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RÉSUMÉ 

La théorie de la ruine est le cadre de la théorie de risque qui s'intéresse à l'analyse 
et la modélisation de la situation financière d'une compagnie d'assurance. Sous 
la théorie de la ruine classique, le processus de risque modélisant l'évolution de la 
richesse d'une compagnie d'assurance est observé d'une manière continue. La ruine 
est ainsi déclarée dès que le processus de surplus devient négatif. Récemment, 
une nouvelle définition de la ruine appelée ruine parisienne a été étudiée pour les 
processus de Lévy spectralement négatifs. Dans ce cas, la compagnie d'assurance 
n'est pas immédiatement liquidée lorsqu'elle est en défaut et la ruine survient 
lorsque le processus de risque reste dans la zone rouge (sous 0) pour une période 
de temps (consécutive) supérieure à un délai prédéterminé. 

Dans cette thèse, nous étudions les problèmes de ruine parisienne pour les pro-
cessus de risque de Lévy. Le Chapitre 1 est consacré à quelques rappels sur les 
processus de Lévy spectralement négatifs, les fonctions d'échelle ainsi qu'un aperçu 
de la littérature académique récente sur la théorie de la ruine classique et parisi-
enne. Motivé par l'article de Loeffen et al. (60], au Chapitre 2, nous généralisons 
les résultats de cet article en considérant un processus de Lévy réfracté, introduit 
par Kyprianou et Loeffen (43], comme processus sous-jacent. Des expressions ex-
plicites de la probabilité de ruine parisienne et des transformées de Laplace sont 
obtenues. Quelques exemples sont également présentés. A la fin de ce chapitre, 
la distribution de Gerber-Shiu à la ruine parisienne pour le processus de Lévy 
réfracté est obtenue comme une extension du résultat de Baurdoux et al. [8]. 

Au Chapitre 3, nous unifions les deux types de ruine parisienne en un seul type 
de ruine appelée ruine parisienne mixte. Dans ce cas, la ruine est déclarée la 
première fois qu'une excursion dans la zone rouge dure plus longtemps qu'un 
délai avec composantes déterministe et stochastique. Pour cette ruine parisienne, 
nous identifions la distribution conjointe du temps de ruine et du déficit à la ruine, 
généralisant ainsi de nombreux résultats précédemment obtenus. 

Au Chapitre 4, nous examinons une ruine parisienne sous un modèle avec un 
schéma d'observation hybride récemment introduit par Li et al. (49]. Dans ce 
modèle, le processus de surplus est observé d'une manière discrète en des temps 
d'arrivée d'un processus de Poisson jusqu'à ce que le surplus devienne négatif. À 
ce moment, le processus est observé d'une manière continue et un délai de recou-
vrement est accordé à la compagnie d'assurance. Nous améliorons les résultats 
obtenus et nous calculons d'autres identités. 



xiv 

Au Chapitre 5, nous proposons une mesure de risque de type VaR basée sur la 
probabilité de ruine parisienne cumulée, introduite par Guérin et Renaud [33). 
Nous dérivons quelques propriétés de cette mesure et nous la comparons aux 
mesures de risque de Trufin et al. [73] et de Loisel et Trufin [62). 

Dans le dernier chapitre, des pistes de recherches potentielles sont présentées. 

Mots clés : Ruine classique, Ruine parisienne, Processus de risque, Fonction 
d'échelle, Processus de Lévy réfracté. 



ABSTRACT 

Ruin theory, as a part of risk theory, is concerned with the analysis of risk pro cesses 
also known as insurance risk processes. Under the classical ruin theory, the risk 
process is monitored continuously and, as soon as the surplus enters the red zone 
(below 0), ruin is declared and the company ceases its operations. One of the 
most important risk measure that plays ari important role in quantifying risk is 
the probability of ruin. Recently, an exotic type of ruin, called Parisian ruin, was 
studied for Lévy insurance risk processes. In this case, the insurance company is 
not immediately liquidated when it defaults since ruin occurs when the surplus 
process stays below 0 for a consecutive period of time greater than a pre-speci:fied 
delay. 

In this thesis, we study Parisian ruin problems for Lévy insurance risk processes. 
The first chapter is dedicated to some background material on spectrally negative 
Lévy processes and scale functions and to an overview of recent literature on 
classical and Parisian ruins. Motivated by the paper of Loeffen et al. [58]; in 
Chapter 2, we generalize their results by considering a refracted Lévy process, 
introduced by Kyprianou and Loeffen [43), as the underlying process. Explicit 
expressions for the Parisian ruin probability and Laplace transforms are presented. 
A few examples are also considered. At the end of this chapter, the Gerber-
Shiu distribution at Parisian ruin for a refracted Lévy Process is obtained as an 
extension of the results of Baurdoux et al. [8]. 

In Chapter 3, we unify two types of Parisian ruin into one called mixed Parisian 
ruin. In this case, ruin is dedared the first time an excursion into the red zone 
lasts longer than an implementation delay with a deterministic and a stochastic 
component. For this Parisian ruin with mixed delays, we identify the joint distri-
bution of the time of ruin and the deficit at ruin, thus providing generalizations 
of many previously obtained results in the existing literature. 

In the subsequent chapter, we examine a Parisian ruin under a hybrid observation 
scheme model, as introduced by Li et al. [49). In that model, the surplus process is 
monitored discretely at Poisson arrival times until a negative surplus is observed. 
Then; a fixed grace period is granted to the insurance company and the surplus 
process is monitored continuously during this grace period. We improve the result 
originally obtained and we compute other fluctuation identities using a different 
approach. 
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Iri Chapter 5, we propose a VaR-type risk measure, based on cumulative Parisian 
ruin, as introduced by Guérin and Renaud [33). We derive some properties of this 
risk measure and we compare it to the risk measures of Trufin et al. [73) and of 
Loisel and Trufin [62]. 

The final chapter discusses some potential directions that future research could 
take. 

Keywords : Classical Ruin, Parisian Ruin, Lévy Insurance Risk Processes, Scale 
Functions, Refracted Lévy Process. 



CHAPTER I 

INTRODUCTION 

1.1 A Literature review 

Ruin theory is concerned with the study of the behaviour of an insurance com-

pany's surplus process. The investigation of classical ruin quantities has a long his-

. tory that started with the well-known Cramér-Lundberg risk reserve process first 

proposed by Lundberg (63] and further developed by Cramér [15]. The Cramér-

Lundberg process is the basic process in risk theory and it refiects the behavior 

of the insurance business (e.g., number of claims, total claim payments, premium 

in corne). The first ruin-based risk measure of interest studied under this model 

was the probability of ruin which is the probability that the surplus process enters 

the red zone (drops below 0). For this model, an upper bound, called the Lund-

berg bound, was first derived for the infinite-time ruin probability (but not for all 

claim distributions) using either the martingale theory or an inductive approach 

(see Dickson [21]). Later, a solution to the integral differential equation satisfied 

by the survival probability of ruin leads to the well known Pollaczeck-Khinchinè 

formula which states that the probability of ruin is equal to the tail distribu-

tion fonction of a compound geometric random variable (see Beekman [9]). In 

most cases, it is not possible to exactly compute the probability of ruin. Hence, 

numerical methods, such as the Panjer algorithm [65), De Vylder approximation 
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(74] and the Beekman-Bowers approximation in (10] have been used to obtain 

approximations of ruin probabilities. 

Contrary to the infinite time ruin probability, the derivation of explicit expressions 

for the finite-time ruin probability has been and remains a long-standing problem 

in classical risk theory. The latter can be obtained from the distribution of the 

time of ruin using either a probabilistic approach, as in Seal (69], based on the 

skip-free upward and strong Markov property, or an analytical approach using the 

Lagrange's implicit theorem to invert the Laplace transform of the time to ruin 

(see. Dickson and Willmot (22]). In the particular case of the Cramér-Lundberg 

model with exponential daims, an explicit expression for the distribution of the 

time of ruin was derived by Drekic (24]. However, in the literature of Brownian risk 

pro cesses, many results su ch as the distribution of the time of ruin, the distribution 

of the occupation time or the distribution of the area in the red are already known; 

see Akahori (1], Karatzas et al. (36], Perman and Wellener (67]. A more general 

quantity of interest in ruin theory is the Gerber-Shiu expected discounted penalty 

function introduced by Gerber and Shiu (30] for the Cramér-Lundberg process, 

which connects the time of ruin, the surplus before ruin and the deficit at ruin. 

For example, in a particular case, Lin and Willmot (53], studied the joint and 

marginal moments of the time of ruin, the surplus before the time of ruin, and the 

deficit at the time of ruin by solving defective renewal equations. The solutions 

are expressed in terms of compound geometric tails. A more general treatment 

of Gerber-Shiu functionals for spectrally negative Lévy processes can be found in 

Doney and Kyprianou (23], Biffis and Kyprianou (12] and Biffis and Morales (13]. 

The extension to more general Lévy insurance risk process follows using almost 

identical arguments as in the case of a Cramér-Lundberg process and, for this class 

of processes, fluctuation identities involve scale functions (see, e.g., Emery (26], 

Bertoin (11], Kyprianou (40]). However, difficulties arise whenever the risk process 
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has paths of unbounded variation and, in this case, the passage from the bounded 

to unbounded variation case can be clone using approximation techniques. The 

first technique, known as E-approximation, consists of a spatial shift of the sample 

paths of the underlying process which leads to a bound that converges to the 

desired quantity as in ~n i  et al. [45], Dassios and Wu [20] and Loeffen et al. 

[58). The second approach consists of introducing a sequence of bounded variation 

processes, n n~  which converge to the unbounded variation process X as n 

goes to infinity. Hence, the scale function corresponding to Xn converges to the one 

of X, which is also true for the quantity of interest (see Bertoin (11 ], Loeffen et al. 

[60), Guérin and Renaud [32]). A technique based on excursion theory, away from 

zero, of strong Markov processes has also been used by Baurdoux et al. [8] and 

by Kyprianou et al. [44] for refracted Lévy processes. Recently, a new technique 

based on discrete Poisson observations was proposed as a unified approach to the 

bounded or unbounded variation cases. This type of approximation is a bridge 

between periodic and continuous observations since it allows one to recover results 

in the continuous case; see for example, Albrecher et al. [5], Albrecher and Ivanovs 

[4] and Albrecher et al. (2]. 

In the last few years, Parisian ruin theory has attracted considerable attention. In 

Parisian-type ruin models, the insurance company is not immediately liquidated 

when it defaults: a grace period is granted before liquidation. More precisely, 

Parisian ruin occurs if the time spent below a pre-determined critical level is 

longer than the implementation delay, also called the clock (the Parisian ruin time 

is compared to the classical ruin time in Figure 1.1). The idea of Parisian ruin is 

inspired from Parisian options which are barrier options for which the knock-in or 

knock-out is activated when price of the underlying asset price process has spent 

a given period of time beyond a fixed barrier. The concept of Parisian ruin is 

of practical importance sin ce, un der the U .S. bankruptcy code, a reorganization 
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is proposed to the firm when it defaults instead of immediate liquidation (see 

François and Morellec [28], Galai et al. [29] and Li et al. [48]). 

Xt 

t 

Figure 1.1 A sample path of a Cramér-Lundberg process. The time of classical 

min is shown in dashed red and the Parisian min time is shown in blue and r is 

the delay. 

Two types of Parisian min have been considered: with deterministic delays or with 

stochastic delays. In the first case, the Parisian min probability was first computed 

by Dassios and Wu [19] but only for the Brownian motion risk process. The same 

authors studied in [20] the Laplace transform of the Parisian min time and the 

Parisian min probability for the special case of the Cramér-Lundberg process 

with exponential daims. In a more general setup, Czarna and Palmowski [17] 

generalized these results for spectrally negative Lévy processes. Their analysis is 

split into two cases, depending on whether the process is of bounded or unbounded 

variation. The same problem was studied in Loeffen et al. [58], but the clever 

use of some identities, especially Kendall's identity that provides the distribution 

of the first upward crossing of a specific level (see Kendall [37] or Borovkov and 
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Burq [14]), helps to greatly simplify the expression and unifies the bounded and 

unbounded variation cases. 

When each implementation delay is modelled by an exponentially distributed 

random variable eq, as considered in Landriault et al. (46], a copy of eq is assigned 

to each excursion below 0 of the risk process. They also considered Parisian ruin 

with Erlang-distributed implementation delays (see also Albrecher and Ivanovs 

[4]). Also, for this type of ruin, an expression for the probability of Parisian ruin 

for the refracted process was given by Renaud (68] using a relationship between 

occupation times and this type of Parisian ruin. As an extension of the results 

in (46], Baùrdoux et al. [8] derived the Gerber-Shiu distribution at Parisian ruin 

with exponential implementation delays. Recently, more definitions of Parisian 

ruin have been proposed. Cumulative Parisian min has been proposed in (32]; 

in that case, the race is between a single deterministic dock and the sum of 

the excursions below the critical level. Moreover, in (18], Parisian ruin with an 

ultimate bankruptcy level which is in the line with the principle of limited liability. 

This type of ruin occurs if either the process goes below a predetermined negative 

level or if Parisian ruin with deterministic delays occu:rs. 

Recently, Poisson observation problems have attracted considerable attention; see 

Albrecher et al. [5], Albrecher and Ivanovs [4], Li et al. (49], Li et al. (52], among 

others. In this case, the risk process is monitored discretely at arrival epochs of an 

independent Poisson process, which can be interpreted as the observation times 

of the· regulatory body (see Figure 4.1). The Poisson observation technique was 

first used to compute the joint Laplace transform of occupation times over dis-

joint intervals for spectrally negative Lévy processes (see e.g., Li and Palmowski 

(47] , Li et al. (52]). Additionally, by considering a risk process observed at dis-

crete Poisson arrival times, we get around the problem caused by the unbounded 

variation case and we recover classical results (in the continuous monitoring case) 
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when the Poisson observation rate goes to infinity. More interestingly, from the 

memoryless property of the exponential distribution, Parisian ruin with random 

delays corresponds to the first time the surplus process is observed below 0 at a 

Poisson arrivai time. In the same vein as that illustrated in Albrecher et al. (5), Li 

et al. (49) proposed a new approach to study Parisian ruin for spectrally negative 

Lévy process. They introduce the idea of Parisian ruin under a hybrid observa-

tion scheme. More specifically, when the risk process is positive, it is monitored 

discretely at Poisson arrivai times until a negative surplus is observed. Then, the 

process is observed continuously and a grace period is granted for the insurance 

company to recover to a solvable level. 

Another generalization of models with Parisian ruin with exponential delays is the 

omega risk model, which was introduced by Albrecher et al. (3). In this model, 

bankruptcy does not necessarily happen when the surplus is below O. Instead, it 

happens at a rate fonction w that is a decreasing function of the level of negative 

surplus. Gerber et al. (31] and Albrecher and Lautscham [6) studied this model 

when the risk process is a Brownian motion with drift or when it is a compound 

Poisson risk model with exponential claim sizes. Recently, Li and Palmowski [47) 

studied the Laplace transforms of occupation times weighted by w and expressions 

are given in terms of the w-scale fonctions. They recovered previous results on 

occupation times; see (45) and (60). These results were extended in Li and Zhou 

(50) for the refracted Lévy process. 

1.2 Lévy insurance risk models 

In this section, we give some background on spectrally negative Lévy processes. 

Let X= {Xt, t ~ O} be a Markov process defined on a filtered probability space 

(0, F, ~  JF). We will use the following standard notation: the law of X when 
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starting from X0 = x is denoted by lP x and the corresponding expectation by 1Ex. 

We write lP and 1E when x = O. 

We refer readers to Kyprianou [42] for further discussion and references related 

to the analysis of Lévy Insurance Risk Models. 

Definition 1. A stochastic process X is a Lévy process if it satisfies the following 

properties: 

• Xo = 0 a.s. 

• For 0 ~ s ~ t, the increment Xt -X8 is independent of the process 

{ Xu, u ~ s} and has the same distribution as Xt-s ; 

• The paths of X are right continuous with left limits. 

By the Lévy-Khintchine formula, the characteristic exponent is given as follows : 

for fJ ER, 

w(fJ) = i"yfJ + ~  + !. (1 -e-iOz + i8zl1z1<1) II(dz), (1.1) 
2 lR 

for 'Y ER and cr ~ 0, and where 11 is a cr-finite measure on 1R \ {O} such that 

1 (1 /\ z2)II(dz) < oo. 
The measure II is called the Lévy measure of X and the parameter cr the Gaussian 

coefficient. The triplet ("(,cr, 11) is called the Lévy triplet and it characterizes the 

process X. From the Lévy-Itô decomposition, there exists a probability space in 

which a Lévy process with characteristic exponent given in (1.1), can be expressed 

as follows 

X=x1+x2+x3, 

where 

• X1 is a Brownian motion with drift; 
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• X2 is a compound Poisson process with Poisson intensity rate ~  ( -1, 1)) 

and the jumps are independent and identically distributed with common 

distribution II( dz) ~  (-1, 1) ); 

• X3 is a square integrable martingale with an almost surely countable number 

of jumps over a finite time interval and jumps magnitude less than 1. 

We say that X is a spectrally negative Lévy process if it has no positive jumps, i.e. 

if II(O, oo) = 0 (we exclude the case that X has monotone paths). As the Lévy 

process X has no positive jumps, its Laplace transform exists: for all 8, t ;::: 0, 

JE [ eOXt] = et'l/J(O)' 

where 'l/J is the Laplace exponent. Then, by the Lévy-Khintchine formula, we have, 

for 8 E ~  

1 10 'l/J(8) = -w(-i8) = 18 + 2a
282 + _

00 

(e0z -1-8zl{z>-l}) II(dz). (1.2) 

The Laplace exponent 'l/J is infinitely differentiable, strictly convex and 

lim 'lf;( 8) = oo, 
0-+oo 

whilst 'l/J(O) = O. 

A spectrally negative Lévy process might have paths of bounded or unbounded 

variation. In the first case, that is when f0
1 
zII( dz) < oo and a = 0, we can write 

Xt =et-St, 

where c = { + f0
1 
zII(dz) > 0 is the drift of X and where S = {St, t ;::: O} is a 

driftless subordinator which is a Lévy process with non-decreasing paths ( e.g. a 

Gamma process or a compound Poisson process with positive jumps). 

The right-inverse of 'l/J is a fonction <P: [O, OO) --+ [O, OO) defined by <P(p) = sup{ e ;::: 
0: 'l/J(8) = p} such that 

'l/J (<P(p)) = p, p;::: o. 
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We will write q> = q>(p) when p = O. Note that we have q>(p) = 0 if and only if 

p = 0 and 7/1'(0+) ~ O. The last condition is known as the net profit condition 

and it ensures that X drifts to infinity (i.e. lim Xt = oo). Otherwise, ruin occurs 
t-too 

with probability one. 

In ruin theory, spectrally negative Lévy processes are also called Lévy insurance 

risk processes. 

1.3 Scale functions 

In the the study of spectrally negative Lévy processes, we often want to express 

ruin-related quantities in terms of scale functions. 

Definition 2. For q ~ 0, the q-scale function of X is defined as· the unique, 

continuous and increasing function on [O, oo) with Laplace transform 

where 

1 l'° e-OyW(q)(y)dy = 'l/;q(8), 

'l/Jq(e) = 7/1(e) - q, 

and such that W(q)(x) = 0 for x <O. 

for()> q>(q), (1.3) 

(1.4) 

We will write W = w<0) when q = O. Unfortunately, explicit expressions of scale 

function are not always known. However, the inversion of the Laplace transform 

(1.3) can be clone numerically as in [71]. 

Here are some examples for which the scale functions can be computed explicitly. 

Example 3. When X is a Cramér-Lundberg risk process with exponentially dis-

tributed claims, then 
Nt 

Xt - Xo = et - L ci 
i=l 

where N = {Nt, t ~ 0} is a Poisson process with intensity T/ > 0, and where 
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{ C1, C2, ... } are independent and exponentially distributed random variables with 

parameter a. The Poisson process and the random variables are mutually inde-

pendent. In this case, the Laplace exponent of X is given by 

,P((!) = c8+1J ((!:a -1) , for(! > -a. 
Th en, for x 2: 0, we have 

where 

e<I>(q)x e-(1x 

w(q)(x) = ~  \\ +--;-;;-;: \ l 

(1 = ;c ( J(7J+q-ac)
2
+4caq-(1}+q-ac)), 

<P ( q) = ;c ( J ( 1J + q -ac) 2 + 4caq + ( 1J + q -ac)) . 

