ)Q[T"] is
bounded. Indeed, if T(7) = O(1) then
[ os(2)ivma)0l = [ (og(2) + 1 1og(2) pv(ma)l - X(r) = O).
X

T
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It follows that fxT |log(Z )|V(mQ)Q£'n] = O(1). The converse follows from
()| < /X | og(2) v (ma) Q).

Using that v(mg) is a smooth function on X we see that fXT | log(Z)lv(mQ)Q[T"] =0(1)
if and only if [y | log(Z)|Q[T"] = O(1), which is also equivalent to [y log(Z)Q[Tn] =0(1).
By [37, Remark 4.12], if the central fiber Xo is reduced then [y log(Z )QL"] = O(1) which
implies that Y(7) = O(1). O

Now we are in position to give a proof for Theorem 11.

Proof of Theorem 11. From the modified Chen-Tian formula in Theorem 6, (4.18)

and by Lemma 27 we get

My w(pr) — MY (¢7) = /X <log (:_g) _ %) v(my )l

— [ (s (GrrTes) - w) p(r 1) (v )l
. w™ N\ T*wrs
:/ log (%ﬁ%@) v(ma)Ql = O(1).

Dividing by ¢ (where we recall 7 = e **%%) and passing to the limit when ¢ goes to

infinity concludes the proof. O

Proof of Theorems 4. This is a direct corollary of Theorem 3 from the introduction,

together with Theorem 11. O
Proposition 9. If (X, A,T) is a Kahler test configuration of (X,a,T) such that 7 :

X — P! is a smooth submersion then

Foon,4) = Fiu (1) - YA [ (scals ) = cunlawlma)ol?,

where V,, is the generator of the S)-action on Xo, and F@(V,) is the (v,w)-Futak:
invariant of the smooth central fibre (Xg, @) introduced in Definition 8. In particular if

(X,,T) is (v,w)-semistable on smooth test configurations, then

/ Scal, (w)w!™ = c(v’w)(a)/ w(mey)wl™ and Fow=0.
X X .
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Proof. We just adapt the arguments from [39] to our weighted setting. From Definition 5

we have

d .
d_tMv,w(¢T) = /X 1 ¢+ (Scaly (wr) — ev,w(@)w(m,))wl,

_ (4.20)
== [ o7 6o (Sealu () = cuml@)w(ima, )2

T

where t = —log |7, ¢, = %’tl and wr, ¢r, m, are given by (4.7) and (4.3). Note that the
flow of the vector field JV, is gofﬂ,p = p(e~t) where J denotes the complex structure
of X. Let h” be a Hamiltonian function of V, with respect to {2. We have d% p(T)*Q =
—dd*(p(7)*h*). On the other hand, using (4.7) we get %(0(7)*Q)|X1 = dd°¢,. By taking

the restriction on X; of the first equality and comparing to the secon, we get
hfx, = ~p(t71)"ér + a(7), (4.21)

where a(7) € R is a constant depending on 7 € C*. By (4.21) and Lemma 3, we have

1=, oo 42,

Using that 7 : X — P! is a smooth submersion and Lemma 24, we get

1
i = rqlnl
tl_lfn a(T) Vol(X.a) (/Xo hPQI™ + Vol(X,A)). (4.22)

Substituting (4.21) in (4.20), we obtain

%Mv,w(@) _ /X  (Sealy(9) — evn(a)wlma,) 0l

(4.23)
—ar) [ (Scalu(8) — v (1] w(rmo, )27
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Passing to the limit when ¢ — oo in (4.23) and using Theorem 11, we obtain

. d
'FV,W(XaA) = tlggoaMV,W(QsT)

- / (Scaly () — cuns (@) w(ma, ) P
Xo

N —*w& ) ( /X RAQI 4 Vol(X, 4) ) /X (Scaly(€0) — ev,w([20])w(ma,)) Q"
_ /X 0 (scalv(no)—cv,w(a)w(mgo))(hp_m /X O el
_ % . (Scalv(Qo) — cV,W([QO])W(mQO))Q[n]

’A n
=Frw(Vy) — % /X (Scalv(w) — cv’w(a)w(mw))w[ ],

where (2 = Qx, € A x,, and we have used in the last‘equality that for any 7 € C* we

have

Scalv(QT)Q["] = Scalv(wT)w[T"] = / Scalv(w)w["],
X, X1 X

/ w(mq, )M = / w(me, il = / w(me,)w!™,
T X1 X

see Lemma 2.

For the second statement, as [, (Scal,(w) — cv,w(a)w(mw))w["] = 0 by the definition of
semi-stability, we consider the product test configurations associated to V and —V for

any V' € Breq, we obtain F2 (V) = —F2, (V) > 0ie F2, =0. O

Remark 7. In [36], Dervan defines a T-relative Donaldson-Futaki invariant DF (X, .A)

for a smooth T-compatible K&hler test configuration X as follows
¢
DF(X, A) := F11(X, A) — z X°]—'{’1(&)
i=1

where § := (&;)i=1,... ¢ is a basis of t with corresponding Killing potentials h; = f;(mq) =
(maq, &) + A, such that (hi, hj)x, = [y, hihjQ" = 0for i # j and [y h;Q™ =0, where
the integration on Xy is defined by [y =37, m; f(X(,)) with [Xo] =3, le( " being
the analytic cycle associated to Xy and (Xé ))reg standing for the regular part of the



| irreducible component Xéi) of Xy. Using Lemma 22, we have

/ Wext (mw)w[n] = / Wext(mQ)Q[n] = / Wext (mQ)Q["]’
X X1 Xr (4.24)

