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RÉSUMÉ 

Les paysages forestiers intensivement aménagés sont des systèmes socio-écologiques 

complexes exposés à de multiples facteurs de changement. Leur dynamique résulte de 

plusieurs interactions qui agissent à multi-échelles entre les processus écologiques, 

les régimes de perturbations naturelles, les activités anthropiques et les facteurs 

exogènes tels que le climat. Les changements globaux devraient interférer sur ces 

processus conduisant à une réduction de la résilience des paysages forestiers (c'est-à

dire la capacité de faire face et de s'adapter aux pressions exogènes et aux 

perturbations) à diverses perturbations simples ou cumulatives. De nouvelles 

stratégies d'aménagement forestier adaptées aux conditions environnementales 

futures doivent être développées et étudiées. 

Dans cette thèse, je présente deux approches de modélisation par simulation pour 

caractériser les écosystèmes forestiers afin d'évaluer ensuite des stratégies 

d'aménagement forestier à l'échelle du paysage afin de les appliquer dans un contexte 

d'incertitude causée par les changements globaux. Toutes les stratégies proposées 

visent à améliorer la résilience des paysages forestiers aux changements des régimes 

de perturbations. J'applique chacune de ces deux approches de modélisation à deux 

régions forestières ayant des degrés d'aménagement distincts. Premièrement, 

j'explore une politique de réduction du combustible à l'échelle de paysage qui vise à 

influencer le régime de feu d'un paysage méditerranéen européen vulnérable aux 
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incendies en utilisant un méta-modèle dynamique du paysage. J'ai développé un 

modèle spatialement explicite de changements d'utilisation du territoire qui est 

ensuite couplé à un modèle de dynamique feu-végétation spatialement explicite déjà 

existant. Cette approche de méta-modélisation a été utile pour étudier la variabilité de 

l'efficacité de la suppression du feu due à la conversion agricole. Les terres agricoles 

(sites avec faible disponibilité de combustible qui réduissent l'intensité du feu et 

permet aux pompiers de se rapprocher des fronts d'incendie) ont été réparties dans le 

paysage à divers taux annuels, selon un schéma spatial dispersé ou agrégé, et selon 

trois scénarios illustrant la gestion potentielle des incendies dans la région. 

Deuxièmement, je cherchais à comprendre si l'amélioration de la diversité 

fonctionnelle ou de la connectivité d'un paysage agro-forestier fragmenté dans le sud

est du Canada favorise la résilience des écosystèmes aux perturbations naturelles et 

anthropiques. Ici, j'ai introduit une évaluation multi-échelle de la résilience de la forêt 

basée sur les traits fonctionnels de réponse des espèces et des propriétés du réseau 

spatial. J'ai testé l'approche pour déterminer si des stratégies de gestion alternatives 

peuvent prévenir les diminutions de la résilience selon plusieurs scénarios futurs de 

sécheresse, épidémie, et récolte forestière. 

Dans le paysage méditerranéen vulnérable aux incendies, j'ai découvert une relation 

non linéaire entre la quantité de nouvelles terres agricoles allouées dans le paysage et 

l'efficacité de la suppression des incendies. L'efficacité de suppression des incendies 

n'a guère augmenté à des taux de conversion annuels à terres agricoles faibles / 

modérés, mais elle a fortement augmenté à des taux de conversion annuels élevés, ce 

qui signifie qu'il faut atteindre un certain seuil avant que le système ne devienne plus 

résistant au feu. Cependant, une augmentation encore plus importante du taux de 

conversion agricole n'a pas augmenté davantage la suppression des incendies, ce qui 

signifie que le paysage a atteint sa capacité maximale d'influencer le régime des 

incendies par des actions de lutte contre l'incendie. De plus, lorsque les terres 
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agricoles étaient réparties en quelques grandes parcelles, l'efficacité était plus élevée 

(au même taux de conversion à des terres agricoles) et l'aire centrale des parcelles 

forestières était mieux preservé. 

Dans le paysage agro-forestier fragmenté du sud-est du Canada, l'enrichissement des 

parcelles forestières fonctionnellement moins riches par des espèces d'arbres 

fonctionnellement différentes a eu un plus grand impact sur la diversité et 

connectivité fonctionnelle par rapport à ne cibler que les parcelles les moins ou les 

plus connectées. L'enrichissement multifonctionnel des parcelles fonctionnellement 

pauvres était encore plus efficace qu'une stratégie basée sur des plantations multi

spécifiques (faites au hasard ou dans des zones riveraines). De plus, enrichir avec des 

espèces résistantes aux ravageurs et parasites a réussi à réduire la mortalité induite par 

ceux-ci. Cependant, la plantation d'espèces tolérantes à la sécheresse n'a pas mieux 

réussi à prévenir la mortalité induite suite à une sécheresse que la stratégie visant à 

accroître la biodiversité globale du paysage. 