Example 4. If X is a Brownian risk process, i.e. if 

Xt -.X0 = et+ a Bt, 

where B = { Bt, t ~ 0} is a standard Brownian motion; then the Laplace exponent 

of X is given by 
1 

1/J( 8) = ce+ 2a2e2. 

Then, for x 2: 0, we have 

W(q)(x) = 1 (eCJc2+2q0"2-c)x/0"2 -e-<.Jc2+2q0"2+c)x/0"2) 
V c2 + 2qa2 ' 

Example 5. When X is a jump diffusion process, then 

Nt 

Xt -Xo = et -L ci + (]' Bt, 
i=l 

where { C1, C2, ... } are independent of N and B, the Laplace exponent of X is 

given by 

a2 ( a ) 1/J( e) = 2e2 + ce + 'rJ e + a -1  ' fore> -a. 
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Then, for x ~ 0, we have 

e<I>(q)x e-(1x e-(2x 

w<q)(x) = 11/h../ \\ + Ill ,,_ \ + ~ \' 

where <I>(q), (1 and (2 are the solutions of the equation 'lj;(O) = q such that -(2 < 

-a< -(1 < 0 < <l>(q). 

Example 6. If X is a a-stable risk process with a E (1, 2), i.e. if 

Xt -Xo = et+ Zt, 

where Z = { Zt, t ~ O} is a spectrally negative a-stable process, then the Laplace 

exponent of X is given by 'lj;(O) = ea. Then, for ~ 0, we have 

W(q)(x) = axa-l ~  (qxa), 

where E" 1 (x) = L:n>o r(l xn ) is the i ~ e ie  function, E;, 1 its deriva-'  - +an ' 
tive and r is the Gamma function. 

The Laplace exponent of X under the change of measure 

~ =e ' dJP>C 1 c(Xt-X)-1/J(c)t 

d1fD X Ft 

for c such that 1Ex [ ëx1] < oo, is given by 

'lj;c(e) = 'lj;(e + c) -'lj;(c), e~ -c, (1.5) 

and the corresponding scale function wJq) is given by 

w<q)(x) = ecxwlq-'l/J(c))(x). (1.6) 

The q-scale fonction W(q) is differentiable except for at most countably many 

points. Moreover, W(q) is continuously differentiable if X has paths of unbounded 

variation or if the tail of the Lévy measure is continuous, and it is twice contin-

uously differentiable on (0, oo) if a > O. The initial values of W(q) and W(q)t are 
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given by 

W(q)(O+) = {1/c when Œ = 0 and foi zII(dz) < oo, 

0 otherwise, 

2/Œ2 when Œ > 0, 

w<q)'(O+) = < (II(O, oo) + q)/c2 when (J = 0 and II(O, oo) <OO 

OO otherwise. 

Using the notation introduced by Albrecher et al. [5], we define another scale 

fonction Zq(x, 8) by 

z. ( x, IJ) = e9x ( 1 -.P.( IJ) 1x e -0•w(q) (y )dy) , (1.7) 

for x 2::: 0, and by Zq(x, 8) = e0x, for x <O. We will write Z = Z0 when q =O. 

The scale fonction Zq(x, 8) was first defined by Avram et al. [7] as the Esscher 

transform of the following scale fonction z(q)-(x) given by 

z<•l(x) = 1 + q fo" w(ql(y)dy, x ER, (1.8) 

also known as a second scale fonction. Of course, for 8 = 0, Zq(x, 8) = z<q)(x) . 

We can also re-write the scale fonction Zq(x, 8) as follows : 

Zq(X, IJ) = 'l/Jq(IJ) [" e-OyWq(x + y)dy, X ;::: Ü, () ;::: iJ'>(q). (1.9) 

1.4 Delayed scale fonctions 

In the the study of Parisian ruin problems, identities can be expressed in terms 

of delayed scale fonctions. Inspired by [59], we define the (r, s)-delayed p-scale 

function of X by 

A(P) (x;r,s) = ~ s s  (x+z)-IP(Xr E dz), 1
00 z 

o r 
(1.10) 
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where the auxiliary function W (also known as the second-generation scale func-

tion) is given by 

W2"•l (x) = w(p+s) (x) -s [ w<v+•l (x -y) W(pl (y) dy, (1.11) 

for p, p + s ~ 0 and a, x E R As obtained in (60], we have 

(s -p) { w<vl(x -y)w<•l(y)dy = w<•l(x) -w(pl(x). (1.12) 

Thus, using (1.12), ~ s  can also be written as follows: 

Wi'"•l(x) = W(pl(x) + s [ w(p+sl(x -y)W(pl(y)dy, (1.13) 

and then we can rewrite A(P) (x; r, s) in the form 

A (p) (x; r, s) = ~ s  (x + z) -1? (Xr E dz). 1
00 z 

o r 
(1.14) 

When s = 0, we recover the function A (p) defined by Loeffen et al. (59]. To be 

more precise, when s = 0, we have A{P) (x; r, 0) = A(P) (x, r), where 

A(P) (x, r) = w<P) (x + z) -1? (Xr E dz). 1
00 z 

o r 

We write A = A (o). Here is another connection between these two functions. We 

can re-write A(P)(x; r, s) using (1.11) 

A(P) (x; r, s) =A (p+s) (x, r) -s lx A (p+s) (y, r) W(p) (x -y) dy. (1.15) 

ln Chapter 3, we will see that the delayed scale function in (1.10) plays a similar 

rôle, as the one played by the scale functions W(P) and Zp in the classical and 

Parisian fluctuation identities respectively, for the mixed-type Parisian ruin. 

1.5 Classical ruin exit problems 

In this section, we present some of the existing fluctuation identities for spectrally 

negative Lévy processes in terms of their scale functions. 
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First, recall the definitions of standard first-passage stopping times : for b E Iî, 

rb-= inf{t > 0: Xt < b} and r;; = inf{t > 0: Xt > b}, 

with the convention inf 0 = oo. If a ::; x ::; b and q, À ~ 0, we have 

[ 
-qr;;+>..x _ J W(q)(x -a) 

Ex e Ta l{r;;<rït} = Zq(X -a, À) -ur{n)/z. _\ Zq(b -a, À), 

and also 

[ 
+ J W(q)(x -a) 

Ex e-qTb l{rït<T;;} = W(q)(b -a). 

Letting a-+ -oo in (1.17) and using (1.6), we have 

lim W(q)(x -a) = e~  
a-+-oo W(q)(b -a) ' 

(1.16) 

(1.17) 

(1.18) 

we then obtain the well-known expression for the Laplace transform of the first 

passage time above b 

E [e-qT: 1{ + }] = e~  
X Tb <oo • (1.19) 

Moreover, the classical probability of ruin is given by 

Px (r0 < oo) = 1 -(E [Xi])+ W(x), (1.20) 

where (x)+ = max(x, 0). 

The next identities can be found in numerous references, but first proved in [43] 

and [60] (and also indirectly proved in (45]). For any p, q ~ 0 and a ::; x ::; b, we 

have 

E [e-qr;; W(P) (X -+ z) 1{ - +}] 
X Ta Ta <Tb 

(  ) w< q) (x -a) (  ) 
= W p,q-p (x +· z) - W p,q-p (b + z) (1 21) 

a+z W(q) (b _a) a+z ' · 

and when b-+ oo, we obtain 

, Ex [e-qr;;W(P) (XT;; +z) l{r;;<oo}] 

= ~~~  (x + z) -w<q) (x -a) Zp(z +a, <I>(q)). (1.22) 
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These identities (and also similar ones involving the scale function Zq) constitute 

a major turning point in terms of simplifying many results by getting rid of the 

Lévy measure in many expressions of quantities involving spectrally negative Lévy 

processes. Recently, a generalization of Equation (1.21) and (1.22) was derived 

by Kuang and Zhou [38] in order to compute n-dimensional Laplace transforms 

of occupation times over n-disjoint subintervals. Also, Renaud [68] derived its 

analogues for the refracted Lévy process. 

We also recall the following expression for the q-potential measure of X killed on 

exiting (-oo, a]: for a E JR and x, y :::; a, we have 

l"' e-qtJP>x (X, E dy,t < r:) dt= (é'<•)(x-a)W(q) (a -y) - w<•l (x -y)) dy. 

(1.23) 

Finally, here is Kendall's identity (see [11, Corollary VII.3]): on (0, oo) x (0, oo ), 

we have 

rlP'(r,: E dr)dz = zlP'(Xr E dz)dr. 

1.6 Parisian min exit problems 

In this section, we present some of the existing fluctuation identities with delays 

for a standard Lévy insurance risk process X. 

1.6.1 Parisian min with deterministic delays 

The time of Parisian min, with a fixed delay r > 0, has been studied in [58]: it is 

defined as 

ti;r = inf { t > 0 : t - gt > r} , (1.24) 

where gt = sup {O:::; s:::; t: X 8 ~ O} is the last time before t when the process was 

non-negative. 
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Dassios and Wu [20] obtained the probability of Parisian ruin for the special case 

of a Cramér-Lundberg process with exponential daims. Czarna and Palmowski 

[17] later generalized this result for spectrally negative Lévy processes but the 

final expression is very explicit and is given in the next theorem. 

Theorem 7 (Theorem 1 in [16]). Parisian ruin probability for a spectrally· negative 

Lévy risk process equals: for XE 1î and r, e > 0 

1Px (Kr< oo) = 1Px (T0 < oo) lP(Kr < oo) 

+ (1 -JP' (1>r < OO))["' lP', (rit > r) lP', ( r0-< oo, -XrO E dz) , (1.25) 

where 

f e-Br (f lP' (r; > r) lP'x (ro < oo,-Xro E dz)) dr 
1 -'l/J' (ü+) W (x) é(O)x (z(-()) (x) + B W(-e) (x)) . (1.26) 

= e --e-4>(e) <I> ( ~e  4>(e) 

In order to compute the probability of Parisian ruin starting at x = 0, Czarna 

and Palmowski [17] splitted the results into two cases, for processes of bounded 

and unbounded variation. 

Theorem 8 (Theorem 2 in [16]). If Xis a process of bounded variation, then 

.f0
00
1P (Ti"> r) lP (Tc) < oo, -X;0 E dz) 

JP(Kr < 00) = -- \  ( ) , ~  
lP (T0 = oo) + f0

00 
lP(Ti > r) lP Tc) < oo, -Xr0 E dz 

where 

f' e-Br (f' lP' (ri> r) lP' (ro < oo,-Xro E dz)) dr 
1  . 

= Be (1 -e-4>(e)z) Ilx-(z)dz, (1.28) 

and X is the dual process of X and II x its Lévy measure. 

If Xis a process of unbounded variation, then. 

• • Jp>€ (Ta< b) -p(b, r) 
lP (Kr < oo) = hm hm ( b \  , 

b-too €-tO 1 -p , r 
(1.29) 
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where 

p(b, r) = JP> (T: ~ r) 1P'e (To < b,Xr() = 0) 
+ l'° II' (r:i-, :S; r) II', (ro < b, -Xro E dz) . (1.30) 

Later, Loeffen et al. (58] derived a new expression for 1P' x (K,r < oo) and unified 

the bounded and unbounded variation cases using the E-approximation technique. 

More specifically, they derived the following new identities that lead to an explicit 

inverse Laplace transform of (1.28). The key ingredient of the proof is Kendall's 

identity. 

Lemma 9. For r, e > 0, ~e have 

A(O, r) = 1, (1.31) 

e-Or -JP> (Xr E dz) dr = --e-q_,(o)y, 1
00 1.00 z 1 
o y  r <P(O) 

~ 0, (1.32) 

1P'x (Td :Sr) = A(x, r) x:::; 0, (1.33) 

[ 
q_,(O)X - ] f} roo 

lEx e ro l{rü<oo} = <P(O) Jo e-q_,(o)YW'(x+y)dy. (1.34) 

Using those identities, the main result in (58) is a very nice and compact expression 

for the probability of Parisian ruin. 

Theorem 10 (Theorem 1 in [58]). For r > 0 and x E JR, we have 

Af?;,r) 
1P'x (K,r < oo) = 1 -(JE[X1]))+ ~  (Xr E dz). \L.Jù) 

Remark ll. Applying the Initial Value Theorem to Equation (1.35) (to the nu-

merator and the denominator separately), one can recover the expression of the 

classical min (5.2) as r -t O. 
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Remark 12. Instead of looking to invert the Laplace transform (1.28) using again 

the technique of taking Laplace transform with respect to the delay r, we can 

compute the right-hand sicle of Equation (1.25) using a probabilistic approach by 

combining (1.34) with (1.22) and Tonelli's Theorem to get 

E. [A(X,0, r}l{<O <oo}] = 100 (W(x + z) -W(x)) ~  E dz). (1.36} 

Recently, Loeffen et al. [59] proposed a new analytical approach for computing 

some Parisian min identities based on the work of Loeffen [57]. They derived the 

joint Laplace transform of the Parisian min time ""r and the level of the deficit 

x"'r' 

Theorem 13 (Theorem 3.1 in [59]). For p,).. ~ 0, b, r > 0 and x:::; b, we have 

[ ] 

A(P) (x r) 
1E e-P"'r+>.Xx;r 1{ +} = F(p,À) (x r) - ' F(p,>-.) (b r) 
x "'r<rb ' A(P)(b,r) '  ' 

where 

F(p,>-.) (x, r) e.p,(>.)r ( Zp( x, >.} -1/Jp ( >.} 1• e-.P(>.)u A (p) ( x; u) du) . 
The auxiliary function F(p,>-.)(x, r) was not defined in [59] but greatly helps to 

redu ce the final expression (it will also be generalized in Chapter 3). The Parisian 

two-sided exit problem is also given by 

[
-prit ]-A(P)(x,r) 

1Ex e 1{ rit <"'r} -A(P) (b, r )' (1.37) 

Remark 14. It is worthwhile to mention that the last result was first derived in 

[55] (see Theorem 21 for ô = 0 in Chapter 3). 

1.6.2 Parisian min with exponential delays 

The time of Parisian min with exponential delays is defined as 

""q = inf { t > 0 1 t -9t > e~  } , 
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where egt is exponentially distributed with rate q > O. More precisely, a copy of 

eq is assigned to each excursion below level O. The probability of Parisian ruin 

with exponential delays was first computed in [45] through the relation between 

the occupation times and this type of Parisian ruin (see Remark 18). 

Theorem 15. For q > 0 and x E IR, we have 

Ex [ e-• fo= ~  = 1 -(E[X1]))+ i ~  1l(q,-q)(x), (1.38) 

where the function 11,(p,q)(x) was defined by Loeffen et al. [60] and given by 

1l(p,q)(y) = e"'<•)Y ( 1+q1Y e-<J>(p)zw(p+ql(z)dz) , (1.39) 

where p 2:: 0 and q E IR such that p + q 2:: 0 and y E R 

There is a one-to-one correspondence between Zq(x, 8) and 1l given by 
/ 

11,(p,q)(x) = Zp+q(x, <I> (p)). (1.40) 

Thus, Equation (1.38) can be re-written in terms of the scale function Z and the 

probability of Parisian ruin is given by 

IP' x (K,q < oo) = 1 -(lE[X1]))+ <I>( q) Z (x, <I>( q)) . 
q 

(1.41) 

More general identities were later obtained. For example, for x ~ b and p, q 2:: 0, 

· we have 

] 
Zp (x, <I>(p + q)) 

Ex [e-pr,; ~  = z, (b, iP(p + q))' (l.42) 

and 

JE ~  ] = _q_ (z(p) (x) -Zp (x, <I>(p + q)) z(p) (b)) 
x {Kq<r:} p + q Zp (b, <I>(p + q)) ' 

(1.43) 

where the first one is taken from [5] but was first proved in [60] (see Remark 18). 

The secqnd identity is taken from [8] (where a slightly different notation is used). 
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Also, the Gerber-Shiu distribution at Parisian ruin was computed in [8]. Their 

expressions can be re-written in terms of the second generation scale fonction W 

as follows: fore, a, b 2:: 0, x E [-a, b) and y E [-a, 0), we have 

q 1", /\ T_a . 

JE, [e-6<', ~  E dy, I< < b ~  (a+ x) _ ~  (x -y) dy, +  - ] ] 

= q [ wt·•> (b-y) ~  (a+ b) 
and 

lEx [e-OKq, XKq E dy, K,q <Tt] 

_ [Zo (x, cI>(8 + q))W(O,q) (b-y)_ ~  (x _y)] dy, (1.44) 
-q Zo (b, cI>(e + q)) b 

where y :::; 0 and x :::; b. When b --+ oo, we obtain 

lEx [e-OKq, XKq E dy, K,q < OO] 

= ( (cI>(e + q) -cI>(8)) Zo (x, cI>(e + q)) Zo+q (-y, cI>(8)) - ~  (x -y)) dy. 

(1.45) 

Remark 16. The last Gerber-Shiu fonction agrees with the result in Equation 

(19) in Guérin and Renaud [32]. The connexion is made through the following 

potential measure discounted by the occupation time over the half line (-oo, 0) 

lEx [ e-OKq' XKq E dy, K,q < OO] = ~  [ e-q 1;e 1<-oo,o)(Xs)ds' Xee E dy] . 

This result was also obtained by Li et al. [52] using the Poisson observation 

technique and they also extended it to the joint Laplace transform of both semi-

intervals (0, oo) and (-oo, 0). 

Remark 17. At first sight, one might think that the last identities can be recovered 

from those in Subsection 1.6.1 only by taking Laplace transforms with respect to 

r. However, this is not the case. It is due to the fact that a copy of eq is assigned 

to each excursion below zero of the risk process X, not a single one for the whole 

trajectory. 
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Remark 18. By the memoryless property of the exponential distribution, Parisian 

ruin with exponential delays corresponds to the first time the process. X is observed 

to be negative at Poisson arrival times, that is 

r0- = min{7i > 0: Xri < 0, i EN}, (1.46) 

where 1i are the arrival times of an independent Poisson process of rate q > O. We 

recall that T0 = 0 and the inter-arrival times 1i - ]i_1, for i 2:: 1, are independent 

and exponentially distributed with parameter .À. 

Then, we have the following equalities : 

1Ex [ e-pr: 1{ r: <1tq}] 1Ex [ e-pr: 1{ r: <To-}] = 1Ex [ e-pr:, N ( B) = 0, T: < OO] 
JE [e-pr:-q Il l{xt<o}dtl{ + }] 

X Tb <oo ) 

where N is an independent Poisson random measure with intensity qdt and the 

set Bis given by 

B = { t E [0, T:) , Xt < 0} . 

See Albrecher el al. [5] and Loeffen et al. [60] for more details. 

1. 7 Organization of the thesis and contributions 

The rest of the thesis is organized as follows. In Chapter 2, we investigate Parisian 

ruin for a Lévy surplus process with an adaptive premium rate, namely a refracted 

Lévy process. The latter has been used to build models with a threshold strategy 

at a fixed level b which is the strategy where no dividends are paid out when the 

process is below band dividends are paid out, at rate o, when the process is above 

b. In Kyprianou and Loeffen [43), the refracted Lévy process was introduced and 

many fluctuation identities, including the probability of ruin, have been derived. 

Our main contribution is a generalization of Theorem (10) for the probability of 
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Parisian ruin of a standard Lévy insurance risk process. More general Parisian 

boundary-crossing problems with a deterministic implementation delay are also 

considered. Despite the more general setup considered here, our main result is as 

compact and has a similar structure. This Chapter constitutes a paper that has 

already appeared in Insurance : Mathematics and Economies and has been writ-

ten with Irmina Czarna and Jean-François Renaud. At the end of this Chapter, 

the Gerber-Shiu distribution at Parisian min with stochastic delays for a refracted 

Lévy Process is obtained as an extension of the results of Baurdoux et al. [8]. This 

section is nota part of the paper. 