Fi1(&) = (Wext (M), hi) x = (Wext (Mma), fi(m)) x; = (Wext(ma), hi) x.,
| for any 7 € C* C P!. As the family 7 : X — P! is proper and flat, the current of integra-
tion along the fibers X is continuous and converges to the integration over the analytic
cycle of the central fiber [Xo] (see [14]). Passing to the limit when 7 — 0 in (4.24), we
thus obtain [, Wext (Me)w™ = on Wext (M) Q™ and Fi1(&) = (Wext (M), B, 0)) Xo-
Thus,

DF(X,A) = F1,1(X, A) — (Wext (M), hp) Xo- (4.25)

On the other hand, the (1, wey)-Futaki invariant of (X, .A) is given by
Fron (X, A) = — / Scal(Q)Qln+1 4 2 / wps A QY + / Wext(ma)2 1 (4.26)
x x x
(Recall that c(1 y,,,)(@) = 1, see Section 2.2.2). From (4.25) and (4.26), we infer

Fiwee (X A) = DFT(X, A) =(Wext (M), ho) x0 + /X (Wext(ma) — c1,1(e)) Q0+

_dEs  (ér)
=<Wext (mQ)a hp)Xg + tliglo—&i——v-'

= (Wexe (), hy) o + Jim ( /X o (o)l
=(Wext(mq), h,,}xo — tli’I&(/XT hpv%ext(mQ)QFﬂ])
— (Wext (M), i) xo — /X e (ma) Q7 = 0,

0

where in the second equality we used Lemma 24 for

o 1
Wext — Wext — 01,1(01) = Wext — m /X Wext(mQ)Q[n]a

for any 7 € C* and in the fourth equality we used (4.21). It follows that

Flawee (X, A) = DFp(X, A).
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4.2 Algebraic definition of a (v, w)-Donaldson-Futaki invariant

4.2.1 The (v, w)-Donaldson-Futaki invariant of a smooth polarized variety.

Let (X, L) be a smooth polarized projective variety endowed with a torus action T C
Aut(X, L) with corresponding polytope P C t* as in Section 3.1. For any C*-action p

commuting with T and a family &€ of S'-generators of T, we consider the weight
1 4 (k _
Wk (g, p) == tr (V(k lAé )) -k 1Ag“)) ,

where Af,k) is the induced infinitisimal action of p on Hj and v is a smooth weight

function on Pr. By Lemma 17, Wy, (&, p) admits an asymptotic expansion
WM, p) = al (&, p)k™ + al (&, p)k" ! + O™ ?).

Thus we obtain a quantized version of the (v, w)-Futaki invariant of (X, 2mey(L)):
Corollary 8. The (v, w)-Futaki invariant introduced in Definition 8 with respect to the
Kdhler class o := 2mey (L) satisfies

1 v w (L
o P ) = (6 ) - xald(e, ),

where V, is the generator of the S},-actz’on on X, and cyw(L) is the (v,w)-slope of

(X,2mc1(L)) defined in (2.6).
4.2.2 The (v, w)-Donaldson-Futaki invariant of a polarized test configuration

Following [42], we consider a (possibly singular) polarized test configuration of exponent
r € N, compatible with (X, L, T), defined as follows:

Definition 20. A T-compatible polarized test configuration (X, L) of exponent r € N
associated to the smooth polarized variety (X, L) is a normal polarized variety (X, L, ’ﬁ‘)

endowed with a torus T ¢ Aut(X, L) and

e a flat morphism 7 : X — P! such that the torus action Ton X preserves each fiber

X, :=n"Y(r), and (Xl,EIXI,’]AI') is equivariantly isomorphic to (X, L™, T);
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e a C*-action p on X commuting with T and covering the usual C*-action on P!;

e an isomorphism
A (X x (PY\ {0}), L7 ® Op1 (1)) = (X \ Xo, L), (4.27)

which is equivariant with respect to the actions of G := T x S}, on X\ Xo and the

action of T x S! on X x (P \ {0}).

To simplify the discussion, we shall assume in the sequel that 7 = 1 and that L is a very

ample polarization on X.

By the consideration in Section 4.2.1, for each 7 # 0, (X, £|x,, ’ﬁ‘) gives rise to a momen-
tum polytope P, C t*. Using the biholomorphism (4.27), we know that (X7, L XT,T)
and (X 1, Lixys 'ﬁ') are equivariantly isomorphic polarized varieties, and thus P, = P; =P

for all 7 #£ 0.

For any 7 € P!, following Section 4.2.1, we let Aék)(T) = (Agf)(T),...,Ag)(T)) be
infinitisimal generators of the S'-actions on Hy(7) := H®(X, Ef“XT), induced by the S!-
generators & = (€1, - , &) for the T-action, on the fiber (Xr, Lx,). We claim that the
spectrum of the operators Ag) () is independent of 7 € P!, and is contained in P. To see
this, we can use the observation from [42, Sect. 2.3] which associates to any T-compatible
polarized test configuration (X, £, T) a continuous family Vi(r) C Sym*(CN*1) of m-
planes in the Grassmanian Gr,,(Sym*(CV+1)), where Sym* denotes the vector space
of symmetric homogeneous polynomials in N + 1 complex variables. In this picture,
(Xr, Lix,) is seen as a polarized subvariety of (PV,0(1)), and the space of sections
Hi (1) := H° (X, (ﬁlxr)k) is identified to Sym*(CN+1)/Vi(). We can further assume
that the action of T on (Xr,Lx,) comes from the restriction to X, of a subtorus
of T ¢ SL(N + 1,C), and thus T also acts on Sym®(CN+1); furthermore, writing
ch) = (Ag),~~Ag)), where Ag) is the infinitisimal generator of the circle action

Séj on Sym*(CN+1), the operators

flg) : Sym*(CN+1) 5 Sym*(CN+Y),
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must preserve the m-planes Vi(7) (as the action preserves each X, viewed as the sub-

space of common zeroes of elements in Vi(7)), and thus

AE (r) - SymF(CVH) /Vi(r) — Sym® (CNH1) /Vi(7)

)

~(k A
are the linear maps induced by Aé on the quotient spaces Hy(7). Introducing a T-
invariant Hermitian product on Sym*(CN+1), we thus obtain a continuous flg_c)-invariant

decomposition

Sym*(CN*) = V(1) @ V;CL(T),

and the spectrum of Ag)(r) is nothing but the spectrum of flg) restricted to Vi-(7).
Using that V,ﬂ-(r) vary continuously in the Gramsannian, we conclude that the spectrum

of Ag) restricted to Vi (7) is constant. It is contained in P by Lemma 15.

