
On fitting dependent nonhomogeneous loss models to
unearned premium risk

Jessup, Sébastien Boucher, Jean-Philippe Pigeon, Mathieu

Chaire Co-operators en analyse des risques actuariels
Département de mathématiques, UQAM.

Montréal, Québec, Canada.

Abstract
Unearned premium, or more particularly the risk associated to it, has only

recently received regulatory attention. Unearned losses occur after the evaluation
date for policies written before the evaluation date. Given that an inadequate
acquisition pattern of premium and approximate modelling of premium liability
can lead to an inaccurate reserve around unearned premium risk, an individ-
ual nonhomogeneous loss model including cross-coverage dependence is proposed
to provide an alternative method of evaluating this risk. Claim occurrence is
analysed in terms of both claim seasonality and multiple coverage frequency. Ho-
mogeneous and heterogeneous distributions are fitted to marginals. Copulas are
fitted to pairs of coverages using rank-based methods and a tail function. This
approach is used on a recent Ontario auto database.

Keywords Unearned premium risk, Loss reserving, Predictive Modelling, Depen-
dence

1 Introduction
Non-life insurance companies face high volatility due to the nature of losses they must
provide coverage for. Regulation thus requires insurers to maintain funds under sol-
vency constraints to ensure that up to a certain risk level, insureds’ claims will not suffer
from an insurer’s solvency issues. These funds form actuarial reserves, and their risk re-
quires accurate and reliable actuarial models. As such, a significant portion of actuarial
literature is focused on modelling reserves and ensuring optimal capital allocation.

There exist very specific guidelines to determine the capital requirement to be main-
tained by an insurer varying from one country and even one state/province to another.
For Property and Casualty (P&C) insurers, also known as non-life insurers, US regula-
tion as defined by the National Association of Insurance Commissioners uses risk-based
capital requirements (see Feldblum (1996) for more information), while the Canadian
requirement is set forth as the conditional tail expectation (CTE) at a 99% level for
insurance risk (Office of the Superintendent of Financial Institutions, 2018a). Different
guidelines exist elsewhere in the world. Insurance risk can generally be further broken
down into four parts: capital required for unpaid claim liabilities, capital required for
premium liabilities, margin required for reinsurance ceded to unregistered reinsurers
and catastrophe reserves.
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An insured may or may not incur a loss over the duration of their contract. This
contract is written on a certain effective date, and obligates the insurer to cover for losses
defined in the contract for its specified length, which is usually but not always one year.
In the event of a loss, there are often delays between occurrence and reporting dates,
and depending on the nature of the claim, it may lead to multiple payments before
the file is closed. Actuaries must establish the amount of capital to be maintained as
reserves on a specific date called the evaluation date.

t1 t2 t3 t1 + length

Claims Liability Premium Liability

Effective date

Claim

Evaluation date

Claim

End of contract

Figure 1 – Split between claims liabilities and premium liabilities

Classical reserving methods usually focus on unpaid claim liabilities. This liability
stems from the outstanding loss amount left to be paid from accidents incurred on or
before the evaluation date. In Figure 1, the outstanding loss from any claim occurring
between the effective date and the evaluation date would fall into unpaid claim liabili-
ties. This includes reported but not settled (RBNS) claims, and evaluation of incurred
but not reported (IBNR) claims. There are many existing methods to evaluate such
claims, see Wüthrich and Merz (2008) and Friedland (2010) for an extensive discussion
of existing methods.

Premium liability is what drives the risk linked to unearned premium, stemming
from potential future losses occurring after the evaluation date from contracts effective
prior to the evaluation date. Figure 1 gives a visual representation of this separation.
In other words, the risk linked to unearned premium is that the unearned premium
reserve (UPR) will be insufficient to cover for premium liability.

This type of loss is the focus of our article. More specifically, we use piece-wise
constant risk exposure and cross-coverage dependence to evaluate unearned premium
risk. Through this, we aim to identify the main drivers of risk relating to unearned
premium and determine the role of cross-coverage dependence. Our hypothesis is that
risk is driven by loss seasonality, loss distributions, the acquisition pattern of premium,
contract subscription patterns, and cross-coverage dependence. In Section 2, we explain
what is unearned premium risk and what methods are available to build a model around
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it. In Section 3, we present the models proposed to evaluate this risk by including
dependence between coverages, and apply these models to actual data in Section 4.
Finally, we provide concluding remarks and potential adaptations in Section 5.

2 Unearned premium risk
To evaluate the risk linked to unearned premium, there are two main options: to use an
aggregated framework (see Subsection 2.1) or to use individual data (see Subsection 2.2).
Aggregated methods essentially group all claims based on accident year and the time
elapsed since the loss, generally referred to as development period, whereas individual
methods keep all claim information on an individual level.

2.1 Traditional methods
Historically speaking, aggregated models have been favoured to calculate reserves due
to their ease of use and non-intensive computing time. In this framework, one would
use loss development triangles. This tool owes its name to its shape; to build a loss
development triangle one must aggregate loss payments by accident year and devel-
opment period, thus creating a triangle shape. Table 1 illustrates this aggregation.
From paid amounts (P), one can project outstanding claim amounts (O) using methods
such as the stochastic Chain-Ladder method (Mack, 1993) or the Bornhuetter-Ferguson
method (Bornhuetter and Ferguson, 1972).

Table 1 – Loss development triangle
with subsequent year

Development period
AY 1 2 3 4 5 6

2014 P P P P P O
2015 P P P P O O
2016 P P P O O O
2017 P P O O O O
2018 P O O O O O
2019 F F F F F F

Note: paid claims (P), outstand-
ing claims (O), future claims (F)

Development triangles allowed for a convenient way of aggregating losses and cal-
culate outstanding losses in non-computationally intensive ways. These methods are
useful in valuing unpaid claim liabilities, but do not tell us much about the last line of
Table 1, which consists of future claims (F). A part of these claims comes from con-
tracts effective on the evaluation date: these make up most of premium liability, which
is what we attempt to evaluate through our proposed model.
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Loss analysis linked to unearned premium has only recently started receiving at-
tention. As suggested by the Canadian Institute of Actuaries (2014), through triangles
one would require a projection of the loss ratio for the following year and an estimation
of the UPR to calculate premium liability. One can then evaluate ultimate losses for
each year evaluated through methods such as Mack (1993), Bornhuetter and Ferguson
(1972), and many others, then compare these losses to the premium written each year.
This allows for determining the loss ratio to be multiplied by the UPR. The UPR is
usually evaluated by supposing a uniform acquisition of premium, such that it is equal
to the sum of written premium multiplied by the remaining fraction of contracts across
all contracts.