Chapter 3 contains the paper A unified approach to ruin probabilities with delays 

for spectrally negative Lévy· processes, written with Jean-François Renaud, which 

is still under review. In this Chapter, we unify two approaches for the definition of 

Parisian min, defined in Subsections 1.6.1and1.6.2, by considering a Parisian min 

with mixed delays. For this type of Parisian min, we identify the joint distribution 

of the time of min and the deficit at min, therefore providing generalizations of 

many results previously obtained in the literature, such as in [8] and (59] for the 

case of exponential delays and that of deterministic delays, respectively. 

Chapter 4 contains the paper A note on Parisian ruin under a hybrid observation 

scheme that has already appeared in Statistics & Probability Letters and for which 

I am the sole author (see (54]). This paper is still under review. In this paper, 

we study the concept of Parisian min under a hybrid observation scheme, as 

introduced by Li et al. (49]. Under this model, the process is observed at Poisson 

arriva! times whenever the business is financially healthy and it is continuously 

observed when it enters a period of financial distress (below 0). The Parisian min 

is then declared when the duration of this period is greater than a fixed delay. We 

improve the result originally obtained in (49] and we compute other fluctuation 

identities. 
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In Chapter 5, we investigate a VaR-type risk measure introduced by Guérin and 

Renaud [33] and which is based on cumulative Parisian ruin. We derive some 

properties of this risk measure and we compare it to the risk measures of Trufin 

et al. [73] and Loisel and Trufin [62). This Chapter constitutes the manuscript A 

VaR-type risk measure derived from cumulative Parisian ruin that has appeared 

in the special issue "Risk, Ruin and Survival: Decision Making in Insurance and 

·Finance" of Risks journal written with Jean-François Renaud (see [56]). 

The final Chapter is the conclusion and it discusses some potential directions for 

future research. 





CHAPTER II 

PARISIAN RUIN FOR A REFRACTED LÉVY PROCESS 

2.1 Introduction 

In this Chapter, we study the Parisian ruin for a Lévy process with adaptive 

premium known as the refracted Lévy process. More precisely, when the company 

is in financial distress, that is when its surplus is below the critical level, the 

premium is increased; and when its surplus leaves that red zone then the premium 

is brought back toits regular level. Therefore, we will use a refracted Lévy process 

as our surplus process. Note that we could also interpret this change in the 

premium rate as a way to in e~  (for R&D, modernization, etc.): if the surplus of 

the company is in a good financial situation, i.e. above the critical level, then it 

invests at rate ô; otherwise it does not. However, for the rest of this Chapter; we 

will use the previous interpretation. 

In general, fluctuation identities for refracted Lévy processes can be tedious com-

pared to their classical counterparts because scale functions of two different Lévy 

risk processes are involved (see [43]). Therefore, our main contribution is a surpris-

ingly compact expression for the probability of Parisian ruin for a refracted Lévy 

risk process (see Equation (2.13) below), in the spirit of the one in Equation (1.35) 

for a standard Lévy risk process. Our formula also provides information on how 

the refraction parameter affects this probability while displaying the impact of the 
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delay parameter. Moreover, we analyze more general Parisian boundary-crossing 

problems for the refracted Lévy process which have not been studied previously, 

even for a standard Lévy risk process. As a consequence, when the refraction 

parameter it set to zero, new identities for the classical Lévy setup are obtained. 

The rest of the Chapter is organized as follows. In Section 2.2, we present our 

model in more details. The main results are presented in Section 2.3, while Section 

2.4 presents a few examples. Section 2.5 is devoted to the proofs of the main results 

as well as (new) technical lemmas. 

2.2 The model and background material 

As mentioned in the introduction, we are interested in a surplus process U whose 

dynamics change by adding a fixed linear drift (premium) whenever it is below 

the critical level b, a region also called the red zone (see Figure 2.1). Without loss 

of generality, we will choose b to be O. 

In our model, Y is the surplus process during regular business periods (above 

zero), while X is the surplus process, with an additional rate of premium 8, for 

critical business periods (below zero). More precisely, let Y be a Lévy insurance 

risk process (see the definition in section 1.2) modelling the dynamic of the surplus 

U above O. Below 0, our surplus process U evolves as X= {Xt = Yt + ôt, t ~ O}. 

Clearly, X is also a Lévy insurance risk process; in fact, X and Y share many 

properties except for those affected by the value of the linear part of the Lévy 

process. 