It follows that for any v € C*°(P,R), we can define v(k‘lAék)(O)), where Aék)(O) =
(Ag:)(()), e ,Ag) (0)) denote the the generators of circle actions corresponding to the
central fibre (Xo, £| XO,'ﬂ'). Thus, for v € C*°(P,R) we can consider the following v-

weight
W® (€, p) = tr (v(k AP (0)) - k1AW 4.28
v (&7)0) . r V( 5 ( )) P : ( : )

Definition 21. Let v € C*®°(P,Rs¢) and w € C*°(P,R), and suppose that we have the
following asymptotic expansions on the central fiber (Xo, Lo)

W€, p) =al) (€ k™ + Ok ), (4.20)

Wk, p) =aV (&, p)k™ + alV (€, p)k" ! + O(™72).

Then we define the (v, w)-Donaldson-Futaki invariant of the normal T-compatible po-

larized test configuration (X, L) to be the number

cvw(l)

A (&), (430)

DF, w(X,L) := af,l)(g,p) —

where ¢y (L) is the (v, w)-slope of (X, 27c;(L)) given by (2.6).

Using Corollary 8, we have the following
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Corollary 9. If (X, L) is a T-compatible polarized test configuration with smooth central
fiber, then the expansions (4.29) hold, and

@r)" W (€, p) =k / hw(ma, ) + O™ ),
Xo

kn—l
4

r)y"WH (€, p) =k" / hov(mag) O +

hpScal, ()25 + O(k™2),
Xo Xo
where h, is the )-Hamiltonian of the generator V, of the action S}, on Xy with respect
to a G invariant Kdhler metric ) € 2mei (L) and Qo := Qx,. In particular, the (v,w)-
Donaldson-Futaki invariant (4.30) of (X, L) is given by
DFy (X, £) = ————F (V)
V,W 9 - 4(27!‘)" v,W Pl

where F',(V,) the Futaki invariant of the class o := 2me1(L), introduced in Definition 8.

We deduce from Corollary 9 and Proposition 9
Corollary 10. If (X, L) is a smooth T-compatible polarized test configuartion such that

m: X = Pl is a smooth submersion, then

1
DFv,w(Xa 'C) = n]:V,W(X’ 27T61(£)),

4(2m)
where Fy w(X,2me1(L)) is the (v, w)-Futaki invariant of the T-compatible Kahler test
configuration (X,2mci1(L)) introduced in Definition 18.

4.3 The (v, w)-Futaki invariant of a toric test conﬁguratiovns

In this section we consider the special case when X is a smooth toric variety i.e. T C
Autreq(X) with dimg T = dimc X = n. Let w € a be a fixed T-invariant Kéhler form,
m, : X — t* a corresponding momentum map, and P = m(X) the corresponding
momentum polytope. By Delzant Theorem [34], (X, &) can be recovered from the labelled
integral Delzant polytope (P,L) where L = (L;);j=1,4 is the collection of non-negative
defining affine-linear functions for P, with dL; being primitive elements of the lattice A of
circle subgroups of T. We denote by PO the interior of P and by X := m !(P?) the dense

open set of X of points with principle T orbits. Let us consider the momentum/angle
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coordinates (p,t) € PO x T with respect to the Kahler metric (g, J,w). By a result of
Guillemin (see [55])

g = (dp, G*,dp) + (dt, H",dt),

Jdt = —(G*, dp), (4.31)

w = (dp A dt),
on X9, where u is a smooth, strictly convex function called the symplectic potantial of
(w,J), G* : P" — S?t is the Hessian of u, H* : P — S§2?* is its point-wise inverse
and (,-,-) denote the contraction t* x St x t* — R or the dual one. Conversely if
u is a strictly convex smooth function on P°, (4.31) defines a Kihler structure on X°
which extends to a global T-invariant Kéhler structure on X iff u satisfies the boundary
conditions of Abreu (see [1]). We denote by S(P,L) the set of smooth strictly convex
functions on P? satisfying these boundary conditions. For u € S(P,L), we have the
following expression for the scalar curvature of (g,J) (see [2]),

n
Scal(g) = — Z H?j,ij’
ij=1

where H" = (H};) in a basis of t. Let v € C*°(P,R>0). By the calculations in [9, Section

3], the following expression for the v-scalar curvature of (g, .J) is straightforward

n

Scaly, (g) = — Z (VH?]-)’U . (4.32)

i,j=1
We recall that by the maximality of T, any T-invariant Killing potential of (4.31) is the
pull-back by m,, of an affine-linear function on P.
Lemma 28. Let v € C*°(P,R5¢) and w € C*(P,R). For any affine-lirear function f
on P, the (v,w)-Futaki invariant corresponding to the T-invariant Hamiltonian Killing

vector field £ := df is given by

(2m) " F (6) = 2 /a e = cgu (o) /P fwp, (4.33)

where dp is a Lebesgue measure on t*, do is the induced measure on each face F; C OP

by letting dL; A do = —dp and the constant c(y\)(c) is given by

Cony (@) = 2 (%) . (4.34)
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Proof. Let u € S(P,L) and (g, J) be the corresponding w-compatible Kahler structure
X given by (4.31). The (v, w)-Futaki invariant of the Kahler class a = [w] is given by