The aggregated framework idea was reworked to determine the variance of such
a method. Li (2010) proposes an extension of Mack’s model using the next accident
year’s expected loss ratio to find an estimate of the prediction error of premium liability
without assumptions concerning the underlying loss distribution. Priest (2012) instead
proposes a model supposing that losses are driven by three factors, one specific to each
accident year, one depending on both accident year and development period, and some
random effect. Both Li and Priest rely on the hypothesis that the evaluation of premium
liability is an extension of the evaluation of outstanding claims.

Some issues arise with these proposals. Barnett et al. (2005) demonstrates that the
development method supposes independence between accident years, however Meyers
(2013) suggests that this is in fact not the case as most contracts span more than one
accident year. For example, a contract written on July 1st, 2017 for a one year duration
will end on June 30th, 2018. Moreover, as most insureds keep the same insurer year
after year, an insurer’s portfolio will consist of mostly the same risks, which should
induce between-year dependence.

Beyond between-year dependence, one should consider between-coverage depen-
dence. Regulatory guidelines for Canadian insurers as provided by the Office of the
Superintendent of Financial Institutions (2018b) require insurers to hold reserves for
expected outstanding amount for each coverage. This is intuitively affected by de-
pendence between coverages. Literature exists concerning dependence between lines of
business when modelling loss reserve through aggregated loss triangles, however this is
very limited when considering dependence between coverages, which is most likely due
to only recently having the computational capacity to look at this level of loss.

Another problem is that current methods suppose losses occur uniformly throughout
the year, which is not necessarily true as explained in Collins and Hu (2003). Factors
affecting this assumption include but are not limited to loss seasonality, loss trends (e.g.
inflation), legal changes affecting claims, climate change, etc.

2.2 Reserve for unearned premium risk
Any aggregated method is in fact highly dependent on the acquisition pattern of pre-
mium, given that losses linked to unearned premium are a subset of total losses, and that
premium is the only way of measuring the size of this subset. Evaluation of premium
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liability would then entirely depend on having the right UPR. Bearing in mind that
insurers usually use a uniform acquisition pattern for premium, the following example
quickly illustrates how this first option can be problematic.

Example 2.1. Suppose two insureds, A and B, have contracts with an effective date of
April 1st. A has an equal chance of incurring a loss any time of the year. Meanwhile, B
is twice as likely to have an accident between January and March than the rest of the
year, in the sense that B’s risk level for the first quarter is 2λ while it is λ the rest of the
year. Based on loss exposure, as of January 1st, by separating the year into quarters
A will have 1/4 of her risk remaining. B will however have 2/5 of his risk remaining.
Under uniform acquisition of premium, both insureds would have an unearned premium
of 0.25P , with P being their premium, but B’s unearned premium should be 0.4P , for
a shortfall of 0.15P .

With Example 2.1 in mind, it becomes clear that loss seasonality may play an
important role in the evaluation of unearned premium risk. With the same seasonality,
but different effective dates, we would however obtain a somewhat different scenario.

Example 2.2. Suppose two insureds, A and B, have contracts with an effective date
of October 1st, with the same seasonality as in Example 2.1. Based on loss exposure,
as of January 1st, A will have 3/4 of her risk remaining. B will however have 4/5 of his
risk remaining. Under uniform acquisition of premium, both insureds would have an
unearned premium of 0.75P , with P being their premium, but B’s unearned premium
should be 0.80P , for a shortfall of 0.05P .

This example allows us to see that for the same loss seasonality, the effective date at
which contracts are written affects the unearned premium risk, and with perfect recog-
nition of seasonality in the acquisition of premium, then there would be no unearned
premium risk. Evidently the behaviour of losses also needs to be taken into account to
determine P , so these examples allow us to postulate that the main drivers of unearned
premium risk are: loss distributions, loss seasonality, contract subscription patterns,
and premium acquisition.

2.2.1 Individual loss reserving models

With advances in computational power, we have accessible information about each in-
sured and claim, meaning that instead of only having data concerning the total amount
paid for a given accident year and development period, we have data for every insured.
This change in data availability allows us to use models such as Antonio and Plat (2014)
and Pigeon et al. (2013) for reserving purposes. An approach of this type allows for
modelling losses linked to unearned premium directly from previous losses of the same
type. This eliminates the issue of depending on premium to evaluate which portion of
losses is associated to unearned premium.

We can take the individual model approach one step further by taking into account
that insurance is generally separated into multiple coverages. For example, in car
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insurance in Ontario, accident benefits is a no-fault coverage that pays for an insured’s
injuries resulting from a car accident, while the third party liability coverage mainly
pays for injuries caused by an insured driver to another person (such as the other
driver). These coverages are usually valued separately in terms of costs and expected
claims. It is however a fairly intuitive leap to see how if a car crash is severe enough to
cause injuries, it is likely to do so for both drivers, which leads to dependence in both
occurrence of losses between coverages and in loss amounts.

Using reserving approaches, dependence has mostly been studied from a line of
business point of view. Different approaches based on copulas, where for example Côté
et al. (2016) fits generalised linear models (GLM) to marginal lines of business and
selects copulas to capture dependence through rank-based methods, while Cossette
et al. (2013a) considers dependence between risks within an insurance portfolio and fits
a Farlie-Gumbel-Morgenstern copula to model this dependence.

As such, there exist many individual loss models in reserving that take dependence
into account. These models however use past data to model claims that have already
occurred; we are interested in future losses, which have not yet occurred, and so are
more interested in a pricing approach.