In other words, our surplus process is given by the solution U = {Ut, t ~ O} to 

the following stochastic differential equation: for 8 ~ 0, 

dUt = dyt + ôl{Ut<o}dt, t ~ O. (2.1) 
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Ut 

~~~~~~~~~~~ ~~~ 

X 

t 

Figure 2.1 A sample path of the refracted process U when X is a Cramér-

Lundberg process. 

Above 0, our surplus process U evolves as Y= {yt = Xt -ôt, t ~ O} which is also 

a Lévy insurance risk process (if it doesn't have monotone paths): its linear part 

is given by "Y -ô but it has the same Gaussian coefficient a and Lévy measure II 

as X. In fact, X and Y share many properties. Note that we could have specified 

Y first and then define X = {Xt = yt + ôt, t ~ 0}. The two approaches are 

equivalent. The Laplace exponent of Y is given by 

À i--+ ?/J(.X) -ÔÀ, 

where ?fJ(.X) is defined in (1.2), with right-inverse cp(q) = sup{À ~ 0 1 ?fJ(.X) -ÔÀ = 

q}. Then, for each q ~ 0, we define its scale functions W(q) and z<q) as in 

Equations (1.3) and (1.8): 

e->.yw(q)(y)dy = , for À> cp(q) 1
00 1 

0 ?fJ(.X) -ÔÀ -q 

and 

Z(q)(x) = 1 + q lx W(ql(y)dy, x ER 
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2.2.1 Refracted Lévy processes 

Recall from Equation (2.1), that our surplus process U = {Ut, t ~ O} is equiva-

lently the solution to 

dUt = dYt + Ôl{Ut<O}dt, t ~ 0, 

or 

dUt = dXt - 8l{Ut>O}dt, t ~ 0, 

where 8 ~ 0 is the refraction parameter. The second stochastic differential equa-

tion is the one used in [43]. It was proved in that article that such a process exists 

and that it is a skip-free upward strong Markov process. 

For technical reasons, we need to assume that if X (and also Y) has paths of 

bounded variation then 

0 ::; 8 < c = 1' + { zII( dz). 
l(o,1) 

(2.2) 

Since in this case, X may be written as Xt = et-St, the condition in Equation (2.2) 

amounts to making sure Y has a strictly positive linear drift. 

In [43], many fluctuation identities, including the probability of ruin for U, have 

been derived using scale junctions for U: for q ~ 0 and for x E JR, set 

w(q)(x; z) = w(ql(x - z) + ôl{•2'.0} 1· w(ql(x - y)w<•l'(y - z)dy. {2.3) 

Note that when x < 0, we have 

w(q)(x; z) = w(q)(x - z). 

For q = 0, we will write w(O)(x; z) = w(x; z). See [42] for more details. 

/ 
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2.2.2 Classical ruin and exit problems for the refracted Lévy process 

Here is a collection of known fluctuation identities for the spectrally negative 

Lévy processes X and Y, as well as for the refracted Lévy proces& U. See [42] for 

more details. First, for real numbers a and b, we define the following first-passage 

stopping times: 

T-;; = inf{t > 0: Xt <a} and T: = inf{t > 0: Xt ~ b} 

v; = inf{t > Q: yt <a} and vt = inf{t > 0: yt ~ b} 

K,-;; = inf{t > 0: Ut< a} and K,t = inf{t > 0: ~ b}, 

with the convention inf 0 = oo. For a :::; 0 :::; b and q ~ 0, if a :::; x :::; b then we 

have 

-qi-;,b - ' 
[ 

+ J w(q)(x· a) 
JEx e ~  -w(q)(b; a)' 

from which we can deduce that 

' + e<I>(q)x + ô<I>(q)l{x>O} fox e<I>(q)yW(q)(x -y)dy 
Ex [e-q•q{•i<oo}] = eil>(q)b + ô<I>(q)f: eil>(q)yW(q)(b-y)dy . 

See Theorem 5 in [43]. For x:::; b, we also have 

and 

W(q)(x) 
JEx [e-qv:l{vt<vü}] = W(q)(b)' 

JE [
-qvü1 ]-'7l(q)( )-W(q)(x)'7l(q)(b) 

X e {vü <vt} ...,... /LJ X W(q) (b) /LJ • 

(2.4) 

(2.5) 

(2.6) 

Moreover, the classical probability of ruin, associated with the processes Y and 

U, is given by 

1P'x (v0 <OO) = 1 -(JE [Xi] -8)+ W(x) (2.7) 

and 
_ (JE [X1] -8)+ 

1P' x (K,0 < oo) = 1 - 1 ~~  w(x; 0). (2.8) 
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Of course, the expressions in Equations (2. 7) and (2.8) should be equal because 

{Yt, t < v0} and {Ut, t < K,o} have the sarne distribution with respect to J.P> x when 

x > O. Using Equation (2.11), we can see that this is the case. 

Finally, since the Laplace exponent of Y is given by À r-+ 'l/J(.X) -ÔÀ, then for 

x,8 > 0 we have 

IEx [e0\ï l{vQ <oo}] = e8" - ( ,P(B) -OB) e8" 1" e-0•w(z)dz -,P(B) 
9
-OB W(x ). 

(2.9) 

We conclude this section with definitions of auxiliary fonctions. For the sake of 

compactness, we define for p, p + q 2:: 0 and a, x E IR 

W(p,q) (x) = W(P)(x) -8W(p+q)(O)W(P) (x) 
a,ô 

+ 1" ( qW(p+q) (x -y) -ow<v+•l' (x -y)) w(pl (y) dy 
= w<v+•l(x) -1" ( qw<v+.) (x -y) -ow(p+q)' (x -y)) W(p) (y) dy, 

(2.10) 

where the second expression for WipJq) in Equation (2.10) follows from iden-
' 

tity (2.11). 

The second identity follows from the following useful identity taken from [68): for 

p, q 2:: 0 and x E IR, 

(q -p) [ w<•l(x -y)w<•l(y)dy 

= W(ql(x) -W(pl(x) + 0 ( w<•l(o)W(pl(x) + [ W(pl(x -y)w<•l1(y)dy) . 

(2.11) 

Finally, we set 

1/f'"l(x) = ë<•l• ( 1 + (q -O<p (p)) 1" e-,,(p)yw(p+•l(y)dy) . (2.12) 

If no refraction is considered, Equations (2.11) and (2.12) are the analogues 

of (1.12) and (1.39) respectively, i.e., ~  = 1-l(p,q) and ~  = ~  
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2.3 Main results 

Following the definition for a standard Lévy insurance risk process, we define the 

time of Parisian ruin, with delay r > 0, for the refracted Lévy insurance risk 

process U by 

~ = inf { t > 0 : t -gf > r} , 

where gf = sup {O ~ s ~ t: Us ~ O}. Our main objective is to obtain an expres-

sion for the corresponding probability of Parisian ruin that has a similar structure 

as the one in Equation (1.35). 

Theorem 19. For x E lR and r > 0 

1P'x ~ < oo) = 1 -(1E[Xi] _ 8) fo
00 

w(x; -z)zJP>(Xr E dz) 
+ fo00 zJP>(Xr E dz) -8r · (2.13) 

For classical ruin and Parisian ruin for a standard SNLP, if the net profit condition 

is not verified then (Parisian) ruin occurs almost surely. In the last result, if 

1E[X1] ~ 8, then the probability of Parisian ruin for U is equal to 1. This is 

because asking for 1E[Yi] = 1E[X1]  - 8 > 0 is the same as the net profit condition 

in this model, namely for the surplus process U. Also, it should be clear that, if 

we set 8 = 0 in the above result, then we recover Equation (1.35). 

Remark 20. Using identities from Section 2.5, we can also re-write the result in 

Equation (2.13) as follows: 

J0
00 
w(x; -z)zJP>(Xr E dz) 

1P'x ~ < oo) = 1-(1E[X1] -8)+ J
0

00 (1 _ ôW (z)) zJP>(Xr E dz) · 

2.3.1 Other results 

Using some of the results/lemmas in Section 2.5, it is possible to obtain other 

fluctuation identities for U involving the time of Parisian ruin. For example, the 
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discounted probability of U reaching level a before being Parisian ruined and the 

Laplace transform of the time of Parisian ruin time can also be computed. 

Theorem 21. For any a;::: 0, x:::; a and q;::: 0, we have 

{i) 

JE [e-q(Kf-r) 1{ +}] = zCq) (x) X KV<Ka 

+ ['' ( wC•l (x; -z) JE [e-•"::\ •V<•t}] -~  (x + z)) ~  (X, E dz), 

where 

JE [ e-qKf 1{ Kv <Kt}] 

7/)q) (a)+ f0
00 

( w(q) (a; -z) - ~  (a+ z)) ~  (Xr E dz) 
=1- OO 

fo w(q) (a; -z) ~  (Xr E dz) 

f
0

00 
~  (a+ z) ~  (Xr E dz) zCq) (a) 

J
0

00 
w(q) (a; -z) ~  (Xr E dz) -f

0

00 
w(q) (a; -z) ~  (Xr E dz) 

{ii) 

JEx [e-q(Kf-r)lM'<oo}] = zCq).(x) 

+ [" ( w(q) (x; -z) JE [ e-•"V l{•V <oo}] - ~  (x + z)) ~  (X, E dz) ' 

where 

~  (Xr E dz) -~ -o 

] 
Jo ô r , 

JE [ e -q(•:' -r) 1 {•V <oo} = fooo ~ q,O) ( z); jp> (X, E dz) -Ôeqr 

{iii) 

JE -qKa 1 _ Jo ' r  r 
[ 

+ J roo w<q) (x· ~  (X E dz) 

x e  { Kd<KV} -f0
00 w(q)(a; ~  (Xr E dz)" 

(2.14) 

Remark 22. If we set o = 0, we obtain the same quantities by replacing <p, w(q), 
1l(q,-q) and w<q,-q) by <I> W(q) Jl(q,-q) and W(q,-q) respectively 
ô ô '  ' . 
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2.4 Examples 

We now present four models in which we can compute the probability of Parisian 

ruin given in Theorem 19. The task amounts to finding processes X and Y for 

which both the distribution and the scale fonction are known. First, we will look 

at the two classical models: the Cramér-Lundberg model with exponential claims 

and the Brownian risk model. Then, we will move toward more sophisticated 

surplus processes, namely a stable risk process and a jump-diffusion risk process 

with phase-type claims. 

2.4.1 Cramér-Lundberg processes with exponential claims 

When X and Y are a Cramér-Lundberg risk processes with exponentially dis-

tributed claims, then they are given by 

Nt Nt 

Xt -Xo = et -L ci and Yt -Yo = ( c -ô)t -L ci, 
i=l i=l 

where N = {Nt, t ~ O} is a Poisson process with intensity rJ > 0, and where 

{ C1, C2, ..• } are independent and exponentially distributed random variables with 

parameter a. · The Poisson process and the random variables are mutually inde-

pendent. In this case, the net profit condition is given by JE [Y1] = c -8 -rJ /a ~ O. 

Then, for x ~ 0, we have 

W(x) = l (1 _ e ~  
C-rJ/a ca ' 

W(x) = l (1 _ 'r/ e ~  
c -ô -rJ /a ( c -ô) a ' 

w (x; -z) = 1 (i -e ~  + K(x, ô, a, 'rj, c) e ~  
C-rJ/a ca (c-ô-rJ/a)c ' 

where 

K(x, ô, a, 1), c) := ÔI) ( 1) ~ 
00 

( e<%-a)x -1) -~ ( 1 -e ~ s  e ~  . 
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As noted in [58], we have 

~ C; E dy) ~ ~ C1 E dy) Il'(Nr = k) 
( 

00 
(aryr)m+I ) 

= e-rJr ôo(dy) + e-ay L 
1 1

ymdy , 
m=O m.(m + 1). 

where ô0(dy) is a Dirac mass at 0, and consequently 

l"' zll'(Xr E dz) 
= ze-rJr ôo(cr -dz) + e-a(cr-z) ~ (cr -zrdz 1er ( 

00 

( ŒrJr)m+l ) 

o ~  

= e-"'r (cr+ f \T)m+l )I [crr(m + 1, cra) -..!.r(m + 2, cra)]) 
m. m+l. a 

m=O 

where r( a, X) = J; e-tta-Idt is the incomplete gamma function, and 

!}_ f
00 

e ~  E dz) = f
00 

zlP(Xr E dz) -(c -ry/a)r. 
ooh h 

Putting all the pieces together with the main result of Theorem 19, we obtain the 

following expression for the probability of Parisian ruin:. 

~  < oo) = 1 -(1 - ô ) (1 -e ~  
r C-TJ/Œ 

( 
ô ) or -e ~  (ôr -(c -ry/a)r) 

-
1 
-c -l]/a e ~  (cr+ ~  ~i ~  [crr(m + 1, cra) -~  + 2, cra)]) -Or 

Œ 
--K(x, ô, a, ry, c) 
T/ 

x (l+ . ôr-(c-ry/a)r )· 

e-rJr (cr+ L::=o ~i ~ ~  [crr(m + 1, cra) -±r(m + 2, cra)]) -ôr 

The following two tables provide a sensitivity analysis for the probability of 

Parisian ruin in a refracted Cramér-Lundberg model (with exponential daims) 

with respect to the refraction parameter o and the Parisian delay parameter r. 
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The value of the initial level U0 = x is also varying. Note that, in this example, 

we used the notation c for the linear part of X (below 0) and c - o for the linear 

part of Y (above 0). In other words, during regular business periods, the drift is 

given by c- o. Consequently, in Table 2.1, we have fixed the value of c- o (above 

0) and looked at the effect of a change in value of o, the refraction parameter, on 

the probability of Parisian ruin. Note that, when o increases, then the value of c 

(below 0) also increases to keep c - o constant. As expected, the larger the value 

of o, the smaller the probability of Parisian ruin. In Table 2.2, we have fixed all 

parameters except for the Parisian delay parameter r. As expected, the larger the 

value of the delay r, i.e. the larger the grace period, the smaller the probability of 

Parisian ruin. 

Table 2.1 Impact of the refraction parameter o on the probability of Parisian 

ruin in a refracted Cramér-Lundberg model 

lxl o=O 1 6=1 1 0=3 1 0=5 1 

1 2.87232 X 10-l 1.85087 X 10-l 5.57333 X 10-2 1.22663 X 10-2 

5 1.4747 X 10-l 9.50271 X 10-2 2.86144 X 10-2 6.29775 X 10-3 

10 6.409021 X 10-2 4.12986 X 10-2 1.24357 X 10-2 2.73699 X 10-3 

20 1.21050 X 10-2 7.80030 X 10-3 2.348 X 10-3 5.16951 X 10-4 

30 2.286353 X 10-3 1.4 7328 X 10-3 4.43634 X 10-4 9.76391 X 10-6 

Parameters: r = 2, c - o = 6 (drift above 0), T/ = 5, a= 1. 

2.4.2 Brownian risk processes 

Now, if X and Y are Brownian risk processes, i.e. if 

Xt - Xo = et + O" Bt and Yt - Yo = ( c - o)t + a Bt, 
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Table 2.2 Impact of the delay parameter r on the probability of Parisian ruin in 

a refracted Cramér-Lundberg model 

1 x 1 r = 0 1 r = 1 -T- r = 2 1 ---r = 3  -~ 

1 7.05401 X 10-l 1. 72754 X 10-l 5.57333 X 10-2 2.06455 X 10-2 

5 3.62165 X 10-l 8.86951 X 10-2 2.86144 X 10-2 1.05997 X 10-2 

10 1.57396 X 10-l 3.85467 X 10-2 1.24357 X 10-2 4.60664 X 10-3 

20 2.97283 X 10-2 7.28054 X 10-3 2.34881 X 10-3 8.70083 X 10-4 

30 5.61495 X 10-3 1.37511 X 10-3 4.43634 X 10-4 1.64337 X 10-4 

Parameters: ô = 3, c = 6 (drift below 0), c -ô = 3 (drift above 0), 

'TJ = 5, Œ = 1. 

where B =  { Bt, t;:::: O} is a standard Brownian motion. In this case, the net profit 

condition is given by JE [Yi] = c -ô ~ O. Then, for x ~ 0, we have 

~  = ~ (1-e ~  

1  ( 2c-ôx) W(x) = --1 -e--;;2 , 
c-ô 

w (x; -z) = ~ ( 1 - e ~  + M(x, ô, a, c)e-2;;:rz, 

where 

M(x, c5, a, c) := c ~ c5 G ( 1-e-2;.x) _ J( e ~  _ e-2;.x)) . 

Again, as noted in [58], we have 

100 e ~  E dz) = 100 zl?(Xr E dz) -cr 
and consequently 

1
00 

1 100 (z-cr)
2 

(]' Vr c2r ( cvr) 
zlP(Xr E dz) = ~ e ~  = e ~ + crN - . 

o 27ra2r o vf2ii a 
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Putting all the pieces together with the main result of Theorem 19, we obtain the 

following expression for the probability of Parisian ruin: 

]p> x ( ~ < 00) 

= 1 _  ( ~ ô) 
( ~e  ~  i e ~  

~e  + crN (!?:li_) -ôr 
v'2i a 

r ( e ~  -cM(x, ô, a, c)) 
+ ( C  - ô) c2r (  ) • 

~e  + crN !?:li_ -ôr 
v'2i a 

The following two tables provide a sensitivity analysis for the probability of 

Parisian ruin in a refracted Brownian risk model with respect to the refraction 

parameter ô and the Parisian delay parameter r. The value of the initial level 

U0 = x is also varying. Again in this example we used the notation c for the lin-

ear part of X (below 0) and c-8 for the linear part of Y (above 0). In Table 2.3, 

we have fixed the value of c -ô (above 0) and looked at the effect of a change 

in value of ô, the refraction parameter, on the probability of Parisian ruin. As 

expected, the larger the value of ô, the smaller the probability of Parisian ruin. In 

Table 2.4, we have fixed all parameters except for the Parisian delay parameter r. 

As expected, the larger the value of the delay r, i.e. the larger the grace period, 

the smaller the probability of Parisian ruin. 

2.4.3 Jump-diffusion risk processes with phase-type claims 

More generally, if we add a Brownian component and if we let the claim distri-

bution be more general, then we consider a Lévy jump-diffusion risk process with 

phase-type claims:. 

Nt Nt 

Xt -Xo = et+ (J Bt -L ci and Yt -Yo =  ( c -ô)t + (J Bt -L ci, 
i=l i=l 
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Table 2.3 Impact of the refraction parameter 8 on the probability of Parisian 

min in a refracted Brownian risk model 

lxl 8=0 1 8=1 1 8=3 1 8=4 -1 
1 1. 75631 X 10-2 4.05886 X 10-2 2.040134 X 10-2 1.39301 X 10-2 

5 4.62959 X 10-3 1.06991 X 10-3 5.37773 X 10-2 3.67195 X 10-3 

10 8.74418 X 10-4 2.02079 X 10-3 1.01572 X 10-3 6.93542 X 10-4 

20 3.11939 X 10-5 7.20924 X 10-5 3.62368 X 10-4 2.4 7 423 X 10-5 

30 1.11281 X 10-6 2.57457 X 10-6 1.29458 X 10-6 8.83585 X 10-7 

Parameters: r = 2, c - 8 = 6 (drift above 0), a= 6 

where Œ 2:: 0, B = {Bt, t 2:: O} is a standard Brown.ian motion, N = {Nt, t 2:: O} 

is a Poisson process with intensity fJ > 0, and where { 0 1 , 0 2 , ... } are indepen-

dent random variables with common phase-type distribution with the minimal 

representation (m, T, a), i.e. its cumulative distribution functio:q (cdf) is given by 

F(x) = 1 - aeTx1 and T, is called the Phase-type generator, which is an m x m 

matrix where 1 denotes a column vector of ones. The simplex a = [a1, ... ,am] is 

the initial distribution of a continuous-time Markov chain Y, i.e. ai = I?(Yo = i). 

AU of the aforementioned objects are mutually independent (for details we refer 

to [25]). The Laplace exponent of Xis then clearly given by 

(]"2).i.2 
1l/J(À) = cÀ + - 2- + rJ (a(ÀI -T)-1t - 1), (2.15) 

where t = -Tl. Let us denote by PJ and (i the roots with negative real parts of 

equations À r-+ 'l/;(>-i.) = 0 and À r-+ 'lj;(À) - 8>-i. = 0, respectively. Since we assume 

the net profit condition IE.[X1) > 8, from Proposition 5.4 in (39], we have that 

the p/s and the (ï's are distinct roots. Then, from Proposition 2.1 in [25] and 
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Table 2.4 Impact of the delay parameter r on the probability of Parisian ruin in 

a refracted Brownian risk model 

1 x 1 r = 0 1 r = il r = 2 1 r = 4 1 
1 

5 

10 

20 

30 

8.36506 X 10-l 8.89538 X 10-2 2.90834 X 10-2 5.06685 X 10-3 

3.65132 X 10-l 3.6570 X 10-2 1.19569 X 10-2 2.08304 X 10-3 

1.267 42 X 10-l 1.20385 X 10-2 3.93613 X 10-3 6.85723 X 10-4 

1.90869 X 10-2 1.30459 X 10-3 4.26551 X 10-4 7.431054 X 10-4 

3.41422 X 10-3 1.41376 X 10-4 4.62245 X 10-5 8.05289 X 10-6 

Parameters: 8 = 3, c = 6 (drift below 0), c -8 = 3 (drift above 0), 

a=6 

Proposition 5.4 in [39], we can obtain 

1 
W(x) = 'l/J'(O) + ~ AjePix, W'(x) = ~ pjAjePix, 

JEip JEip 

W( ) - 1 '"' B. (iX 
X - 'l/J' ( Q) _ Ô + ~ ie , 

iEit, 

1 
w (x; -z) = --+ '"'A·ePi(x+z) 

'l/J'(O) ~ J 
JEip 

1 '"' ·x . ePix _ e(ix 
+ 'l/J'(O) -8 L.J PiAi (ePi -1) ePiz + L L AjBiePiz, 

jEip jEip iEit, Pi -(i 

where Ai = 1/J'(pj) and Bi = ~  and where Ip and I( are the sets of indices 

corresponding to the p/s and the (i's, respectively. Moreover, one can observe 

that the Laplace exponent in (2.15) and 'l/J(À) -ÔÀ. are a ratio of two polynomials 

of degree m + 2 and m respectively. This is true of course if a > 0 and c > O. 

On the other hand if a = 0 and c > 0 we obtain ratio of two polynomials of 

degree m + 1 and m respectively. Thus if we take 'l/J(À) = 0 and 'l/J(À) -ÔÀ. = 0 

we will have m + 2 or m + 1 roots depending on whether a> 0 or a= O. From 

[39][Prop. 5.4 (ii)] we know that there are m + 1 (or m) roots with negative real 

part. Hence card (Id = card (Ip) = m + 1 (or card (Id = card (Ip) = m if 