Fo(6) = /X Sealy (g)f (mw)w!™ — ¢y (@) /X £ (mug)w (m )l

where f is an affine linear function on t* with £ = df € t. In the momentum-action
coordinates (p,t) € P® x T we have w™ = (dp A dt)™ = dpy Adt1 A --- Adp, Adt,. By
[9, Lemma 2], for any u € S(P,L) and any smooth functions ¢, % on t* we have
n n
[ (vrs) Jodo= [ (S wHDes)p-2 [ pvdo.  (@39)
P tig=1 " P =1 ap
Then, using (4.32) together with (4.35), we obtain

n

(2m) " Fe () = —/P ( Z (VHZ)U) fdp — c(v,w)(a)/})fwdp

i,j=1
=2 fvdo — ¢y w)(@) / fwdp.
op P

Similarly we deduce (4.34). O

For any continuous function f € C°(P,R) we define

Fowlf) =2 /8 ) fvdo — ¢y (@) /P fwdp. (4.36)

Using again [9, Lemma 2| we obtain
(27T)_"/X(Sca1v(gu) — ey wl(@)w(my)) ful™l = FF L (f) —/P ( > Hijf,ij>Vdpa (4.37)
1,j=1
for any v € S(P,L) and f € C*°(P,R). It follows that
Lemma 29. [9,42] If there exist u € S(P,L) such that the corresponding w-compatible
Kahler structure (g,J) solves Scaly(g9) = c(yw)(a)w(my), then F‘},),w(f) > 0 for any

smooth convex function f on P.

4.3.1 Toric test configuration

We start by recalling the construction of toric test configurations introduced by Don-

aldson in [42, Section 4]. Let (X, L) be a smooth polarized toric manifold with integral
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momentum polytope P C t* 22 R™ (with respect to the lattice Z™ C R™) and

fr=max(fi, -+, fr), (4.38)

a convex piece-wise affine-linear function with integer coefficients, i.e. we assume that
each f; in (4.38) is an affine-linear function f;(p) := (v;, p) +A; with v; € Z™ and \; € Z.
We also assume that the polytope Q defined by

Q={(pp)ePxR:0<p <R- f(p)}, (4.39)

has integral vertices in Z"*!, where R is an integer such that f < R on P. By [42,
Proposition 4.1.1] there exist an (n + 1)-dimensional projective toric variety (Xq,G)
and a polarization Lo — Ag corresponding to the labelled integral Delzant polytope
Q c R™! and the lattice Z"*! C R™"!. In general, Xq is a compact toric orbifold
(see [69]), but Xq can be smooth for a suitable choice of f. There is an embedding
v : X < Xq such that ¢(X) is the pre-image of the face P = Q N (R™ x {0}) of
Q, and the restriction of Lq to ¢«(X) is isomorphic to L. Notice that by the Delzant
Theorem [34, 69] the stabilizer of «(X) C Xq in G is S, = S%n—}-l)’ where S%n—}-l) is
the (n 4 1)-th factor of G = R"*!/27Z™*! so that G/S} is identified with the torus
action T = R"/2nZ"™ on X. Furthermore, Donaldson shows in [42] that there exist a
C*-equivariant map 7 : Xg — P' such that (Xg,S},£Lq) is a T-compatible polarized
test configuration. We consider the Futaki-invariant Fy w(Xq, 2mc1(Lq)) given by (4.4)
corresponding to (Xq,27mc1(Lqg)), and notice that it makes sense even when Xq is just
an orbifold.

Proposition 10. Let f = max(f1, -, fr) be a convex piece-wise linear function on P,
with integer coefficients and Xq the toric test configuration constructed as above. Then

the (v,w)-Futaki invariant (4.4) of (Xq,2mc1(Lqg)) is given by
Fow(Xg, 2mer(Lq)) = (2m)" 1 FL,(f), (4.40)

where Fr.,(f) is the integral defined in (4.36). Furthermore, the (v,w)-Donaldson-Futaki

invariant (4.30) corresponding to (Xq, Lq) is well-defined, and is given by

DFyw(Xq, Lq) = 4F} . (f)- (4.41)
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Proof. We start by proving the first claim (4.40). Let Q € 27¢1(Lq) be a G-invariant
Kaihler form on Xg and w € 2me; (L) be the induced T-invariant Kahler form on ¢(X) C
Xq. We have by Remark 6 2

FolX,2me1(£0)) = — /X (Scaly(Q) — c(yu)(27er (L)) (mg)) Q1

+(87r)/xv(mw)w".

Let (p,p/,t,t') € Q x T x S,l) be the momentum /angular coordinates on Xg such that

(4.42)

(p,t) € P x T are the momentum/angular coordinates on X°. Then,

(87r)/xv(mw)w"=4(27T)"+1/v(p)dp. (4.43)

P

and
[ wmayairs) = 2o+t [ wtgdp Ay’ = (2m [ wo)R - fo)dp. (444)
XqQ Q . P
For the remaining term in (4.42), using (4.37) we have

(2m)~(n+1) Scal, (Q)Q+1 = 2/ vdogq
oQ

=2/ vdp + 2/ Vd/.l,(R_f)(p) + 2/ (R — f)vdop (4.45)
P (R—f)(P) op

=4/vdp+2/ (R — f)vdop,

P oP

where the measure dug_gyp) is defined by df A dur_sypy = dp A dp’. Substituting
(4.43)—(4.45) into (4.42) yields

(2m) "V E, o (Xg, 2me(Lq)) = — 2 /6 P(R — f)vdop + ¢y (@) /P (R— f)wdp

=Fou(f)-

Now we give the proof of the second claim (4.41). The central fiber X is the reduced

divisor on Xq associated to the preimage of the union of facets of Q corresponding to

the graph of R — f. By a well-known fact in toric geometry (see e.g. [42]) the set of

weights for the complexified torus G¢ on H°(X, ﬁ’é) is kQ NZ"*1. It thus follows that

the weights for the Cj-action on H O(Xo, LK) are k(R — f)(kP) N Z. We conclude that
wPEn= Y '-n(3)(3)

