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RÉSUMÉ 

La Liquid State Machine (LSM) est une théorie selon laquelle le néo-cortex du 
cerveau est considéré un réservoir de neurones dont les entrées provoquent des 
fluctuations dynamiques non linéaires de l'activité neuronale, apprises par des 
neurones de lecture. Des stimulus similaires provoquent des fluctuations similaires et 
des stimulus différents provoquent des fluctuations différentes. En conséquence, une 
sortie de neurones de lecture est considéré soit comme un état mental , ou comme un 
énoncé ou un geste, exhorté par le cerveau par son incarnation physique vers 
l'extérieur. Les LSMs ont trouvé une applicabilité étendue dans Je domaine du 
Machine Leaming (ML), mais ils ont en particulier surmonté les problèmes où leurs 
instances d'entrée varient dans le temps. De tels problèmes sont appelés problèmes 
d'apprentissage, de prévision et/ou de classification de données dynamiques (c'est-à­
dire de séries chronologiques). 

Une critique du LSM dans son explication du cerveau est sa dépendance triviale à un 
mode de déclenchement classique des neurones, qui est un tir régulier. Nous savons 
déjà que les neurones biologiques ont une large gamme d ' activités de tir: régulières, 
toniques, éclatantes ou irrégulières . .. Ainsi, réduire l' activité de tir des neurones 
biologiques diminue l' importance de la théorie des LSM du cerveau . 
Dans le contexte de ML, la conception de LSM est généralement confrontée à: 
Premièrement, Je réglage méticuleux du nombre de neurones constituant le réservoir 
qui devrait être très grand pour que la machine puisse obtenir une dynamique non 
linéaire adéquate. Deuxièmement, la manipulation délicate des valeurs des 
paramètres des neurones constituant le réservoir est toujours un travail difficile, en 
raison que la sensibilité de cette manipulation est toujours croissante et affecte la 
dynamique d ' activités des neurones de la machine. 

lei, j'ai abordé ces efforts . Premièrement, j ' ai contesté l' idée de considérer le neurone 
de base d 'un LSM comme un simple modèle de neurone à tir et je 1 'ai transformé en 
modèle de neurone à tir enrichi qui engendre une diversité d'activités de 
déclenchement neurophysiologique. Deuxièmement, je démontre que les conditions 
nécessaires et suffisantes de computation , comme dans le cas du LSM, peuvent être 
obtenues à l' aide d ' un seul modèle de neurone biologique à tirs chaotiques, ce dernier 
exploitant le contrôle de chaos (CC). Cela signifie que j'ai minimisé le réservoir d'un 
LSM à un seul neurone. Ainsi , simplifier sa conception, réduire la surcharge humaine 
liée à la manipulation de ses paramètres et réduire le temps et les computations 
excessives requis à l' exécution d ' un vaste réservoir de neurones. De plus, j'ai étendu 
cette recherche à une nouvelle théorie des groupes neuronaux basée sur la sensibilité 
chaotique qui pourrait expliquer la formation de l'assemblage de neurones à 
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l'intérieur du cerveau. 

En outre, j'ai abordé une enquête sur un phénomène neurophysiologique synaptique 
observé in vitro, appelé plasticité dépendant du tir de synchronisation (Spike Time 
Dependent Plasticity - STDP - en anglais), qui décrit la proportionnalité du poids 
synaptique entre les neurones et leur temps de déclenchement. L'enquête focalise au 
causes neuronales qui pourraient causer le STDP. Ainsi , j'ai analysé le nombre 
d ' états qui pourraient être stabilisés dans un réservoir de LSM, composé d ' un nombre 
variable de neurones chaotiques par rapport à des neurones réguliers intégrant STDP 
dans leurs connexions. J'ai trouvé que les fluctuations chaotiques d'activités 
neuronales permettaient à une grande diversité d'états neuronaux instables d'être 
stabilisées et contrôlées par rapport aux fluctuations d'activitée neurales régulières. 
Cette tentative et ses résultats démontrent que le STDP favorise les tirs chaotiques de 
neurones par rapport aux tirs réguliers et offre un aperçu du rôle que le chaos pourrait 
jouer pour répondre aux énigmes fondamentales du STDP. 

Enfin, je déduis un nouvel outil que j ' appelle le taux de déclenchement chaotique, 
qui peut être utilisé comme substitut plus plausible au taux de déclenchement 
classique simulé par les neurones de "Poisson"... De même, j'enquête sur 
1 'utilisation des algorithmes génétiques comme classificateur d'une réservoir 
composé de neurones de tirs chaotiques, afin de parvenir à la classification de 
données statiques. La démonstration de cette recherche offre une nouvelle vision 
dans la conception de LSM en combinant ses propriétés éssentielles: La propriété de 
séparation (SP) du réservoir et la propriété d ' approximation (AP) du mécanisme des 
neurones de lecture. Cela se fait en rendant le réservoir dimensionnable 
dynamiquement, de sorte que sa taille soit automatiquement ajustée par l'algorithme 
génétique, ce qui élimine ainsi la nécessité d'avoir des neurones de lecture et joue 
leur rôle dans la réalisation de l'AP . Par conséquent, SP et AP d'un LSM sont unifiés 
et j'appelle cette unification ASAP (c'est-à-dire propriétés de séparation et 
approximation ajustables). 

MOTS-CLÉS: Modélisation de la mémoire, réseaux de neurones, théorie du chaos, 
contrôle du chaos, neurones de tirs chaotiques, plasticité synaptique, plasticité 
dépendant du tir de synchronisation, Spike Time Dependent Plasticity (STOP), 
groupes de neurones, ensemble neuronal , computation de réservoir, machine à état 
liquide, liquid state machine, computation de transitoire non linéaire , nonlinear 
transient computation (NTC), taux de décharge chaotique. 



ABSTRACT 

Liquid State Machine (LSM) is a theory which states that the brain's neo-cortex 
is a reservoir of neurons where its inputs cause nonlinear dynamic fluctuations 
of neural activity that are leamed by readout neurons. Similar stimulus causes 
similar fluctuations and different stimulus causes different fluctuations. 
Accordingly, an outcome from readout neurons is considered as either a mental 
conscious state, or an utterance or gesture, exhorted by the brain through its 
physical embodiment to the outside. LSMs have found a widespread 
applicability in the Machine Leaming (ML) domain, but specifically they 
conquered problems where the input instances vary in time (i.e. time 
dependent). Such probletns are called dynamic data (i.e. time series data) 
leaming, prediction and/or classification problems. 
A cri tic of LSM in theorizing the brain is its trivial reliance on a classical fi ring 
mode of neurons, which is regular spiking. We already know that biological 
neurons have a wide range of firing activity, being it, to name a few, regular, 
tonie, bursting or irregular... Th us, narrowing down the spiking activity of 
biological neurons diminishes the theoretical appeal of LSMs in delineating the 
brain. 
In the context of ML, designing LSMs is generally faced with two bottlenecks. 
First, the meticulous tuning of the number of neurons that constitute the 
reservoir that, by the way, should be very large in order for the machine to 
achieve adequate nonlinear dynatnics. Second, the delicate manipulation of 
parameters values of the neurons constituting the reservoir is always a 
thoughtful job, due to the arising sensitivity of such manipulation that affects 
the whole neural dynatnics of the machine. 
Herein, 1 tackled those endeavours. First, 1 challenged the misconception of 
considering the basic core of a LSM in being a simple regular spiking neuron 
model and altered it to be an advanced spiking neuron model that engenders a 
diversity of neurophysiological firing activities. Second, 1 demonstrate that the 
necessary and sufficient conditions of computing in real-time like in LSM can 
be achieved using a single chaotic spiking biological neuron mode] whilst the 
latter is exploiting Chaos Control (CC). This means, 1 minimized the reservoir 
of a LSM to be one single neuron, only. Thus, simplifying its design, lessening 
the human overload of manipulating its parameters and reducing the time and 
power of the excessive computing overhead resulted in executing a large 
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reservoir of neurons. Furthermore, I extended this feat towards a novel theory of 
Neuronal Groups based on Chaotic Sensitivity that could explain the formation 
of neurons assembly inside the brain. 
Besides, I tackled an enquiry about an in vitro observed neurophysiological 
synaptic phenomenon called Spike-Timing Dependent Pl asti city (STDP), which 
describes the proportionality of the synaptic strength between neurons to their 
firing times. The enquiry is concemed about the neural drives that could cause 
STDP. Th us, I analysed the number of stabilised states of a LSM reservoir 
composed of a varying number of chaotic spiking neurons vs. regular spiking 
neurons embedding STDP through their neural connections. I found that chaotic 
neural activity fluctuations afford a large diversity of unstable neuronal states to 
be stabilized and controlled than regular neural activity fluctuations. Such 
attempt and üs results demonstrate that STDP favours chaotic spiking of 
neurons over their regular spiking and give a glimpse about the role that chaos 
could play in answering fundamental STDP conundrums. 
Finally, I deduce a novel tool that I cali Chaotic-firing Rate, which can be used 
as a more biologically plausible substitute to the classical firing rate simulated 
by Poisson Neurons ... As well, I investigate the use of genetic algorithms as a 
classifier of a reservoir composed of chaotic spiking neurons, enduring CC, in 
order to achieve static data classification. The demonstration of such 
investigation offers a new vision in LSM's design by combining its essential 
properties: The Separation Property (SP) of the reservoir and the 
Approximation Property (AP) of the readout neurons mechanism. This is done 
by making the reservoir dynamically sizable, such that its size is automatically 
adjusted by the genetic algorithm, thus the latter elitninates the requirement and 
necessity of having readout neurons and takes their role in achieving AP. 
Therefore, SP and AP of a LSM are unified and I cali this unification ASAP 
(i.e. Adjustable Separation and Approximation Properties ). 

KEYWORDS: Memory Modeling, Neural Networks, Chaos Theory, Chaos 
Control, Chaotic Spiking Neurons, Synaptic Plasticity, Spike-Timing 
Dependent Plasticity, Neuronal Groups, Neural Ensemble, Reservoir 
Computing, Liquid State Machine, Nonlinear Transient Computation, 
Chaotic Firing Rate. 



INTRODUCTION 

This thesis falls under the umbrella of investigating the potential of pulsed neural 

networks commonly known as spiking neural networks in forming memories . 

Specifically, the thesis presents a computational approach to memory, using chaotic 

spiking neural networks, in tenns of stabilized chaotic attractor orbits. lt claims that 

Unstable Periodic Orbits (UPOs) of chaotic attractors, depicted by chaotic firing of 

neurons, can be controlled and stabilized in order to activate the formation of a 

diversity of neuronal groups that could model the manifestation of memory. No such 

attempt in the current literature has done so. Our methodology is based on Reservoir 

Computing (RC). In other words, we validate the thesis claim in the computer domain 

by studying different RC neural network architectures, specifically Liquid State 

Machine (LSM) and Nonlinear Transient Computation (NTC), composed of chaotic 

spiking neuron models whilst making them exhibit Chaos Control (CC). We provide a 

wide range of experimental simulations and numerical analysis to demonstrate the 

feasibility of the thesis claim. For instance, on one side of experimentations, we 

accompanied CC with synaptic plasticity inside a RC architecture composed of a small 

number of chaotic spiking neurons and analyzed the number of different UPOs that can 

be stabilized upon this accompaniment. The results that we reached in this attempt 

show that synaptic plasticity fa vors chaotic spiking of neurons over regular spiking of 

neurons in the means of reaching a huge repository of different controlled UPOs. This 

is demonstrated in chapter 2. In another attempt, we excluded synaptic plasticity and 

the fact of having a small number of recurrently connected chaotic spiking neurons that 

form a reservoir, where we considered the latter to be a single chaotic spiking neuron 

with one condition: That it implements CC. In this experimentation shown in detail in 

chapter 3, we find out that the nonlinear dynamics of a single chaotic spiking neuron, 

upholding CC, have the essentlal RC property called Separation Property (SP) that is 

classically achieved when using a pool ofregular spiking neurons (i.e. using a recurrent 
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network composed of a large number of regular spiking neurons). Specifically, we 

show that by using a single chaotic spiking neuron, we are able to create a RC 

framework that is able to discriminate (i.e. separate) between similar or different inputs 

by stabilizing the neuron dynamics (i.e. the UPOs of the reservoir composed of a single 

chaotic spiking neuron) to similar or different spiking patterns relative to the inputs, 

respectively. The novelty and originality of this reservoir composed of a single chaotic 

spiking neuron is that it contrasts the classical requirement, mainly followed and 

agreed upon in the current literature, of having a large number of regular spiking 

neurons, in order to achieve RC, as is the case for a LSM. Furthermore, this single 

chaotic spiking neuron's reservoir is extended to work as a memory-representation 

system by linking its stabilized UPOs, depicted in periodic spiking patterns through CC 

of the chaotic spiking neuron dynamics, to a layer of resonant neurons that fire as a 

group when the reservoir (e.g. the chaotic spiking neuron) is faced with a specifie 

input. This group of resonant neurons, or neural ensemble, is interpreted as a 

representation of the memory of the input. In additi_on, and most importantly, we show 

that the reservoir (e.g. the chaotic spiking neuron) is noise tolerant, which means that 

similar inputs to it will activate the same group of resonant neurons. Thus, we have 

created a neural network architecture that enables us to relate similar stimulus, or a 

class of stimuli, to a neural ensemble that could be interpreted as the memory 

representation of the class of similar input stimulus. Third , we extend our earliest 

experimentations, and their noticeable results (Aoun & Boukadoum, 2014, ibid, 2015), 

which target machine learning, that we came up through out the course of studying 

recurrent neural network architectures of chaotic spikjng neurons. In fact, these earlier 

experimentations (Aoun & Boukadoum, 2014, ibid, 20 15) re lied on the control of spike 

coding generated by chaotic spiking neurons and incorporated synaptic plasticity in 

order to achieve machine learning in terms of dynamic (i.e. time series) data 

classification. However, our latest experimentations, herein presented in chapter 4, 

relied on controlling the firing rate of chaotic spiking neurons and incorporated an 

evolutionary algorithm in order to achieve machine learning in terms of static data 

classification. Thus, we have tackled dynamic data classification and static data 

classification using chaotic spiking neural networks. The major interpretation of the 
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results of this thesis yields to an acknowledgment of the potential of chaotic spiking 

neurons and opens the doors for further investigation oftheir promising impact towards 

synaptic plasticity, memory modeling, reservoir computing and machine learning. So, 

in order to grasp and understand the thesis fundamentals , its claims, approach and 

methodology, then let us start by introducing the thesis background, the 

neurophysiological scientific experiments that relayed its hypothesis and the 

mathematics behind it. All of this is available in Chapter 1. The investigation of STDP 

is presented in chapter 2. The theory of neuronal groups based on chaotic sensitivity is 

presented in chapter 3. Chaotic firing rate is presented in chapter 4. The last chapter 

( chapter 5) concludes the thesis. 



CHAPTER 1 

FUNDAMENTALS, BACKGROUND AND THESIS 

INITIT A TION 

1.1 Scope: Cognitive informatics and its current paradigms 

Prof. Yingxu Wang coined the term Cognitive Informatics at the occasion of the 

International Conference on Cognitive Informatics (ICCI) in 2002. According to him, 

Cognitive Informatics (CI) is a contemporary multidisciplinary field 
spanning across computer science, information science, cognitive science, 

brain science, intelligence science, knowledge science, cognitive 
linguistics, and cognitive philosophy. CI ailns to investigate the internai 

infonnation processing mechanisms and processes of the brain, the 
underlying abstract intelligence theories and denotationalmathematics, 

and their engineering applications in cognitive computing and 
computational intelligence (Wang et al, 2013). 

In this document I will present to you my Phd Thesis which respects the aims of Cl 

that I just mentioned and incorporates different theories from the following fields: 

Computer science, information science, cognitive science, computational neuro 

science and Physics. 

According to Eliasmith's 'mind-brain metaphors ' (Eliasmith, 2003), the current CI 

paradigm, in the delineation of the 'mind ', relies on three commonly known 

approaches that can intenningle: The symbolic approach, the connectionist approach 

and the dynamical systems approach. We will summarize these approaches next, by 
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referring to the ' mind-brain metaphors ' in Eliasmith (2003). Symbolism considers the 

mind as software and the brain is its programming framework. In other words, 

symbolism reduces thought to elementary mental processes that are the outcomes of 

logical units following operations on simple rules. The connectionist approach looks 

at the mi nd as the outcome, behavior or function of a black box composed of neuron 

models which we can ' t explain the processing, or the flow of information that takes 

place through their interconnections. Note that the connectionists and the symbolists 

are both materialists because they both agree that the mind is the brain. They both 

rely on representations and computations, which their system should adopt in order to 

perform cognition. However, the dynamists say the mind is just a dynamical system 

and one should not rely on specifie representations or mode of operation to describe 

its intelligent behavior. Eliasmith referring to Watt Govemor and van Gelder says: 

"Cognitive systems are essentially dynamic and can only be properly understood by 

characterizing their state changes through time" (Eliasmith, 2003). In such context, 

we should refer to the field medalist Stevan Smale and his open problem on the limits 

of Intelligence (Smale, 1999). In stating the problem, Smale calls for the quest of a 

mode! that can explain intelligence. He says that such mode! should not be 

necessarily a unique one. He makes a comparison to physics in which we have 

classical Newtonian physics, relativity theory and quantum mechanics, each one with 

its own insights, understanding and limitations of physical phen01nena. Smale says: 

"Models are idealizations with drastic simplifications which capture main truths" 

(Smale, 1999). Furthermore, Eliasmith makes a comparison to the contemporary 

paradigm of delineating "What is the Mind?" to the question of "What is the Nature 

of Light?" (Eliasmith, 2003). ln the nineteenth century, the scientific quest that can 

provide the answer and the science to the nature of light was tackled by two different 

approaches: One considered light as a particle phenomenon, while the other 

considered light as a wave. Now, we know that light has a ' wave-particle duality ' 

according to the Heisenberg uncertainty principle. Both approaches are true and 

provide a scientific ground to study the nature of light whereas each approach 
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compliments the other, and their combination leads to better understanding and 

comprehension ofwhat light is! 

In our work, we follow such analogies made in physics, to lay the ground of our quest 

in investigating the nature of intelligence un der the umbrella of Cognitive Informatics 

(CI). Our work of delineating the mind relies on a duality between the connectionist 

approach and the dynamical systems approach: The former studies interconnected 

neuron models in order to explore their neural computing capabilities, while the latter 

considers the interconnected network of neurons as a dynamical system and studies 

its promising cognitive behavior by exploring the possibilities of its neural state 

changes. First let us explain what we mean by a dynamical system, define neural 

computing, and introduce biological neuron models and the way they communicate 

through their interconnections. This way of introducing those basic fundamental s 

facilitates the comprehension of the problem that we want to tackle and which we 

wi Il describe afterwards. 

1.2 Forma] definition of a dynamical system 

When a physical abject changes its behavior through tirne, we say that this abject has 

a dynamical behavior and the dynamics can be studied through a system of 

mathetnatical equations. So, lets say we have an abject that is changing its behavior 

through ti me th us we can cali a variable x as the state of the object and defi ne it either 

over a strict period of time or over a single moment in titne, depending on the 

behavioral titnely outcome of the object. Furthermore, we can defi ne the behavioral 

change of the abject as a functionfthat depends on x . Note that the set of states that 

constitutes the abject behavior is called its state space. We cali this relation between 

the states of the abject and its behavior a dynamical system. Referring to Weisstein, a 

dynamical system is "a means of describing how one state develops into another 

state over the course of time" (Weisstein , E. W. , "Dynamical System" From 

MathWorld A Wolfram Web Resource, 
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http://mathworld.wolfram.com/DynamicalSystem.httnl). In the mathematical sense, 

this can be written as the following difference equation: 

x n+ l = f( xn) 

Where n denotes discrete time as nonnegative integer (Z-*) and f a continuous 

function. 

Lets substitute 'the previous state of x ' from both si des of the equation above, doing 

so, the latter is now translated to a new difference equation as: 

Thus, we can introduce a new function g to be the description of the difference 

betweenf(x) and x (i.e. their equivalence) as it follows: 

g (x) = f( x)- x 

Which can be mathematically written using the fo1lowing difference equation: 

X11+1 - X11 = g(x") * 1 

So, the di fference between two consecutive states is equal to the difference between 

the current behavior j ' of the system and its last state 'x '. Consequently, this defines 

the derivative of the current state, which can be tnathematically written as: 

x'(n) = g(x(n)) 

In thi s section, we introduced the notion of a dynamical system that describes an 

object ' s dynatnical behavior and its state's change in mathematical terms. 
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1.3 Neural computing and neuron models 

According to the definition gtven m (Aleksander and Morton, 1995), "Neural 

C01nputing is the study of networks of adaptable nodes which, through a process of 

leaming from task examples, store experiential knowledge and make it available for 

use." The adaptable nodes are considered to imitate the neurons of the brain, "which 

acquire knowledge through changes in the function of the node by being exposed to 

examples" (Aleksander and Morton, 1995). Also, we refer to the definition of 

"Leaming" given by Herbert Simon, in 1983, as: "ln a system, Learning denotes 

adaptive changes in the sense that they enable the system respond to the same task or 

tasks drawn from the same population more efficient/y and more effective/y the next 

time ". In the next section (1.3.1 ), we will introduce the biological neuron and th en we 

will describe different neurons models that can constitute the basic eletnents of a 

neural network so the latter can achieve neural computation and leaming. 

1.3 .1 The biological neuron 

From an analytical perspective, a biological neuron can be considered as an 

eletnentary processing cell as initially suggested by Ramon y. Cajal, in 1933. lt is 

composed from a central cell body called soma, an output bus called axon and input 

hubs called dendrites (Kandel et al, 2000). A typical schematization of a neuron is 

shown in figure 1.1 below: 
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Dendrite 

Axon Terminal Axon Soma 

Fig. 1.1 Typical sketch of a biological Neuron 

Neurons communicate with each other by streams of electrical pulses or Action 

Potentials; this happens via electrochemical conjunctions called Synapses (Kandel et 

al, 2000). Synaptic connections are said to be either excitatory; thus, propagating the 

electrical pulses of the neuron and leading to an excitation in the target neuron, or 

inhibitory; decaying the electrical potential of the target neuron (Kan del et al, 2000). 

The process of excitation and inhibition through an interconnected neural circuit 

generates its main feature of adaptability. For instance, the interconnected neural 

circuits will enable a living organism to perform actions in its environment, respond 

to stimuli and adapt to life. Biological neurons "communicate through pulses and use 

the timing ofthese pulses to transmit information and to perfom1 computation" (Mass 

and Bishop, 1999, Preface, page 24). These pulses are commonly known as Spikes. 

But, before we proceed by the most prominent and realistic modeling of a biological 

neuron, which is cal led Spiking Neuron, we have to introduce the simplest basic and 

classical models of artificial neurons. 

1.3 .2 Basic neuron models 

Inspired by the physiology of a biological neuron (Cajal , 1933), many neuron models 
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were envisaged afterwards like the earliest basic artificial neuron mode] of 

McCulloch and Pitts (1943) and the contemporary Spiking Neuron Mode] developed 

by lzhikevich, in 2007. 

1.3.3 Threshold gates: McCulloch and Pitts neuron mode] 

In 1943, McCulloch and Pitts proposed the first basic neuron model for neural 

computation. The model gained major attention in the engineering community due to 

its applicability in electronic circuits. The McCulloch and Pitts - MCP - model relies 

on the representation of a neuron as an elementary deviee, which works as a threshold 

function that sums up weighted input and fires accordingly. 

Input Weights 

T 

U = X1 .W1 + X2.W2 + ... + Xn .Wn 

Summing 
Deviee 

Fig. 1.2 The McCulloch and Pitts Neuron Mode! 

Threshold 
Deviee 

Output 

As we can see in the diagram above (Figure 1.2), the synaptic effect is modeled with 

weight variables. The neuron is said to fi re, and has an output equal to 1, this is if the 

presented input scaled by the connection weight is greater than the neuron threshold. 

In a mathematical fonn, when a binary input vector X is presented to the neuron that 
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has a predefined threshold positive real number T, then the binary output Y of the 

neuron is given by: 

Where F is a hard limiting function: 

F(x) = 1 if x > T otherwise F(x) = 0 

The basic cmnponent in classical neural computation is the McCulloch and Pitts 

mode] presented above, algorithms target weights adjustment and variations target the 

choice of output function F, as we will see next. 

1.3.4 Sigmoidal gates: Analogue output 

As we have just seen in the previous section, the output function of the McCulloch 

and Pitts mode] is a sitnple hard limiting function, which only communicates binary 

values (i.e. 0 or 1 ) . 

Another choice could be a function that will give a continuous output of the neuron; 

which tends to 1 when its input is very large (i.e. goes to + oo) and to 0 when its input 

is very small (i.e. goes to -oo). This can be achieved by a different choice than the 

Hard Limiting function , in this way the sigmoid activation function can be considered 

and is given next: 

1 
F(x) = 1 +e-x 

The plot of F(x) is shown in Figure 1.3: 
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-4 -3 -2 

· 1 

-2 

Fig. 1 .3 The Sigmoid Activation Function 

Note that the derivative ofF is equal to: 

F' (x) = F(x). (1- F(x)) 

We can notice that when F(x) is equal to 1 then the derivative is equal to 0 and when 

F(x ) is equal to 1 then the derivative is also equal to O. Thus, when the neuron 

achieves its boundary values, the rate of change of its activation settles to O. 

By considering F as a continuous and differentiable function with 0 and 1 as its 

boundaries, we can calculate the derivative of the neuron function (i.e. its rate of 

change). 

The synaptic weights affect the activation function of the neuron because they are 

part of its input; this means they can drive its performance. We can rnanipulate the 

synaptic weights based upon the modification they cause to the activation function. 

This means we apply the derivative of the performance based on the synaptic changes 

in order to update the synapses. This cannot be done if the activation function is a 

hard Iimiting function, because the derivative of a hard limiting function does not 

exist at 0 and its derivative is 0 elsewhere. Using a sigmoid function allows the 
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computation of analogue output and not only Boolean output as in the case of a 

threshold gate (Maass et al. , 1991 ). Furtherrnore, the efficiency of a neural network is 

translated by the means of minimizing an error function that calculates the difference 

between the desired output and its actual output. This is essential in order to train a 

network of neurons and test its performance before it processes new input. For 

instance, this is weil elaborated in feed forward netWorks as Multilayer Perceptron -

MLP - (Rumelhart et al , 1986) and Recurrent Networks as Hopfield Networks 

(Hopfield, 1982); where an error function is optimized. According to this 

optimization process that is tested by being minimized, a neural network will be 

attributed the characteristic of having a learning capability by generalizing over its 

inputs, thus satisfying the definitions of learning and neural computing that we 

introduced in section 1.3. 

1.3.5 Spiking neuron mode] 

To exemplify the idea of a spiking neuron , l will start by the definition, and 

illustration (Figure 1.4) - of a spike as given in the book "Dynamical Systems in 

Neuroscience" by Izhikevich, in 2007: 

A spike is an abrupt and transient change of membrane voltage th at propagates to 
other neurons via a long protrusion called an axon. Spikes are the main means of 

cmnmunication between neurons. In general, neurons do not fire on their own; they 
fi re as a result of incoming spikes from other neurons ... (Izhikevich, 2007) 
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Fig. 1.4 Illustration of a spike, excerpt from (Izhikevich, 2007) 
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From an analytical perspective, "Spiking Neurons are models for the computational 

units in biological neural systems where information is considered to be encoded 

mainly in the temporal patterns of their activity" (Maass and Schmitt, 1997). Thus, a 

spike train F of a neuron i is the set of firing times of this neuron as described next: 

_ (1) (2) (n) 
Fi - {ti ' ti ' ... ' ti } 

To comprehend the concept of a spiking neuron, 1 will refer to the "Spike Néuron 

Mode) of Type A" of Maass (1997); this is due to its simplicity in modeling a pulse 

as a step function, and its mathematical analysis that was later depicted in Maass and 

Schtnitt (1997). The model is shown in the diagram (Figure 1.5) below: 

10.1 mm 
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8 

Pulse at tl d1 w1 hl(t-tl) 

If U(t) > 8 then 
Y(t) = 1 

Pulse Input 
from Neuron ai 

attimeti 

Time Weights Delay Function 
Dela ys hi( X) = wi tf di<= x < di + 1 

otherwise hi(X) = 0 

Fig. 1.5 Spike Neuron Mode! 

Summing 
Deviee 

El se 
Y(t) = 0 

Threshold with 
Step Function 

The output of a spiking neuron v, that has i = 1, ... , n input connections from a1, ... , an 

neurons with weight wi E ffi and delay d i E Dl + each, is given by: 

17 

Pv (t) = ~ h; (t-t;) 

Where, 

hi(x) = 0 for x < di or x ~ di + 1 

And, 

We note that if the neuron ai fires at time ti this causes a pulse at time t on v of the 

form hi (t- ti). The neuron v fires a pulse as soon as ~ (t) becomes greater th an a 

threshold ev (Maass and Schtnitt, 1997). 

Pulse 
Output 
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Other spiking neuron models (lzhikevich, 2003 , Brette and Gerstner, 2005) are the 

most prominent nowadays in the domain of computational neuroscience and neuro­

computation due to their ease of implementation and fast time execution. Besides, 

recent studies in neuroscience as summarized in (Izhikevich, 2006) suggest that the 

exact firing time between neurons has much more influence on information 

processing rather than the firing rates of these neurons; as it was previously thought 

(Rieke et al , 1997, Shadlen et al , 1998). The concurrency of fi ring times that occurs 

between neurons is a 1najor feature for information binding, memory retrieval and 

temporal coding inside the brain (Izhikevich, 2006). In fact, if multiple neurons fire 

synchronously then their pulses or spikes arrive at a target neuron with the same 

firing time, thus causing the latter to fire with a greater probability than when it ' s 

pulsed with 1nultiple spikes randomly or at different times (lzhikevich, 2006). Check 

Annexe I for a further explanation about Spiking Neurons in modeling the biological 

neuron based on different levels of its abstraction. As weil , you can check Annexe Il 

for a comparison between Rate Coding and Spike Coding. 

1.4 General description of the thesis problem and guidance to follow 

Leslie Valiant introduced sorne of the foundational basics of cornputational 

complexity theory concepts based on the framework of PAC (Probably 

Approximately Correct) learning that he envisaged in 1984. In 2003 , Valiant 

proposed three open problems in computer science. The third problem is entitled: 

"Characterizing Cortical Computation" (Valiant, 2003). In this problern, Valiant is 

asking "How knowledge is represented in the brain and what the algorithms are for 

computing the most basic behavioral tasks ". An example of a basic behavioral task is 

memorization (i.e. a functional characteristic of a systetn, which is embedded in the 

system and works in a way to provide the system the ability to metnorize a scene or 

recalls an event. .. ). Valiant is requesting "a mode! of computation th at describes the 
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essential capabilities and limitations of the brain for computing such functions" 

(Valiant, 2003). This request coïncides with the same endeavor of Steve Smale 

towards his quest of the limits of intelligence (Smale, 1999). As we mentioned in 

Section 1.1, Steve Smale gave a list of open probletns for the new century, the 18th 

problem in his list is called: "Lünits of Intelligence" (Smale, 1999). 

First, Smale in his attempt at providing guidance to the scientific quest for a mode] of 

intelligence, points to an important ingredient that the cognitive system in question 

should encapsulate: lt is the feature of random viability. He claims "randomness in 

the input and in the processing itself would seem to be an important ingredient in our 

search for models of intelligence" (Smale, 1999). One could suggest that since a 

chaotic system, in its long run, perfom1s quasi-random behavior then this system 

could be exploited towards a mode] of intelligence that fulfills the important 

ingredient of randomness, which Sm ale is requesting. 

Second, Valiant proposes that the cognitive system should be based on a neural 

network mode] and should satisfy four biological criteria that are deemed essential in 

order to characterize its cognitive behavior. The four requirements that the model 

should fulfill are: "The strength of synapses, the accuracy of timing mechanisms, the 

existence of state not just at synapses but also globally in a cell , and the numerical 

parameters of cell interconnectivity" (Valiant, 2003). Conventionally, in the 

connectionist approach, the strength of the synapses can be tackled through models of 

synaptic plasticity. The timing mechanisms can be envisaged by using neuron models 

that exhibit spiking activity. The numerical parameters of cell interconnectivity can 

simply be initiated according to the boundaries of the model. Wh at is remaining is the 

third property, which is the most important in our approach, and which Valiant is 

demanding: "The existence of state not just at synapses but also globally in a cell" 

(Valiant, 2003). Our attempt is to use a neuron model that can fulfill such condition: 

The Nonlinear Dynamic State (NDS) Neuron (Crook et al , 2005) developed by Nigel 
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Crook. The NDS Neuron is a chaotic spiking neuron model , which encapsulates the 

concept of state at the 'ce li' lev el because its behavior can be very weil ordered 

through chaos control ; such that the latter (i.e chaos control) can Jock the neuron 's 

behavior in a single state found in its chaotic repertoire of infinitely many states. 

Furthermore, we want to extend the theories behind the NDS Neuron and apply them 

to other feasible neuron models, that are biologically plausible, like the Adaptive 

Exponential Integrate and Fire (AdEx) Neuron model (Brette and Gerstner, 2005) or 

the Izhikevich Neuron mode] (Izhikevich, 2003), which can also generate states when 

they are configured to run in chaos mode whilst applying chaos control ... 

