1	Modèle conceptuel de circulation hydrogéologique au niveau de l'aquifère plioquaternaire de
2	Settat (Maroc) : étude hydrogéochimique
3	
4	Hydrogeological conceptual model of the Settat aquifer (Morocco): hydrogeochemical study
5	
6	Namira El Amrani Paaza ^{1*} , Marie Larocque ² , José Benavente Herrera ³
7	
8	^{1*} Département de Géologie Appliquée, Faculté des Sciences et Techniques, Université Hassan
9	Premier, Settat, Maroc. namira.elamranipaaza@uhp.ac.ma
10	² Centre de recherche GÉOTOP et Département des sciences de la Terre et de l'Atmosphère,
11	Université de Québec à Montréal, Montréal (Québec), Canada. larocque.marie@uqam.ca
12	³ Institut de l'Eau, Université de Grenade, Grenade, Espagne. jbenaven@ugr.es
13	
14	Titre court : Modèle conceptuel de circulation hydrogéologique
15	
16	*Auteur correspondant
17	Tél . : (212) 6 61 952 999
18	Courriel : namira.elamranipaaza@uhp.ac.ma
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

32 RÉSUMÉ

33 La région de Settat a connu durant ces deux dernières décennies une croissance démographique 34 importante et un essor économique majeur par l'implantation d'une zone industrielle. En plus, cette région 35 est connue par son caractère agricole, surtout en cultures céréalières (grenier du Maroc). Cette croissance 36 a été accompagnée par une augmentation des débits des effluents liquides urbains et industriels qui sont 37 directement évacués dans l'oued Boumoussa considéré comme égout à ciel ouvert et qui ont induit une 38 détérioration de la qualité de ces eaux. Tout cela, a eu un impact sur l'aquifère de Settat du point de vue 39 hydrodynamique et de qualité des eaux souterraines. Pour pallier à cette problématique, une étude 40 pluridisciplinaire a été menée au moyen de l'analyse physico-chimique et de l'analyse des isotopes stables 41 de l'eau. Les études antérieures et les analyses présentées ici révèlent une pollution chimique des eaux 42 de la nappe par les écoulements superficiels de l'oued Boumoussa. Les résultats montrent la présence 43 d'un phénomène d'évaporation de l'eau souterraine ainsi que la présence d'un recyclage des eaux 44 d'irrigation qui se mêlent à la recharge naturelle (précipitation) pour alimenter l'aquifère de Settat. Les 45 résultats ont permis de proposer, sur la base des données physico-chimiques et isotopiques, un modèle 46 conceptuel de circulation des eaux au niveau de l'aquifère plioquaternaire de Settat pour une meilleure 47 gestion de la ressource en eau.

48 Mots clés : Écoulement souterrain, ressources en eau, hydrochimie, isotopes stables de l'eau, Settat
 49 (Maroc).

50

51 **ABSTRACT**

52 The Settat region has seen significant population growth and a major economic development through 53 the establishment of an industrial area over the past two decades. In addition, this region is known for 54 its agriculture which consists mostly of cereal crops (Morocco granary).

This growth has been accompanied by increased rates of urban and industrial liquid effluents discharged directly in the Boumoussa River which is considered an open sewer and which have led to a deterioration in the quality of the waters of this river. This situation has had an impact on the hydrodynamic behavior and groundwater quality of the Settat aquifer. To contribute to alleviate this problem, a multidisciplinary study was conducted using physicochemical analyses and analyses of stable isotopes of water. The previous studies and new analyses reveal a chemical pollution of 61 groundwater by surface flow of the Boumoussa River. The results show an evaporation phenomenon 62 from the groundwater, as well as the presence of irrigation return flow which mixes with the 63 Boumoussa River to feed the aquifer. Based on these results, a conceptual model of water flow in the 64 aquifer of Settat, based on physicochemical and isotopic data, is proposed to help develop a more 65 sustainable management of water resources.

Keywords: Groundwater flow, water resources, water chemistry, stable isotopes of water, Settat
(Morocco).

68

69 **1. INTRODUCTION**

70 L'utilisation des eaux usées brutes en agriculture est une pratique répandue dans les régions du 71 monde affectées par la pénurie en eau (EL KETTANI et al., 2006). Au Maroc, elle est réalisée d'une 72 manière courante et très ancienne à la périphérie des grandes villes continentales. Elle s'est 73 développée ces dernières années, autour de certaines agglomérations pourvues d'un réseau 74 d'assainissement (JEMALI ET KEFATI, 1994). Cette pratique peut être très bénéfique pour la 75 production agricole car elle est économique, permet d'irriguer les cultures, d'épurer l'eau et de recycler 76 des éléments nutritifs (DERE et al., 2006). Toutefois, elle peut également entraîner des 77 problématiques importantes de pollution de l'eau et des sols, qui peuvent engendrer des risques pour 78 la santé humaine (LAAMARI et al., 2004).

79 La région de Settat au Maroc, comme plusieurs régions arides en Afrique, fait face à cette 80 problématique depuis plusieurs années. L'oued Boumoussa qui est le principal cours d'eau de la 81 région reçoit des eaux usées domestiques et industrielles de la ville de Settat qui sont évacuées sans 82 traitement préalable dans l'oued Boumoussa. Le long de son passage, les riverains utilisent l'oued 83 pour l'irrigation des cultures céréalières et fourragères. Les polluants contenus dans ces eaux peuvent 84 donc s'accumuler dans les sols et l'aquifère au niveau de la zone au nord de la ville de Settat. Compte 85 tenu de ceci, il est clair que les risques de dégradation des composantes de l'écosystème et de la 86 santé humaine sont élevés.

Cette problématique a été étudiée dans le cadre du projet Ecosystème et santé humaine (financé par
le Centre de Recherche pour le Développement International du Canada et la Fondation Ford des
États-Unis). Cette étude (2002-2005) a été menée sur les eaux souterraines et les eaux superficielles
de la communauté de Mzamza (plaine de Berrechid) dans le but de déceler l'impact de la réutilisation

91 des eaux usées pour l'irrigation sur l'état de santé de la population. Étant donné l'impact négatif sur la 92 santé de la population mis en évidence dans ce projet (LAAMARI *et al.*, 2004), une station d'épuration 93 et de traitement des eaux usées domestiques par lagunage naturel (STEP) a été mise en place par la 94 Régie Autonome de Distribution d'Eau et d'Electricité de la Chaouia (RADEEC) en partenariat avec 95 d'autres organismes nationaux et internationaux et est opérationnelle depuis mai 2007.