2.2.2 Using a pricing approach

Under a pricing approach, Frees (2008) suggests that considering dependence within an
insurance contract is important for pricing purposes. This dependence can take multiple
forms, both in claim occurrence and in claim amounts. Abdallah et al. (2016) uses the
Sarmanov family of multivariate distributions to build a bivariate claim count model.
Frees and Valdez (2008) instead models which coverages are affected when an accident
occurs through a multinomial logit model, then use a t-copula to model dependence
between losses. Recently, Pechon et al. (2019) takes an approach of combining guaran-
tees (coverages) and policyholders through a multivariate Poisson-mixture to capture
dependence.

With this range of approaches to capturing dependence between coverages, we would
then want to take into account dependence between coverages in an individual model
with appropriate copulas, and model dependence between coverage occurrence. This
idea stems from the intuition that if a claim involves multiple coverages, there is likely
to be a link between those coverages, and it is worthwhile to investigate how this
dependence behaves. We thus want a model capable of capturing loss seasonality,
contract subscription patterns, while considering loss dependence between coverages.

3 Modelling approach
We are interested in evaluating the risk linked to unearned premium, which is the
potential excess of future losses over the unearned premium reserve. When a claim
occurs, one or more coverages can be affected. To this end, as mentioned in the previous
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section, to model future losses we need to consider claim frequency, loss amount, as well
as dependence between coverages.

In regard to frequency, we make a simplifying assumption for the model. A contract
can in theory have more than one loss in a year. In actuarial databases, this is however
rather infrequent. For example, first looking at a full year, in Shi et al. (2018), Table 1
presents some summary statistics of claim frequency, where we see that 0.35% of people
will experience 2 or 3 losses in one year, or in Table 2 of Boucher et al. (2007) where
0.50% of contracts have more than one reported claim. These examples are for the
year as a whole; future losses are only those losses that occur after the evaluation date.
Multiple future losses in one year are thus very rare. As such, we suppose that a
contract can only incur one future loss in a given year without losing much information
through an indicator variable. In this way, we avoid having to consider multiple future
losses for a single contract by supposing that if there is presence of loss, only one loss
occurs. Another important assumption we will use is that we suppose that all contracts
are written for a one year term, which is a standard assumption in actuarial models.
Lastly, we assume that loss amount is independent from loss occurrence, meaning that
the moment when a claim happens during the year has no incidence on loss amount,
which is again a standard assumption.

In Subsection 3.1, we define notation used throughout the rest of the paper. Sub-
section 3.2 presents the model in general form for a certain number C of coverages, as
well as explaining how we consider dependence between coverages. Subsection 3.3 gives
justification for coverage grouping in our model and Subsection 3.4 explains the reserve
for unearned premium risk.

3.1 Notation
The following are necessary definitions used in our model for some kth contract. Figure 2
illustrates the various events related to unearned premium risk.

• Nk is a discrete random variable for the number of losses occurring after the
evaluation date (future losses);

• Jk is an indicator random variable for the presence of a future loss as per our
hypothesis such that

Jk =
{

1 if Nk > 0
0 otherwise;

• Yk = [Y (1)
k · · ·Y

(C)
k ] is a vector of continuous positive random variables for the

paid future loss amount for each coverage c, c = 1, . . . ,C;

• Ik = [I(1)
k · · · I

(C)
k ] is a vector of indicator variables for the presence of a loss for

each coverage c, c = 1, . . . ,C;

• t
(E)
k is the time since the last evaluation date on the effective date of a contract,
where for example a contract written on November 1st with an evaluation date
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of December 31st would have t(E)
k = 0.8329 (304 days out of 365 since the last

evaluation);

• Ek is the exposure to future risk, which will be further defined in Section 3.3;

• PUE
k is the unearned premium. Based on the acquisition pattern used by an

insurer, this is not a random variable as the remaining portion of risk can easily be
evaluated at the evaluation date. For example, if we assume a uniform acquisition
of premium, then PUE

k = Pk(1 − t
(E)
k ), with Pk the written premium for a kth

contract.

t
(E)
k

tk t
(E)
k + 1

Previous evaluation date

Effective date

Evaluation date

Claim

End of contract

Figure 2 – Illustration of time-related random variables for a one-year contract

3.2 General model in dimension C
Based on our previous definitions, the risk linked to unearned premium, which we call
Z, depends on total future losses S∗ and the total unearned premium across all n
contracts, such that

Z = S∗ −
n∑
k=1

PUE
k . (1)

As explained in Subsection 3.1, the sum of unearned premium can be calculated at the
evaluation date based on an insurer’s acquisition pattern. In fact, for the rest of this
paper, we will generally suppose that an insurer uses uniform acquisition of premium,
such that PUE

k is known at the evaluation date. The model is flexible enough to use
other different acquisition patterns, but for illustration, and because it is almost always
used in practice, uniform acquisition is supposed. Our interest is thus on modelling S∗.
Recall our hypotheses, which are that

• A contract can only incur one future loss in a year;

• Contracts are written for a one-year period;

• Loss amount is independent from loss occurrence.
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Grouping theses assumptions, we can then define future loss Sk in terms of I(c)
k and

Y
(c)
k :

Sk =
{ ∑C

c=1 I
(c)
k Y

(c)
k if Jk = 1,

0 if Jk = 0, (2)

and subsequently
S∗ =

n∑
k=1

Sk.

Supposing that the total unearned premium is known at the evaluation date, to model Z
we thus need to model frequency Nk, coverage occurrence Ik, and coverage loss amount
Yk.

We include dependence in this model when considering Ik and Yk and consider
two cases: independence between coverages and presence of cross-coverage dependence.
This choice of consideration follows from our research focus to determine the role of
cross-coverage dependence.

For coverage occurrence Ik, we can consider separate occurrence for each coverage or
use joint occurrence probabilities. The problem with using an independent occurrence
hypothesis is that claims involving more than two coverages seldom happen, and so
independent occurrence can increase those probabilities. We choose to keep Ik fixed
across both cases as the empirical distribution of coverage occurrence, we will elaborate
on this idea in Section 4.