In this section we highlighted the importance of the concept of 'state' at the neuron 

level and we introduced the notion of chaos as being an essential ingredient to be 

considered in attempts at building intelligent systems. Before we declare our thesis 

statement, we shall delineate the fundamental theories behind it: Chaos theory and the 

NDS Neuron theory. Also, we shall delineate the neurophysiological theory upon 

which our thesis builds its hypothesis and finds its support: The theory of chaotic 

neuro-dynatnics by Walter J. Freeman (1991). Note that the NDS Neuron is included 

in the fundamentals because it is a neuron mode] that is based on the exploit of 

chaotic nonlinear dynamics and is solely chaotic, as we will see next, furthermore, 

it's the initial mode] that we used in our early experiments while exploring the topic 

of this thesis. These theories are emphasized and completed in the subsequent 

sections of this chapter. In the chapters afterwards, the AdEx Neuron will be used, 

because it has the same characteristics of the NDS Neuron, but it is, also biologically 

plausible. Besides, we favored the AdEx Neuron mode] over Izhikevich Neuron 

mode] , because we noticed through experimentation that it is more adequate and more 

reliable in simulating chaotic dynatnics than the Izhikevich Neuron. 

1.5 Chaos theory and the nonlinear dynamic state neuron 



19 

Chaos is a new Science which establishes the omnipresence of unpredictability as a 
fundamental feature of common experience[. . .] Chaos is a characteristic of 

dynamics, and dynamics is the lime evolution of a set of states of nature (Smale, 
1998). 

An example frmn nature that etnbeds the characteristic of chaos in its dynamics; and 

is familiar to us, is the weather. The weather is defined as the state of the atlnosphere 

at a place and time in regards to heat, dryness, sunshine, wind, rain, etc. Since the 

latter properties are interrelated, thus they constitute a nonlinear relationship between 

each other in relaying the state of the weather. This means, the weather system is 

nonlinear in its core. Also, it is obviously dynamic because it evolves with time. But, 

why is the Weather chaotic? Because it depends on numerous of such variables and 

because measuring ali these variables is very delicate, thus predicting the behavior of 

the weather, using a weather forecasting system, will be highly dependent on the 

accuracy of measurements of its variables. In other words, slight realistic variations 

of the measurements (called system initial conditions in mathematical terms), which 

constitute the input variables of a weather forecasting system, will get enormously 

magnified through the internai dynamics of the system when the latter runs for too 

many time steps in the long future, however they slightly affect the evolution of the 

internai dynamics of the system wh en the latter runs for few ti me steps ahead in the 

near future. This is the reason that the weather is easily predictable in the short run 

and is highly unpredictable for the long run. 

So, to start considering a nonlinear dynamical behavior as chaotic, then it should have 

at least su ch fundamental characteristic of high sensitivity on initial conditions. 1 will 

not go back neither to the origins of Chaos theory nor to the results of the famous 

computer experiments of Prof. Edward Lorenz, done in 1963, while he was 

developing models of atmospheric convection (Lorenz, 1963). For further details on 

the topic, I will refer the reader to the book "A Survey ofNonlinear Dynamics: Chaos 

Theory" by Richard Lee In graham ( 1991 ), and to the paper of Aubin and Dalmedico 

(2002). 



20 

In the common sense, the notion of 'chaos' is attributed to a nonlinear dynamical 

system that exhibits sensitivity on initial conditions as we just explained. However, in 

the formai sense, the notion of 'deterministic chaos' is attributed to su ch system, 

wh y? 

Answer: The term "deterministic chaos" is used in mathematics because it is more 

accurate and tangible in designating a nonlinear dynamical system with chaotic 

behavior and it avoids the confusion between the terms chaos and randomness when 

taken in their formai sense. In deterministic chaos, randomness is considered as the 

unpredictability of the behavioral outc01ne of the system at the long run, and 

· determinism refers to deterministic ru les that are set upon the variables of the system, 

inscribed in mathematical equations, their sitnulation through tin1e offers further 

analysis of the evolution of the syste1n. For instance, in classical mechanics the 

behavior of a dynamical system can be described geometrically as motion on an 

attractor. The mathematics of classical mechanics effectively recognized three types 

of attractors: single points ( characterizing single point steady states), closed loops 

(periodic cycles characterizing periodic steady states) and tori ( combinations of 

severa! cycles) ... In the 1960's, chaotic attractors were discovered; for which the 

dynamics is chaotic (https://www.britannica.com/science/chaos-theory#ref251592). 

Now, we will dig deeper by examining a nonlinear dynamical system exhibiting 

deterministic chaos. To do that we choose the nonlinear dynamical system realized by 

Otto Rossi er, in 1976. This choice is due to the simplicity of the dynamical equations 

of the system. The Rossler system is composed of three variables only which their 

behavior is described by three nonlinear Ordinary Differentiai Equations- ODEs - (an 

ODE is an equation containing a function of one independent variable and its 

derivatives). The equations that define the Rossler system are: 
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x'=-(y+z) 

y'= x+ay 

z' = b+z(x-c) 

They can also be written in their difference form as: 

x(t) = x(t -1)- y(t -1)- z(t -1) 

y(t) = y(t -1) + x(t -1) + ay(t -1) 

z(t) = z(t -1) + b + z(t -1)(x(t -1)- c) 

Where, 

a, b, and c are constants with a = O. 2, b = O. 2 and c = 5. 7 

t is the time step, such that the system starts at t = 1 with x(O),y(O) and z(O) equal to 

any real value in R. 

If we plot any of the three variables versus time, we simply see a trajectory that 

represents the chaotic evolution of the variable through titne. However, if we plot 

each variable one versus the other in a three-dimensional space where each dimension 

corresponds to the values of one variable, then we see a 3D trajectory that describes 

ali possible states of the system. We call this 3D graphical representation of the three 

variables: The phase space diagram. In other words, a phase space diagram gives us a 

description of ali possible states of the system. By examining the phase space of the 

Rossler variables we find that they are constrained (i.e. attracted) to a strict 3D 

geometrie object and won't escape its boundaries. We cali this geometrie object a 

chaotic attractor and it is visualized in phase space like the following: 
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Fig. 1 .6 The Chaotic Attractor of Rossi er system visualized in phase space 
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If we examine Figure 1.6, we notice th at the chaotic attractor is composed of a dense 

collection of points, which seetn to embed a periodic pattern of slightly varying 

similar orbits that are partially overlapping. The reason behind this partial 

overlapping of orbits is due to the chaotic nature of the system which gives the 

chance of any point in a neighborhood of previously visited points of an orbit in the 

phase space to be visited again by another orbit. This is why these orbits are called: 

Unstable Periodic Orbits (UPOs ). Th us, a chao tic attractor can simply be defined as a 

structure th at is composed of infini tel y many UPOs: lt is a dense set of UPOs. U sing 

methods of Chaos control, we can manipulate the systetn of differentiai equations and 

make their outcome settle to a single UPO. 

Next, we will introduce the equations of the Nonlinear Dynamic State (NDS) Neuron 

that were derived from the equations of the Rossler system by Alhawarat, in 2007. In 

addition, we will present the chaos control method that makes the behavior of the 

NDS neuron settle to a single UPO (Crook et al , 2005). 

The equations of the NDS Neuron are the following: 



x/t) = x ;(t -1) + b( - y;(t -1)- u;(t -1)) 

y/t) = Y; (t -1) + c(x;(t -1) + ay/t -1)) 

n0 ,u;(t -1) > 8 

u.(t) = 
' 'u;(t -1) + d( v + u;(t -1)( - x ;(t -1)) + ku;(t -1)) + l;(t) ,u;(t -1) s 8 

where, 

a =0.002, b=0.03, c=0.03, d =0.8, v=0.002 and k =-0.057 are constants (Crook et al , 

2005 , Alhawarat, 2007). 

X i and Yi are considered as the internai variables of a NDS Neuron i. 

ui is considered as the voltage output of the NDS Neuron i. 

Bis a parameter called the Voltage threshold of ui and is set to O. 

no is called: Voltage reset of the NDS neuron (i.e. the value that takes the neuron 

voltage ui when the latter bypasses the threshold B). It is a parameter that is set to -

0.7. 
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The initial conditions of the NDS Neuron i are: xi(O) = 0, y i(O) = 0, ui(O) = no and the 

system starts at t = 1. 

By comparing the Rossler variables to the NDS Neuron variables, we notice that the 

variable z is substituted by u. The reason behind this substitution is simply for 

interpreting z as a voltage that is comtnonly prescribed by the letter u in conventional 

spiking neuron models. 

As we mentioned earlier, neurons communicate with spikes, which encode their 

behavioral activity. So, in order to incorporate the spike phen01nenon in the NDS 

Neuron model, a variable y is added to the mode] and is defined as it follows: 



l
l,u(t) > 8 

y(t) = 

O,u(t) s 8 
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y is interpreted as the spike output of the neuron which is equal to 1 wh en the neuron 

voltage u crosses its threshold ()and 0 elsewhere. 

Next, we will visualize a trail of spikes output of the NDS Neuron based on the 

variable y that altemates its value as being either 0 or 1 depending on the evolution of 

u. 
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Fig. 1.7 The NDS Neuron voltage u shown in green color and its spikes output y in blue 

versus time t. 

By examining the output of u and y in figure 1.7, we notice that they don't show any 

regularity; this is obvious because the NDS Neuron is a chaotic neuron model. Y et, in 

order to visualize the chaotic attractor of the NDS Neuron variables, then we should 

plot its phase diagram as we did for the Rossler equations previously. Note that, for 

the sake of simplicity, we will show the phase diagram of the NDS Neuron in two 

dimensions only. To do that, we choose to plot u versus x in figure 1.8, next: 
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Fig. 1.8 The phase space diagram, in two dimensions, of the NDS Neuron, which shows its 

chaotic attractor. 
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Ifwe examine the structure of the chaotic attractor of the NDS Neuron, we notice that 

the chaotic attractor of the NDS Neuron is composed of (UPOs). However, the 

methods of chaos control can be applied on the variables of a chaotic dynamical 

system in order to make them settle to a single UPO. For instance, to achieve chaos 

control in a NDS Neuron and make it settle to a single UPO, we assign its input 1 to 

its spike output y that occurred r time steps in the past, scaled by a factor w. This is 

interpreted in mathematical terms, as: 

J(t) = wy(t-r) 

We can construe the formulation of 1 as the ilnplementation of a self-feedback 

connection of the NDS Neuron on itself, which has a time delay that is defined by a 

parameter r. As for w, it is considered as a degree of freedom interpreted as the 

weight of this self-feedback connection. This method of chaos control applied to the 

NDS Neuron is called: Spike Feedback Control - SFC - (Crook et al , 2005). Figure 
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1.9 shows an UPO cached by applying SFC and its discrete manifestation in a regular 

spikes output pattern of period r. In this example, we choose r to be equal to 100. 
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Fig. 1.9 Chaos Control: On the left, a settled UPO through chaos control in phase space. On 

the right, top plot, the discretized version of the UPO shown as a spikes trail ofperiod r = 

100 containing 4 spikes. On the right, bottom plot, the evolution of the neuron voltage u. 

By varying the initial conditions, the degree of freedom w and/or the delay r we will 

theoretically reach an infinite number of different UPOs; discretized by trails of 

spiking activity of the neuron. 

The repertoire of UPOs that can be controlled using the method of chaos control 

molded in terms of SFC and discretized in spikes patterns can be considered as the 

vocabulary of the NDS Neuron (Crook et al, 2005). Thus, a discretized version of a 

UPO is an expression of a neuronal state of the NDS Neuron. Furthermore, it was 

shown that the nmnber of distinct UPOs that can be achieved using chaos control is in 

the order of hundreds of thousands and is theoretically infinite (Alhawarat, 2007). 

In this section, we introduced chaos theory and the NDS Neuron model. Furthermore, 

we introduced the main feature of 'states' of the NDS Neuron through chaos control , 

satisfying Valiant third vision (discussed previously); which suggests that we have to 
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extend the concept of states from the synaptic domain to the neuron domain. The 

NDS N euron is a chaotic spiking neuron mo del and opera tes using ti me delays, which 

makes it plausible in the field of computational neuroscience. In addition, it satisfies 

Valiant suggestion because it has theoretically infinitely many states. Next, we will 

exp lain the theory of chaotic neurodynamics upon which we base our hypothesis. 

1.6 Our hypothesis based on stabilization of chaotic attractors 

In 1991 , Freeman found that wh en an organism (i.e. an animal) is not smelling any 

odorant, it's brain Electro Encephalogram (EEG) signais activity can be represented 

in a phase diagram which shows a chaotic attractor, composed of dense orbits with 

very high degree of irregularity describing a high level of chaos. However, when an 

familiar odorant is offered to the organism then the attractor, still chaotic, became 

more regular and constrained to fine orbits, which means that the organism has either 

leamed the odorant (i.e. cognized the odorant and generated a new memory 

representation for it) or remembered the odorant (i.e. recognized the odorant by 

slightly altering its old memory representation). The findings of (Freeman, 1991) are 

elucidated in the figure 1.10 next: 

Fig. 1.10 Phase Space Diagram of EEG Bulb activity of a rab bit. Le ft: Phase space, wh en the 
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rab bit is not presented with an odorant, which shows Irregular portrait of neural activity. 

Right: Phase space, when the rabbit smells food , which seems more ordered and describes a 

regular portrait of neural activity. 

Please check Annex III for a summary and further explanation of Freeman (1991) 

experiments. 

Besides, we showed that an artificial spiking chaotic neural network is able to 

regularize its chaotic activity when trained with a general class of inputs (Aoun and 

Boukadoum, 2015). Furthermore, the network was able to discriminate future 

unknown inputs with the general class of inputs it has learned. Note that the 

regularization of chaotic activity of the network is manifested by the stabilization of 

UPOs through out the neurons activity inside the network. Thus, it seems that the 

regularization of the chaotic attractor, generated by an artificial chaotic spiking neural 

network, to a more constrained orbit depicting the memory representation of a class 

of well-defined inputs (Online signatures) as per the authors scope of study (Aoun 

and Boukadoum, 20 15), could be similar to the dense or bits of a chaotic attractor that 

are regularized when an organism is faced with a familiar class of stimuli as per the 

scope of Freeman's experimental study (Freeman, 1991). This comparison between 

two unrestricted phenomenal representations of memory lays out our hypothesis in 

considering the representation of memory as a stabilized orbit of a chaotic attractor 

and leads us to the declaration of our thesis statement in the next section (Section 

1. 7). 

Finally, we have to mention important research in the literature, which tackles the 

concept of chaos in the brain. For instance, Tsuda and Kuroda (2001) extend the work 

of Freeman (1991 ). ln fact, they pro vide a mathematic tnodel , based on chaotic 

dynatnics, which they cali Cantor coding, that could explain episodic memory 

(Episodic memory is the ability of the brain to transform short term memory to long 
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term memory). On the other side, Korn and Faure (2003) provide an exhaustive study 

with experimental evidence and variety of neuronal models that demonstrate the 

existence of chaos in the brain. 

1.7 Thesis statement, objectives and thesis organization 

We claim that 'Memories are embodied in the spiking patterns of chaotically firing 

neurons; their dynamical mechanisms create a chaotic attractor, such that a single 

memory is a controlled instance of an unstable periodic orbit (UPO) indwelled in the 

chaotic attractor'. Note that in our earl y experiments (Aoun & Boukadoum, 2014, 

ibid, 20 15) we coded the genuine online signatures of users as spike trains and fed 

them onto a chaotic spiking neural network (Details in Appendix A). The network 

was able to achieve stabilization of UPOs that could be interpreted as the 

representation of memories of genuine signatures (Details in Appendix A). Y et, the 

weights of connections between the neurons inside the network were govemed by 

chaos control and synaptic plasticity. So, our preliminary objective laid herein is to 

further study the advantage of synaptic plasticity in a network of chaotic spiking 

neurons over a network of regular spiking neurons (Chapter 2). In addition, our 

ultimate objective is to build a novel memory-processing system using the least 

number of chaotic spiking neurons possible. This system should embed a chaotic 

attractor that can be exploited through the manipulation of chaos control in order to 

representa mode] of memory (Chapter 3). ln this regard, we will consider 'a 1nemory 

as an active cluster of neurons su ch th at the latter is driven by a controlled instance of 

an Unstable Periodic Orbit (UPO) embedded in the chaotic attractor of a chaotic 

spiking neuron ' th at we demonstrate in details in chapter 3. Finally, we want to 

perform data classification and leaming using chaotic spiking neurons. Exploiting the 

rate of chaotic spiking and remarkably finding out that it has an exponential 

distribution does this, as we will see in chapter 4. Afterwards, we conclude the thesis. 



CHAPTER2 

INVESTIGATING SYNAPTIC PLASTICITY WITH 

CHAOTIC SPIKING NEURONS AND REGULAR 

SPIKING NEURONS 

2.1 Introduction 

To recapitulate, our Hypothesis is based on Freeman 's experiments (Freeman, 1991) 

and Freeman's postulate (Freeman, 1994), which claims that memories can be 

modeled using chaotic attractors. Upon this Hypothesis, we came up with our thesis 

which states that a single memory is a controlled instance of an unstable periodic 

orbit (UPO) embedded in a chaotic attractor. 

My early work (Aoun and Boukadomn, 2014, ibid, 2015) provided the initial 

endeavor towards further exploration of my thesis statement and was the ground of 

my Thesis Project. After presenting my thesis project, in the course DIC9411 , to the 

jury, the jury committee and I agreed to compare the number of UPOs that can be 

stabilized in a network of chaotic spiking neurons versus the number of UPOs that 

can be stabilized in a network of regular spiking neurons. Also, the network of 

chao tic spiking neurons used in Aoun and Boukadoum (20 14, ibid, 20 15) 
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implemented synaptic plasticity on the weights of the connections inside the network. 

Specifically, the synaptic plasticity method was inspired from a neurophysiological 

phenomenon called Spike Time Dependent Plasticity - STDP - (Markram et al. 

1997, Bi et Poo, 1998) but didn 't follow its standard conventional mode! (Detailed 

in Section 2.3 and 2.4 of this chapter). Thus, Dr. Boukadoum suggested 

implementing the standard STDP equations, which are conventionally used in the 

literature, in a Recurrent Neural Network - RNN - of chaotic spiking neurons. This 

implementation is a hard task and very challenging, but it will adda substantial asset 

to our study. Second, Dr. Poirrier, also a member of the jury, suggested creating a 

layer of neurons th at could read the output of chaotic neurons. So, in this chapter, we 

focus on Dr. Boukadoum ' s suggestion, which is implementing the standard STDP 

equations in a RNN of chaotic spiking neurons. Moreover, as we just mentioned, we 

will compare the number of UPOs that can be stabilized using standard STDP 

equations in a RNN of chaotic spiking neurons versus the number of UPOs that can 

be stabilized using standard STDP equations in a RNN of regular spiking neurons. 

Upon the findings we reach in this chapter (Chapter 2), we will tackle in Chapter 4 

machine learning and data pattern classification; which constitute a basic objective of 

this thesis. However, in chapter 3, we will focus and proceed in fulfilling the ultimate 

objective of this thesis that was highlighted in the last section (Section 1.7) of 

Chapter 1, whilst considering Dr. Poirrier's suggestion in this regard. 

Therefore, this chapter is divided as follows: In section 2.2, we sketch the Neural 

Network Architecture and the Neuron model that will be used in the remaining 

sections of this chapter. In section 2.3 , we introduce Synaptic Plasticity and Spike 

Time Dependent Plasticity (STDP). In section 2.4, we illustrate the STDP window 

based on neurophysiological data, we also introduce and explain the conventional 

STDP equations and plot their STDP window. In section 2.5 , we show our 

imple1nentation of STDP in a RNN of chaotic spiking neurons while taking into 

consideration the conventional equations of STSP. In section 2.6, we prove the 
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feasibility of STDP in a RNN of chaotic spiking neurons. In section 2.7, we provide a 

comparable study of the number of unique UPOs that can be stabilized in RNNs of 

chaotic spiking neurons itnplementing STDP versus the number of UPOs that can be 

stabilized in RNNs ofregular spiking neurons implementing STDP. 

2.2 Neural network architecture 

The neural network architecture that will be used in this chapter is composed of n (a 

variant number) spiking neurons that are recurrently connected to one another, bence 

a Recurrent Neural Network (RNN). We use the Adaptive Exponential (AdEx) 

Neuron model (Brette and Gerstner, 2005) as the elementary component of the RNN, 

because it is a biological neuron model that can simulate a wide range of 

physiological neuron behaviors (regular spiking, bursting, chaotic spiking ... ) and has 

fast processing speed when executed on a computer. Each connection; between any 

two neurons, in the network bas a fixed time delay and an adjustable weight. The 

time delays are kept fixed because the network will synchronize its spiking activity in 

a period equal to the time delay. The weights are adjusted using synaptic plasticity as 

we will see in the next section. The network architecture is illustrated in Figure 2.1. 



Recurrent Network of 
nAdEx Neurons 

Fig. 2.1 Neural Network Architecture: n AdEx Neurons are recurrently connected. Every 
connection has a weight "w" and a time delay "-r" 
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As we can see in Figure 2.1, we have a neural network ofn AdEx Neurons (e.g. At to 

An) where the subscript " i " is the index of an AdEx Neuron "A ". Each neuron has n­

i connections. A connection from neuron Aj to neuron Aï has a time delay "ri.J" and a 

weight Wij· 

We rewrite the AdEx Neuron equations (Naud et al., 2005) in their Euler form: 

1/Ji(t) = 1/JJt- 1) + dt[a(V(t- 1)- EL) -1/J]/Kw 

Where Vi(t) is the neuron's voltage at time t and 1/Ji(t) is its adaptation variable. The 

subscript " i " indicates the neuron ' s index inside the network. 

dt is the Euler time step which is set to 0.1 ms for good precision (Naud et al, 2008). 
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The parameters of the AdEx Neuron equations are retrieved from (Naud et al, 2008) 

and are shown in table 2 .1, next. For parameters units please refer to Naud et al , 2008. 

TA BL E 2. 1 Configuration of the AdEx Neuron parameters for Regular and Chaotic firing modes (Naud et al , 2008). For 
parameters untts 1 ~ N d 1 . 2008 ease re ·er to au et a, m 

Mode \ c gL EL Parameters 

Regular 200 10 -70 
Chaotic 100 12 -60 

The neuron initial conditions are : 

Vt 

-50 
-50 

11r a 

2 2 
2 -11 

Vi(O) = V,­

ljJJO) = 0 

Tw 

30 
130 

Ici = Lie+ (Uic- Lie) *Ri 

Where, 

Ri is a random decimal between 0 and 1. 

Lie is the lower bound of the default input current (le). 

Uic is the upper bound of the default input current (le). 

b Vr le () 

0 -58 500 0 
30 -48 160 0 

We note that Lie and Ulc are set according to the firing mode (i.e. regular or chaotic) 

requested. For instance, if we want regular firing, we can set Lie to 400 and Ulc to 

600, which are in fact 100 units away from the ir mean le which is 500. As for chao tic 

fi ring, we can set Lie to 150 and Ulc to 170, which are 10 units away from the ir mean 

le that is 160. Note that in the case of chaotic firing, it was observed in (Naud et al., 

2008) that the neuron's chaotic firing is sensitive to the input current 160 (e.g. le = 

160 pA) and values far away from 160 would ruin the chaotic behavior of the neuron. 

ln fact, we need the neurons of the RNN to have slight variations in their initial 

conditions (i.e. initial value of the Input current le) so the ir output will be different 
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from one another; which will offer great opportunity to the synaptic plasticity mode! 

that depends on the fi ring ti me of the neurons, to operate properly as we will see in 

the next section. 

Wh en the neuron 's voltage passes its threshold (i.e. Vi >= B), th en the neuron fires a 

spike th at is represented as Yi: 

l
i, ~(t) ~ 8 

y;(t) = 

0, ~(t) < 8 

The neuron receives time-delayed spikes from other neurons through its incoming 

connections, which are scaled by each connection 's weight and summed up as a total 

input I given by: 

n 

I W· ·y·(t- T · ·) l ,j J l,J 

j=l ,i=t j 

After calculating the input to the neuron, th en the latter is added to the neuron 's 
voltage: 

Wh en the neuron 's voltage crosses its threshold, it is reset to its reset value and its 

adaptation variable is set to the current value of the latter plus the adaptation reset 

parameter: 

IjVi(t) ~ B then V(t) =v,_ andl/Jï(t) = 1/Ji(t) + b 

The weights of ali the connections are initially set to 0, so the neurons inside the 

network will run in isolation and evolve their dynamics. Afterwards, synaptic 
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plasticity starts to operate by updating the connection weights, thus modifying /(t) of 

every neuron. Furthermore, as we will see in section 2.5 , ru will vary depending on 

the ti me of occurrence of the incoming spike to the neuron and its status (i.e. Firing or 

quiescent). In other words, Ti ,j will be different if the incoming spike occurred after 

the neuron ' s firing than if the incoming spike occurred before the neuron 's fi ring, as 

we will see in detail in the next section. 

2.3 Synaptic plasticity based on spike time dependent plasticity (STDP) 

Hebbian Learning is based on a law that was conceived by Donald Hebb, in 1949. 

In laymen terms, Hebb 's law states that ' neurons that fire together wire together'. 

This means that a chemical bond is built on the synapse between neurons that are 

causing excitation to each other (Hebb, 1949), thus the saying Synaptic Plasticity. 

In retrospect, this allows the neurons on each side of the synaptic bond to be 

sensitive to each other, in other words their firing activity becomes mutually 

correlated. According to Hebb, "When an axon of cell A is near enough to excite 

cell B and repeatedly or persistently takes part in firing it, sorne growth process 

or metabolic change takes place in one or both cells su ch that A 's efficiency, as 

one of the cells firing B, is increased" (Hebb, 1949). This is translated 

mathematically as the weight change (i.e. the change in synaptic strength) 

between the neurons is the product of their activation. More recently, a new 

theory that adds to Hebbian Learning, has emerged: Spike-Timing-Dependent 

Plasticiy - STDP - (Markram et al. 1997, Bi et Poo, 1998). STDP is a protocol of 

Hebbian Learning with time constraints. Specifically, STDP Learning considers 

the exact timing when a presynaptic neuron fires and the exact timing a 

postsynaptic neuron fires , in order to build-up their synaptic strength (i.e. 

Synaptic Plasticity). Based on experimental evidence (Markram et al. 1997, Bi et 

Poo, 1998), it was observed that if a postsynaptic neuron receives spikes from a 

presynaptic neuron , just before the postsynaptic neuron fires , then the synapse 's 
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strength between the two neurons is increased (This is a form of pre - post 

firing). In contrast, if a postsynaptic neuron receives spikes from a presynaptic 

neuron, after the postsynaptic neuron had fired (a form of post - pre firing) , then 

the synapse's strength between the two neurons is decreased (Markram et al. 

1997, Bi et Poo, 1998). 

Donald Hebb explains the acquisition of learning as being equivalent to an 

organization of neuronal behavior which is manifested when neurons organize their 

firing activity by building chemical bonds with each other, thus forming groups or 

neural cell assemblies. These bonds, according to Hebb ' s law, are instigated and 

maintained based on the rate of fi ring of the neurons, which molds the cells assembly, 

and builds a mutual correlation of firing activity between the neurons. However, it 

was observed that the exact fi ring ti me of a single spike of a presynaptic neuron could 

hold much more information than the firing rate (Bi et Poo, 1998). In 1998, Bi and 

Poo confirmed th at if a neuron ' s presynaptic pulse occurs just be fore the firing of the 

neuron . th en the synapse is strengthened, however if it occurred afterwards th en the 

synaptic strength is depressed. In other words, the exact firing time of a presynaptic 

cell affects the synaptic bond between the neurons, which in return influences either a 

mechanism of Long Term Potentiation (LTP), or Long Tenn Depression (L TD), 

through the neuronal behavior. We have to note that such observations were observed 

in vitro only. These experiments where achieved on cellular tissues of neurons in 

order to elucidate the consequence of spike timing to the synaptic changes. From Bi 

and Poo, in 1998, we quote "Repetitive stimulation (60 pulses at 1 Hz) was applied 

to the presynaptic neuron while both cells were held in current-clamp to allow 

spiking ... Measurements of the amplitude of EPS Cs revealed a persistent increase in 

synaptic efficacy after the repetitive stitnulation ... " (Bi et Poo, 1998). However, 

"postsynaptic spiking was initiated by repetitive injection of depolarizing current 

pulses before the activation of subthreshold synaptic inputs ... Repetitive initiation of 

postsynaptic action potentials that peaked at 6 msec before the onset of EPSPs 
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resulted in a persistent reduction in the EPSC amplitude" (Bi et Poo, 1998). This 

gives a glimpse that the exact firing time of a presynaptic neuron has a considerable 

effect to a postsynaptic neuron and plays a major role in inducing synaptic 

mechanisms that were simplified by only considering the firing rate. We have to note 

"the cellular basis that gives rise to the critical window for the induction of synaptic 

modifications remains to be determined" (Bi et Poo, 1 998). "Such sensitivity to 

activity patterns is crucial for the formation of specifie engrmns in neuronal circuits" 

(Wang et al. , 2005). Thus, we speculate that if a RNN encapsulating nonlinear 

dynamics in its core, whilst allowing STDP to manage the weights of the connections 

inside the RNN, could emulate self-organization of the RNN depicted in synchronous 

neural activity, then this phenomenon of spikes synchronization, that can be analyzed 

as an en gram manifested by the neural circuit ( e.g. RNN), would justify the 

grounding principles of STDP in achieving self-organization of neural circuitry and 

would provide addition al support to the claim of crucial sensitivity of activity patterns 

in the formation of specifie engrams in neuronal circuits (Wang et al. , 2005). 

2.4 STDP window 

As explained in the previous section, the STDP protocol is fundamentally based on 

the firing times between pre-synaptic and post-synaptic neurons. Specifically, if a 

pre-synaptic neuron fires before a post-synaptic neuron, then the synaptic connection 

between the two neurons is strengthened (i.e. the weight's change should be positive, 

thus, the weight of their connection is increased), and if a pre-synaptic neuron fires 

after a post-synaptic neuron, then the synapse between the two neurons is lessened 

(i.e. the weight's change should be negative, thus, the weight of their connection is 

decreased). Mathematically, if the weight change is denoted as /1w, the pre-synaptic 

time is denoted as tpre , the post-synaptic time is denoted as tpost , the difference 

between tpre and tpost denoted as /1t, then the STDP protocol is translated as: 
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11t > 0 

11t < 0 

Such that: A ,, A 2, LI and L2 are constants. 

For instance, if A ,= l, A2 = 1, LI = 20 and L2 = 20 then the STDP window look as in 

Figure 2.2, next: 
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Fig. 2_2 Curve plot of the STDP protocol 

The STDP window from etnpirical data (Yang and Poo, 2006) is shown in Figure 
2.3 , next. Note that the weight change is denoted as Excitatory Post Synaptic 
Potential - EPSP. 
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Fig. 2.3 STDP time window from empirical data. Excerpt from (Yang and Poo, 2006). 

2.5 Implementing STDP in RNN of spiking neurons with time delay 

As we highlighted in section 2.2 of this chapter, a connection between two neurons i 

and j , inside a RNN explained in section 2.2 and illustrated in Figure 2.1, has a time 

delay denoted by Ti,j. Furthermore, a neuron i calculates its Voltage at ti me t (i.e. 

Vi(t)) and then integrates the incoming spikes available through its input connections 

in a summation denoted by Ii(t) which will be added to Vi(t) and the result is 

evaluated by the voltage threshold (i.e. if Vi(t) >= 8 then the neuron emits a spike). 

But, before doing so (i.e. before evaluating Iï(t) and adding it to Vi(t)) , the weights of 

the connections should be updated (i.e . !:J.wiJ should be calculated and added to wi.J). 

So, in order to update the weights of the connections of the RNN th en we implement 

a competitive scenario of STDP that is similar to the approach made by Song et al , in 

2000, in their work on Competitive Hebbian leaming based on STDP (Song et al , 

2000). Furthermore, this Îlnplementation ensures synchronization of neural states, as 

we will demonstrate through numerical simulations in the remaining sections of this 

chapter. The competitive STDP protocol is described as: 



If (t- Ti,j)- tpre(j) < tpost(j)- (t- Ti,j) & Vi(t) > 8 

/ f ( t - Ti ,j) - tpre(j) > tpost(j) - ( t - Li,j) 

Where, 

then 
th en 
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LlW· · = L1w+ L,J 

LlW· · = LlW­L,J 

f pre(J) is the spike time of the spike, of input neuronj, that occurred just before t- ri ,J 

fpost(JJ is the spike tüne of the spike, of input j , th at occurred right after t - r i,J 

Llw+ is the positive increase of the weight change, equal to: 

L1w+ = A+ (- t-ru-tpre(j)) 
* e ru 

Llw- is the negative decrease of the weight change and equal to: 

(
t-T i,j- tp ost(j )) 

Llw- = A- * e ri ,j 

A+, A- are the upper and lower boundaries, of the positive and negative weight 

change, respectively, which are defined as the following: 

A+= (Ce -lÇ)- wu)* 11+ 

And, 

A- = lÇ * 11-

Where, 

11+ ,11- constants th at are experimentally set to 0.1 

The reason behind this choice in defining A+ and A- is supported by the fact that these 

parameters should be voltage dependent as suggested by Clopath and Gerstner, in 
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201 O. Furthermore, by setting A- = lÇ * 11- th en we are sure th at this parmneter is 

always negative, which is a must for LTD to take place in the STDP protocol. 

Second, by setting A+ = ( (8 -lÇ)- wu)* Jl+ then we are sure that LTP will sertie 

down once the weight of a connection has reached a maximal value equal to 8 - lÇ. 