96 En 2009, un projet de recherche entre la Faculté des Sciences et Techniques de Settat et l'Institut de 97 l'Eau de l'Université de Grenade (financé par l'Agence Espagnole de Coopération Internationale pour 98 le Développement) a porté sur la contamination des sols et des eaux souterraines par les eaux 99 d'irrigation chargées en contaminants industriels. En 2010, un échantillonnage a été réalisé au niveau 100 des puits, de l'oued Boumoussa et des sources situées sur le plateau de Settat (en amont sur le 101 bassin de l'oued Boumoussa) pour comprendre l'origine de l'eau souterraine qui s'écoule à Settat.

L'ensemble des études réalisées depuis 2002 a permis d'obtenir une meilleure compréhension du fonctionnement hydrodynamique de l'aquifère de Settat, mais aucune nouvelle mesure de gestion de l'eau n'a encore été mise en place. L'objectif de ce travail était de réaliser une synthèse des données physico-chimiques et isotopiques afin de proposer un modèle conceptuel de circulation des eaux au niveau de l'aquifère plioquaternaire superficiel de Settat au Maroc, notamment pour déceler l'origine des apports à l'aquifère provenant de la surface et de l'aquifère sous-jacent. Cette étude pourra guider les gestionnaires vers une meilleure gestion de l'eau dans la région.

109

110 **2. DESCRIPTION DE LA ZONE D'ÉTUDE ET MÉTHODOLOGIE**

111 **2.1 Région d'étude**

La région d'étude couvre une superficie de 80 km² au sud de la ville de Casablanca au Maroc (Figure 1). À la sortie de la ville de Settat, l'oued Boumoussa traverse, sur une distance de 8 km, deux localités de la communauté de Mzamza, soit Oulad Boukhalou et Dladla. L'oued Boumoussa est une rivière intermittente et de faible débit, il prend sa naissance en amont dans le plateau de Settat et vient se dessécher à son aval dans la plaine de Berrechid. Lorsqu'il est actif, il s'écoule sur un trajet de 25 km du sud vers le nord, traversant la ville de Settat en longeant la route principale Casablanca-Marrakech.

- 119
- 120 Figure 1

Le climat est semi-aride méso thermique (25°C en moyenne) et reçoit une pluviométrie de l'ordre de 325 mm/an (EL ASSAOUI, 2017)). L'évapotranspiration potentielle moyenne est de l'ordre 1182 mm/an (LAAMARI *et al.,* 2004). La saison des pluies s'étend de novembre à mai.

125 La région est une zone charnière entre le plateau de Settat au sud et la plaine de Berrechid au nord. 126 Cette limite plateau de Settat-plaine de Berrechid témoigne d'une tectonique plioquaternaire par 127 l'existence de failles importantes. Les deux ensembles qui constituent le plateau de Settat et la plaine 128 de Berrechid sont formés de roches sédimentaires sur lesquelles vient se superposer la couverture 129 quaternaire récente. La plaine de Berrechid se caractérise par des affleurements de limons argileux 130 quaternaires ou de grès calcaires pliocènes. Le plateau de Settat se situe dans une cuvette d'âge 131 cénomanien. Les formations marno-calcaires du Cénomanien, affleurant largement sur le plateau de 132 Settat, contiennent une nappe d'eau de faible extension participant en partie à l'alimentation de la 133 nappe plioquaternaire de Berrechid. Leur rôle hydrogéologique est important à l'amont de la plaine où 134 des circulations de type karstique peuvent constituer un relais entre les formations profondes du 135 plateau de Settat et l'aquifère plioquaternaire de la plaine de Berrechid.

136

137 La nappe de Berrechid se caractérise au fond de la cuvette de Settat par des niveaux piézométriques 138 élevés qui contribuent à la vulnérabilité de cette ressource aux différentes pollutions de surface. Les 139 limons quaternaires forment la quasi-totalité du recouvrement de la plaine. Peu perméables, ils jouent 140 un rôle hydrogéologique important du fait qu'ils rendent captive la nappe des formations 141 plioquaternaires et qu'ils sont localement à l'origine de petites nappes perchées. À petite échelle, 142 l'absence de flaques d'eau de grande dimension (daya) sur la plaine montre toutefois que la 143 conductivité hydraulique de ces limons est suffisamment importante pour permettre une infiltration des 144 eaux de pluie et donc une alimentation de la nappe à partir de la surface (EL BOUQDAOUI, 1995).

Il ressort de l'analyse de la piézométrie relative à la période de septembre 2003 à octobre 2004 sur l'ensemble des puits que les variations de niveaux piézométriques sont faibles durant cette période (l'écart moyen varie entre 0,20 et 0,68 m). L'alimentation de la nappe semble conditionnée par un apport relativement constant à partir des précipitations (en hiver) et à partir du retour d'irrigation (en été). L'analyse de la piézométrie pour le mois de janvier 2004 (période intermédiaire entre les hautes eaux et l'étiage) (Figure 2) montre que la direction générale d'écoulement de la nappe est 151 sensiblement SE-NW dans le sud de la zone d'étude avec deux dépressions piézométriques au
152 niveau des localités Oulad Boukhalou et Dladla, qui témoignent de l'effet des pompages pour
153 l'irrigation des cultures (EL AMRANI *et al.*, 2008).

154

155 **Figure 2**

156

157 À hauteur de la ville de Settat, l'oued Boumoussa est canalisé sur 3 km. Sur cette distance, il collecte 158 les eaux d'orages, les eaux usées de la ville (actuellement canalisées en partie, et évacuées vers la 159 STEP) et celles de la zone industrielle. Les unités industrielles doivent toutefois se doter de systèmes 160 de prétraitement pour que leurs rejets aient des teneurs en éléments chimiques pouvant être traités à 161 la STEP et avoir l'autorisation de se brancher dans le réseau d'assainissement municipal. Les 162 établissements industriels de Settat contribuent actuellement au débit total des eaux usées par temps 163 sec de la ville à hauteur de 25%, ce qui correspond à une proportion importante de la charge polluante 164 globale générée (RADEEC, 2007). Les débits jaugés à l'oued varient de 20 L/s en basses eaux 165 jusqu'à près de 600 L/s en période de crues et en temps de rejets. Cette évolution des débits est 166 accompagnée par une hausse de la salinité de l'eau de rivière ; cette salinité des eaux étant fonction 167 du type de rejets, soit domestiques ou industriels. La STEP permet de traiter un volume d'eau estimé 168 à 9632 m³/jour (RADEEC, 2007). La mise en œuvre du lagunage naturel en aval de la ville de Settat a 169 permis de mettre en conformité les effluents de la ville par rapport aux normes de rejets (OMS, 1989), 170 et éventuellement les réutiliser pour les besoins de l'agriculture.

