UNIVERSITÉ DU QUÉBEC À MONTRÉAL

ÉTUDE DU STRONTIUM STABLE ET RADIOGÉNIQUE DES BARYTINES DANS LES SÉQUENCES DE CAPS CARBONATÉS

MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCE DE LA TERRE

> PAR GAËTAN MARTY

FÉVRIER 2019

UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire *Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs* (SDU-522 – Rév.01-2006). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.»

REMERCIEMENTS

À l'issue de ces deux années de Maitrise, je voudrais en premier lieu remercier mes deux directeurs de recherche. Tout d'abord Ross Stevenson pour sa confiance, son support et sa patience le long de la maitrise et ce malgré les analyses parfois déficientes. Ainsi que Galen Halverson pour sa perspicacité et ses connaissances qui m'ont permis de mieux appréhender mon sujet. Vous avez été mes guides durant tout ce projet.

Je tiens également à remercier André Poirier qui m'a aidé dans mon cheminement analytique, ainsi que Julien Gogot pour sa présence et pour m'avoir appris à survivre en laboratoire. Merci à tous les deux de m'avoir permis de faire mes analyses ainsi que d'avoir répondu à toutes mes questions à chaque étape du processus.

Merci à Lucille Davers, Williams Limons, Estelle Allan et Alice Morard pour avoir fait partie de mon quotidien ainsi que pour les aides et les astuces données durant ma Maitrise. Merci aussi pour la bonne ambiance au sein du bureau, pour les moments de rires et de plaintes partagées.

Merci également à Laurence Coursol et Vanessa McFadden de m'avoir fait découvrir un autre aspect des sciences de la terre et de l'atmosphère, ainsi que pour les conseils et une ambiance sucrée allant au rythme des saisons.

Merci à ma famille, même si nous sommes éparpillés sur trois continents, de m'avoir permis et laissé partir à l'aventure au Québec, et pour toujours me garder une place et une assiette à table lorsque je reviens.

Finalement, merci à Marion de partager ma vie et de me supporter au quotidien, à travers les coups durs et les analyses se terminant en point d'interrogation. Merci aussi pour la magie de tes mots.

TABLE DES MATIÈRES

REMERCIEMENTS
TABLE DES MATIÈRESiv
LISTE DES FIGURES
LISTE DES TABLEAUXviii
LISTE DES ABRÉVIATIONS, DES SIGLES ET DES ACRONYMESix
LISTE DES SYMBOLES ET DES UNITÉSx
RÉSUMÉxi
ABSTRACTxii
INTRODUCTION
1 CHAPITRE I ECHANTILLONS ET ENVIRONEMENT
1.1 Les caps carbonates
1.2 Contexte géologique des échantillons
1.3 Le strontium
2 CHAPITRE II MATÉRIEL ET MÉTHODE

2.1 Protocole
2.2 Problèmes de protocole et modifications
2.3 La spectrométrie de masse
3 CHAPITRE III RESULTATS
3.1 Les résultats radiogéniques et concentrations de Sr
3.2 Les Résultats stables
4 CHAPITRE IV DISCUSSION
4.1 Les résultats par rapport à l'eau de mer
4.2 Les résultats radiogéniques
4.3 Les résultats métamorphiques
4.4 Les résultats stables
5 CONCLUSION
ANNEXE A Déconvolution des données isotopes stables
ANNEXE B Donnée de la littérature, cap carbonates Maninoen
ANNEXE C Donnée de Sarah Farell
Bibliographie

v

LISTE DES FIGURES

Figure Page
Figure 1-1 : Structure standard des caps carbonates après la glaciation Marinoenne au- dessus d'un carbonate préexistant (http://www.snowballearth.org)
Figure 1-2 : site de prélèvement des différents échantillons6
Figure 1-3 : Formation des caps carbonates (modifié de Creveling et al., 2012; Hoffman <i>et al.</i> 2017)
Figure 1-4 : Localisations des différents échantillons, en bleu : échantillons marins, en noir, échantillons hydrothermaux
Figure 1-5 : Barytine de Raventhroat (Hoffman et al., 2017)10
Figure 1-6 : Stratigraphie des caps carbonates (adapté de Crockford et al. 2017) 11
Figure 1-7 : Diagramme schématique illustrant les formations hydrothermales de barytine au sein de la province Aggeneys-Gamsberg (McClung <i>et al.</i> , 2007)14
Figure 1-8 : Stratigraphie de la formation Dresser (Wacey et al., 2015)16
Figure 2-1 : Résultat des observations au MEB23

Figure 3-1 : Rapport isotopiques radiogénique du Sr en fonction de la concentration de
Strontium
Figure 3-2 : Standards de laboratoire stable et échantillon par rapport au fractionnement
dépendant de la masse théorique. En gris, les trois échantillons au comportement
jugé indépendant de la masse
Figure 3-3 : Rapports isotopiques stables
Figure 3-4 : Nouvelles valeurs pour les échantillons montrant un fractionnement
indépendant de la masse (valeur venant des échantillons extrême, tableau 3) 36
Figure 4-1 Rapports isotopiques des barytines en fonction du Sr marin
Figure 4-2 : rapport isotopique des barytines en fonction du Sr mari
Figure 4-3 : Rapport isotopique des barytines en fonction du Sr marin
Figure 4-4 : Rapport ^{87/86} Sr des échantillons métamorphique en fonction des grands
réservoirs terrestres à partir de McCulloch (1994) avec les donnée de Henshall
(2016)
Figure 4-5 : Résultats radiogéniques en fonction des moyennes des eaux terrestres
actuelles (adapté de Pearce et al. 2015), avec des données de Neymark et al.
(2014). Ligne pointillée : Moyenne des valeurs silicaté terrestre. Zone grise,
Gamme de valeurs des barytines artificielle trouvé dans Widanagamage et al.
(2014)

LISTE DES TABLEAUX

1

Tableau	Page
Tableau 3-1 : Données radiogéniques obtenues	
Tableau 3-3 : Étalon mesuré pour les isotopes stables durant des dans la méthode	changements effectués
Tableau 3-4 : Résultats stables des échantillons par localisation	
Tableau 3-5 : Moyennes des valeurs des échantillons en fonctio	on de leurs âges 34

LISTE DES ABRÉVIATIONS, DES SIGLES ET DES ACRONYMES

Sr : Strontium

Rb : Rubidium

TIMS: Thermal Ionisation Mass Spectrometer

LISTE DES SYMBOLES ET DES UNITÉS

Ga : millard d'année

Ma : million d'années

ng : nano gramme

pg : pico gramme

 σ : sigma

 δ : delta

°C : degrés Celsius

m : mètre

RÉSUMÉ

La barytine est un sulfate de baryum (BaSO₄) qui se forme principalement par des liquides hydrothermaux ainsi que sur le plancher océanique lorsque le baryum est saturé dans l'eau de mer. Sous forme hydrothermale, la barytine est souvent présente comme minéral accessoire ou majeur pour de nombreux gisements métalliques tels que le plomb, cuivre ou argent. Elle précipite également sous forme évaporitique ou en association avec des remontées d'eau froide riche en sulfates qui se combine avec le baryum de la croûte océanique (Hoffman. et al., 2011). L'une de ces occurrences est présente dans les carbonates correspondant aux glaciations du Néoprotérozoïque. Nous étudierons ici les isotopes du strontium autant stable (^{87/86} Sr) que radiogénique (^{87/86} Sr). La barytine propose en effet une structure cristalline qui est propice au strontium et qui entraine généralement un fractionnement isotopique. Nous proposons ainsi de regarder les isotopes du strontium sous deux aspects. Le premier par les isotopes radiogéniques $(\delta^{87/86} \text{ Sr})$ afin de voir si nos résultats correspondent au résultat d'archives pour les mêmes périodes. Cela nous permettra aussi de voir comment évoluent les environnements de dépôt. Nous allons également étudier les isotopes stables ($\delta^{88/86}$ Sr) afin d'observer, dans les océans, la variation de la composition du strontium au cours des temps géologique.

Les résultats obtenus montrent bien que les valeurs ^{87/86}Sr trouvées sont consistantes avec les valeurs des carbonates de la même période. De plus, les variations isotopiques ^{87/86}Sr indiquent que les barytines se sont formées dans un milieu de mélange entre les eaux douces continentales et marines plus riches en sulfure.

Les isotopes stables de Sr dans observés les barytines montrent un appauvrissement en ⁸⁸Sr, ce qui est consistant avec les valeurs trouvées dans la littérature (Pearce *et al.* (2015), Neymark *et al.*, (2014)). Ces données permettent de différencier entre les barytines primaires et secondaires observées dans nos dépôts et ainsi affiner notre compréhension.

Mot clés : Géochimie, barytine, Néoprotérozoïque, cap carbonate

ABSTRACT

Barite is a barium sulphate (BaSO4) formed either from hydrothermal fluid or by precipitation from barium saturated sea water. Hydrothermal barite is often associated with mineral deposits such as copper, lead or silver. Barite precipitated from sea water is formed either under evaporitic conditions or in association with cold upwelling waters rich in sulphate, that combines with barium leached from the ocean crust (Hoffman. *et al.*, 2011). This latter environment is thought to have led to the occurrence of barite in carbonate sedimentary sequences related to neo-Proterozoic glaciations. We collected samples from Archaean to neo-Proterozoic sedimentary sequences the analysis of stable ($\delta^{88/86}$ Sr) and radiogenic (87 Sr/ 86 Sr) strontium (Sr) isotope ratio with the goal of better understanding the formation of barite within the marine environment. Because Sr strongly partitions into the barite structure, it is an ideal candidate for a Sr isotope study. Radiogenic (87 Sr/ 86 Sr) strontium isotope compositions can be used to study the source of the Sr (and Ba) within the barite and can be compared to Sr isotope ratio derived from the carbonate record. The stable isotopes of Sr ($\delta^{88/86}$ Sr) vary because of precipitation processes.

The results show that the ^{87/86}Sr ratios are comparable with values derived from the analysis of carbonates for the same period. Furthermore, the isotopic variation is consistent with barite is formed in an environment with both sulfur-rich seawater and continental waters.

The stable isotopes of barites are depleted in ⁸⁸Sr, which coincides with data from the literature (Pearce *et al.* (2015), Neymark *et al.* (2014)). The data hint that it is possible to differentiate between primary and secondary barite,

Key words : Geochemistry, Barites, Neo-Proterozoic, Cap carbonate

INTRODUCTION

Au cours de son histoire, la Terre a connu de nombreux épisodes de glaciation. Certaines sont qualifiées de glaciations « boule de neige », qui peuvent être définies par le fait que la Terre était entièrement recouverte de glace durant tout ou partie de cette période (Hoffman *et al.*, 1998). On connaît au moins trois périodes durant lesquelles ce phénomène est arrivé, à savoir la glaciation Huronienne, de 2,4 à 2.2 Ga, la glaciation Sturtienne à 710 Ma et la glaciation Marinoenne de 650 à 635 Ma (Kopp *et al.* (2005), Tarbuck *et al.* (1997), Gumsley et al 2017).

Les hypothèse sur les causes d'une glaciation boule de neige sont diverses, la plupart des explications sont une combinaison d'une baisse d'activité solaire (Jenkins et Smith, 1999), d'une position particulière des continents (Romanova *et al.*, 2006) ainsi que les gaz à effet de serre (Spiegl *et al.*, 2015). Par exemple, lors des glaciations Marinoenne et Sturtienne, les continents étaient regroupés au niveau des tropiques ce qui a donné lieu à de fortes altérations chimiques et transformé les minéraux dont le plagioclase en argile, ce qui a forcé une absorption de CO₂ (Donnadieu *et al.*, 2004). Les divers facteurs ayant causé une baisse de température vont mutuellement se renforcer, donnant lieu à une baisse de température plus importante, soit une boucle de rétroaction positive et enfermant la Terre dans une glaciation prolongée.

Pendant cette glaciation, le volcanisme terrestre a continué sous la glace et avec temps, les gaz à effet serre ont été produits par les volcans et ont permis un réchauffement graduel de la Terre. Cela a permis l'interruption de la boucle de rétroaction et de baisser l'albédo global et permettant de nouveau un réchauffement et la fin de la glaciation (Hoffman *et al.*, 1998).

Ces grandes glaciations vont créer des structures stratigraphiques reconnaissable sur l'ensemble des continents (Hoffman *et al.*, 2002; Crockford *et al.*, 2017). L'une d'entre elles est le cap carbonates. Ces derniers sont une succession de diamicrite, dolomie et calcaires qui se forme au niveau des anciennes côtes. Grâce aux isotopes δ^{17} O, il est possible d'affirmer que la précipitation de chacun de ces éléments s'est effectuée à des périodes différentes (Hoffman, et Halverson, 2011). À la limite entre la dolomie et les calcaires, on retrouve souvent de la barytine. Afin de mieux comprendre l'environnement qui a créé ces dépôts, la présente étude se concentrera sur ces barytines.

Le processus de la formation de la barytine dans les séquences de cap carbonates reste peu comprise (Hoffman, 2009; Ganeshram *et al.*, 2003, Crockford *et al.*, 2017, Hoffman et Halverson, 2011), mais sa présence n'en est pas moins un témoin des changements climatiques globaux.

Afin de mieux comprendre la formation des barytines dans le contexte des glaciations globales, nous avons étudié les isotopes stables et radiogéniques du strontium dans des barytines d'origine marines et hydrothermales. Le Strontium est un élément qui se substitue facilement, du fait de sa valence et de son rayon atomique au Baryum et au Calcium (Dickin, 2018). Cela permet de le retrouver aussi bien dans la barytine que dans les carbonates. De plus, grâce à ses isotopes stables et radiogéniques, le strontium enregistre les variations des fluides des périodes de grand mouvements tectoniques (Aberg *et al.*, 1989; Nakano, 2016). Il est donc possible de regarder les changements enregistrés par les isotopes du strontium dans des roches (ou des minéraux tels que le barytine) de différentes périodes afin d'obtenir les informations dues aux changements qui ont existé à cette période (Clemens *et al.*, 1993; Jones et Jenkyns, 2001; Hodell et Woodruff, 1994). Les analyses isotopiques de Sr obtenues donnent des informations sur la source des fluides (isotopes radiogénique) et des processus (isotopes stables) qui ont provoqué la formation des barytines et par extension des renseignements sur l'environnement du Néoprotérozoïque.

Cette étude commencera, dans le chapitre un, par établir les mouvements tectoniques et la création de nouvelles formations durant la période regardée ainsi que la manière dont ils ont pu être enregistré dans nos échantillons. Le chapitre deux traitera par la suite de l'extraction de Sr par des processus chimiques et de la manière dont il est possible d'extraire les résultats aussi bien d'un point de vue chimique que matériel. Le chapitre trois parlera des résultats de leur validité et justesse. Le chapitre quatre se concentrera sur les changements observés dans les isotopes du strontium ainsi que comment ils peuvent nous permettre de mieux comprendre les variations observées durant les périodes choisies.

1 CHAPITRE I

ECHANTILLONS ET ENVIRONEMENT

1.1 Les caps carbonates

A la fin de la glaciation Marinoenne, une forte montée des eaux a été causée par la fonte globale des glaciers (Hoffman *et al.*, 1998), ce qui crée des transgressions marines et a permis la formation de plateformes carbonatées, appelées caps carbonates. Ces caps carbonates se sont déposés sur l'ensemble des plateformes continentales et sont bien marqués d'une part grâce à leur structure interne, d'autre part par la discontinuité avec le socle existant. Ces grandes formations carbonatées marquent très bien la fin de la glaciation globale et permettent une datation fiable.