Last but not least, the weight of every connection is updated according to the 

following: 

W· ·(t) = W · ·(t- 1) + ~W· · L,J L,J L,J 

Afterwards, the Input to neuron i is calculated according to the following: 

Where, 

n 

li(t) = 2 wi,J(t) * YJ(t(pre,post)CJ)) 

j=l , i~j 

{ 

tpre(J) in case of ~w+ 
t(pre,post)(j) = t · in case of ~w-

post(J) 

And, li(t) is added to the neuron 's voltage ~-(t): 

Vi(t) is then evaluated by the threshold () in order to check if the neuron i will emit a 
spike or not. 

2.6 Behavior of the RNN using STDP 

In this section, we experiment the STDP protocol discussed in the previous section in 
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a RNN of chaotic spiking neurons. The number of neurons inside the network is set to 

5. The simulation time is 20000 time steps. In the first 5000 steps, STDP is not 

activated so the neurons have enough time to evolve their dynamics. At time step 

5001, STDP is turned on and the connections start updating the ir weights, which in 

retum will affect the dynmnics of the neurons. The time delay of every connection is 

set to 200 and the weights start with initial value equal to O. The choice of a time 

delay equal to 200 is for experimental purposes only and is supported by 

neurophysiological data (Yang and Poo, 2006), of course other choices are possible. 

As we will see in the graph of Figure 2.4, when the neurons are in isolation ( e.g. 

Time Step :::; 5000), a neuron's activity inside the network is different from the 

activity of other neurons. However, when STDP starts operating at time step 5001 

then the neurons start stabilizing their dynamics, which results in a synchronous 

neural activity all over the neural network. 
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Fig. 2.4 Neural Network Spikes Output: Neurons run in a simulation of 20000 time steps. At 
ti me step 5001 STDP starts operating on the connections weights. When STDP is on, the 
neurons end up synchronizing their spikes activity. 

To show that every neuron inside the neural network is synchronizing its spiking 

activity over a period equal to "r "; which is the time delay of any connection 

between two neurons in the network and is the same for ali connections, we calculate 
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the difference between the absolute value of a neuron's spike at time " t " and its 

delayed spike at " t- r ", where "r " indicates the time delay of any connection in the 

neural network; which is in fact the same for ali the connections as we just 

mentioned. If the difference between a neuron 's spike absolute value at time " t " and 

its spike absolute value at tirne " t- r " is equal to 0 ail over "r ", then this rneans that 

the neuron is synchronizing its spikes activity over the period "r ". The plot of these 

differences is given in Figure 2.5, next. 
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Fig. 2.5 Periodic Spikes Synchronization of every neuron inside the Neural Network: 
Calculating the difference between the absolute value of a neuron ' s spike output at time " t " 

and the absolute. value of its spike output at time " t - r " shows that every neuron is 
synchronizing its activity in a time period equal to "r " because the difference settles to 0 in 
the long run. 

In figure 2.5, we showed that every neuron is synchronizing its output spikes activity 

to itself over a period that is equal to the time delay of the connections inside the 

network. But, to show that the neurons are synchronizing their system dynamics; their 

voltage " V", Adaptation variable " ljJ " and Spike output " y ", between each other, 

th en we will resort to the standard deviation of the data of each of these variables at 

ti me " t " . ln fact, the standard deviation, at ti me " t " , of a set of data values th at a 

variable "x" takes at ti me " t " , illustrates the dispersion of these data values, at ti me 

" t ", to the tnean value of "x" at time " t " . Thus, if the datais highly dispersed around 
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the mean th en the standard deviation is tnaximal and if the data is closely dispersed 

around the tnean th en the standard deviation is minimal. ln our case, if all the neurons 

are truly synchronizing their activity between each other at time " t " then the standard 

deviation of their dynamic variables should be minimal and the better case equal to O. 

The standard deviation of data variables "y", " V" and "l/J " of ali the neurons is 

shown in figures 2.6, 2.7 and 2.8, respectively, next. 
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Fig. 2.6 Proof of Synchronization of ali N eurons Output Spikes using Standard Deviation 
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Fig. 2.7 Proof of Synchronization of ail Neurons Voltages using Standard Deviation 



600 ~~---S~ta=nd=a~rd~De~vi=atTion~o~fN~eurro=ns~A~da~pt=at=ion~V=ar~iab~ler-~--~ 

0.2 0.4 0.6 0 .8 1.2 1.4 1.6 1.8 

Ti me 

Fig. 2.8 Proof of Synchronization of ali Neurons Adaptation Variables using Standard 
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As we can see in Figures 2.6, 2. 7 and 2.8 the standard deviation between the dynamic 

variables of every neuron in the network converges to 0, which proves that ali the 

neurons are synchronizing their dynamics. Furthermore, we show the average weight 

of the connections inside the network, in figure 2.9 next. 
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Fig. 2.9 Average Weight ofthe connections inside the RNN 

As we can see in Figure 2.9, wh en STDP starts operating at ti me step 5001, the 

weights altemate between inhibitions and excitations, thus apply STDP rules by 
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undergoing depression and potentiation respectively, before they fully stabilize 

around time step 6000 and remain unchanged afterwards. 

Finally, we show the STDP window of the weights changes in figure 2.1 0, next. 
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Fig . 2 .10 STDP window of the RNN that is composed from chaotic spiking neurons 

As we can see in figure 2.1 0, the STDP win dow shows more activity on the LTP si de 

than on the LTD side and this shows that causal interactions inside the neural network 

are indeed taking place, which eventually lead to synchronous activity of the neurons. 

We note that if LTD dominated then the neurons wouldn ' t synchronize and their 

behavior would be different from one another (i.e. asynchronous), which is not the 

case. 

2.7 Unstable periodic orbits (UPOs) in RNN using STDP 

In this section, we study the number of di fferent Unstable Periodic Orbits (UPOs) that 

can be stabilized in a RNN composed of P chaotic spiking neurons, such that P is an 

arbitrary positive integer that dictates the size of the network, when STDP is 
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managing the connections weights between the neurons. Furthermore, we compare 

this number with the number of stabilized UPOs, using STDP, of a P size RNN 

composed of P regular spiking neurons. For instance, the number of neurons that 

constitute both the RNN of chaotic spiking neurons and the RNN of regular spiking 

neurons will be between 10 and 50 (e.g. P E {10, 20, 30, 40, 50}). We aim to find out 

th at the memory capacity of the chao tic RNN is larger th an the memory capacity of a 

regular RNN (i.e. The number of stabilized UPOs inside RNN of chaotic spiking 

neurons is superior than the number of stabilized UPOs inside RNN of regular 

spiking neurons). To do this, we run twice, five sets of one hundred random 

experiments (i.e. random in the sense that an experiment starts with random initial 

conditions) where each experiment is composed of a RNN of P Neurons while 

increasing P by 10 for each set, starting from P = 10 to P = 50. The first five sets of 

experiments will be executed on RNN composed of chaotic spiking neurons, while 

the second five sets of experiments will be executed on RNN composed of regular 

spiking neurons. The results of the two 'five sets' of experiments are illustrated in a 

bar graph in figure 2.11, next. 
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Fig. 2.11 Comparison of the number of different stabilized UPOs of chaotic spiking RNN and 
regular spiking RNN. 

By analyzing the graph of figure 2.11, we observe that the number of different 
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stabilized UPOs of RNN composed of chaotic spiking neurons is always superior to 

the number of different stabilized UPOs of RNN composed of regular spiking 

neurons for any nUJnber of neurons. 

2.8 Conclusion 

ln the introductory section of this chapter, we raised two important investigations: 

The first investigation challenged the feasibility of implementing the standard 

equations th at describe Spike-Timing Synaptic Plasticity (STDP) in a network of 

chaotic spiking neurons and the second questioned the advantage of using chaotic 

spiking neurons that implement synaptic plasticity c01npared to the advantage of 

using regular spiking neurons Îlnplementing STDP. We fulfilled the first challenge by 

realizing a competitive STDP protocol within a recurrent network of chaotic spiking 

neurons protocol. As for the second challenge, experimental simulations were 

conducted in the aim of comparing the number of different stabilized UPOs through a 

network of chaotic spiking neurons vs. a network of regular spiking neurons whilst 

the connections between the neurons inside the networks followed a competitive 

STDP protocol. The results of the experiments confirmed that STDP fa vors chaotic 

spiking over regular spiking of neurons. In fact, the number of different UPOs 

stabilized within RNN of chaotic spiking neurons itnplementing STDP was shown to 

be way larger than the number of different UPOs stabilized within RNN of regular 

spiking neurons implementing STDP. 

2.9 Concluding Remarks 

lt should be noted that the effect of chaos control over a chaotic spiking neuron, or a 

recurrent network of chaotic spiking neurons, is not to be considered as an extemal 
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regulation. This is because chaos control is solely achieved either through a feedback 

connection from a neuron to itself (i.e. a self-feedback connection) as we have seen in 

the previous chapter or a feedback connection from a neuron to another neuron 

through synchronization as we have seen in this chapter. 

Another important remark: Chaos control could work as guidance for learning since it 

helps to achieve fast stabilization of the weights of the connections between neurons 

as shown in (Aoun, 2010, Aoun et Boukadoum, 2014, Aoun et Boukadoum, 2015). 

Furthermore, we notice in figure 2.11 that the number of different stabilized UPOs is 

inversely proportional to the size of the RNN for both types of neurons that constitute 

the RNN ( e.g. Chaotic and Regular). Our analysis in interpreting su ch result is the 

following: The increased number of neurons will increase the probability of their 

concurrent and nearby activity, which results in tnaximal causal interaction between 

the neurons that leads to an increased saturation of different possible outcomes which 

is translated in a decreased number of different possible stable states (i.e. decreased 

number of different stabilized UPOs). A work around to overcome this downward 

limitation is explained next. 

Through simulations (Chapter 4), we will demonstrate that by increasing the time 

delay of the connections inside large networks of recurrently connected chaotic 

spiking neurons, then we are able to maintain a large a number of different stabilized 

UPOs despite the increase of the network size. This means that a huge memory 

capacity, in tenns of different stabilized UPOs, can be sustained for big neural 

networks. 

Last but not least, we have to mention that in these experiments the time delay was 

always fixed and set to a value equal to 300. Fixing the time delay to a constant value 

ail over the experiments is just in the sake of easing the proof of concept in regards to 

the sole purpose of this chapter towards the investigation of the effect of STDP in 
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recurrent networks of chaotic spiking neurons vs. regular spiking neurons. We assure 

the reader that any value of the time delay could have generated the same 

consequences in regards to the number of stabilized UPOs of regular spiking neurons 

vs. chaotic spiking neurons. In other words, the choice of any time delay has no 

importance in interpreting the results that we reached in this chapter. However, an 

exhaustive study th at sol ely tackles the variation of the ti me delay and its potential is 

elaborated in chapter 4. 



CHAPTER 3 

THEORYOFNEURONALGROUPSBASEDON 

CHAOTIC SENSITIVITY 

3.1 Introduction 

In our thesis statement, we claimed that: 'Memories are embodied in the irregular 

spiking patterns of chaotically firing neurons which through dynatnical mechanisms 

generate a chaotic attractor, such that a single memory is a controlled instance of an 

unstable periodic orbit (UPO) in the chaotic attractor'. We aim to build a novel 

memory-processing system using chaotic spiking neurons, which should embed a 

chaotic attractor that can be exploited through the manipulation of chaos control in 

order to achieve memorization. In such endeavor, we challenge our thesis to consider 

the )east nurnber of chaotic spiking neurons as one single chaotic spiking neuron. The 

reason of a single neuron will be explained shortly. Consequently, we will slightly 

alter our thesis statement and rephrase its claim by declaring 'a memory as an active 

cluster of resonant neurons driven by a controlled instance of an Unstable Periodic 

Orbit (UPO) embedded in the chao tic attractor of a single chao tic spiking neuron'. In 

this chapter we create a Neural Network Architecture that elucidates our thesis 

statement through experimental and numerical simulations. Our approach in building 

the neural network architecture is based on Reservoir Computing (RC) (Natschlaeger 
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et al. , 2002) and our choice of one neuron is to simplify two 1nodels of RC, the first is 

Nonlinear Transient Computing Machine (NTCM) (Crook, 2007) and the second is 

called Liquid State Machine (LSM) (Maass et al. , 2002). We simplify NTCM, which 

embeds two chaotic neurons. In fact, we demonstrate that the job of a NTCM can be 

done with a single chao tic neuron. On the other si de, the reservoir of neurons inside a 

LSM is cmnposed of a large number (in the range of hundreds or even thousands) of 

regular spiking neurons while the reservoir in our case is composed of a single 

chaotic neuron. We demon strate that the effect of nonlinear dynamics generated by a 

single chaotic spiking neuron is a substitute to the effect of nonlinear dynmnics that 

could be generated with a recurrent neural network (i.e. a reservoir) composed of a 

large nmnber of regular spiking neurons. Specifically, we demon strate the separation 

property of a reservoir of regular spiking neurons holds true when using a single 

chaotic spiking neuron. Showing that the separation property holds for a chaotic 

spiking neuron is the first challenge and stepping stone that we reach in this chapter. 

Second, to show that the controlled instances of UPOs can depict memory then we 

propagate these UPOs to a layer of Resonant Neurons. We explain further: 

The Neural Network Architecture, presented in this chapter, is composed of a chaotic 

spiking neuron and a layer of Resonant Neurons. The chaotic spi king neuron projects 

its spiking output to the layer of Resonant Neurons. The Resonant Neurons catch 

Inter Spike lntervals (ISis) coming from the output spikes of the chao tic spiking 

neuron, such that each Resonant Neuron is configured to resonate (i.e. emit a spike) 

for a specifie ISI. 

The spiking output of the chaotic spiking neuron is a reflection of its Unstable 

Periodic Orbits (UPOs ). The latter are un stable, th us the spi king output of the chao tic 

spiking neuron is irregular. Chaos control is applied over the chaotic spiking neuron, 

leading its dynamics to stabilize towards a single UPO. To achieve chaos control , a 

self-feedback connection with time delay is implemented on the chaotic spiking 

neuron, which in retum renders its output activity into a repetitive spikes pattern 

having a time window equal to the titne delay of the self-feedback connection. The 
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repetitive spike pattern has distinct ISis inside of it, because it originated from a 

delayed instance of irregular spikes; that were held in the self-feedback connection. 

So, the repetitive spikes pattern is composed of a 'set' of ISis. A layer of Resonant 

Neurons is always receiving output spikes coming from the chaotic spiking neuron, 

but after the initiation of chaos control , these output spikes are now trapped in a 

repetitive spikes pattern composed of a set of ISis. Since every Resonant Neuron 

resonates for a specifie ISI , and since we have a repetitive set of ISis, th en we have a 

group of Resonant Neurons that are resonating for a set of ISis du ring a ti me win dow 

equal to the time delay connection of the chaotic spiking neuron. This group of 

neurons models a memory and is considered as a memory representation of an 

external input. Furthermore, we have a large number of UPOs that can be stabilized 

using chaos control , so we have a large number of unique spike patterns that can be 

generated by the chaotic spiking neuron when it is under the influence of chaos 

control. Besides, these unique spike patterns are mirrored as groups of Resonant 

Neurons. Our goal is to feed the chaotic spiking neuron with an extemal input, 

control its dynamics towards a regular behavior - depicted by a repetitive spikes 

output pattern of distinct ISis - and associate the group of Resonant Neurons that 

mirror its regular behavior to the external input it received. In this way, our neural 

network architecture can be considered as an infinite state machine because it can 

associate (or crea te) an output to every input (or new input) it receives. Does it have 

memory? And, what is its memory capacity? The answer, to the first question, is yes 

if we consider the group of Resonant Neurons as a celi assembly that is active 

whenever a specifie input is provided to the network. Furthermore, we can say that is 

has memory of ali past and future inputs: lt has memory of all past inputs if whenever 

a past input is fed to the network then the same cell assembly that was previously 

activated for th at input, is activated. lt has memory of ali future inputs if whenever a 

new input is fed to the network then a new cell assetnbly is created for it. To answer 

the second question, its memory capacity is theoretically infinite due to the chaotic 

nature of the system dynamics, which allows the control of an infinite number of 
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UPOs that are reflected onto neuronal groups considered as cell assemblies. ln this 

chapter, we provide experimental results to prove these assumptions. First, we 

introduce a model of a simple spiking neuron (Section 3.2). ln section 3.3, we 

introduce the chaotic spiking neuron. ln section 3.4, we apply chaos control on the 

chaotic spiking neuron. In Section 3.5 , we introduce the Resonant Neuron upon 

which a layer of Resonant Neurons is built and configured. In section 3.6, we sketch 

the neural network architecture that will use the neuron models introduced in section 

3.2, 3.3 and 3.5 and the chaos control1nethod explained in section 3.4. In section 3.7, 

we give an example that facilitates the understanding of Neuronal Groups by 

visualizing them in a 3 dimensional space. In section 3.8, we study the separation 

property of the neural network. In section 3.9, we study the number of neuronal 

groups that can be reached using this neural network. In Section 3.1 0, we discuss the 

resemblance of our work to important theories in the field of computational 

neuroscience and neuro-computing. Section 3.10 con eludes the chapter. 

3.2 The leaky integrate and fire neuron 

The leaky Integrate and Fire (LIF) Neuron is a basic spiking neuron model which can 

simulate the basic activity of a biological neuron. The LIF is weil known in the 

Computational Neuroscience domain and is commonly used to illustrate basic neuron 

behavior (i.e. Regular spiking activity). It is depicted in the following difference 

equation: 

( 
u(t)) (/ (t)) 

u(t + 1) = u(t) + [- R * C + C ] 

Where, 

u(t) is considered as the neuron voltage at time t. 

u(O) = n 0 and n 0 is a random number between - 1 and 0, which is considered as the 

re set value of the neuron voltage wh en the latter hits a threshold defined as 8. 



R is the resistance and C is the capacitance. 

I(t) is the input current to the neuron. 

We defi ne y(t) as the spike output of the neuron at ti met, as it follows: 

l
l,u(t ) > 8 

y(t) = 

O,u(t) s. 8 
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The behavior ofthe LIF Neuron for n 0 = -0.7, R = 6, C = JO, 1 = 0.05 and 8 = 0 is 

illustrated in Figure 3.1 Next. 
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Fig. 3.1 Plot of the activity ofLIF Neuron. Simulation Time = 1000 Time steps. Voltage in 
blue. Spike Output in green. 

3.3 The adaptive exponential integrate and fire (AdEx) neuron 

The Adaptive Exponential Integrate and Fire (AdEx) Neuron was invented by Brette 

and Gerstner, in 2005. The AdEx Neuron is a very powerful neuron model because it 

has a very high computational processing speed, is biologically plausible and has 

different configurations th at make it simulate a wide . range of neuron behavior 



57 

(Regular spiking, irregular spi king, tonie spiking, bursting ... ). Here we are interested 

in two of these behaviors: Regular Spiking and Irregular Spiking. The equations of 

the AdEx Neuron model are the following: 

dl/J 
r - = a(V - E ) - 7'· 

w dt L '+' 

If V > () then V = V,-and ljJ = ljJ + b 

Where V IS considered as the action potential of the neuron, 

ljJ is the adaptation variable, 1 c is a constant eurre nt, 1 is the incorning current, C is 

the me1nbrane conductance, gL is the leak conductance, EL is the leak reversai , Vr is 

the threshold potential (not to be confused with () which is the firing threshold), v,_ is 

the reset potential, 11r is the rise slope factor, rw is the adaptation time constant, a is 

the sub-threshold adaptation conductance and b is a current increment. Different 

values of these parameters lead to different firing activity of the neuron. Table 3.1 

next describes two configurations of these parameters, which are regular mode and 

irregular mode. 

TABLE 3 1 P fi f h AdE N arameters con tgurattons o · t e x euronm T d wo mo es 

Mode \ c gL EL Yt 11r Parameters a Tw b Yr le () 

Regular 
200 10 -70 -50 2 2 30 0 -58 500 0 Spi king: 

lrregu lar 100 12 -60 -50 2 -11 130 30 -48 160 0 Spi king: 

Wh en V > e, the neuron emits a spike which is represented as y (i.e. y= 1 if V> ()and 

0 otherwise ). 



Next, in figures 3.2 and 3.3 , we will plot the activity of the AdEx Neuron using 

configurations .of Table 3.1 
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Fig. 3.2 Plot of the regular activity of AdEx Neuron wh en it is in regular configuration mode. 
Simulation Time = 1000 Time steps. Voltage in blue. Spike Output in green. 
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Fig. 3.3 Plot of the irregular activity of AdEx Neuron when it is in chaotic configuration 
mode. Simulation Time = 10000 Time steps. Voltage in blue. Spike output in green. 

3.4 Controlling the chaotic behavior of the AdEx neuron 
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To control the chaotic activity of the AdEx Neuron when the latter is running in 

chaotic mode, we use the SFC method discussed in chapter 1. The SFC method 

applies a feedback connection on the voltage equation of the neuron. Note that in the 

ren1ainder of this chapter, we refer to this method simply as Time Delay feedback 

control. 

First, let us write the equations of the AdEx Neuron in their Euler form: 

[ (
V(t-1)-Vr) ] 

V(t) = V(t- 1) +dt -gL(V(t- 1)- EL)+ gL 11r exp Ôr +le -ljJ + 1 /C 

l/J(t) = l/J(t- 1) + dt[a(V(t- 1)- EL) -ljJ]/Tw 

Where dt is the Euler time step which is set to O. 1 for good precision. 

The system starts with V(O) = V,. and ljJ(O) =O; 

lfV(t) > () then V(t) = V,. andljJ(t) = l/J(t) + b 

Also, 

l
i, V(r) > e 

y(t) = 

O,V(t) ~e 

The SFC method requires the definition of a new parameter called TvFc, which is a 

ti me delay th at is applied on the spike output y of the neuron. Furthermore, we defi ne 

fcontrol as the time step when the chaos control should start taking effect. Of course, 

fcontrol should be greater or equal to TvFc· So, as soon as y has evolved past the time 

delay TvFc , then y(t- TvFc) becomes valid and applicable to the voltage of the 

neuron as the following: 

If t > = fcontrol then 
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V(t) = V(t) + ( e- V(t) )Cl+ E)y(t- rD Fe) 

Where, E is a sm ail positive infinitesimal quantity th at is experimentally set to 0.0001 

This means that ify(t- rDFc) is equal to 1 then the neuron voltage that is equal to 

V(t) + (e- V(t)) * (1 + E) * y(t- rDFc) becomes V(t) + (e- V(t)) * (1 + E) * 

1 which results to 8 + E. Otherwise, when no incoming spike is available at t- rDFc , 

thus y(t- rDFc) = 0 , then V(t) remains the satne because V(t) + (e- V(t)) * 

(1 + E) * 0 results to V(t). In this mode of operation, a single delayed spike, that is 

ex ci ting the neuron, is enough to drive the neuron ' s voltage above its threshold. 

Next, we wi11 show the evolution of an AdEx Neuron running in chaotic mode, where 

chaos control is applied at tilne step 1500 (tcontrol = 1500) for a self-feedback 

connection tüne delay of200 (rDFC = 200). 

Chaos Control Neuron Actlvlty uslng Chaos Control (Zoomed Version) 

i1-40 

2. 
~ -50 
~ ·60 

~ 
-70 

x 10<4 

Fig. 3.4 Chaos Control: Plot of the AdEx Neuron activity using Chaos Control. The AdEx 
Neuron is configured to run in chaos mode. The Neuron runs for 20000 time steps. Chaos 
control is applied at time step 1500. As we can see in the graph on the left, before time step 
1500, the output of the neuron is irregular, but when chaos control is achieved the output of 
the neuron becomes regular and periodic, in period containing two spikes; occurring in a time 
window period of length 200 for this example. Left: Simulation for 20000 time steps. Right: 
Zoom ed version of the simulation from time step 18000 to time step 20000. 

In the same settings, we plot (Figure 3 .5) the evolution of the adaptation variable 

"ljJ ''. 
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Fig. 3.5 Chaos Control : Plot of the evolution of the AdEx Neuron Adaptation Variable If! 
using Chaos Control. As we can see in the plot, when chaos control is applied at time step 
1500, the adaptation variable " If/ " expands un til it stabilizes in the range of 400 and 430 (i.e. 
it stabilizes between 400 and 400 ' plus ( + )' its adaptation reset value b; which is equal to 30). 

Now, we demonstrate the synchronization of the AdEx Neuron variables when chaos 

control is applied. In order to do so, we plot the difference between the absolute value 

of the neuron voltage at time t and the absolute value of the neuron voltage at time 

t - r DFC. Also, we plot the difference between the ab solute value of the neuron 

adaptation variable at time t and the absolute value of the neuron adaptation variable 

at time t - r DFC. Furthermore, we plot the difference between the absolu te value of 

the neuron spike output at ti me t and the absolute value of the neuron spike output at 

time t- rDFC· If the neuron is synchronizing then these absolute differences should 

converge to O. This is shown in the plot of figure 3 .6, next. 
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Fig. 3.6 Chaos Control : Synchronization of Neuron Variables using Time Delay feedback 
control. As we can see in the plot, when chaos control is applied at time step 1500, the 
difference between the absolute values of the neuron variables and the ir time-delayed ( e.g. 
Time delay equal to 200) absolute values converges to 0 confirrning their synchronization . In 
blue: Difference between the voltage and its delayed value. In red: Difference between the 
adaptation variable and its de layed value. In green: Difference between the spike output and 
its delayed value. 

ln the plot of Figure 3.7 next, we show the stabilized UPO of the AdEx Neuron after 

chaos control. 
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Fig. 3.7 Phase Space Plot of the AdEx Neuron after chaos control: We see the stabilization of 
the Unstable Periodic Orbit (UPO); depicting the Neuron 's state, by plotting the Adaptation 
variable of the AdEx Neuron versus its voltage. ln magenta: The evolution of the UPO 
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towards its stabilization . In black: The stabilized UPO. 

3.5 The resonate and fire neuron 

The Resonate and Fire Neuron (RAF) is a neuron model invented by Izhikevich, in 

2001. The RAF Neuron has an important characteristic, which is: It is sensitive to the 

spike timing frequency of the input stimulus. The state variable of the RAF is 

complex, this means its equations has a real and imaginary part which are the 

following: 

dx 
- = bx-wy 
dt 

dy 
-= wx +by 
dt 

That can be written in complex form as: 

dz 
- = (b + iw)z 
dt 

Here, z = x+iy is "complex variable that describes the oscillatory activity of the 

neuron" (Izhikevich, 2001 ). The imaginary part, y, describes the voltage. The 

parameter b is the rate at which the neuron goes back to its reset value (i.e. z=O). The 

parameter w describes the frequency of oscillation. In general, b is negative and is set 

to -1 (Izhikevich, 2001), w = JO (Izhikevich, 2001). 

The threshold upon which the neuron fires a spike is applied on the voltage variable y 

and is equal to 1 (lzhikevich, 2001 ). In other words, if y > 1 th en z = 0 and the 

neuron emits a spike. 

Let us write the equations of the RAF Neuron in Euler form: 



x(t) = x(t- 1) + bx(t- 1)- wy(t- 1) 

y(t) = y(t- 1) + wx(t- 1) + by(t- 1) 

The spike output of the neuron is defined as: 

!
J, y(t) > 8 

y(t) = 

O,y(t) s 8 
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Where 8=0 is the threshold of the neuron. As we mentioned earlier, whenever the 

neuron voltage crosses its threshold then it is reset to 0: 

lfy(t) > 8 then x(t) =O and y(t) =0 

The neuron recetves input in the form of spikes; from other neurons, that are 

integrated through the voltage variable. For instance, consider a spiking neuron j that 

is connected to a RAF neuron i via a feedforward connection; from j to i, that has 

weight Cïj, then its voltage equation is rewritten as: 

The RAF Neuron fires when the Interval between two consecutive spikes, that it 

receives, is near its period, called eigenperiod (Izhikevich, 2001) (Remark: note th at 

in the remainder of this chapter we sotnetimes refer to the eigenperiod of a RAF 

Neuron, simply, as its resonance). This is clarified in the following sketch (Figure 

3.8) where V(t) corresponds to the voltage y (t) of the RAF Neuron. For instance, as 

we can see in Figure 3.8, if input pulse 2 occurs near the eigenperiod of the neuron 

th en the neuron fi res, otherwise it won ' t. 
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Threshold 

Res 

? ? . 
Pulse 1 Pulse 2 

Fig. 3.8 Voltage activity and firing of the RAF Neuron: Input Pulse 1 activates the RAF 

Neuron. If input pulse 2 occurs near the period of the voltage then the neuron fires , if pulse 2 

is not near the period th en the neuron won ' t fi re . Excerpt from (Izhikevich, 2001 ). 

3.6 The neural network architecture 

In this section, we exp lain the neural network architecture which is cmnposed of an 

LIF Neuron, an AdEx Neuron and a layer of RAF Neurons. These neurons are 

connected via feedforward connections and the AdEx Neuron has a self-feedback 

connection to itself as we can see in Figure 3.9 next. 



Legend : 
T • T i.me Wi ndow ( Per iod) 

A • AdEx Ne u r on (Initia tes chaotic spikes and 
locks them in a repetitive unique s p ikes pattern 
of per i od T, using the self feedback time delay 
connection equal to T) 
L • LIF Ne uron ( Prov i des a repetitive single 
spike pattern of period T , e qu ivalent to its 
Firing Rate which is experimentally pre-set 
through an inpu t bias current) 
R • R.AP Neuron (Fires a Spike when its 
eigenperiod is equal to an Interval of two 
co nsecutive input s p ikes it receives) 
Inte r val k b etween LIF Neuron Spike and an AdEx 
Neuron Sp ike: f- k-7 • Spike of R, 

Input 
Spikes ~--~~--~~ 
Pattern 

Bias Current 
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Fig. 3.9 Neural Network Architecture: Spikes are represented with vertical bars. "L" is a LIF 

Neuron, which repetitively emits a single spike according to the value of its bias current. The 

bias current is preset to a value th at allows the fi ring rate of the LIF Neuron to be equal to 1 Ir. 

"A" is an AdEx Neuron configured to run in chaotic mode and has a self-feedback 

connection that achieves chaos control. The self-feedback connection of the AdEx Neuron 

has a time delay equal to "r" . The spikes emitted by the LIF Neuron "L" and the AdEx 

Neuron "A" are received in repetitive manner by RAF Neurons ("R 1" to "R/'). The subscript 

next to "R" indicates its resonance. A RAF Neuron that has resonance equal to the Inter 

Spike Interval between the LIF Neuron Spike and the AdEx Neuron Spike will fire ; in this 

illustration "Rr", "Rm" and "Rp" will fire and constitute a single neuronal group that 

characterizes the Input Spikes Pattern fed to the AdEx Neuron. 

The goal of this Neural Network Architecture is to discriminate different Input Spike 

Patterns that the AdEx Neuron receives. The discrimination is manifested through the 

activation of different groups of RAF Neurons. In other words, similar input patterns 

to the AdEx Neuron should activate the same group of RAF Neurons, and different 

input patterns should activate different groups of RAF Neurons. To achieve this goal , 

an AdEx Neuron; configured to fire chaotically, is controlled by embedding a self­

feedback connection that relays the spikes it receives to itself forcing it to fire in a 

period equal to the ti me delay of its self-feedback connection. Sin ce the AdEx 
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Neuron is chaotic, then it is sensitive to the timing of an input spike it receives. This 

means, the short-term behavior of the AdEx Neuron is not drastically affected for 

similar timings of input spike instances; however, the long-term behavior is 

drastically affected. In other words, according to the first principal of Chaos theory 

(i.e. sensitivity on initial conditions; discussed in the first chapter), nearby initial 

inputs should slightly affect the short-term behavior of the dynamics of the system 

(e.g. The AdEx Neuron) but they would drastically affect its long-term behavior. 

However, distant initial inputs, also slightly affect the short-term behavior of the 

dynatnics of the system (e.g. The AdEx Neuron), and of course drastically affect its 

long-term behavior. Besides, according to the theory of Nonlinear Transient 

Computing (Crook, 2007), nearby timings should produce the same transient in the 

dynamics of a chaotic neuron and distant timings should produce different transients 

(Crook, 2007). We exploit these theories in order to achieve our goal of 

discriminating input spikes patterns fed to the AdEx Neuron: An input is applied 

during the early evolution of the dynamics of the AdEx Neuron, so similar inputs 

won 't affect mu ch its dynamics but different (i.e. distant) inputs would. Furthermore, 

we apply chaos control on the AdEx Neuron so the transient it produces, when it 

receives an input spikes pattern; will retnain alive through its controlled dynamics. 

This means the transient becomes incorporated in the Unstable Periodic Orbit (UPO) 

that the AdEx Neuron will be converging onto. Moreover, we have to note that we 

have a LIF Neuron that is emitting a single spike in period equivalent to the period of 

the AdEx Neuron's UPO, this acts as a time clock. Finally, we have RAF Neurons 

that are mirroring the manifested repetitive spikes pattern of the stable UPO of the 

AdEx Neuron per ti me clock provided by the LIF Neuron. 