171 En amont, le parc industriel de Settat comprend essentiellement des usines de textile, une tannerie, 172 des abattoirs et des verreries-cristallerie. On trouve également des usines de fabrication de produits 173 céramiques, de marbre, des plastiques, des équipements électriques et électroniques, des minoteries, 174 des usines de production de margarine, un abattoir de volaille, des boyauderies, une usine de 175 fabrication de clous et une imprimerie (RADDEC, 2006). Les eaux usées industrielles ne peuvent être 176 traitées à la STEP du fait de leur salinité très élevée (conductivité électrique des effluents varie entre 177 9000 et 23000 µS/cm) qui pourrait endommager les installations et inhiber la fonction biologique des 178 bactéries responsables de l'épuration. De même, des teneurs élevées en éléments traces métalliques 179 (Cu, Cr, PB, ZN, Ni, Fe, Cd et Al) émanant de ces activités industrielles ont été détectés au niveau 180 des eaux usées, eaux souterraines et sols (EL AMRANI et al., 2010). Le détournement des eaux 181 usées domestiques vers la STEP a entraîné une diminution significative du débit de l'oued 182 Boumoussa qui s'assèche maintenant à 3 km à l'aval de la ville. Seule la localité d'Oulad Boukhalou 183 peut maintenant utiliser l'eau de l'oued pour l'irrigation. Plus en aval de la zone d'étude, la localité de 184 Dladla doit maintenant utiliser l'eau souterraine pour irriguer ; ce recyclage des eaux souterraines 185 chargées en nitrates induit une contamination plus accrue de l'aquifère plioquaternaire par les nitrates. 186

187 **2.2 Échantillonnage et analyses**

188 Deux périodes d'échantillonnage ont été considérées dans la présente étude, celles de juin 2009 et de 189 novembre 2010. Ces campagnes d'échantillonnage ont permis d'échantillonner 21 stations, i.e. 5 190 points dans l'oued Boumoussa, 12 puits privés utilisés pour l'approvisionnement et l'irrigation (huit 191 dans le Plioquaternaire et quatre dans le Cénomanien), 3 sources (Oum Karma, Hlilifa et Baida) et 192 l'oued Zokch (voir Figure 1 pour la localisation des stations). L'échantillonnage de juin 2009 a consisté 193 à prélever, sur la plaine de Berrechid, quatorze échantillons d'eau (dix au niveau des puits, trois au 194 niveau de l'oued Boumoussa et la source Oum Karma). L'échantillonnage de novembre 2010 a 195 consisté à prélever, sur le plateau de Settat, sept échantillons (deux dans des puits, deux dans l'oued 196 Boumoussa, un dans l'oued Zokch et deux dans des sources (Hlilifa et Baida).

Les forages ont été purgés jusqu'à ce que les paramètres physico-chimiques (pH et conductivité électrique) soient stabilisés. Les sources, l'oued Boumoussa et l'oued Zokch ont été échantillonnés par prélèvement direct dans le cours d'eau. Les échantillons mis dans des bouteilles en polyéthylène ont été conservés à 4°C jusqu'au moment de leur analyse. Les paramètres physico-chimiques (conductivité électrique, pH et température) ont été mesurés *in situ*. La profondeur de l'eau par rapport au sol a été mesurée pour l'ensemble des puits.

203 Les analyses chimiques (ions majeurs, ions azotés et éléments traces métalliques) des échantillons 204 prélevés en 2009 ont été réalisées à la division de l'Unité d'Appui Technique à la Recherche 205 Scientifique du Centre National de la Recherche Scientifique (UATRS) à Rabat. Les analyses 206 chimiques des échantillons de 2010 ont été réalisées à l'Institut de l'Eau de l'Université de Grenade 207 (Espagne) et ont concerné les ions majeurs et les nitrates. La composition isotopique de l'eau a été 208 analysée en 2009 à l'Alfred-Wegener Institut for Polar and Marine Research, Isotope Laboratory 209 (Research Unit Potsdam, Germany), et en 2010 au laboratoire IDES de l'Université de Paris Sud 210 (France), dans les deux cas par équilibration puis mesures par spectrométrie gazeuse. Les teneurs en

- 211 ²H et ¹⁸O sont exprimées selon la notation conventionnelle δ (‰) par rapport au V-SMOW. Les erreurs
- analytiques sont de ± 1‰ et ± 0.1‰ vs V-SMOW respectivement pour le δ^{2} H et le δ^{18} O.
- 213

214 **3. RÉSULTATS ET DISCUSSION**

215 **3.1 Géochimie et types d'eau**

216 La pollution chimique des eaux de la nappe de l'aquifère de Settat par les écoulements superficiels de 217 l'oued Boumoussa et par le recyclage des eaux souterraines pour l'irrigation a été décelée à partir des 218 résultats de la campagne d'analyse physico-chimique de 2004. Les eaux souterraines présentaient 219 des niveaux de salinité élevés, plus prononcés dans les périmètres irrigués par les eaux souterraines. 220 Les teneurs en nitrates de l'eau souterraine dépassaient largement la norme de 50 mg NO₃/l 221 préconisée par le Maroc (Norme marocaines, 2002). Les teneurs en nitrites étaient plus élevées au 222 niveau de la zone d'épandage des eaux usées au nord de la ville de Settat et diminuent vers l'aval. Le 223 plomb, le chrome, le zinc et l'aluminium présentaient des teneurs importantes dans les puits ainsi 224 qu'au niveau des eaux usées, mettant en évidence l'apport des rejets industriels (EL ASSLOUJ et al., 225 2007) ; ce fait a été observé sur l'oued Moulouya témoignant de l'impact des rejets urbains de la ville 226 de Taourirt au Maroc (EL FOUNTI (2000) cité par BOUABDLI et al. (2005)). Ces valeurs en métaux 227 non tolérées par les normes marocaines pour l'irrigation font que ces eaux soient inaptes à l'irrigation 228 et peuvent constituer une menace pour la santé publique et l'environnement. Aussi, elles peuvent 229 causer une contamination importante de l'horizon de surface du sol (DERE et al., 2006).