Figure 1-1 : Structure standard des caps carbonates après la glaciation Marinoenne audessus d'un carbonate préexistant (http://www.snowballearth.org)

Ces caps carbonates sont des structures de 30 m en moyenne formées sur le bord des plateformes continentales à la fin des glaciations. Elles représentent une suite distincte d'évènement tel que le montre la Figure 1. Ainsi, le cap carbonate présente souvent une diamicrite calcaire, puis une formation dolomitique avec la présence de stromatolites et de grandes structures en vagues (Grotzinger et James, 2000; Allen *et al.*, 2004). Grâce aux changements de composition océanique (oxygénation, réchauffement), on observe une formation plus carbonatée composée de rythmite et dolomite.

Figure 1-2 : site de prélèvement des différents échantillons

Ce type de formation typique peut se retrouver partout sur le globe, montrant ainsi la même séquence globale d'évènement à l'échelle planétaire. Cependant, certains endroits sur le globe ne présentent pas la séquence de manière complète, ce qui s'explique notamment par des environnements de dépôts (avec de côte propice au dépôt continus) ainsi que par l'érosion. De plus, comme la Figure 2 l'illustre même si l'on retrouve les mêmes faciès, leurs formations ou structures internes ne sont pas toujours similaires, ce qui est notamment le cas pour les barytines.

Figure 1-3 : Formation des caps carbonates (modifié de Creveling et al., 2012; Hoffman *et al.* 2017)

Ces caps carbonates présentent ainsi une structure similaire, qui est issue des variations globales observées lors de leurs formations. Ainsi, comme on peut le voir dans la Figure 2, la déglaciation entraine des changements globaux qui emmènent des dépôts progressifs et liés aux variations de composition de l'eau de mer (Creveling et *al.*, 2012). Ces dernières sont retrouvées de manière directe dans les compositions des caps carbonates. Ainsi, les dépôts dolomitisés sont formés en milieu anoxique alors que les dépôts plus carbonatés se déposent après le mélange des eaux et en milieu oxygéné. À la limite entre ces deux formations, on observe la formation de barytine, qui permet de marquer une limite distincte du mélange et donc du passage d'un état à l'autre

(Hoffman, 2009). La formation de baryte (BaSO4) se fait donc grâce au soufre et à l'oxygène venant respectivement du milieu anoxique et oxygéné (Crockford *et al.* 2016).

1.2 Contexte géologique des échantillons.

Figure 1-4 : Localisations des différents échantillons, en bleu : échantillons marins, en noir, échantillons hydrothermaux

Les échantillons ont été prélevés dans des séquences de calcaires partout dans le monde (Figure 3) afin d'avoir une vue globale de la variation des isotopes de Sr des barytines dans les caps carbonates, tout en éliminant le plus possible les effets régionaux. Les échantillons observés ont des âges qui varient des caps carbonates de l'âge Néoprotérozoïque de la fin de la glaciation Marinoenne (635 Ma) à des échantillons australiens provenant des roches archéennes (3,5 Ga).

Parmi les échantillons, deux processus distincts de formation des barytines sont à distinguer. Les échantillons canadiens, norvégiens, brésiliens et chinois proviennent des caps carbonatés c'est-à-dire de la formation marinoenne (635Ma) (Crockford *et al.*, 2017). Les barytines sud-africaines et australiennes sont d'origine hydrothermale, et proviennent principalement d'apports des fluides hydrothermaux mantéliques issus de larges systèmes de failles (McCulloch, 1994).

1.2.1 Échantillons canadiens

Les échantillons provenant du Canada ont été prélevés par Galen Halverson et proviennent de la formation Raventhroat présente dans les montagnes Mackenzie (Nord-Ouest du Canada).

La formation de Raventhroat (Figure 4) comprend une séquence de dolostone qui se trouve dans le Sheepbed Group du Windemere Supergroup. Cette formation est une séquence de cap carbonate classique déposée sur des sédiments évaporitiques ainsi que des dépôts préglaciaire riche en fossiles des formation plus ancienne telle la formation Keele etTwitya (Narbonne et Aitken, 1995). La formation consiste en une formation de 5m de dolomie à stromatolites surmontée de plus de 12 m de carbonates. Les dépôts de barytine observés sont trouvés sur la limite supérieure, au contact avec la formation de Hayhook et présentent des structures en éventail ou lamellaires et sont interprétés comme des dépôts venant du plancher océanique (Hoffman et Halverson, 2011; Crockford *et al.*, 2016). Des études antérieures sur les isotopes du strontium ont donné des valeurs de l'eau de mer de ^{87/86}Sr allant de 0,7068 à 0,7073 (Halverson *et al.*, 2007). Ces analyses étaient centrées sur les analyses des carbonates de la même période que nos échantillons.

Figure 1-5 : Barytine de Raventhroat (Hoffman et al., 2017)

1.2.2 Échantillons brésiliens

Les échantillons brésiliens proviennent et de la formation Sete Lagoas, dans le groupe de Bambuí, et ont été prélevés par Gabriel Uhlein.

Cette formation est en discordance avec des dépôts glaciaires de la formation Jequitaí (Figure 5). On voit tout d'abord un dépôt dolomitique de 2 à 5m avec des structures en vague, puis des lits de barytine, le tout surplombé par des dépôts calcaires présentant quelques ciments marins et de la barytine (Caxito *et al.*, 2012). La barytine, quant à elle, est présente en veines ainsi qu'en ciment dans la formation, ce qui donne une structure en tipis (Crockford *et al.*, 2017).

Il y a eu plusieurs études faites sur le Sr dans cette région. Certaines proposent une étude de la barytine pour le soufre et utilisent les isotopes du Sr afin de valider leurs données, tandis que d'autres regardent le Sr dans les carbonates. On trouve ainsi des valeurs de ^{87/86}Sr allant de 0.70573 à 0.7076 (Caxito *et al.*, 2012; Babinski *et al.*, 2007).

1.2.3 Échantillons norvégiens

Les échantillons norvégiens, prélevés par Malcolm Hodgskiss, proviennent de la formation Nyborg qui est localisée dans le bassin de Gaissa au sein de la région de Tanafjord-Varangerfjord, Norvège.

Le cap carbonate recoupe ici des dépôts interglaciaires de la formation de Smalfjord (Figure 5). La stratigraphie est ici mal comprise en raison d' un manque de datation, mais la formation est considérée comme faisant partie de la glaciation Marinoenne (Halverson *et al.*, 2005). Les barytines sont principalement présentes sous forme massives ou litées, avec quelques dépôts sous forme de lames. Peu de datations ou d'études isotopiques ont été faites sur ces caps carbonates. Des études isotopiques du Strontium et du Rubidium ont été aussi réalisés, ce qui permet de dater les diagenèses, dont les âges varient entre 610 et 630Ma (Gorokhov *et al.*, 2001). On peut également trouver des valeurs $\delta^{87/86}$ Sr parmi les formations voisines de Nyborg (Slagstad *et al.*, 2006), dont les résultats oscillent entre 0.70653 et 0.70909.

1.2.4 Échantillons chinois

Les échantillons chinois proviennent de la formation Duoshantuo, localisée dans la province d'Hubei en Chine et ont été prélevés par Justin Hayles.

La formation observée en Chine se situe au-dessus de la formation de diamicrtite Nantuo (Figure 5), elle est constituée d'une formation micrite dolomitique kartisée de 1,18 m, surplombée de schistes riches en phosphore avant de revenir à des phases dolomitiques. La formation présente ensuite onze séries distinctes de barytines avec de la dolomie entre chacune de ces séries. On retrouve par la suite des dépôts calcaires au-dessus de l'ensemble, mais en quantité inférieur à cinq mètres de hauteur. Dans cette formation, il semble que la partie carbonatée soit beaucoup moins importante que dans les autres caps carbonates. Les barytines présentes sont principalement des cristaux lamellaires (Killingsworth *et al.*, 2013).

Peu de datations et d'études isotopiques ont été faites sur ces caps carbonates. Les isotopes du Sr n'ont pas été documentés lors des études antérieures.

1.2.5 Échantillons sud-africains

Les échantillons sud-africains proviennent de la province de Aggeneys-Gamsberg et ont été prélevés par Benjamin Eikman – Gams (Crockford *et al.*, 2017). La région dont proviennent ces échantillons est celle qui, parmi toutes les autres régions observées dans cette étude, a subi le plus de remaniements et de métamorphismes. On trouve ici du métamorphisme de moyen à haut grade, soit de 630-695°C et 2.8-6kb (McClung *et al.*, 2007). Les strates riches en barytine sont situées entre les formations de quartzite de Broken Hill (plus vieille) et la formation de Gams (plus jeune). La région présente de nombreuses déformations et inclusions ultérieures (gneiss, leuco-granites...) (McClung *et al.*, 2007).

Figure 1-7 : Diagramme schématique illustrant les formations hydrothermales de barytine au sein de la province Aggeneys-Gamsberg (McClung *et al.*, 2007)

Les barytines observées sont dans une formation de fer et sulfure. La morphologie de ces barytines est principalement en lit, car elles se forment en même temps que des formations de fer remaniées, adoptant ainsi leurs structures. On peut ainsi voir, comme le montre la Figure 6, que certaines formations de la région contiennent des barytines avec une minéralogie variée. On y trouve par exemple de la magnétite, des aluminosilicates, de l'hématite et de la calcite ou dolomie.

1.2.6 Échantillons australiens

Les échantillons australiens, prélevés par Yuichiro Ueno, proviennent de la formation Dresser du dôme North Pôle, localisé dans le groupe de Warrawoona (dans l'Ouest de Australie).

Ce site est intéressant, car il présente un bon paléo enregistrement de dépôts à environ 3,48 Ga. La formation Dresser (Figure 7) est située entre le groupe de Coonterunah (3,51 Ga) et la formation du mont Ada et Duffer (3,47 Ga), contient les plus anciens macro-fossiles connus sous la forme de stromatolites et d'autres preuves de vie microbienne. La barytine ainsi que les stromatolites observés sur le site ne sont pas dus à un cap carbonate mais à une caldeira qui a permis de créer un environnement similaire. Cette dernière est composée d'un bassin peu profond avec un apport de température (25-35° en surface) et des fluides hydrothermaux (Vankranendonk *et al.*, 2008). Ces fluides hydrothermaux sont le résultat de système de failles venant perturber les carbonates et grès initiaux, remplaçant ainsi la minéralogie pré existante avec notamment des silicates, de la barytine et de la pyrite (McCulloch 1994, Wacey *et al.* 2015).

Pour ce site, de nombreuses études isotopiques ont été réalisées. Cependant, seulement un faible nombre d'entre elles utilisent le Sr uniquement Sr radiogénique. On trouve cependant des rapports d'environ 0.700546 ± 0.000008 pour des barytines de 3,5Ga, trouvés dans les barytines (Henshall, 2016; McCulloch, 1994).

Figure 1-8 : Stratigraphie de la formation Dresser (Wacey et al., 2015)

1.3 Le strontium

Le strontium (Sr) est un élément dont le numéro atomique est 37. Il possède quatre isotopes principaux et stables dans la nature. Ces derniers sont ⁸⁴ Sr (0,56 %), ⁸⁶ Sr (9,86 %), ⁸⁷ Sr (7,0 %) et ⁸⁸ Sr (82,58 %). Ces isotopes sont présents naturellement dans toute la lithosphère où ils y sont concentrés par rapport au manteau.

Le Sr, du fait de sa valence (+2) et de son rayon ionique, se substitue facilement avec plusieurs éléments, dont le calcium et le baryum. Ces substitutions se font en faibles quantités dans des minéraux tels que des carbonates (e.g., calcite, dolomite), des sulfates (baryte) et des silicates (plagioclase, pyroxènes) (Dickin, 2018).

Parmi les isotopes du Sr, seul le ⁸⁷Sr est radiogénique, il produit par désintégration radioactive du rubidium (Rb) 87, un métal alcalin dont la demie vie est de 4.88×10^{10} ans (Dickin, 2018). Cette désintégration est une désintégration β -. Le ⁸⁷Sr trouvé dans les minéraux peut donc avoir deux sources distinctes : la désintégration du rubidium 87 présent dans la roche, ou l'apport en ⁸⁷Sr présent dans l'environnement.

Cela permet ainsi d'observer les comportements des rapports isotopiques radiogéniques ($^{87/86}$ Sr) qui sont dépendants sur la source du Sr par rapport aux comportements des rapports des isotopes stables ($\delta^{88/86}$ Sr) qui sont dépendants de la masse isotopique. L'objectif final de ce procédé est de parvenir à mieux comprendre les changements qui ont affecté nos échantillons.

Les rapports radiogéniques (^{87/86} Sr) ont été mesurés afin de voir si nos résultats correspondent aux résultats d'archives pour les mêmes périodes. Cela nous permettra aussi de voir comment évoluent les environnements de dépôt. Mais, comme dit précédemment, le ⁸⁷Sr possède deux sources possibles, dont une qui évolue au cours du temps. Cependant, le Rb possède des propriétés de valence (+1) et de rayon ionique différents de celles du Sr, ce qui fait que les roches riches en Sr sont généralement pauvres en Rb. Les ratios de Sr observés dans nos échantillons changent, au final, très peu avec le temps géologique (Dickin, 2018).

L'analyse des deux rapports isotopiques, les isotopes radiogéniques ($^{87/86}$ Sr) et stables ($\delta^{88/86}$ Sr), permet de voir comment les sources de Sr et les mécanismes d'incorporation de Sr dans la barytine ont changé avec le temps dans les océans.

2 CHAPITRE II

MATÉRIEL ET MÉTHODE

2.1 Protocole

Le but du protocole établi est de récupérer le Sr afin d'en analyser les isotopes radiogéniques et stables.

Quelques dizaines de grammes de barytine ont été écrasés pour faire de la poudre avec un broyeur Elamel, pendant une minute par échantillon, ce qui permet d'obtenir une poudre fine et uniforme. Afin d'assurer une absence de contamination, le broyeur a été nettoyé avec du quartz et rincé à l'alcool entre chaque échantillon, ainsi qu'avant et après l'utilisation de la machine.

Les poudres ont été ensuite lavées dans plusieurs acides (Acide acétique et HNO₃ 3N) afin d'ôter tout autre minéral que la barytine de nos échantillons. En effet, la barytine ne réagit que très peu à la plupart des acides (Widanagamage *et al.*, 2014), ce qui permet de faire des lavages successifs afin de dissoudre des impuretés telles que des carbonates, du calcaire, des silicates ou des sulfures, et ce aussi bien dans qu'autours de l'échantillon.

Le premier lavage est un lavage d'une heure à l'acide acétique, suivi par un passage de 30 minutes à l' H_2O MQ. Ce lavage est répété environ trois à quatre fois, jusqu'à ce qu'il n'y ait plus de réactions entre l'acide et l'échantillon. L'échantillon est ensuite rincé avec l'eau MQ et ensuite lavé une fois avec du HNO₃ 6 N afin d'assurer

la suppression de toutes les impuretés. Entre chaque passage eau-acide, les échantillons sont passés à la centrifugeuse, afin de limiter au maximum la perte d'échantillon et de retirer le plus possible de fluide. Une fois le processus terminé, L'échantillon est désormais prêt pour l'étape de la digestion (Widanagamage *et al.*, 2014).