Then, for both the independent and dependent scenarios, we model Yk through
copulas, where

FYk
(y) = C(F

Y
(1)

k

(y(1)), · · · ,F
Y

(C)
k

(y(C))).

in the perspective of considering between-coverage dependence in losses. See Sklar
(1973) or a classical textbook on modelling dependence with copulas such as Joe (2014)
for more details on copulas. In the independent case, we use the independence copula
whereas when taking dependence between loss types we allow for other copulas.

3.3 Seasonality
As introduced in Example 2.1, risk is not always distributed uniformly throughout the
year, despite the simplifying assumption used by most insurers, which is the basis of
risk linked to unearned premium. In this paper, we use an idea proposed in Verrall and
Wüthrich (2016), which is to suppose that the arrival rate at time s for the kth contract
λ0(s) is piece-wise constant. In other words, there exists a partition of time through the
year A = {Am}m=1,...,M such that for each Am ∈ A, λ0(s) = λm, with m = 1, . . . ,M .

Assume Nk follows a non-stationary Poisson process with multiplicative intensity
function, similarly to Zhao and Zhou (2010). Let Am = [tm−1, tm) . Then we can build
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an exposure function E(C)
0 (t) s.t.

E
(C)
0 (t) =

∑M
m=1

∫ min(tm,t)
tm−1

I(t<tm)λ0(s)ds

tm−tm−1∑M
m=1 λm

=
∑M
m=1 I(t < tm)λmmin(tm,t)−tm−1

tm−tm−1∑M
m=1 λm

, (3)

where each set Am adds risk up to λm, with maximum risk for a full year being∑M
m=1 λm.

Using this exposure measure, we then have

λk(t|Xk) = E
(C)
0 (t)eXT

k β, k = 1, . . . , n, (4)

with Xk a (p×1) set of covariates and β a (p×1) corresponding set of predictors obtained
through maximum likelihood estimation (MLE), with p the number of covariates. Note
that here we implicitly assume that the covariates have no impact on the exposition
function.

In Figure 2, consider the previous evaluation date as t = 0 and current evaluation
date as t = 1. Under our previous assumption that a contract has a one year length,
that contract’s exposure to future risk is equivalent to [1,t(E)

k + 1] ≡ [0,t(E)
k ], supposing

that seasonality does not change from one year to the next. From there, using Equation
4 we trivially obtain

E [Nk|Xk] = E
(C)
0 (t(E)

k )eXT
k β. (5)

3.4 Reserve linked to unearned premium risk
Proposition 3.1. Let Z be a random variable as defined in Equation 1 for the risk
linked to unearned premium. For a portfolio containing n contracts independent and
C coverages, the expected value is given by

E
[
Z|t(E)

k

]
=

n∑
k=1

(
1− e−λk(t(E)

k
|Xk)

) C∑
c=1

Pr(I(c)
k = 1)E

[
Y

(c)
k

]
−

n∑
k=1

P
(UE)
k , (6)

and the variance is given by

Var
[
Z|t(E)

k

]
=
(

1− e−λk(t(E)
k
|Xk)

) [ C∑
c=1

E
[
(I(c)
k )2

]
E
[
(Y (c)

k )2
]
− E

[
I

(c)
k

]2
E
[
Y

(c)
k

]2
+2

C−1∑
i=1

C∑
j=i+1

(
E
[
Y

(i)
k Y

(j)
k

]
Pr(I(i)

k = 1,I(j)
k = 1)

−E
[
I

(i)
k

]
E
[
I

(j)
k

]
E
[
Y

(i)
k

]
E
[
Y

(j)
k

])]
+
(

1− e−λk(t(E)
k
|Xk)

)
e−λk(t(E)

k
|Xk)

[
C∑
c=1

E
[
I

(c)
k

]
E
[
Y

(c)
k

]]2

. (7)
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Proof. The proof is in Appendix A.

Moreover, given the distribution of T (E) ∈ [0,1], a continuous random variable for
the effective date of contracts, then

E [Z] =
n∑
k=1

[
C∑
c=1

Pr(I(c)
k = 1)E

[
Y

(c)
k

] ∫ 1

0

(
1− e−λk(s|Xk)

)
fT (E)(s)ds

]
−

n∑
k=1

P
(UE)
k .

Then, given the distribution of T (E),

Var[Z] =
n∑
k=1

([
C∑
c=1

E
[
(I(c)
k )2

]
E
[
(Y (c)

k )2
]
− E

[
I

(c)
k

]2
E
[
Y

(c)
k

]2

+2
C−1∑
i=1

C∑
j=i+1

(
E
[
Y

(i)
k Y

(j)
k

]
Pr(I(i)

k = 1,I(j)
k = 1)− E

[
I

(i)
k

]
E
[
I

(j)
k

]
E
[
Y

(i)
k

]
E
[
Y

(j)
k

])
×
∫ 1

0

(
1− e−λk(t(E)

k
|Xk)

)
fT (E)(s)ds

+
[
C∑
c=1

E
[
I

(c)
k

]
E
[
Y

(c)
k

]]2 ∫ 1

0

(
1− e−λk(t(E)

k
|Xk)

)
e−λk(t(E)

k
|Xk)fT (E)(s)ds

 .
Knowing the expected value and variance give us some information about the distri-

bution of Z, however as suggested in Kaye (2005), there are multiple ways of measuring
risk and allocating capital in general insurance with different risk measures for which
we need to know the full distribution of Z. For example, Cossette et al. (2013b) gives
possible applications of the Value-at-Risk as the most widely used risk measure in both
insurance and finance for capital allocation. As such, we can define the reserve, or
allocated capital, R for Z as

R = ρα(Z),
where ρα : L → R is a risk measure based on the distribution of Z ∈ L such as the
Value-at-Risk or the conditional tail expectation at a certain risk level α.

3.4.1 Algorithm to find the reserve for unearned premium risk

The algorithm to simulate the reserve for unearned premium risk is thus as follows:

1. For all contracts, generate a realisation of Jk through Nk and the contract’s ex-
posure E(C)

0 (tk), where Jk = 1 if nk > 0 and 0 otherwise.