Les cartes de distributions spatiales des conductivités électriques de 2004 (Figure 3a) et 2009 (Figure 3b), correspondant à la période avant et après la mise en place de la STEP (janvier 2004 et juin 2009, respectivement), montrent que la salinité des eaux souterraines a augmenté au sud de la zone étudiée (Oulad Boukhalou). Ceci s'explique par la présence d'irrigation par les eaux acheminées par l'oued contaminé par les effluents industriels qui ne sont plus dilués par les rejets domestiques acheminés vers la STEP depuis 2007.

236

237 **Figure 3**

238

Le diagramme de Piper élaboré à partir des analyses physico-chimiques de 2009 et 2010 montre trois
nuages de points (Figure 4 et Tableau 1). Un premier groupement (I) à faciès sodique bicarbonaté

241 sulfaté et chloruré, est composé des eaux de l'oued Boumoussa (eaux usées (1, 4 et 5) et de la 242 source (3)). Un deuxième groupement (II) à faciès sodique chloruré, est composé de puits captant le 243 plioquaternaire (2, 6, 7, 8, 9, 10 et 12) où probablement il y a échange cationique calcium/sodium ou 244 le calcium est retenu lors du passage des eaux au travers d'une formation argileuse (les argiles étant 245 de bon échangeurs d'ions) (BANTON ET BANGOY, 1997, TAUPIN et al., 2009 ; FEHDI et al., 2009). 246 Le troisième groupement (III) à faciès calcique magnésien sodique et chloruré correspond aux puits 247 situés les plus à l'aval sur la zone d'étude et les plus profonds. Comme ils présentent le même faciès 248 que les puits (17 et 18) et les sources (16 et 20) situés sur le plateau de Settat, ces puits (11 et 13) 249 captent probablement le cénomanien marno-calcaire et aussi ces eaux présentent un rapport Ca/SO4 250 supérieur à 1 ce qui montre qu'on a une dissolution des minéraux carbonatés (environnement 251 calcaire). Le mélange entre les eaux de surface et les eaux souterraines est observé au niveau des 252 diagrammes anionique et cationique, dans le sens de la flèche, par un enrichissement des eaux 253 souterraines en chlorures et une diminution en calcium (puits 2, 9, 10, 6, 7, 8). De même une 254 évaporation avant infiltration dans les zones irriguées peut induire un enrichissement en NaCl, ce 255 phénomène a été observé par STRAUCH et al. (2006) dans les eaux superficielles et souterraines 256 dans l'aquifère fracturé du bassin versant de l'Elqui dans la région des Andes au Chili.

257

258 **Figure 4**

259

260 De même, les puits à niveaux piézométriques élevés présentent les teneurs en nitrates les plus 261 faibles, alors que les puits à niveaux piézométriques bas enregistrent des teneurs en nitrates les plus 262 élevées (supérieures à 50 mg/l) (Figure 5), ces derniers sont situés dans la zone irriguée par les eaux 263 souterraines (Dladla). La présence des ions nitrates dans les niveaux aquifères profonds confirme 264 l'infiltration des eaux depuis les niveaux aquifères superficiels vers des niveaux plus profonds 265 (TRABELSI et al., 2005); aussi, un recyclage des eaux d'irrigation provenant des eaux souterraines 266 (puits) se fait plus patent à ce niveau de la nappe. Les concentrations plus faibles dans les puits plus 267 superficiels pourraient s'expliquer par des écoulements préférentiels rapides entre la zone non saturée 268 et la zone saturée.

269

Figure 5

272 **3.2 Isotopes stables de l'eau**

La composition de l'eau en isotopes stables permet de mieux comprendre le fonctionnement des aquifères, facilitant ainsi la gestion de la ressource en eau. Généralement, l'eau conserve sa signature isotopique sauf si elle est diluée ou mélangée avec des eaux d'une autre composition isotopique (FONTES 1980). Cependant, ce type d'investigation nécessite au préalable une bonne connaissance du signal isotopique véhiculé par la pluie (CELLE-JEANTONA *et al.*, 2001). La composition isotopique des précipitations locales n'étant pas disponible, la droite des eaux météoriques mondiales est utilisée.

280 Les stations représentatives du plateau de Settat s'alignent sur une droite d'évaporation de pente 6.81 281 sous la droite météorique mondiale (GMWL) (Figure 6). Les stations de la plaine de Berrechid se 282 répartissent sur une droite d'évaporation de pente 2.60, ce qui témoigne que ces eaux ont subi une 283 évaporation avant d'atteindre les niveaux aquifères par infiltration (CLARK ET FRITZ, 1997). Des 284 résultats similaires ont été observés au niveau de l'aquifère de Takesla en Tunisie (TRABELSI et al., 285 2005), de Souss (BOUCHAOU et al., 2008) et de Tadla (BOUCHAOU et al., 2009) au Maroc. Il est 286 intéressant de noter que l'enrichissement des eaux souterraines en δ^{18} O est plus remarquable pour 287 les eaux à salinité élevée, ce qui reflète l'effet de l'évaporation. Les puits ayant les niveaux 288 piézométriques les plus élevés présentent également les signatures en δ^{18} O les plus enrichies, ce qui 289 reflète l'importance de l'évaporation à partir de la zone non saturée. Aussi, faut-il noter que ces eaux 290 voient leur salinité s'accroitre à cause de l'effet anthropique de l'infiltration des eaux usées 291 industrielles à salinité élevée déversées directement dans l'Oued Boumoussa.