AekPnzn
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where W) (&, p) is the v-weight defined by (4.28). By [56,99], for any smooth function
® on t* and k large enough we have

n—2

k
3y @(%)zk“/@dp+ - / ddop + O(K™2).
A€kPNZP P opP

Taking ® := (R — f)v and using the above formula for any affine-linear piece of ®, we

get

n—2

W (e, p) = k» / (R~ fyvdp+ ¥

— v n=2y,
i 5 /BP(R f)vdop + O(k"™%)

Analogously, for W\S,k) (&, p) we obtain
W) =" [ (R= fwdp+ OG).
Using (4.30), it follows that
DF\w(Xq, £q) = 4F ¢ ()

|

Remark 8. Instead of a convex piece-wise affine-linear function f with integer coefhi-
cients we can take a convex piece-wise affine-linear functions with rational differentials,
i.e. assuming that each f; in (4.38) is of the form with f;(p) = (vj,p) +A; with v; € Q™.
The polytope Q such a function defines is not longer with rational vertices, but still
defines a toric Kahler orbifold (Xq,.Aq), see [69]. This gives rise to a toric Kéhler test
configuration compatible with T and the formula (4.40) in Proposition 10 computes the

corresponding (v, w)-Futaki invariant of (Xg, Aq). o



CHAPTER V

APPLICATIONS

5.1 Existence of cKEM metrics and the automorphism group

Let (X, a) be a compact Kéhler manifold with Kahler class a and £ € h.oq is a real
holomorphic vector generating a torus T¢ C Auteeg(X). For any Te-invariant Kéhler
metric w € a, the vector field is Hamiltonian with respect to w with w-Hamiltonian
function f, 4) normalized by f % f(g‘w’a)w["] = a where a > 0 is positive constant. One
can always choose the constant a > 0 such that for T¢-invariant Kéhler metric w € o
the w-Hamiltonian function fe ., ) > 0 is positive. In the setting of Section 2.2.4,
f(ew,a) = (€M) +c for a fixed positive affine-linear function (£, m,,) +c over P,, where

P, is a momentum polytope associated to (T¢, ) as in Lemma 1.

As explained in the Introduction (see (1.2)), we say that T¢-invariant Kahler metric
w € «a is a Kahler metric conformal to a Einstein-Maxwell metric (cKEM) if the scalar

curvature of the conformal metric f(zzw o) 9 is constant i.e.
Scal(f(z’zw’a)gw) = const,

which is also equivalent to the Einstein-Maxwell equations (1.1). As we have noticed in
Section 2.2.4, the cKEM metrics are (v, w)-cscK metrics for v¢ o, we o € C®(Pq, R) such
that

v&»a(mw) = f(zi)":'a_')_l and wf:a(mw) = f(zi,y"’la_)l’ (5'1)

where m,, : X — ; is the w-momentum map with momentum image m.,(X) = Paq.
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Similarly to the cases of Kahler-Einstein and cscK metrics [73,78], Theorem 1 places an
obstruction for X to admit a weighted cscK metric in terms of the centraliser Aut$(X)
of T¢ in Auto(X). In particular this result applies to cKEM metrics. By [9, Theorem
5] and by Corollary 4, any cKEM metric on the toric complex surfaces CP! x CP! and
the Hirzebruch surfaces F,, = P(O & O(n)) — CP' must be given either by the Calabi
Ansatz [60, 65, 66] or by the hyperbolic ambitoric ansatz [4] (a Riemannian analogue
of the Plebanski-Damianski explicit solutions [81]). In practice, however, the algorithm
of [9, Theorem 5| allowing one to decide whether or not a given Kiahler class, a quasi-
periodic holomorphic vector field £ and a constant a > 0 there exists a compatible cKEM
metric is of considerable complexity, see [52]. The case CP! x CP! has been successfully
resolved by [9,65] (see also [52]) whereas the case of F,, and £ being tangent to the fibers

is settled in [51]. The possibility of other choices of £ and a > 0 on F, is open.

The following result completes the classification of cKEM metrics started in [9,52,65].
Corollary 11. Any conformally-Kéhler, Einstein-Mazwell metric on CP! x CP!, must
be toric, and if it is not a product of Fubini-Study metrics on each factor, it must be

homothetically isometric to one of the metrics constructed in [65].

Proof. From Corollary 4 any cKEM metric g on CP! x CP! must be toric. In this case
[9, Proposition 6] yields that the metric g must be either a product of Fubini-Study

metrics or one of the metrics found in [65]. O

We illustrate our theory with a non existence result.

Corollary 12. Let X = P(O ® O(1)g) — F,, where E = (O ® O(n)) — CP! and
F, = P(E) is the n-th Hirzebruch complex surface. Denote by & the generator of the
St-action on X corresponding to diagonal multiplications on the Og(1)-factor. Then X

admits no cKEM metrics.