Les sulfates telless que les barytines sont particulièrement résistantes aux acides minéraux (HCl, HNO₃, HF), ce qui pose un problème pour la digestion. Bien que la barytine soit soluble dans l'acide sulfurique (H₂SO₄), celui-ci est un acide particulièrement dangereux, et l'évaporation des échantillons dans cet acide continuerait de produire des sulfates insolubles. Par conséquent, la possibilité d'utiliser cet acide est à exclure. Dans une étude des isotopes de Sr dans des barytines, Widanagamage et al. (2014) a utilisé une méthode de digestion d'échantillons permettant un échange des ions. Pour cela, il faut utiliser la résine MCI CK09P fabriquée par Mitsubishi Chemical Industries, en suivant les recommandations de Widanagamage et al. (2014) et Griffith et al. (2008). Cette résine a pour but de digérer la poudre et de n'en récupérer que les cations. Un poids de 60 mg de poudre est mis dans un bécher de téflon avec 0,5 ml de résine et le mélange est recouvert avec de l'eau MQ. Les béchers ont été chauffés à 90 °C pendant 4 jours afin d'avoir une bonne récupération des cations. Pendant ce temps, la résine peut dissoudre le matériel. De plus, elle va absorber les cations et rejeter les anions dans le milieu. Chaque jour, l'eau est décantée et remplacée afin que les réactions entre la résine et l'échantillon continuent selon le protocole décrit par Widanagamage et al. (2014).

La résine dans le bécher (avec les cations et Sr) est récupérée et mise dans des colonnes chromographiques d'un volume de 2 ml. La résine est ensuite rincée à l'eau, à raison de deux à trois fois le volume de résine afin d'évacuer la totalité des anions. La quantité d'eau permet de s'assurer qu'il ne reste plus que des cations dans la résine. Une fois rincés avec l'eau, les cations dans la résine sont élués grâce de l'acide HCl 6 N Sb (une fois encore deux à trois fois le volume de résine). La solution des cations

récupérée est évaporée à sec. Ce volume assure que l'on a récupéré la totalité de l'échantillon.

En préparation de la purification de Sr, les échantillons sont mis en solution avec 1 ml de HNO₃ 3N dans le bécher et sont laissés à reposer pendant une heure afin de dissoudre complètement les résidus. S'il reste des particules non dissoutes, un autre 1 ml de HNO₃ 3N est rajouté et l'échantillon est chauffé pour une autre période de trente à quarante-cinq minutes.

Le Sr est purifié à partir de la résine Sr Spec, qui est fabriquée par Eichrom Laboratoires. Avant de pouvoir y mettre la résine, les colonnes sont lavées avec un volume d'HCl 6N SB et puis rincées avec un volume d'H₂O MQ. Une fois lavées, les colonnes sont remplies avec 150 μ l de résine Sr Spec. La résine est rincée avec de l'HCl 6N sb, puis deux fois avec de l'H₂O MQ avant d'être équilibrée avec 1,5 ml d'acide HNO₃ 3 N.

L'échantillon dans une solution de 1 ml HNO3 est chargé dans des aliquotes de 0,25 ml. Une fois chargée avec l'échantillon, la colonne est rincée quatre fois avec 0,5 ml de HNO₃ 3N pour éluer tous les cations sauf le Sr. Le Sr est récupéré avec quatre fois 0.5 ml d'eau et les béchers sont mis à chauffer sur une plaque chauffante (100 °C) jusqu'à l'évaporation du liquide. Les échantillons sont ainsi prêts pour l'analyse.

Les échantillons radiogéniques suivent aussi ce protocole, avec des échantillons de l'ordre de 0.01g avant dissolution à l'acide. Pour les analyses des isotopes stables, les échantillons doivent être de 1000ng de Sr.

Une fois que la concentration de Sr est mesuré dans les échantillons, 1000ng est prélevé. La solution est ensuite séparée en deux parties de 500ng et un montant approprié, basé sur la concentration du double spike ⁸⁴Sr-⁸⁷Sr, est ajouté à l'une des moitiés. Ce double spike est utilisé afin d'optimiser la propagation de l'erreur durant

le processus de déconvolution des données obtenues (Pearce et al 2015). Les deux échantillons créés suivent ensuite le même protocole que décrit plus haut.

2.2 Problèmes de protocole et modifications

La méthode expliquée ci-dessus fonctionne très bien pour les analyses radiogéniques préliminaires qui n'ont pas de concentration précise et qui sont des analyses courtes (100 analyses de 4.194 secondes chacune, soit un total de quinze minutes). Pour des analyses des isotopes stables qui demandent 500ng de Sr et une série de 540 analyses (trois heures d'analyse), le protocole ci-dessus ne permet pas de récuperer assez de Sr. De plus, chaque analyse des isotopes stables nécessite les mêmes conditions analytiques dans le but de minimiser le fractionnement isotopique analytique.

Par exemple, lorsque les premières analyses ont été effectuées avec le premier protocole, les standards et les échantillons ne donnaient aucun résultat : Soit le signal était trop faible, soit le signal ne se maintenait pas plus de 30 minutes lors de l'analyse.

Les premières modifications qui ont été faites consistent à faire un lavage supplémentaire des poudres. Ainsi, après des lavages successifs à l'acide acétique, les poudres ont été lavées avec de l'HNO₃ 3N afin de dissoudre les dernières traces de carbonates, et d'assurer ainsi le lessivage des silicates présents.

Nous avons ensuite augmenté le temps de digestion de la poudre dans la résine CK09P de quatre à six jours. Comme vu dans Widanagamage et al (2014), cette étape avait pour but d'augmenter le temps de réaction et donc d'améliorer le rendement. Nous avions sélectionné 4 jours, car il était démontré que la meilleure performance

était entre trois et quatre jours, et que le temps après cela ne permettait que de légèrement augmenter la concentration des ions récupérés. L'augmentation du temps a donc était faite afin de s'assurer d'avoir le maximum des ions en solutions et donc de pouvoir augmenter le rendement de récupération du Sr

Ces changements n'ont cependant pas permis d'obtenir des résultats satisfaisants. Nous avons remarqué malgré tout une légère augmentation du temps d'analyse, mais sans que cela ne nous donne des résultats utilisables.

Nous avons ensuite effectué un changement du type de colonnes utilisées, passant de colonnes très fines nécessitant 150 μ l de résine Sr spec à des colonnes plus larges nécessitant 500 μ l de résine. Ce changement a été proposé par André Poirier, responsable du laboratoire du Geotop. Le but de cette modification est de changer l'arrangement des particules composant la résine. L'augmentation de quantité pourrait aussi permettre de récupérer plus de Sr. Cependant, cette hypothèse semble peu probable, car on pouvait avec cette configuration récupérer plus de Sr dans le cas des analyses d'isotopes radiogéniques.

Une fois que cela a été mis en place, nous avons enfin obtenu des résultats pour les standards passant par la chimie. Cependant les échantillons venant des barytines ne fournissaient toujours aucun résultat.

À la suite de cette réalisation, nous avons utilisé un microscope électronique à balayage (MEB) Hitachi, modèle S-3400N type II. Cet appareil a permis d'étudier en détail les dépôts solides sur les filaments de tantale (Figure 8). Une très forte concentration de baryum (Ba) a ainsi été observée à la place du Sr espéré. Ces résultats ont été confirmés à l'ICPMS, donnant des concentrations de Ba plus de cent fois supérieures à celle de Sr.

Figure 2-1 : Résultat des observations au MEB

Pour contrevenir à ce problème, nous avons donc utilisé du HNO3 8N dans la totalité des colonnes Sr spec. Cette modification provient des suggestions d'utilisation de la part du fabricant de la résine. Des analyses ICPMS ultérieures ont permis de vérifier que la méthode était bien efficace pour supprimer le plus de Ba possible. Cependant, afin d'avoir le moins d'impureté avant l'analyse, nous avons décidé de faire passer les échantillons dans deux colonnes successives.

Les dernières modifications ont enfin permis d'obtenir des résultats stables satisfaisants, et les valeurs analytiques discutées ci-après.
2.3 La spectrométrie de masse

Afin d'analyser les échantillons, nous avons utilisé un spectromètre de masse Thermal Ionisation Mass Spectrometer (TIMS) de type Triton plus. Pour l'analyse, les échantillons doivent être mis sur des filaments de Rhénium (Re) dégazés.

En préparation de la charge d'un échantillon sur le filament, ce dernier est inséré dans la machine prévue pour le montage. Le voltage est d'abord monté à 0.8A et de la paraffine est appliquée de part et d'autre du filament afin de créer un barrage pour contenir l'échantillon sur le filament et de faire disparaître les effet de réservoir (Charlier *et al.*, 2006). Après cela, une goutte d'activateur au tantale (Ta) (Birck, 1986) est évaporée entre les barrages. Notre échantillon est sous forme solide après les diverses étapes décrites ci-dessus. Pour le transmettre sur le filament, 5 µl d'HCl 6N sont versés sur l'échantillon. Après avoir gratté avec une pipette afin de bien mettre en solution notre échantillon, il est ensuite déposé sur le filament. Le filament est chauffé jusqu'à évaporation complète en élevant le voltage à 1,2A. Il peut être nécessaire de déposer l'échantillon en plusieurs fois afin d'éviter un débordement. Une fois l'évaporation effectuée, une autre couche d'activateur au tantale est déposée, puis évaporée. La manipulation se finit par un chauffage au rouge du filament et de l'échantillon, puis un retour immédiat à 0A. Ces étapes sont à refaire pour chaque échantillon ainsi que pour les standards.

Une fois le montage effectué, les échantillons sont ionisés avec un spectromètre de masse à ionisation thermique, de la compagnie Thermo Fischer Scientific®, de modèle Triton Plus. Il possède le mode multi-collection avec cages de Faraday (avec des résistances de $10^{11} \Omega$ comme amplificateur)

les échantillons sont installés sur un carrousel afin d'être insérés dans le TIMS. Cet appareil permet de chauffer les échantillons à l'ionisation et former un faisceau des ions qui sont accélérés par un voltage de 10 KV. Ces faisceaux d'ions sont séparés dans des faisceaux de masses différentes quand ils traversent un aimant et la courbature dans le tube de vol. Les ions sont ensuite captés dans des cages de faraday prépositionnées pour les analyses du Sr.

Des tests de blancs (concentration de Sr présente dans l'environnement aussi appelé bruit de fond de Sr) ont été effectués afin d'avoir le niveau de contamination au Sr présent dans nos instruments et acides. Pour cela, une faible quantité de spike de ⁸⁴Sr a été mis dans un bécher avec les mêmes acides que ceux utilisés pour la digestion des échantillons décrite plus haut. Le résultat obtenu montre des concentrations de l'ordre de 600 pg, ce qui est bien en dessous des concentrations utilisées (500 ng). Ce test a donc permis de s'assurer que nous n'observions pas de contamination extérieure dans nos échantillons.

L'analyse se fait en mode statique et lorsque le voltage atteint les 6V de ⁸⁸Sr pour 54 cycles de 10 blocs, ce qui donne ainsi 540 analyses (Pearce *et al.*, 2015). Pour les analyses radiogéniques, un standard de laboratoire (NBS 987) est toujours rajouté. Ce dernier à une valeur acceptée de $0.710250 (\pm 0,00001, 2\sigma, n = 5)$. Si une différence à cette valeur est observée lors de nos analyses, il est nécessaire de corriger aussi bien le standard que la totalité des échantillons. Cette différence est souvent de l'ordre de 1.10^{-6} . Les analyses radiogéniques ont besoin d'être corrigées pour le fractionnement à partir de la valeur idéale du rapport ^{84/86}Sr (0.1194) (Nier, 1938). Cette normalisation est effectuée par le programme au cours de l'analyse. Pour ce qui est des analyses stables, aucune correction de fractionnement n'est appliquée pendant l'analyse (Stevenson et al., 2018). Une fois les résultats obtenus, il faut déconvoluer les résultats afin de limiter le fractionnement et les erreurs. Cette déconvolution se fait avec les résultats stables et radiogéniques de chaque échantillon, donnant un résultat pouvant être utilisé dans les interprétations.

3 CHAPITRE III

RESULTATS

3.1 Les rapports isotopiques radiogéniques et concentrations de Sr

Les résultats obtenus sont trouvés dans le Tableau 1. Grâce à ces résultats, on obtient des informations sur les rapports radiogéniques, ce qui permet de voir l'évolution des rapports isotopiques et aussi d'obtenir les concentrations de Sr dans chaque échantillon.

Les concentrations de Sr dans les barytes varient de 0,28 à 38,6 ppm. Certains échantillons (MF1505 0.15 et PCSC 4) ont des concentrations de Sr très faibles, ce qui peut venir de plusieurs facteurs. En effet, l'échantillon peut contenir des traces des silicates, ce qui donnerait ainsi des concentrations en Sr beaucoup plus faibles que la barytine. Malheureusement, compte tenu de la faible quantité d'échantillons, il n'est pas possible de faire des études aux rayons X afin de déterminer la minéralogie exacte des échantillons.

Les rapports radiogéniques ^{87/86} Sr varient entre 0,700567 et 0,717163. Cependant, les rapports les plus faibles proviennent uniquement d'Australie (archéens) et de l'Afrique du Sud (protérozoïque). Les échantillons Néoprotérozoïque donnent des valeurs entre 0,707853 et 0,713950.

Les échantillons du Canada ont des concentrations de 25,2 à 32,0 ppm, et donnent des rapports ^{87/86}Sr de 0,707869 et 0,708305. Les échantillons Norvégien,

quant à eux, ont des concentrations de 0,93 à 17,0 ppm et les rapports ^{87/86} Sr varient entre 0,713950 et 0,708167. Les échantillons chinois donnent des concentrations de Sr de 0,28 à 37,8 ppm et des rapports ^{87/86}Sr de 0,707853 à 0,712146. Alors que les échantillons brésiliens ont des valeurs allant de 20,6 à 38,6 ppm, ainsi que des rapports ^{87/86}Sr de 0,709640 à 0,71981. Les échantillons d'Afrique du Sud ont des valeurs de 8,8 à 14,2 ppm, et des rapports ^{87/86}Sr dont les valeurs varient entre de 0,700638 et 0,700686. Enfin, les échantillons australiens vont de 3,54 à 31,1 ppm et ont des rapports ^{87/86}Sr de 0,700567 et 0,717163.

r Âge (Ma)	635	635	635	635	635	635	635	635	635	635	635	635	635	635	1900	1900	3500	3500	3500	3500	3500	and
Erreur	0,01		0,01	0,04	0,01		0,02	0,02			0,02		0,03	0,02			0,01	0,01	0,01		0,02	and the second s
§ ^{88/86} Sr	-0,12		-0,04	-0,17	-0,13		-0,09	0,13			0,13		-0,00	-0,06			-0,02	-0,12	-0,11		-0,12	
Erreur	0,06		0,07	0,09	0,07		0,07	0,08			0,07		0,10	0,06			0,05	0,05	0,07		0,09	Contraction of the local division of the loc
884 Sr	0,29		0,07	0,20	0, 14		0,25	-0,03			-0,02		-0,11	0,12			0,05	0,10	0,20		0,16	
Erreur	0,00008	0,000005	0,000007	0,000007	0,000062	0,000079	0,000006	0,000008	0,000017	0,00000,0	0,000001	0.000018	0,000021	0,000064	0,000013	0,000010	0,000008	0,000012	0,000016	0,000012	0,000002	
^{87/86} Sr corrigés	0,708201	0,708167	0,708073	0,707913	0,708326	0,708232	0,707742	0,709194	0,712146	0,710086	0,709649	0,711981	0,710038	0,710207	0,700638	0,700686	0,700568	0,700538	0,700930	0,717163	0,700633	
Erreur	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Concentration Sr (ppm)	0,93	17,0	30,7	25,2	32,0	37,8	26,3	13,5	0,28	33,5	24,7	20,6	31,1	38,6	14,2	8,86	15,1	28,0	20,3	3,54	31,1	
Échantillon	MF1501 0,15	MF1505 0,6	PCRT S2	PCRT S3	PCRT S4	PCSC 1	PCSC 2	PCSC 3	PCSC 4	PCSL 1	PCSL 2+3	PCSL 4	PCSL 6+7	PCSL 8+9	PCBE 2	PCBE 4	97 NB 10	Dresser	PCNP 2	PCMP 2	PCNP 3	
		INOTVEGE		Canada				Cuine		0		Brésil			Afrique du	Sud			A	Australie		

Tableau 3-1 : Données radiogéniques obtenues

On observe dans la Figure 9 ci-dessous que les rapports ^{87/86}Sr augmentent légèrement aux faibles concentrations de Sr. Cette tendance serait possiblement due à la remobilisation et/ou altération du Sr dans la baryte. Dans le but d'éviter de travailler avec des échantillons dont les isotopes de Sr sont possiblement perturbés, nous n'avons pas analysé les isotopes stables de Sr dans les rapports de 87/86Sr augmentent en corrélation avec la concentration (soit en bas de 15ppm). Cela est également venue de la quantité d'échantillons, qui ne permettais pas d'analyser ceux avec des concentrations trop proches de zéro.