292 Le déplacement des points relatifs aux eaux souterraines par rapport à la GMWL offre une réelle 293 estimation de la recharge par les précipitations. Cela a été possible grâce aux analyses isotopiques 294 en appliquant la méthode d'ALLISON et al. (1984) basée sur celle de GRAIG (1961). La méthode 295 d'ALLISON et al. (1984) consiste à estimer la recharge (R en mm/an) à partir de la déviation des eaux 296 souterraines par rapport à la droite météorique par l'une des formules empiriques soit par le 297 δ^{18} O=3//R ou le δ^2 H=22//R). En appliquant cette méthode, la recharge par les précipitations au niveau 298 de la plaine de Berrechid a été estimée à 3,36 mm/an. Dans notre cas, la recharge par les 299 précipitations est faible ce qui est observé aussi par l'éloignement des points par rapport à la GMWL 300 (Figure 6), mais on remarque aussi que les points relatifs à l'oued Boumoussa (15, 19) au niveau du plateau de Settat sont les plus proches de la GWML, ce qui reflète l'apport important par les
précipitations à ce niveau; cela a été confirmé par la valeur estimée de la recharge par les
précipitations de 20 mm/an au niveau du plateau de Settat.

304

305 Figure 6

306

307 YIN *et al.* (2011) ont appliqué cette même méthode d'ALLISON *et al.* (1984) et la méthode du bilan de 308 masse en chlorures pour évaluer la recharge au niveau de l'aquifère crétacé dans le plateau d'Ordos 309 (Chine) et ils ont trouvé que la méthode d'ALLISON *et al.* (1984) donne une valeur de la recharge 310 beaucoup plus faible comparativement avec la valeur évaluée par la méthode de bilan de masse en 311 chlorures. Il est à signaler que la méthode d'ALLISON *et al.* (1984) est une formule empirique 312 développée pour l'aquifère en sable du Bao's groupe (Chine) dans des conditions hydro-climatiques 313 différentes ; nonobstant, elle donne une idée sur la dimension de la recharge.

314 Au niveau de la plaine de Berrechid, la recharge par les eaux d'irrigation est significativement plus 315 importante ; cette zone étant irriguée par les eaux souterraines et par les eaux de la rivière contenant 316 les effluents liquides industriels, ce qui est montré par le déplacement des points par rapport à la 317 GMWL qui ne peut être qu'un reflet du mélange des différents types de recharge à la nappe 318 (LAROCQUE et PHARAND, 2010; ZOUARI et al., 2011). Ce processus de mélange est aussi 319 observable et indiqué par les flèches sur les triangles anionique et cationique du diagramme de Piper 320 de la Figure 4 ou les eaux souterraines s'enrichissent en chlorures et en sodium et s'appauvrissent en 321 calcium dans le sens de l'écoulement des eaux souterraines.

322 Comme il a été signalé, l'enrichissement des eaux souterraines en δ^{18} O est plus remarquable pour les 323 eaux à salinité élevée. Trois groupements de points se distinguent lorsque les conductivités 324 électriques sont comparées aux compositions en δ^{18} O (Figure 7a). Le premier groupement (G1) 325 concerne les échantillons pris dans les puits profonds (Cénomanien) qui sont moins enrichis en δ^{18} O, 326 le deuxième groupement (G2) concerne les échantillons pris dans les puits superficiels 327 (Plioquaternaire) plus enrichis en δ^{18} O (évaporation et mélange) et le troisième groupement (G3) est 328 relatif aux échantillons du Plioquaternaire, plus enrichis en δ^{18} O et aux valeurs de conductivités 329 électriques les plus élevées. Les puits où les niveaux piézométriques sont les plus élevés présentent 330 les δ^{18} O les plus importants (Figure 7b), ce qui reflète une évaporation à partir de la zone non saturée beaucoup plus importante et que l'évaporation est d'autant plus importante que les eaux sont prélevées près de la surface (ADORNI-BRACCISI *et al.*, 2001), ce qui a été rencontré dans de nombreux études par un enrichissement isotopique affectant les eaux souterraines quand le niveau piézométrique se rapproche de la surface (ALLISON, 1995 ; IAEA, 1983).

335

Figure 7

337

338 **3.3 Modèle conceptuel de l'écoulement**

339 Un modèle conceptuel a été développé à partir de l'ensemble des résultats, et intègre les aspects 340 hydrogéochimiques (Figure 8). Les résultats de l'étude physico-chimique montrent que les eaux 341 souterraines présentent des conductivités électriques élevées et que celles-ci sont plus élevées dans 342 les périmètres irrigués par les eaux de la rivière Boumoussa, ce qui indique l'infiltration vers l'aquifère 343 d'une eau de surface formée principalement de rejets industriels très chargés en contaminants. La 344 présence de nitrates dans les puits à niveau piézométrique bas confirme la possibilité d'une recharge 345 de l'aquifère régional par une eau avant percolé à travers le sol agricole fertilisé. Aussi la lithologie des 346 formations traversées contribue à donner un faciès particulier aux eaux souterraines. Trois types de 347 faciès sont distingués :

-groupe (I) à faciès sodique bicarbonaté sulfaté et chloruré, est composé des eaux de l'oued Boumoussa et de la source Oum Karma au niveau de la plaine;

-groupe (II) à faciès sodique chloruré, est composé de puits captant le plioquaternaire ;

-groupe (III) à faciès calcique magnésien sodique et chloruré correspond aux puits situés les plus à
l'aval sur la plaine et les plus profonds et les puits et sources situés sur le plateau de Settat qui
captent le cénomanien marno-calcaire.

354

355 **Figure 8**

356

357 De même, le modèle proposé peut aider à une meilleure gestion de la ressource en eau dans cette 358 région par une revalorisation des eaux épurées de la STEP dans les besoins de l'industrie et de 359 l'agriculture et par une utilisation des eaux souterraines dans les besoins en approvisionnement en 360 eau potable.

362

363 CONCLUSION

La croissance économique et démographique de la région de Settat a été accompagnée par une augmentation des débits des effluents liquides urbains et industriels qui sont directement évacués dans l'oued Boumoussa et qui ont induit une détérioration de la qualité de ces eaux superficielles et souterraines. L'objectif de ce travail était de réaliser une synthèse des données physico-chimiques et isotopiques afin de proposer un modèle conceptuel de circulation des eaux au niveau de l'aquifère plioquaternaire superficiel de Settat au Maroc, notamment pour déceler l'origine des apports à l'aquifère provenant de la surface et de l'aquifère sous-jacent.