In order to achieve chaos control over "A" and make it fire periodically, we 

implement a connection from "A" to itself, as we can see in Figure 3.9. This self­

feedback connection has a ti me delay "r" which constitutes the length of the un stable 

periodic orbit (UPO) of the AdEx Neuron. The UPO is represented by a spike pattern 
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that repeats itself every "r" time steps and this repetition is due to the self-feedback 

connection, which is of length "r". This repetitive spikes pattern is considered as the 

output of the AdEx Neuron. The LIF Neuron "L" receives a bias input current which 

is preset to a value that insures the fi ring frequency of the LIF to be equal one over 

the length (i.e. llr) of the periodic spike pattern emitted by the AdEx Neuron. The 

spike etnitted by the LIF Neuron and the spikes etnitted by the AdEx Neuron "A" are 

received by "r" RAF Neurons. Each RAF Neuron has an eigenperiod (i.e. a 

resonance). The eigenperiod of a RAF Neuron is the tÎlne gap between any two 

consecutive input spikes the neuron receives and upon which it fires a spike. In other 

words, a RAF Neuron fires a spike when it receives two consecutive spikes separated 

by a ti me gap equal to its eigenperiod. As we said, we have "r" RAF N eurons, so "r" 

eigenperiods ranging from 1 to "r" that we set for RAF Neuron with index 1 to "r" 

respectively. So, every "r" time steps, the LIF Neuron tires a spike that is propagated 

to ali RAF Neurons, and during "r", the AdEx Neuron fires sorne other spikes that are 

also propagated to ail RAF Neurons. The RAF Neuron with an eigenperiod equal to 

the Inter Spike Interval (ISI) between the LIF Neuron "L" Spike and the AdEx 

Neuron "A" Spike will fi re. Note that the maximum nmnber of RAF Neurons should 

be equal to "r" so we ensure that even if the repetitive output spike pattern of the 

AdEx Neuron "A" contains a single spike occurring at "r", then the RAF Neuron that 

has an eigenperiod equa] to "r" caches it. 

In retrospect, we have RAF Neurons that keep on firing according to a repetitive 

spike pattern coming fr01n an LIF Neuron; which is firing according to a bias current, 

and from an AdEx Neuron which is firing according to an input spike pattern that it is 

receiving from outside. So, in this context, we declare the following assertion: 

((The subset of RAF Neurons that are firing will constitute a single neuronal group 

that characterizes the input spikes pattern of the AdEx Neuron ". 

In the next section, we will attempt to visualize active RAF Neuronal groups through 
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a set of 100 experilnents. Then, in section 3.8, we will study the separation property 

of these groups for similar and different, single and multiple spikes input patterns. In 

section 3.9, we will show the large number of unique RAF Neuronal Groups that can 

be reached with this architecture. In section 3.1 0, we discuss the relation between our 

work and itnportant theories in our field of study. 

Re marks: 

We should note that an extemal input occurring at time t, to the AdEx neuron is 

denoted as YExterna!(t) and is added to the adaptation variable of the AdEx Neuron like 

the following: 

dt[a(V(t- 1)- EL) -ljJ] 
l/J(t) = l/J(t- 1) + + hYExternal(t) 

Tw 

We decided to integrate the extemal input of the AdEx Neuron (e.g. "A" in Figure 

3.9) into its adaptation variable because we follow the approach of (Crook, 2007) in 

this regard. In fact, we want an input to the neuron to have a slight influence on the 

neuron 's evolving dynamics; which can be achieved by perturbing its adaptation 

variable, and not a direct impact on the neuron 's evolving dynamics; which can be 

achieved by perturbing its action potential. 

Also, the equations of a RAF Neuron "R/', where i E {L ... , r} are evaluated as the 

following: 

rr 
xJt) = xi(t- 1)- (i + 

1
)Yi(t- 1) 

Yi(t) = Yi(t- 1) + (: 
1

) xi(t)- cRAFfi(t) 

Such that, 



CRA F is a constant that is experimentally set to 1. 

And, 

Where, YL(t) is the spike output of the LIF neuron "L" and Dis the Dirac delta 

function, which is defined as: 

D(a) = { 
0 if a < 0 or a > 0 
1 if a= 0 
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In this way of evaluating the equations of a RAF Neuron, we are sure that a RAF 

Neuron only responds to an input spike that is occurring at its eigenperiod which is 

equal to its index i and neglects any input spike that occurs while the RAF Neuron is 

evolving its dynamics. 

To conclude these remarks, we note that the time delay of the AdEx Neuron "A" is 

experimentally set depending on the length of the input spikes pattern that is fed to 

"A" as we will see later on in the remainder of this chapter. And, the bias current of 

the LIF Neuron "L" is experimentally set in order to make its firing rate equal to one 

spike per ti me delay of "A" . 

3.7 Visualizing RAF neuronal groups 

In this section, we show the results of approximately 100 experiments that we 

performed using the neural network architecture explained in section 3.6 but instead 

of considering an input as a pattern of multiple spikes, we embed a LIF Neuron (e.g. 

"L."); in front of the AdEx Neuron, that takes an arbitrary Input Current and emits a 

single spike accordingly. This is illustrated in the figure 3.10 next: 
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Fig. 3.10 Network Architecture with a variable input current to a LIF Neuron "L." embedded 

before the AdE x N euron. 

We have to note that as soon as the LIF Neuron "L1" emits a spike; it should remain 

in its rest state. This is because if we let the LIF Neuron "L1" keep on firing then this 

will ruin the behavior of the AdEx Neuron. Thus, a condition is exerted on the 

equations of the LIF Neuron "L1" to force it to shut down once it has fired its first 

spike. In fact, a LIF Neuron fires in regular mode by default, so its repetitive spikes 

are just redundant and tneaningless for our purpose in triggering the AdE x N euron, 

besides they have an undesired influence on the evolution of the AdEx Neuron 

dynamics. In fact, we are only interested in the timing of the first spike; the AdEx 

Neuron is receiving, which is significantly enough in order to characterize an input 

current and offers the sufficient and necessary effect of that input with regards to its 

influence on the AdEx Neuron behavior. 

In each experiment, the neural network is fed with an input current to the LIF Neuron 

(i.e. L1), which increases by 1 pico Ampere (pA) from an experiment to the next. The 

input currents range from 51 pA to 162 pA. The lower bound of 51 and the upper 

bound of 162 were chosen for experimental purposes only, other values can also be 
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considered. 

We note that m these experiments, the Time Delay "r " of the self-feedback 

connection of the AdEx Neuron is set to 112 ms. We chose this value because: First, 

we noticed that a time period of 112 ms is enough to capture the first spike time 

emitted by the LIF Neuron (i.e. L1) which ranges between 71 ms for Input current 

equal to 51 pA and 33 ms for an Input current equal to 162 pA. Second, we want each 

experiment to activate 3 RAF Neurons in order to be able to visualize them in a 3D 

plot. So, we want a time window that contains 3 spikes (shown in Table 3.2 column 

4), which in retum will activate 3 RAF Neurons (shown in Table 3.2 column 5). By 

experimentation, we noticed that a time period of 112 could afford the existence of 3 

spikes in it, th us the choice of "r" equal 11 2 is convincing. 

In the following table, we show the results of our experiments: 

Table 302 Resul ts of Ex periments where Input Current is vari ed between 5 1 pA and 162pA, Ad Ex Connect ion Ti me Delay is 
1 1 12 d Ad E Ad 

0 0 
1 20 equa to an x aptatlon reset parameter IS equa to 

Ad Ex 

Output 
LIF1 Output (Spike 

Input (Time of Times Indexes of RAF 
Experiment Current in First Spike relative to Active RAF Neuronal 

Nbr pA in mS) Period 112) Neurons Group 

1 51 71 11,34, 71 11,34, 71 1 
2 52 71 11,34, 71 11,34, 71 1 
3 53 70 11,34, 71 11,34, 71 1 
4 54 69 11,34, 71 11,34, 71 1 
5 55 68 11,34, 71 11,34, 71 1 
6 56 67 11,34, 71 11,34, 71 1 
7 57 67 11,34, 71 11,34, 71 1 
8 58 66 11,34, 71 11,34, 71 1 
9 59 65 11,34, 71 11,34, 71 1 
10 60 65 11,34, 71 11,34, 71 1 
11 61 64 11,34, 71 11,34, 71 1 
12 62 63 11,34, 71 11,34, 71 1 
13 63 63 11,34, 71 11,34, 71 1 
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14 64 62 11,34, 71 11,34, 71 1 
15 65 62 11,34, 71 11,34, 71 1 
16 66 61 12,34, 72 12,34, 72 2 
17 67 61 12,34, 72 12,34, 72 2 
18 68 60 12,34, 72 12,34, 72 2 
19 69 59 12,34, 72 . 12, 34, 72 2 
20 70 59 12,34, 72 12,34, 72 2 
21 71 58 12,34, 72 12,34, 72 2 
22 72 58 12,34, 72 12,34, 72 2 
23 73 57 12,34, 72 12,34, 72 2 
24 74 57 12,34, 72 12,34, 72 2 
25 75 56 12, 34, 72 12,34, 72 2 
26 76 56 12,34, 72 12, 34, 72 2 
27 77 55 12,34, 72 12,34, 72 2 
28 78 55 12,34, 72 12, 34, 72 2 
29 79 54 12,34, 72 12,34, 72 2 
30 80 54 12,34, 72 12,34, 72 2 
31 81 54 12,34, 72 12,34, 72 2 
32 82 53 13,34, 73 13,34, 73 3 
33 83 53 13,34, 73 13,34, 73 3 
34 84 52 13,34, 73 13,34, 73 3 
35 85 52 13,34, 73 13,34, 73 3 
36 86 52 13,34, 73 13,34, 73 3 
37 87 51 13,34, 73 13,34, 73 3 
38 88 51 13,34, 73 13,34, 73 3 
39 89 50 13,34, 73 13,34, 73 3 
40 90 50 13,34, 73 13,34, 73 3 
41 91 50 13,34, 73 13,34, 73 3 
42 92 49 13,34, 73 13,34, 73 3 
43 93 49 13,34, 73 13,34, 73 3 
44 94 49 13,34, 73 13,34, 73 3 
45 95 48 14,34, 74 14,34, 74 4 
46 96 48 14,34, 74 14,34, 74 4 
47 97 47 14,34, 74 14,34, 74 4 
48 98 47 14,34, 74 14,34, 74 4 
49 99 47 14,34, 74 14,34, 74 4 
50 100 47 14,34, 74 14,34, 74 4 
51 101 46 14,34, 74 14,34, 74 4 
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52 102 46 14,34, 74 14,34, 74 4 
53 103 46 14,34, 74 14,34, 74 4 
54 104 45 14,34, 74 14,34, 74 4 
55 105 45 14,34, 74 14, 34, 74 4 
56 106 45 14,34, 74 14,34, 74 4 
57 107 44 15,34, 75 15,34, 75 5 
58 108 44 15,34, 75 15,34, 75 5 
59 109 44 15,34, 75 15,34, 75 5 
60 110 44 15,34, 75 15,34, 75 5 
61 111 43 15,34, 75 15,34, 75 5 
62 112 43 15,34, 75 15,34, 75 5 
63 113 43 15,34, 75 15,34, 75 5 
64 114 42 15,34, 75 15,34, 75 5 
65 115 42 15,34, 75 15,34, 75 5 
66 116 42 15,34, 75 15,34, 75 5 
67 117 42 15,34, 75 15,34, 75 5 
68 118 41 15,34, 76 15,34, 76 6 
69 119 41 15,34, 76 15,34, 76 6 
70 120 41 15,34, 76 15,34, 76 6 
71 121 41 15,34, 76 15,34, 76 6 
72 122 40 16,34, 76 16,34, 76 7 
73 123 40 16,34, 76 16,34, 76 7 
74 124 40 16,34, 76 16,34, 76 7 
75 125 40 16,34, 76 16,34, 76 7 
76 126 39 16,34, 76 16,34, 76 7 
77 127 39 16,34, 76 16,34, 76 7 
78 128 39 16,34, 76 16,34, 76 7 
79 129 39 16,34, 76 16,34, 76 7 
80 130 39 16,34, 76 16,34, 76 7 
81 131 38 16,34, 77 16,34, 77 8 
82 132 38 16,34, 77 16,34, 77 8 
83 133 38 16,34, 77 16,34, 77 8 
84 134 38 16,34, 77 16,34, 77 8 
85 135 38 16,34, 77 16,34, 77 8 
86 136 37 16,34, 77 16,34, 77 8 
87 137 37 16,34, 77 16,34, 77 8 
88 138 37 16,34, 77 16,34, 77 8 
89 139 37 16,34, 77 16,34, 77 8 
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90 140 37 16,34, 77 16,34, 77 8 
91 141 36 16,34, 77 16,34, 77 8 
92 142 36 16,34, 77 16,34, 77 8 
93 143 36 16,34, 77 16,34, 77 8 
94 144 36 16,34, 77 16,34, 77 8 
95 145 36 16,34, 77 16,34, 77 8 
96 146 35 17,34, 78 17,34, 78 9 
97 147 35 17,34, 78 17,34, 78 9 
98 148 35 17,34, 78 17,34, 78 9 
99 149 35 17,34, 78 17,34, 78 9 
100 150 35 17,34, 78 17,34, 78 9 
101 151 35 17,34, 78 17,34, 78 9 
102 152 34 17,34, 78 17,34, 78 9 
103 153 34 17,34, 78 17,34, 78 9 
104 154 34 17,34, 78 17,34, 78 9 
105 155 34 17,34, 78 17,34, 78 9 
106 156 34 17,34, 78 17,34, 78 9 
107 157 34 17,34, 78 17,34, 78 9 
108 158 33 17,34, 78 17,34, 78 9 
109 159 33 17,34, 78 17,34, 78 9 
110 160 33 17,34, 78 17,34, 78 9 
111 161 33 17,34, 78 17,34, 78 9 

112 162 33 17,34, 78 17,34, 78 9 

As we can see in Table 3.2, we have 9 different RAF Neuronal Groups for 112 

different values of Input currents. Very close input currents generate the same 

response from the LIF Neuron (i.e. L,); which is visible through its spike output 

(Column 3 in the table). Furthermore, nearby occurrences of the first spike (i.e. LIF 

L1 Spike output) received by the AdEx Neuron make it generates same responses 

(Column 4 in the table) that are mirrored by RAF Neurons (Column 5 in the table). 

This is the reason why we have the same sets of RAF Neurons firing accordingly, 

which will constitute the neuronal groups 1 to 9 (Column 6 in the table). 

ln order to visualize the RAF neuronal groups, we plot in 3D space the indexes of 
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RAF Neurons that fire depending on the input current of each experiment. Same sets 

of active neurons constitute the smne group. We have 9 different sets, so 9 groups. 

This is shown in figure 3.11 next. 

RAF Neuronal Groups in 30 : Each Group consists of 3 RAF Neurons that are activated through small ranges of an Input Current 
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Fig. 3 .Il Visualization of 9 neuronal groups of RAF Neurons showed in 3D plot on the left, 

by varying the input current of LIF Neuron (i.e. L1) ranging from 51 pA to 162 pA in 

increments of 1 pA (col or bar on the right). In the 3D plot, each axe represents the index of a 

RAF Neuron. We plot the indexes of the RAF Neurons that were active for a particular input 

current. Very close input currents activate the same RAF Neurons, thus the same neuronal 

group. The colors indicate the match between very close input currents and their 

corresponding neuronal group. 

In this section, we detnonstrated RAF Neuronal groups characterizing an input 

current. Next, we will study the separation property of these groups depending on 

different varieties of input spike patterns. 

3.8 Separation property of neuronal groups 

In order to study the separation property ofRAF Neuronal Groups, we will refer back 
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to the original neural network architecture illustrated in Figure 3.9. 

Crook (2007) studied the Separation property of his Nonlinear Transient Computing 

Machine (NTCM) using Euclidean Distance measure between input patterns to the 

machine and its response. This measure will be discussed later, but first as a flash 

back, the core of the NTCM is composed of two chaotic spiking neurons, nam ely the 

Nonlinear Dynamic State (NDS) Neurons (Crook et al., 2005), which are in chaos 

control mode. The chaos control is removed whenever an input is presented to the 

network. But, when a chaotic spiking neuron that is functioning in control mode is 

altered to chaotic mode, then its Unstable Periodic Orbit (UPO) starts to slightly 

diverge frotn its course. This slight divergence is depicted in the spikes output pattern 

of the neuron and is called a Nonlinear Transient. In our work, the same phenomenon 

happens, but instead of diverging from a stable UPO which happens on the long run 

after chaos control, our AdEx Neuron diverges from the first UPO, which is also 

stable since it is the first one. Then, we apply chaos control just to Jock it in a periodic 

output. 

In this section we use the Euclidean Distance to study the separation of RAF Neurons 

to inputs fed to the network. Euclidean distance was also used in (Crook, 2007) and 

(Maass et al., 2002) to study the separation property of their neural network 

architectures. 

If our Neural network architecture has a separation property then: 

1. The network should provide siinilar responses for similar inputs fed to it. 

2. The network should provide different responses for different inputs fed to it. 

3. The Euclidean Distance between any two inputs should be proportional to the 

Eue li dean Distance of the ir corresponding responses. 

The Response here is the Group of RAF Neurons that is activated for a specifie input. 

The Euclidean Distance between two groups, lets say Ga and Gb of equal number of 
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RAF Neurons, is calculated as the following: 

Where Gv is a group of n RAF Neurons, k indicates the k'17 RAF Neuron inside group 

v, and RAFk,v is the index of a RAF Neuron. 

Separation of Single spike Input patterns: 

To study the separation property of the network when the latter is fed with an input 

pattern consisting of a single spike th en we conduct a sequence of experiments where 

the position of a single spike, is shifted between 1 and the length of the input pattern. 

In each experiment, the input pattern and its corresponding RAF N euro na] group are 

recorded. 

We use these recordings in order to compare, using Euclidean Distance measure, the 

similarity of inputs and their corresponding outputs, the differences of the inputs and 

the ir corresponding outputs and finally the proportional ity of the Euclidean distances 

between the inputs and their corresponding outputs. We follow three scenarios in 

order to fulfill such comparison: 

First scenario: We pick an input pattern that has its single spike occurring at the first 

position in the pattern. We calculate the Euclidean Distances between the prototype 

and ali the remaining input patterns. Then we calculate the Euclidean Distances 

between the RAF Neurons Group that was activated for this input prototype and the 

RAF Neurons Groups that were activated for ail the remaining input patterns. 

Second Scenario: We pick an input pattern th at has the position of its single spike at 

the middle of the pattern. We calculate the Euclidean Distances between the 

prototype and ali the remaining input patterns. Then we calculate the Euclidean 



79 

Distances between the RAF Neurons Group that was activated for this input 

prototype and the RAF Neurons Groups that were activated for ali the remaining 

input patterns. 

Third Scenario: We pick an input pattern that has the position of its single spike at 

the end of the pattern. We calculate the Euclidean Distances between the prototype 

and ali the remaining input patterns. Then we calculate the Euclidean Distances 

between the RAF Neurons Group that was activated for this input prototype and the 

RAF Neurons Groups that were activated for ali the remaining input patterns. 

While executing the first scenario, we noticed that the responses of the network 

flattens out over a very wide range (Figure 3.12 next) of the tüne of occurrence of the 

single spike in the input pattern (i.e. from 120 to 160 as seen in Figure 3.12), which 

badly ruins the separation of the inputs because we ' ll have the same RAF Neurons 

firing for a very large portion of nearby inputs. This is seen in the plot of Figure 3.12 

next. 
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Spike l ime Occurence of Input Pattern 

Figure 3.12 Separation of Single Spike Input Patterns when the spike time occurrence is 
ranging from 1 to 200. 

By doing further experiments, we noticed that this is a drawback of the adaptation 

variable 1jJ of the AdEx Neuron, which is accutnulating by b at each reset after a spike 
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emission. In other words, for large adaptation reset (i.e. for large b ), we have large 

gaps between the spikes emitted by the AdEx Neuron. But, b is a parameter that can 

be arranged, and which is set to 30 by default. Also, remember that active RAF 

Neurons are a mirror of the spikes output pattern of the AdEx Neuron. So, if we 

reduce the value of b then we will reduce the gap between consecutive AdEx spikes, 

which in retum offers the opportunity of additional spikes to be emitted by the AdEx 

Neuron, thus enriching its dynamic response to input spikes and making it not 

quiescent for big time laps. Furthermore, this will solve the redundancy of having 

same RAF Neurons being activated for a large number of nearby input spikes. In 

Figure 3.13 we plot the activity of the AdEx Neuron for three different values of b, 

which as we said affects its adaption and therefore the time lapse between spikes. 

10 
AdEx Neuron Simulation (Mode= Chaotic, Adaptation Roset = 30, Duration = 1000) 

l 1 
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Ad Ex Neuron Simulation (Mode = Chaotlc, Adaptation Reset = 15, Duration = 1 000) 

1 l 1 l l 1 l l 
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10 
AdEx Neuron Simulation (Mode • Chaotlc, Adaptation Roset = 20, Duratlon "" 1000) 

10 
AdEx Neuron Simulation (Mode • Chaotlc, Adaptation Roset = 10, DuratJon = 1000) 

.:: 
~ -10 

Figure 3.13 Behavior of AdEx Neurons for different values of the reset parameter of its 
adaptation variable. By decreasing the adaptation reset, the gap between spikes decreases. 
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In this regard, we chose the value of b to be equal to 20, this way, the AdEx Neuron 

became weakly chao tic but didn ' t Jose its property of chao tic behavior, also the gap 

between earl y spikes won 't expand fast as it was for b = 30 and is approximately in 

the range of 40. Next, in figure 3 .14, we will show the improvement of the separation 

in tenns of the Euclidean Distances between RAF Neurons groups responding to 

single spikes ranging from 1 to the length of the input pattern. 
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Spike Time Occurence of Input Pattern 

Figure 3.14 Amelioration of the Separation of single spike input patterns 

After solving the probletn of the flattening of the responses, we faced another 

probletn: As the difference between the responses is increasing for a large part of the 

input patterns (2 third of the input length in figure 3.14 ), wh ich is very good, th en it 

starts decreasing at a small part in the end (last third of the input length in figure 

3.14). This behavior was also observed in (Crook, 2007) and was suggested that it 

tnight be the artifact of the distance measure ( e.g. The Euclidean Distance) being 

used. We tried other distance measures and we dig deeper in the problem, we find out 

that the decrease in the separation responses for spike inputs occurring at the end of 

the input is not the outcome of the norm being used. ln fact, the last spike that the 

AdEx Neuron is emitting within its time window and the feedback control that is 

being exerted on that spike causes this phenomenon (i.e. the decrease in the 

separation responses for a spike occurring at the end part of the input pattern). In 
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other words, the feedback control is not giving time for the neuron dynamics to 

properly evolve after the occurrence of the last spike being received. A work around 

that 1 came up with and which functioned is the following: 

1- Force the input pattern to have a length equal to the time of the delay feedback 

connection of the AdEx Neuron. 

2- Choose the time window of the delay feedback connection equal to the time 

reached to arrive at one of the ti me occurrences of the spikes that the AdEx 

Neuron emits by default (i .e. when it is running in isolation). For instance, the 

spikes emitted by the AdEx Neuron as shown in figure 3.13 when it is running 

in isolation in chaotic mode with different values of its adaptation reset 

parameter are summarized in the table 3.3 below. 

Table 3.3 Spikes Occurrences fo r di ffe rent va lues o f the adaptation reset parameter and sui table 
T ime Windows for the se lf-feedback connecti on 

Adaptation Reset Spike T ime Suitable T ime 

Pa rameter Occurrences W indows 

30 
34, 74, 126, 204, 33 , 73 , 125, 203 , 

440 ... 339 ... 

34, 71 , 113 , 162, 33 , 70, 112, 161 , 
20 

219, 290, 380, 492 . . . 218, 289, 379, 491 .. . 

34, 70, 109, 151 , 33 , 69, 108, 150, 

15 197, 247, 303 , 364, 196, 246, 302, 363 , 

492 ... 491 .. . 

34, 69, 105, 142, 33 , 68 , 104, 141 ' 

10 181 , 221 , 263 , 307, 180, 220, 262, 306, 

352, 399, 447, 497 ... 351 , 398, 446, 496 ... 

So, depending on the user choice of a maximum length desired for the input 

pattern, th en any of the values of the Spike Ti me Occurrences shown in table 

3.3 minus 1; with respect to the adaptation reset value, is a suitable ti me 
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window for the delay feedback connection of the AdEx Neuron. 

Next, we plot (Figure 3.15) the separation of the inputs by considering the work 

around that I just explained above. In this example, we proceed with the same value 

of the adaptation reset parmneter ( e.g. b = 20), but we set the length of the input 

pattern to be equal to 289 and we choose a proper time delay for the AdEx Neuron 

self feedback connection equal to 289. 

JOO ~r==Sin=gle=S~pik=e ln=pu=t P~att;::..:.em:..!:..:(A=dap=ta=;tion.:..:..:R=ese::...:t =:_:::20~, TI::.:::me:...:.:W=Ind=ow'-..:;-= 2=89"---) J 
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200 250 289 
Spike Time Occurence of Input Pattern 

Figure 3.15 Further Amelioration of the Separation of single spike input patterns by choosing 
a suitable time window of the connection delay. 

As we can see in Figure 3.15 , the Euclidean Distance of the RAF Neurons Groups 

won 't decrease at the end in contrast ofwhat was happening before (Figure 3.14). 

Now, we continue with our experimental proof towards Scenario 2 and 3 by applying 

the appropriate conditions we discussed above. The results of Scenario 2 are shown in 

figure 3 .16, here we fixed the occurrence of the single spike at the middle of the input 

pattern (i.e. at 289/2 = 144) and we compared the Euclidean Distances accordingly. 
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Figure 3.16 Separation of Single Spike Input Patterns wh en the spike time occurrence is 
ranging from 143 to 1 and from 145 to 289. 
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The results of Scenario 3 are shown in figure 3.17, here we fixed the occurrence of 

the single spike at the end of the input pattern (i.e. at 289) and we compared the 

Euclidean Distances accordingly. 

~ 
"' 200 1ii 
ëi 

Single Spike Input Pattern (Adaptation Reset = ~. Time Window = 289) 

Spike Time Occurence of Input Pattern 

Figure 3.17 Separation of Single Spike Input Patterns wh en the spike time occurrence is 
decreasing from 289 to 1. 

As we can see in Figures 3.15, 3.16 and 3.17 the responses of the neural network 

satisfy the separation property for different essential positions of a single spike in the 

input pattern. For the sake of clarity, we will show the same process of single spike 

input pattern separation for an adaptation reset value equal to 10 and a ti me win dow 

equal to 262. The results ofthese experiments are shown in figure 3.18 next. 
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Figure 3.18 Additional example of the Separation of Single Spike Input Patterns. In this 
example the adaptation reset is equal to 10 and the time window is equal to 262. The spike 
time occurrence is increasing from 1 to 262, in the first graph, decreasing from 130 to 1 and 
increasing from 132 to 262 in the second graph, and decreasing from 262 to 1 in the third 
graph. 

Until now, we have shown that the neural network architecture is able to separate 

single spike input patterns. Next, we will show that it is also able to separate multiple 

spike input patterns. 

Separation of Multiple Spikes Input patterns: 

To test the separation property of the network when the latter is fed with an input 

pattern consisting of multiple spikes then we conduct different experiments where 

noise is applied on the input. This means, a jitter is applied on the spikes of an input 

pattern such that the position of each spike in the input is jittered by a random value. 

We choose a jitter equal to 10, so every spike in the input is randomly shifted 

between - 10 and + 10 from its initial position in the pattern. Also, we choose the 

adaptation reset parameter of the AdEx Neuron to be equal to 10, the input pattern 

length equal to 220 and the self-feedback connection ti me delay of the AdEx Neuron 

equal to 220. 

We tested input patterns consisting of 2, 3, 4 and 5 spikes. ln each test, a set of 50 

experiments is conducted. In the first experiment of every test, a random spikes 

pattern, considered as a prototype pattern, is picked and fed to the network, and its 

RAF Group is recorded. In each of the retnaining 49 experiments, a noisy version of 

the prototype pattern is fed to the network; by applying the jitter discussed above, and 

its corresponding RAF Group is also recorded. Then, we calculate the Euclidean 
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Distance between each noisy version of the prototype and t~e prototype recorded in 

the first experiment, also, we calculate the Euclidean Distance between each RAF 

Group activated in response to the noisy input and the RAF Group initially recorded 

in the first experiment. The Euclidean Distances of the input differences and the RAF 

Group differences are plotted (Figure 3 .19) in a surface area type of plot so we can 

easily visualize their proportions. Remember that if the Separation Property holds 

then the differences of inputs and responses should be proportional. The results of 4 

sets of 50 experiments are shown in the figure 3.19, next. The prototype input 

patterns are randomly picked in each set of experiments. As we can see in the plots of 

figure 3.19, the input difference and the RAF Group difference are al ways 

proportional; in other words, whenever the input difference is large then the response 

difference is large and vice versa. This confirms the separation property of the 

network for multiple spikes input patterns. 

d ~ ~ ~ ~ ~ 

Experimont Numbor [Input Pattern with Noise] 
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Fig. 3.19 Separation of multiple spikes input patterns. 
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3. 9 Large number of RAF neuronal groups 

A large number ofRAF neuronal groups can be reached by varying the tlme delay "r" 

of the self-feedback connection of the AdEx Neuron, the adaptation reset parameter 

"b" of the adaptation variable of the AdEx Neuron and the ti me of the first spike that 

the AdEx Neuron is receiving. To demonstrate this, we conduct eighty thousand 

experiments approximately, which are divided into subsets of experiments by 

following this protocol: First, for the sake of simplicity, we fix the adaptation-reset 

parameter to 10 ( e.g. b = 1 0). Th en we proceed as follows: The ti me delay "r" is 

increased by time increments depending on the default spike ti me occurrence of the 

AdEx Neuom with adaptation reset equal to 1 O. Each value of the ti me delay defi nes 

a subset of experiments. In each subset, the tiine of the first spike that the AdEx 

neuron is receiving will be varied from 1 to the value of "T-1 " of that subset. 

Remember that "T-1 " represents a suitable time window for separation as we 

discussed in the previous section. Table 3.4 summarizes the protocol of our 

experimentation. 

TABLE 3.4 Experim ents Protocol by vary ing the Ti me 
e ay an t e qn e o 1rst sp1 e o 1 d h r ffi ·k 

Default Spike Occurence Suitable Time Delay Ti me( s) of first spike 

34 33 1' 2, 3, ... ' 33 

69 68 1,2, 3, ... , 68 

105 104 1,2,3, ... , 104 

142 141 1,2,3, ... , 141 

... 

... 

... 
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399 398 1,2,3, ... , 398 

As we can see in Table 3 .4, the tnaximum value of the ti me delay that we want to 

reach is 398. We chose the value of 398 as an upper limit because it is enough to give 

us a good approximation of the rate by which the number of groups is increasing, as 

we will see later. 

To find the exact total number of experiments that we'll be conducting, we can sum 

up the number of experiments (say k) that is conducted for each value of the time 

delay "r". This can be written as the following series: 

Where its r th partial sum is the triangular number and is equal to: 

T 

Ik=icr+l) 
k=l 

Substituting r by 33 to 398, we get: (33/2) * (33 + 1) + (68/2) * (68+ 1) + (1 04/2) * 
(104 +1) + (14112) * (141 +1) + ... + (398/2) * (398 +1) = 79401. So, the total 

number of experiments that we conduct by varying "r" with its suitable time 

increments and the ti me ·of the first spike between 1 and "r" is 79401. 

In these experiments the AdEx Neuron is directly fed with an input spike m an 

automatic fashion through each experitnent. A routine is created that will feed the 

AdEx Neuron with an input spike depending on the value of "r"; which will define a 

subset of "r" experiments to be executed. For example, if "r" equal 33, then a subset 

of 33 experiinents are executed where the time position of the input spike to the 

AdEx neuron is incremented by 1 in each experiment of the subset. This means the 

input spike to the AdEx neuron occurs at t= 1 for the first experiment in the subset of 

33 experiments, at t = 2 for the second ex periment in the subset of 33 experiments, t = 



89 

3 for the th ird, up to t = 33 for the 33rd experiment. Afterwards, "r" is set to the next 

suitable ti me win dow ( e.g. r =68) and the input spike to the AdEx neuron wi ll occur 

at t = 1 for the first ex periment in the subset of 68 experiments, at t = 2 for the second 

ex periment in the subset of 68 experiments, t = 3 for the third, up to t = 68 for the 681
h 

ex periment. The same process will go on until r = 398. Of course, in each experiment, 

the network is reinitialized to its initial conditions. 

Table 3.5 con tains the results of our experiments, where we plot important data th at 

we gather from it, in the following figures next. 

T bi 3 5 R 1 f h E a e . esu ts o t e · xpenments 

Number of 
Unique 

RAF 
Groups by 

Number of varying Running 

Minimum Maximum RAF Input Total of 
Nbr of Nbr of Groups Spike in Unique 

Ti me Active RAF Active RAF perTime Ti me RAF 
Delay Neurons Neurons Delay Delay Groups 

33 1 1 33 3 3 
68 2 2 68 5 8 

104 3 3 104 8 16 
141 4 4 141 11 27 
180 5 5 180 15 42 
220 6 6 220 21 63 
262 7 7 262 26 89 
306 8 8 306 32 121 
351 9 9 351 41 162 
398 10 10 398 54 216 
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Fig. 3.20 Plot of the Minimum and Maximum number of Activated RAF Neurons per Time 

Delay of the self-feedback connection of the AdEx Neuron of each subset of experiments. 

Each subset of experiments has a fixed Time Delay. In each subset, the input spike time of 

the AdE x N euron was varied between 1 and the Time Delay, and the Minimum and 

Maximum number of Activated RAF Neurons were recorded. 