Figure 3-1 : Rapport isotopiques radiogénique du Sr en fonction de la concentration de Strontium

3.2 Les compositions isotopiques stables du Sr

Deux types d'étalons ont été analysés : NIST et SARM-40. Les NIST sont des fractions de l'étalon de Sr NBS-987 qui sont mesurés pour les isotopes stables et qui devraient livrer des valeurs de zéro (0), car toutes les valeurs de $\delta^{88/86}$ Sr et $\delta^{84/86}$ Sr sont normalisées aux valeurs de NIST. Ces δ sont calculés de la manière suivante :

$$\delta^{88/86}$$
Sr =(((88 Sr' 86 Sr)_{échantillon}/(88 Sr' 86 Sr)_{standard})-1) * 1000

$$\delta^{84/86}$$
Sr =(((84 Sr/ 86 Sr)_{échantillon}/(84 Sr/ 86 Sr)_{standard})-1) * 1000

Le SARM-40 est une carbonatite qui est analysée pour s'assurer que le protocole analytique est capable de reproduire des valeurs des isotopes stables pour le même échantillon de façon répétitive. Les analyses de SARM-40 ont livré des valeurs de 0,702946 \pm 0.000005 pour les deux analyses (Tableau 2), ce qui permet d'observer des résultats précis et de constater que les analyses sont bien reproductibles. Les résultats se rapprochent également de notre moyenne de laboratoire pour SARM-40, qui est de 0.702938 \pm 0.000004 (basé sur une vingtaine d'analyses distinctes en plus de celle présenté ici).

Comme on peut le voir sur le tableau 2, les analyses de NIST ont donné des valeurs de $\delta^{84/86}$ Sr de 0 à 0,25 et une moyenne de 0,09 ± 0.003. Pour les valeurs de $\delta^{88/86}$ Sr, on a des valeurs qui vont de -0.087 à 0.01 avec une moyenne de -0.02 ± 0.000006. Les valeurs de δ^{88} et δ^{84} sont proche de zéro ce qui indique qu'il y n'avait pas de fractionnement important des isotopes de Sr pendant la chimie. Les NIST ont donné des rapports ^{87/86}Sr, dont les valeurs sont entre de 0.710249 et 0.710264 avec une moyenne de 0.710255. Cette moyenne est proche des valeurs de NBS-987 citées dans la littérature (0.71250), mais parce que les valeurs de NBS-987 et ceux des NIST

varient d'une session analytique à l'autre, nous avons normalisé tous les rapports ^{87/86}Sr des échantillons à une valeur de NBS-987/NIST de 0.710250.

Echantillon	Date	87/8	⁶ Sr	δ84 pe ι	· mil	δ88 per	mil
		Corrigé	2 s.e.	Corrigé	2 s.e.	Corrigé	2 s.e
NIST 1	Janvier	0,710252	0,000007	0,17	0,08	-0,04	0,02
NIST 2	Janvier	0,710247	0,000006	0,06	0,09	-0,04	0,05
NIST 1	Février	0,710251	0,000006	0,14	0,09	-0,12	0,04
NIST 2	Février	0,710247	0,000006	-0,03	0,08	0,04	0,04
NIST 1	Mars	0,710245	0,000005	0,13	0,06	-0,08	0,03
NIST 2	Mars	0,710245	0,000005	-0,02	0,07	-0,04	0,03
NIST 1	Mai	0,710238	0,000004	0,25	0,05	-0,06	0,02
NIST 2	Mai	0,710261	0,000004	0,00	0,04	0,02	0,02
SARM-40	Mars	0,702946	0,000006	-0,18	0,07	0,29	0,01
SARM-40	Mai	0,702947	0,000005	-0,18	0,05	0,25	0,01

Tableau 3-2 : Étalon mesuré pour les isotopes stables durant des changements effectués dans la méthode

Les valeur NIST présentées ici sont non normalisée tandis que les valeur SARM sont normalisée. Les valeurs de janvier et février proviennent des diverses modifications apportées à la méthode. Les valeurs à partir de mars sont obtenues avec la nouvelle méthode.

L'évaluation de la dépendance du fractionnement à la masse des deux standards s'est faite à partir de la Figure 10. Tout d'abord, Il est possible d'observer que les mesures SARM-40, qui sont très précises, présentent peu de variations. De ce fait, on peut conclure que la dispersion observée pour les étalons de NIST viendrait du fait que certains de nos NIST ont été analysés pendant des problèmes de protocole chimique, ainsi que lors de la résolution de ces derniers. Une légère variation par rapport au valeur initiale est ainsi observée. Tous les échantillons ont été mesurés après le règlement du protocole chimique, le fractionnement observé dans les échantillons est d'origine géologique, et non d'un fractionnement dans la chimie.

Figure 3-2 : Standards de laboratoire stable et échantillon par rapport au fractionnement dépendant de la masse théorique. En gris, les trois échantillons au comportement jugé indépendant de la masse.

Les valeurs obtenues pour les standards montrent une constance de résultats. De plus, ces résultats sont conformes avec les standards interne du laboratoire (0,710250), ce qui nous permet d'affirmer que les résultats que nous avons obtenus sont justes.

			87/86	Sr	δ84 per	mil	δ88 per	mil
Localisation	Âge	Echantillon	Corrected	2 s.e.	Corrected	2 s.e.	Corrected	2 s.e.
		PCRT S2	0,708063	0,000007	0,07	0,07	-0,04	0,01
Canada	635	PCRT S4	0,708316	0,000006	0,14	0,07	-0,13	0,01
		PCRT S3	0,707903	0,000007	0,20	0,09	-0,17	0,04
		PCSC 3	0,709261	0,000007	-0,03	0,08	0,13	0,02
		PCSC 2	0,707732	0,000006	0,25	0,07	-0,09	0,02
Brésil	610	PCSC 2 +3	0,709639	0,000006	-0,02	0,07	0,13	0,02
		PCSC 6 +7	0,710028	0,000008	-0,11	0,10	0,00	0,03
		PCSC 8 +9	0,710197	0,000006	0,12	0,06	-0,06	0,02
Norvège	635	MF 1505	0,708190	0,000006	0,29	0,06	-0,12	0,01
		97 NB 10	0,700558	0,000005	0,05	0,06	-0,02	0,01
Austrolio	2500	DRESSER	0,700528	0,000005	0,10	0,05	-0,12	0,01
Australie	3300	PCNP 2	0,700920	0,000006	0,19	0,07	-0,11	0,01
		PCNP 3	0,700623	0,000007	0,16	0,09	-0,12	0,02

Tableau 3-3 : Résultats stables des échantillons par localisation

Les résultats montrés dans le Tableau 3 ont tous été obtenus après que les problèmes analytiques aient été réglés. Les échantillons ont donné des valeurs de $\delta^{88/86}$ Sr allant de -0.12 à 0.13 et des valeurs de $\delta^{84/86}$ Sr allant de -0.03 à 0.20. Le Tableau 4 montre les moyennes obtenues lorsque les échantillons sont séparés selon leurs âges.

	87.	/86	δ8	4	δ88	3
Moyenne	Valeurs	Erreur	Valeurs	Erreur	Valeurs	Erreur
Totalité des						
échantillons	0,706304	0,000006	0,1	0,07	-0,06	0,01
Néoprotérozoïque	0,708814	0,000006	0,1	0,07	-0,04	0,02
Archéen	0,700657	0,000006	0,1	0,06	-0,09	0,01

Tableau 3-4 : Moyennes des valeurs des échantillons en fonction de leurs âges

Les résultats semblent suivre un fractionnement en fonction de la masse. Les rapports de $\delta^{84/86}$ Sr et $\delta^{88/86}$ Sr des échantillons et des étalons semble assez proche de la droite théorique de fractionnement (Figure 11). Certains échantillons (PCSL 2 et PCSL 2+3) semblaient montrer un fractionnement indépendant de la masse. Cependant, comme nous n'arrivions pas à trouver une explication logique à ce comportement, nous avons repassé ces échantillons dans des mesures ultérieures. On peut voir les échantillons avec ce comportement ainsi que les nouveaux résultats dans la Figure 12. Ces nouveaux résultats montrent que les problèmes semblent bien venir de la mesure et non des échantillons, ce qui permet de supprimer les premiers résultats incompréhensibles. Les résultats ont donc été remplacés dans les tableaux ci-dessus.

Figure 3-3 : Rapports isotopiques stables

Figure 3-4 : Nouvelles valeurs pour les échantillons montrant un fractionnement indépendant de la masse (valeur venant des échantillons extrême, tableau 3)

Il est possible de voir au travers de la Figure 11 la manière dont se répartissent les échantillons en fonction de la droite de fractionnement dépendant de la masse standard. Il faut également souligner que ce fractionnement est théorique entre les deux isotopes du Sr. On peut ainsi remarquer que nos échantillons semblent assez bien suivre le fractionnement dépendant de la masse, ce qui permet de confirmer la justesse de nos résultats. Lorsque l'on regarde les régions d'origines de nos échantillons séparément, il est difficile d'isoler convenablement chacune. Malgré tout, il est possible de constater que les échantillons brésiliens semblent avoir les valeurs δ^{84} Sr le plus élevées et ceux Canadiens des δ^{84} Sr plus faibles.

Les changements que l'on a pu observer (figure 12), semblent assez drastiques. On observe une variation de 0.2‰ pour $\delta^{88/86}$ Sr et 0.4‰ pour δ^{84} Sr. Cela pourrais supposer que si chaque échantillon refait une chimie complète, il serait possible d'avoir des larges variations entre nos résultats. Cependant, les échantillons qui ont été sélectionnés par leur comportement sont tous issues de la première série d'analyses ayant réussi. Entre la première et la seconde série d'analyses (faites en janvier le mars respectivement), nous avons changé légèrement le protocole (plus de dissolution à l'acide pour permettre une meilleure ségrégation du Sr). De plus les erreurs possibles de la 1^{ère} série d'analyse étaient également visibles sur les standards. Cela nous permet de limiter les changements seulement à ces échantillons et de supposer que les autres résultats ne montrerais pas ou très peu de changement dans leurs rapports isotopiques.

4 CHAPITRE IV

DISCUSSION

4.1 Les résultats par rapport à l'eau de mer

Afin de vérifier la validité des résultats radiogéniques obtenus et de voir si la barytine et les carbonates sont bien capables de livrer le même rapport de ^{87/86}Sr de l'eau de mer aux périodes échantillonnées, les ^{87/86}Sr mesurés sur les barytines ont été comparés avec ceux trouvés dans les carbonates. Les courbes du ^{86/87}Sr marin dans la littérature vont de 0 à 800-900 Ma (Veizer *et al.* 1999; Peterman *et al.* 1970), ce qui comprend la période d'étude de nos échantillons Marinoens.

Ces courbes ont été construites par accumulation des rapports de ^{87/86}Sr sur des fossiles et des carbonates ainsi que des apport silicaté (Veizer *et al.*, 1999). Pour obtenir ces résultats, il convient de prendre les données Sr obtenues, et de retenir le point le plus bas de l'ensemble comme étant le ration $\delta^{87/86}$ Sr marin. On prend systématiquement le résultat le plus bas car le Sr retrouvé dans les sédiments vient de deux sources principales, à savoir l'apport mantellique (à partir de l'érosion des roches silicatées volcaniques et la contribution des fluides hydrothermales) et l'apport continental (à partir de l'érosion des roches silicatées continentales). Les rapports ^{87/86}Sr des roches continentales sont beaucoup plus radiogéniques que les rapports mantelliques, et la courbe de l'eau de mer est un mélange de ces deux sources. Cette différence vient de la différentiation de la croute terrestre. Cependant, les rapports plus radiogéniques peuvent venir de plusieurs explications, comme notamment la présence des traces des silicates dans les calcaires, ce qui peut augmenter les rapports de $\delta^{87/86}$ Sr en raison des fortes concentrations de Rb dans des argiles, dont les valeurs peuvent dépasser 0,900 (Gorokhov *et al.*, 2001). Ainsi, la dissolution et re-déposition des barytines ou calcaires secondaires pourrait échantillonner des fluides plus radiogéniques lors d'évènements d'altérations postérieurs aux dépôts, qui peuvent modifier les rapports isotopiques et donc donner des valeur ^{87/86}Sr plus élevées.

Comme on peut le voir sur la Figure 13, nos échantillons sont presque tous formés à partir de fluides ayant une contribution crustale. Ainsi, même si les apports en baryum et soufre sont principalement océaniques, le Sr montre bien que l'apport crustal est important lors de la création de ces minéraux. Seuls un échantillon chinois montre une valeur de $\delta^{87/86}$ Sr concordantes avec les valeurs de l'eau de mer indiquées par les analyses des calcaires. Les échantillons de Brésil sont dominés par des contributions continentales, tandis que ceux du Canada et de la Norvège ont des valeurs proches de l'eau de mer, mais au-dessus de ceux des calcaires pour la même période.

L'ensemble des rapports radiogéniques de Sr suggèrent que les barytines ont été formées dans un milieu de mélange entre des eux océaniques et des eaux douces d'origine continentale.

Figure 4-1 Rapports isotopiques des barytines en fonction du Sr marin

.

Lorsque que l'on regarde les plus vieux échantillons (Figure 14), on obtient des résultats peu vérifiables. Les comparaisons précédentes étaient effectuées sur des calcaires, ce qui n'est pas reproductible au vu de l'âge des échantillons. Cependant, la méthode fonctionne pour les échantillons Marinoen, laissant penser que les résultats sont bien indicatifs de l'eau de mer pour les périodes regardées. Si l'on ne retrouve pas le Sr marin, on peut au moins avoir une idée du maximum possible pour les ^{87/86}Sr marins aux périodes regardées, car la courbe du Sr marin se base toujours sur les résultats les plus bas trouvé pour chaque période.