371 Les résultats confirment le comportement hydrodynamique et hydrogéochimique des eaux 372 souterraines. L'enrichissement des eaux souterraines en δ^{18} O est plus remarquable pour les eaux à 373 salinité élevée, ce qui reflète l'effet de l'évaporation. Les puits ayant les niveaux piézométriques les 374 plus élevés présentent également les signatures en δ¹⁸O les plus enrichies, ce qui reflète l'importance 375 de l'évaporation à partir de la zone non saturée. Aussi faut-il noter que ces eaux voient aussi leur 376 salinité s'accroitre à cause de l'effet anthropique de l'infiltration des eaux usées industrielles à salinité 377 élevée déversées directement dans l'Oued Boumoussa. Au niveau de la nappe de Settat, la recharge 378 naturelle par les précipitations est faible, ce qui se traduit par l'alignement des compositions 379 isotopiques de l'eau souterraine sur une droite de pente inférieure à celle de la droite météorique 380 mondiale. Le déplacement des points par rapport à celle-ci peut aussi être un reflet du mélange de la 381 recharge naturelle avec la recharge par les eaux d'irrigation (provenant de la rivière Boumoussa et 382 des eaux souterraines surtout à l'aval de la zone d'étude au niveau de la localité Dladla) et par les 383 eaux provenant de l'aquifère cénomanien du plateau de Settat.

Le modèle proposé peut aider à une meilleure gestion de la ressource en eau par une revalorisation des eaux épurées de la STEP dans les besoins de l'industrie et de l'agriculture et par une utilisation des eaux souterraines provenant du Cenomanien, vues leur meilleure qualité, dans les besoins en eau potable.

- 388
- 389

390 **REMERCIEMENTS**

391 Les auteurs tiennent à remercier vivement le Centre de Recherche pour le Développement 392 International canadien (CRDI) et la Fondation Ford (USA) pour le financement du Projet Ecosanté n° 393 100771-004 entre l'Institut National de Recherche Agronomique de Settat (INRA) et le CRDI 394 (Evaluation de l'impact de l'utilisation des eaux usées en agriculture sur l'écosystème et sur la santé 395 humaine de la communauté Mzamza (Settat, Maroc)) et l'Agence Espagnole de Coopération 396 Internationale et Développement (AECID) pour le financement du projet n°A/020106/08 entre la 397 Faculté des Sciences et Techniques de Settat et l'Institut de l'Eau de l'Université de Grenade (Estudio 398 de la contaminación de suelos y de aguas subterráneas por aguas residuales industriales utilizadas en 399 agricultura (caracterización experimental en el municipio de Mzamza, Settat, Marruecos)). Nous 400 remercions également Dr Hanno Meyer, de l'Alfred Wegener Institut (Potsdam, Allemagne) et le 401 professeur Florent Barbecot de l'UQAM pour la réalisation des analyses isotopiques. Nous tenons 402 aussi à remercier vivement le réviseur pour toutes les suggestions et commentaires qui ont poussés 403 notre réflexion sur le sujet.

404

405 **REFERENCES BIBLIOGRAPHIQUES**

406 ADORNI-BRACCISI A., S. ACUTIS, S. MERLO ET G.M. ZUPPI (2001). Application des techniques
407 physiques, géochimiques et isotopiques pour l'évaluation de l'infiltration sous climat tempéré. *Revue*408 *des Sciences de l'Eau*, 14(3) : 243-263.

409

ALLISON G.B. (1995). Stable isotope in soil and water studies. Comptes rendus Symposium
international à la mémoire de Jean charles Fontes sur l'hydrologie et la géochimie isotopique. Paris,
France, 1-2 juin, 22-38.

413

ALLISON G.B., C.G. BARNES, M.W. HUGHES ET F.W.J. LEANEY (1984). Effect of climate and
vegetation on oxygen-18 and deuterium profiles in soils. *In: Isotope Hydrology* 1983, IAEA Symposium
270, September 1983, Vienne, pp. 105-123.

417

BANTON O. et BANGOY L.M., 1997. Hydrogéologie : Multiscience environnementale des eaux
souterraines. Universités Francophones. PUQ/AUPELF. 460 p.

420

421	BOUABDLI L., N. SAIDI, S. M'RABET, J. ESCARRE ET M. LEBLANC (2005). Oued Moulouya :
422	vecteur de transport des métaux lourds (Maroc). Revue des Sciences de l'Eau, 18(2), 199-213.
423	
424	BOUCHAOU L., J.L. MICHELOT, A. VENGOSH, Y. HSISSOU, M. QURTOBI, C.B. GAYE, T.D.
425	BULLEN, ET G.M. ZUPPI (2008). Application of multiple isotopic and geochemical tracers for
426	investigation of recharge, salinization and residence time of water in the Souss-Massa aquifer,
427	southwest of Morocco. Journal of Hydrology, 352:267–287.
428	
429	BOUCHAOU L., J.L. MICHELOT, M. QURTOBI, N. ZINE, C.B. GAYE, P.K. AGGARWAL, H. MARAH,
430	A. ZEROUALI, H.TALEB ET A. VENGOSH (2009). Origin and residence time of groundwater in the
431	Tadla basin (Morocco) using multiple isotopic and geochemical tools. Journal of Hydrology, 379: 323-
432	338.
433	
434	CELLE-JEANTONA H., K. ZOUARI, Y. TRAVIA ET A. DAOUD (2001). Caractérisation isotopique des
435	pluies en Tunisie. Essai de typologie dans la région de Sfax. Compte Rendu Académie des Sciences
436	(Paris), Sciences de la Terre et des planètes- Géosciences de surface, 333 : 625–631.
437	
438	CLARK I. ET P. FRITZ (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, 328 p.
439	
440	CRAIG H. (1961). Isotope variations in meteoric waters. Science, 133:1702–1703.
441	
442	DERE C., I. LAMY, F. VANOORT, D. BAIZE et S. CORNU (2006). Reconstitution des apports en
443	éléments traces métalliques et bilan de leur migration dans un Luvisol sableux soumis à 100 ans,
444	d'irrigation massive par des eaux usées brutes, C. R. Geoscience 338 : 565–573.
445	
446	EL AMRANI PAAZA N., S. KHOLTEI, J. EL ASLOUJ et A. BOUZIDI (2008). Détérioration de la qualité
447	des eaux souterraines de la Communauté Mzamza suite à l'irrigation à partir des rejets polluants
448	domestiques et industriels de la ville de Settat (Maroc). Bulletin du GFHN, Impact de l'usage du sol sur
449	les ressources en eau souterraine, n°54, pp. 45-50. ISSN : 0997-1076.