As we can see in Figure 3 .20, the minimum and maximum number of activated RAF 

Neurons are always increasing and they are equal. This increase in the number of 

Activated RAF Neurons is due to the increase of the self-feedback connection time 

delay of the AdEx Neuron, which gives the opportunity to the connection to capture 

more spikes emitted by the AdEx Neuron. The latter is chaotic by nature and will 

continue emitting irregular spikes until the application of chaos control through the 

self-feedback connection. The equality between the minimum and maximum number 

of activated RAF Neurons is a proof of the stability of the AdEx Neuron controlled 

behavior, which is based on a suitable choice of a reliable time delay for the self­

feedback connection th at was envisaged through hundreds of trials and conceived in 

well-founded assertions 1neticulously explained in the previous section. 

Next, we plot the number of RAF Neuronal groups reached in every subset of 

experiments. 
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Fig. 3.21 Plot ofRAF Neuronal groups per Time Delay of the self-feedback connection of the 

AdEx Neuron of each subset of experiments. Each subset of experiments has a fixed Time 

Delay. In each subset, the input spike time of the AdEx Neuron was varied between 1 and the 

Time Delay, and the active RAF Neuronal groups were recorded. In blue, count of active 

groups per Time Delay, in red, count of unique RAF Groups per Time Delay, and in Green 

linear regression curve fitting of unique RAF Groups. 

As we can see in Figure 3.21, the number of active RAF Neuronal groups converges 

to the diagonal which shows that for every input there is an output response from the 

network. The red marks shows the unique RAF Neuronal Groups per Ti me Delay. As 

we can see the interpolation of a linear regression, the nUJnber of RAF Neuronal 

groups is around 13% of the value of the time delay. The Linear Regression has a 

coefficient of Determination (i.e R2 = 0.96) and is equal to: -5.91 + 0.13 * r plotted as 

a green line in figure 3 .21. 

After each subset of experiments, the active neuronal groups of the subset are 

compared to ali previous active neuronal groups in ail the previous subsets of 

experiments. The duplicates are removed and the unique ones are summed up. We 

plot in Figure 3.22 ail the unique neuron groups that we reached in ail the 80,000 

experiments that we conducted. As we can see in the last record in table 3.5 (also 

shown in Figure 3.22, in the subset of experiments that had time delay equal 398), we 

reach 216 unique RAF Neuronal groups. 
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Fig. 3.22 Plot (in red) of the total number of unique RAF Neuronal Groups that is reached 

through ail the experiments. In green, interpolation using polynomial regression. As we can 

see in the last subset of experiments; which has a time delay of 398, the number reached is 

nearly 225 unique neuronal groups. 

Finally, the graph in Figure 3.22 tells us that the number of coexisting unique RAF 

neuronal groups that we can reach in this architecture grows nonlinearly with the 

value of the time delay that we set on the self-feedback connection of the AdEx 

Neuron. Theoretically, it fits a third degree polynomial with coefficient of 

Determination (i.e R2 = 0.9999) given by cubic polynomial regression and equal to: -

0.911 + 0.086 r + 0.000616 r/\2 + 0.00000134 r /\3 plotted in an extended form up to 

r= 1000 in figure 3.23 next. 
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Fig. 3.23 Polynomial regression of the total number of RAF Neuronal Groups. This graph 

tells us that the number of coexisting RAF neuronal groups that we can reach in this 

architecture theoretically grows in a nonlinear and power expansion with respect to the value 

of the time delay that we set on the self-feedback connection of the AdEx Neuron. 

A php Online Regression tool from http://polynmnialregression.drque.net/online.php 

was used for curve fitting. 

3.1 0 Discussion 

• Resemblance to the Theory of Polychronous Groups 

The theory of Polychronization, namely Polychronous Groups illustrated m 

Figure 3 .24, states that memories inside the brain could be represented as 

groups of many (bence the word poly in Greek) neurons that are activated 

through coordinated timing (hence the word chronous in Greek). It is based on 

large pool of lzhikevich neurons (i.e. a biologically plausible Neuron Model 

also invented by Izhikevich himself, in 2004) that are connected via random 

time delays. The connections between neurons are strengthened using hebbian 

leaming (e.g. Spike Timing Dependent Plasticity). The main idea of 
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polychronization is th at wh en an input spike ( coming from the ex teri or or 

from a neuron inside the network) is delivered to a bun ch of neurons th en the 

time delays upon which it arrives to the neurons will activate a single 

neuronal group. Furthermore, Inter Spikes Intervals between spikes of a 

multiple spikes inp11t pattern would have a great influence on the activity of 

the neurons since the latter are affected by time delays, which will create a 

concurrency of tilnings that will boost the activation of a Neuron (i.e. its 

action potential). So, the order of spikes timings is very important and 

essential in defining a single unique polychromous group. In our case, groups 

of RAF Neurons could also be considered as polychrounous because they are 

time locked to the firing pattern emitted by the controlled chaotic Neuron (i.e. 

The AdEx Neuron) and furthermore the order of their firing constitute their 

identity. In addition, in the theory of Polychronous Groups, the same neuron 

can belong to many groups depending on the input pattern being executed, 

which is also the case with RAF Neuronal Groups. 
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Fig. 3.24 Example of a Polychronous Group. When Neurons 125, 275 and 490 fire 
with an input pattern arriving at 0, 3 and 7 ms then their activity propagates to other 
neurons through specifie time delays to finally generate a polychromous group which 
its last neuron is 51 O. The concurrency of spikes arrivais combined with the paths of 
conduction time delays are crucial in the generation of a polychromous group. 
Excerpt from (lzhikevich, 2006). 
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We have to note that polychronous groups depend on the current state of the 

network, which depends on the current input but is also affected by previous 

inputs experiences. This is not the case with RAF Neuronal Groups because 

the AdEx Neuron, which projects its output to RAF Neurons, is not affected 

by previous input experiences since it is reinitialized to its initial conditions 

each time an input is presented to it. However, this will not omit the 

possibility of creating another system architecture where traces of previous 

inputs retnain alive for a short tenn in the dynamics of the AdEx Neuron, 

which could in return affect its current response, thus the activity of RAF 

Neurons becomes dependent on the current state of the system and not its 

initial state. This attempt would add a short-term memory property to the 

system where new input is treated in the context of previous inputs 

(Izhikevich, 2006) through the ongoing dynamics of the AdEx Neuron, which 

creates a new memory -represented by RAF Neurons - as an alteration of 
. . 

prevtous memones. 

Resemblance to the Theory of neural computation based on perturbations 

In 2002, Wolfgang Maass envisaged the theory of neural cmnputation based 

on perturbations. The main idea behind this theory is that neural computation 

could be achieved by perturbing a dynatnical system with an input. This 

perturbation is reflected by the response of the dynamical system upon that 

input such that siinilar inputs will induce siinilar responses from the system 

and different inputs will produce different responses from the system. The 

response here is depicted by the activity of the dynamical system and the latter 

could be a pool of recurrently connected spiking neurons (Maass et al. , 2002). 

This is very similar to the core of our neural network architecture, but instead 

of defining the dynamical system as a pool of recurrently connected spiking 
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neurons, it is defined as a chaotic neuron (e.g. The AdEx Neuron), which is in 

fact a nonlinear dynamical system. Furthermore, we proved that our neural 

network has a separation property, which is the main property of neural 

computing based on perturbations (Maass et al., 2002). Note that we exploited 

the major principle of chaos theory, which is chaotic sensitivity upon initial 

conditions, in order to achieve a separation property for our system. 

• Resemblance to the Theory of Selective C01nmunication via Bursting 

It is genera Il y believed th at the role of bursting activity of a neuron is to boost 

synaptic transmission towards a target neuron. A different point of view was 

considered in (Izhikevich et al. , 2003) which says that Bursting could act as a 

medium of communication between neurons. ln fact, specifie Inter Spike 

Intervals (ISI) inside a burst (i.e. inside bursting activity) of a neuron , that are 

transmitted to another neuron, were proven to be effective in initiating 

postsynaptic potentiation, while other ISis were not (Izhikevich et al. , 2003). 

We have to mention that the same principle of Resonance that we 

implemented in our study using Resonate and Fire (RAF) Neurons was 

applied in (Izhikevich et al. , 2003). For instance, a burst from neuron A, 

having a burst inter spike frequency say X, would be resonant for a synapse 

between A and neuron B, and not resonant for a synapse between A and 

neuron C. While another burst from neuron A, having a different burst inter 

spike frequency say Y, would be resonant for the synapse between A and C 

but not resonant for the synapse between A and B (Izhikevich et al. , 2003). 

The output activity of a chaotic spiking neuron, like an AdEx Neuron 

configured to run in chaotic mode, when controlled, resembles bursting 

activity (Figure 3.25). This is because a delayed spike pattern emitted by a 

chaotic spiking neuron when fed back to the neuron via a self-feedbak 
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connection becomes locked in a repetitive time window equal to the delay of 

the feedback connection. This repetitive time window would contain different 

ISis depending on the time of occurrence of chaos control and on the input 

that was affecting the neuron dynatnics, as we explained in the previous 

sections. Such diversity of ISis achieved through chaos control that becomes 

repetitive in a bursting manner within time locked bursts, and which target a 

pool of RAF Neurons and selectively resonates in a group depending on the ir 

resonant inter spike frequencies (i.e. a RAF Neuron becomes active when it 

catches a specifie ISI), supports the theory of (Izhikevich et al. , 2003) of 

selective neural spike communication via bursts. 

Ad Ex Neuron Actlvity uslng Chaos Control is equivalent to Burstlng Actlvlty 

I-10 

·90 0'-----'-------'----------' 

Timo Timo 

Fig. 3.25 Bursting Activity simulated using chaos control. On the Left, Bursting 
Activity of a chaotic AdEx Neuron that was subjected to chaos control occurring at 
Time Step 500 via a self-feedback connection that has time delay equal to 500. On 
the Right, zoomed version of the activity between Ti me Step = 10000 and Ti me Step 
= 15000. 

3.11 Conclusion 

In this chapter we provided experimental and theoretical proof of our thesis 

statement, which claimed that Unstable Periodic Orbits of a controlled chaotic 

spiking neuron can be considered as neuron states and can be represented as 

memories. In this regard, a memory is depicted as the activation of a neuronal group 
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(i.e. cells assembly that is periodically active for a specifie external input). We 

showed that the activation of neuronal groups is consistent in discriminating externat 

inputs fed to the neural network; by studying the separation property of the network. 

The idea of neuronal groups activated in coordinated time locks and representing 

1nemories is inspired from the work of Izhikevich in 2006. The idea of exploiting 

chaotic sensitivity on initial conditions is inspired from Crook in 2007. The approach 

th at we followed in analyzing the separation property of the neural network is similar 

to the work of (Maass et al. , 2002) and (Crook, 2007). We have to note that our 

neural network architecture has similarity with the Nonlinear Transient Computing 

Machine (NTCM) and got its inspiration frmn it (Crook, 2007). However, we use 

only one chaotic spiking neuron whereas in the NTCM two chaotic spiking neurons 

are used (Details were discussed in section 3 .8). Furthermore, we used a biological 

mode] of chaotic spiking neuron in contrast to the non-biological mode] used in the 

NTCM. This could improve the biological plausibility of the theory of Nonlinear 

Transient Computation - NTC - (Crook, 2007). Also, an unfavorable performance of 

the separation property of the NTCM wh en executing the end part of an input spikes 

pattern was observed and was not resolved (Crook, 2007). In our experiments, we 

faced the same problem but we solved it. In fact, we showed that the separation 

property of our neural network was consistent for the whole portions of the input 

spikes pattern (Details in Section 3.8). Our solution offered favorable performance of 

the separation property compared to NTCM. Another point that we highlighted in 

section 3.10 and which makes our work different from the work of Izhikevich (2006) 

is that our neural network has no short-term memory, which means that its output is 

affected by current input only and not affected by past inputs, however the neural 

network of Izhikevich has short-term memory as the output of the network depends 

on the input presented to it and on the network dynamics which hold traces from past 

instances because they are always evolving. Finally, by demonstrating the separation 

property of our neural network based on the exploit of chaotic sensitivity upon initial 

conditions using neural computing in terms of a reservoir computing approach and by 
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showing evidence of the large number of neuronal groups that can coexist in the 

network due to the fact that a resonant neuron can belong to 1nany neuronal groups, 

thus representing memory as a group of neurons, then this puts our work in the 

category of important theories on modeling memory using neuronal groups ( e.g. 

Polychronous groups - (Izhikevich, 2006)) and neural computing using reservoir 

models (e.g. Real time computing based on perturbations - (Maass et al., 2002)). 



CHAPTER4 

DATA CLASSIFICATION AND LEARNING BASED 

ON FIRING RATES OF CHAOTIC SPIKING NEURONS 

AND DIFFERENTIAL EVOLUTION 

4.1 Introduction 

In order to increase the fi ring rate of a regular spiking neuron Iike the Leaky Integrate 

and Fire (LIF) Neuron, we increase the input current it receives. But, what can we do 

if we want to increase the firing rate of a chaotic spiking neuron? Increasing its input 

current in order to increase its firing rate will not work properly for many reasons. 

First, a chaotic spiking neuron is very sensitive to stnall changes of its variables 

settings and this is due to its chaotic nature. So changing the input current will lead 

the neuron mode] to either Jose or narrow down its chaotic spiking (Naud et al, 2008), 

thus this is not a good solution. Furthermore, there are smne types of chaotic spiking 

neurons that don 't even give the option of an input current variable like the NDS 

Neuron (Crook et al., 2005) where the input is induced in a discrete manner as a form 

of spikes (i.e. not continuous). One solution is to create recurrent neural network 

architecture composed of chaotic spiking neurons that can synchronize their chaotic 

activity and then increase the number of neurons in the network. By increasing the 
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number of neurons, the fi ring rate of chao tic spi king would increase and the recurrent 

neural network composed of chaotic spiking neurons would be then considered as a 

single entity (i.e. a chaotic spiking neuron) firing chaotic spikes. 

We tested this hypothesis and it worked! As we will see in this chapter, we will use 

this feature of fi ring rate of synchronous chaotic spiking to achieve data classification 

and machine leaming. In this regard, an engineering application is built and then 

tested on two data sets retrieved from the well-known, and globally accredited, 

'machine leaming database ' of the University of Califomia, Irvine (UCI Machine 

Leaming Repository, (http://archive.ics.uci.edu/ml], Irvine, CA: University of 

Califomia, School of Information and Computer Science). The two datasets are: IRIS 

Data Set and Breast Cancer Dataset. The details of these two datasets and the reason 

behind their choice (i.e. being both nonlinearly separable, one providing few 

attributes vs. few number of samples and the other many attributes vs. a large number 

of samples) are explained in the experimental results in Section 4.5 of this chapter. 

The performance of our system is compared to other machine learning algorithms 

(e.g. Support Vector Machines (SVM) and Multilayer Perceptrons (MLP)). 

In section 4.2, next, we illustrate a neural network architecture composed of chaotic 

spiking neurons (e.g. AdEx Neurons in chaotic mode (Naud et al. , 2008)) that are 

recurrently connected one to the other, and we study their synchronous activity. In 

section 4.3, we analyze the firing rate of the neural synchronous activity for different 

number of neurons that constitute the network. In fact, we show that the number of 

neurons of the network and the firing rate; of their neural activity, are proportional. 

We will deduce a Frequency Response Curve (FRC), using curve fitting, that will 

relate the firing rate and the number of neurons in a quadratic function. In section 4.4, 

we will use the average firing rate and the standard deviation of fi ring rate to create a 

cost function upon which data samples can be classified. This cost function will be 

used in an evolutionary algorithtn called Differentiai Evolution - DE - (Priee et al. , 
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2005) so we can detect the number ofneurons required for a specifie data set, in order 

to perform machine learning upon that dataset... In section 4.5 , we show experimental 

results of data training, testing and classification upon two datasets and compare the 

accuracy of the system with other machine learning methods. Section 4.6 is a 

discussion and section 4. 7 concludes the chapter. 

4.2 Neural network architecture and its chaotic spikes synchronization 

Since a recurrent neural network composed of chaotic spiking neurons can 

synchronize its activity as we have shown in chapter 2, then we choose this 

architecture in order to analyse the firing rate relatively to any number of chaotic 

spiking neurons that cmnpose the network. We show through experimentation that 

the firing rate can be managed (increased or decreased) depending on the number of 

neurons inside the network. Furthermore, we fix the number of neurons inside the 

network and we study its behaviour by varying the tÏine that governs the connections 

between the neurons inside the network. We find out that both the time delay and the 

number of neurons are key factors in expanding the me1nory capacity of the network, 

in terms of fi ring rate, as we will discuss later on. For now, we justify our choice of a 

recurrent neural network architecture composed of chaotic spiking neurons as in 

chapter 2 because it provides the opportunity of implementing static data 

classification as we will demonstrate in this chapter, in contrast to the architecture 

presented in chapter 3 which targets time series data classification. 

The neural network architecture that will be used in this chapter is composed of n (a 

variant number) chaotic spiking neurons (e.g. AdEx Neurons configured to run in 

chaotic mode) th at are recurrently connected one to another as in chapter 2. The 

weights between the connections have no need to be managed through synaptic 

plasticity since the objective in this experiment is to induce causal interactions 

between the neurons that can be translated by just assigning positive real values to the 
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weights of the connections between the neurons. We use the AdEx Neuron mode! 

discussed in the previous chapters, because it is a biological neuron model that can 

simulate a wide range of physiological neuron behaviors (including chaotic spiking) 

and has fast processing speed when executed on a computer. Each connection; 

between any two neurons, in the network has a fixed time delay and a fixed weight. 

The network architecture is illustrated in Figure 4.1, next. 

RecwTent Network of 
n Ad.E'x Neurons 

Fig. 4.1 Neural Network Architecture: n AdEx Neurons are recurrently connected. Every 
connection has a weight "w" and a time delay "t" 

As we can see in Figure 4.1, we have a neural network of n AdEx Neurons ( e.g. A 1 to 

An) where the subscript (( i " is the index of an AdEx Neuron ((A " . Each neuron has n­

I connections because there are no self-feedback connections. A connection from 

neuron Aj to neuron Ai has a ti me delay ((TiJ '' and a weight ffii ,j· 

We rewrite the AdEx Neuron equations (Naud et al. , 2008) in their Euler fonn: 
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Where Vi(t) is the neuron 's voltage at ti me t and 1/Ji (t) is its adaptation variable. The 

subscript " i " indicates the neuron 's index wh en it is embedded in a neural network of 

AdEx Neurons. 

dt is the Euler time step which is set to 0.1 for good precision. 

The parameters from (Naud et al., 2008) are given in table 4.1 , next: 

Table 4. 1 Paramete rs configurati ons of the Ad Ex N eur·on in Chao ti c mode (Naud et a l. , 200 8) 

Mode \ c gL EL Yt 11r Kw b Yr le () 
Parameters a 

Chaotic 100 12 -60 -50 2 -11 130 30 -48 160 0 

The neuron initial conditions are Vi(O) = Vri and 1/JJO) = 0,· 

Where, 

Ri is an infinitesimal random decimal between 0 and 0.01. We need the neurons 

voltages to have slight variation in their initial values so their output will be different 

at the long run due to chaotic sensitivity on initial conditions. Remember that the 

system is chaotic thus it is sensitive to its initial conditions, so slight variation in the 

initial conditions willlead to different long-term behavior. 

When the neuron ' s voltage bypasses its threshold (i.e. Vi >= ()) , then the neuron emits 

a spike which is represented as yi: 



l
i,Y;(t);;,8 

y,.(t) = 

0, V;(t ) < 8 

105 

Also, when the neuron ' s voltage bypasses its threshold then it is reset to its reset 

value and its adaptation variable is set to its current value plus the adaptation reset 

parameter: 

The neuron receives time-delayed spikes from other neurons through its incorning 

connections, which are scaled by each connection' s weight and summed up as a total 

input 1 given by: 

n 

L W· ·y·(t- T· ·) L,j } L,j 

j=l &j<>i 

We note that the weights of ali the connections are set to 1. To insure that a single 

input spike to the neuron is enough to drive the neuron's voltage to its voltage 

threshold, then we update the voltage of the neuron according to: 

Where H(x) is the Heaviside step function defined as: 

j
O, x < 0 

H(x )= 

l ,x ~o 

This means that if Ii (t) of neuron i is equal to at least 1 (i.e. a single incmning spike 

is available in the neuron's input) then H(Ii(t)- 1) is equal to 1 and the neuron 
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voltage that is equal to Vi(t) + (e- Vi(t))H(Ii(t) -1) becomes Vi(t) + (e­

Vi (t)) * 1 which results to 8. Otherwise, wh en no incoming spike is available in the 

neuron's input (i.e. !Jt) = 0, thus H(Ii(t)- 1) = 0), then Vi(t) remains the same 

because Vi(t) + (e- Vi(t)) * 0 results to Vi(t). In this mode of operation, a single 

spike, th at is exciting the neuron, is enough to drive the neuron 's voltage to its 

threshold. 

In Figure 4.2, we show the behavior of the recurrent neural network illustrated in 

Figure 4.1 using AdEx Neurons that are configured to run in chaotic mode (Table 

4.1 ), following the equations th at describe their dynamics and evolution through time 

as described above (i.e. using random initial conditions and input via time delayed 

connections). In this example, we choose the number of neurons in the network to be 

equal to 50 (i.e. n = 50), the ti me delay of the connection between any two neurons to 

be equal to 1 000. The network runs for 80000 time steps, which is the simulation 

ti me of this experiment. In the first 20000 time steps, the weight of every connection 

is set to 0, thus the neurons run in isolation in order to evolve their chaotic dynamics 

independently. At time step 20001, ali the weights are set to 1; this means the neurons 

are connected to each other and start synchronizing their dynamics. As we will see in 

the graph of Figure 4.2, wh en the neurons are in isolation ( e.g. Ti me Step :; 20000), a 

neuron's activity inside the network is different than any activity of other neuron. 

However, when they are connected at time step 20001 then they start stabilizing their 

dynamics, which results in a synchronous neural activity ali over the neural network. 
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Ti me 

Fig. 4.2 Neural Network Spike Output: Neurons run in isolation for 20000 time steps and 
they are connected afterwards. When the neurons are connected they synchronize their 
activity. 
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To show that every neuron inside the neural network is synchronizing its spiking 

activity over a period equal to "r "; which is the time delay of any connection 

between two neurons in the network and is the same for ali the connections, then we 

calculate the difference between the absolute value of a neuron's spike at time " t " 

and its delayed spike at "t- r ", where "r " indicates the time delay of any connection 

in the neural network; which is in fact the same for ali the connections as we just 

mentioned. If the difference between a neuron ' s spike absolute value at time " t " and 

its spike absolute value at time " t- r " is equal to 0 al over "r ", then this means that 

the neuron is synchronizing its spikes activity over the period "r ". The plot of these 

differences is given in Figure 4.3 , next. 
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Fig. 4.3 Periodic Spikes Synchronization of every neuron inside the Neural Network: 
Calculating the difference between the absolute value of a neuron's spike output at time " t " 

and the absolute value of its spike output at time " t - r " shows that every neuron is 
synchronizing its activity in a time period equal to "r " because the difference settles to 0 at 
the long run ( e.g. after ti me step 20000). 

ln figure 4.3 , we showed that every neuron is synchronizing its output spikes activity 

to itself over a period that is equal to the time delay of the connections inside the 

network. But, to show that the neurons are synchronizing their system dynamics; their 

voltage " V" , Adaptation variable "1/J " and Spike output " y " , between each other, 

th en we will resort to the standard deviation of the data of each of these variables at 

time " t " . In fact, the standard deviation, at time " t " , of a set of data values that a 

variable "x " takes at ti me " t " , illustrates the dispersion of these data values, at time 

" t ", to the mean value of "x " at time " t " . Thus, if the datais highly dispersed to the 

mean th en the standard deviation is maximal and if the datais closely dispersed to the 

mean then the standard deviation is minimal. In our case, if ali the neurons are truly 

synchronizing their activity between each other at time " t " then the standard 

deviation of their dynamic variables should be minimal and the better case equal to O. 

The standard deviation of data variables "y", " V" and "1/J " of all the neurons is 

shown in figures 4.4, 4.5 and 4.6, respectively, next. 
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Fig. 4.4 Proof of Synchronization of ail Neurons Output Spikes using Standard Deviation 

Standard Deviation of Neurons 
35r---,-------,~~~~~~~~~~~~---,----, 

c 
0 

30 

25 

~ 20 

c 
"0 

"' "0 15 

~ en 

Ti me x 10 4 

Fig. 4.5 Proof of Synchronization of ali Neurons Voltages using Standard Deviation 
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Fig. 4.6 Proof of Synchronization of ali Neurons Adaptation Variables using Standard 
Deviation 
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As we can see in Figures 4.4, 4.5 and 4.6 the standard deviation between the dynamic 

variables of every neuron in the network converges to 0, which proves that ali the 

neurons are synchronizing their dynamics. 

Next, we will show that the distribution of the spike events, during synchronization, 

demonstrates an exponential distribution: At time step 20001 (i.e. when the neurons 

are connected and start synchronizing), we pick a neuron from the network and we 

record its Inter Spikes Intervals (ISis), th en we sort the1n in ISI bins from minimum 

ISI to maximum ISI, we count the ISis in each bin and we plot the count in a 

histogram as seen in Figure 4. 7. 
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30 

lnterval of Spikes Events from Minimum ISI to Maximum ISI 

Fig. 4.7 Histogram of lnter-Spike lntervals shows an Exponential Distribution 

The exponential distribution of spikes events through the course of synchronization 

confirms that these spikes are occurring continuously and independently at a constant 

average fi ring rate. Th us, the synchronous neuron' s spikes output in duces a 

Poissonian process in its course, which means the spikes are not regular. 

ln this section, we demonstrated the synchronization in a recurrent network of 50 

AdEx Neurons running in chaotic mode. In the next section, we show that the firing 

rate of such networks increases with the number of neurons that constitute the 

network. 

4.3 Relationship between fi ring rates and number of neurons 

Now, we will show that the synchronous firing of AdEx Neurons that are configured 

to run in chaotic mode and which are recurrently connected one to another (Figure 

4.1 ), has a fi ring rate th at can be tnanipulated by the choice of the number of neurons 

which constitute the network. To prove this, we conduct 9 experiments by varying the 

number of neurons in each experiment and we calculate the number of spikes per 
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ti me period equal to the ti me delay of the connections inside the network. Remember 

that ali connections have the same time delay as we explained in the previous section. 

The results are presented in Table 4.2, which contains three columns, the first is the 

experiment number, the second is the number of neurons that constitute the neural 

network of an ex periment and the third column shows the resulting firing rate. 

T bi 4 2 R 1 f 9 E b b f f h a e . esu ts o -xpenm ents >y vary mg_ t 1e num er o neur·ons o t e neura networ k 

Experiment Number Number ofNeurons Firing Rate 

1 10 50 

2 20 93 

3 30 148 

4 40 188 

5 50 234 

6 75 321 

7 100 393 

8 150 528 

9 200 644 

Next, we plot the results in Figure 4.8 and we fit them to a quadratic curve using 

polynomial regression. The coefficient of Determination is equal to 0.9987 and the 

quadratic function is f(x) = 10.716008378670088 + 4.632685586027018x -

0.007467944346502461 x2 where x is the number of neurons. A php Online 

Regression tool from http: //polynomialregression.drque.net/online.php was used for 

curve fitting. 
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Fig. 4.8 Firing Rate versus Number ofNeurons with Quadratic regression. This graph tells us 

that the firing rate (Blue circles) is proportional to the number of neurons of the. neural 

network and increases in a quadratic fashion (Red plot) with the increase of the number of 

neurons. 

As we can see in Figure 4.8 the firing rate increases almost linearly until a network of 

75 neurons and it shows a quadratic increase afterwards. 

In the 9 experiments presented above, we followed the smne settings as the previous 

section: The tüne delay of every connection inside the network was set to 1000, the 

neurons runs in isolation for 20000 time steps, connect to each other at time step 

20001 and the who le simulation ti me of an experiment endures for 80000 times steps. 

So, to prove th at the results are neither an artifact of the choice of the connection time 

delay ( e.g. 1 000) nor dependent on the value of a specifie isolation ti me ( e.g. 20000), 

and to find the best choice of these settings, we conduct another set of experiments 

where we randomly vary the Isolation Time (Figure 4.9) and the Time Delay (Figure 

4.10). 
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Fig. 4.9 Firing Rate versus Number of Neurons with Quadratic regression using Random 

Isolation Time. This graph tells us that the firing rate (Blue circles) is proportional to the 

number of neurons of the neural network and increases in a quadratic fashion (Red plot) with 

the increase of the number of neuron s independently of the Isolation Time that could be set 

on the neurons while they are evolving their dynamics. 

Since the Isolation Time has no effect on the Firing Rate of the Neural Network, then 

we fix the Isolation time to a value of 20000 and we vary the Tüne Delay of the 

Connections. The results are shown in Figure 4.1 0, next: 
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Fig. 4.10 Firing Rate versus Number of Neurons using Random Connection 's Time Delay. 

Original Quadratic regression, from previous experiment, is plotted, too. This graph tells us 

that the Time Delay has an effect on the firin g rate (Blue circles) which is shown as not 

proportional to the number of neurons of the neural network and does not increase in a 

quadratic fashion (Red plot) as it should do; with the increase of the number of neurons. 

The graph in Figure 4.10 tells us that the Time Delay has an effect on the Firing Rate. 

In fact, if we increase the Time Delay, the Firing Rate should also increase which is 

very probable because the Firing Rate is the number of spikes per Ti me Delay. So, if 

the Time Delay is increased then the number of spikes that it contains should also 

increase. W e put this assumption un der test and we conduct 1 00 experünents su ch 

that in each experiment the Time Delay takes a random value between 200 and 2000. 

ln these experiments, the number ofNeurons in the network is set to 30 Neurons. The 

results are shown in Figure 4.11 , next: 
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Fig. 4.11 Firing Rate versus Time Delay. Linear Fit is plotted in red using linear regression . 

The Firing Rate per Time Delay is dotted in blue color. This graph tells us that the firing rate 

is proportional to the Time Delay that is set on the connections in the neural network and it 

increases linearly (Red plot). ln other words, it does not saturate for large Time Delays. 

The curve fitting shown in red co lor in Figure 4.11 is derived from a linear regression 

with coefficient of determination equal to 0.9967 which rneans it's a very good fit. 

The Linear Function is: f(x) = -0.5872843296282478 + 0.14501031760169575x 

where x is the Time Delay and f(x) the Firing Rate. 

After proving that the Firing Rate is linearly related to the Time Delay of the 

connections in the neural network, we conduct 100 experirnents such th at in each 

experiment, the Nurnber ofNeurons takes a randorn value between 3 and 50 Neurons, 

and the Ti me Delay of each connection takes a rand01n value between 100 and 2000. 

We plot the Firing Rate achieved in each experimentas a colored circle that varies in 

diameter depending on the value of the Firing Rate. The Firing Rate is each 

experiment is plotted per Time Delay and Number of Neurons of the experiment. 

This is shown in Figure 4.12. 
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Fig. 4.12 Firing Rate versus Time Delay and Number of Neurons: Firing Rate of each 

experiment which has a specifie Time Delay and a specifie Number OfNeurons is plotted as 

a colored circle which varies its diameter and color depending on the value of the Firing Rate. 

As we can see for large neural network (i.e. large number of neurons) and large Time Delay 

of the neural network connections we have large Firing Rate and vice versa. 

So, to increase the Firing Rate of a Recurrent Neural Network as described in Section 

4.2 and illustrated in Figure 4.1, we can either fix the Ti me Delay of the Connections 

inside the network and increase the Number ofNeurons, or we can fix the Number of 

Neurons of the network and iricrease the Time Delay oftheir Connections. 

We conclude this section with the following discussion: 

The ti me delay is considered as the dimension of the input vector (its size in terms of 

length of bits). Increasing the tüne delay will allow an increase in the dispersion of 

the elements inside the input vector. For instance, an increase in the time delay will 

allow a high Standard Deviation of the input. On the other side, increasing the 

cardinality of the network (i.e. the number of neurons that compose the network) will 

allow condensation of spikes in response to a neural network of a fixed length of an 

input vector. This could be used to generate a frequency curve that could relate the 

firing rate of neurons in terms of the number of spikes per ti me delay (required when 
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we have a fixed length of input) to the number of neurons th at compose the network. 

4.4 Data classification based on firing rates of chaotic spiking neurons 

In the prevtous section (Section 4.3), we concluded that the Firing Rate of the 

Recurrent Neural Network described in Section 4.2 and illustrated in Figure 4.1 can 

be either proportional to the Number ofNeurons inside the network when we fix the 

Ti me Delay of the neural network connections, or proportional to the Ti me Delay of 

the neural network connections when we fix the Number of Neurons inside the 

network. In this section, and afterwards, we always choose a varied number of 

neurons and a fixed connections Ti me Delay scenario. Th us, the number of neurons is 

the variable upon which the firing rate is determined. In other words, the dependent 

variable of the firing rate is the number of neurons. Note that choosing a varying 

Ti me Delay scenario is also feasible but due to Jack of time it was not additionally 

considered herein. 

Another point that we have to mention: The methodology followed in this section is 

inspired from the work of Vazquez (20 1 0), and sorne equations used here were 

originally proposed by Valadez-Godinez et al. , in 2017. However, our work is 

different th an the work of (Vazquez, 2010, Valadez-Godinez et al. , 20 17), in th at 

their approach is based on the firing rate of a single spiking neuron that fires in 

regular mode. The originality of our approach is to use chaotic spiking neurons and is 

supported by the relationship between the firing rate and the nutnber of neurons 

inside a recurrent chaotic spiking neural network, as we have seen in the previous 

section. Now, we will benefit from these findings to implement machine learning (i.e. 

data pattern classification). 