4.2 Les résultats radiogéniques

Des valeurs de ^{87/86}Sr des carbonates (calcaire et dolomie) et des cap carbonates de la littérature ont été prises afin de faciliter une comparaison avec les échantillons de cette étude (Annexe 2). Cette comparaison indique que les rapports ^{87/86}Sr des barytines montrent la même variation que ceux des carbonates (Figure 15). Certaines des barytines ont des résultats moins radiogéniques que les données les plus extrêmes trouvés dans la littérature, mais cela peut provenir du nombre d'échantillons observés. Comme discuté plus haut, tous les résultats de la littérature semblent montrer une partie d'apport crustal lors de leur formation.

En se basant sur cette méthode, les barytines Marinoennes semblent correspondre aux valeurs citées pour des calcaires de la même époque. En effet, on trouve des ratios très proches de ceux de l'eau de mer, et pour d'autres nettement plus élevés, notamment les échantillons PCSC 2 et PCRT S3 (les deux points les plus haut pour la Chine et le Brésil respectivement). Les ratios plus élevés proviennent d'apports continentaux à la suite de l'érosion de la croûte continentale. On peut également voir que les échantillons brésiliens ont beaucoup plus d'apports continentaux par rapport aux autres séries analysées. A l'inverse, les trois autres séries (à savoir les échantillons chinois, norvégiens et canadiens) se rapprochent assez des valeurs acceptées pour l'eau de mer à leurs périodes.

On a également ajouté les échantillons analysés par l'étudiante Sarah Farell, lors de son projet de recherche de premier cycle au GEOTOP. Ces données ont été prélevées à Svalbard en Norvège dans une seule section datant de la glaciation Marinoenne. Dans cette étude également les rapport ^{87/86}Sr des calcaires de Svalbard tombent dans l'enveloppe des données pour les caps carbonates de l'époque Marinoenne, mais ils sont tous plus radiogéniques que la courbe de l'eau de mer.

Figure 4-3 : Rapport isotopique des barytines en fonction du Sr marin

4.3 Les résultats métamorphiques

Les rapports ^{87/86}Sr des échantillons les plus vieux, venant de la province de Aggeneys-Gamsberg (Afrique du Sud) et des formations de Dresser venant de North Pôle Dôme en Australie sont les plus faibles. Dans la Figure 14, les valeurs des rapports ^{87/86}Sr peuvent descendre jusqu'à 0.7005, ce qui vient du fait que les valeurs radiogéniques augmentent au cours du temps. En effet, ces derniers venaient de la désintégration du ⁸⁷Rb, qui entraîne une augmentation graduelle au cours du temps. Les valeurs les plus basses de ^{87/86}Sr mesurées pour la formation Dresser dans cette étude sont comparables aux valeurs trouvées à North Pôle Dôme par McCulloch (1994) et Henshall (2016) soit de 0.700513 à 0.700672.

En revanche, on constate de très forts rapports radiogéniques pour les échantillons de la formation Dresser. Ces résultats pourraient être expliqués par l'apport terrigène dans les échantillons, ainsi que par la remobilisation importante du ⁸⁷Sr continental. Une autre explication pourrait également venir du métamorphisme au faciès Zéolite (avec la remobilisation Sr) subi par les échantillons (McCulloch, 1994).

Figure 4-4 : Rapport ^{87/86}Sr des échantillons métamorphique en fonction des grands réservoirs terrestres à partir de McCulloch (1994) avec les donnée de Henshall (2016)

Les valeurs des isotopes radiogéniques métamorphiques de cette étude sont comparées avec ceux de McCulloch et Henshall sur la Figure 16 (tiré de McCulloch, 1994), en fonction de plusieurs grands réservoirs. Les trois lignes représentent l'évolution lunaire, la croûte Pilbara et l'évolution chondritique. Comme on peut le voir, les échantillons les moins radiogéniques australiens semblent assez similaires à l'évolution des Pilbara. En revanche, les trois échantillons les plus radiogéniques ne semblent pas appartenir à un ensemble. Cela pourrait s'expliquer par des échantillons enrichis en silicates ou micas, ou par une forte remobilisation postérieure entrainant l'enrichissement en ⁸⁷Sr. Malheureusement, comme nous avons utilisé la totalité de nos échantillons, il n'est pas possible de faire des tests supplémentaires pour aider à comprendre ces rapports aussi importants.

En ce qui concerne les échantillons sud-africains, il est possible, au vu des valeurs, qu'il y ait eu un problème au niveau des échantillons, comme un échange ou

un problème d'échantillonnage. En effet, les valeurs sud-africaines ressemblent énormément à celles de North-Pôle Dôme. S'il n'y a aucun problème dans l'échantillon, alors les valeurs obtenues donnent des valeurs inférieures à celle de Pilbara. L'une des hypothèses possibles serait que la source principale de ces barytines ne serait pas Mésoprotérozoïque, mais plus ancienne. En effet, si l'on regarde uniquement les valeurs, elles se rapprochent davantage de celles de l'âge de la formation Dresser.

4.4 Les résultats stables

L'interprétation des résultats stables est plus complexe, car la façon dont l'environnement affecte les rapports de $\delta^{88/86}$ Sr de barytine est beaucoup moins connue. Bien qu'il existe une étude montrant l'évolution du $\delta^{88/86}$ Sr de la barytine en fonction de l'environnement (Widanagamage *et al.*, 2014). Malheureusement, celle-ci a été effectuée en environnement contrôlé en laboratoire et était centrée sur la précipitation de la barytine ainsi que les conditions nécessaires à sa formation. Cela permet néanmoins de montrer que les cristaux ainsi formés sont très appauvris en $\delta^{88/86}$ Sr par rapport à l'eau de mer (+0.0.9‰ à -0.33‰, Widanagamage *et al.* 2014).

Il est cependant possible, à partir de la littérature, de faire quelques comparaisons avec nos données. Comme on peut voir dans la Figure 17, nos résultats sont largement moins radiogéniques que les résultats trouvés dans les eaux de mers et de rivières actuelles. Dans la mesure où tous les résultats de Pearce *et al.* (2015) viennent d'eau de rivière ou de fleuve, cela permet d'avoir une bonne idée des valeurs crustales actuelles. La plupart de ces valeurs sont plutôt centrées autour de 0,3. Ce qui peut devenir la moyenne globale terrestre (Pearce *et al.*, 2015), avec des valeurs allant

dans l'ensemble entre 0,24 et 0,40. Cependant, les valeurs de cette étude vont plutôt de -0.17 à 0.13 et sont donc plus faibles que la moyenne terrestre.

Figure 4-5 : Résultats radiogéniques en fonction des moyennes des eaux terrestres actuelles (adapté de Pearce *et al.* 2015), avec des données de Neymark *et al.* (2014). Ligne pointillée : Moyenne des valeurs silicaté terrestre. Zone grise, Gamme de valeurs des barytines artificielle trouvé dans Widanagamage *et al.* (2014)

Neymark *et al.* (2014) ont quant à eux analysé les isotopes stables du Sr venant des sulfates de Sr (Célestine). Les valeurs de $\delta^{88/86}$ Sr des sulfates de Neymark *et al.* (2014) semblent donc être plus proches des valeurs mesurées pour les barytines de cette

étude. On peut donc en conclure que les sulfates sont eux aussi appauvris par rapport aux rapports terrestres, et ils ont tendance à privilégier le ⁸⁶Sr dans leurs structures.

Cela peut laisser penser que nos résultats seraient le produit des eaux de leurs périodes respective, mais qu'ils sont également soumis à un fractionnement issu de la cristallisation des barytines.

Lorsque l'on regarde uniquement les échantillons de la formation Dresser (Figure 19), il est possible d'observer une organisation dans les isotopes stables. En effet, si l'on regarde uniquement les rapports radiogéniques, les différences sont de l'ordre de 0.0005, ce qui est considéré comme étant très faible. Cependant, lorsque l'on regarde les rapports stables, il semble y avoir une corrélation entre la concentration en Sr et le $\delta^{88/86}$ Sr. Cette tendance peut venir d'un mélange entre deux environnements de dépôts légèrement différents. Ces environnements peuvent consister en deux phases distinctes de précipitations ou bien que deux précipitations synchrones dans des lieux distincts. Malgré tout, la différence faible dans les rapports radiogéniques de ces échantillons indique que les milieux de dépôts possèdent une grande similarité entre eux. Une autre explication serait que les 3 échantillons les plus concentré sont identique ou presque (avec des effets de dilution) et que le dernier est juste une donnée aberrante. Les conclusions ne se basant que sur 4 points, il est difficile d'en tirer une conclusion certaine.

Figure 4-6 : Rapport radiogénique (A) et stable (B) en fonction de la concentration dans les échantillons australiens

.

5 CONCLUSION

Le but de cette étude était d'étudier les variations ainsi que les sources du strontium qui se trouve au sein de barytines marines Néoprotérozoïques, afin de mieux comprendre l'environnement de formation des barytines ainsi que les conditions climatiques terrestres associées avec les glaciations Néoprotérozoïques. Nos résultats ont également des implications pour des échantillons plus anciens afin d'émettre des propositions sur les conditions climatiques terrestres archéennes et Protérozoïques, via les rapports ^{87/86}Sr et ^{88/86}Sr. Cette étude a également produit des analyses isotopiques radiogéniques et stables de Sr sur des barytines provenant de six régions différentes, dont les âges varient du Néoprotérozoïque à l'Archéen.

Les rapports radiogéniques des sites Néoprotérozoïques montrent une forte variation isotopique, ce qui suggère un mélange de deux eaux d'origine différentes, entre de l'eau de mer et des eaux douces d'origine continentale. Les rapports radiogéniques ont été comparé avec ceux des carbonates entourant les barytines observées, ce qui a permis d'assurer que l'on retrouvait bien les ratios ^{87/86}Sr marins Néoprotérozoïque à partir de la barytine. Par ailleurs, les rapports radiogéniques ont été avec des valeurs possibles pour le Sr marin à des périodes archéennes (1.9 et 3.5 Ga).

Les rapports des isotopes stables de Sr ont quant à eux permis de mieux comprendre les échantillons étudiés, ainsi que de trouver comment mieux cibler les environnements de dépôt. De ce fait, cela a proposé que des différences pourrais exister entre chaque environnement. Les résultats nous ont également permis de mettre en avant les différences qui existent entre les rapports stables en provenance des eaux océaniques et des eaux de surface. Cependant, les problèmes analytiques qui ont été rencontrés lors de cette étude ont limité la quantité d'analyses possible pour chaque période et région. La quantité d'échantillons disponible n'a par ailleurs pas permis une grande variété d'analyses différentes par échantillon. Il aurait ainsi été intéressant d'avoir davantage de points de données à chacune des différentes époques observées, cela aurait permis une analyse plus approfondie et une plus grande assurance dans les résultats. Par ailleurs, la capacité d'affirmer la minéralogie de chacun de nos échantillons via une analyse au rayon X aurait été un avantage aussi bien lors des analyses que pour les interprétations.

Il aurait également été intéressant d'avoir l'opportunité d'analyser des barytines d'âges compris entre 635Ma et 1.9Ga, ainsi qu'entre 1.9Ga à 3.5Ga. En effet, la possibilité de disposer de davantage d'information dans ces larges périodes pourrait permettre de disposer de points de comparaisons supplémentaires, ainsi que de pouvoir prolonger les courbes de Sr marin.

Malgré cela, les résultats obtenus lors de cette étude ont permis d'effectuer une nouvelle étape dans la compréhension du strontium stable ainsi que ses utilisations dans le cadre de la paléoclimatologie. En nous basant sur les résultats obtenus pour la période du Néoprotérozoïque, nous avons ainsi cherché à affirmer des valeurs réalistes pour l'Archéen. Ces résultats peuvent donc donner une idée des rapports isotopiques du Sr dans l'eau de mer durant cette période. Ils proposent également une base sur laquelle d'autre études sur le ^{88/86}Sr sable protérozoïque et archéen peuvent se baser. De plus, il permet de rajouter des points possibles dans l'évolution du ^{87/86}Sr océanique, donnant lieux à une continuité des lors que les données ne peuvent être récupérer dans les carbonates.

ANNEXE A

DÉCONVOLUTION DES DONNÉES ISOTOPES STABLES.

					_										
2 s.e.	0,0000	0,0000	059	0,0000	085	0,0000	059	0,0000	059	0,0000	081	0,0000	049	0,0000	690
Correc ted	0,7102 57	0,7102	52	0,7029	30	0,7102	51	0,7102	54	0,7081	78	0,7086	87	0,7092	61
Normalis ation	-0.000010		-0,000010		-0,000010		-0,000010		-0,000010	0 000010	0100000-	ï	0,0000010		-0,000010
2 s.e.	0,0000 040	0,0000	031	0,0000	052	0,0000	033	0,0000	030	0,0000	049	0,0000	024	0,0000	037
Correc ted	0,056	0.056	0000	0.056	0000	0.056	0000	9200	0000	0.056	0000	9500	0000	0.056	0000
Normalis ation	0.0000027	•	0,0000027	ī	0,0000027	Т	0,0000027	'	0,0000027	ı	0,0000027	ï	0,0000027	1	0,0000027
Num ber	514		512		521		513		512	517	110		514		286
2 (pp (m)	9.73		8,34	12,0	9		8,29		8,27	11,4	9		6,96		9,69
2 s.e.	0,000	0,000	900	0,000	008	0,000	900	0,000	900	0,000	008	0,000	005	0,0000	07
Mean	0,710 267	0,710	262	0,702	940	0,710	262	0,710	264	0,708	188	0,708	697	0,7092	71
Num ber	515		523		517		517		519	612	C17		517		287
2 s.e. (pp	71,1 5	54,8	9	91,2	6	57,5	9	52,2	L	86,3	5	41,7	0	65,1	0
2 s.e.	0,0000 040	0,0000	031	0,0000	052	0,0000	033	0,0000	030	0,0000	049	0,0000	024	0,00000	37
Mea n	0,05 65	0,05	65	0,05	65	0,05	65	0,05	65	0,05	65	0,05	65	0,05	65
Date	Janv er	Janv	ier	Janv	ier	Févr	ier	Févr	ier	Févr	ier	Févr	ier	Févr	ier
#	NIST 1	NIST	2	SAR	Μ	NIST	1	NIST	2	MF15	05 0,6	PCRT	S2	PCSC	ŝ,
	 # Date Mea 2 s.e. n n 2 s.e. Num Mea 2 s.e. Num Normalis Normalis Normalis Normalis Normalis Normalis Normalis Correc 2 s.e. ation ted 2 s.e. ation ted 2 s.e. ation ted 2 s.e. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	2 s.e.	0,02 0	0,04 5		0,04 1	0,03 9	10.0	0,UI	0,01 9
	Correct ed	-0,009	-0,008		-0,087	-0,003		1,120	0,134
del88 per mil	Normalisati on	0,033	0,033		0,043	0,043		0,043	0,043
	2 s.e.	0,08 5	0,08 9		0,08 9	0,08 3	0.05	0	0,07
per mil	Correct ed	0,11	0,00		0,17	0,00		-1,13	-0,03
del84	Normalisati on	-0,064	-0,064		0,032	0,032		0,032	0,032
ber il	2s.e. per mil	0,02 0	0,04 5		$0,04 \\ 1$	0,03 9	100	0,01 2	0,01 9
del88 m	Mea n	$\frac{1}{2}$	- 0,04 0		-0,13	- 0,04 6		1,08	0,091
t per il	2s.e. per mil	0,08 5	0,08 9		0,08 9	0,08 3	0.05	cn'n 0	0,07
del84 m	Mea n	0,17	0,06 4		0,14	- 0,03 2		-1,16	- 0,063
	2s.e. ppm	84,9 6	88,5 0		89,4 6	82,5 2		4,1	77,4 1
84/86	2 s.e.	0,00000 48	0,00000 50		0,00000 51	0,00000 47		0,0000 28	0,000004 4
	Mea n	0,05 7	0,05 6		0,05 6	0,05 6	0.05	cn'n 9	0,056
	Date	Janvi er	Janvi er Janvi	er	Févri er	Févri er	Févri er	er	Févri er
:	#	NIST 1	NIST 2	SARM	NIST 1	NIST 2	MF150 5 0,6	S2	PCSC 3