2. If Jk = 1, then there is a loss. Generate a realisation of Ik from the possible loss
scenarios based on empirical observations.

3. Generate a realisation of losses y(c) ∼ Y (c) for affected coverages. In the indepen-
dent case, use the independence copula; in the dependent case, use an appropriate
copula to capture dependence.
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4. Sum losses across all coverages.

5. Calculate the reserve for unearned premium risk as the sum of losses less the total
unearned premium.

6. Repeat this procedure a large number of times.

7. Use these results to obtain the predictive distribution of Z.

8. Use appropriate risk measures to determine the reserve for unearned premium
risk.

4 Analysis

4.1 Data
We analyse data from a Canadian insurer in Ontario consisting of 132,093 auto con-
tracts with information concerning 45 different coverages with effective dates ranging
from December 15, 2015 to December 31, 2018. We choose to focus on five main
coverages (Financial Services Commission of Ontario, 2016):

• Accident Benefits (AB), which is a no-fault coverage for benefits that the driver
or another insured person may receive if injured or killed in an auto accident
(income replacement, medical fees, rehabilitation, etc.);

• Collision (Coll), which covers for material damage to an insured’s vehicle when
involved in a collision with another object or the insured’s vehicle rolls over and
for which they are at least partially responsible for;

• Comprehensive (Comp), which covers for damage to an insured’s vehicle from
perils not linked to a collision with another vehicle, such as hail, theft, vandalism,
or hitting a wild animal;

• Direct Compensation Property Damage (DCPD), which is direct compensation
covering damage to an insured’s vehicle when they are not at fault in an accident,
with at least one of the other drivers being insured. It can be seen as the flip side
of Collision;

• Third Party Liability (TPL), which can cover for injuries caused to another person
or damage to someone’s property, as well as protect the insured in the event of
lawsuits.

There are 10,423 claims for these five coverages, of which 87.4% involve only one cov-
erage, 11.4% involve two coverages, and 1.2% involve three or more coverages. Due to
the limited sample size and out of parsimony, we limit our analysis to two coverages at
a time in our analysis of dependence.
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The database is built on a transactional basis, where each intervention between
the insured and the insurer creates a new line, even if there are no changes. Claim
information consists of the date of occurrence, coverages affected, and incurred amount
for each coverage.

Using this data, we attempt to address the following research questions:

1. What factors actually drive unearned premium risk?

2. What is the impact of cross-coverage dependence on this risk?

4.2 Fitting the model
We use December 31st as our evaluation date. Due to our focus on the risk linked to
unearned premium, this means we only have two years of losses to work with, per se
losses occurring in 2017 from contracts effective in 2016, and losses occurring in 2018
from 2017 policies. We choose to fit our model on 2017 losses then observe its accuracy
on 2018 losses. This is a limiting factor in our analysis due to the very small number of
years available for analysis and the volatile nature of losses from one year to the next.

To get total future loss S∗, we use two models, S(comp) with dimension C = 1,
and S(crash) with dimension C = 4, consisting of respectively only the comprehensive
coverage, and the four other coverages, such that

S
(comp)
k = I(comp) ∗ Y (comp), and

S
(crash)
k = I(AB) ∗ Y (AB) + I(coll) ∗ Y (coll) + I(DCPD) ∗ Y (DCPD) + I(TPL) ∗ Y (TPL),

provided Jk = 1. The reason behind this choice is the distribution of λ0(t). Figure 3
shows the observed frequency by month for AB, Coll, DCPD and TPL (left) as com-
pared to the frequency for Comp (right). The seasonality for the group of four coverages
is very similar, while Comp has a very different seasonality. This is mostly due to the
fact that Comp provides coverage for accidents that do not occur while driving (vandal-
ism, hail, theft), whereas the other coverages require accidents occurring while on the
road, justifying keeping it separate. Note however that we observe weak seasonality,
which is a limiting factor in our analysis of its impact on unearned premium risk.
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Figure 3 – Relativity of claim occurrence by month for claims linked to
car crashes (left) and comprehensive (right)

For both models, we need λ0(t), Nk, Ik and Yk. As mentioned in Subsection 3.2, we
use two approaches to investigate the impact of cross-coverage dependence on unearned
premium risk; one where losses are assumed independent between coverages and one
where we consider dependence between coverages.

In both cases, for each model λ0(t) is fitted using the empirical distribution observed
in Figure 3. That is, to determine E(C)

0 (t) to be used as an exposure measure, we use
an empirical approach by using the hypothesis that the partitions in Equation 3 are
monthly, meaning that we suppose the risk level is constant through January, but
different from February, and so on. This allows us to find E [Nk] for each contract using
Equation 5.

We use the empirical distribution of observed groupings of coverages to simulate the
behaviour of coverage occurrence Ik. In the four-coverage case, this does induce some
dependence in our independent scenario, but as mentioned previously, the probability of
multiple coverages occurring would be over-evaluated if we used independent occurrence
of coverages. Using three coverages as an example, in reality we observed 121 out
of 10 423 claims involving three or more coverages, or a 1.2% probability, but in an
independent model this probability increases to 3.9%. Given that 121 data points is
insufficient to model dependence, we restrict our analysis to two coverages per claim,
and so imposing a joint empirical distribution allows us to prevent more than two
coverages occurring simultaneously. Table 2 lists scenario probabilities across collision-
linked events adjusted for the occurrence of only two coverages.
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Table 2 – Scenario probabilities of coverages for an accident

AB Coll DCPD TPL Probability

1 coverage

1 0 0 0 2.77%
0 1 0 0 35.30%
0 0 1 0 40.78%
0 0 0 1 1.29%

2 coverages

1 1 0 0 3.54%
1 0 1 0 7.23%
1 0 0 1 1.89%
0 1 1 0 3.01%
0 1 0 1 3.27%
0 0 1 1 0.94%

Note: Probabilities are adjusted to sum to 100%

Next, in order to model Yk, we need to select marginal claim distributions for
each coverage, and appropriate copulas based on the observed dependence structure.
To evaluate the impact of loss distributions on unearned premium risk, we consider
two cases for our marginal distributions. First, we select a homogeneous distribution
for all losses of a particular coverage, and then we use a generalised linear models
(GLM) approach to have a heterogeneous distribution of losses based on individual
characteristics.