EL AMRANI PAAZA N., ROCHDI A., BENAVENTE J., ROBLES V.M., ALMECIJA C., HIDALGO M.C.,
MARTIN W. ET BOUZIDI A., 2010. Soil and groundwater contamination by irrigation with industrial
wastewater (Settat, Morocco. Congrès International *« Gestion Intégrée des Ressources en Eaux et Défis du Développement Durable » (GIRE3D),* Agadir.

455

EL AMRANI PAAZA N., M. LAROCQUE, J. BENAVENTE et F. BARBECOT (2011). Apport des
méthodes géochimiques et isotopiques à la compréhension du fonctionnement hydrodynamique de la
nappe de Settat (SW de la plaine de Berrechid-Maroc). Compte-rendu de conférence, congrès
GeoHydro (Eau et Terre : la jonction des géosciences du Quaternaire et de l'hydrogéologie), Québec,
Canada.

461

462 EL ASLOUJ J., S. KHOLTEI, N. EL AMRANI PAAZA et A. HILALI (2007). Impact des activités
463 anthropiques sur la qualité des eaux souterraines de la Communauté Mzamza (Chaouia, Maroc).
464 *Revue des Sciences de l'Eau*, 20(3) : 309-321.

465

466 EL ASSAOUI N. (2017). Contribution à l'étude méthodologique de l'impact des changements
467 climatiques sur les ressources en eaux souterraines: cas de la nappe de Berrechid. Thèse de
468 Doctorat. Université Hassan II Casablanca. Faculté des Sciences Ain Chock. 167p.

469

470 EL BOUQDAOUI K. (1995). *Etude géologique et géotechnique de la vile de Settat*. Cartographie
471 géotechnique et substances utiles de la province de Settat, Doctorat de 3^{ème} cycle.

472

473 EL FOUNTI L. (2000). Evaluation de la qualité physico-chimique et métallique dans le bassin versant
474 de la Moulouya, DESA, Faculté de sciences, Kenitra, 59 p.

475

EL KETTANI S., E.M. AZZOUZI et A. MAATA (2006). Prévalence de Giardia intestinalis chez une
population rurale utilisant les eaux usées à des fins agricoles à Settat, Maroc. *Médecine et maladies infectieuses* 36, 322-328.El Mansouri, B., Dzikowski, M., Delay, F., Carlier, E. et Crampon, N., 1992.
Calage d'un modèle mathématique en régime permanent appliqué à la nappe de Berrechid (Maroc). *Ann. Soc. Géol. Du Nord.* T.1 (2^{ème} série) : 189-193.

FEHDI CH., AEK. ROUABHIA, F. BAALI et A. BOUDOUKHA (2009). The hydrogeochemical
characterization of Morsott-El Aouinet aquifer, Northeastern Algeria. *Environmental Geology*,
58:1611–1620.

485

486 FONTES J.C. (1980). Environmental isotopes in groundwater hydrology. *In*: Fritz P, Fontes JC (eds)
487 *Handbook of environmental isotope geochemistry*. Elsevier, Amsterdam.

488

JEMALI O. et A. KEFATI (1994). *Réutilisation des eaux usées au Maroc*, Forum de la gestion et de la
demande en eau. Ministère de l'Agriculture, Rabat, Maroc.

491

492 IAEA (International Atomic Energy Agency) (1983). Guide book on Nuclear Techniques in Hydrology.
493 IAEA Vienna, Austria, STI/DOC/10/91/2, 439 p.

494

495 LAAMARI A., S. EL KETANI, A. BOUZIDI et A. TANJI (2004). *Evaluation de l'impact de l'utilisation des*

496 eaux usées en agriculture sur l'écosystème et la santé humaine de la Communauté Mzamza, Settat,

497 *Maroc.* Projet INRA/CRDI N°100771-004, rapport d'activité septembre 2002-Avril 2004, 118 p.

498

499 LAROCQUE M. et M.C. PHARAND (2010). Dynamique de l'écoulement souterrain et vulnérabilité d'un

500 aquifère du piémont appalachien (Québec, Canada). *Revue des Sciences de l'Eau*, 23(1) : 73-88.

501

502 NORMES MAROCAINES (2002). Bulletin officiel N°5062 du 30 Ramadan 1423 fixant les normes de

503 potabilités à la consommation humaine.

504

505 OMS, 1989. L'utilisation des eaux usées en agriculture et en aquiculture : recommandations à visées 506 sanitaires. Genève, OMS, 84p.

507

508 RADEEC (Régie Autonome de Distribution de l'Eau et de l'Electricité de la Chaouia), 2006. *Rejets*509 *urbains de la ville de Settat*. Rapport internet. 8 p.

510

- 511 RADEEC (Régie Autonome de Distribution de l'Eau et de l'Electricité de la Chaouia), 2007. *Etude et*512 assistance technique pour la sensibilisation des industriels de la ville de Settat. Rapport interne 79 p.
- 513
- 514 STRAUCH G., J. OYARZUN, M. FIEBIG-WITTMAACK, E. GONZALEZ et S.M. WEISE (2006). 515 Contributions of the different water sources to the Elqui River runoff (northern Chile) evaluated by H/O 516 isotopes. *Isotopes in Environmental and Health Studies*, 42(3): 303–322.
- 517
- 518 TAUPIN J.D., L.E. TORO et M.C. VARGAS (2009). Etude géochimique et isotopique des aquifères 519 dans la zone de Maicao (Colombie). *Hydrological Sciences Journal*, 54(3) : 538-555.
- 520
- 521 TRABELSI R., K. ZOUARI et M.N. OUESLATI (2005). Contribution des méthodes hydrochimique et
 522 isotopiques à la compréhension du fonctionnement hydrodynamique du système aquifère de Takelsa
 523 (Cap Bon) Tunisie. WATMED 2 Marrakech 14-17 novembre 2005.
- 524
- 525 YIN L., G. HOU, X. SU, D. WANG, J. DONG, Y. HAO et X. WANG (2011). Isotopes (δ D and δ ¹⁸O) in 526 precipitation, groundwater and surface water in the Ordos plateau, China: implications with respect to 527 groundwater recharge and circulation. *Hydrogeology journal*, 19 : 429-443.
- 528
- 529 ZOUARI K., R. TRABELSI et N. CHKIR (2011). Using geochemical indicators to investigate 530 groundwater mixing and residence time in the aquifer system of Djeffara of Medenine (Southeastern 531 Tunisia). *Hydrogeological journal*,19 : 209-219.