Our goal is to use the Fi ring Rate of a recurrent ne.twork of chaotic spiking neurons 

( described in the previous sections, section 4.2 and 4.3 of this chapter) to achieve data 
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pattern classification. To do so, imagine we have a dataset D of dimension d that 

contains m real patterns where a pattern is denoted as x (i.e. xi E Iffi.d: 1 ::; i ::; m), 

the patterns are divided into C classes where each pattern belongs to a class c (i.e. 

1 ::; c ::; C). Thus, D can be written as: 

Then, an input pattern is transformed to a neural network's cardinality. We will see 

how this transformation is achieved, later on. Also, remember that the cardinality of a 

set is the number of elements inside the set; therefore neural network cardinality is 

the number of neurons that constitute the neural network. So, after an input pattern is 

transformed to a cardinality (say n), then a recurrent neural network, as illustrated in 

Figure 4.1 of this chapter, is built and simulated using n AdEx Neurons configured to 

run in chaotic 1node as described in section 4.2. Then the Firing Rate (FR) is 

recorded. 

Since the Firing Rate of the neural network is proportional to its cardinality (i.e. FR 

increases wh en n increases ), we expect th at input patterns th at be long to the same 

class will have very close Firing Rates and input patterns that belong to different 

classes will have different Firing Rates (i.e. not very close). First, if Firing Rates are 

very c1ose then they should have small Standard Deviation. We will use the 

information of Standard Deviation, later on. Second, the Average Firing Rate - AFR 

- of input patterns th at be long to one class, say C 1, should be different th an the 

Average Firing Rate of input patterns that belong to another class, say C2. 

Furthennore, the Firing Rate of an input pattern should be close to the Average Fi ring 

Rate of the class it be longs to and distant from the Average Fi ring Rate of other 

classes. This means that the class of an input pattern can be determined as: 
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Class(x) = argmin~= 1 (IAFRc- FR(x)l) 

Where, FR(x) is the Firing Rate of an input pattern x , AFRc is the Average Firing 

Rate of input patterns that be long to class c and C is the total number of Classes. 

The Average Firing Rate of a class c is the sum of the Firing Rates generated by input 

samples that belong to this class divided by the total number of samples in that class. 

lt is written as: 

LiEe FR(i) 
AFR =----

c c 

Where the double bars on c denote its number of elements. 

To transform an input pattern to neural network cardinality n, we write n as a dot 

product as follows: 

n =x ·p 

Where, x E Iffi.d is the input pattern that can consist of d real attributes, and p E Iffi.d is 

a vector of free parameters with dimension d, tao. 

The free parameters of vector p are optimized usmg the Differentiai Evolution 

Algorithm - DEA - (Priee et al. , 2005). DEA is an optimization algorithm similar to 

genetic algorithms (Check ANNEXE IV for a detailed description of DEA). 1t is very 

fast and rarely gets stuck in a local optimum. Same as any evolutionary algorithm 

(e.g. Genetic algorithm), DEA requires a fitness function to evaluate candidate 

solutions in a population. Since, as we previously mentioned, input patterns that 

generate very close firing rates should belong to the same class and their firing rates 
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would have a small standard deviation, and sin ce every class has an Average Firing 

Rate - AFR - that should be distant to the Average Fi ring Rate of any other class, 

then, we use the following fitness function that was originally proposed by Vazquez, 

in 2010: 

c 

fitness = ~ + I SDFRc 
c=l 

Where, SDFRc is the standard deviation of Firing Rates of input patterns that be long 

to class c, and S is the summation of Euclidean Distances between the Average Fi ring 

Rates of ali the classes, given as: 

s = I IAFRi- AFRJI 
i,jEC:j>i 

Note that the Euclidean Distance is written as an Absolute Difference because it is 

one-dimensional, it is also know as Manhattan Distance. 

Interpreting the fitness function, we notice that small standard deviations combined 

with large AFR distances lead to minimum fitness, which is the aim of the an 

Evolutionary Algorithm - EA - since its objective is to minimize the fitness function 

in order to find the best candidate solution. 

4.5 Experimental results 

Data classification can be itnplemented using Firing Rates of chaotic spiking neurons 

combined with DEA. To demonstrate this implementation, we choose two datasets 

from the Machine Leaming Database (UCI Machine Leaming Repository, 
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[http://archive.ics.uci.edu/ml], Irvine, CA: University of Califomia, School of 

Information and Computer Science). The Datasets nam es are: IRIS and Breast 

Cancer. The details of these datasets are the following: The IRIS dataset has 4 

attributes, contains 150 data samples that are classified in 3 classes; which are 

nonlinearly separable. The Breast Cancer dataset has 30 attributes, contains 569 data 

samples that are classified in 2 classes and which are nonlinearly separable, too. The 

reason behind the choice of these two datasets is that one class has few attributes and 

few number of samples while the other dataset has two many attributes and a large 

number of samples. 

The settings of the neural network that is used for both datasets are the following 

(Table 4.3): 

a e . eu ra etwor ettmgs T bi 4 3 N 1 N k S . 

Neuron Model Adex Neuron 

Mode Chaotic 

Network Architecture Recurrent 

Nu rn ber of Neurons Integer Linear Variable 

Connection Time Delay 1000 

Connection Weight 1 

Initial Voltage Uniforrn Distribution 

(between -48 and -48.01 ) 

Voltage Reset Initial Voltage 

Voltage Threshold 0 

Initial Adaptation 0 

We have to note that the settings provided in table 4.3 are applied on the neural 

network architecture illustrated in section 4.2 of this chapter (i.e. Figure 4.1) and were 

conceived in section 4.3. In fact, this neural network architecture with these settings 
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fulfills the analysis provided in section 4.3 (i.e. the relationship between the number 

of neurons and the firing rate shown in Figure 4.8). Furthermore, the Firing Rate is 

dependent on the number of neurons (i.e. the cardinality of the network) and could be 

calculated using a quadratic function as we proved in the previous section (Section 

4.3). The quadratic function of the Firing Rate (FR) that depends on a recurrent 

network of cardinality n, is of the form: 

Such that aO, al and a2 are coefficients derived from curve fitting of many 

experiments using polynomial ( e.g. quadratic) regression. For instance, aO 

= 10.716008378670088, al = 4.632685586027018 and a2 = - 0.007467944346502461 

were derived by varying the cardinality from 1 0 to 200 for a neural network that had 

a Time Delay of its connections equal to 1000 (Details in Section 4.3 of this chapter). 

In other words, we can avoid running the neural network for each input sample x by 

transforming the input sample to · n and applying the quadratic function on n. This 

transformation, explained in the previous section (Section 4.3), is done using the dot 

product: 

n =x ·p 

Where, x E Iffi.d is the input pattern that can consist of d real attributes, and p E Iffi.d is 

a vector of d parameters determined by the DEA. 

The settings of the DEA are experimenta11y tuned depending on the Dataset in hand. 

As for the IRIS dataset, the DEA settings are given in table 4.4, next: 
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a e . etlmf s ·or t 1e T b 1 4 4 DEA S . ~ 1 1 RIS D a ta set 

Populations 60 

Cross Over Probability 0.5 

Mutation 0.5 

Nu rn ber of Iterations 30 

Decision Variables Between 1 and 1 0 

We use 10 Fold Cross Validation on the IRIS dataset to test the accuracy of our 

neural network architecture that embeds Differentiai Evolution (DE); which detects 

the required number of neurons (i.e. neural network cardinality) in arder to find the 

suitable Average Firing Rate (AFR) upon which data samples are classified. By 

running the DE algorithm provided in ANNEXE IV, using the settings of table 4.3 

and 4.4, we show the AFR and the Average Number ofNeurons (ANN) in table 4.5, 

next: 

Table 4 .5 Average Firing Rates (A FR) and Average Number of N euro ns (ANN) 

Dataset Class AFR ANN 
IRIS Class 1 56.928 10.142 
IRIS Class 2 75.3887 14.292 
IRIS Class 3 88.0838 17.18 

Using the AFR, the algorithm was able to classify the testing data accordingly. This is 

shawn in Figures 4.13 and 4.14. ln fact, we would like to illustrate the class 

distribution of the testing data samples that were used in the experiments. This is 

shawn in figure 4.13, next: 
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Fig. 4.13 IRIS Testing data samples class distribution. Each class of a data sample is 
retrieved using the absolute difference between the Average Firing Rate (AFR) of the class 
that was leamed using training, and the firing rate resulting from the dot product of the data 
sample attributes and the optimized coefficients of the DEFR algorithm . 

The distribution of the classes of testing samples fits the quadratic curve of the fi ring 

rate generated by our recurrent neural network architecture of varying cardinality; 

which was conceived in Section 4.3 of this chapter and illustrated in Figure 4.8. 

Remember, the cardinality of the neural network is a result of the dot product 

between the Differentiai Evolution using Firing Rates - DEFR - coefficients and the 

attributes of a data sample presented upon testing. lt is remarkable that DEFR 

separates the classes on a 2D Curve as seen in Figure 4.14. 

In figure 4.14, we plot the 10 fold cross validation test samples and their classes. 
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10 Fold Cross Validation Testing Results 

50 100 150 
Data Fold Sample 

Fig. 4.14 10 Fold Cross Validation performed on the IRIS Dataset. The original class of a 
testing sample is shown in red circles. The result class of a testing sample when the latter is 
recognized using DEFR is shown in blue dots . When a data sample, of a class, is correctly 
recognized then a blue dot is inside a red circle and when a data sample, of a class, is not 
correctly recognized then a blue dot is outside a red circle. 

As we can see in Figure 4.14, original and resulting classes of data samples from the 

IRIS Datas et 10 fold cross validation experiments are well matched on a large 

nmnber of testing samples. For instance, ali data samples from class 1 are correct] y 

classified, however, intermingling between class 2 and 3 is noticed. The overall 

classification accuracy of the 10 fold cross validation experiments is presented in 

table 4.8 at the end of this section. 

Next, we use the Breast Cancer Dataset for further experimentation. In this regard, its 

DEA settings are given in table 4.6, next: 

T bi 4 6 D S . ~ h B a e . EA ett mgs or t e reast c ancer D a tas et 

Populations 60 

Cross Over Probability 1 

Mutation 0.05 

Nu rn ber of Iterations 30 

Decision Variables Between 0.05 and 0.055 
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Here also, we use 10 Fold Cross Validation on the Breast Cancer dataset to test the 

accuracy of our neural network architecture that embeds differentiai evolution; which 

detects the required number of neurons (i.e. neural network cardinality) in order to 

fi nd the suitable Average Firing Rate upon which data sam pies are classified. By 

running the DEA provided in ANNEXE IV, using the settings of table 4.6, we show 

the AFR and the Average Number ofNeurons (ANN) in table 4.7, next: 

Table 4.7 Average Firing Rates (AFR) and Average Number ofNeurons (ANN) 

Dataset Class AFR ANN 
Breast Cancer Class 1 499.2752 142.8979 

Breast Cancer Class 2 278.4103 65.0426 

Using the AFR, the algorithm was able to classify the testing data accordingly. This is 

shown in Figures 4.15 and 4.16. In fact, we would like to illustrate the class 

distribution of the testing data samples that were used in the experiments. This is 

shown in figure 4.15, next: 

Breast Cancer Test Data Class Distribution based on Firing Rates 

50 100 150 200 250 

Number of Neurons 

Fig. 4.15 Breast Cancer Testing data sam pies class distribution. Each class of a data sample is 
retrieved using the absolute difference between the Average Firing Rate (AFR) of the class 
that was learned using training, and the firing rate resulting from the dot product of the data 
sample attributes and the optimized coefficients of the DEFR algorithm . 
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The distribution of the classes of testing samples fits the quadratic curve of the fi ring 

rate generated by our recurrent neural network architecture of varying cardinality; 

which was conceived in Section 4.3 of this chapter and illustrated in Figure 4.8. 

Remember, the cardinality of the neural network is a result of the dot product 

between the DEFR coefficients and the attributes of a data sample presented upon 

testing. lt is remarkable that DEFR separates the classes on a 2D Curve as seen in 

Figure 4.15. 

In figure 4.16, we plot the 10 fold cross validation test samples and the ir classes. Note 

that in this plot we sort the data samples according to their test result class so we can 

clearly identify the samples that are misclassified. 
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Fig. 4.16 10 Fold Cross Validation performed on the Breast Cancer Dataset. The original 
class of a testing sample is shown in red circles. The result class of a testing sample when the 
latter is recognized using DEFR is shown in blue dots. When a data sample, of a class, is 
correctly recognized then a blue dot is inside a red circle and when a data sample, of a class, 
is not correctly recognized then a blue dot is outside a red circle. 

As we can see in Figure 4.1 6, original and resulting classes of data samples from the 

Breast Cancer Dataset 10 fold cross validation experiments are well matched on a 

large number of testing samples. For instance, less than 100 data samples of class 1 

and 2 are intermingled. 
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Finally, we show the overall accuracy of 10 Folds Cross Validation testing results for 

both the IRIS and Breast Cancer Datasets using the proposed algorithm and we 

compare thetn to a Multilayer Perceptron (MLP) and Support Vector Machines 

(SVM), simulated on weka software, that apply a 10 Folds Cross Validation scenario, 

too. This is presented in table 4.8 next: 

T bi 4 8 0 Il a e . vera Accurac f h d 1 Î o t e propose a1gont 1m comQ_are d . 1 MLP d SYM h 1 10 F Id C V l"d . Wlt1 an t rougn 0 s ross a 1 at1 on 

Dataset Proposed Algorithm MLP SVM 
IRIS 0.86 0.96 0.966667 

Breast Cancer 0.90893 0.57469 0.952548 

As we can see in table 4.8, the proposed algorithm, when applied on the IRIS dataset, 

shows less ac curac y (i.e. 86%) compared to MLP that showed 96o/o accuracy and 

SVM that showed approximately 97% accuracy. However, the proposed algorithm 

shows better accuracy (i.e. approximately 91 %) on the Breast Cancer dataset than the 

MLP that showed approximately 57% accuracy and it competes with SVM that 

showed approximately 95o/o accuracy. Even though our algorithm didn ' t achieve great 

overall accuracy, however the accuracy (e.g. ~91 o/o) it provided when applied on a 

dataset with large number of attributes (e.g. Breast Cancer) is still very promising and 

is worth looking into. These results encourage further improvement of the proposed 

algorithm sin ce the latter challenged one of the best machine leaming algorithms ( e.g. 

SVM). 

4.6 Discussion 

The idea of using the firing rate of chaotic spiking neurons in the context of 

computational neuroscience (CN) and machine leaming (ML) is innovative and was 

never tackled in the literature. With regards to CN, when we want to analyze the 

response of neurons that is generally depicted in their irregular spiking activity, we 
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refer to Firing Rates generated by Poisson neurons (Heeger, 2000). In fact, Poisson 

neurons provide a manageable irregular spiking activity that could be set by assigning 

the fi ring rate (Heeger, 2000). The drawback of this approach is th at a Poisson neuron 

withholds the refractory window observed in real neuronal activity. The fact that we 

found a way to provide a Poissonian spiking distribution using chaotic spiking 

neurons is extremely important because it maintains refractoriness in the spiking 

output, which is biologically more plausible than Poisson neurons. Second, with 

regards to ML, there was one single attempt in the literature combining the firing rate 

of a regularly spiking neuron with an evolutionary algorith1n in order to implement 

ML (Vazquez, 2010, Valadez-Godinez et al. , 20 17). Our approach makes another 

attempt in this regard, by using irregular spiking neurons; while controlling their 

firing rate, and embeds an evolutionary algorithm in order to achieve ML. This sheds 

light on the overlooked potential of irregular spiking neurons and encourages further 

investigation in their use with evolutionary algorithms. We note, that evolutionary 

algorithms are starting to be considered in the context of Deep Neural Networks to 

enhance their performance (David and Greental , 2017). 

One potential application of using chaotic spiking and firing rates could be the 

generation ofPoissonian spikes with refractoriness for the Mixed National Institute of 

Standards and Technology - MNIST - handwritten digits database (Lecun and 

Cortes, 201 0). This is because MNIST is extensively used, in the literature, to test 

visual object recognition algorithms using spiking neurons. The visual objects in the 

database are transformed to spikes using Poisson neurons, but such approach Jacks 

refractoriness in spiking, however our approach 1naintains refractoriness, so it can be 

used for su ch transformation, instead of Poisson neurons. 

ln the context of cognitive and biological neuro-computing, two important questions 

arise: First, does the brain use an optimization algorithm to manipulate the number of 

neurons that could act as a cluster to perform classification of a stimulus? Second, 
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does the size of an assembly of cells affect its cumulative (i .e. synchronized) firing 

rate? Due to time constraints, we are unable to fully answer these questions. Thus, we 

leave them as open questions to be tackled in the future . 

ln this chapter, we provided a radical approach towards learning. This is because 

leaming, in general, is achieved by managing the connections weights inside a neural 

network, thus creating new connections, strengthening or inhibiting existing 

connections between the neurons, however we claim here that leaming can be 

achieved by managing the nu rn ber of neurons of a neural network. In other words, the 

conventional approach fixes the number of the neurons inside a neural network and 

works only on tuning the connections between the neurons of the neural network, 

however in our case, we say the number of neurons should not be static, it should be 

dynamic. For instance, a Perceptron optimizes the weights that scale the inputs, in 

order to separate the input. In our vision, the Perceptron becomes a model of clusters 

of neurons, and its goal is to optimize the number of neurons, which scale the inputs 

through their firing rates. 

4. 7 Conclusion 

In this chapter, we reached machine leaming using firing rates of chaotic spiking of 

neurons. To do this, we envisaged a recurrent neural network composed of spiking 

neurons that fire chaotically, and then we controlled their activity over a fixed time 

period, that could be set experimentally without restrictions. The number of spikes 

divided by the time period constitutes the firing rate of the neural network. 

Furthermore, we applied an optimization algorithm to find the suitable number of 

neurons inside the neural network in order for the latter to perform supervised 

machine leaming and data classification. The system accuracy in leaming and 

classifying data patterns was compared to other machine learning methods and 
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showed promising results. Further work should tackle trying different optimization 

algorithms to be embedded in the classification task. 

Last but not least, an important revelation towards the design of novel LSMs could be 

brought forward in this regard: As you may have noticed, in this chapter we created a 

sizable neural network that eventually combined both the SP and AP of a traditional 

Reservoir Computer like a LSM. Having an evolutionary algorithm to manipulate the 

size of the neural network did in fact work as a classifier in terms of a LSM readout 

mechanism. Thus, such work around highlights the possibility of a new theory that 1 

call Sizable Reservoir Cmnputing (SRC) by upgrading the necessary and sufficient 

conditions (i.e. SP and AP) deemed obligatory for RC, and this is done by making 

these properties interrelated in an autmnatic design fashion. I cali such interrelation 

'Adjustable Separation and Approximation Properties' (ASAP). 

Finally, my discovery of chaotic firing rate that I laid out its demonstration here, is 

also a new adventure to explore for future work since it provides a novel approach of 

considering the use of Chaotic Spike -coding in computational neuroscience, very 

similarly to the application of Homogeneous Poisson Spike coding (Heeger, 2000) in 

this regard and which is more biologically plausible. 



CONCLUSION 

Advantages, disadvantages, potentials and limitations of the mains them es 

elaborated in the thesis 

As we have seen in chapter 3, one of the main advantages of using chaotic spiking 

neurons is the ability to reduce the computational burden of a Reservoir Computer, 

which requires large number of neurons in order to achieve nonlinear dynamical 

outputs that reflect its inputs. The nonlinear dynamics generated by a large number of 

recurrently connected regular spiking neurons of a Reservoir Cmnputer can be 

obtained by a single chao tic spiking neuron as we have demonstrated in chapter 3. 

This reduces both design complexity and computation ti me of Reservoir Computing. 

We noticed a single cmnputational disadvantage while using chaotic spiking neurons, 

which is the precision and allocation of large decitnal points while initializing the 

variables and parameters of the equations of the dynmnical system of the chaotic 

neuron model. This is due to the sensitivity of the chaotic neuron mode] to initial 

conditions, which is the main property of chaotic dynamical systems. However, this 

is not a significant disadvantage knowing that a Reservoir Computer as any other 

type of Recurrent Neural Network requires a delicate observation and manipulation of 

its parameters bef ore it can function properly. 

The neuroscientific advantage of exploring chaotic neuron models is their ability to 

reproduce nonlinear dynamics depicted in their irregular firing patterns as observed in 

biological neurons. For instance, a chaotic neuron model can qualitatively reproduce 
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the irregular activity in nerve 1nembranes observed in squid giant axons and 'the 

Hodgkin-Huxley equations (Aihara et al. , 1990). One of the matn neuroscientific 

disadvantages of using chaotic neurons is the lack of ultimate evidence in proving 

that the irregular activity observed through neurophysiological readings of biological 

neurons is indeed chaotic and not just stochastic. 

However, studying chaotic spiking neurons finds sorne advantages in the cognitive 

science domain due to the fact that such study would fall under the umbrella of 

dynamical systems, which are one of the fundamental and challenging approaches in 

studying cognition. For instance, Diane Larsen-Freeman (1997) theory suggests that 

second language acquisition has its roots in chaos theory and can be modeled using 

chaotic dynamical systems (Larsen-Freeman D., 1997). Other supporting arguments 

are the following: First, the theory of chaotic neurodynamics by Walter J. Freetnan 

(1991), which claims that memories are manifestations of quasi-attractor chaotic 

activity of neurons, known as Chaotic Itinerancy. Second, the episodic memory 

mode) of Tsuda (200 1 ), which describes the trans fer from short-term memory to 

long-term memory, based on the approach of chaotic nonlinear dynamics. One 

disadvantage of considering chaotic neural dynamics in modeling cognition is facing 

the controversial question in interpreting the representation of a mental process. Sorne 

consider a mental process as the manipulation of a set of symbols that their outcome 

can be merely assessed by a Turing Machine while others think of it as a dynamic 

process transcending the manipulation of elementary symbols towards unpredictable 

transitions govemed by chaotic nonlinear dynamics (a phenomenon called Chaotic 

Itinerancy ). 

On another si de, the potential of considering UPOs as basis of memory lies in the fact 

of having an immense number of UPOs inside chaotic attractors th at can be stabilized 

using methods of chaos control. If we mode! the UPOs of a chaotic attractor as a 

memory repository, then such model could theoretically encapsulate an infinite 

memory capacity. Considering UPOs as memory blocks has sorne limitations due to 

their exclusive belonging inside chaotic attractors, which will reqmre a detailed 
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dynamical system analysis of the chaotic attractor in order to demonstrate their 

diversity su ch th at they could con vey a wide range of memory instances. 

As for Resonant and Fire (RAF) Neuron used in this thesis , we have to note that a 

RAF is a simplification of the Generalized Integrate and Fire Neuron model called 

Spike Response Model (SRM) (Gerstner W. et al., 1996). In fact, the equations of the 

SRM can be modified in order to provide resonant neural activity that is dependent on 

previous spikes received by the neuron, like the RAF Neuron does, which is called 

cumulative SRM (Gerstner W. and van Hetnmen J. L., 1992, Gerstner W. et al. , 1996 

and Gerstner W., 2000). However, a cumulative SRM requires an adequate choice 

and examination of the equations of its kemel filters. Thus, using RAF neurons 

overcome the computational burden of transforming a SRM to a cumulative SRM. 

The computational disadvantage of using Resonant and Fire Neurons is just the fact 

of having a neuron mode] defined in the Complex Domain ( (:). The neuron mode] is 

defined with a complex variable in C that can be transformed to two real variables 

(the action potential and the adaptation) and simulated in the real domain (ffl). The 

Neuroscientific advantage of using Resonant and Fire Neuronal groups is their ease 

of assitnilation to Polychrounous Neuronal Groups. As we have seen in chapter 3, the 

parameters of every RAF Neuron were easily assigned in order to make a neuron get 

activated when it grasps a specifie delay between two consecutive spikes. The use of 

RAF Neurons is very recent in the neuroscientific literature, which drives researchers 

in the scientific community to underrate its potential and make them repel its 

inclusion in their research. The lack of its popularity is due to the presentation of its 

dynamical equations as a complex variable defined in complex domain. The use of 

RAF neuronal groups introduces a new approach in the Cognitive Science domain 

given the fact that it provides an alternative to the Polychrounous groups approach. 

However, RAF neuronal groups rely on the controlled activity of a chaotic spiking 

neuron but this has no ground or scientific evidence in the cognitive science domain. 

We mentioned in the conclusion of chapter 3 that RAF Neuronal groups are not 
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aware of their preceding states. We discussed su ch observation at the end of chapter 3 

and provided potential remarks by comparing the behaviour of RAF Neuronal groups 

to the behaviour of Polychrounous neuronal groups. Hereafter, we would like to 

highlight an additional important remark regarding this observation from a cognitive 

science point of view. That remark relies on the fact that the neural network 

composed of a chaotic spiking neuron and RAF Neurons does not need to keep trace 

of its recent states in ordet to either evolve its dynamics or train them in the fa v our of 

leaming or relating assigned outcomes or targeted representations of memories 

towards their corresponding inputs. This is since the chaotic spiking neuron, that is 

driving RAF Neurons, has the ability through its controlled nonlinear chaotic 

dynamics to always generate a wide range of stabilized instances of UPOs that are 

noise tolerant to similar inputs. Furthermore, it can always confine a stabilized 

instance of a UPO to any input (the input could be new, already seen or unseen). 

These stabilized instances of UPOs are represented as memories in the form of 

neuronal groups through the activation of RAF Neurons. A neuronal group ( depicting 

a memory representation) could be considered new, recent or ·old, because it will be 

always the manifestation of a controlled chaotic nonlinear dynamic transformation of 

an input, where the latter could be new (unseen), recent (recently seen) or old 

(already seen or even unseen). 

Finally, by expanding the time delay of the connections inside a recurrent neural 

network composed of chaotic spiking neurons, then we can increase the diversity of 

the possible neural states the network would stabilize onto. Furthennore, by 

increasing the number of neurons that compose the recurrent neural network th en we 

can increase the chance of spikes occurrence which can be used as either a 

coïncidence detection or an indicator of a high rate of chaotic spiking. We explored 

the latter case, which was very innovative from a neuro-scientific point of view sin ce 

there is no study on the fi ring rate of chaotic spiking neurons in the literature. 
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Final remarks 

ln this thesis, 1 presented an exhaustive study that tackled chaotic spiking neurons. In 

chapter I, we introduced our thesis statement and the theories behind it. In chapter Il, 

Synaptic Plasticity ( e.g. STDP) was investigated in recurrent neural networks of 

regular spiking neurons vs. chaotic spiking neurons. We found out that STDP favored 

chaotic spiking over regular spiking. In Chapter III, I presented my theory of 

Neuronal Groups based on Chaotic Sensitivity, where metnories were presented as 

active clusters of neurons; called Neuronal groups that were driven by a chaotic 

spiking neuron. This proved the thesis statement, which considered looking at 

memories from the perception of chaotic spiking, chaotic attractors and their Unstable 

Periodic Orbits (UPOs ). Major contributions of this chapter (details in the discussion 

and conclusion section of chapter 3), include: I enhanced the Separation Property 

(SP) of a Nonlinear Transient Computing Machine (NTCM) (Crook, 2007) and built 

it using a biologically plausible neuron mode! called Adaptive Exponential Integrate 

and Pire (AdEx) Neuron (Brette, R., and Gerstner, W. , 2005). Furthermore, I created 

a theory of Neuronal Groups, based on Resonant and Fire (RAF) neurons, that is 

similar to the theory of Polychronization: Computation with Spikes (Izhikevich, 

2006). In chapter 4, I implemented machine leaming (static data classification) using 

the firing rate of chaotic neurons. In fact, the major contribution of chapter 4 

consisted in finding a way to increase the rate of chaotic spiking in a neural network. 

On the other side, in my published works (Aoun M. and Boukadoum, 2014 and 

2015), done through the time course of this thesis, I implemented machine learning 

that tackled time series data classification (dynamic data classification) using a 

recurrent network of chao tic spiking neurons with synaptic plasticity. Th us, both 

static data classification and dynmnics data classification were tackled using chaotic 

neurons. Also, in chapter 4, I laid down my discovery of chaotic fi ring rate that could 

be also used as a substitute for the classical firing rate of Homogeneous Poisson 
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Spike coding (Heeger, 2000) because it is more biologically plausible. As weil , using 

chaotic firing rate and an optimization algorithm, I highlighted, in section 4.7, on 

another invention that I came up with , which I called Sizable Reservoir Computing 

(SRC)- (Check section 4.7 for details). 

My journey in this Phd Program was very beneficiai to me, and this thesis was the 

fruit of many years of exhaustive research, experimentations and studies. I am 

looking forward to expand the journey further more and continue my work in order to 

take the results of this thesis to a next lev el. .. 



ANNEXE! 

REPORT ON PULSED NEURONS (I.E. SPIKING NEURONS) BASED ON 
THEIR ABSTRACT MODELING LEVELS (E.G. BIOLOGICAL, 

PHYSIOCHEMICAL AND FUNCTIONAL) OF THE BIOLOGICAL NEURON 

1. Introduction 

In this report, we introduce different types of spiking neurons, which elucidate the 
real biological neuron on different levels of abstraction (biological, 
physiochemical and functional). On the lowest level of abstraction (biological , 
physiochemical), which is the microscopie level , we have the Conductance-based 
models that consider the spatial structure of a neuron and the ionie channels that 
the neuron has over its synapses and their mechanisms (Section 3). On an 
intermediate level of abstraction (functional), we sünply disregard the 
heterogeneity of the neuron structure and consider the neuron as a "homogeneous 
unit that generates spikes if the total excitation is sufficiently large" [ 1, page 16]. 
In the latter, the neuron models falls un der the category of Threshold fire models 
(Section 2). For a very high level of abstraction (mostly aiming towards 
functional) , we have the classical rate models of neurons where the pulse structure 
of the neuron output is neglected [ 1, page 16] (Section 4 ). A Iso, we introduce the 
lzhikevich Neuron , which falls under the biological level and the functional level 
of mode ling a neuron (Section 5). In section 6, we con elude the report. 