Although normally we would select among common loss distributions in actuarial
literature for potential marginals, see Klugman et al. (2012), we choose to restrict
ourselves to the Gamma distribution, optimised using the actuar (Dutang et al., 2008)
package in R. The motivation behind this choice lies in comparing similar distributions,
in this case a Gamma distribution with another Gamma distribution, where in the
heterogeneous model

E
[
Y

(c)
k

]
= eDT

k γ , k = 1, . . ., n (8)

with Dk a (q×1) set of covariates which can be different from the one used for frequency,
and γk a (q×1) set of predictors optimised through maximum likelihood estimation. The
parameters obtained for the homogeneous case are in Appendix C while the predictors
obtained for the heterogeneous model are in Appendix D.

Then, to determine which pairs of coverages may have dependent loss amounts, we
look at Kendall’s tau and Spearman’s rho (see Kendall (1948)), listed in Table 3, and
calculated with the help of the VGAM (Yee et al., 2010) package in R. We determine
that there is weak dependence between Accident Benefits and DCPD, tail dependence
between Accident Benefits and Liability, and strong dependence between Collision and
DCPD, as we can observe in Figures 4 to 6. The line observed near 0.44 for accident
benefits in Figure 4 stems from policy limits and is not abnormal.
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Table 3 – Kendall’s Tau and Spearman’s Rho for potentially
dependent coverages

Coverages Kendall’s Tau Spearman’s Rho

AB, Coll 0.011 0.077
AB, DCPD 0.053 0.097
AB, Liab 0.280 0.397
Coll, DCPD 0.429 0.435
Coll, Liab 0.027 0.043
DCPD, Liab -0.005 -0.000

For copulas, we use rank plots and a left-right tail function defined as

LR(z) =
{

Pr(FX(x) < z|FY (y) < z), if 0 ≤ z < 0.5
Pr(FX(x) > z|FY (y) > z), if 0.5 ≤ z < 1,

which allows for comparing the curve obtained through the function with a theoretical
curve and choosing the closest fit. More information about this function can be found
in Venter (2002) and Boucher et al. (2008).

Figure 4 – Rank plot (left) and left-right tail function (right)
for Accident Benefits and DCPD
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Figure 5 – Rank plot (left) and left-right tail function (right)
for Accident Benefits and Liability

Figure 6 – Rank plot for Collision and DCPD

These figures allow us to select a Frank copula between AB and DCPD, a Gumbel
copula between AB and Liability, and we happen to know the exact link between
Collision and DCPD. These coverages are in fact two sides of the same coin, where
claim cost is split based on percentage of responsibility. We thus model this link through
observed frequency of percentage breakdown between 0/100, 25/75, 40/60, and 50/50,
with proportions found in Table 4. Note that in 100% at fault or not at fault cases, the
accident will be covered fully respectively by Coll (at fault) or DCPD (not at fault).

Table 4 – Collision/DCPD percentage split

Coll/DCPD split
0/100 25/75 40/60 50/50 60/40 75/25 100/0

Proportion 9.25% 3.96% 7.49% 65.20% 4.85% 1.76% 7.49%
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4.3 Results
With our previous selections, we can obtain reserve amounts for the unearned premium
risk, assuming the insurer uses uniform acquisition of premium. We run 20,000 sim-
ulations following the algorithm described in Section 3.4 with the copula package in
R, allowing us to obtain an unearned premium risk distribution and evaluate different
risk measures. The choice of 20,000 is motivated by a balance between sufficient data
and computing time. Given that we have an Ontario database, we consider the Finan-
cial Services Commission of Ontario (FSCO) guidelines, which follow Canadian federal
guidelines, and so we look at the 99th Conditional Tail Expected (CTE) as well as the
99.5th Value-at-Risk (VaR), presented in Table 5 under both homogeneous and hetero-
geneous distributions. We present what would happen under independent occurrence
(that is, independent I(c)

k ) in Table 6.

Table 5 – Reserve amounts using multiple loss approaches

Approach Fitted set (000s) Predictive set (000s)
Ind. Dep. Ind. Dep.

Homogeneous
Mean −2 485 −2 662 −2 284 −2 513

VaR (99.5%) 2 417 2 175 2 949 2 699
CTE (99%) 2 622 2 286 3 105 2 861

Heterogeneous

Mean −4 009 −4 389 −4 302 −4 770
VaR (99.5%) 3 167 2 901 3 189 2 835
CTE (99%) 3 548 3 299 3 617 3 248
Variance 5 261 643∗∗ 5 835 444∗∗

Formula (Prop. 3.1) Mean −4 013 −4 285∗ −4 304 −4 634∗
Variance 5 254 415∗∗ 6 066 490∗∗

Observed −2 952 −8 247
∗ The mean is lower for the dependent case because of the added joint
distribution of (Coll, DCPD).
∗∗ Variance is in millions not thousands.

Table 6 – Reserve amounts in a purely indepen-
dent heterogeneous model

Fitted Predictive
set (000s) set (000s)

Mean −3 990 −4 271
VaR (99.5%) 1 100 1 119
CTE (99%) 1 224 1 285

We note that the dependent model always returns a lower reserve than the hetero-
geneous case. While seemingly counter-intuitive due to the positive dependence, this
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is expected. In the particular case of the Coll-DCPD relationship, modelling claims
involving both these coverages leads to lower amounts than modelling each coverage
separately, then adding them up. AB and TPL claims can incur large amounts, but
given our choice of the Gamma distribution which does not have a heavy tail, in the
absence of large AB-Liab claims, the Coll-DCPD relationship leads to lower simulated
reserve amounts.