Site	Туре	Aquifère	Date de	Niveau	CE	рН	Na	К	Mg	Са	CI	SO ₄	HCO ₃	NO₃	$\delta^{18}\mathbf{O}$
		-		piézométriques			<i>(</i> / /)	<i>((</i>))	- -	<i>(</i> ())	<i>(</i>)	<i>(</i>	<i>(</i>)	<i>(I</i>)	<i>(</i> 0/)
			prelevement	(m.s.n.m.)	(mS/cm)		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(‰)
1	OB	-	Juin 2009		5.28	7,75	800	28	43	86	578	859	1040	1	-
2	puits	Plioquaternaire	Juin 2009	330,65	3.90	7,05	352	8	85	126	596	99	510	113	-3.96
3	OK	-	Juin 2009	309	6.70	6,89	1075	13	83	119	884	644	835	19	-3.60
4	OB	-	Juin 2009		6.30	8,70	950	34	50	91	775	681	647	-	-
5	OB	-	Juin 2009		7.10	7,77	1278	28	66	139	937	832	1040	1	-3.09
6	puits	Plioquaternaire	Juin 2009	231,64	4.00	7,25	381	4	92	112	690	146	541	109	-3.65
7	puits	Plioquaternaire	Juin 2009		5.00	6,90	549	-	89	105	839	162	587	148	-3.36
8	puits	Plioquaternaire	Juin 2009	221,19	6.80	7,58	784	-	131	86	1506	117	395	100	-3.39
9	puits	Plioquaternaire	Juin 2009	286,22	4.50	7,01	472	9	94	135	768	253	673	35	-3.17
10	puits	Plioquaternaire	Juin 2009	294,72	6.50	6,86	802	6	105	137	1017	504	897	22	-2.85
11	puits	Cénomanien	Juin 2009	232,75	4.40	7,22	331	5	96	145	888	68	343	59	-3.47
12	puits	Plioquaternaire	Juin 2009	280,47	4.93	7,02	504	5	102	143	796	292	707	35	-3.18
13	puits	Cénomanien	Juin 2009	288,33	2.70	7,30	180	4	63	103	419	49	382	58	-4.16
14	puits	Plioquaternaire	Juin 2009	216,08	6.70	7,51	635	4	154	147	1506	114	407	91	-3.42
15	OB	-	Nov. 2010		2.10	8,10	121	-	39	424	427	30	193	-	-2.92
16	AH	Cénomanien	Nov. 2010	412	2.00	7,67	138	8	42	96	301	661	444	-	-3.86
17	Puits	Cénomanien	Nov. 2010	416,50	2.39	7,22	145	1	54	86	414	51	360	-	-4.07
18	Puits	Cénomanien	Nov. 2010	421,20	1.45	7,42	69	2	29	96	177	37	318	-	-4.54
19	OB	-	Nov. 2010		2.00	8,12	105	1	32	75	372	24	196	-	-2.94
20	AB	Cénomanien	Nov. 2010	420	2.46	7,42	138	1	42	118	506	31	276	-	-3.55
21	OZ	-	Nov. 2010		2.00	8,25	158	1	44	148	620	432	234	-	-3.41

 Table 1. Analytical results of the June 2009 and November 2010 sampling campaigns.

Tableau 1. Résultats analytiques des campagnes d'échantillonnage de juin 2009 et novembre 2010.

OB : Oued Boumoussa

OZ : Oued Zokch

OK: Source Oum Karma

AB : Source Aïn Baida

AH : Source Aïn Hlilifa

Figure 1. Situation géographique de la zone d'étude et localisation des points de mesure.

Figure 1. Geographic location of the study area and the sampling points.

Figure 2. Carte piézométrique (en m.a.s.l.) de janvier 2004 (EL AMRANI *et al.*, 2008). Carte en coordonnées Lambert. —240 courbe isopièze.

Figure 2. Piezometric map (in m. a. s. l.) of January 2004 (EL AMRANI et al., 2008).

Figure 3. Cartes d'iso-conductivité (μS/cm) pour janvier 2004 (A) et pour juin 2009 (B) (EL AMRANI *et al.*, 2011). Carte en coordonnées Lambert. —4000 courbe d'iso-conductivité.

Figure 3. Iso-conductivity maps (µS/cm) for January 2004 (A) and for June 2009 (B) (EL AMRANI et al., 2011).

Figure 4. Diagramme de Piper distinguant les types de faciès obtenus lors de la campagne de 2009-2010. Les flèches indiquent le mélange entre les eaux de surface et les eaux souterraines. Les cercles indiquent les groupements de points à faciès hydrochimique distinct *(I (*faciès sodique bicarbonaté sulfaté), *II (faciès sodique chloruré) and III (facies calcique magnésien chloruré)*).

Figure 4. Piper diagram distinguishing the types of facies obtained during the 2009-2010 campaign. Arrows indicate the mixing of surface water and groundwater. The circles indicate the groups of points with distinct hydrochemical facies (I, II and III).

Figure 6. Composition en isotopes stables de l'eau des échantillons étudiés.

Figure 6. Stable isotope composition of the water samples studied.

Figure 7. Relations entre les compositions en δ^{18} O et (A) les conductivités électriques et (B) les niveaux piézométriques. G1 : échantillons pris dans les puits profonds (Cénomanien) qui sont moins enrichis en δ^{18} O ; G2 : échantillons pris dans les puits superficiels (Plioquaternaire) plus enrichis en δ^{18} O (évaporation et mélange) et G3 : échantillons du Plioquaternaire, plus enrichis en δ^{18} O et aux valeurs de conductivités électriques les plus élevées.

Figure 7. Relationship between compositions in δ^{18} O and a) electrical conductivity, b) piezometric levels.

Figure 8. Coupe schématique du Modèle conceptuel de circulation hydrogéologique de la zone d'étude.

Figure 8. Schematic cross-section representing the conceptual Hydrogeological model of the study area.