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(j = 0). Moreover, 

IP(Xr E dz) = e ~  f (ri;t [" F*k(dy)N ((dz +y-cr)o-Vr), 
k=O O 

where N is the cdf of a standard normal random variable, F*k is the k-th convo-

lution of F and for k = 0 we understand F*0(dy) = ô0(dy) to be a Dirac mass at 

O. Putting all the pieces together, we obtain an expression for the probability of 

Parisian ruin. 

2.4.4 Stable risk processes 

Now, if X and Y are 3/2-stable risk processes, i.e. if 

Xt -Xo =et+ Zt and yt -Yo = (c-ô)t + Zt, 

where Z = {Zt, t :2:: O} is a spectrally negative a-stable process with a = 3/2. 

In this case, the Laplace exponent of X is given by 'ljJ(> .. ) = c.À + >..312• Then, for 

x :2:: 0, we have 

W(x) = 1 -E1;2(-cy'"X) 
c  ' 

W(x) = 1 -E1;2(-(c -ô)y'"X) 
(" ' 

. 1 
w (x; -z) = ~ [1 -E1;2 (-cv'x + z)] 

rx 1 
+ J 0 c -ô [ 1 -E1;2 ( -( c -ô) v' X -y)] 

x ~ -c· E112 (-cvfy+ z)) dy, 
where E1;2 is the Mittag-Leffier function of order 1/2. Again, as noted in [58], we 

have 

( 
{ 

/3r2/3 -1 -u/2W ( 
lP' Zr E dy) = JP(r213 z1 E dy) = V 7r Y e 1/2,1/6 u) dy 

__ l_r2/3 -1 u/2w . ( 2Y31r Y e -1/2,1/6 u) dy y < 0, 

y> 0, 
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where u = ~  and W11:,µ is Whittaker's W-function (not to be ~ se  with 

the 0-scale function of X). Putting all the pieces together with the main result of 

Theorem 19, we obtain the probability of Parisian ruin. 

2.5 Proofs and more 

The proofs of our main results are based on technical but important lemmas (pro-

vided in the next section), as well as more standard probabilistic decompositions. 

2.5.1 Intermediate results 

The next lemma is lifted from [58]: 

Lemma 23. For () > q > 0 and y 2:: 0, 

and 

f
00e-Or100 ~  E dz)dr = -1-e-<I>(O)y, 

Jo y  r <I>(O) 

-<I>(O)y e 1"" e-or A (q) (-:Y, r)dr = () _ q · 

From this first lemma, we can deduce the following two useful identities: 

A(q)(O,r) = eqr, 

and 

1"" e-Or A(-y, r)dr = ~e  y 2:: o. 

By (2.17) and Laplace inversion, we obtain, for all y :::; 0, 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Ey [e-qr61{4,;r}] = 1"" e-qrw(q) (y+z) ~  E dz) = e-qrA(•l(y,r) (2.20) 

This identity will be generalized in Equation (2.24). For the proof of our main 

lemma, which is Lemma 25 below, we will need the following result taken from 

[57]. 
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Lemma 24. For all p, q 2:: 0 and a :::; x :::; b, 

lEx [e-pv;W(q)(Yv; )l{v;<vt}] 

= W(q)(x) -1x-a ( (q-p)W(q)(x -z) -ôW(q)' (x -z)) w(p>(z)dz 
W(P)(x -a) (w(q)(b) - rb-a ((q -p)W(q)(b -z) -ôW(q)' (b -z)) W(P)(z)dz) . 
W(P)(b -a) Jo . 

(2.21) 

Note that another expression for (2.21) can be found in (68, Lemmal). The 

following three identities are new and crucial for the proofs of our main results. 

Lemma 25. For x E JR, q 2:: 0 and a 2:: 0, we have 

lEx [ e-qvü A (q) (Yv
0
, r) l{vü <vt} J 

(X) ( W(q) (x) ) z 
= Jo w(q) (x; -z) -W(q) (a) w(q) (a; -z) :;:-IP' (Xr E dz), (2.22) 

lEx [e-qvü A(Yv0,r)l{vü<vt}] 

= ('° (w(q,-q) (x + z) -W(q) (x) W(q,-q) (a+ z)) ~  (X E dz) (2.23) 
Jo x,8 W(q) (a) a,8 r r ' 

and 

IEx [A(Yv0,r)l{vQ«><>}] = ["' (w(x;-z) -W(x)) ;P(Xr E dz)+ôW(x). (2.24) 

Proof By Tonelli's theorem, we have 

e-qrlE [e-qvü A(q)(Y-r)l{ - +}] x v0 ' v0 <va 

=JE [e-qvü f°
0 

e-qrw(q) (Y -+ z) ~  E dz)l{ - +}] 
X J Ü VO T T VO <Va 

= 100 e-qrlE [e-qvüw(q) (Y -+ z) 1{ - +}] ~  E dz) 
X Vo VO <Va T T 

0 

= 100 e-qrlE + [e-qv;w(q) (Y-) 1{ - + }] ~  E dz) 
X z Vz Vz <va+z T T ' 

0 
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where the last line follows by spatial homogeneity of Y. Using identity (2.21) for 

p = q, we have 

JE [ 
-qv; W(q) (Y ) 1  ]  - (q) (  . - ) -W(q) (x) (q) (  . - ) 

x+z e v; {v;<vd+z} -W X, Z W(q) (a) W a, Z , 

which proves (2.22). Using again (2.21), Tonelli's theorem and spatial homogene-

ity of Y, we have 

1Ex [ e-qvü A(Yvo' r)l{vü <vt} J 

= E, [e-•vO f W (r;,0 + z) ;IP'(Xr E dz)l{vO<vt}] 
= f Ex [e-•vOw (Yv; +z) l{vo<vt}] ;!P'(Xr E dz) 
= f

00 

1Ex+z [e-qv;W (Yv-) l{v-<v+ }] .:_IP(Xr E dz) lo z  z a+z r 
= f

00 

(w(q,-q) (x + z) -W(q) (x)W(q,-q) (a+ z)) .:IP (Xr E dz). 
f o x,o W(q) (a) a,o r 

To prove the last identity, we need to compute the following limit 

1Ex [A(Y11-, r)l{v-<oo}] = lim  lim 1Ex [e-qvü]Ey _ [e-qrt l{r.+<r}] l{v-<v+}] . 
Ü 0 Q--+0 a--+00 VO 0 - 0 a 

Sin ce 

W(q) (z +a) = o and 
lim 
a--+oo 

w(q) (a -y) = e-<p(q)y. 
~~ W(q) (a) 

We obtain using Lebesgue's dominated convergence theorem 

lim w a, -z = ô e-v;(q)yW(q)i (y+ z) dy (q) (  .  ) 100 
a--+oo W(q) (a) o 

= -ôW(•) (z) + ôe'P(q)z G-cp (q) 1' e-<p(q)yw(•) (y) dy) , 
since 'ljJ (<p (q)) -q = 'ljJ (<p (q)) -Ô<p (q) + Ô<p (q) -q = Ô<p (q). Then 

.  . w(q)(a,-z) 
hm hm W() ( \ = -ôW(z) + 1 
q--+0 a--+oo q a 

and the result follows. • 
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2.5.2 Proof of Theorem 19 

For x < 0, using the strong Markov property of U and the fact that it is skip-free 

upward, we have 

lP' X ( ~ = OO) = 1Ex [ lP' X ( ~ = OO 1 ~  1 { ~  <oo}] = lP' X (Kt :::; r) lP' ( ~ = OO) . 

Since { Xt, t < Tt} and {Ut, t < Kt} have the same distribution with respect to 

lP' x when x < 0, we further have 

IP'x ~ = oo) = IP'x (Tt:::; ~ = oo). (2.25) 

For x ~ 0, using the strong Markov property of U again, the fact that {Yt, t < v0} 

and {Ut, t < Ko} have the same distribution with respect to lP' x and using (2.25), 

we get 

lP' X ( ~ = OO) = lP' X (Ko = OO) + 1Ex [ ]p X ( ~ = OO 1 ~  1 { ~ <oo}] 

= IP'x (Ko= oo) + 1Ex [1Pu/i:0 ~ = oo) 1{ ~  

= IP'x (v0 = oo) + lP' ~ = oo) 1Ex ~ (Tt:::; r) l{v()<oo}] · 

(2.26) 

Note that this last expression holds for all x E R We will first prove the result for 

x = O. We split this part of the proof into two cases: for processes with paths of 

bounded variation (BV), and then for processes with paths of unbounded variation 

(UBV). First, we assume X and Y have paths of BV. Setting x = 0 in (2.26) yields 

lP' ~ =OO) = lP' (vc; =OO) + ]p ~ =OO) JE [ A(Yllo' r)l{vo <oo}] . 

Solving for lP ~ = oo) and using both (2.7) and (2.24), we get 

(1E[X1]  -8)+ 
~ = oo) = r00 ~  E dz) -ô' 

. Jo r 

(2.27) 
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where we used the fact that W(O) > O. Now, if X has paths of UBV, we will use 

the same approximation procedure as in [58]. We denote by ~  the stopping time 

describing the first time an excursion, starting when U gets below 0 and ending 

when U gets backup to E, lasts longer than r. More precisely, for E > 0, define 

~  = inf { t > r : t -gf,€ > r, Ut-r < 0} , 

where 9tu€ = sup {O ~ s ~ t: Us ~ E }. Clearly, we have ~  < ~ a.s. which implies 
' ' 

that { ~  = oo} Ç { ~ = oo}. e~  it can be shown that limH0 P€ ( ~  = oo) = 

JP> ~ = oo). Using similar arguments as in the BV case, when x < 0, we have 

Px ~  =OO) = Px(Kt ~ ~  = oo), 

and then, when x ~ 0, we have 

Px ~  = oo) =Px (v0 = oo) + ~  = oo)JEx [IP>Y110 ~ r) l{vü<oo}] · 

Setting x = E and solving for P€ ~  = oo), we get with the help of (2.7) 

(JE [X1]  -8)+ W(E) . (2.28) 

IP, ~  = 00) = l-E, [Py ~ r) l{vü<oo}] 
"o 

Using (2.4) and then (2.9), we can write 

l'° e-0rE, [IPv.
0 
(x:: S r) l{vO <oo}] dr 

= E, [1{vQ<oo} 100 e-9rlP\
0
(x:: S r)dr] 

= ~  [ l{vQ<oo}Ev.0 [e-
9
41{.;'-<oo}]] 

[ 
~  -J 

- JE€ l{vü <oo} e "o 

-8 e~  + 84>(8) f
0
€ e~  - y)dy) 

_  1 -(8 -84>(8)) f
0
€ e ~  -~e ~  

- 8 (1+84>(8) J; e ~  
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Consequently, we have 

{oo -er ( 1 -JE€ [IP\0 ~  ::; r) l{vü <oo}] )  d 
lo e W(E) r 

1  1 -(0 -8<I>(O)) I; e-<r>(e)YW(y)dy --e-<I>(e)€W(E) 
OW(E) - OW(E) (1 + ô<I>(B) Io€ e-<I>(8)yW(8)(y)dy) 
1 

OW(E) 

x (8<I>(O) Io€ e-<r>(e)yW(8)(y)dy + (0 -8<I>(O)) I; e-<r>(e)YW(y)dy + -e-<I>(O)€W(E)) 
· 1 + 8<I>(O) Io€ e-<I>(8)yW(O)(y)dy 

1 8 
------+-- -
HO <I>(O) o' 

where we used the fact that, for all 0 ;:::: 0, we have 

. I; e-<r>(e)yW(e) (y )dy 
hm W() =O. 
~  € 

From (2.16), we have that 0 i--+ 1/<I>(O) -8/0 is the Laplace transform of 

1
00z 

r t--+ -JP> (Xr E dz) -8. 
o r 

By the Extended continuity theorem of Laplace transforms (see e.g. [27]), this 

éoncludes the proof for x = O. We now prove the result for x E 1R. Now, X and 

Y can be of BV or of UBV. We can now write (2.26) as follows: 

IP' ~~ = 00) 

· (1E[X1] -8)+ [ + ] 
(1E[X1]-8)+W(x)+ ~  IP'y"o(ro ::;r)l{vü<oo}. 

Using (2.24), we get finally 

( 
u ) (I000 w(x; -z)zIP'(Xr E dz)) 

IP'x ~  =OO = (JE(Xi] -8)+ _{
0

00 zlP(Xr E dz) -8r ' 

which holds for all x E 1R. 

• 
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2.5.3 Proof of Theorem 21 

For x < 0, using the strong Markov property of U and the fact that it is skip-free 

upward, we have 

Ex e ~  = e ~  > r) +Ex e i ~  JE e ~  

Sin ce { Xt, t < T ci} and {Ut, t < ~  have the same law un der JP> x when x < 0, 

we obtain 

Ex [ e ~ 1{ KV <Kt} J = e-qrp x( Td > r) +Ex [ e-qrt 1{ i~  J E [ e ~ 1{ KV <Kt} J . 

(2.29) 

For 0 ~ x ~ a, using the strong Markov property again, we get 

Ex e ~  =Ex [e-qKëJEui<:o e ~  l{KëJ<Kt}J. 

Using the .fact that {Yt, t < v0} and {Ut, t < ~  have the same law under IP>x 

when x 2: 0 and injecting (2.29) in the last expectation, we have, for all x E JR 

Ex [e-qKfl{KV<Kt}] =e-qrEx [e-qvQ"l{vQ"<vt}] -e-qrlEx [e-qvoJP>y
110
(Td ~  

+JE e ~  lEx [e-qvoJEy,,o e i i~  l{vQ"<vt}]. 

For x = 0 and using the last equation 

-qrlE [e-qv01{ _ +}] -e-qrlE [e-qvê) A(Yv0, r) l{vü <vt}] e v0 <va l 

E e ~  l{nf <nt}] = 1 _ e-qrE [e-•"o A(q)(Y"iï' r)l{viJ<vt}] 

where, from (2.22), 

e-qrlE [e-qvQ" A (q)(Y-r)l{ - +}] 
Vo ' vo <va 

{
00 

( w<q) (0) ) z 
= Jo e-qr W(q) (z) -W(q) (a) w(q) (a; -z) ~  (Xr E dz), 
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and, from (2.23), 

JE [e-qvü]p\) (Td:::; r)l{vü<vf}] 

- [
00 

( W(q) (0) {q,-q) ) z 
-Jo W (z) -W(q) (a) Wa,cî (a+ z) ;:-P (Xr E dz). 

With the help of (2.18), (2.6) and the fact that W(O) > 0, we obtain 

-e-qr ~  '!J)q) (a) + e-qr roo ~  W(q,-q) (a+ z) ~  (Xr E dz) 

JE [ 
-qtîP l  ]  _ W(q (a) Jo W q)(a) a,c5 r 
e r  { u +} - ~

/'i,r <K.a W(q)(O) f00 e-qrw(q) (a· -z) ~  (X E dz) 
w(q)(a) Jo ' r  r 

Z(q) (a)+ f0
00 

( w<q) (a; -z) - ~  (a+ z)) ~  (Xr E dz) 

= 1 - f
0

00 w(q) (a; -z) ~  (Xr E dz) . 

(2.30) 

Then 

érlE [e-qK.f 1{ +}] = z<q) (x) -z<q) (a) w<q) (x) 
x K.V<K.a W(q) (a) 

-f
00 

(w<q,-q) (x + z) -W(q) (x) W(q,-q) (a+ z)) ~  (Xr E dz) 
Jo x,c5 W(q) (a) a,c5 r 

[ 
u ] 100 ( W(q) (x) ) z +JE. e-qK.r 1{ u +} w(q) (x; -z) - w(q) (a; -z) -P (Xr E dz) 

/'i,r <fl,a 
0 

W(q) (a) r 

= 7J/•l (x) + l"' ( w<•l (x; -z) JE [e-••!'\ •V<•t}] - ~  (x + z)) ~  (Xr E dz). 

When X has paths of unbounded variation, we can use the same approximation 

procedure as in the proof of Theorem 19. The details are left to the reader. 

Identity (ii) follows from (i) by taking limit. Indeed, we have 

lim JEx [e-q(fl,f-r) 1{/'i,u < +}] = lim 1E [e-qK.f 1{/'i,u <K.+}] f
00 

w(q) (x; -z) ~  (Xr E dz) 
a-too r fl,a a-too r a lo r 

+ z<q) (x) - ~  (x + z)-P(Xr E dz), 1
00 z 

o  ' r 

and, from (2.30), 

lim 1E [e-q/'i,f 1(/'i,V <fl,t)] 
a-too 

-z(q) (a) + roo W(q,-q) (a+ z) ~  (X E dz) 
1
. Jo a,c5 r  r 

~  f
0

00 
w(q) (a; -z) ~  (Xr E dz) 



49 

As shown before, we have 

lim ' = -8W(q) (z) + e'P(q)z 1 -Ô<p (q) e-ip(q)yW(q) (y) dy , w(q)(a· -z) ( 1z ) 
a-+oo W(q) (a) o 

Then 

1
00 w(q)(a· -z) z 

lim W< )'( ) JP> (Xr E dz) 
a-+oo 0 q  a  r 

= 1''" ( 1 -Ô<p (q) 1z e-<p(q)vw(q) (v) dv) e"'(q)z ;JP> (Xr E dz) -/ieqr. 

Finally, from the definition of ~  using Lebesgue's dominated convergence 
' 

theorem and performing an integration by parts, 

_z(q) (a)+ fi00 W(q,-q) (a+ z) ~  (X E dz) 
lim o a,8 r  r 

a-+oo W(q)(a) 

q . 100 (W(q) (a+ z) -8W(z)W(q) (a)) z 
--(-) + hm W< )( ) -IP (Xr E dz) <p q a-+oo 0 q a r 

100 z 1z W(q) (a+ y) 
+ lim -IP(Xr E dz) (qW (z -y) -8W' (z -y)) W<) (  \ dy 
a-+oo 0 r 0 q a 

__ q_ -8 + f
00 

e'P(q)z (i + (q -8<p (q)) r e-ip(q)yW(y)dy) ~  E dz). 
<p(q) ~ ~ r 

To prove (iii), we use first the strong Markov property and the fact that U has 

only downward jumps to get, for x < 0 

JEx [ e -qn;t 1 {nt <nV}] = JEx [ e -qnci 1 { nci <r}] JE [ e -qn;t 1 {nt <nf!}] . 

Since { Xt, t < Td} and {Ut, t < ~  have the same law under JP> x when x < 0, 

we obtain 

JEx [e-qn;tl{nt<nV}] = JEx [e-qrcf1ht<r}] JE [e-qn;tl{nt<nV}]. (2.31) 

For 0:::; x:::; a, using again the strong Markov property, we get 

JE [ -qn;t 1  ] JE [ -qn;t 1  ] +JE [ -qn0 JE [ -qn;t 1  ]  1  ] 
X € {nt<nV} = X € {nt<no} X e U,,_0 e {nt<nV} {n"Q<nt} • 
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Using the fact that {Yt, t < v0} and {Ut, t < ~  have the same law under JP>x 

when x ~ 0 and inJecting (2.31) in the last expectation, we have 

1Ex [ e -qKd 1 { Kd <KV} J = 1Ex [ e-qvt 1 { vt <110} J +IEx [ e-qvü lEyvü [ e-qTd 1 { Td <KV} J 1 { vü <vt} J . 

Putting the pieces together we obtain, for x :::; a 

IE [ -pKdl ] IE [ -qvtl ] x e {Kt<KV} = x e {vt<v0} 

-qr [ ~  ]  [ -qvo (q)( )  ] . +e IE e l{Kd<KV} IEx e A Y110,r l{vü<vt} . 

If we assume that X is of BV, then, setting x = 0 in the last equation and 

combining (2.5) and (2.22), we get 

IE [ e-pi-.t 1{ Kt <Kf!} J = 
IE [ e-qvt l{vt <vü}] 

1 _ e-qrJE [ e-qvü A (q) (Y110, r) 1 { 110 <vt}] 

= 

W(q)(O) 

~ 

1 -f0
00 
e-qr ( w(q) (O; -z) -~~ ~~~~  (a; -z)) ~  (Xr E dz) 

1 

J
0

00 e-qrw(q) (a; -z) ~  (Xr E dz) · 

Th en, 

1Ex [ e-PKd 1{ Kt <KV} J 

.W(q) (x) f0
00 
e-qr ( w(q) (x; -z) -~  (a; -z)) ~  (Xr E dz) 

W(q) (a) + · f
0

00 e-qrw(q) (a; -z) ~  (Xr E dz) 

f
0

00 
w(q) (x; -z) ~  (Xr E dz) 

f
0

00 w(q) (a; -z) ~  (Xr E dz) · 

• 
2.6 The Gerber-Shiu distribution at Parisian ruin with exponential delays 

In this section, we are interested in computing the Gerber-Shiu distribution at 

Parisian ruin with exponential delays for the refracted Lévy process. We denote 
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the time of Parisian ruin with exponential delays for the refracted Lévy process 

U is defined as 

KÛ = inf { t > 0 1 t -gf > e~  , 
u 

where e~  is exponentially distributed with rate q > O. 

We obtain the following main  result. 

Theorem 26. For(), a, b 2:: 0, x E [-a, b) and y E [-a, 0), we have 

+  - ] ] 
q < Kb /\ K_a [ 

-O"''f; U q E dy, Ku W(O,q) (b -y) W(O,q) (x -y) dy. JEX e  ' "'u [ b,8 - x,8 

_ ~  (a+ x) W(O,q) (a+ b) -q x, b,8 

Letting a go to infinity, we obtain the following corollary. 

Corollary 27. For(), b 2:: 0, x:::; b and y E [-oo, 0), we have 

JE [ 
-BK'/, U • E dy, Ku b v(o+q,-q,ô) (x) W(O,q) (x -y) dy, 

q < K+] ] 
x e  , ~  n - xô 

_ [w(O,q) (b -y) '1J(()+q,-q,8) (b) ' -q b,8 n 

where 

1-l(p,q,ô) (x) = e<l>(p)x ( 1 + 1' (q -ôiI> (p)) e-<l>(p)zw(p+q) _(z) dz) , 
and 

JE [ 
-O"''f; q +] -_q_ ('71(0) (  )  - H(o+q,-q,8) (x) '71(0) (b)) ( 2) 

x e  , Ku < Kb - () + q /LJ x H(o+q,-q,o) (b) /LJ • 2.3 

To avoid repetition, we will omit the proof of the last theorem. However, the 

proof is based on the same techniques as in [8] and [44] combined with Equation 

(3.3) in Pérez and Yamazaki [66], that is : for x E Iî and p, q 2:: 0 

lx w(p) (x ~  [ôw(q) (y) -(q -p) f w<•) (z) dz] dy 
=lx w(p) (z) dz -lx w<•) (z) dz. 
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Letting () = 0 and b ~ oo respectively in (2.32), we recover the results in [68, 

Corollary 2], that is 
IPx (Kij < K+) = 1f_(q,-q,ô) (x) 

b -..... -,1---n _n .n 11 \' 

and 
<P (q) (JE [X1] - ô) 11,(q,-q,ô) (x). 

IPx (Kij < oo) = l - (q - ô<P (q)) 



CHAPTER III 

A UNIFIED APPROACH TO RUIN PROBABILITIES WITH DELAYS 

3.1 Introduction 

In this Chapter, we unify the definitions of Parisian ruin with deterministic de-

lays and Parisian ruin with exponentially distributed delays by considering mixed 

delays. Indeed, for this unified version of Parisian ruin, the race is between the 

duration of an excursion in the red zone, a deterministic implementation delay 

r > 0 and a random delay described by an exponential random variable with rate 

q > O. For our new definition of Parisian ruin, the time of ruin is defined as 

K,; = K,q /\ K,r = inf { t > 0 : t -gt > ( e~  /\ r) } . (3.1) 

More precisely, ruin occurs the first time an excursion below zero lasts longer 

than one of the two delays. Our main contributions are generalizations of several 

recent results obtained by Loeffen et al. [59] and Lkabous et al. [55]. The 

identities involve second-generation scale functions and also the distribution of 

the spectrally negative Lévy process at a fixed time. As they have a similar 

structure as the ones in [55], [58] and [59], we can then analyze limiting cases in 

order to recover previous results related to other definitions of Parisian ruin. The 

rest of the Chapter is organized as follows. The main results are presented in 

Section 3.2, followed by a discussion on those results. In Section 3.3, we provide 

explicit computations of the probability of Parisian ruin with mixed delays for 
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two specific Lévy risk processes. Finally, in Section 3.4, we derive new technical 

identities and then provide proofs for the main results. 

In the main results, we will use the following auxiliary function: for x E ~ and 

p,p + s, À 2:: 0, set 

F(p,>..)(x; r, s) = l  ( 7/Jp(.X)et/Jp+s(>..)r -s) Zp(x, .X) 

-e.PP+,(>.)r ,Pp (À) 1" e -.P(>.)u A (P) ( x; u, s) du, 
where 'l/Jp+s is defined in (1.4). For À= 0, we write F(p,o) = F(P), where 

(3.2) 

1 r F(P)(x;r,s)= 
1 
__ , _\ (s+pe-(p+s)r)zp(x,O)+pe-(p+s)r Jo A(P)(x;u,s)du, 

and for s = 0 we denote F(p,>..) (x· r 0) = F(p,>..) (x r) 
' ' '  '  . 

3. 2 Main resul ts 

We are now ready to state our main results. They are generalizations of those 

presented in the previous section in the sense that ""q or ""ris replaced by the more 

general time of ruin ~  First, here is the joint distribution of our new time of 

Parisian ruin and the corresponding deficit at ruin: 

Theorem 28. For p, À 2:: 0, b, q, r > 0 and x ~ b, we have 