Bearing in mind the research questions of drivers of unearned premium risk and
impact of cross-coverage dependence, these results, despite not being directly intuitive,
highlight the importance of properly recognising the relationship between coverages.
While one might expect positive dependence to lead to higher loss reserves, it is impor-
tant to take into account what actually occurs when multiple coverages are implied, as
joint losses might behave differently than independent losses. Looking at means as a
simple example of this idea, the mean of joint Coll-DCPD claims is much lower than
the mean of collision claims added to the mean of DCPD claims, which creates bias in
an independent model that can be corrected in an individual model taking dependence
into account. We can therefore see that cross-coverage dependence plays a central role
in proper evaluation of reserve amounts.

Next, we note that the means are negative; this indicates a surplus. This is to be
expected, as an insurer does not only pay losses, but also pays expenses and generally
keeps a certain profit margin. One would thus expect an average loss ratio around 70%.
While on the fitted data both the homogeneous and heterogeneous models capture this
well enough, on the predictive set we see that the homogeneous model has a distribution
almost entirely to the right of the observed reserve amount while the heterogeneous
model presents a better fit. We thus see that for the same loss distribution (Gamma in
this case), using an individual model enables more predictive power, and so the choice
of loss model is an important driver of risk.

Finally, we see by comparing Tables 5 and 6 that using independent occurrence of
coverages increases Z. This is expected, as explained in Subsection 4.2, as independent
occurrence leads to a disproportionate percentage of claims with multiple coverages,
which in turn leads to potentially higher total loss. This highlights the importance of
respecting the dependence structure in coverage occurrence and not limiting ourselves to
dependence in loss distributions. So we can conclude that cross-coverage dependence,
both in terms of occurrence and loss amount, is an important element of modelling
unearned premium risk.
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Figure 7 – Reserve amounts for unearned premium risk for fitted data
using a homogeneous model (left) and heterogeneous model (right)

Figure 8 – Reserve amounts for unearned premium risk for predictive set
using a homogeneous model (left) and heterogeneous model (right)

In Figures 7 and 8, we compare the distribution of unearned premium risk with
and without dependence for both a homogeneous loss model and a heterogeneous one.
We only present the models using seasonal exposure instead of uniform exposure be-
cause both curves are nearly identical; this is due to weak seasonality in our data and
would likely create a larger difference with stronger seasonality. Our model implies
that seasonality is in fact one of the main drivers of unearned premium risk, and so
in a situation with strong seasonality, acknowledging seasonality in our exposure mea-
sure and premium acquisition would become important. The vertical full line is the
actual observed amount of future losses minus the actual unearned premium reserve
supposing a uniform acquisition pattern. The dotted vertical lines are the mean and
99.5% quantile for the independent case while the long dashes are the same measures
for the dependent case. Notice that the dependent model is lower than the independent
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model in both the fitted dataset and the predictive dataset, as explained earlier in this
subsection.

Relating this back to our supposition that loss distribution is one of the main drivers
of unearned premium risk, we can deduce from Figures 7 and 8 as well as Table 5 that
the homogeneous models vastly over-evaluate the necessary reserves while the hetero-
geneous models provide an accurate reserve, thus suggesting that using an individual
GLM approach is better than using a homogeneous model.

5 Conclusion
In this paper, we analysed the risk linked to unearned premium in Property & Casualty
insurance through a non-homogeneous Poisson process and an individual model includ-
ing between-coverage dependence. That is, we used piece-wise constant seasonality of
losses as an exposure base to build a generalised linear model for claim occurrence, and
modelled loss amounts through copulas.

Recalling the main questions at the start of Section 4, we can conclude that there are
four main drivers to unearned premium risk. Given that exposure to risk in our model
is driven by loss seasonality and the effective date of contracts, we see that the timing
of losses during the year and when contracts are written, or subscription patterns, are
two important drivers of risk.

Next, unearned premium risk being the risk that future losses exceed the unearned
premium reserve, loss distribution and premium acquisition are necessarily other main
drivers of risk. In terms of loss distribution, our data study clearly indicates that
recognising cross-coverage dependence has an impact on projecting losses and so for a
more accurate model, it is preferable to include dependence. In fact, we showed that
some coverages, such as Collision and DCPD, have strong dependence and should not be
considered independently. As such, current models for Claims Liability would also gain
in using between-coverage dependence, allowing for a more realistic claims projection.
Then, we suggested that the UPR can easily be established at the evaluation date. It
is easy to see how recognising seasonality in the acquisition of premium would lead to
a better cashflow matching between losses and premium, thus potentially decreasing
unearned premium risk.

There are therefore four main drivers to unearned premium risk: seasonality, loss
distributions, the acquisition pattern of premium, and the subscription pattern of in-
sureds. Our two other questions are addressed within these four drivers of risk. All
things considered, we can conclude that given the advances in computational power,
it would be encouraged to stop working with loss development triangles and to use
stronger statistical tools to evaluate reserves while including dependence.

Given the high variability of losses in P&C insurance, it would be interesting to have
more accident years to work with, as we only had data to work with for two accident
years. Having multiple years of data would also enable us to observe the impact of trends
on unearned premium risk. Our database unfortunately had fairly weak seasonality
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and so we could not fully observe its impact on unearned premium risk. It would be
interesting to see how risk shifts with stronger presence of seasonality, for example in a
heavily snow-prone region where winter generally implies more accidents. Moreover, in
the presence of strong seasonality one may suppose that a particular type of accident
would be more prevalent (e.g. sliding on ice, storm surges, hail storms), leading to a
relation between time of loss and type/amount of loss. It would thus also be interesting
to relax the hypothesis of independence between time of loss and loss amount. We may
also want to generalise our model to more than one claim, where we use Nk instead of
transforming it into a binary variable.
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Appendix A - Proof of Proposition 3.1
We seek to evaluate the sum of losses linked to unearned premium. For a loss to fall
into this category, it must arrive after the evaluation date but before the end of the
contract. Recall that Nk is a discrete random variable for the number of future losses
for the kth contract, k = 1, . . . , n. Then Sk the future loss across C coverages is

Sk =
{ ∑C

c=1 I(c)
k Y

(c)
k if Nk > 0

0 if Nk = 0.
It then follows that

E
[
Sk|t(E)

k

]
= E

[
E
[
Sk|Nk, t

(E)
k

]
|t(E)
k

]
= Pr(Nk > 0)

C∑
c=1

Pr(I(c)
k = 1)E

[
Y

(c)
k

]
,

which makes sense intuitively: the expected future loss is the sum of weighted expected
losses by coverage, weighted by the probability of a loss occurring. Now, recalling
Equations 4 and 5, we can rewrite the expected value as

E
[
Sk|t(E)

k

]
=
(

1− e−λk(t(E)
k
|Xk)

) C∑
c=1

Pr(I(c)
k = 1)E

[
Y

(c)
k

]
.