Proof. We have the following exact sequence (see [6, Proposition 1.3]):

0—-bhp(X) = hH(X)—=H(B) -0
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where B = F,, and hp(X) denote the Lie algebra of holomorphic vector fields on X
which are tangent to the fibers of m. The proof of [6, Proposition 1.3] also shows that

0= b5(X) = h5(X) = H(B) = 0

where h%(X ) = spanc{¢, J¢} is the abelian sub-algebra generated by the vector fields &,
J¢ and h4(X) is the centraliser of ¢ in the Lie algebra b(X). If X admits a Kihler metric
(w, g) conformal to an Einstein-Maxwell metric with conformal factor f¢ , 4) > 0, then
hé(X) must be reductive by Theorem 1. As b%(X ) is in the center of h%(X), it would
follow that §(B) is reductive, which is not the case for B = F,, (see e.g. [18]). It follows
that X admits no cKEM metrics. O

5.2 The YTD correspondence of P'-bundles

We start with the case 4 from the Introduction. Following [8], we consider X = V xp
K 5 B be the total space of a fibre-bundle associated to a principle T-bundle K — B
over the product B = H;.V=1 (Bj,wj, g;) of compact cscK manifolds (Bj,w;, g;) of complex
dimension d;, satisfying the Hodge condition (w;/27] € H?(B;,Z), and a compact 2¢-
dimensional toric Kahler manifold (V,wy, gv, Jv, T) corresponding to a labelled Delzant
polytope (P,L) in t*. We assume that K is endowed with a connection 1-form 8 €

Q(K,t) satisfying
N

0= ¢ ®uwj, et j=1,--- ,N.
i=1

and that the toric Kdhler metric (gy,wy,Jy) on V is given by (4.31) for a symplectic
potential u € S(P, L) where the space of symplectic potentials S(P, L) is introduced in
Section 4.3. As shown in [8], X admits a bundle-adapted Kahler metric (g,w) which, on
the open dense subset X° = K x P% C X, takes the form

M=

9= ((&.p) +¢;)m*g; + (dp, G",dp) + (6, H",8),

j=1

<
Il

(5.2)

M-

((Ej,p) + Cj)ﬂ'*w]‘ + (dp A ),
=1

<
I
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where p € P? and ¢; are real constants such that ((¢;,p) + ¢;) > 0 on P. Such Kéhler
metrics, parametrized by v € S(P,L) and the real constants c;, are referred to in [8]
as given by the generalized Calabi ansatz in reference to the well-known construction of

Calabi [22] of extremal Kihler metrics on P!-bundles.

We notice that the Kahler manifold (X, w, g) is invariant under the T-action with mo-
mentum map identified with p € P. Furthermore, it is shown in [8, (7)] that the scalar
curvature of (5.2) is given by

@ (5,p) +cy ~ u(p) “=, Op:9ps AP

Jj=1

N
1; 1
Z Scal; Scalu(gv),

= (&p) +¢; u(p)

where we have put u(p) := ]_[;Ll ((¢j,p) +¢;)% and we have used (4.32) for passing from
the first line to the second. Similarly, by [8, (12)], the g-Laplacian of (the pull-back to
X) of a smooth function f(p) on P is given by
£
1 2] of . u
Agf =—— ng:l . (u(P)a—pers)-
Using the above formulae, we check by a direct computation that for any positive smooth

function v on P we have

a Scal; 1
Scaly(g) = v(p)(z; G+ cj> + o) Scalyy (gv) (5.3)
=

Using that the volume form of (5.2) is
N d
wirl = u(p)( /\ wjl ’]) A {dp A 0)H
j=1
and the integration by parts formula (4.35), we compute that the (v, w)-Futaki invariant

on X acts on a vector field £ € t by

F \[rNV}V(ﬁ) . vudo Scal v
(2m)¢( TI}L, Vol(By, [ws)) o T +/ @ (&) )f ” (5.4)




where f = (£,p) + XA is a Killing potential of &.

As in Section 4.3.1, we can construct a T-compatible smooth Kahler test configuration
associated to X, defined by a convex piece-wise linear function f = max(fy, -, fr),
on t* such that the polytope Q c R¢*! given by (4.39) is Delzant with respect to the
the lattice Zé+1. Denote by (Vq,.Aq) the corresponding smooth toric variety, and by
K=K x S%e )~ B the principal T¢!-bundle over B with trivial (¢ + 1)-factor, and
let X = V Xqe+1 K — B be the resulting V-bundle over B. We can now consider a
Kahler form Q on X obtained by the generalized Calabi ansatz (5.2); as the connection
1-form on K has a curvature Z;V=1 ¢ ®w; with &; € t = Lie(T?) C Lie(T*1), 0 induces
on the pre-image X C X of the facet P C Q a Kéahler form w given by (5.2) with the
same affine linear functions ((&;,p) + ¢;). A similar computation to (5.4), performed on
the total space (Xq, ) by using Definition 18 (see also the proof of Lemma 28 above)
leads to the expression (5.4) for the (v, w)-Futaki invariant associated to (Xq, . Aq) with

f being the piece-wise linear convex function defining Q.

Let us now suppose that X = P(O & £) Iy B with B as above, where O stands for
the trivial holomorphic line bundle over B and £ is a holomorphic line bundle of the
form £ = ®§V=1 L; for L£; being the pull-back to B of a holomorphic line bundle over
B; with ¢1(£;) = &lw;/2n], § € Z. This is the so-called admissible setting (without
blow-downs) of [7], pioneered in [22] and studied in many works. In our setting above,
such an X is a P!'-bundle obtained from the principle S'-bundle over B associated to
L1, We can take P = [-1,1] C R, and suppose that v(z) > 0 and w(z) are smooth
functions defined over [—1,1]. A Kahler metric (w,g) on X of the form (5.2) can be

equivalently written as

N
. dz?
g= Z(&jz + Cj)'/r gj + W + @(z)02
j=1
N N (5.5)
W= Z(sz +¢j)mw; +dz NG, df = Zﬁjﬂ*wj,
j=1 =1

for positive affine-linear functions §;z + ¢; on [—1,1]. This is the more familiar Calabi

ansatz, written in terms of the profile function ©(z) (see e.g. [57]) which must be smooth
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on [—1,1] and satisfy
O(£1) =0, ©'(£1)=F2, (5.6)

and

©(2) >0 on (-1,1), (5.7)

for (5.5) to define a smooth Kéhler metric on X. We let u(z) = HNzl(sz +¢j)% be the

corresponding polynomial in z.