JE [e-P"'h>..x,,,i1{ +}] = F(p,>..) (x·r q) -A(P) (x;r,q) F(p,>..) (b·r q) (3 3) 
x "'i<rb '  ' A(P) (b; r, q) '  ' · 

and 
A(P) (x; r, q) 

Ex [e-prt1{rt<"'i}] = A(P) (b;r,q)' (3.4) 

Setting À = 0 in the previous Theorem, we obtain the following Laplace transforms 

for the Parisian time of ruin: 

Corollary 29. Let p 2:: 0 and b, q, r > O. For x ~ b, we have 

JE [ 
-p"'il J -F(P) (  .  ) -A{P) (x; r, q)F(P) (b· ) 

x e {"'i<rt} - x, r, q A(P) (b; r, q) 'r, q . (3.5) 
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and, for x E IR, we have 

IEx [ e ~~  ~~  = ;:(p) (x; r, q) -n (p, r, q) X A (p) (x; r, q)' (3.6) 

where 

n (p, r, q) = ~ ( q + pe-(p+q)r) + pe-(p+q)r J; Uo00 Zp+q (z, <I>(p)) ;JP (Xs E dz)) ds 
f0
00 

Zp+q (z, <I>(p)) :JP (Xr E dz) 
r 

Setting p = 0 in (3.6), we obtain the following expression for the probability of 

Parisian ruin with mixed delays: 

Corollary 30. For x E IR and q, r > 0, we have 

A(x;r,q) . (3.7) 
ll"x (1>;! < oo) = 1 -(E [Xi])+ fo°" z.(u, ~  (Xr E du) 

3.2.1 Discussion on the results 

Our Parisian fluctuation identities are arguably compact and have a similar struc-

ture as classical :fluctuation identities (without delays) as well as previously-

obtained Parisian fluctuation identities (see e.g. [55, 58)). 

Indeed, in Equation (3.3), the (q, r)-delayed (p, À)-scale fonction J=(p,q,À) (·, r) plays 

a similar rôle as the one played by the scale fonction Zp(·, À) in the following 

classical fluctuation identity: for x ::;; b, we have 

[ 

-pT(J+.XX _ ] W(P){x) 
IEx e ro 1{ To <Tt} = Zp(x, À) -urrn' tz.. \ Zp(b, À). (3.8) 

See [41] for the solution to the two-sided exit problem and see e.g. [5] for the latter 

identity. 

For the rest of this section, we will demonstrate that our results are simultane-

ously generalizing known identities for Parisian ruin with exponential delays and 
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Parisian ruin with deterministic delays. As we have seen in the previous section, 

the results obtained so far in the literature, for either one definition of Parisian 

ruin or the other, did not seem to have strong connections allowing to recover the 

identity for one definition of ruin from the corresponding identity for the other 

definition of ruin. 

3.2.2 Parisian ruin with exponential delays 

First, we will show that the identity in (3.4) converges, as r -+ oo, to the solution 

of the delayed version of the two-sided exit problem when the implementation 

delay is exponentially distributed, namely the identity in (1.42). 

Using (1.37), Lebesgue's convergence theorem and (1.19), we have 

A(p+q) (x r) 
lim ' = lim lEx [e-(p+q)T: 1{ + }] 
r-+oo A(p+q) (b, r) r-700 Tb <y;,r 

Ex [e-(p+q)T:1{T:<oo}] = e<l>(p+q)(x'-b)_ 

Consequently, using Lebesgue's convergence theorem and (1.15), we have 

1
.  A (p) (x; r, q) 
Im----
r-700 A (p+q) (b, r) 

. A(p+q) (x, r) lx (p) (  . A(p+q) (u, r)) 
~~ A(p+q) (b, r) -q o W (x -u) ~~ A(p+q) (b, r) du 

= e"'(p+q)(•-b) -q 1· w(p) (x -u) e"'(p+q)(u-b)du 
e-<I>(p+q)b Zp (x, 4>(p + q)). 

Finally, taking the limit as r -+ oo of the identity in (3.4), we get 

1. E [ -pT: 1  ]  - r A{P) (x; r, q) 
~~ x e  { T: <y;,i} - ~~ A(P) (b; r, q) 

1
.  A (p) (x; r, q) /A (p+q) (b, r) 
i ~ ~~

r-+oo A(P) (b; r, q) / A(p+q) (b, r) 

e-<I>(p+q)b Zp (x, 4>(p + q)) 
e-<I>(p+q)b Zp (b, 4>(p + q)) 
Zp (x, 4>(p + q)) 
Zp (b, 4>(p + q))' 
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which is, as announced, the corresponding identity when there is no deterministic 

component in the delays; see (1.42). 

Second, we will show that the identity in (3.5) converges, as r --+ oo, to the solution 

of the delayed version of the two-sided exit . problem when the implementation 

delay is exponentially distributed, namely the identity in (1.43). 

But before, let us show that 

lim F(P)(x; r, q) = _q_z (x, 0). 
r-too p + q p (3.9) 

We want to compute the following limit: 

lim F(P) (x; r, q) = 
r-too 

1 
lim --(q + pe-(p+q)r) Z (x, 0) 
r-too p + q P 

+ lim pe-(p+q)r 1r A (p) (x; s, q) ds 
r-too 0 

_q_zp(x, 0) + lim pe-(p+q)r 1r A(P) (x; s, q) ds. 
p + q r-too 0 

Using Kendall's identity and Tonelli's theorem, we have 

[ A(pl (x; s, q) ds = {" wJ'+•.-•l (x + z) lP' (r; ::; r) dz. 

Taking Laplace transforms in r on both sides, together with (1.19) and the fact 

that 

yields 

Zp (a, B) lx' e-ozwJ>·•) (a+ z) dz = ,Pp+s(O) , e > ~  + s), (3.10) 

l"' e-or (1r A (p) ( x; s, q) ds) dr = ~ fo00 e ~  ( x + z) dz 

Zp+q (x, ~  

B (B -p) 

Then, using the Final value theorem, we obtain 

~~  A(P) (x; s, q) ds = lim Zp+q (x, ~  = -Zp+q (x, ~  
0 (;1--tQ 8-p p . 
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To prove that the identity in (3.5) converges, as r -t oo, to the identity in (1.43), 

it suffices to use the fact that 

lim A(P) (x; r, q) = Zp (x, <I?(p + q)) 
r-too A(P) (b; r, q) Zp (b, ~  + q))' 

as shown above, together with (3.9). 

3.2.3 Parisian ruin with deterministic delays 

It is straightforward to verify that our results are generalizing known identities 

for Parisian ruin with deterministic delays. 

Indeed, in identity (3.3) of Theorem 28, if we take the limit when q -t 0, then we 

get 

. A{P) (  ) 
lim 1Ex [e-P"'h>..x,,.i 1{ q +}] = F(p,>..) (x, r) - x, r F(p,>..) (b, r), 
q-tO "'r<Tb A(P) (b, r) 

as already obtained in [59], with a slightly different notation. 

Remark 31. Using the same techniques as in Subsection 3.2.2, we can also show 

that identities in Theorem 28 and Corollary 30 converge to the identities (1.17), 

(3.8) and (5.2) related to classical ruin. 

3.3 Examples 

We now present two classical models for which we can compute easily the prob-

ability of mixed Parisian ruin, as given in Corollary 30. Note that, to use the 

formula in (3. 7), one needs to have an expression for the 0-scale fonction W and 

the distribution of the underlying Lévy risk process X. 

We will also verify that we recover the known expressions for the probability of 

Parisian ruin with exponentially distributed delays, i.e. without the deterministic 

component. 
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3.3.1 Brownian risk process 

Let X be a Brownian risk process, i.e. 

. Xt -Xo = et+ Bt, 

where B =  { Bt, t 2:: O} is a standard Brownian motion. 

In this case, for x 2:: 0 and q > 0, the scale fonctions are given by 

1 
W(x) = ~ (1 -e-2cx), 

w(q) (x) =· 1  ( e<I>(q)x -e-x{<l>{q)+2c)) 
<I>(q) + c ' 

- q (é(q)x e-(<I>{q)+2c)x) 

Zq(x, 0) -;F..t _\ , - <I>( q) + <I>( q) + 2c ' 

where 

<I> ( q) =  ( J c2 + 2q -c) . 
Also, we have 

~  (x + z) = W(x + z) + q [ W (x + z -y) W(ql (y) dy 

<P(q)z ( q qe-2cx ) 
= e c<I>( q) ( <I>( q) + c) --c (-<!>-( q-) +-2c-) (-<!>-( q-) +-c) 

+e-(<I>{q)+2c)z ( q - qe-2cx ) 
c ( <I>( q) + c) ( <I>( q) + 2c) c<I>( q) ( <I>( q) + c) 

where 

Ai(x) 

A2(x) = 

= e<P(q)z Ai(x) + e-(<I>(q)+2c)z A2(x), 

q 

cJ c2 + 2q ( J c2 + 2q -c) 
q 

cJc2 + 2<.i( Jc2 + 2q + c) 

qe-2cx 

cJc2 +rn2q ( Jc2 + 2q + c)' 
qe-2cx 

cy'c2--f-2q ( Jc2 + 2q -c). 
First, we need to compute the following quantity 

E [X1] ~  (x + z) -JP> (Xr E dz). 1
00 z 

o r 
(3.11) 
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Making the change of variable y = ( z -rJ c2 + 2q) / ft, we have 

. ~ ez<I>(q).:e-(z-cr)2/(2r)d 1 100 
v 27rr o r z 

= ~e  + e•"(<I>(q) + c)N ( Jr (<I>(q) + c)) 

= '111 (c,r,q), (3.12) 

and, setting y = - ( z + r J c2 + 2q) / vfF, wè get 

. rn=. e-(<I>(q)+2cq)z .:.e-(z-cr)
2 
/(2r)d 1 100 

v 27rr o r z 
1 2; = --e-rc (2) rq (m.( )  )  ( ~ - e '*' q -c N -vr (<I>(q) -c)) 

= '1! 2  ( c, r, q) , (3.13) 

where N is the cumulative distribution of the standard normal distribution. 

JE [X1] wiq,-q) (x + z) -lP (Xr E dz) 1
00 z 

o r . 

= --wio,q) (x + z) ze-(z-cr) /(2r)dz 1 100 2 

V'Fii- 0 

= A1(x)'1!1 (c, r, q) + A2(x)'1!2 (c, r, q), (3.14) 

where N is the cumulative distribution of the standard normal distribution. Us-

ing (3.12) and (3.14) in (3.11), we obtain 

z(q)(z)-lP (Xr E dz) 1
00 z 

o r 

= 
q 100 ( ez( ~  e -z( ~  z 
-= + -lP(Xr E dz) 
V c2 + 2q o J c2 + 2q -c J c2 + 2q + c r 

q 

( y'c2 + 2q -c) y'c2 + 2q Wi(c, r, q) 
a 

-i-( '  ) '1! 2  ( c, r, q) . 
J c2 + 2q + c J c2 + 2q 
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Putting all the terms together, we get 

Tl'D ( q ) = 
1 
_ Ai(x)wi(c, r, q) + A2(x)w2 (c, r, q) . 

lL X K,r < 00 q \}f (  ) q \}! (  ) . 
~ ~ 1 c,r,q + ~ ~ 2 c,r,q 

Note that since 

w1 (c, r, q) = Jc2 + ~  
lim erq 
~  

and 

lim '1!2 (c, r, q) = 0 
~  erq ' 

we recover 

e -2xc ( J c2 + 2q -c) 
lim JP> x ( /'\,; < 00) = = JP> x ( K,q < 00) , 
~  J c? + 2q + C 

which is the probability of Parisian ruin with exponentially distributed delays, as 

given in (1.41), for the Brownian risk model. 

3.3.2 Cramér-Lundberg process with exponential claims 

Let X be a Cramér-Lundberg risk processes with exponentially distributed claims, 

i.e. 
Nt 

Xt -Xo = et -L ci, 
i=l 

where N = {Nt, t 2:: O} is a Poisson process with intensity rJ > 0, and where 

{Ci, C2, ••• } are independent and exponentially distributed random variables with 

parameter a. The Poisson process and the random variables are mutually inde-

pendent. 

In this case, for x 2:: 0 and q > 0, the scale fonctions are given by 

W(q) (X) = l  ( ( O:' + <J>( q) )e<I>(q)x -(a+ (1 )e()qx) 
c(<I>(q)-8q) q ' 

Z (x 0) = _q_. (a+ <I>(q) e<I>(q)x _ O:' + 8q eOqx) 
q ' A <I>(q) Bq ' 
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where 

<I>( q) = ~ ( q +À -ca + A) , 
Bq = ;c ( q + À -ca -A) , 
~  =  ( q + À -ca )2 + 4caq. 

Then, for x ~ z, we get 

Wip,q)(x) = q a+ <I>(p + q) eq,(p+q)(x-z) [ a+ <I>(p) eq,(p)z - a+ Bp eOpz] 
v ~ ~  <I>(p + q) -<I>(p) <I>(p + q) -Bp 

-q a+ Bp+q eOp+q(x-z) [ a+ <I>(p) eq,(p)z - a+ 8p eOpz] . 
V ~ ~  Bp+q -<I>(p) Bp+q -Bp 

and 

Wiq,-q)(x + z) _ a [ a q,(q)z a+ Bq 0 z] - q --e --.-e P V ~ ~  <I>( q) Bq 

+q a+ Bo eOox [a+ <I>( q) eq,(q)z -a+ Bq eOpz] 
~ Bo -<I>(q) Bo -Bq . 

As noted in [58], we have 

P œ C; E dy) = ~  (t C; E dy) P(Nr = k) 
( 

00 

(œryr)m+l ) 
= e-71r ôo(dy) + e-ay L 1 ,ymdy ' 

m=O m.(m + 1). 

where ô0(dy) is a Dirac mass at O. We also have 

1°" ef(q) zP ( Xr E dz) 
= f

00 

ef(q)zze-ryr (Ôo (cr -dz) + e-a(cr-z) ~ (aryrr+l. (cr -z)m dz) 
lo ~  

= e(f(q)c-ry)r cr+ L Œ'f/T e-(a+f(q))z (cr -zr dz 
( 

oo ( )m+l 

1
er ) 

m=O ml ( m + 1) ! 0 

= e(f(q)c-ry)r cr+ e(f(q)c-ry)r ~ (a11rr+l [ cr r (m + 1 cr (a+ f(q))) 
~  (m + 1)! (a+ f(q))m+l ' 

1 
m+2r (m + 2, cr (a+ f(q)))] , (a+ f(q)) 
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where r(a, x) = J; e-tta- 1dt is the incomplete gamma fonction and f(q) is equal 

to either <I>( q) or Oq. 

Putting all the pieces together, we obtain an expression for the probability of 

Parisian ruin with mixed delays. 

3.4 Intermediate results and proofs 

Before presenting the proofs of the main results, we need a few intermediate 

lemmas. Recall that, for fJ, r, q > 0 and y 2::, 0, we have 

A (q)(O, r) = ér, 

-<t>(O)y e 1"° e-Or A (q)(-y, r)dr = e - q . 

(3.15) 

(3.16) 

The next two lemmas are the reasons our main results can be expressed explicitly 

in terms of scale fonctions. To prove Lemma 33 below, we will need first to prove 

Lemma 32 which provides a solution to the race between the mixed clock and the 

underlying process trying to get back above zero. Despite the similarities with 

[59, Lemma 4.2 and Lemma 4.3], we will take another direct and simple approach. 

Lemma 32. For x :::::; 0, p, À ~ 0 and q, r > 0, we have 

1Ex [e-PTd 1{ + }] = e-(p+q)r A (p+q) (x r) r0 '5:_eq/\r , , (3.17) 

and 

1Ex [ e-p(eq/\r)+.>.XeqArl{ rit>eq/\r}] 
e>.x 
-- ( 'l/Jp (À) e1/Jp+q(>.)r - q) 
'l/Jp+q(À) 

-e.Pv+q(À)r ,Pp (À) for e -,P(À)s A (p+q) ( x, s) ds 

-e-(p+q)r A (p+q) (x, r) , (3.18) 
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where, in the case À = <I>(p + q), the ratio ~ ~  -q is understood in the 

limiting sense, i.e. 

lim 'l/Jp (À) e'l/Jp+q(>..)r _ q 

>..-+<I>(p+q) 'l/Jp+q(À) = 1 + qr. 

Proof The result in (3.17) follows from Equation (2.20). 

For 8 > 0, using the potential measure in (1.23), we have 

1
00 

e-OrIE [e-p(eqAr)+>..Xeq/\rl{ }] dr = ~  [e-p(eqAee)+>..XeqMe 1{ + }] 
X rit>eqt\T 8 X To >eqt\e9 

0 

= e<I>(p+q+o)x (q + 8) Jo e>..yw(p+q+O) (-y) dy -(q + 8) Jo e>..yw(p+q+o) (x -y) dy 
8 -oo 8 -oo 

=  ( 'l/Jp(À) -~  X  ( e<I>(O+p+q)x -e>..x) ' 
8 ( 'lfJ p+q+o ( .x)) 8 

where, in the last equality, we used (1.3) for À > <I>(p + q + 8). Then, for 8 > 

'l/Jp+q(.X), we have 

__ 1 __ = roo e-Or ( r e'l/Jp+q(À)sds) dr = roo e-Or (e'l/Jp+q(>..) -1) dr 
8'l/Jp+q+o(À) lo  lo lo 'l/Jp+q(À) ' 

and by (3.16) we also obtain 

e<I>(O+p+q)x = {oo e-or (lr e.P.+,(!l)(r-•)e-(p+q)s AP+•(x, s )ds) dr. 
8'l/Jp+q+o(À) lo o 

By Laplace inversion and with further simplifications, the result in (3.18) follows . 

• 
Lemma 33. For x E Iî, p, ~ 0 and b, q, r > 0, we have 

Ex [e-PTO IEx,O [ e-PTci l{ro1-$e,Ar}] 1{ rQ <rt}] -W(p) (x) A (p) (b; r, g)) (3.19) 
= e-(p+q)r ( A(P) (x;r,q) w(p) (b) 
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and 

E, [ e-vr•Ex,. [ e-p(e,Ar)+.IXo,Arlhi>e,Ar}] l{T,-<r,;}] 

= (F(p,,\) (x; r, q) -e-(p+q)r A (p) (x; r, q)) 

-W(P) (x) (F(p,>.) (b· r q) -e-(p+q)r A (p) (b; r, q)) . (3.20) 
W(P) (b) '  ' 

Proof The proof consists in using Lemma 32 to compute the inner expectations 

and then use the following relationship: 

JE [ -prëJA(p+q) (x · ) 1 J -A(P)( · )  - W(P)(x)A(P)(b· ) 
x e rëJ,r {rëJ<r,;} - x,r,q W(P)(b) ,r,q. 

This is proved with the result in Equation (1.21). 

Identity (1.16) is also needed to complete the proof of (3.20). The details are left 

to the reader. • 
3.4.1 Proof of Theorem 28 

The steps of the proof of Theorem 28 is based on the Lemma (33) together with 

standard probabilistic decompositions. For x < 0, using the strong Markov prop-

erty and the fact that Xis skip-free upward, we get 

JEx [ e ~ ~  ~i  J =JE [ e-p(eqAr)+>.Xeq/\rl{ + }] 
x r0 >eqAr 

[ 
+ J JE [ ~i  q 1 J +JEx e-PTo ~e  e ~  { ~i  • 

(3.21) 

N ow, for x 2:: 0, using again the strong Markov property, we get 

E, [ e -v•1+.1X •H { 4<T:}] = E, [ e -vro Ex rij [ e -v4+.1x.a { •1«,;}] 1 h-<Tt}] . 
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Injecting (3.21) in this last expectation, we obtain 

1E [e-PK-h>.XKi1{ q +}] = 1Ex [e-PToJEx [e-p(eqAr)+>.XeqArl{ + }] 1{ -+}] 
X K-r<Tb To 1"0 >eq/\T 1"0 <Tb 

+ 1E [ -pToJE [ -prd 1  ]  1 ] JE [ ~  1  ] 
X e XTo e {rt::;eq/\r} {rü<r:} e r ~  • 

(3.22) 

Note that this decomposition holds for all x ER 

We will first prove the result in (3.3) for x = O. We split this part of the proof 

in two steps: for processes with paths of n ~  variation (BV) and then for 

processes with paths of unbounded variation (UBV). 

First, we assume that X has paths of BV. Betting x = 0 in (3.22), yields 

1E [e-pr0JEx [e-p(eq/\r)+>.Xeq/\r 1{ + }] 1{ _ +}] 
[ 

q ] r- r0 >eq/\r r0 <rb 
JE e-PK-r+>.XKH{ q +} = ~  

•r<r, 1 - E  [ e-PTOEx,, [e-,,,-t1{r,i,SeqAr }] l{rQ<r:}] 

Using (3.15) and (3.20), the numerator can be written as 

JE [e-PToJEx -
TQ 
[e-p(eq/\r)+>.XeqArl{ + }] 1{ _ +}] . r0 >eq/\r r0 <rb 

W(P) (0) 
= (F(p,>.) (b· r q) -e-(p+q)r A (p) (b· r q)) 

W(P) (b) '  ' '  '  ' 
(3.23) 

while the denominator can be written as 

1 -JE [e-P70JEx [e-Prd 1{ + }] 1{ _ +}] 
r(J 1"0 ::;eq/\T To <Tb 

= 1 -e-(p+q)r A (p) (O· r q) - A (p) (b· r q) 
( 

W(P) (0) ) 
'  ' W(P) (b) '  ' 

W(P) (0) 
= e-(p+q)r A (p) (b· r q) (3 24) 
W(P) (b) '  '  '  . 

where in the last equality we used (3.15). Note that, since Xis assumed to be of 

BV, we have W(O) > O. Consequently, we have obtained 

F(p,>.) (b; r, q) 
1E [ e ~  11:i<rt} J = 1 -e-(p+q)r A(P) (b; r, q)" (3.25) 
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Now, we assume X has paths of UBV. Let us approximate the situation as follows 

(as in [58]). We denote by "{€ the first time an excursion, starting when X 

gets below zero and ending before X gets back up to E, is longer than eq /\ r. 

Mathematically, 

K,;.,"-= inf { t > 0 : t -g; > ( eq /\ r), Xt-(eq/\r) < 0}. 

where g: = sup {O::; s::; t: Xs 2:: E}. Using similar arguments as in the BV case, 
we can write 

JE€ [e-P7oJEx [e-p(eq/\r)+>.Xeql\rl{ + }] l{ _ +}] 
[ 

q 'X ] - re >eq/\r r0 <rb 
JE -pl'l:r,e+A içq 1 --=----___;ro;.._ ____________ ......,,....-=-
€ e r,e { q +} = [ l 

•r,.<r, 1 -JE, e-in-Q JE\;-[ e-in-t 1 { rt ,,;e.Ar}] 1 { rQ <r;;} 

FJp,>.) (t; r, q) -e-(p+q)r ~  (O; r, q) -~~ ~~~~ (F(p,>.) (b; r, q) -e-(p+q)r ~  (b -t; r, q)) 

1 -e-(p+q)r ( ~  (O; r, q) -~~ ~~~~ ~  (b -t; r, q)) 

where, from (1.10), we define temporarily 

~  (x, r, q) = ~~  (x + z) -IF (Xr E dz), 1
00 z 

€ r 

and 

FJp,>.) (x; r, s) 
1 

( 'l/Jp(À)e1/Jp+s(À)r -s) Zp(x, >..) 

-e.P.+<(1')r..pP (À) ei.' 1• e-.P(1')uAlP) (x; u, s) du. 
We will now compute the limit, as E --+ 0, of the denominator and the numerator 

with an appropriate scaling. We can write 

1 -e-(p+q)r (A (p) (t· r q) -W(P)(E) A (p) (b· r q)) 
f. '  ' W(P)(b) f. '  ' 

W(P) (t) 

1 -e-(p+q)r ~  ( t; r, q) e-(p+q)r ~  (b; r, q) 

= W(P)(t) + W(P)(b) ' 
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where, using (1.13), we have 

1 -e-(p+q)r ~  (O; r, q) _ 1 -e-<p+q)r f€00 ~  (Xr E dz) 

W(P) (E) - W(P)(E) 

J:00 [f_ w<P)(z -y)W<P+q)(y)dy] ~  (Xr E dz) 
-(p+q)r € z € r 

+ qe W(P)(E) · 

We will show that this last expression converges to zero. First, using (3.16) and 

then using the fact that w<p+q) is an increasing fonction, we can write 

1 -e-(p+q)r J:00 ~  (Xr E dz) -e-(p+q)r fo€ ~  (Xr E dz) 

W(P)(E) - W(P)(E) 

e-(p+q)r W(p+q) ( E) 

~ r W(P)(E)/E ---+Ho O, 

sin ce 

. W(P)(E) { ;2 if (J > o, 
hm = 
€-tO E • 

oo otherw1se. 

Similarly, using Lebesgue's convergence theorem, we can write 

f€00 [!:_€ W(P)(z -y)W(p+q)(y)dy] ~  (Xr E dz) 

W(P)(E) 

~ f
00 
[ r w<p+q)(y)dy] :.]p> (Xr E dz) ---+Ho o. 

Jo lz-€ r 
Therefore, we have obtained 

1 -e-(p+q)r (A (p) (O· r q) -w<P)(€) A (p) (b -E' r q)) 