			250	2 s.e.	2 s.e.	2 s.e.),0000	2 s.e.),0000 049	2 s.e.),0000 049),0000	2 s.e.),0000 049 053	2 s.e.),0000 049),0000),0000	2 s.e.),0000 049),0000 053),0000 053	2 s.e.),0000 0,0000 0,0000 053 0,0000 061 0,0000	2 s.e.),0000 049 053 061 0,0000 061 057	2 s.e. ,0000 049 053 061 061 057 057 057	2 s.e.),00000),000000),00000000),00000),00000),00000),	2 s.e.),0000),0000 061),0000 061),0000 057 057),0000 066 066),0000	2 s.e.),00000),000000),0000000),000000),00	2 s.e.),0000 0,00000 0,0000 0,0000 0,00000 0,0	2 s.e.),0000 049 053 061 061 0,0000 057 0,0000 057 057 057 072 072	2 s.e.),0000 049 0,0000 053),0000 061),0000 057 0,0000 057 0,0000 072 072 072 072	2 s.e.),00000),000000),000000),000	2 s.e.),0000),0000 049 0,0000 061),0000 066),0000 057),0000 057),0000 057),0000 057),0000 057),0000 053),00000 0057),00000 057),00000 057),00000 057),00000 057),00000 0,072),00000 0,0000 0,00000 0,0000 0,0000 0,000000 0,0000
		s Corre 2	- Poto	nan	crea	0,7102 0,	0,7102 0, 0 64 0	0,7102 0, 0,7102 0, 0,7102 0,	0,7102 0, 0 64 (0,7102 0, 0 49 (0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0,	0,7102 0, 0 64 (0,7102 0, 0 49 (0,7029 0, 0 46 (0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0 90 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7080 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7080 0, 0 63 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7080 0, 0,7083 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7081 0, 0,7080 0, 0,7083 0, 0,16 0	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7081 0, 0,7083 0, 0,7100 0, 0,7100 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7081 0, 0,7083 0, 0,7100 0, 0,7100 0, 0,76 1, 0,76 1, 0,7703 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7029 0, 0,7081 0, 0,7083 0, 0,7083 0, 0,7083 0, 0,707 0,	0,7102 0, 0,7102 0, 0,7102 0, 0,7102 0, 0,7081 0, 0,7081 0, 0,7083 0, 0,7083 0, 0,7083 0, 0,707 0, 0,707 0, 0,53 0, 0,53 0, 0,707 0, 0,53 0, 0,53 0, 0,707 0, 0,707 0, 0,707 0, 0,707 0, 0,707 0, 0,707 0, 0,707 0, 0,708 0, 0,770 0, 0	0,7102 0, 0,7102 0, 0,7102 0, 0,7102 0, 0,7081 0, 0,7083 0, 0,7083 0, 0,7083 0, 0,7083 0, 0,7096 0, 0,7096 0,
		Normalis	ation				-0,000010	-0,000010	-0,000010	-0,000010 -0,000010	-0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010	-0,00001(-0,00001(-0,00001(-0,00001(-0,000010 -0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010 -0,000010 -0,000010	-0,00001(-0,00001(-0,00001(-0,00001(-0,00001(-0,000010 -0,000010 -0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010 -0,000010 -0,000010 -0,000010	-0,000010 -0,000010 -0,000010 -0,000010 -0,000010 -0,000010
		250				0,0000	0,0000 023	0,0000 023 0,0000	0,0000 023 0,0000 026	023 023 0,0000 0,0000 026 0,0000	0,0000 023 0,0000 026 0,0000 032	0,0000 023 0,0000 026 0,0000 032 0,0000	0,0000 023 0,0000 026 0,0000 032 0,0000 032 0,0000	0,0000 023 0,0000 026 0,0000 032 0,0000 028 0,0000 0,0000	0,0000 023 0,0000 026 0,0000 032 0,0000 028 0,0000 028 0,0000 028 0,0000 028 0,0000	0,0000 023 0,0000 026 0,0000 032 0,0000 036 0,0000 036	0,0000 023 0,0000 026 0,0000 032 0,0000 035 0,0000 035	0,0000 023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000 035	0,0000 023 0,0000 026 0,0000 032 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,00000 0,0000 0,0000 0,00000 0,0000 0,000000	0,0000 023 0,0000 026 0,0000 032 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,00000 0,00000 0,0000 0,0000 0,00000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,000000	0,0000 023 0,0000 026 0,0000 032 0,0000 035 0,0000 035 0,0000 035 0,0000 035 0,0000 040	0,0000 023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000 040 040 040 040 040 040 040 040
		Corre	cted			0.056	0,056	0,056	0,056 0,056	0,056	0,056 0,056 0,056	0,056 0,056 0,056	0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056 0,056	0,056 0,056 0,056 0,056 0,056 0,056
10		Normalisat	ion				-0,0000027	-0,0000027	-0,0000027	-0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027	-0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027 -0,0000027
		Num	ber				518	518	518 513	518 513	518 513 515	518 513 515	518 513 515 515 517	518 513 515 515 517 517	518 513 513 515 517 517 511	518 513 515 515 517 517 511	518 513 515 515 517 517 511 513	518 513 515 517 517 517 513 513	518 513 513 515 517 517 513 513 513	518 513 515 517 517 517 513 513 513	518 513 515 517 517 517 513 513 513	518 513 515 517 517 517 513 513 513 515
ejected	2	s.e.	dd)	-	(m)	(m	m) 6,87	m) 6,87	m) 6,87 7,44	m 6,87 7,44	m) 6,87 7,44 8,67	m) 6,87 7,44 8,67	m) 6,87 7,44 8,67 7,99	(m) 6,87 7,44 8,67 7,99	(m) 6,87 7,44 8,67 8,67 7,99 9,27	(m) 6,87 7,44 8,67 7,99 9,27	(m) 6,87 7,44 8,67 7,99 9,27 8,05	(m) 6,87 7,44 8,67 8,67 7,99 9,27 9,27 8,05 8,05	(m) 6,87 7,44 8,67 8,67 7,99 9,27 9,27 8,05 10,2 0	(10,2) (1	(m) 6,87 7,44 8,67 8,67 7,99 9,27 9,27 8,05 10,2 10,2 10,2 10,2 10,2 10,2 10,2	(m) 6,87 6,87 7,44 8,67 7,99 9,27 9,27 9,27 8,05 10,2 0 10,2 4
igma re		7 6 0				0,000	0,000 005	0,000 005 0,000	0,000 005 0,000 005	0,000 0,000 0,000 0,000	0,000 005 0,000 0,000 0,000 005	0,000 005 0,000 005 0,000 0,000	0,000 005 0,000 005 0,000 0,000 0,000 0,000	0,000 005 0,000 0,000 0,000 0,000 0,000 0,000	0,000 005 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 005 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0,000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	$\begin{array}{c} 0,000\\ 0,000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0,000 005 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	$\begin{array}{c} 0,000\\ 0.$	$\begin{array}{c} 0,000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	$\begin{array}{c} 0,000\\ 0.$
S		Mean	TATCALL			0,710	0,710 274	0,710 274 0,710	0,710 274 0,710 259	0,710 274 0,710 259 0,702	0,710 274 0,710 259 0,702 956	0,710 274 0,710 259 0,702 956 0,708	0,710 274 0,710 259 0,702 956 0,708 2200	0,710 274 0,710 259 0,702 956 0,708 200 0,708	0,710 274 0,710 2559 0,702 956 0,708 200 0,708 0,708	0,710 274 0,710 259 0,702 956 0,708 0,708 0,708 0,708 0,708	0,710 274 0,710 259 0,702 956 0,708 0,708 0,708 0,708 0,708 0,708	0,710 274 0,710 259 0,702 956 0,708 0,708 0,708 0,708 0,708 0,708 0,708 0,708	0,710 274 0,710 2559 0,702 956 0,708 0,708 0,708 0,708 0,708 0,710 0,708 0,710 0,710 0,710 0,708	0,710 274 0,710 256 0,702 956 0,708 0,708 0,708 0,708 0,708 0,708 0,707 0,707	0,710 274 0,710 259 0,702 956 0,708 0,708 0,708 0,708 0,708 0,708 0,708 0,700 0,703	$\begin{array}{c} 0,710\\ 274\\ 274\\ 0,710\\ 259\\ 0,702\\ 956\\ 0,708\\ 0,708\\ 0,708\\ 0,708\\ 0,700\\ 0,707\\ 0,709\\ 0,700\\ 0,7$
-		Num	ber				514	514	514 518	514 518	514 518 513	514 518 513	514 518 513 512	514 518 513 512	514 518 513 512 512	514 518 513 512 517	514 518 513 512 512 517 519	514 518 513 512 517 519	514 518 513 512 517 519 519	514 518 513 512 517 519 519 506	514 518 513 512 512 519 519 512	514 518 513 512 517 519 516 512
	5	s.e.	dd)	(m	11 0	C,14	6,14 0	41,5 0 46,4	41,5 0 6 6	41,5 0 46,4 6 56,4	41,5 0 6 56,4 8	41,5 0 46,4 6 56,4 8 8 8 8	41,5 0 6 56,4 8 8 48,9 9	41,5 0 6 6 8 8 8 9 63,9	41,5 0 66 8 8 48,9 63,9 7	41,5 0 66 6 8 8 8 48,9 9 63,9 63,9 63,9	41,5 0 66,4 8 8 48,9 9 63,9 62,5 7 7	$ \begin{array}{c} 41, \\ 0 \\ 6 \\ 6 \\ 6 \\ 8 \\ 8 \\ 8 \\ 9 \\ 9 \\ 6 \\ 7 \\ $	$\begin{array}{c} 41,5\\ 0\\ 0\\ 6\\ 6\\ 8\\ 8\\ 8\\ 9\\ 9\\ 63,9\\ 7\\ 7\\ 7\\ 7\\ 7\\ 0\end{array}$	$\begin{array}{c} 41,5\\ 0\\ 66,4\\ 8\\ 8\\ 8\\ 8\\ 8\\ 9\\ 9\\ 9\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 8\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 8\\ 2\\ 3\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c} 41,5\\ 0\\ 66,4\\ 8\\ 8\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 3\\ 3\end{array}$	$\begin{array}{c} 41,5\\ 0\\ 0\\ 66,4\\ 8\\ 8\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 82,3\\ 82$
		7 6 0			0,0000		023	023 0,0000	023 0,0000 026	023 0,0000 026 0,0000	023 0,0000 026 0,0000 032	023 0,0000 026 0,0000 032 0,0000	023 0,0000 026 0,0000 032 032 028	023 0,0000 026 0,0000 032 0,0000 028 0,0000	023 0,0000 026 0,0000 032 0,0000 028 0,0000 036	023 0,0000 026 0,0000 032 0,0000 036 0,0000	023 0,0000 026 0,0000 032 0,0000 036 0,0000 035	023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000	023 0,0000 026 0,0000 032 0,0000 036 0,0000 036 0,0000 036 0,0000 036 0,0000	023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000 036 0,0000 036 0,0000 035	023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000 035 0,0000 040 047	023 0,0000 026 0,0000 032 0,0000 036 0,0000 035 0,0000 040 040 040 040 040 040
		Me	an		0,05		C 9	65 0,05	65 65	65 0,05 0,05	65 65 65 65 65	65 65 0,05 65 0,05	65 65 0,05 65 0,05 65	65 65 65 65 65 0,05 65 0,05	65 65 65 65 0,05 65 0,05 65	65 65 65 65 65 0,05 65 0,05	65 65 65 65 65 65 0,05 65 65	65 65 65 65 65 65 0,05 65 0,05 0,05	65 65 65 65 65 0,05 65 0,05 65 0,05 65	65 65 65 65 65 0,05 65 0,05 65 0,05	65 65 65 65 65 65 0,05 65 0,05 65 0,05 65 65	65 65 65 65 65 65 65 0,05 65 0,05 65 0,05
	Da	te			Ma		rs	Ma	rs rs	rs Ma Ma	rs Ma Ma	rs Ma Ts Ma Ma	rs Ma Ts Ma Ts Ts	rs Ma rs Ra Ra Ra Ma	rs Ma rs Ma rs Ma rs rs	rs Ma rs Ma Ma rs Ma	rs Ma Rs Ma Rs Ma Rs rs rs rs rs rs rs	rs Ra Ma Rs Ma Rs Rs Ra Ma	rs Ma Ma Rs Ma rs Ma Rs Ma Srs Srs Srs Srs Srs Srs Srs Srs Srs Srs	rs Ra Ma Rs Ma Rs Ma Ma	rs Ra Ma Rs Ma Rs Rs Rs Ra Ma Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs	rs rs Ma rs Ma rs rs rs rs Ra Ma Ma
	#	ŧ			NIST	-	I	NIST	NIST	NIST 2	NIST 2 SARM	NIST 2 SARM MF	NIST 2 SARM MF 1505	NIST 2 SARM MF 1505 PCRT	NIST 2 SARM MF 1505 PCRT S2 S2	NIST 2 SARM MF 1505 PCRT S2 PCRT	NIST 2 SARM MF 1505 PCRT S2 S2 S4 S4	NIST 2 SARM MF 1505 PCRT S2 PCRT S2 PCRT PCRT	NIST 2 2 SARM MF 1505 PCRT S2 PCRT S2 PCRT S4 S4 1	NIST 2 2 SARM MF 1505 PCRT PCRT S2 S4 PCSL 1 PCSL	2 2 SARM MF 1505 1505 PCRT S2 PCRT PCRT PCRT 2 2	2 2 SARM MF MF 1505 1505 PCRT S2 PCRT PCRT 2 S2 PCSL 2 PCSL