We now take Q be the chopped rectangle with base P, corresponding to the convex
piece-wise affine linear function f,,(z) = max(z+1—z,1) where zg € (—1,1) is a given
point. We can construct as above an S'-compatible Kihler test configuration (Xg,.Aq)
associated to (X, [w],S!). It is not difficult to see that the complex manifold X is the
degenaration to the normal cone with respect to the infinity section So, C X, see [7,83]
but the Kahler class Aq on Xq defines a polarization only for rational values of 2.
Formula (5.4) shows that the (v, w)-Futaki invariant of (Xg,.Aq) is a positive multiple
of the quantity

F(z0) =2 (fza(l)V(l)u(l) - fzo(—l)V(—l)u(—1)>
' N Scal;
+f FACICENEI0 D (R R P

= sz +cj

(5.8)

Let us now assume that there exists a smooth function ©(z) on [—1,1], which satisfies

(5.6) and

" N Scalj
(vu8)"(2) = v(z)u(z) (> ) = com(whw(z)u(2). (5.9)

= §jz +cj
Substituting in the RHS of (5.8) and integrating by parts over the intervals [—1, zp] and
[20,1] gives

F(20) = v(20)u(20)©(20). (5.10)

As v(2) and u(z) are positive functions on [—1,1], we conclude that if (X, [w],S?) is
(v, w)-K-stable on smooth S!'-compatible Kéhler test configurations with reduced central
fibre, then ©(z) must also satisfy (5.7). By the formula (5.3), the corresponding Kéhler
metric (5.5) will be then (v, w)-cscK.
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The existence of a solution of (5.9) satisfying (5.6) is in general overdetermined. Fol-
lowing [10}, in the case when w(z) > 0 on [—1, 1] one can resolve the over-determinacy
by letting the constant ¢y w(|w]) = 1 and introducing an affine-linear function wex(z) =
A1z + Ay, such that

Scal;
iz + ¢

N
(vu@)”(z) = v(2)u(z) ( Z ) — w(2)Wext(2)u(z) (5.11)
j=1

admits a unique solution O} (z) satisfying (5.6): the coefficients A; and As, as well
as the two constants of integration in (5.9), are then uniquely determined from the
four boundary conditions in (5.6). Furthermore, a straightforward generalization of
[10, Lemma 2.4] shows that wext(z) corresponds to the affine-linear function introduced
in Section 3.2, i.e. (v, WWext)-cscK metrics are (v, w)-extremal. Combined with Theorem
2, this allow us to obtain the following generalization of [10, Theorem 3.

Theorem 12. Let X = P(O® L) — B be a projective P'-bundle as above, endowed with
the S'-action by multiplication on O, and o = [w/2x] be the Kéhler class of a Kdhler
metric in the form (5.5). We let P = [—1,1] be the momentum polytope of (X, a,S!),
v,w be smooth positive functions on [—1,1] and ©7Y (2) the unique solution of (5.11)

satisfying (5.6). Then,

o If (X,,S') is (v, WWext)-K-stable on S'-compatible smooth Kdihler test configu-
rations with reduced central fibre, then ©.% (2) > 0 on (—1,1) and a admits a

(v, w)-eztremal Kdhler metric of the form (5.5) with © = O] .

o If (X,a,S') admits a (v, w)-extremal Kdhler metric, then (X, a,S!) is (v, WWext)-
K-semistable on S'-compatible smooth Kdihler test configurations with reduced cen-

tral fiber and O (2) > 0.

Proof. The first part follows from the identity (5.10) which shows that ©} must satisfy
both (5.6) and (5.7). The second part follows from formula (5.10) and Theorem 4, if
the constants (cy,...,cn) in (5.5) are rational as in this case the corresponding Kéhler
class « is rational. To treat the case when (c1,...,cn) are not necessarily rational, we

can use Theorem 2 below (with fixed v,w and varying the constants ¢;). Accordingly,
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for any rational constants (¢, . ..,y ) sufficiently close to (¢1, ..., cn) the corresponding
Kahler class @ will admit a (v, w) extremal Kahler metric, and hence the corresponding
function ©)¥(z) will be non-negative on (—1,1) by virtue of Theorem 4. As O%Y(2)

ext ext

depends smoothly on (c1,...,cn), it follows that ©% (2) > 0 too. O

ext

Remark 9. (i) We expect that Theorem 2 can be improved by showing that the existence
of (v,w)-cscK metric in « implies (v, w)-K-stability, not only (v,w)-K-semi-stability.
Accordingly, we expect Theorem 12 to be improved to a complete Yau—-Tian—Donaldson
type correspondence between (v, wweyy )-K-stable and (v, w)-extremal Kéhler classes on
X of the form (5.5), in which either notion corresponds to the positivity condition (5.7)

for 7% (2).

ext

(i) In [10], the analogous statement of Theorem 12 is achieved by considering po-
larized test configuration (Xq,Lq) as above (corresponding to rational values of 2),
and computing the relative version of the algebraic (v, w)-Donaldson-Futaki invariant
DF, w(Xq,Lq). This provides a yet another instance where the differential-geometric

definition coincides with the algebraic definition of the (v, w)-Futaki invariant. 3

5.3 The conformally Kéahler, Einstein-Maxwell metrics on ruled surfaces

In this section, we give the proof of the Corollary 2 from the Introduction.

5.3.1 The Calabi construction of cKEM metrics on ruled surfaces

Let X = P(O® L) - C be a geometrically ruled complex surface over a compact
complex curve C of genus g > 2. Following [60], cKEM metrics can be constructed by

using the Calabi ansatz.

Let (gc,wc) be a Kéahler metric on C with constant scalar curvature 4(1 — g), where
£ = deg(L) > 0 is the degree of L. We denote by 8 the connection 1-form on the
_ principal S'-bundle P over C, with curvature df = fwc. Notice that P can be identified

with the unitary bundle of (£*, h*) over C, where h* is the Hermitian metric with Chern




107

curvature —fwe; viewing equivalently X as a compactification at infinity of £* — C (i.e.