• € '  ' W(P)(b) € '  ' 

hm--------------------
HO W(P) (E) 

U sing similar arguments, we can also show that 

e-(p+q)r A (p) (b; r, q) 

W(p)(b) 

F.{p,>..)(E· r q) -e-(p+q)r A (p)(O· r q) -W(P)(€) (F(p,>..) (b· r q) -e-(p+q)r A (p) (b -E' r q)) 
• € '  ' € '  ' W(P)(b) '  ' € '  ' 
hm--------------,.....,.-""---------------
€-+O W(P)(E) 

_ F(p,>..) (b; r, q) -e-(p+q)r A (p) (b; r, q) 

- W(P) (b) 
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This concludes the proof for x = O. 

Finally, no matter if Xis of BV or of UBV, using Equation (3.22), Equation (3.25) 

and identities in Lemma 33, we can finish the proof of Theorem 28 . 

To prove (3.4), we use again the strong Markov property and spectral negativity 

of X. Then, for x < 0 

JEx [e-pr:1b;<11:i}] =Ex [e-PTdl{rit<eqAr}] JE [e-PT:l{r:<11:i}]' 

and for 0 ::; x :::; b, we get 

JEx e ~  = JEx [e-pr:1{r:<rc)}]+JEx [e-PToJExrc) e ~  l{rc)<r:}]. 

Putting the pieces together we obtain 

JEx [ e-PT: 1{ T: <11:i}] = JEx [e-PT:l{r:<rü}] 

+JE [e-pr:1{r:<11:i}] JEx [e-PToJExrc) [e-PTdl{rti<eqAr}] l{ro-<r:}]. 

If we assume that X is of BV, then, setting x = 0 in the last equation and 

combining (3.8) and (3.19), we get 

JE e ~  = 
JE [ e-pr: 1{ r: <rc)}] 

1-lE [e-PTÜJExrc) [e-PTdl{rti<eqAr}] l{rc)<r:}] 

W(P)(O) 

~ 

= 1 -e-(p+q)r ( A(p,q) (x, r) - ~ ~~~~  (b, r)) 
1 

= e-(p+q)r A(p,q) (b, r) · 

Th en, 

JEx [ e-prt1{ r: <11:i}] 
W(P) (x) e-(p+q)r (A(p,q) (x,r) -~  (b,r)) 

W(P)(b) + e-(p+q)rA(p,q)(b,r) 

A(p,q) (x, r) 
= A(p,q) (b, r). 

If X is a general SNLP, we can use the same limiting argument as in the proof of 

identity (3.5). The details are left to the reader. 



70 

3.4.2 Proof of Corollary 29 

To deal with the limitas b -t oo, we use (1.18) and the fact that, for e > ~  

lim Zp(P, e) = 'l/Jp( e) 
b-too W(P)(b) e -~  

to obtain 

. wip+q,-q) (b + z) 
hm = 
b-+oo W(P) (b) 

e<P(p)z + q lim r W(P) (b + z--'-y) w<p+q) (y) dy 
b-+oo }0 W(P) (b) 

and 

= e<r>(p)z + q 1z e<r>(p)(z-y)w(p+q) (y) dy 

e<r>(p)z ( 1+q1z e-<r>(p)yw(p+q) (y) dy) 

= ~  

1
. F(P) (b; r, q) 

1
. F(P) (b; r, q) /W(P) (b) 

1m = 1m ------
b-too A(P) (b; r, q) b-too A(P) (b; r, q) /W(P) (b) 

(3.26) 

~ (q + pe-(p+q)r) + pe-(p+q)r J; (J
0

00 Zp+q (z, ~  ;Jp> (Xs E dz)) ds 

J0
00 
Zp+q (z, ~  ~  (Xr E dz) 



CHAPTERIV 

A NOTE ON PARISIAN RUIN UNDER A HYBRID OBSERVATION SCHEME 

4.1 Introduction 

In most Parisian ruin theory literature, the surplus process is monitored contin-

uously and the level of ticking and resetting the dock is the same. However, 

it is rather impractical to observe the business continuously on a ongoing ba-

sis. Following this idea, Li et al. (49] introduced the hybrid observation scheme. 

More specifically, the surplus process is observed at discrete time-points (Poisson 

observation) whenever the business is financially healthy (above a) and it is con-

tinuously observed during periods of financial distress (below a). In (49), Parisian 

ruin is also studied. Once the surplus is observed below 0 at Poisson arrival times, 

the process is monitored continuously and Parisian ruin is dedared if the duration 

of such period of distress is greater than a fixed delay r (see Figure 4.1 for a graph-

ical interpretation). If the process recovers to the positive level a before the grace 

period r, the dock is stopped and the continuous monitoring will be switched back 

to discrete monitoring. Even though the recovery barrier a has no mathematical 

role in this model, in a risk management point of view, it makes sense to impose a 

prudent capital requirement after a solvency issue has occurred. In this chapter, 

we improve the main result in (49] which is the probability of Parisian ruin under 

the hybrid observation scheme. We also obtain the expressions for the two-sided 
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exit problem, Laplace transform and the probability of Parisian ruin, all terms 

of scale functions. Our approach is based on the expression of the Gerber-Shiu 

distribution at Parisian ruin with exponential implementation delays in [8]. 

4.1.1 Parisian ruin under a hybrid observation scheme 

First, in order to compare our results with those in [49), we suppose {Ti} i~  are 

the arrivai times of an independent Poisson process of rate À. 

The time of Parisian ruin under a hybrid observation scheme with a recovery 

barrier a ~ 0 and a fixed delay r > 0 is defined by 

~  = inf { t E (Tn, Td o Brn) : Xrn < 0 and t -Tn ~ r, n E N} , 

where e is the Markov shift operator, i.e. Xs o Bt = Xs+t· 

Xt T1 T2 1T3 T4,T5 

X 

r 

To 1 1 Il I"/ " Il I" ')?' t 

Figure 4.1 Illustration of Parisian ruin under the hybrid observation scheme for 

a= O. 

Li et al. [49] obtained the following expression for the probability of Parisian 

ruin IP x ( ~  < oo) using a probabilistic decomposition and using the technique 

of taking Laplace transforms with respect to the delay r. 
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Theorem 34. For r, À > 0, a ~ 0 and x E IR, if 'ljJ' (O+) > ~ we have 

IP', ~  < oo) = 1 -1/J' (0+} ~  Z (x, <J>(.>.)) 

_ 'l/J' (O+) ~  Z ~ ~ J; e>-(r-s)gx,a,>. (s) ds, (4.l) 
1 -À fo e>-(r-s) ga,a,À ( s) ds 

where 

9x,a,!. (s) = [' ( ~  Z(x, <I>(.>.)} -W (x + z -a)) ;]p> (Xr E dz}. 

We want to improve on this result by making it more close to Equation (1.35) 

using a probabilistic approach. Without loss of generality we will assume that the 

recovery barrier a= 0 and we will write ~  = ~  

4.2 Main results 

We now present our main results. First, we derive the two-sided exit  problem 

when a hybrid Parisian delay is added as an improvement over Theorem 34. We 

present a probabilistic analysis and simple resulting expressions for the two-sided 

exit problem, Laplace transform and the probability of the Parisian ruin under a 

hybrid observation scheme, all expressed in terms of the delayed scale functions. 

Theorem 35. For q ~ 0, b, r, À> 0 and x:::; b, we have 

JE [ 
~  ] - _À_ (s(q) (  ) -9(q) (x; r, ..\) s(q) (b )) { ) 

x e {K.Ç<Tt} - À+ q x, r e(q) (b; r, ..\) , r :\4.2 

E [e-q7t 1 J 9(q) (x· r ..\) 
X { + .>..} - l ) 7b <K.r - ~  /1 '\\ l 

(4.3) 

and 

E, e ~  ~  l = ~ q ( s(q) (x, r) -e(q) (x; r, À) §(q,À) (r)) , (4.4) 
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where 

s<q) (x,r) = z<q) (x) + A(q) (x,r) -A(q) (x;r, -q), 

e<q) (x; r, À) = e(,\+q)r Zq (x, <P(À + q)) +A (q) (x; r) -A (q) (x; r, À) , 

and 

§(q,>.) r _ q/<I>(q) -f0
00 
(Z (z, <I>(q)) -e~  ;IP (Xr E dz) 

(  ) -e(>.+q)r À/ ( <I>(,\ + q) -<I>( q)) -Jt (Zq+>. (z, <I>( q)) ..,.. é(q)z) ~  (Xr E dz )' 

Remark 36. It is interesting to note that the function e<q) (x; r, À) is expressed 

in terms ofscale functions A(q) (x;r,À), A(q) (x;r) and Zq(x,<I>(À+q)) related to 

Parisian ruins (3.1), (1.24) and (1.46) respectively. It could be called the hybrid 

scale function. 

Setting q = 0 in (4.2), we obtain the following new expression for the probability 

of hybrid Parisian ruin. 

Corollary 37. For x E Iî and À, r > 0, we have 

Ip> X ( K; < OO) = 1 -e ( x; r, À) §(O,>.) ( r) ' (4.5) 

where e = e<0). 

Remark 38. When ~  > 0, we have 

-(o,.\) _ JE [X1] . 
S (r) -e>.r,\/<I>(À) -J

0

00 (z<>.) (z) -1) ~  E dz) 

Th en, 

e (x; r, À) 
Px (K; <OO) = 1 -JE [X1] e>.r ,X/<I>(,X) _ J

0

00 (Z(.\) (z) -1) ~  (Xr E dz). (4.6) 

Our expression of the probability of Parisian ruin is different than the one in 

Theorem 34, which is because in the proof we use a diffèrent approach, and has a 

similar structure as the one in Equation (1.35). 
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4.3 Discussion on the results 

The fluctuation identities in Theorem 35 have a similar structure as Parisian 

fluctuation identities (1.43) and (1.42). Indeed, in Equation (4.2), the· functions 

S(q)(·, r) and 9(q)(·; r, À) play a similar rôle as the one played by the classical q-

scale functions z<q)(·) and Zq(·, <.P(À + q)) respectively. 

First, we will show that the function s<q)(x, r) converges, as r -+ 0, to the scale 

fonction z<q)(x). Taking Laplace transforms in r, together with Kendall's identity, 

Tonelli's theorem and (3.10), we have 

100 -or ( -qrA(q) (  .  -)) d = Zq (x, <I>(O + q)) e  e x, r, q r () , 
0 +q 

and also 

100 e-or e-qr A (q) (x; r) dr = 100 e-<i>(o+q)zw(q) (x + z) dz. 
Then, using the initial value theorem, we obtain 

lim
0 
e-qr (A (q) (x; r) -A (q) (x; r, -q)) 

r-+ 

= 
0
1im () f

00 

e-(o+q)r (A(q) (x; r) -A(q) (x; r, -q)) dr 
-+OO lo 

= lim -
0 
q Zq (x, <I>(() + q)) = 0, 

0-+oo + q 

where the last equality follows from the fact that 

. q .  ( q() )  ( <I>( () + q) ) 
e ~  () + q Z q (X, <l> ( () + q)) = e ~  ( () + q) <l> ( () + q) () Z q (X, <l> ( () + q)) , 

and 

. <I>(B+q)z (x,<I>(O+q)) hm FI q 
0-+oo 

lim <I>(O + q) f
00 

e-<I>(o+q)yW(q)(x + y)dy 
0-+oo Jo 
w(q) (x)' 

which follows the initial value theorem. Thus, 

lime-qrs(q) (x,r) = z(q) (x). 
r-+0 
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Lastly, by the same techniques, we can also show that 

lim 8(q) (x; r, .X)= Zq (x, <I>(.X + q)), 
r--tO 

and then 

lim 1Ex e ~ ~  
r--tO 

1Ex [e-qTo-I{ro-<r:}] 

4.4 Proofs 

Zq (x, <I>(.X + q)) z<q)(b). 
= z<q)(x) -Zq (b, <I>(.X + q)) 

The proofs of our main results are based on technical but important lemmas, as 

well as more standard probabilistic decompositions. We use the expression of the 

Gerber-Shiu distribution at Parisian ruin with exponential implementation delays 

from [8] and results from [55] to obtain our key lemma (Lemma 39 below). First, 

our main interest is to obtain a closed-form for the following expectation 

1Ex [e-qTc)W(P) ( XTc) + Z) l{Tü<r:}] ' 

where p, q 2:: 0, x ~ b. 

Lemma 39. For p, q, b 2:: 0, À, r, z > 0 and x ~ b, we have 

1Ex [e-qTo-W(P) (xro-+z) l{ro-<r:}] 
. - À z. (x, <T?(>. + q)) ( wiq,p-q) (b + z) -wiq,À) (b + z)) 

-p-(q+.X) Zq(b,<I>(.X+q)) 

- À ~  (x + z) - ~  (x + z)) ' (4.7) 
p-(q+.X) 

and, for x E JR, we have 

lEx [ e-qTo-W(P) ( Xro-+ z) 1{ To-<oo} J 
-(<I>(.X + q) -<I>(q)) z (x <I>(.X +p)) (Z (x + z, <I>(q)) -Z>..+q (x + z, <I>(q))) 
- ( ') p ' p p-q+/\ 

- À ~  (x + z) - ~  (x + z)). (4.8) 
. p-(q+.X) 



Proof Using (1.44), we have 

1Ex [e-qTo-W(P) ( XTo-+ z) l{To-<Tt} J 

= 1: W(p) (y+ z)Ex [e-qT0-,Xr
0
- E dy, T0-< r;;] 

=À Zq (x, <l>(A+ )) 10 W(P) (y+ z) ~  (b -y) dy 
Zq (b, <I>( À + q)) -OO 

-À 1: w(p) (y+ z) ~  (x -y) dy 

= Zq (x, <l>(A + q)) .À 1z W(P) (z -y) ~  (b +y) dy 
Zq (b, <I>(A + q)) o 

-À [ w(p) (z -y) ~  (x +y) dy 
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- À z. (x, <T>(.X + q)) ~  (b + z) -wiq,À) (b+ z)) 
-p -(q +.X) Zq (b, <I>(.X + q)) 

- .À ~  (x + z) - ~  (x + z))' (4.9) 

where in the last equality we applied the following useful identity taken from (51] 

(s -(p + q)) [ w<•l(x -y)W,\"·q) (y) dy = W,\J>·•-Pl (x) -W,\"·•l (x). (4.10) 

The second identity follows using (1.45) and the fact that 

(p-q) 1• w<vl (a -x) z. (x, 8) <lx= Zv (a, 8) -z. (a, 8), (4.11) 

or by letting b--+ oo. • 

The identities in Lemma (39) generalizes the classical identities (1.21) and (1.22) 

respectively (in spite of the fact that it is hard to prove the convergence when 

.À-+oo). 

The following identity is new and crucial for the proof of our main results. 
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Lemma 40. For p, q, b ~ 0, À, r > 0 and x:::; b, we have 

Ex [e-qTo-A(P)(X _ r)I J To '  { T0-<rt} 

= À Zq (x, 4>(). + q)) (q) 
P -(q + ).) Zq (b, 4>(). + q)) (A .(b; r,p -q) -A(q) (b; r, ).)) 

À 
-p-(q+À) (A(q)(x;r,p-q)-A(q)(x;r,À)). (4.12) 

Proof Using (4.7) and Tonelli's theorem, we obtain 

Ex [e-qTo-A(P)(XTo-,r)I{To-<rt}] 

=Ex [e-qT•-f W(P) ( Xr
0
-+ z );Il" (Xr E dz) l{r

0
-<oo}] 

= 100 Ex [e-qT•-W(p) ( Xr
0
-+ z) l{TO<r,;}] ~  (Xr E dz) 

_ À Zq (x, 4>(). + q)) (A(q) (b; r,p -q) -A(q) (b; r, À)) 
-p-(q+À) Zq(b,4>(À+q)) 

_ À (A(q)(x;r,p-q)-A(q)(x;r,À)), 
p-(q.+À) 

and the result follows. • 
4.4.1 Proof of Theorem 35 

We use a standard probabilistic decomposition of the sample paths of X. For 

x < 0, from the strong Markov property and the fact that X is skip-free upward, 

we have 

î[i"I [ -qK->-1 ] -qr1Tll ( +  ) 
ir..x e r {K-Ç<rt} = e irx To > r 

î[i"I [ -qK->-1 ] î[i"I [ -qr.+ 1 ] +ir.. e r {KÇ<rt} illix e  o {rii<r} . ( 4.13) 

Consequently, for 0 :::; x :::; b, using again the strong Markov property, we obtain 

Ex e ~ ~  = Ex [e-qT0-ExT
0 

e ~ ~  l{To-<rt}] · 
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Injecting ( 4.13) in the last expectation, we have, for all x E 1î 

Ex e ~ ~  = e-qrEx [ e-qTa-JP>xTa-( Td > r) l{Ta-<rt} J 

+E e ~  J Ex [e-qToExro [e-qrri l{rct<r} J l{Ta-<rt} J 

-qrî[i'I [ -qTa-1 ] 
e .ll!lx e {Ta-<rt} 

-e-qrEx [e-qTa-A(XTa-, r)l{Ta-<rt} J 

+e-qrE e ~  Ex [e-qTa-A(q)(XTa-,r)l{Ta-<rt}] ,4.14) 

Betting x = 0 in (4.14), we egt 

-qrE [e-qT() 1{ - +}] -e-qrE [e-qTa-A(XTa-, r)l{Ta-<rt} J 
] 
e Ta <rb 

JE [e-qi<;'l{i<;'<r,;} = 1-e-qrJE [e-qTa A(q)(Xr.-,r)l{Tü<rt}] 

a (4.15) 

Taking p = 0 and p = q in (4.12) respectively with x = 0, we have 

JEx [ e-qT,) A(Xr,-, r)l{ T,) <r:}] z. (x, <I>(.X + q)) (A (q) (b; r, -q) -A (q) (b; r, >.))) . 
,\ + q = _À_ (A (q) (x; r, -q) -A (q) (x; r, À) -Zq (b, <I>(.X + q)) ( 4.16) 

and 

Ex [e-qTa-A (q)(XTa-' r)l{Ta-<rt} J 

= A (q) (x· r) -A (q) (x· r ,\) -Zq (x, <I>(,\ + q)) (A (q) (b· r) -A (q) (b· r ,\)) (4 17) 
'  '  ' Zq(b,<I>(,\+q)) '  '  '  .  . 

Thus, using (3.15), we have 

JE [e-qT,-A(Xr;,r)l{r,-<r:}] A{•) (b;r, -q) -A(q) (b;r, À))' (4.18) 

=_À_ ((1 -éHq)r) - Zq (b, <l>(,\ + q)) ,\ + q 

and 

E[e-qTa-A(q)(Xr.-,r)l{ _ +}] =ér-e(>.+q)r_A(q)(b;r)-A(q)(b;r,À) (  ) 
a Ta <rb Zq (b, <l>(À + q)) · 4.19 
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Plugging (4.18) and (4.19) in (4.15), we get 

1E e-qKrl ---1- q l l l 
[ 

-.x J À ( Z (b) + A(q) (b·r) -A(q) (b·r -q) ) 
~ i  - À+ q Zq (b, <P(À + q)) e(>.+q)r + A(q) (b; r) -A(q) (b; r, À) 

À ( S(q,>.) (b, r) ) 
À+ q 

1 
-8(q).(b; r, À) · (4.2o) 

We finally obtain the result by plugging the last expectation in (4.14) together 

with ( 4.16) and ( 4.17). 

To prove ( 4.3), we use again the strong Markov property and spectral negativity 

of X. For x < 0, we have 

1Ex e ~  = 1E e ~  1Ex [e-qrcf1{rii<r}]. (4.21) 

For 0 ~ x ~ n  using (1.42) and (4.21), we get 

1Ex [ e-qr: 1{ rit ~  

Setting x = 0, yields 

1Ex [e-qr,; l{r:<ro-} J + 1Ex [e-qTo-lExTc) [e-qr,; l{rit<kn J l{ro-<rit} J 

1Ex [ e-qT: 1{ T: <Tc)}] 
+lE [e-qr,;1{-rt<knJ 1Ex [e-qTo-JExTc) [e-qrcf 1{rcf<r}] l{ro-<r:}] 

Zq (x, <P(À + q)) 
Zq (b, <P(À + q)) 

+e-qrlE [e-qrit1{rit<knJ 1Ex [e-qTo-A(q)(Xro-,r)l{ro-<r:}]. 

1 o/ 
JE [ -qr+ 1  ]  _ Zq(b,4>(,\+q)) _ e 
e b {rit <kn - >.r + -qr A(q)(b;r)-A(q)(b;r,>.) -8(q) (b· r À)· 

e  e Zq{b,4>(>.+q)) '  ' 

Then, putting all the pieces together, we have 

1Ex [e-qrit1{rt<knJ 
= Z.(x, <I>(A + q)) + e-qrE. [e-qT,-A(q)(Xro, r)l{r,-<rt}] 
Zq (b, <P(À + q)) 8(q) (b; r, À) 

9(q) (x; r, .-\) 
= 8(q) (b; r, À) · 

To deal with the limit as b 4-oo in ( 4.2), we apply the same machinery using 

identity (4.8). We can also compute the limit directly using (3.26), (1.18) and the 
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CHAPTER V 

ON A VAR-TYPE RISK MEASURE BASED ON CUMULATIVE PARISIAN 

RUIN 

5.1 Introduction 

Over the last few years, several dynamic risk measures, i.e. risk measures based 

on ruin-theoretic quantities, have been studied. For example, in the classical com-

pound Poisson risk model, Trufin et al. [73] considered a VaR-type risk measure 

defined as the smallest initial capital needed to ensure a certain probability of 

solvency throughout the lifetime of the surplus process. This risk measure has 

been extended by Mitric and Trufin [64] who defined a risk measure taking into 

account both the probability of ruin and the expected deficit at ruin. Also, Loisel 

and Trufin [62] used the expected area below the solvency threshold as a risk 

indicator to introduce a new risk measure with some interesting properties. 

Very recently, implementation delays in the recognition ofruin and occupation 

times of the surplus process have been used as alternative risk management tools 

to assess the quality of an insurance portfolio. In this direction, Guérin and 

Renaud [33] have introduced the concept of cumulative Parisian ruin, which is 

based on the time spent in the red by the underlying surplus process. The time of 

cumulative Parisian ruin is the first time the surplus process stays cumulatively 

below a critical level longer than a pre-determined grace period. Inspired by the 
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risk measure of Trufin et al. [73], they have defined a VaR-type risk measure 

based on cumulative Parisian ruin. It is also defined as the smallest amount of 

capital for which the ss i ~e  cumulative Parisian ruin probability is less than 

or equal to a tolerable level. 

The rest of the Chapter is organized as follows. In Section 5.2, we recall some 

background on the Cramér-Lundberg model and we define the concept of cumu-

lative Parisian ruin. In Section 5.3, we introduce our risk measure and we give 

some of its properties. 

5.2 Insurance risk model 

In the Cramér-Lundberg model, the surplus process of an insurance company is 

modelled by 

Xt = x + et -St, (5.1) 

where X 2:: 0 and c > o, and where St = ~  ci is a compound Poisson process 

with N ={Nt, t 2:: O} a Poisson process of intensity ,\ > 0 and with {C1, C2, ..• } 

positive random variables following a common cumulative distribution function 

Fa. Recall that in this setup the claim sizes {Ci, C2, ••• } are mutually indepen-

dent and are also independent of the number-of-claim process N. The process 

S = {St, t 2:: O} is known as the aggregate claim amount process. We will call x 

the initial capital and c the premium rate. 

We will use the following equivalent notations 1Px (-) = JP> (·IXo = x) to emphasize 