	2	به	02	9	03	0	01	3	01	2	01	33	01	1	-					
	orrecte	d s	0 101	-0,04	0 00 0	0,00	0 00 0	0,43	0 11	-0,12	0 10 0	-0,04	0 12	-0,13						
del88 per mil	Normalisati (U0		0,043		0,043		0,043		0,043		0,043		0,043						
	2	s.e.	0,06	1	0,07	0	0,06	5	0,05	9	0,07	7	0,07	0						
per mil	Correcte	q	0.16	0,10	0000	0,00	010	-0,10		0,29	20.07	10,01	0 14	0,14						
del84	Normalisati	0U		0,019		0,019		0,019		0,019		0,019		0,019						
per l	2s.e.	per mil	0,02	9	0,03	0	0,01	б	0,01	5	0,01	m	0,01	1			0,02	5	0,02	
del88 mi	Mea	u	r	0,082	ı	0,040		0,24		-0,16	ı	0,086		-0,18				-0,11	,	
l per il	2s.e.	per mil	0,06	1	0,07	0	0,06	5	0,05	9	0,07	7	0,07	0				0,10	0,07	0
del84 m	Мея	u		0, 14		-0,02		-0,20		0,28	0,05	0		0,12				0,41		
	2s.e.	bpm	61,3	7	69,69	0	65,2	8	56,3	7	71,9	8	70,0	6			98,0	С	77,5	C
84/86		2 s.e.	0,00000	35	0,00000,0	39	0,00000	37	0,00000	32	0,00000	41	0,00000	40			0,00000,0	55	0,00000	
	Mea	u	0,05	9	0,05	9	0,05	9	0,05	7	0,05	9	0,05	9			0,05	7	0,05	t
Dat	e		Mar	s	Mar	S	Mar	s	Mar	s	Mar	s	Mar	s	Mar	S	Mar	S	Mar	
	#			NIST 1		NIST 2		SARM		MF 1505	PCRT	S2	PCRT	S4		PCSL 1		PCSL 2	PCSL	

		84Sr	/86Sr co sigma re	rrecte	d & 2 1	87/86Sr	correcte rejec	ed & 2 ted	sigma	84Sı	r/86Sr		~	^{37/86} Sr	
#	Da			2				2							
ŧ	te	Mea n	2 s.e.	s.e.	Num ber	Mean	2 s.e.	s.e. (pp	Num ber	Normalisat ion	Corre	2 s.e.	Normalis ation	Correc	2 s.e.
	Ma	0,05	0,0000	38,0		0,710	0,000				0.056	0,000		0,7102	0,0000
NIST 1		65	021	5	516	260	004	6,25	514	-0,0000027	000,0	0021	-0,000010	50	044
	Ma	0,05	0,0000	31,5		0,710	0,000				0.056	0,000		0,7102	0,0000
NIST 2	.1	65	018	5	512	269	004	5,44	512	-0,0000027	000,0	0018	-0,000010	59	039
	Ma	0,05	0,0000	46,0		0,702	0,000				0.056	0,000		0,7029	0,0000
SARM		65	026	ŝ	539	957	005	7,00	539	-0,0000027	0000	0026	-0,000010	46	049
97 NB	Ma	0,05	0,0000	48,9		0,700	0,000				0.056	0,000		0,7005	0,0000
10	.1	65	028	9	510	568	005	7,46	509	-0,0000027	0000	0028	-0,000010	58	052
DRES	Ma	0,05	0,0000	41,9		0,700	0,000				0.056	0,000		0,7005	0,0000
SER	.1	65	024	5	505	538	005	6,95	506	-0,0000027	0000	0024	-0,000010	28	049
PCNP	Ma	0,05	0,0000	60,4		0,700	0,000				0.056	0,000		0,7009	0,0000
2		65	034	4	510	930	900	8,64	510	-0,0000027	0000	0034	-0,000010	20	061
PCNP	Ma	0,05	0,0000	72,9		0,700	0,000				0.056	0,000		0,7006	0,0000
3		65	041	4	539	633	200	9,65	539	-0,0000027	0000	0041	-0,000010	23	068
PCRT	Ma	0,05	0,0000	62,2		0,707	0,000				0.056	0,000		0,7079	0,0000
S3	.1	65	035	6	509	913	007	9,44	514	-0,0000027	0000	0035	-0,000010	03	067
PCSC	Ma	0,05	0,0000	55,2		0,707	0,000				0.056	0,000		0,7077	0,0000
2	.1	65	031	9	523	742	900	8,37	519	-0,0000027	0000	0031	-0,000010	32	059
PCSC	Ma	0,05	0,0000	53,9		0,709	0,000				0.056	0,000		0,7096	0,0000
2+3		65	030	7	510	649	900	8,10	510	-0,0000027	0000	0030	-0,000010	39	057
PCSC	Ma	0,05	0,0000	74,7		0,710	0,000	10,6			0.056	0,000		0,7100	0,0000
6+7		65	042	9	505	038	008	2	505	-0,0000027	0000	0042	-0,000010	28	076
PCSC	Ma	0,05	0,0000	49,9		0,710	0,000				2200	0,000		0,7101	0,0000
8+9	. 1	65	028	9	518	207	900	8,35	518	-0,0000027	0000	0028	-0,000010	67	059

	Dat		84/86		del84 mi	per	del88 mi	per U	del84	per mil		del88 per mil		
#	e	Mea n	2 s.e.	2s.e. ppm	Mea	2s.e. per mil	Mea n	2s.e. per mil	Normalisati on	Correct ed	2 s.e.	Normalisati on	Correct ed	2 s.e.
		0,05	0,00000	50,5		0,05	1	0,02		0.05	0,05		0.00	0,02
NIST 1	Mai	7	29	4	0,25	-	0,064	5	-0,0013	C7'N	1	0,031	-U,U3	7
		0,05	0,00000	42,4	0,001	0,04	ı	0,01		000	0,04		0.01	0,01
NIST 2	Mai	9	24	5	Э	7	0,022	9	-0,0013	0,00	7	0,031	10,01	9
		0,05	0,00000	53,3		0,05		0,01		-0.18	0,05		0.75	0,01
SARM	Mai	9	30	7	-0,18	3	0,21	5	-0,0013	01.0-	ŝ	0,031	0760	S
97 NB		0,05	0,00000	55,2		0,05	1	0,01		0.05	0,05		0.00	0,01
10	Mai	9	31	5	0,052	2	0,051	2	-0,0013	cn'n	5	0,031	-0,02	7
DRESSE		0,05	0,00000	48,5		0,04		0,01		010	0,04		0 10	0,01
R	Mai	9	27	6	0,10	6	-0,15	-	-0,0013	0,10	6	0,031	-0,12	-
		0,05	0,00000	66,2		0,06		0,00		010	0,06		0 1 1	0,00
PCNP 2	Mai	2	37	0	0,19	9	-0,14	6	-0,0013	U,17	9	0,031	-0,11	6
		0,05	0,00000	87,0		0,08		0,02		0.16	0,08		017	0,02
PCNP 3	Mai	7	49	9	0,16	7	-0,15	1	-0,0013	0,10	7	0,031	-0,12	1
		0,05	0,00000	89,2		0,08		0,04		000	0,08		017	0,04
PCRT S3	Mai	7	50	2	0,20	6	-0,20	-	-0,0013	0,20	6	0,031	-0,1 /	1
		0,05	0,00000	66,1		0,06		0,01		20.05	0,06		0000	0,01
PCSC 2	Mai	7	37	7	0,25	9	-0,12	8	-0,0013	C7,U	9	0,031	-0,03	×
PCSC		0,05	0,00000	68,4	ī	0,06		0,02		000	0,06		0.17	0,02
2+3	Mai	9	39	3	0,017	8	0,10	5	-0,0013	-0,02	8	0,031	0,13	5
PCSC		0,05	0,00000	95,4		0,09	ı	0,03		0 11	0,09		000	0,03
6+7	Mai	9	54	7	-0,11	5	0,034	7	-0,0013	-0,11	2	0,031	0,00	7
PCSC		0,05	0,00000	62,2		0,06		0,02		010	0,06		20.0	0,02
8+9	Mai	9	35	2	0,12	7	-0,10	1	-0,0013	0,14	7	0,031	-0,00	1

ANNEXE B

DONNÉE DE LA LITTÉRATURE, CAP CARBONATES MANINOEN

Origine	^{87/86} Sr	Type de roche	âge	Origine	^{87/86} Sr	Type de roche	âge
Yoshiok	a et al. (200	03)		James et	t al. (2001)		
	0,706 984	Calcite Rhytmite	675		0,71314	Redstone	645
	0,706987	Calcite Rhytmite Dolomie	675		0,71586	Redstone	645
	0,707422	Rhytmite	675		0,712 88	Redstone	645
	0,708009	Stromatolite	675		0,71863	Redstone	645
	0,70772	Stromatolite Dolomie	675		0,71702	Redstone	645
	0,708319	Rhytmite Dolomie	675		0,717 46	Redstone	645
	0,708441	Rhytmite Dolomie	675		0,713 17	Redstone	645
	0,707454	Rhytmite Dolomie	675		0,711 83	Redstone	645
	0,708282	Rhytmite Dolomie	675		0,718 48	Redstone	645
	0,708645	Rhytmite Dolomie	675		0,717 49	Redstone	645
	0,708307	Rhytmite	675		0,71915	Redstone	645
	0,707335	Calcite Rhytmite	675		0,70818	Shale	645
	0,707111	Calcite Rhytmite	675		0,70766	Shale	645
	0,706984	Calcite Rhytmite	675		0,70712	Shale	645
	0,706987	Calcite Rhytmite Dolomie	675		0,71095	Shale	645
	0,707422	Rhytmite	675		0,71315	Shale	645
	0,708009	Stromatolite	675		0,70971	Shale	645
	0,70772	Stromatolite Dolomie	675		0,71065	Shale	645
	0,708319	Rhytmite	675		0,708 62	Shale	645

		Dolomie		
	0,708441	Rhytmite	675	
		Dolomie		
	0,707454	Rhytmite	675	
		Dolomie		
	0,708282	Rhytmite	675	
	-,	Dolomie		
	0.708645	Rhytmite	675	
	0,700010	Dolomie		
	0 708307	Rhytmite	675	0
	No mains at al. (20	07)		
	Nogueira et al. (20			
	0,707946	Dolomie	630	0
	0,707981	Dolomie	630	0,
	0,707 438	Dolomie	630	0,
	0,707 651	Dolomie	630	0,
	0,707 813	Dolomie	630	0,
	0,707 743	Dolomie	630	0,
	0,708 273	Dolomie	630	0,
		2 5 1		
	0,708 523	Dolomie	630	0
	0,708 431	Dolomie	630	0,
	0 -00 0 4			
	0,709 04	Dolomie	630	0,
	0,709 529	Dolomie	630	0,
	0,711 294	Dolomie	630	0,
		~ 1		
	0,711202	Carbonates	630	0,
3	0,708108	Carbonates	630	0,
	0 =0=100	G 1	600	
	0,707109	Carbonates	630	0,
	0 505(50	G 1	620	
	0,707658	Carbonates	630	0,
	0 0000 10	0.1	(20)	
	0,707947	Carbonates	630	0,
	0,707826	Carbonates	630	0,
	0,707639	Carbonates	630	(

		1						
0,718 22	Shale	645						
0,717 97	Shale	645						
0,713 65	Shale	645						
0,708 67	Shale	645						
0,707 53	Shale	645						
0,70728	Raventhroat	645						
0.707 35	Raventhroat	645						
	Dolomie	0.0						
0,715 025	Rhytmite	675						
	Dolomie							
0,717 265	Rhytmite	675						
	Dolomie							
0,713 385	Rhytmite	675						
	Dolomie							
0,712 415	Rhytmite	675						
	Dolomie							
0,710 142	Rhytmite	675						
	Calcite							
0,707 502	Rhytmite	675						
0 707 47	Calcite	100						
0,/0/4/	Rhytmite	6/5						
0 707 140	Calcite	(75						
0,707 149	Calaita	0/3						
0 706 065	Rhytmite	675						
0,700 905	Calcite	075						
0.706 849	Rhytmite	675						
0,100015	Calcite	010						
0,706 888	Rhytmite	675						
	Calcite							
0,707335	Rhytmite	675						
	Calcite							
0,707111	Rhytmite	675						
	Calcite							
0,706984	Rhytmite	675						
0.0000	Calcite							
0,706987	Rhytmite	675						
0 707 400	Dolomie	(75						
0,707422	Knytmite	0/5						
0,708009	Stromatolite	675						
0,70772	Stromatolite	675						
				1 1		Dolomia	1	
-----------	------------	------------	------	----------	------------	--------------	------	--
	0,708012	Carbonates	630		0,708319	Rhytmite	675	
						Dolomie		
	0,707968	Carbonates	630		0,708441	Rhytmite	675	
						Dolomie		
	0,708488	Carbonates	630		0,707454	Rhytmite	675	
	0 700 005	Delenie	(20)		0 700 000	Dolomie	(75)	
	0,708 905	Dolomie	030		0,708 282	Dolomia	0/5	
	0 707 9	Dolomie	630		0 708 645	Rhytmite	675	
	0,7075	Dololine	050		0,700 0 15	Dolomie	075	
	0,7076	Dolomie	630		0,708 307	Rhytmite	675	
						Calcite		
	0,708	Dolomie	630		0,707 335	Rhytmite	675	
						Calcite		
	0,707 9	Dolomie	630		0,707 111	Rhytmite	675	
	0 7004	C 1	(10)		0.70004	Calcite	(75	
	0,7084	Carbonates	640		0,706984	Rhytmite	6/5	
	0 7080	Carbonates	640		0 706087	Phytmite	675	
	0,7009	Carbonates	040		0,700707	Dolomie	075	
	0,7082	Carbonates	640		0,707422	Rhytmite	675	
	0.7086	Carbonates	640		0.708009	Stromatolite	675	
	0,7085	Carbonates	660		0 70772	Stromatolite	675	
	0,7005	Curbonatos	000		0,70772	Dolomie	075	
	0,7081	Carbonates	660		0,708319	Rhytmite	675	
						Dolomie		
	0,7085	Carbonates	660		0,708441	Rhytmite	675	
						Dolomie		
	0,7081	Carbonates	660		0,707454	Rhytmite	675	
	0 7000	Carlanda	((0)	di la la	0 700000	Dolomie	(75	
	0,7089	Carbonates	660		0,708282	Dolomie	0/5	
	0 709	Carbonates	660		0 708645	Rhytmite	675	
	0,709	curoonates	000		0,700015	Dolomie	015	
Zhao et a	al. (2009)				0,708307	Rhytmite	675	
	0.713962	Carbonates	580		0.707946	Dolomie	630	
	0.712.865	Carbonates	580		0.707981	Dolomie	630	
	0 712 645	Carbonates	580		0 707438	Dolomie	630	
	0 712 581	Carbonates	580		0 707651	Dolomie	630	
	0,712,301	Carbonates	500		0.707031	Dolomio	620	
	0,712472	Carbonates	500		0,707013	Dolomia	620	
	0,713 234	Carbonates	580		0,707743	Dolomie	030	
	0,712 983	Carbonates	280		0,708273	Dolomie	630	
	0,713 362	Carbonates	580		0,708523	Dolomie	630	