2. Threshold Fire models (Functional Leve/) 

2.1. Spike Response Model 

When a spiking neuron i fires, its internai state described by a variable ui is 
reset to an after spike value called v. 
u is considered as the membrane potential of the neuron. The neuron is said 



140 

to fi re wh en u reaches a threshold v. The fi ring ti me of neuron i is denoted as 
ti. Since we have many fi ring times then they are designated by the 

superscriptfas t;n wherefis the spike number. 
So, the set of firing times having a cardinality n of a neuron i is defined as it 
follows: 

Fi = { t ;n; 1 ~ f ~ n} = { t 1 ui ( t) = v} 

To denote the most recent spike we write t;n) or just f. 
To lower the internai variable ui we can add a negative contribution to it. The 

negative contribution can be interpreted as ni ( t - t;n). This happens wh en 
the neuron i had just fired and we want to reset (lower) its internai state 
variable ui. 
ni can be considered as a refractory function which works as a kernel. For 
instance, a good choice ofni(s) is a function that vanishes when sis negative 
and that decays to zero when s goes to infinity. 
The neuron i receives input from other neurons via its synapse. The set of 
presynaptic neurons is denoted ri. 

ri = {j 1 j denotes the index of the presynaptic neuron to i} 

t}f) collaborates in modifying the internai state of neuron i. This stimulation 

to the variable ui (which denotes the internai state of the neuron i) is depicted 
by a collaboration that is stipulated by either an increase or a decrease to ui. 
The amount of change caused by this collaboration is described as a kemel ; 
denoted as EiJ , and is scaled by the synaptic strength between neuron i and 
neuronj; which is the weight of the synapse; denoted by wiJ. 
Thus, the state of a neuron i at time t is "the linear superposition of ali 
contributions" [ 1, page 17] that affects its behaviour; which is merely caused 
by the neuron 's response to its own spikes denoted as ni and the neuron 's 
response to its presynaptic spikes depicted by the kernel EiJ. This can be 
modeled by the mathematical formula next; which is known as the Spike 
Response Model (SRM): 

ui(t) = I ni (t- ti([))+ I I wiJEiJ(t- tf[)) 

t f f)EFi }Efi tY)EFj 

Note that u is biologically interpreted as the membrane potential, E is the 
presynaptic potential and n is the refractoriness of the neuron. 
A typical example of the refractoriness is: 

nJs) = -v exp (- ~) H(s) 

Where T is a ti me constant, v is the threshold and H (s) is the Heaviside step 
function defined as: 

H(s) = Ofors ~ OandH(s) = lfors > O. 
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ni (s) in sures that the neuron is reset to zero after it fi res. The threshold can 
be set as n 0 * v and th en the rest value would be v - n 0 * 0. 
As for E, its formulation is given next: 

Eij(s) = [exp (-
5 ~:ax)- exp (-

5 -T~ax)] H(s- ~ax) 
r 5 , Tm are time constants and !J.ax is the axonal transmission delay of the 
neuron. Note that if wiJ is positive then the synapse is excitatory and of wiJ is 
negative then the synapse is inhibitory. Respectively, the Kemel acts as an 
excitatory postsynaptic potential (EPSP) or inhibitory postsynaptic potential 
(IPSP) according to the sign of wiJ which is either positive or negative. 
Variations on the threshold formulation will allow a dynamic model of the 
threshold. This is achieved by sétting the threshold to be equal to v -

I en F · ni (t- tiC!)). 
ti E t 

Also, note that if we let I en F · ni (t- t~f)) --7 n(t- ti) then the last spike 
ti E t 

is to be considered as the sole contributor to the neuron refractoriness. This 
means that the neuron 's state is sol ely influenced by the contribution of its 
latest spike (i.e. most recent). In this case, the neuron is considered as having 
short-term memory [1, page 20]. 
In addition, if an extemal input is considered th en it can be depicted as: 

hext(t) = f" Ë (s)lext(t- s)ds 

Finally, If 1ext is a analogue input current and E is another kemel to such 
input, then the contributions from other neurons and from extemal input that 
affect the neuron would be: 

h(t) = I Wij I Eij (t- tf!))+ hext(t) 

jEfi tjf)EFj 

Thus, the SRM of a neuron i depicted by its membrane potential ui having 
short-term memory and an input (from other neurons and from extemal 
sources) would be: 

ui(t) = n(t- tï) + h(t) 
One more thing, if we want to reach the threshold from below, th en the set of 
spikes of a neuron i should be denoted using a derivative of the variable u as 
it follows: 

Fi = {tluJt) = v 1\ u~ (t) > 0} 

2.2. Integrate and Fire Neuron Model 

The Integrate and Fire Neuron mode] is a special case of the SRM where the 
refractoriness function n and the presynaptic potential E are defined as it 



follows: 

n(s) = -(v- ur) exp (- T:) H(s) 

t(s) = 1 _ (:sfrm) [exp (-L)- exp (- :J] H(s) 

Ur is the after spike reset value of the neuron, Tm is the membrane tirne 
constant of the neuron and r 5 is a synaptic tÎine constant. 
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Here is a MATLab code snippet (Reference: Public Dmnain) that illustrates a 
Basic Integrate and Pire Neuron Model: 

% Basic Integrate and Fire neuron Model 
% Based on the work of R. Rao 1999 
clear 
%Input Current: 
I = 0.3 % in nA 
% Capacitance: 
C = 1 % in nF 
%Leak Resistance: 
R = 40 % in M ohms 
% I & F implementation dV/dt = - V/RC + I/C 
% Using h = 1 ms step size, Euler method 
v = 0; 
tstop = 300; 
abs ref = 5;%9;%5; % absolute refractory period 
ref = 0; % absolute refractory period counter 
V_ trace = []; %voltage trace for plotting 
V_ th = 10; % spike threshold 
for t = 1:tstop 

if -ref 
V= V+ [-(V/(R*C)) + (I/C)] 

el se 
ref ref - 1; 
V = 0.2*V_ th; % reset voltage 

end 
if (V > V_ th) 

V = 20; % emit spike 
ref abs ref; % set refractory counter 

e nd 
V trace = [V_ trace V]; 

end 
plot(V_ trace) 

We run the above code on MATLab to illustrate the result. The plot of the 



code is given in figure 2.2.1 next: 
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Fig. 2.2.1 Plot of a basic Integrate and Fire Neuron model when run on 
Matlab showing voltage versus ti me 

3. Conductance Based Models 
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By applying variations on the SRM, then Conductance based models can be 
targeted under the umbrella of SRM. These variations consider the refractoriness 
function n and the presynaptic potential e. In this era, SRM provides useful 
neuronal dynamics that can be indeed depicted by the Hodgkin-Huxley equations. 
Furthermore, other variations target what is called compartment models in which 
the spatial structure of the dendritic tree of a neuron and its synaptic transmission 
are considered. 

3.1. Hodgkin-Huxley Neuron Model (Biological Leve/) 

In 1952, Hodgkin and Huxley derived the action potential of a neuron and 
won a Nobel Prize according to their invention. Their experiments were 
based on the squid giant axon. In their work, they provided a mathe1natical 
model that can exp lain the mechanisms of the ionie channels that occur over 
the neuron semipermeable cell membrane. These mechanisms allow the 
neuron membrane to charge and discharge according to the flow of ionie 
currents that occurs through the ionie channel s. The result of such process is 
the generation of an action potential, which is considered as a pulse (i.e. 
Spike) and propagated to other neurons. 
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Now, we will describe the Hodgkin and Huxley neuron model. The Hodgkin 
and Huxley neuron model considers the neuron as an excitable cell medium. 
The model is sketched in figure 3 .1.1. 

~~----------------------------- ~ 

in:side 

+ + 

outside 

.~ 
+ + + 

Na 

c 

T T T 
l 

Fig. 3.1.1. The Hodgkin and Huxley Neuron model. Excerpt from [2] 

The membrane of the cell, which is the excitable medium, is a surface that 
can be charged either positively or negatively according to the flow of ion 
currents as seen in figure 3 .1.1. 
Since the membrane can be electrically charged then it has a charge 
capacitance, called C. The difference between the electric potentials inside 
and outside the cell membrane is a voltage; called u. The conservation of 
electrical charges through the influence of many ionie currents Ik (where k 
defines the ion) and an extemal current I is given by: 

du ~ c dt = - L Ik + l(t) 
k 

In the Hodgkin and Huxley model there are three ions: Na, K and L. Na is 
Sodium, K is Potassium and L describes the combination of Chloride and 
other ions. The total of the ionie currents is given by: 

L Ik = BNa m3 h (u- VNa) + BK n4 (u- VK) + BL (u- VL) 
k 

where, 
VNa = 115 rn V , VK = -12 rn V and VL = 10.6 rn V are voltage constants 
which describe the resting potential or the equilibrium potential of the ions. 
BNa = 120, BK = 36 and BL = 0.3 are constants describing the maximum 
conductance. 
rn, h and n are called gate variables and their function is to control the 
conductance of the ion channels. These variables vary between 0 and 1. rn 
and h describe the dynamics of the Na channel while n describes the 
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dynarnics of K channel s. 

rn , n and h evolve in tirne and their rate of change is given according to the 
following equation: 

1 
x= --( ) [x- x0 (u)] 

Tx U 

such that: 

and 

a 
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h-· 

1 
Tx(u) = [ax(u) + Px(u)] 

ax(u) 
x0 (u) = -----­

[ax(u) + Px(u)] 

b 
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Fig. 3.1.2. Gate variables evolution of the Hodgkin and Huxley Neuron 
model. a) is the evolution of x 0 (v) in respect to v where x is h, n or m. b) The 

behavior of r x (v) in respect to v where x is h, n or rn. Excerpt from [3]. 

where x is either rn, n or h. Note that the time constant T and x0 are expressed 
by empirical functions <X and ~, which depends on u and are derived 
according to experimental data. 

As we can see in figure 3.1.2, x0 has a sigrnoidal shape. Between -50 and 
+50 both T and x 0 have significant behaviour. In this range, a threshold ()x is 
considered which constitutes the maximum value of the sigrnoid function. 
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Fig. 3.1.3. Action Potential propagation between neurons. Excerpt from [3]. 
The refractory period of the neuron is the downfall of the curve of the action 
potential; where the third and fourth input spikes (shown in blue in the top 

le ft of the figure) are inadequate to cause a firing impulse in the neuron. 

According to the equations above, the membrane potential is increased when 
an external input is provided. This is because Na conductance increases due 
to the increase of rn and the flow of K to the neuron (Fig. 3 .1.2). This causes 
an action potential which results a spike generation. When u reaches it 
maximum, the Na conductance is tumed off due to h. K settles down and 
reaches equilibrium, which in retums lowers the potential (i.e. This is called 
the refractoriness period and is shown in figure 3.1.3). 
A spike train is generated when a constant extemal input that is larger than a 
cri ti cal value I of theta is provided to the neuron as shown in figure 3 .1.4 A. 
If the total number of spikes in an interval T is calculated and divided by T, 
then a firing rate can be generated as shown in figure 3.1.4. B. The latter is 
called the gain function of the HH model. 
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t[ne;] 10 [ A c m -:: ] 

Fig. 3.1.4. A) Shows a spike train caused by an extemal constant input 
current. B) Shows the firing rate as a gain function averaged over an interval 

of spikes. Excerpt from [2]. 
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Simplifications over the Hodgkin-Huxley model results in a two dimensional 
mode] called the Morris LeCar mode] or the FitzHugh-Nagumo Model. More 
generally, they are called the Bonhoeffer/Van der Pol oscillator. This 
simplification allows a phase plane analysis. These models where reduced to 
an Integrate and Fire mode! , too [1 , page 38]. The SRM can also simulate the 
behaviour of the Hodgkin-Huxley mode] by studying the refractoriness 
function n and the presynaptic potential c of the SRM in regards to HH 
dynamics. 

3.2. Compartmental Models (Physiochemical Leve/) 

In the previous spiking neuron models, we considered the neuron as a 
h01nogeneous entity and we neglected its special physical structure. To 
model the biological spiking neuron in its physic-chemical abstraction allows 
us to consider the influence of the spatial structure of the dendritic tree and its 
synaptic transmission in more details. Such modeling approach is called the 
Compartmental tnodeling of a neuron. Furthermore, the compartmental 
model includes additional ionie currents than the HH tnodel, which operates 
on the synaptic cleft, like Ca2+ and Ca-mediated K currents. Note that these 
slow currents are related to neuronal adaptation as proved in [ 4]. In the case 
of a compartmental mode! , the dendritic tree is divided to segments where 
each segment constitutes an electric circuit in the sense of the HH model with 
additional ionie conductance variables (Fig. 3 .2.1 ). To elucidate the idea, we 
rely on the compartment mode] as introduced in [1, page 43] which refers to 
[5] where the segmentation of the dendritic tree is elucidated by a chain of 
compartments. Let us consider a single chain to exemplify the model. Each 
compartment will have a capacitance C and a Resistance R. Each 
compartment is connected to another compartment by a variable r, which is 
the resistor. The neuron has many compartments that are to be denoted by an 
index n. The sotna of the neuron is considered as the initial the comparttnent. 
The index of the soma is equal to 1. 
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Fig. 3.2.1 A simplified diagratn of the cmnpartmental neuron model , each 
segment of the dendrite is an electrical circuit. Excerpt from [ 1] 

In a more general fonn than the HH model that we have seen above, the 
conservation of current through a chain of N neurons is given at each interior 
compartments 2<= n<= N-1 by the following equation indexed by n: 

r 
Un- Un-1 dun Un 
----=C--+-

r dt R 

for n = 1 and n = N, we have siinilar equations. Note that the left tenn of the 
equation describes the longitudinal currents in and in_ 1 . Since the membrane 
has a resistor R and a Capacitance C, then Tm = RC is introduced as the 
membrane time constant. Thus, we have: 

dun ( R) R 
Tm dt= - 1 + 2 -:;: Un+ -:;: (un+l + Un _ 1) 

for 2<= n<= N-1. 

For n = 1 we have: 

T du1 - - (1 + R) u + R u 
m dt - r 1 r 2 

For n = N, we have: 



. Note that the difference between two compartments' currents either leaks 
through R or charges C. 

u ~ 1 r ~ -2 r . 
i 1 i 

R R R c R R 
:: 

u 

~-1 ) 
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Fig. 3.2.2. A linear compartment model showing voltage responses according 
to injected currents to the soma and to the N-1 compartment, respectively. 

Excerpt from [ 1] 

In the regard of a physic-chemicallevel of abstraction, an interesting question 
could be asked: "Wh at is the voltage response of compartment number n = 1 
to a short input current pulse into compartment number n?'' [1 , page 44]. The 
answer is: If the spike is close to n = 1 (i.e. n=2) then the response is a fast 
rising function. If the input is far away from n = 1 (i.e. the soma) then the 
voltage at the soma rises slowly [1 , page 44]. This concludes that the location 
of the input affects the postsynaptic potential measured at the soma (Fig. 
3.2.2). 

4. Spiking Neurons based on Rate Models (Very high leve/ of abstraction) 

A spiking neuron that falls under the category of classical rate models is 
described as it follows: 

Where g is a sig1noidal function that tends to 0 when u goes to - infinity and 
tends to 1 wh en u goes to + infinity. 

Where j denotes the index of the presynaptic neuron, i denotes the index of the 
postsynaptic neuron and v, u are their action potentials respectively. wiJ denotes 
the synaptic strength between the neurons j and i. 
If we consider vi as a differentiai equation over tüne th en we get: 
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dv· ~ 
r dtt =-vi+ g(L wiJvj) 

jE ri 
Where r is a time constant. Furthermore, this can be extended to a population of 
neurons. 

5. Izhikevich Spiking Neuron Model (Combined levels of abstraction) 

The Izhikevich Neuron falls under the biologicallevel and the functional leve] of 
modeling a neuron since it combines the biological plausibility of Hodgkin­
Huxley-type dynamics and the computational efficiency of integrate-and-fire 
neurons. Jt is described by the following system of ordinary differentiai equations: 

dv 
dt = 0.04 v 2 + Sv + 140 - u + 1 

du 
-=a (bv- u) 
dt 

Where a = 0.02, b =0.2, c = -65 and d = 2. When the neuron emits a spike (i.e. 
when v >= 30mV) then 

v = c 
u = u + d 

The biological spiking neuron characteristics ' of Izhikevich [6] sitnple neuron 
mode] are summarized in the thumbnail representation (Fig. 5.1 ), next. 
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Fig. 5.1: Neurocomputational features of the biological spiking neurons of 
Izhikevich mode] [6]. Available online from http://www.izhikevich.com 



152 

6. Conclusion 

In this report, we introduced the Threshold Fire models (i.e. Spike Response 
Mode] and the Integrate and Fire Neurons Model), which depict the functional 
Jevel of a neuron. Also, we explained the Conductance Based Models: The 
Hodgkin- Huxley Neuron Model and the Compartment Models that elucidates the 
biologica] leve) and the physiochemica] leve] , respectively. Furthermore, Spiking 
Neurons based on classical Rate Models and Izhikevich Mode] were exemplified. 
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ANNEXE II 

RA TE CO DING VS. SPIKE CO DING 

1. Introduction 

In this report, we explain rate coding (Section 2) and spike coding (section 3) 
from a biologically plausible analysis perspective. In section 4, we conclude the 
report, where we highlight on sorne advantageous aspects of spike coding over its 
counterpart that is rate coding. 

2. Rate Coding 

In a rate coding scenario, the activation function of a neuron can be considered as 
the rate of firing times over a time window in which this neuron fires a spike. 
This means that the number of spikes averaged over the time window holds the 
information that is to be gathered from this input. This is called mean firing rate 
(Fig. 2.1 ). 

rate= n.,.ern.ge over rime 

(single neuron~ single run ) 
spike counr 

v = ~p 
T 

B 
v 

v 
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T d ~ 
Fig. 2.1 A) Mean Firing Rate over a time window T. B) The output is given as a 

total input as a function of the total input 10. Excerpt from [ 1, page 8] 
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One interesting point of firing rate is that it can provide the strength of an input, 
and this is over a respective long duration. So, this can be a convenient method to 
communicate analog output depicted over a long range in time. However, this is 
not the case in reality. For instance, a fly can detect a stimulus and behave 
accordingly in a time window (e.g. 30 to 40 ms) [2] that is much smaller than the 
time required to average ali the spikes input of this stimulus (3]. Which means 
that the fly is reacting to single spikes. Thus, the exact timing of the spikes holds 
mu ch more information than the mean fi ring ti me of these spikes. Averaging the 
spikes input can work for static input or for an input stimulus that is moving 
slowly, which in return does not require a fast reaction. Likewise, Gerstner in (1 , 
page 8] gives the example of viewing an image; where we perfonn instant 
recognition of the details while changing the direction of gaze. 

Another method in rate coding considers the average over severa] runs. This is 
called the Spike Density and it is applied in the Eri-Stimulus-Ti me Histogram 
(PSTH) mode] [1 , page 9], where different runs of the same stimulus are averaged 
over the ti me window of the stimulus and the number of runs (Fig. 2.2). 
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Fig. 2.2 Spike Density in Peri-Stimulus-Ti me Histogram (PSTH). Excerpt from 

[1 , page 9]. 

Still , this method doesn ' t achieve a realistic sense. For instance, Gerstner in [1 , 
page 1 0] gives the example of a frog, which wants to capture a fly. The frog will 
not wait for repeated flying trajectories of the fly in order to decide how to catch it. 
The frog shall act on a single flying trajectory to perform its action. Furthermore, 
the flies and their flying trajectories are much different even though they constitute 
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similar variations of the same stimulus. 

The last scenario of rate coding considers the averaging of activtty over a 
population of neurons in a small time interval (Fig. 2.3). In this situation, we . 
escape the problems discussed previously as averaging on a single unit. However, 
this requires that the population should have homogeneous neuronal structure. In 
other words, ali the neurons in the population should be homogeneous in terms of 
the internai parameters that drive their behaviour and should have identical 
connectivity; which is not usually the case in real biological neuron populations. 
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Fig. 2.3 Population Activity. Excerpt from [1, page 1 0] 

In this regard, rate coding simplifies brain activity and real biological realism. 
Thus, spike coding should have an influential role in depicting a stimulus where a 
response is treated based on the exact firing time of each spike in the stimulus 
signal. 

3. Spike Coding 

As we have seen in the previous section, abrupt changes in the input signal of a 
neuron are quite often in the realistic world of biological neural information 
processing. Different Spike coding strategies have been tackled in this regard. 

An idealization strategy is called the Time to First Spike Strategy. For instance, 
"when we look at a picture, our gaze jumps from one point to the next" [ 1, page 
11]. In this scenario, the spikes tünings that occur after each jmnp (lets say the 
jump occurred at time tO) provide significant information about the stimulus of 
this new jump. When a neuron tires slightly after tO, is to be considered highly 
stimulated by this stimulus. However, a neuron that fires later signifies a weaker 
response to this stimulus. In this strategy, the first spike is the most relevant in 
order to analyse the information th at is to be grasped by this stimulus [ 4, 5]. 
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sti a1 Ll lll s 

Fig. 3.1 Time to first spike. The third neuron is to fire the first after the onset of 
the stimulus. Excerpt from [1 , page 12] 

Also, the first spiking strategy can be extended to a phase signalling strategy, 
where the first spikes that occur in a phase period are to be considered relevant in 
order to analyse a new stimulus. This assumes that "the reference signal is not a 
single event, but a periodic signa]" [1, page 12]. Such periodic signalling and 
oscillations serve as an reference signal and are found in the hippocampus and the 
olfactory cortex where the oscillations repeat periodically while there is no 
change in the input stimulus. These periodic patterns of spikes are driven by a 
background oscillation (Fig. 3 .2). 

1 1 

1 1 

backgro11nd osc illation 
Fig. 3.2 Phase Coding. Three neurons fi re at different phases according to the 

background oscillation. Excerpt from [1 , page 12] 

In [6] , it was shown that the spatial location of a rat is correlated with phase 
spikes during oscillations that occur in the hippocampus. 
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Another mode of spike coding is called Correlations and Synchrony where spikes 
generated by a group of neurons could con vey significant information (Fig. 3.3). 
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Fig. 3.3 Synchrony. Four neurons are firing synchronously depicting the response 
of the same abject. Excerpt from [1 , page 12] 

Furthennore, this is weil tolerated in Malsburg theory of Superposition 
Catastrophe [7, 8]. For instance, considera group of neurons that fire in response 
to a triangle in the scene, and another group of neurons fires in response to a 
rectangle. To differentiate between each abject (a triangle or a rectangle), we 
consider each group of neurons that is to be firing in a different synchronous 
pattern (Fig. 3.4). 
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Fig. 3.4 Malsburg Superposition Catastrophe. If static presentation (i.e. firing 
rates) is used (a) to represent abjects then this leads to confusion because both 

populations of neurons fi re together. However, if temporal coding is used (b ), as 
suggested by Malsburg, then the superposition catastrophe is solved because each 



159 

population will fire at different time step. Excerpt from [9]. 

Last but not ]east, using spike coding, Rieke et al [2] where able to reconstruct a 
stimulus according to its neural code (i.e. its spikes firing times) (Fig. 3.5). This 
means that a spike can indeed provide the time evolution of its preceding 
stimulus. 
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Fig. 3.5 Reconstruction of a stimulus base on a neural code. Excerpt from [1 , page 
15] 

Note that the fi ring rate of a neuron is consistent and interrelated with the time-to­
first-spike coding strategy, because if the rate is high then it is highly probable 
that the first spike occurred earlier and vice versa. 

4. Conclusion 

Rate or spike coding can be both considered in describing neural coding because 
they can be interrelated (as in the example of time-to-first-spike). However, one 
important coding scheme like spike coding takes over rate coding when we want 
to build a neural architecture that is aimed to model a response to a given stimulus 
conveniently and very quickly (like near instantaneous). For instance, a spiking 
neural network (SNN) based on spike coding is very feasible in the simulation of 
biological neural circuits like in the case of auditory processing of an owl this is 
because an owl can detect the localisation of sound with a single degree of 
precision. Such task can be simulated using spiking coding of SNNs with 
adaptable neuronal synapses. However, we should never neglect a major 
drawback of spike coding which is the computational power consumption that it 
requires when implemented on large scales of SNNs. 

Last but not ]east, we have to note that in a network of spiking neurons, the inputs 
and outputs of neurons are vectors that encode ti me series, which is different th an 
the traditional neural network architectures where infonnation is encoded as 
vectors of numbers. However, we can simulate traditional neural network 
architectures like a Multi-Layer Perceptron (MLP) with SNN but the solution 
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requires synchronized output of spiking neurons. ln fact, this leads the SNN to 
Jose valuable information while it is attempting to simulate a MLP. Thus, an 
asynchronized mode is considered which shows promising results in tenns of 
computational power of consumption of SNN architecture over a traditional MLP 
architecture. The importance of an asynchronous mode of spiking in a network of 
spiking neurons, with analogue values encoded as temporal patterns, shows that a 
spiking neuron has much more computational power than the classical sigmoidal 
gate neuron models used in MLP. For instance, a spiking neuron can act as a 
coïncidence detector for a set of train pulses, which are considered as input 
vectors. An example is exhibited as the following: Let the numbers in a set of an 
input consist of the timing of arriva] pulses. The spiking neuron will be able to 
give an approximate measurement of how much these timing instances that 
constitute the input set coïncide. Such operation is really expensive in terms of 
computational steps when executed on an MLP with sigmoidal gates. For 
instance, any feed forward network ( e.g. MLP) of sigmoidal gates needs to have 
at least (n-4)/2 gates in order to compute an element distinctness of a set of input 
variables of order n [ 1, page 61]. Furthennore, an additional ad v an tage of using a 
spiking neuron in this regard is that it can cmnpute this elementary distinctness 
even if the input is jittered with noise. Besides, an important property of SNN 
based on the proof of Gerstner [1, page 66] that is worth mentioning is the 
following: "Any given continuous function F: F: [O,l]n ~ [O,l]m can be 
approximated arbitrarily closely by a network of spiking neurons with input and 
outputs encoded by temporal delays". This means that Spiking Neurons can 
simulate universal approximation of continuous functions. 

Finally, one novel possibility of information coding and processing that is 
plenteous and that can be realized by the use of spike coding through SNNs is 
called a Liquid State Machine (LSM) [ 1 0]. This framework allows computing 
with time perturbations without stable states. The state of the machine is like a 
liquid that is continuously changing with the presence of an input, and the output 
of the machine depends on a readout mechanism that can read the state of the 
liquid and transform it to an output. We have to note th at the output of the readout 
does not depend on an instance of the input but on the current state of the liquid 
that is affected by an input; which would produce perturbations of the liquid. In 
this framework of computation on ti me varying signais, the first function (i.e. the 
liquid) describes temporal integration of the input and the second function (i.e. the 
readout) describes the special integration and leaming of such information. Thus, 
the input is being transfonned to higher dimension, which will help the readout 
mechanism to process it and will ease its leaming and classification especially if 
the inputs are nonlinearly separable. Two necessary and sufficient conditions are 
required for computing with perturbations [11] as in Liquid State Machines 
(LSM) [ 1 0]. The first is called SP (Separation Property) and the second is called 
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AP (Approximation Property). SP mentions that different inputs to a pool of 
neurons (The Liquid) should cause different transients (perturbations) in the pool , 
and similar inputs should cause similar transients. The AP tnentions that a reliable 
readout mechanism should be able to learn and map these transients to specifie 
target outputs. In this framework, one can describe how an outcome behavior can 
be generated by a complex input stimulus by just analyzing the different neural 
activity caused by this stimulus to the pool. In analysing the corresponding neural 
activity of stimuli brings a new approach to the concept of "intelligence without 
representation, th athas previously been proposed in the context of robotics [ 12] in 
order to overcome known deficiencies of traditional approaches from artificial 
intelligence in coping with the need to deliver adequate output-behaviors in real­
time for realistically complex sensory input strearns" [13]. 
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ANNEXE III 

IMPORTANT POINTS GA THE RED FROM WALTER J. FREEMAN' S AR TIC LE 

ENTITLED "THE PHYSIOLOGY OF PERCEPTION" 

Freeman (1991) ex plains that the intensity of a scent stimulus; the smell of an 

odorant, is depicted by the number of the receptors activated by this scent stimulus. 

The location of the activated receptors describes the nature of the scent. Thus, "each 

scent is expressed by a spatial pattern of receptor activity" (Freeman, 1991 ). Note th at 

in the nose, receptors that are sensitive to an odorant are the only ones that are 

activated when such an odorant is sniffed through inhalation . The information is 

gathered from the sensory receptors, synthesized in the olfactory bulb and then 

transmitted to the olfactory cortex. From there, signais (that come from different 

sensory organs) are cmnbined through the entorhinal cortex and fin ally a gestalt is 

formed in the brain (Freen1an, 1991 ). This gestalt is unique to each individual 

because it is the meaning of the perceived scent: "A meaning-laden perception" 

(Freeman, 1991 ). For instance, the scent of a fox can have the meaning of prey for a 

dog while it has the meaning of an escape, like the feeling of fear arising memories of 

chase, for a rabbit. Furthermore, F~eeman asks: 

Wh en a person glünpses the face of a famous actor, sniffs a favorite food or hears the 



164 

voice of a friend, recognition is instant. Within a fraction of a second after the eyes, 

nose, ears, tangue or skin is stimulated, one knows the abject is familiar and whether 

it is desirable or dangerous. How does such recognition, which psychologists cali 

preattentive perception, happen so accurately and quickly, even when the stimuli are 

complex and the context in which they arise varies? Freeman (1991 ). 

So, disregarding the subject's category or its identity, and disregarding the subjective 

meaning of perception, Freeman focuses on studying the neural dynamics beneath the 

recognition process of the scent perception itself. Freeman suggests that organisms 

would share a cmnmon framework of chaotic neural dynamics that lies beneath the 

memory process, which could take place when a scent is initially leamed by an 

organism, and the same framework would explain the recognition process upon 

which a scent is perceived by the organism. Freeman supports his suggestion by 

delineating his analysis of the leaming and perception if s1nell in rabbits as we outline 

next: 

First, he notices that instantaneous, and drastic state changes occur in the neural 

activity of the bulb and cortex (shown in Figure 1) even wh en a minimal stimulus is 

presented to the organism (Freeman, 1991). 

a 

b 

c 

Fig. 1. E1ectrica1 Signais Activity in "the olfactory bulb (a) and front (b) and rear (c) parts of 

a cat's olfactory cortex" that is "generated when odors are perceived. The average amplitude 

of a burst is some 100 microvolts. Each lasts a fraction of a second, for the interval between 

inhalation and exhalation." Excerpted from (Freeman, 1991 ). 
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His intuition is that such changes - from low frequency waves to high frequency 

oscillations ( called Bursts) - th at occur in response to weak input "form another 

feature of chaotic systems" (Freeman, 1 991). He proceeds: These set of bursts 

consisting of high amplitude and high frequency waves (cal led Gamma Waves) seen 

when an odorant is smelled, share a common waveform. This waveform is called the 

carrier wave: "A shared pattern of rises and falls that is embedded in each tracing" 

(Freeman, 1991 ). If we plot (Figure 2) the average mnplitude of every carrier wave on 

a grid representing the surface of the olfactory bulb, then we'll have a contour map 

that is unique when the animal sniffs a particular odorant, however the carrier wave is 

al ways different for every odorant (Freeman, 1991) 
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Fig. 2 Carrier waves (Left) and corresponding Contour Map (Right) . Excerpted from 

(Freeman, 1991). 

Furthermore, he notices that bulb activity always bring new changes to the embedded 

memory, for instance, when the training of a particular odorant is altered, then the 

amplitude map representing this odorant is also altered and a new map representing 

this odorant would be newly perceived (Figure 3). This means that the bulb shapes 

the saved memories after it has been confronted with new stitnuli (Freeman, 1991 ). 



:··· .. ....._ • $AWO':.IST 

-~"' '.. 1 -~ .. \ ' ' 

--....... 1 ... 1·· ·, \ .( 

1 1 \ \ 

1 1 't ' 1 1 

) ,' 1 1 

'///' 1 

/1 ( ( ) 
- / 1 1 ,' 
-~ 1 1 ;· 

1 " 

WIJIIIS.T \ 1 
. ' t 1 ... ,, 

() 

/ 

Fig. 3 Three Maps depicting the alternation of learning. The Contour map representing the 

perception ofthe Sawdust (Left) is altered when a new odorant, which is the smell of a 
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ban ana, is learned (Middle) . A new contour map representing the perception of the Sawdust 

is generated (Right) . 

By analyzing these maps, Free1nan provides insights towards the design of new 

models of artificial neural cmnputing systems that can exhibit cognitive 

characteristics like Attention, Learning and Perception: 

On Attention: 

"Chaos provides the system with a ready state so that it is unnecessary for the system 

to ' wake up' frmn or return to a ' dormant' equlibrium state every time that an input is 

given" (Freeman, 1991 ). 

On Learning: 

Chaos constitutes the basic form of collective neural activity for ali perceptual 

processes and functions as a control led source of noise, as a means to en sure 

continuai access to previously learned sensory patterns, and as the means for learning 

new sensory patterns ... (Freeman, 1991 ). 

On Instant Recognition and Perception: 

"The brain transforms sensory messages into conscious perceptions almost instantly. 
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Chaotic, collective activity involving millions of neurons seems essential for such 

rapid recognition" (Freeman, 1991 ). 

Finally, according to Freeman, tnemory binding and rneaning inside the brain should 

happen through and within chaotic attractors, where he claims: 

We think the olfactory bulb and cortex maintain many chao tic attractors, one for 

each odorant an animal or human being can discriminate. Whenever an odorant 

becomes meaningful in sorne way, another attractor is added, and al/ the others 

undergo slight modification (Freernan, 1991) 



ANNEXE IV 

DIFFERENTIAL EVOLUTION ALGORITHM AS DESCRIBED BY V AZQUEZ 
IN 2010 

Differentiai evolution begins by generating a random population of candidate 
solutions in the form of numerical vectors. The first of these vectors is selected 
as the target vector. Next, differentiai evolution builds a trial vector by 
executing the following sequence of steps: 

1. Randomly select two vectors from the current generation. 

2. Use these two vectors to compute a difference vector. 

3. Multiply the difference vector by weighting factor. 

4. Form the new trial vector by adding the weighted difference vector to a third vector 
randomly selected from the current population. 

The trial vector replaces the target vector in the next generation if and only if 
the trial vector represents a better solution, as indicated by its measured cost 
value computed with a fitness function. Differentiai evolution repeats this 
process for each of the remaining vectors in the current generation. Differentiai 
evolution then replaces the current generation with the next generation, and 
continues the evolutionary process over many generations. 

This description is excerpted from (Vazquez, 201 0). 



APPENDIXA 

PUB LI SHED P APERS 

Aoun, Mario Antoine, and Boukadoum, Mounir. "Learning algorithm and 
neurocon1puting architecture for NDS Neurons." IEEE 13th International Conference 
on Cognitive Informatics & Cognitive Computing (ICCJ* CC) , 2014. 