that the process X starts at level x. The notation lEx corresponds to JP> x· When 

X0 = 0, we drop the index. In this model, the premium rate c is chosen usually 

to satisfy the net profit condition JE [X1] = c -,\lE[C1) > 0, which means that we 

can define the safety loading factor rJ > 0 by rJ := (c -,\lE[C1]) /,\JE[C1]. 
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The time of classical. ruin associated to X is defined as 

r0 = inf {t > OIXt < O}, 

and we denote the corresponding finite-time probability of ruin, for x ~ 0 and 

t > o, by 

1/l(t,x) = 1P'x (r0::; t), (5.2) 

and the infinite-time probability of ruin by 

1/l(x) = 1P'x (r0-< oo). (5.3) 

Of course, we have 1/l(x) = lim 1/J(t, x). 
t-too 

In (73], assuming that the safety loading 'TJ is fixed, the following min-consistent 

VaR risk measure is defined and analyzed: for E > 0, 

(€ [ C] = inf { x ~ 0 : 1fJ ( x) ::; E} . 

It is well known that we can compute 1/J(x) using the Pollaczeck-Khinchine formula 

(also known in the actuarial literature as the Beekman's convolution formula, see 

Beekman [9]) which states. that the probability of classical ruin is equal to the 

tail distribution function of a compound geometric random variable. First, let us 

define the aggregate loss at time t by Lt =St -et and the maximal aggregate loss 

of the process by L = max { Lt} which can be expressed as a sum 
~  

M 

L= Lni, (5.4) 
i=l 

where Mis the number of record highs, which has a geometric distribution with 

success probability rJ/(rJ+ 1), and where {D1, D2, ... } are the ladder heights with 

common distribution Fv(u) = 1" (l-Fc(y))dy/JE[C1]. The Pollaczeck-Khinchine 
formula for the probability of ruin is then given by 

'l/;(x) =IP'(L > x) = 1-~ f ~  F;?> (u), (5.5) 
'TJ + k=l 'TJ + 
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where F;(k) denotes the k-th convolution of the distribution FD. Thus, the risk 

measure is such that 

( 1:[C] = inf {x 2::: 0: IP(L > x) ~ E} = Fi 1 (1- E). (5.6) 

In some sense, the focus of this risk measure is shifted from the surplus process X 

to the distribution of the maximal aggregate loss L. This important relationship 

is at the core of the analysis clone in [73]. However, this relationship with the 

maximal aggregate loss L does not exist for the finite-time ruin probability. This 

is also the case for the risk measure in [64). 

5.2.1 Cumulative Parisian ruin 

Very recently, Guérin and Renaud [33] introduced a new definition of actuarial 

ruin based on the occupation-time process (below 0) associated with the surplus 

process X. The occupation-time process OL = {Of, t 2::: O} is defined as 

Of = 1t l{Xu<O}du = 1t l{Lu>Xo}dU. 
o o· 

Then, the time of cumulative Parisian ruin, with delay r > 0, is given by 

(J r = inf { t > 0: of > r} . 

In the definition of cumulative Parisian ruin, we aggregate the duration of all 

periods of financial distress until we accumulate r units of time spent in that red 

zone. Consequently, ruin is not declared as soon as X goes below zero. In fact, 

for x 2::: 0, t > 0 and r > 0, we have 

IP'x (ur ~ t) ~ IP'x (70 ~ t). (5.7) 

Cumulative Parisian ruin is clearly a generalization of classical ruin and, when 

r -t 0, we recover the classical definition (see [33) for the details and see Figure 5.1 

for a graphical comparison). 
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l.O 
-- Time of classical ruin 

~ -- Time of cumulative Parisian rui 

(') 

C\I 

s 
X ..... 

0 

1 
')' 
~ 

0 2 3 4 5 

Figure 5.1 A sample path of a Cramér-Lundberg process Xt. The time of ruin 

To is in red and cumulative Parisian ruin time K,r is shown in blue. 

We denote the finite-time probability of cumulative Parisian ruin by 

'l/Jr (t,x) = 1P'x (<Jr::; t) = IPx (Of> r). (5.8) 

and the infinite-time version by 

'l/Jr (X) = IP x ( <J r < OO) . 

Of course, we have 'l/Jr (x) = lim 7/Jr (t, x). With this new notation in hand, we can 
t-too 

re-write the inequality in (5. 7) as follows: for x ~ 0, t > 0 and r > 0, we have 

'l/Jr (t, x) ::; 'lfJ(t, x). (5.9) 

We also have 

'l/Jr (t, x) = lim'ljJ(t, x) and 'l/Jr (x) = lim'lfJ(x). 
r-+0 r-+0 

Before going any further, let us give some background material on stochastie 

dominance. 
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5.2.2 Stochastic dominance 

Consider two random variables X and Y, and let Fx and Fy be their survival 

fonctions. We say that X is smaller than Y in the stochastic dominance order, 

which is denoted by X :jst Y, if 

Fx(u) ::; Fy(u), for ail u. (5.10) 

Theorem 41 (Shaked and Shanthikumar [70]). (i) Let {X1,X2, ... ,Xm} and 

{Yi, Y;, ... , Ym} be two sets of independent random variables such that Xi :jst 

Yi, for each i = 1, ... , m. Then, for any increasing function g: lRm -+ IR, 

we have 

g (Xi, X2, ... 'Xm) :jst g (Yi, Y;, ... ' Ym). (5.11) 

(ii) Consider two sequences of random variables {X1,X2, ... } and {Yi, Y;, ... } 

and two random variables X and Y such that 

d d Xn -+ X and Yn -+ Y, 

where ~ denotes convergence in distribution. If Xn :j8t Yn for each n, then 

X :jst Y. 

(iii) Let the positive integer-valued random variable N be independent of the fam-
N 

ily of random variables {Ci, C2, ... } and define S = I: Ci. Define similarly 
i=l 

- N -
S= L:Ci. 

i=l 

If N :jst N and if ci :jst ci for each i, then 

s :jst s. (5.12) 

If X = {Xt, t ~ O} and Y = {Yt, t ~ O} are stochastic processes, then we write 
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X ~s  Y if, for each t ~ 0, we have 

Xt ~s  yt. 

The reader is referred to Shaked and Shanthikumar [70], Kaas et al. [35] and 

Dhaene et al. [34] for more details on stochastic ordering and applications in 

actuarial science. 

5.3 A VaR-type risk measure derived from cumulative Parisian ruin 

Using the definition of cumulative Parisian ruin, Guérin and Renaud [33] have 

defined the following VaR-type risk measure: for a given tolerance level E > 0, set 

~  [L] = inf {X ~ 0: JP> x ( C'Jf > r) ~ E} · 

It gives the amount of initial capital needed in order to bound the probability of 

cumulative Parisian ruin with delay r by E. Consequently, this risk measure is 

based on the distribution of C'Jf. This is the analog of the random variable L for 
the risk measure in (5.6). A major improvement is that we can now vary the time 

horizon and the implementation delay with the variables t and r, respectively. The 

trade-off is that we need the distribution of a strongly path-dependent random 

variable, namely C'Jf. 

For the rest of this Chapter, we aim at studying the properties of this VaR-type 

cumulative Parisian risk measure and use it in the context of an optimal allocation 

problem. In [33], this risk measure is proposed as a motivational reason to study 

the concept of cumulative Parisian ruin; the risk measure itself is not analyzed 

nor used for any particular application. Also, we will compare the infinite-time 

e si ~ to the infinite-time risk measure defined in [73]. Then, we will also study 

the finite-time version as this is possible as soon as the distribution of C'Jf is 
available. 
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5.3.1 Properties of the risk measure ~  

Recall that our main object of study is the following VaR-type risk measure: for 

r > 0, E > 0 and t > 0, 

~  [L] = inf {x ~ 0: 'l/Jr (t,x) ~ E} = inf {x ~ 0: JP>x (Of> r) ~ E}. (5.13) 

When t = oo, we write ~  

We are also interested in the risk measure based on the finite-time probability of 

classical ruin: 

~  [L] = inf {x ~ 0: 'ljJ(t,x) ~ E}. (5.14) 

Using inequality (5.9) and the discussions in the previous section, we deduce the 

following first proposition : 

Proposition 42. For a given time horizon 0 < t ~ oo and an acceptance level 

E > 0, the risk measure ~  is less conservative than the risk measure ~  i.e. 

~  [L] ~ ~  [L], (5.15) 

and, when r --+ 0, it converges to dt), i.e. 

~  [L] t ~  [L] , as r --+ O. (5.16) 

In what follows, let L and L be two aggregate loss amount processes associated 

with two aggregate loss amount Sand S of two Cramér-Lundberg processes X 

and X as defined in (5.1). 

Theorem 43. For r > 0, ê > 0 and t > 0, we have 

{i) Invariance by translation: For all a > 0, 

~  [L +a] = ~  [L] +a. (5.17) 



(ii) Positive homogeneity: For all b > 0, 

~  [bL] = ~  [L]. 

(iii) Monotonicity: If L ~s  L, then 

~  [L] ::; ~  [L]. 

Proof First, note that 

ll"x (Of+a > r) = ll"x (fo' 1{L.>x-a}du > r) = ll"x-a (Of> r). 
Consequently, 

~  [ L + a] = inf {X ~ 0: IP' X ( of+a > r) ~ é} 

= inf{ X ~ Ü : JPl x-a (Of > r) ~ é} 

= ~  +a. 

This proves (5.17). 

Similarly, if we note that 

ll"x (OZL > r) = ll"x (l 1{L.>x/b}du > r) = ll"x/b (Of> r), 
then (5.18) follows. 
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(5.18) 

(5.19) 

In order to prove this property, we fix t > 0 and we will show that, if Lu ~s  Lu 

for all u ::; t, then 

of ~s  of. 

First, let us define a sequence of discretized versions of the occupation-time process 

otL· For·each n > 1, choose 0 = to < t1 < ... < tn = t such that max(ti-ti-1) -7 
- ~n 

0, as n --+ oo, and define 

n 

~n  = L (ti -ti-1) l{Lti>x}· 
i=l 
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We define ~n  in the obvious way, i.e. when S is replaced by S. We can re-write 

~n  as follows: 

~n  = </>n (Lt1 - Lt0, Lti -Ltu · ·., Ltn -Ltn-1), 

where </Jn (u1, ... , Un)= ~  (ti - i ~  ui>x+cti}· 

Since Lu ~s  Lu for all u :::; t, then we have Lti-ti-1 jst Lti-ti-l for each i. Then, 

sin ce 

d - d - -
Lti-ti-1 = Lti -Lti-1 and Lti-ti-1 = Lti -Lti-1' 

we have that Lti -Lti-1 jst Lti -Lti-1 for each i. From (5.11), we obtain 

</Jn (Lt1 -Lto' Lt2 -Ltu · · · 'Ltn -Ltn-1) jst </>n ( Lti -Lto, Lt2 -Ltu · · · 'Ltn -Ltn-1) ' 

or equivalently 

O(n) -< ~ n  
t -St t " 

Since ~n  ~  and ~n  ~  by the second part of Theorem 41, we get 

of jst of. 

This means that 

IP X (of > r) :::; IP X (of > r) ' for all r. 
The monotonicity property in (5.19) follows. 

• 
The monotonicity property in (5.19) says that the risk measure ~  [L] is increas-

ing (in its second variable) with respect to the stochastic dominance order. Note 

that if IP ( Lt :::; Lt) = 1 for all t ~ 0, then we can also prove that 

~  [L] :::; ~  [ L J . 
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If we put together the monotonicity property in (5.19) and (5.12), then we can 

deduce the following intuitive relationship: a smaller frequency and a smaller 

severity yield less occupation time in the red zone and thus a smaller probability 

of cumulative Parisian ruin. For example, by the third part of Theorem 41, if C 

and 6 are exponentially distributed random variables with parameters a and a 
respectively, and if a 2:: a and À ::; .À, then, for a given common premium rate c, 
the initial capital needed at a given tolerance level E is larger for X than X. 

It is worthwhile to mention that, as an immediate consequence of Proposition 42, 

Theorem 43 is also satisfied for, the infinite-time horizon risk measure (€· Thus, 

we have recovered some of the results in Properties 3.1 and 3.2 in [73]. Also, an 

important consequence of Proposition 42 is the stochastic order for the finite-time 

ruin probability 'ljJ (t, x). 

At first sight, our risk measure appears to be only related to the risk measures 

dt) and (€. However, if we consider a finite-time version of the infinite-horizon 
risk measure defined by Loisel and Trufin [62], then we can define 

wit) [L] := inf { x 2:: 0: 1Ex [Af] ::; a} , 

where a > 0 is a tolerance level for the expected area in the red defined as 

.Af = 1' (Lu -x)+ du, 
where (x)+ = max(x, 0). Furthermore, we can use Theorem 1 of Loisel [61] and 

then write 

IEx [.Af] = f IEv (Of] dv = f f lP'v (Of;::: u) dudv. (5.20) 

Consequently, if we suppose that L ~  L, then Of ~s  of and then, from (5.10) 
and (5.20), we have 

1Ex [Af] ::; 1Ex [ 4] · 
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Thus, 

wit) [L] ~ wit) [ LJ , · 

which corresponds Property 3.1 in [62]. 

(5.21) 

Remark 44. Note also that with the distribution in Theorem 45 below, it is possible 

to compute the finite-time version of this risk measure based on the area in the 

red in the case of a Cramér-Lundberg process with exponential claims. 

5.3.2 Sensitivity analysis in the case of exponential claims 

In this section, we want to see how ~  reacts to changes in the value of its 

parameters. In other words, we want to perform a sensitivity analysis. 

In general, we could use Monte Carlo simulations to computes values for ~  

However, ifwe considèr a Cramér-Lundberg process with exponentially distributed 

claims { C1, C2, •.• } with rate parameter a > 0, then there exists an explicit 

expression for the distribution of the occupation time for a finite-time horizon. 

Unfortunately, such formulas are not available for most claim distributions. 

Theorem 45 (Guérin and Renaud [33]). For t > 0, we have 

1P'x (Of E ds) = ~  (ds) + ~ s + k:_8) (À-ca (1-~  l(o,t) (s)ds, 

with 

a;= 1-.Àe-= 1' e-(>.+ca)s [10 ( 2J.Xcas (s + x/c)) -
8 
/x;/2 ( 2J.Xcas (s + x/c))] ds 

and 

k: = e-""-l+.Xxae-= 1' e-(>.+ca)s [10 ( 2\1'.Xcas (s + x/c)) -12 ( 2\1'.Xcas (s + x/c)) J ds, 

where Iv represents the modified Bessel function of the first kind of order v. 
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In Theorem 45, af is the survival ruin probability over [O, t], that is 

~ = 1 -'ljJ ( t, X) 

= 1 ->.e-"" 1' e-(Mca)s [10 ( 2J>.cas (s + x/c)) -s +sx;/2 ( 2J>.cas (s + x/c))] ds. 
For an infinite-time horizon, we have the well-known expression: 

ax = lim ax = 1 -'l/J(x) = ~e  = -1-e-xœ11/(l+'IJ). 
t-+oo t ca 1 + rJ 

From Corollary 2 in [68], we can deduce the following expression for the distribu-

tion of ~  when the claims are exponentially distributed. 

Corollary 46. For any x E Iî, we have 

]p> X ( ~ E ds) = ax Ôo ( ds) 

· +- 1 - - e-csae-x(a->../c) c + L . 8 . (cr (i + 1, sÀ) -~  (i + 2, sÀ)) , À ( À ) ( OO ( ,\ ) i+l ) 

c ca i=O i ! ( 1 + i) ! , s À 

where r(a, x) =fox e-tta-1dt is the incomplete gamma function. 

The explicit formula in Theorem 45 allows for a sensitivity analysis of the value 

of the probability of cumulative Parisian ruin when claims are exponentially dis-

tributed with respect to the delay parameter r and the time horizon t. In Figure 

5.2, we observe that for a fixed delay parameter r, the probability of cumulative 

Parisian ruin increases when the time horizon t increases. This is because we ac-

cumulate more occupation time. On the other hand, it decreases when the delay 

r increases. For a fixed value of the time horizon t, increasing the initial capital 

x decreases the probability of cumulative Parisian ruin, as expected. 

For the corresponding risk measures, Figure 5.3 illustrates the relationships in (5.15) 

and in (5.16) between pàr,t) and dt). As r -+ 0, i.e. as the grace period gets smaller, 

the initial capital needed with pàr,t) increases toward that needed with dt), both at 

a tolerance level of E = 0.3. When the time horizon t increases, both risk measures 

increase the initial èapital needed for that tolerance level. 
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CHAPTER VI 

CONCLUDING REMARKS AND FUTURE RESEARCH 

The main objective of this thesis was to study some Parisian ruin problems for 

Lévy insurance risk processes. In Chapter 2, we first extended the work of Loeffen 

et al. (60] to the refracted Lévy process and we computed other fluctuation iden-

tities su ch as the Laplace transform of the time of Parisian ruin and the two-sided 

exit problem. In Chapter 3, we considered a type of ruin called mixed Parisian 

ruin that unified the two types of Parisian ruin. The expressions are expressed 

in terms of the delayed scale fonctions. In Chapter 4, we studied the concept of 

Parisian ruin under a hybrid observation scheme recently introduced by Li et al. 

(49]. We improved the expression of the probability of ruin originally obtained and 

we computed other fluctuation identities. In Chapter 5, we studied a VaR-type 

risk measure based on cumulative Parisian ruin. We derived some properties of 

this risk measure and we compared it to the risk measures of Trufin et al. [73] 

and of Loisel and Trufin [ 62]. 

In the same vein as that illustrated in Kyprianou and Loeffen (43], a potential 

research direction is to study the case where the refraction happens under Pois-

sonian observation approach of Albrecher et al. (5]. Indeed, let Ti be the arrival 

times of an independent Poisson process of rate À > O. As discussed above, we 

define a surplus process U whose dynamics change whenever it is observed at ~ 
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below or above a critic.al level b. This means, when Uri < b, the process U behaves 

as a Lévy insurance risk process X 1 until the moment that Uri > b then it behaves 

as another Lévy insurance risk process X 2• Also, the refracted process at Poisson 

arrival times converges, when the Poisson observation rate goes to infinity, to the 

classical refracted Lévy process defined in (43]. 

Also, analysing Parisian ruin quantities for the drawdown process is an interesting 

research direction. Indeed, we could adapt the hybrid observation scheme defined 

in [49] for the Parisian model introduced by Surya [72]. Thus, unlike the hybrid 

scheme defined in (49], when the drawdown process is below a certain level, it is 

observed at discrete Poisson arrival times. Once the process goes above this level, 

it is observed continuously and Parisian ruin occurs when the process stays above 

this level for consecutive period of time greater than a pre-specified delay. This 

is also equivalent to the fact that the risk process has gone below its last running 

maximum during the grace period. 
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