	0,712 83	Carbonates	580		0,708431	Dolomie	630
	0,712 217	Carbonates	580		0,70904	Dolomie	630
	0,712 868	Carbonates	580		0,709529	Dolomie	630
	0,712 184	Carbonates	580		0,711294	Dolomie	630
	0,714 945	Carbonates	580		0,711202	Carbonates	630
	0,713493	Carbonates	580		0,708108	Carbonates	630
	0,713437	Carbonates	580		0,707109	Carbonates	630
	0,711494	Carbonates	580		0,707658	Carbonates	630
	0,711718	Carbonates	635		0,707947	Carbonates	630
	0,711754	Carbonates	635		0,707826	Carbonates	630
	0,713347	Carbonates	635		0,707639	Carbonates	630
	0,7124	Carbonates	635		0,708012	Carbonates	630
	0,713674	Carbonates	635		0,707968	Carbonates	630
	0,714323	Carbonates	580		0,708488	Carbonates	630
	0,713155	Carbonates	580		0,708905	Dolomie	630
	0,712 255	Carbonates	580		0,7079	Dolomie	630
	0,712 127	Carbonates	580		0,7076	Dolomie	630
	0,712 08	Carbonates	580		0,708	Dolomie	630
	0,713 717	Carbonates	580		0,7079	Dolomie	630
	0,712 973	Carbonates	580		0,7084	Carbonates	640
	0,713863	Carbonates	580		0,7089	Carbonates	640
	0,712201	Carbonates	580		0,7082	Carbonates	640
	0,71159	Carbonates	580		0,7086	Carbonates	640
	0,713805	Carbonates	580		0,7085	Carbonates	660
	0,712235	Carbonates	580		0,7081	Carbonates	660
	0,713057	Carbonates	580		0,7085	Carbonates	660
	0,714046	Carbonates	580		0,7081	Carbonates	660
	0,714077	Carbonates	580		0,7089	Carbonates	660
	0,711095	Carbonates	580		0,709	Carbonates	660
	0,710767	Carbonates	635		0,713962	Carbonates	580
	0,711339	Carbonates	635		0,712865	Carbonates	580
	0,710651	Carbonates	635		0,712645	Carbonates	580
	0,712776	Carbonates	635		0,712581	Carbonates	580
	0,711804	Carbonates	635	5	0,712472	Carbonates	580
Poidevir	a (2007)				0,713254	Carbonates	580
	0,707493	Schisto calcaire	575		0,712 983	Carbonates	580
	0,707575	Schisto calcaire	575		0,713 362	Carbonates	580
	0,707515	Schisto calcaire	575		0,712 83	Carbonates	580
	0,708311	Schisto calcaire	575		0,712 217	Carbonates	580

	0,708343	Schisto calcaire	575		0,712 868	Carbonates	580
	0,708362	Schisto calcaire	575		0,712 184	Carbonates	580
	0,708349	Schisto calcaire	575		0,714 945	Carbonates	580
	0,708275	Schisto calcaire	575		0,713 493	Carbonates	580
	0,707557	Schisto calcaire	575		0,713 437	Carbonates	580
	0,707193	Haut Shiloango	650		0,711 494	Carbonates	580
	0,707373	Haut Shiloango	650		0,711 718	Carbonates	635
	0,706821	Haut Shiloango	650		0,711 754	Carbonates	635
	0,706845	Haut Shiloango	650		0,713347	Carbonates	635
	0,71222	Lindien	720		0,7124	Carbonates	635
	0,713212	Lindien	720		0,713674	Carbonates	635
	0,713 232	Lindien	720		0,714323	Dolomie	580
	0,713 249	Lindien	720		0,713155	Dolomie	580
	0,712 532	Lindien	720		0,712255	Dolomie	580
	0,709 975	Lindien	720		0,712127	Dolomie	580
	0,710 592	Lindien	720		0,71208	Dolomie	580
	0,710 029	Lindien	720		0,713717	Dolomie	580
	0,710 896	Lindien	720		0,712973	Dolomie	580
	0,706 635	Lindien	720		0,713863	Dolomie	580
	0,707 276	Lindien	720		0,712201	Dolomie	580
	0,707 756	Bangui	575		0,711 59	Dolomie	580
	0,707 779	Bangui	575		0,713 805	Dolomie	580
	0,707 711	Bangui	575		0,712 235	Dolomie	580
	0,707 585	Bangui	575		0,713 057	Dolomie	580
	0,707 591	Bangui	575		0,714 046	Dolomie	580
	0,707 752	Bangui	575		0,714 077	Dolomie	580
	0,707 756	Bangui	575		0,711 095	Dolomie	580
	0,707 928	Bangui	575		0,710 767	Dolomie	635
	0,707 89	Bangui	575		0,711 339	Dolomie	635
	0,707 981	Bangui	575		0,710 651	Dolomie	635
	0,708 016	Bangui	575		0,712 776	Dolomie	635
	0,707 822	Bangui	575		0,711 804	Dolomie	635
	0,709 427	Bangui	575	de Alvar	enga et al.	(2004)	
	0,710 502	Bakouma	650		0,70852	Dolstone	635
ĺ	0,710665	Bakouma	650		0,70848	Dolstone	635
	0,710501	Bakouma	650		0,70803	Limestone	635
	0,710366	Bakouma	650		0,70753	Limestone	635
	0,708747	Bakouma	650		0,70754	Limestone	635
	0,709312	Bakouma	650		0,70761	Limestone	635

0,70982	Dolstone	635
0,70854	Dolstone	635
0,7087	Dolstone	635
0,7096	Dolstone	635
0,70907	Dolstone	635
0,71219	Limestone	635
0,70964	Limestone	635
0,71151	Dolstone	635

.

ANNEXE C

DONNÉE DE SARAH FARELL

Echantillon	^{87/86} Sr	δ88
0,3	0,712194	0,095686
1,35	0,71411	0,081936
2,65	0,713435	0,118707
4,45	0,713912	0,005619
6,42	0,714778	-0,05788
9,35	0,713166	0,148267
10,04	0,712241	0,085203
12,55	0,712759	0,18594
15,1	0,717175	0,031735
16,7	0,717435	0,292817
18,1	0,718373	0,222703
SARM +1		
Deconv.	0,703875	2,743235
SARM -1		
Deconv.	0,703104	0,529603
SD 1 Deconv.	0,710226	-0,06908

BIBLIOGRAPHIE

Aberg, G., Jacks, G. et Hamilton, P.J. (1989). Weathering rates and 87/86 Sr Ratios : An Isotopic Approach. Journal of Hydrology, 109, 65-78.

Babinski, M., Vieira, L.C. et Trindade, R.I. (2007). Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova, 19(6), 401-406.

Birck, J.-L. (1986). Precision K-Rb-Sr isotopic analysis : application to Rb-Sr chronology. Chemical Geology, 56, 73-83.

Caxito, F.d.A., Halverson, G.P., Uhlein, A., Stevenson, R., Gonçalves Dias, T. et Uhlein, G.J. (2012). Marinoan glaciation in east central Brazil. Precambrian Research, 200-203, 38-58. doi: 10.1016/j.precamres.2012.01.005

Charlier, B.L.A., Ginibre, C., Morgan, D., Nowell, G.M., Pearson, D.G., Davidson, J.P. et Ottley, C.J. (2006). Methods for the microsampling and high-precision analysis of

strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology, 232(3), 114-133. doi: 10.1016/j.chemgeo.2006.02.015

Clemens, S.C., Farrell, J.W. et Gromet, L.P. (1993). Synchronous changes in seawater strontium isotope composition and global climate. Nature, 363(6430), 607-610.

Creveling, J. R., Mitrovica, J. X., Chan, N. H., Latychev, K., & Matsuyama, I. (2012). Mechanisms for oscillatory true polar wander. *Nature*, *491*(7423), 244.

Crockford, Hodgskiss, M.S., Uhlein, G.J., Caxito, F., Hayles, J.A. et Halverson, G.P. (2017). Linking paleocontinents through triple oxygen isotope anomalies. Geology, 46(2), 179-182.

Crockford, P.W., Cowie, B.R., Johnston, D.T., Hoffman, P.F., Sugiyama, I., Pellerin, A., Bui, T.H., Hayles, J., Halverson, G.P., Macdonald, F.A. et Wing, B.A. (2016). Triple oxygen and multiple sulfur isotope constraints on the evolution of the post-Marinoan sulfur cycle. Earth and Planetary Science Letters, 435, 74-83. doi: 10.1016/j.epsl.2015.12.017

de Alvarenga, C.J.S., Santos, R.V. et Dantas, E.L. (2004). C–O–Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Research, 131(1-2), 1-21. doi: 10.1016/j.precamres.2003.12.006

Dickin, A.P. (2018). Radiogenic isotope geology. : Cambridge University Press.

Donnadieu, Y., Ramstein, G., Fluteau, F., Roche, D. et Ganopolski, A. (2004). The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic. Climate Dynamics, 22(2-3), 293-306.

Ganeshram, R.S., François, R., Commeau, J. et Brown-Leger, S.L. (2003). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67(14), 2599-2605.

Gorokhov, I.M., Siedlecka, A., Roberts, D., Melnikov, N.N. et Turchenko, T.L. (2001). Rb–Sr dating of diagenetic illite in Neoproterozoic shales, Varanger Peninsula, northern Norway. Geological Magazine, 138(05). doi: 10.1017/s001675680100574x Griffith, E.M., Schauble, E.A., Bullen, T.D. et Paytan, A. (2008). Characterization of calcium isotopes in natural and synthetic barite. Geochimica et Cosmochimica Acta, 72(23), 5641-5658. doi: 10.1016/j.gca.2008.08.010

Grotzinger, J.P. et James, N.P. (2000). Precambrian carbonates: evolution of understanding.

Halverson, G.P., Dudás, F.Ö., Maloof, A.C. et Bowring, S.A. (2007). Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4), 103-129. doi: 10.1016/j.palaeo.2007.02.028

Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C. et Rice, A.H.N. (2005). Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117(9), 1181. doi: 10.1130/b25630.1

Henshall, D.L.C., K.Mezger, P.Mason, M.Schönbächler. (2016, 2016). Probing Earth's volatile past with Sr isotopes. Goldschmidt Conference.

Hodell, D.A. et Woodruff, F. (1994). Variations in the strontium isotopic ratio of seawater during the Miocene: Stratigraphic and geochemical implications. Paleoceanography, 9(3), 405-426.

Hoffman. (2009). Seafloor barite in Marinoan cap dolostones (635 Ma): redox stratification and euxinia in the pan-deglacial ocean.

Hoffman, Kaufman, A.J., Halverson, G.P. et Schrag, D.P. (1998). A Neoproterozoic snowball earth. science, 281(5381), 1342-1346.

Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y. et Erwin, D.H. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11), e1600983.

Hoffman, P.F. et Halverson, G.P. (2011). Chapter 36 Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera. Geological Society, London, Memoirs, 36(1), 397-412. doi: 10.1144/m36.36

Hoffman., Macdonald, F.A. et Halverson, G.P. (2011). Chapter 5 Chemical sediments associated with Neoproterozoic glaciation: iron formation, cap carbonate, barite and phosphorite. Geological Society, London, Memoirs, 36(1), 67-80. doi: 10.1144/m36.5

James, N.P., Narbonne, G.M. et Kyser, T.K. (2001). Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Canadian Journal of Earth Sciences, 38(8), 1229-1262. doi: 10.1139/e01-046

Jenkins, G.S. et Smith, S.R. (1999). GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophysical Research Letters, 26(15), 2263-2266.

Jones, C.E. et Jenkyns, H.C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301(2), 112-149.

Killingsworth, B.A., Hayles, J.A., Zhou, C. et Bao, H. (2013). Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 5. Kopp, R.E., Kirschvink, J.L., Hilburn, I.A. et Nash, C.Z. (2005). The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A, 102(32), 11131-11136. doi: 10.1073/pnas.0504878102

McClung, C.R., Gutzmer, J., Beukes, N.J., Mezger, K., Strauss, H. et Gertloff, E. (2007). Geochemistry of bedded barite of the Mesoproterozoic Aggeneys-Gamsberg Broken Hill-type district, South Africa. Mineralium Deposita, 42(5), 537-549. doi: 10.1007/s00126-007-0128-4

McCulloch, M.T. (1994). Primitive 87Sr86Sr from an Archean barite and conjecture on the Earth's age and origin. Earth and planetary science letters, 126(1-3), 1-13.

Nakano, T. (2016). Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 92(6), 167. doi: 10.2183/pjab.92.167

Narbonne, G.M. et Aitken, J.D. (1995). Neoproterozoic of the mackenzie mountains, Northwestern Canada. Precambrian Research, 73(1-4), 101-121. Neymark, L.A., Premo, W.R., Mel'nikov, N.N. et Emsbo, P. (2014). Precise determination of $\delta 88$ Sr in rocks, minerals, and waters by double-spike TIMS: a powerful tool in the study of geological, hydrological and biological processes. J. Anal. At. Spectrom., 29(1), 65-75. doi: 10.1039/c3ja50310k

Nier, A.O. (1938). The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Physical Review, 54(4), 275-278. Récupéré de https://link.aps.org/doi/10.1103/PhysRev.54.275

Nogueira, A.C.R., Riccomini, C., Sial, A.N., Moura, C.A.V., Trindade, R.I.F. et Fairchild, T.R. (2007). Carbon and strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil. Chemical Geology, 237(1-2), 168-190. doi: 10.1016/j.chemgeo.2006.06.016

Pearce, C.R., Parkinson, I.J., Gaillardet, J., Charlier, B.L.A., Mokadem, F. et Burton, K.W. (2015). Reassessing the stable (δ 88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochimica et Cosmochimica Acta, 157, 125-146. doi: 10.1016/j.gca.2015.02.029

Peterman, Z.E., Hedge, C.E. et Tourtelot, H.A. (1970). Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochimica et Cosmochimica Acta, 34(1), 105-120.

Poidevin, J.-L. (2007). Stratigraphie isotopique du strontium et datation des formations carbonatées et glaciogéniques néoprotérozoiques du Nord et de l'Ouest du craton du Congo. Comptes Rendus Geoscience, 339(3-4), 259-273. doi: 10.1016/j.crte.2007.02.007

Romanova, V., Lohmann, G. et Grosfeld, K. (2006). Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate of the Past, 2.{www.clim-past.net/2/31/2006/}, 31.

Slagstad, T., Melezhik, V., Kirkland, C., Zwaan, K., Roberts, D., Gorokhov, I. et Fallick, A. (2006). Carbonate isotope chemostratigraphy suggests revisions to the geological history of the West Finnmark Caledonides, northern Norway. Journal of the Geological Society, 163(2), 277-289.

Spiegl, T., Paeth, H. et Frimmel, H. (2015). Evaluating key parameters for the initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of intermediate complexity. Earth and Planetary Science Letters, 415, 100-110.

Stevenson, R et al (2018) Weathering processes, catchment geology and river management impacts on radiogenic and stable strontium isotope compositions of Canadian boreal rivers. Chemical Geology. In review

Tarbuck, E.J., Lutgens, F.K. et Tasa, D. (1997). Earth science. : Prentice Hall Upper Saddle River, NJ.

Vankranendonk, M., Philippot, P., Lepot, K., Bodorkos, S. et Pirajno, F. (2008). Geological setting of Earth's oldest fossils in the ca. 3.5Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167(1-2), 93-124. doi: 10.1016/j.precamres.2008.07.003

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A., Diener, A., Ebneth, S. et Godderis, Y. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical geology, 161(1-3), 59-88.

Wacey, D., Noffke, N., Cliff, J., Barley, M.E. et Farquhar, J. (2015). Micro-scale quadruple sulfur isotope analysis of pyrite from the ~3480Ma Dresser Formation: New insights into sulfur cycling on the early Earth. Precambrian Research, 258, 24-35. doi: 10.1016/j.precamres.2014.12.012

Widanagamage, I.H., Schauble, E.A., Scher, H.D. et Griffith, E.M. (2014). Stable strontium isotope fractionation in synthetic barite. Geochimica et Cosmochimica Acta, 147, 58-75. doi: 10.1016/j.gca.2014.10.004

Yoshioka, H., Asahara, Y., Tojo, B. et Kawakami, S.-i. (2003). Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a glacial to interglacial transition. Precambrian Research, 124(1), 69-85. doi: 10.1016/s0301-9268(03)00079-2

Zhao, Y.-Y., Zheng, Y.-F. et Chen, F. (2009). Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, 265(3-4), 345-362. doi: 10.1016/j.chemgeo.2009.04.015