And, its extended version: 

Aoun, Mario Antoine and Boukadoum, Mounir. 2015. Chaotic Liquid State 
Machine. International Journal of Cognitive Informatics and Natural Intelligence. 9, 
4 (October 201 5), 1-20. DOI=http: //dx.doi.org/1 0.40 18/IJCINI.20 15100101 

Chaotic Liquid State Machine 

Mario Antoine Aoun 1 and Mounir Boukadoum2 

Department of the Phd Pro gram in Cognitive Informatics, Faculty of Science 
Université du Québec à Montréal , UQAM 

Montréal , QC, Canada 
1 e-mail: aoun.mario@courrier.uqam .ca; mario@live.ca 

2 e-mail: boukadoum.mounir@uqam.ca 

Abstract- We implement a Liquid State Machine composed from a pool of chaotic spiking neurons. 
Furthermore, a synaptic plasticity mechanism operates on the connection weights between the neurons 
inside the pool. A special feature of the system's classification capability is that it can learn the class of a set 
of time varying inputs when trained from positive examples only, thus, it is a one class classifier. To 
demonstrate the applicability of this novel neurocomputing architecture, we apply it for Online Signature 
V erifica ti on. 
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1. INT RO DUCTION 

Reservoir Computing (Maass, Natschlager & Markram, 2002; Jaeger, Maass & Principe, 
2007) design methodology consists of building a neural network that is divided into three 
parts. The first part is an input layer. The second part is the reservoir, namely a pool , 
consisting of randomly and recurrently connected nodes with fixed connections ' weights. 
These nodes can be any type of spiking neurons . The third part is an output layer consisting 
of a read out mechanism that is able to read the transient activity of the pool (i.e. the 
activation of every node in the pool) and perform a classification task accordingly. In the 
context of Reservoir Computing, an input should be a time varying signal. Furthermore, the 
connections from the input layer to the pool , and the connections between the neurons that 
constitute the pool , have weights that are randomly set. Ali these connections maintain fixed 
weights during training (i.e. their weights are kept fixed and won ' t undergo any changes). 
The connections from the pool to the output layer are also randomly set, but they have 
flexible weights; this means, they are the only connections of the network that undergo 
training (i.e. their weights are updated during training). Fundamental models of Reservoir 
Computing are the Liquid State Machines (LSM) (Maass, Natschlager & Markram, 2002; 
Maass & Markram, 2004), Echo State Networks (ESN) (Jaeger, Maass & Principe, 2007) and 
Nonlinear Transient Computation (NTC) (Crook, 2007). Inspired by the work of Maass and 
Crook, we implement the chaotic Liquid State Machine mode! that is presented herein. First, 
the Chaotic LSM incorporates a synaptic plasticity mechanism inside the liquid layer, which 
is an approach suggested by Mass et al. (2002) to enhance the ' Separation Property' of the 
machine. Second, the Chaotic LSM uses a minimal number of chaotic spiking neurons inside 
the liquid layer; an approach suggest by Crook (2007), which can offer a substitute to the 
nonlinear dynamics offered by a large number of simple Leaky lntegrate and Fire (LIF) 
neurons that are commonly used in the traditional design of a LSM. Third , the Chaotic LSM 
implements the theory of Delay Feedback Control (DFC) (Pyragas, 2003); on the neurons 
connections, to stabilize the chaotic dynamics of the liquid when the latter is fed with 
external input. In such chaos control scheme, the chaotic LSM operates on the critical region 
between chaos and order (i.e . operates on the edge of chaos (Langton, 1990; Natschlager, 
Bertschinger & Legenstein, 2004)) ; which can contribute to its generalization capability, 
especially since it is combined with synaptic plasticity, synaptic scaling and the use of one 
class similar training inputs (Maass, Legenstein & Bertschinger, 2005 ; Legenstein & Maass, 
2006; Legenstein & Maass, 2007). 

II. Liquid State Machines and Nonlinear Transient 
Computation 

Two necessary and sufficient conditions are required for a system to perform Transient 
Computation on time varying signais as in Reservoir Computing and specifically Liquid State 
Machines (LSM) (Maass, Natschlager & Markram, 2002). The first is called SP (Separation 
Property) and the second is called AP (Approximation Property). SP mentions that different 
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inputs to a pool of neurons; that constitute the Reservoir or the Liquid in LSM terms, should 
cause different transients in the pool, and similar inputs should cause similar transients. The 
AP mentions that a reliable readout mechanism should be able to learn and map these 
transients to specifie target outputs. Both properties were confirmed in the Nonlinear 
Transient Computing Machine (NTCM) mode) (Crook, 2007). To perform transient 
computation on time varying signais, the NTCM uses two Nonlinear Dynamic State (NDS) 
(Crook, Goh & Hawarat, 2005) Neurons only; in contrast to the huge number of Leaky 
Integrate and Fire Neurons hypothetically required by a LSM. NDS Neurons are spiking 
neurons that fire chaotically (Crook, Goh & Hawarat, 2005). We recreate the NTCM model , 
specifically, we exploit the effect of the neural connections ' Delay Feedback Control (DFC) 
mechanism, by imposing a neural connections' Synaptic Plasticity tuning strategy, inspired 
by the biological phenomenon of Spike Timing Dependent Plasticity. The outcome is a new 
version of a Reservoir Computer called Chaotic Liquid State Machine and it works as a one­
class classifier. Particularly, the machine can be trained on a set of ti me varying inputs. Each 
input, in the set, is a sequence of time intervals that are considered as its building blocks. 
These building blocks constitute the elementary characteristic features of every input, their 
arrangement in each input, and their slight length variations in the set, characterizes a one­
class object and thus identities its unique identity. By way of an application, we choose 
Online Signature Verification (lain, Griess & Connell , 2002) for two reasons: First, an online 
signature is a time varying input. Second, a set of instances of an online signature of a same 
person is in fact a repository of a set of ti me varying input examples that share alike kinetics. 
Note that the kinetics of a signature can be encoded as a sequence of timing intervals. 
Furthermore, the generalization of these sequences to a unique output by the means of a 
chaotic LSM is emphasized through the synaptic plasticity mechanism that operates on their 
connections weights with respect to the timing intervals and connections ' time delay. The 
Chaotic Liquid State Machine is illustrated in Fig.l next. 

s, S', 

s, S', 

Multiple Spike Input Trains Pool of NOS Same Spike Output Train 
Neurons 

Fig. 1. Illustrati on of the Chaotic Liquid State Machin e. lt shows a pool (i.e. a network ) of six chaotic spiking neurons ca lled 
ND New·ons (N0, N1, .. . N5) that are recurrently connected. Each connection has a time delay t and a synaptic weight w. The 

input consists of a set of s ix spikes patterns (S0 to S5) that are fed .to the network. Us ing Chaos control and STOP, ali NOS 
New·ons converge to the sa me spikes pattern s· considered as the output of the network . 

III. Nds Neuron and STDP Leaming 
The NDS Neuron (Crook, Goh & Hawarat, 2005) is fundamentally based on the Rossler 
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Attractor (Rossi er, 1976), which is a simpler version of the Lorenz Attractor (Lorenz, 1963). 
The NDS Neuron is a chaotic spiking neuron model, it is described by three Ordinary 
Differentiai Equations (ODEs), represented in their difference form based on Euler method as 
it follows: 

yJt) = Yi(t- 1) + c(xi(t- 1) + ayi(t- 1)) 

With initial conditions at time t = 0: 

n 0 is the neuron after spike reset value, it is set to a random number between -1 and O. 
xi(t) and Yi(t) are internai variables ofthe NDS Neuron. 

a, b, c, d, v and k are constant parameters (a =0.002, b=0.03, c=0.03, d=0.8, v=0.002, k=-
0.057) 
ui (t) is the action potential of the NDS Neuron i at ti me t, 
ui(tpre) is the internai voltage of the neuron during potentiation time (tpre) 

!Jt) is the total neuron input and is equal to: 

(1) 

(2) 

(3) 

Where, n is the number of connections ofthe ith neuron, wiJ(t) denotes the weight from node 

j to neuron i (Note that j can be a neuron or an index of an external input), Tij is the 

connection time delay (which is called Delay Feedback Control - DFC - (Pyragas, 2003)) 
from node j to neuron i. 
Yj(t- Tij) is the spike output ofneuronj at time step t- Tij. 

Vr E (N = Number of Neurons in the network) 

{
1, 

Yr(t) = 0, (4) 

8 is the threshold and equal to zero. When the NDS neuron i fires then the neuron is reset to 
its after-spike reset value (i.e. when ui(t) > 8 then ui(t) = ry 0 ). Thus, the output of a NDS 
Neuron at time t is either 0 or 1 (the number 1 is interpreted as a Spike or a Pulse). The spikes 
output pattern of a NDS Neuron is a train of O's and 1 's in a time window of length T. The 
state of a NDS Neuron, when it is in isolation, is chaotic (Fig. 2). Rich mathematical and 
dynamical system analysis of the NDS Neuron mode!; with comparison to the Rossler 
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dynamics, is provided in Alhawarat work (2007, 20 15). Further studies, analysis and 
investigations are provided in (Aihawarat, Nazih & Eldesouki , 20 13a, 2013 b; Alhawarat, 
Scheper & Crook, 20 14). In comparison to the Rossi er system, Alhawarat results en sures the 
rich dynamics of the NDS Neuron mode) in terms of its extremely large number of UPOs, the 
importance of the reset mechanism and feedback mechanism which indulge the system 
between its two fixed points and stabilize its UPOs. 

a) b) 

If (\ (\ 'f r (\ f (\ ( (\(\ r 

-0.5 -0.5 

- 1 -1 

-1.5 -1.5 

-2 -2 

-2.5 
1000 11 00 1200 1300 1400 1500 1600 1700 1800 1900 2000 -2 ·-~.L-4 -_o::-':.3,...----:::-o '::-.2 --~o. ,,---!:--~o. t,-----::o7.2 --::':o.3:-----::'o.4 

x( t) 

Fig. 2. Phase space plot (a) a nd tim e seri e data (b) o fNDS New·on in chaoti c mode 

Spike Timing Dependent Plasticity (STDP) leaming rule considers the ttmmg a 
presynaptic neuron fires and the timing a postsynaptic neuron fires , in order to build-up their 
synaptic strength. STDP can be stated as "synapses that are activated slightly befàre the cell 
fires are strengthened whereas those that are activated slightly after are weakened " (Rao & 
Sejnowski, 2001 ). Detailed anal y sis of the stability of a new form of STDP leaming; 
implemented in a network of NDS Neurons, is given in our previous work (Aoun, 201 0). 
Here, we will present enhancements to this leaming rule and give further explanation on its 
functionality. 

The goal of the leaming algorithm depicted by the STDP learning rule and presented next, 
is to stabilize a network ofNDS Neurons. So, NDS Neurons synchronize their dynamics and 
converge to the same neural state ( e.g. Fig. 3a and Fig. 3c ). In other words, ail the neurons 
will generate the same spikes output pattern, while the network is fed with a stream of spikes 
inputs as illustrated in Fig. 1. After that, the network is considered as having a generalization 
over the inputs. Then the weights are saved and the network is ready to process new Input in 
a fonn ofNonlinear Transient Computation, as we will see in the next sections. 

At time t = 0, the weights are set to random numbers between 0.05 and 0.3 (Crook, Goh & 
Hawarat, 2007): 

wi1(0) = Random number between 0.05 and 0.3 

After 3000 time steps (t ;:::: 3000) which is the time given for the neurons to run in isolation 
and evolve their dynamics, the synaptic changes start to take place and the weights are 
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updated according to the following: 

(5) 

The weight update L1wi;(tpre) is driven by the following synaptic plasticity equation: 

Where, -ui(tpre) being the membrane voltage, taken as the inverse of the internai voltage 

ui(tpre)· 
Ii(tpre) is the total input of presynaptic activity normalized over the number of input 
connections n: 

(7) 

P;(t- Tij) represents the duration of potentiation of neuron j by calculating the number of 
trailing zeros between two consecutive spikes (i.e. the number of deactivation time steps that 
occurred before the activation at t - Ti;). ln other words, P;(t- Tij) is a condenser that 
handles the potentiation time of the presynaptic neuron: 

(8) 

ris the time step of the last spike that occurred before the spike at t- TiJ· This defines h the 
inter spike interval (ISI): 

r < h < t- TiJ such that Y;(r) = 1, Y;(h) = 0 and Y;(t- riJ) = 1 
a is a scaling factor set to 1 O. 

P(ui(tpre), h(tpre)) is an activation/deactivation variable; that depicts the simplest form of 
a STDP leam· 1 · fi Il mg ru e as It o ows: 

If ui(tpre) < 8 and ui(tpre) + Ii(tpre) > 8 and 

ui(t- 1) = rJo and ui(tpre) + Ii(tpre) < 8 + 0.2 L.l 

theo P= l 

If ui(tpre) < 8 and ui(tpre) + Ii(tpre) < 8 and 

ui(tpre) + Ii(tpre) > rJo and L.2 

Abs(Ii(tpre)- ui(tpre)) < 0.8 then P= l 

If ui(tpre) > 8 and ui(tpre) + Ii(tpre) > 8 and 

ui(t- 1) <> rJo and ui(tpre) + Ii(tpre) < 8 + 0.2 L.3 

then P=-1 



If uï(tpre) > 8 and ui(tpre) + lï(tpre) > 8 and 
ui(t- 1) = 1Jo then P= 1 

L.4 
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Note that the threshold is equal to zero (8 = 0), then the learning ru les (L.l , L.2 , L.3 and 
L.4) described above would imply: 
L.l implies: Spike is not expected; the neuron may fire but negatively updates its synapse. 
L.2 implies: Spike is received in phase time, (expected); the neuron won't fire but positively 
updates its synapse. 
L .3 implies: Spike is received at exact time (as expected); the neuron will fire and positively 
updates its synapse. 
L.4 implies: Spike is received late (the neuron has just fi red i.e. ui (t - 1) = ry 0 ); the neuron 
will fire but negatively updates its synapse. 

Note that Ii ( tpre) is being catalyzed and should re main in equilibrium with interna! potential 
changes of the neuron, thus and after synaptic changes the following reaction takes place: 

(9) 

Since, 

( 1 0) 

Then and finally , the result of ali synaptic changes ; that affects the internai voltage of the 
neuron , after being catalyzed at pre-synaptic activity, would be: 

( 1 1) 
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Fig . 3 . Oisplay ing the activity of NOS Neurons w hen STOP is used: (a) and (c) are UPOs of two NOS Neurons, and the ir time 

se ri es (b) and ( d ) respecti ve ly, showing synchron ization and peri odi c output, ( e) shows weights stabi 1 ization o f the synaptic 

connections. 

By following this mode of STDP learning, NOS Neurons are able to stabilize the weights 
of their connections and synchronize their outputs to identical periodic spiking patterns, as 
we can see in figure 3. We note that very fast stabilization takes place (Fig. 3e). ln 
comparison to Aoun (2007), enhancements where made in rule number 1 and rule number 4. 
Now, these rules allow an inhibitory effect on the synapse. Also, to avoid overweight, the 
neuron input is normalized (7) and boundaries were set through the learning rules (L.l to 
L.4). Furthermore, by introducing Pj(t- Tij) instead of Yj(t- Tij) while calculating the 
input to the neuron, then the spike has more information to provide to the postsynaptic 
neuron (i.e. it embeds, at its onset, the duration ofpotentiation of the presynaptic neuron). 

IV. Signature Coding and System Architecture 
Online Signature techniques rely on many features that characterize the uniqueness of a 

signature like the speed, the acceleration, the torque, the X and Y coordinates, the pen 
pressure, the series of pen-ups and pen-downs ... So, we plan using such features ; provided 
from user samples and template signatures that are available from the signature database 
SVC2004 (Yeung, Chang, Xiong, George, Kashi , Matsumoto & Rigoll , 2004). 

lt was shown in Lei & Govindaraju (2005) that the X, Y coordinates, with the speed of 
writing and the inclination over the x axis are the utmost significant features that make a 
signature unique. Also, since the velocity and the angle above the x axis already incorporate x 
and y (For instance, the angle a above the x axis can be derived from cos( a ) = SpeedVector 1 x 

(Lei & Govindaraju, 2005)), then using x and y as the signature features is enough and 
adequate to analyze online signatures. 

The input data given by Yeung et al. (2004) is originated from a pen tablet, soit should be 
normalized to a consistent range of values. We choose a range from -1 to 1 (Fig. 5a and 5b). 
Furthermore, it was shown in Lupu et al. (2009), that TESPAR (Time Encoding Signal 
Processing and Recognition) (King, 2004) is a reliable coding scheme for online signature 
recognition. A TESP AR stream of symbols is built using the minimum or maximum of a 
function with the zero crossing points. To encode the signal (e.g. the signature), we build a 
similar coding scheme like the TESP AR coding (King, 2004) by using the stationary points 
(relative minima and relative maxima) ofthe function x times y (Fig. 5d). We decided to use 
the product x times y, because multiplication has order preservation (i.e. if one of the values 
is negative and the other is positive then the order is negative. However, addition for instance 
doesn ' t preserve the order of operation ... ). ln our coding scheme, a symbol stream of O' s and 
1 ' sis generated according to the following: 

If the value of x times y is not a stationary p oint, then the symbol is equal to 0 
If the value of x times y is a stationary point, th en the symbol is equal to 1 

Finally, a signature is transformed to a symbol stream ofO ' s and 1' s (e.g. 00101000 ... ), 
as in Fig. 5e, which is considered a spike train and fed as input to the network. This process 
that starts from normalizing the raw data to generating spike trains is called the digitization 



process as indicated in the system architecture in Fig. 4. 
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Output 
G: Genuine 
F: Forgery 

The system architecture is divided into two phases following the diagram provided in Fig. 4. 
In the first phase, STDP is On and a set of different spike input patterns (genuine signatures 
of a person) is provided to the network for learning. All neurons converge to an identical 
spikes output pattern, we cali it: The Hypothesis. This Hypothesis is a generalization of the 
genuine signatures of the person. lt is used in the testing phase (Phase 2) for comparison. 
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-

-

Fig. 5. S ignature coding. (a) i the motion o f the x coordinate vs . the time steps denoted as t. (b) is the motion o f the y 
coordinate vs . the time steps denoted as t. The input data of(a) and (b) comes from the seri ai port of a pen tablet w here a person 

s igns and is nonnal ized to the range - 1 and 1. We genera te ( c), ( d) and ( e) from thi s input data. ( c) is the plot of y vs. x which 
o nly shows the sig nature. (d) is the plot of the product o f x and y vs . t, w hich w ill be used to generate a spike tra in . (e) is a spike 

tra in th at indi cates the stationary po ints of the product of x and y . 

Similar scenario occurs in the testing phase, however, in this phase STDP is Off; the 
weights of the connections are now stabilized, so they are kept fixed and won ' t undergo 
anymore changes. We have a single input spikes pattern to test (a single signature that we 
don ' t know if it is Genuine or Forgery). This single pattern is propagated to ali neurons. In 
the testing phase, we apply NTC. 

The Separation Property (SP), which is the first necessary and sufficient condition for NTC, 
says that similar inputs to the network should cause similar transients and different inputs 
should cause different transients (Crook, 2007). So, the transient spikes pattern that is 
generated from the network in the testing phase is compared to the Hypothesis that was 
generated in the training phase. The comparison is carried using a similarity measure called: 
Hamming Distance. Hamming distance indicates the number of errors (bit differences) 
between two patterns. Thus, each transient will have a hamming distance. A high hamming 
distance means: no similarity between the transient and the hypothesis, which indicates 
forgery. A low hamming distance means: little errors between the transient and the 
hypothesis, which indicates genuineness. 

V. Experimental Results 
We have 6 NDS Neurons recurrently connected to each other with no self-feedback 

connections, as in Fig. 1.-

Each input is connected to ali neurons. Ali the weights of the connections are set to random 
values between 0.05 and 0.3 (Crook, Goh & Hawarat, 2007). Ali neurons start with random 
initial conditions (i .e. the internai voltage u of every neuron is set to a random value between 
-1 andO). 

First, the network runs for 3000 time steps so the neurons can evolve their dynamics. They 
run in isolation (i.e. The connections delay feedback control ris set to 0 for ali neurons). 
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At ti me step 3001 , the delay feedback control r is set to 200 and every neuron in the 
network is fed with a digitized signature of the same user. Note that r is set to 200 so the 
neuron state time window contains the signature time steps, this is because we selected 
signatures from the database in (Yeung, Chang, Xiong, George, Kashi, Matsumoto & Rigoll, 
2004) that have time length Jess than 200. 

The network runs for 9000 steps. In these 9000 steps, the network is in leaming mode 
because STDP is goveming the weight updates. It was observed that 9000 steps are more 
than enough to ensure stabilization. Ali the neurons in the network stabilize to the same 
spikes output pattern, that we cali The Hypothesis, as in Fig. 6a. 

At time step 12000, STDP is tumed Off and the network is fed with spike trails of O' s. 
The network runs for 6000 steps with input trails of O' s and this is to ensure that in the testing 
phase, no neuron will have input residue from the past. 

At time step 18000, the Network (i .e. the pool of NDS Neurons) is fed with a Genuine 
Signature for testing. The Network runs for another 6000 steps and the neurons converge to a 
transient pattern as in Fig. 6b. 

Again, the network runs for another 6000 steps with input trails of O' s to clean the path for 
future inputs and ensure that no trace ofprevious input exists in the dynamics of the network. 

At time step 24000, the pool ofNDS Neurons is fed with a Forgery signature and runs for 
another 6000 steps. The Network converges to a new transient pattern as in Fig. 6c. 

As we can see in Figure 6, the genuine transient spikes pattern (Fig. 6b) - caused by a 
genuine signature - has many correlations with the Hypothesis (Fig. 6a) and less errors than 
the forgery transient spikes pattern (Fig. 6c) - caused by a forgery signature - which has Jess 
correlations but more errors when compared to the Hypothesis. 
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Fig. 6 . Evolution of the system: (a) is the Hypothes is retri eved a fter the training phase. (b) Genuine and (c) Forgery are 
Transients of testing s ignatures. Note that, both (b) and (c) have pike correlations with (a). However, (c) has more errors than 

(b) when compared to (a), because (c) is a Transient o f a Forgery s ignature. 

VI. Analysis Using F-MEASURE 
In a test ex periment ( e.g. Table 1, First row ), after the network has generated its 

Hypothesis, the system is fed with 3 genuine signatures one after the other (separated by 
trails ofO ' s, like in the previous section). 

~--~----T~A~B~L~E_I_. _A~c~cu~·~·a~cy~o_f~th~e~s~y:st~e•_n~b~a~se~d~o~n~th~e_F_-M~E_A~S~U~RE~~----~ 
USER GEN UIN E Thresho ld GEN UfN E FO RGERY F-measure 
r----+---.---.---+--------~-------.--~-------.--~------4 

1 33 34 3 1 32.6 32 29 3 1 3 1 34 34 0.86 
~---+---+---+---+--------~--~--~--~--~--~--~------~ 

2 3 1 34 32 32.6 29 29 29 36 37 36 1 
~---+---+---+---+--------~--~--~--~--~--~--~------~ 

3 32 35 37 34.6 34 37 33 36 38 39 0.80 

4 37 38 40 37.6 38 36 36 40 39 39 0.80 

Average Accuracy: 0.86 

The Hamming distance of each of their transients is recorded. These hamming distances 
are: 33 , 34 and 31. The average of these hamming distances is calculated and is equal to: 32.6 
(We cali it: Threshold) . The Approximation Property (AP) of NTC, which is the second 
necessary and sufficient condition for computing ·with perturbations, says that a readout 
mechanism should exist and is able to classify the transients (Crook, 2007). This Threshold 
acts as the AP. 
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Now, the network is fed with 6 signatures (3 Genuine and 3 Forgery), one after the other. 
The goal of the system is to detect which of the signatures is Genuine and which is Forgery 
by comparing the hamming distance of each of their transients to the Threshold. To be 
considered Genuine, a transient should have a hamming distance :S Threshold. To be 
considered Forgery, a transient should have a hamming distance > Threshold. 

To evaluate the accuracy of the system (i.e. the percentage of decisions that are correct) 
we use the F-measure. F-measure is the harmonie mean of Precision and Recall. 

2 *Precision* Recall 
Fmeasure = --------­

(Precision + Recall) 

TP Precision 
TP Recall = (TP + FN) 

(TP + FP) 

TP (True Positive) me ans the signature is Genuine and it is truly considered Genuine because 
its transient has Hamming Distance :S Threshold. 
FP (False Positive) means the signature is Genuine. But, it is considered as Forgery because 
its transient has hamming distance > Threshold. However, the hamming distance should have 
been :S Threshold because it is Genuine. 
FN (False Negative) means the signature is Forgery. But, it is considered Genuine because its 
transient has Hamming Distance :S Threshold. However, the Hamming Distance should have 
been > Threshold because it is Forgery. 

For the first row in Table 1, we have: 
Precision = 31 (3 + 0) = 1; Recall = 3 1 (3 + 1) = 0.75 
F-Measure = 2 * 0.75 * 1 1 (0.75 + 1) = 0.857142 ~ 0.86 

As another example, we take the third ex periment (Table 1, User 3), we have: 
Precision = 2 1 (2 + 1) ~ 0.666667; Recall = 2 1 (2 + 0) = 1 
F-Measure = 2 * 0.666667 * 1 1 (0.666667 + 1) ~ 0.8 

As we can see in Table 1, we run four experiments and calculate the ir F -measures, in 
order to estimate the accuracy of the system. The results show that the system is reliable in 
classifying time varying signais; which are Genuine and Forgery Online Signatures, by 
showing 86% of Accuracy on average. 

VII. Discussion 
Our approach and the basis of Cognitive Informatics: 
Wang et al. (2013) say that "the internai information processing mechanisms and processes 
of the brain and the mi nd form the basis of Cognitive Informatics" . They are the first to coin 
the tenn Cognitive Informatics in the International Conference on Cognitive Informatics 
(!CCI) in 2002. According to Wang et al. , "Cognitive informatics studies the natural 
intelligence and the brain from a theoretical and a computational approach . .. " (Wang et al. , 
20 13). Furthermore, they consider Cognitive Informatics as the third leve] in the hierarchical 
study of brain science where neuroinformatics and brain informatics are the preceding two 
levels . In our study, presented herewith , we approached the exploit of chaotic nonlinear 
dynamics in the goal of artificially imitating cognitive processes and their out coming brain 
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states, like leaming a stimulus and performing its memory recall. This is achieved by 
representing the generalization of a set of stimulus as an orbit in the state space of a chaotic 
attractor. We cali this orbita Hypothesis and we consider it as a memory block. 

"Specifically, we investigated the exploit of the theory of chaotic nonlinear dynamics via 
NTC and STDP, in arder to imita te cognitive processes,· like memory formation and recall, 
which are explained by the the ory of chao tic neurodynamics" (Aoun & Boukadoum, 2014) 

ln this regard, we refer to the discussion of Perlovsky & Kozma (2007) on NeuroCognition; 
where he describes brain processes based on chaotic neurodynamics, and we relate it to our 
theoretical and computational approach. Perlovsky says "A complex brain state is 
characterized by a trajectory over a chaotic attractor landscape. The system dynamics may 
reside for a brief time period in a localized attractor basin, be fore it transits to another basin. 
The presence of a given sensory stimulus may constrain the trajectory to a lower dimensional 
attractor basin. Once the sensory stimulus is removed, the trajectory switches to a higher­
dimensional dynamics (Jess concrete, Jess conscious state) until the next sensory stimulus 
constrains the dynamics again (to a concrete perception)" . This is weil observed in the 
activity of our pool of NDS Neurons. First, when they are faced with a stimulus, they 
converge to a single UPO in the NDS Neurons attractor phase space. Then, they are able to 
switch to another UPO when they are faced with another stimulus. The UPO represents the 
concrete perception of the stimulus. The fact that NDS Neurons have an infinite number of 
UPOs in their dynamic reservoir (Crook, Goh & Hawarat, 2005) makes them favorable in 
modeling such form of cognition. Accordingly, our approach settles in the context of 
Cognitive lnformatics (Wang et al. , 2013) and its objectives in brain science studies. 

Spike Coding, Periodicity, Synchronization and Modeling Attention as Consciousness to 
Stimuli: 
Pulse Frequency Modulation (PFM) is a "signal transformation function that converts an 
analog sensory signal into a sequence of impulses where the frequency of pulses per second 
(pps) is proportional to the intensity of the stimuli" (Wang, 2013). ln reference to Wang 
(20 13), 'The Pulsed Frequency Modulation Principle of Neurology' (PFMPN) states that the 
"general form of neural signais in the central nervous system (CNS) and Peripheral Nervous 
System (PNS) is uniformed PFM" (Wang, 2013). PFMPN falls under the umbrella of the 
traditional rate-coding paradigm of neural coding. This is because PFMPN considers the 
classical and trivial interpretation of the response of a neuron to a stimulus, based on the rate 
of the neuron 's spikes output firing activity that is being generated due to the intensity of the 
presented stimulus (i.e. PFMPN solely considers the frequency of the neuron's spikes that are 
being fi red in a specifie ti me window, relative) y to the amplitude of the electrical current 
caused by ·the corresponding stimulus). For instance, the interpretation of the mean firing rate 
of spikes provides the strength of the input stimulus being presented to the neuron. 
Notwithstanding the fact that rate-coding paradigm is a convenient and trivial neural coding 
methodology which is classically considered in the understanding, depiction and analysis of 
neural information processing. Above and beyond, we acknowledge that synchrony and 
correlation of spike timing in a population of neurons could "con vey information beyond the 
firing rate" (Mass & Bishop, 1999). For instance, periodic signaling and oscillations serve as 
a reference signal and are found in the hippocampus and the olfactory cortex where the 
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oscillations repeat periodically while there is no change in the input stimulus. These periodic 
patterns of spikes are driven by a background oscillation (similar toNDS Neurons ' behavior 
in the pool). This assumes that "the reference signal is not a single event, but a periodic 
signal" (Mass & Bishop, 1999). For instance, it was shown that the spatial location of a rat is 
correlated with phase spikes during oscillations that occur in the hippocampus (Mass & 
Bishop, 1999; O'Keefe & Recce, 1993). 
We refer to lzhikevich (2006): " Synchronization ... should be so rare and di ffi cult to occur 
by chance that when it happens, even transiently in a small subset of the network, it would 
signify something important, something meaningful , e.g. , a stimulus is recognized, two or 
more features are bound, attention is paid" (Izhikevich, 2006). Thus, synchronization with 
exact spikes timing correlations is very adequate to neural information processing and could 
delineate higher level of cognitive processing capabilities like ' attention as consciousness to 
stimuli'. This makes the synchronization process presented herein this work very relevant. 

On Chaos: 
1t was conceived that eye movements are indicators of cognitive mechanisms that interlay 
thinking, perception (Wang, 20 14 ). Furthermore, the ir occurrence is essen ti al for the 
manifestation of Long Term Memory (LTM) (Wang, 2014). Hence, it was shown that 
decreased nonlinear complexity of Electroencephalography (EEG) time series and their 
chaotic activity in Rapid Eye Movement (REM) sleep, indicates diminished ability of hum ans 
(as is the case of patients with schizophrenia) to process information (Keshavan, Cashmere, 
Miewald & Yeragani , 2004). Thus, chaotic activity; analyzed through the dynamics of 
population of neurons, is an important feature th at characterizes the performance of cognitive 
functions. This strengthens the assumption that Chaos "may be the chief property that makes 
the brain different from an artificial-intelligence machine" and "Chaos constitutes the basic 
form of collective neural activity for ail perceptual processes and functions as a controlled 
source of noise, as a means to ensure continuai access to previously learned sensory patterns, 
and as the means for learning new sensory patterns ... " (Skarda & Freeman, 1987). 

Emulating chaotic neurodynamics: 
Emulating chaotic neurodynamics is a fundamental strategy in the design of new models of 
artificial neural networks, and it will have enormous benefits in enhancing neural information 
processing, particularly memory storage and retrieval. The current paradigm to mode] the 
human memory relies on learning with prototypes. Then, anything that deviates from the 
learned prototypes during the recall stage is attributed to noise and it is hoped that the 
generalization capability of neural networks will be able to filter it out. However, prototypes 
are not natural in real life, and learning is accomplished with exemplars. Whether the mind 
extracts prototypes from the exemplar and how, if so, is still an open question. Nonlinear 
dynamics might provide the answer. For instance, strange attractors in a chaotic neural 
network could model the memory process not as one where specifie prototypes are learned, 
but rather as one where ali the exemplars associated with a memory recall are stored in the 
orbit of the strange attractor, the latter serving as "global prototype". ln this way of viewing 
the memory processed, the notion of single point prototypes disappears and exemplars are no 
longer prototypes corrupted with noise ; instead, they are the actual building blocks of 
memory . 
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We support this memory-processing hypothesis by referring to Freeman ( 1994) the ory of 
chaotic neurodynamics. Freeman suggests that memory states are based on strange attractors . 
Specifically, he gives as an example the wings of the Lorenz Attractor (Lorenz, 1963) to be 
considered as memory states. 

Freeman postulates: 

"ft is the Hebbian nerve cell assembly that provides the basis for generalization from 
examples to significant classes of input, and that guides the whole bulb during a state 
transition, when the bulb has been destabilized by input ... The altered state is manifested by 
a brief aperiodic oscillation called a "burst" that constitutes the cortical response to the 
stimulus... One way to view the operation of responding to input is to postulate th at the 
olfactory system has a global attractor that resembles a Lorenz attractor in having wings, but 
instead of two it has many wings, one for each class of input that it can discriminate " 
(Freeman, 1994 ). 

ln our case, the global attractor resides in the dynamics of a network of NDS Neurons, 
where each of its wings is a UPO. This UPO is a neural code; it is considered as a memory 
block and represents a class of inputs. Inputs are generalized using Aoun (20 1 0) mode! of 
STDP, which is a form of Hebbian plasticity. They are processed using NTC (Crook, 2007), 
which is a form of computing on perturbations. 

VIII. Conclusion 
In this work, we presented enhancements to our mode! of STDP within NDS Neurons 

(Aoun, 2010). Also, we showed that this mode! allow these neurons to stabilize their 
connections' weights, so they can perform Nonlinear Transient Computation (NTC) (Crook, 
2007) and learn time varying signais ( e.g. Signature). A network of chaotic spiking neurons 
called Nonlinear Dynamic State (NDS) Neurons was able to leam the genuine signature of a 
person and detect its forgeries. 

The signature example is a one-class classification problem. For multiple classes, we will 
have multiple Hypotheses. ln consequence, a different readout mechanism should be 
considered, like a Naïve Bayes classifier. 

Finally, a NDS Neuron has a theoretically infinite storage capacity (Crook, Goh & 
Hawarat, 2005, 2007), which is a wide range of Unstable Periodic Orbits (UPOs), considered 
as neural states that it can settle onto. In our case, a neural state is the manifestation of a 
dynamic signature. We used a network of 6 neurons only to leam and classify genuine versus 
forgery signatures, coded as input spikes patterns (i.e. bitstream), each of length 200 . 
However, a Multi Layer Perceptron would have required a minimum of 401 neurons (200 for 
the input layer, 200 for the hidden layer and 1 neuron for the output layer) ... This emphasizes 
the hypothesis of using NDS Neurons to optimize the memory capacity of artificial neural 
networks (Crook, Goh & Hawarat, 2005 , 2007). 
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