2

|

1 X =P(L*® 0)). We have a class of Kahler metrics on X given by the Calabi ansatz

‘ d

| g=4(z+K)gc + @ +0(2)60% w=£(z+ K)wc + dz A 6, (5.12)

where: z € [—1,1] is a momentum variable for the S!-action on L£*, ©(z) is the profile
| function satisfying the first order boundary conditions (5.6) and the positivity condition

(5.7). Here k > 1 is a real constant which parametrizes the Kahler class

o = [w] = 27 (1 (0@p(0me)) + (1 + R)elc)).

Notice that for the ruled surfaces we consider H?(X,R) = R2, so that any Kahler class
on X can be written as Aa, for some A > 0 and k > 1, see [49]. Furthermore, a, is

homothetic to a Hodge class if and only if k € (1,+00) N Q.

For any |c| > 1, f = |z + c]| is a positive Killing potential with respect to (5.12) which

corresponds up to sign to the Killing vector field ¢ generating the S'-action on X =

summarized as follows ,
Proposition 11. [60] Let X =P(O @& L) — C be a ruled complez surface as above and
Fenp = For the (vep, Wep)-Futaki invariant of the Kihler class o (see 8), where

VebWeLb

\
P(O @ £) by multiplications of the first factor @. The main results of [60] can be

(Vep, Wep) are given by (5.1).

e For any k > 1, the Futaki invariant F¢ .3 vanishes if and only if b satisfies

148

T

(5.13)

We denote by b, > 1 the unique solution of (5.13) satisfying |b| > 1.

e There exits a polynomial P.(z) of degree < 4 such that ©(z) = Py(z)/(z + K)
satisfies the first order boundary conditions (5.6) and, on any open subset when
O(z) > 0, the metric (5.12) s conformal to a Einstein-Mazwell metric with con-

formal factor (z + bg) 2.
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e There ezists ko(X) € (1,400) such that

(a) for each k € (ko(X),+00) the corresponding polynomial Pc(z) > 0 on (—1,1),
i.e. o, admits a Kihler metric of the form (5.12) with ©(z) = Pc(2)/(2+k),
such that (z + be)2g is cKEM;

(b) for each k € (1,k0(X)) the corresponding polynomial P.(z) is negative some-

where on (—1,1);

(¢) for k = ko(X) the corresponding polynomial P.(z) is non-negative and has a

zero with multiplicity 2 on (—1,1).
5.3.2 Proof of Corollary 2

There are no cscK metrics on X (see e.g. [11]), so that we are looking for strictly
conformally Kahler, Einstein-Maxwell metrics. As in our case Autyeq(X,J) = C* (see
e.g. [11]), the Killing vector field £ must be a multiple of the vector field generating
rotations on the factor @. As the theory is invariant under homothety of the Killing
potential, without loss we assume that this multiple is =1. Finally, as H?(X,R) = R?,
by rescaling the Kahler class we can also assume a,, £ > 1. For a Kéhler metric w € o,
of the form (5.12), the Killing potential of £ is |z + b| with |b] > 1. The necessary
condition Fi ¢ = O then forces us to consider b = b, see Proposition 11. The existence
of conformally Kéhler, Einstein-Maxwell metrics for £ € (ko(X),00) and conformal

factor (2 + b.)~2 follows from the statement in (a) of Proposition 11.

We are left to show non-existence for k € (1,k0(X)]. Again, by Proposition 11, we have

to take b = b, > 1.

Consider first the case k € (1,k0(X)). If k is rational, the result follows from Theo-
rem 12. Otherwise, if & € (1, k0(X)) \ Q, we suppose for contradiction that a, admits a
Kihler metric g, such that (z+b,)2g is Einstein-Maxwell. By Theorem 2, the same will
hold for all (&', b./) on the rational curve (5.13) which are sufficiently close to (k, b.), in

particular for all rational pairs (', b.) close to (k, b,), a contradiction. Finally, consider
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k = ko(X) = Ko, by, = bo. Again, suppose for contradiction that o, admits a Kihler
metric go such that (z + by) "2gp is Einstein-Maxwell. We use again Theorem 2 to de-
duce that this holds also for all (x, b,) near (g, bp) and we can find again rational valued
(k,bx) arbitrarily close to (ko,bo) with k < ko, and still admitting a Kahler metric g,

such that Scal((z + bc)~2g) is a Killing potential, a contradiction.






CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we have defined weighted cscK metrics on Kahler manifolds with symplec-
tic and variational interpretations. We have seen that the problem of finding a weighted
cscK metric in a Kéahler class, englobes a number of natural problems in Kéhler geometry.
We have defined a new notion of weighted K-stability for (X,o, T,P,v,w), consisting of
a Kahler manifold X with Kahler class o, a Hamiltonian torus action T with momen-
tum polytope P and two smooth weight functions v,w on P. A Yau-Tian-Donaldson
conjecture relating this stability notion with the existence of weighted cscK metrics has
been stated and the direction existence implies stability has been proven in the special

case of projective varieties.

This thesis starts a programme, the one of studying weighted cscK metrics, and sets
many open questions that will be considered in future work. Possible future directions

are:

1. Showing that the weighted Mabuchi energy is convex along weak geodesics in the
space of Kdhler potentials. Consider the question of uniqueness of weighted cscK

metrics modulo the action of isometries.

2. Showing the uniqueness of weighted cscK metrics on projective varieties using the

momentum map picture for weighted balanced metrics.

3. Develop a gluing construction of weighted cscK metrics on the blow up of a

weighted cscK manifold.
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4. Proving that the weighted Dondaldson-Futaki invariant can be expressed as an
equivariant intersection number on the total space of a test configuration and

showing that it agrees with the slope of the weighted Mabuchi energy.
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