Straightforwardly, we obtain

E
[
Z|t(E)

k

]
=

n∑
k=1

(
1− e−λk(t(E)

k
|Xk)

) C∑
c=1

Pr(I(c)
k = 1)E

[
Y

(c)
k

]
−

n∑
k=1

P
(UE)
k .
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The proof for the variance is similar to the one for the expected value. Consider the
indicator function

Jk =
1 if Nk > 0

0 if Nk = 0,

defined in Subsection 3.1. We have

Var[Sk] =E [Var[Sk|Jk]] + Var[E [Sk|Jk]]

Var[Sk] = Pr(Nk > 0)Var
[
ITkYk

]
+ Pr(Nk > 0) Pr(Nk = 0)

[
E
[
ITkYk

]]2
= Pr(Nk > 0)

 C∑
c=1

Var
[
I

(c)
k Y

(c)
k

]
+ 2

C−1∑
i=1

C∑
j=i+1
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I

(i)
k Y

(i)
k , I

(j)
k Y

(j)
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]
+ Pr(Nk > 0) Pr(Nk = 0)

[
C∑
c=1

E
[
I

(c)
k

]
E
[
Y

(c)
k

]]2

= Pr(Nk > 0)
[
C∑
c=1

E
[
(I(c)
k )2

]
E
[
(Y (c)

k )2
]
− E

[
I

(c)
k

]2
E
[
Y

(c)
k

]2

+2
C−1∑
i=1

C∑
j=i+1

E
[
I

(i)
k Y

(i)
k I

(j)
k Y

(j)
k

]
− E

[
I

(i)
k Y

(i)
k

]
E
[
I

(j)
k Y

(j)
k

]
+ Pr(Nk > 0) Pr(Nk = 0)

[
C∑
c=1

E
[
I

(c)
k

]
E
[
Y

(c)
k

]]2

=
(

1− e−λk(t(E)
k
|Xk)

) [ C∑
c=1

E
[
(I(c)
k )2

]
E
[
(Y (c)

k )2
]
− E

[
I

(c)
k

]2
E
[
Y

(c)
k

]2
+2

C−1∑
i=1

C∑
j=i+1

(
E
[
Y

(i)
k Y

(j)
k

]
Pr(I(i)

k = 1,I(j)
k = 1)

−E
[
I

(i)
K

]
E
[
I

(j)
k

]
E
[
Y

(i)
k

]
E
[
Y

(j)
k

])]
+
(

1− e−λk(t(E)
k
|Xk)

)
e−λk(t(E)

k
|Xk)

[
C∑
c=1

E
[
I

(c)
k

]
E
[
Y

(c)
k

]]2

.

23



Appendix B

Table 7 – MLE parameters for all coverages for the Gamma distribution

AB Coll Comp DCPD Coll+DCPD TPL

Shape 0.50 1.40 0.47 1.41 1.41 0.34
(0.00) (0.07) (0.02) (0.04) (0.12) (0.04)

Scale 63 747.38 4 460.40 4 254.52 6 043.20 4 838.24 203 320
(7 838.25) (277.31) (319.18) (349.27) (492.46) (41 129.67)

Appendix C

Table 8 – GLM loss predictors obtained by MLE by coverage

AB Coll Comp DCPD TPL

Intercept 9.29 (0.59)∗∗∗ 8.35 (0.14)∗∗∗ 6.94 (0.28)∗∗∗ 8.38 (0.14)∗∗∗ 11.03 (1.29)∗∗∗
Var1 0.26 (0.26) 0.11 (0.07) 0.44 (0.15)∗∗ 0.18 (0.07)∗ NA NA
Var2 0.07 (0.34) 0.14 0.10 0.06 (0.24) -0.00 (0.09) NA NA
Var3 0.64 (0.27)∗ -0.03 (0.07) -0.05 (0.16) -0.10 (0.07) NA NA
Var4 -0.56 (0.41) -0.17 (0.11) -0.43 (0.21)∗ -0.31 (0.11)∗∗ -0.75 0.60
Var5 -0.98 (0.44)∗ -0.08 (0.12) 0.08 (0.28) -0.17 (0.11) -0.48 0.66
Var6 1.24 (0.85) 0.40 (0.17)∗ 0.32 (0.37) 0.35 (0.20)+ -0.66 (0.41)
Var7 0.44 (0.46) -0.04 (0.13) -0.20 (0.24) 0.08 (0.11) -0.62 (0.90)
Var8 0.74 (0.50) 0.19 (0.12) 0.56 (0.24)∗ 0.01 0.11 0.59 (0.71)
Var9 0.13 (0.69) 0.34 (0.17)+ 0.58 (0.34)+ -0.03 (0.17) 0.69 (1.19)
Var10 -0.26 (0.27) 0.11 (0.08) -0.16 (0.16) 0.27 (0.07)∗∗∗ 1.03 (1.37)
Var11 1.44 (0.63)∗ -0.10 (0.34) 0.10 0.45 0.05 0.21 -1.07 (0.42)∗
Var12 -0.27 (0.43) 0.34 (0.13) 0.74 (0.31)∗ 0.05 (0.14) -0.39 (0.79)
Note: Variable names removed for confidentiality purposes. TPL variables limited due to lower data than
the other coverages. ∗∗∗: significant at 0.1%, ∗∗: significant at 1%, ∗: significant at 5%, +: signicant at 10%.
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