Bien qu'il existe un nombre croissant de modèles pour simuler la dynamique du 

paysage et d'approches d'évaluation de la résilience des écosystèmes, les méthodes 

développées dans cette thèse visaient (1) à étudier les interactions spatialement 

explicites entre changements de couverture, comportement du feu et suppression des 

incendies; et (2) à évaluer les propriétés de systèmes complexes liées à la résilience 

des écosystèmes forestiers face aux perturbations naturelles et anthropiques de façon 

innovantes. D'abord, les changements d'utilisation du territoire peuvent-être 

modélisés comme un processus d'émergence-contagion, deuxièmement, le méta

modèle dynamique de paysage a un module d'extinction des incendies sensible à la 

configuration spatiale des combustibles, et troisièmement, les mesures de résilience 

des écosystèmes sont basées sur des traits fonctionnels de réponse des espèces et sur 
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la topologie du réseau spatial. De plus, dans les deux exemples, les approches de 

gestion du paysage suggérées sont totalement différentes de ce qui est en train d'être 

appliqué, ce qui remet en question les régimes de gestion conventionnels. En 

conclusion, cette thèse propose des méthodologies diversifiées et originales pour 

évaluer des scénarios de gestion forestière basés sur la résilience pour des paysages 

forestiers qui sont confrontés aux changements globaux. 

Mots-clés: couplage de modèles; analyse de réseaux; régimes de perturbations; 

résilience de la forêt; aménagement du paysage. 



ABSTRACT 

Highly managed forest landscapes are complex socio-ecological systems exposed to 

multiple drivers of change. Their dynamics emerge from the multi-scale interplays 

between ecological processes, natural disturbance regimes, anthropic activities, and 

exogenous factors such as climate. Global changes are expected to interfere on these 

processes leading to decreases in the resilience of forest landscapes (i.e. the capacity 

to cope with and adapt to exogenous pressures and disturbances) to various single or 

compound disturbances. New forest management strategies adapted to these future 

environmental conditions need to be developed and investigated. 

In this thesis, 1 present two simulation modelling approaches to characterise forest 

ecosystems to then evaluate landscape-scale forest management strategies to be 

applied in an uncertain global change context. All the proposed strategies seek at 

enhancing resilience of forest landscapes to shifting disturbances regimes. 1 apply 

each of these two modelling approaches to two distinct highly managed forest 

regions. Firstly, 1 explore the performance of large-scale fuel reduction policies in 

shaping the fire regime of a European Mediterranean fire-prone landscape using a 

landscape dynamic meta-model. 1 developed a spatially explicit land-use/land-cover 

change model which is then coupled to an existing spatially explicit fire-vegetation 

dynamics model. This meta-modelling framework was useful to study the variability 

on fire suppression effectiveness due to agricultural conversion. Agricultural land (a 



xxn 

low-load fuel that reduces fire intensity and allows fire brigades get closer to fire 

fronts) was allocated in the landscape at various annual rates, following a scattered 

versus an aggregate spatial pattern, and according to three storylines depicting 

potential fire management policies in the region. Secondly, I focused on 

understanding whether improving functional diversity or connectivity of a fragmented 

agro-forested landscape in south-eastern Canada fosters ecosystem resilience to 

natural and anthropogenic disturbances. Here, I introduced a multiscale evaluation of 

forest resilience based on the response of species functional traits and spatial network 

properties. I tested the approach to investigate if these alternative management 

strategies prevent decreases in resilience under future scenarios of drought, pest 

outbreak, and harvesting. 

In the fire-prone Mediterranean landscape, I uncovered a non-linear relationship 

between the amount of new agricultural land allocated within the landscape and the 

fire suppression effectiveness. Pire suppression effectiveness barely increased at low I 

moderate annual conversion rates to agricultural land, but it sharply did at high 

annual conversion rates, meaning that land changes to a low-load fuel land-cover 

need to progressively accumulate before the system becomes more fire resistant. 

However, further increases on the agricultural conversion rate did not report clear 

benefits on fire suppression, meaning that the landscape reached its capacity of 

influencing the fire regime through fire-fighting actions. Moreover, when agricultural 

land was allocated in few large patches, effectiveness was higher (at the same rate of 

conversion to agricultural land) and forest core area was better maintained. 

In the fragmented agro-forested landscape of south-eastern Canada, enrichment of the 

less functionally rich forest patches by functionally different tree species, rather than 

targeting either less or the more connected patches, had a larger impact in improving 
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both, diversity and functional connectivity at the landscape scale. Multi functional 

enrichment of functionally poor patches was even more cost-effective than a strategy 

based on multispecies plantations (at random or in riparian zones). Moreover, 

enriching with pest-resistant species was successful in reducing pest-induced 

mortality. However, planting drought-tolerant species did not do better at preventing 

drought-induced mortality than the strategy aimed at increasing overall biodiversity 

of the landscape. 

Although there is an increasing number of models to simulate landscape dynamics 

and approaches to evaluate ecosystem resilience, the methods developed in this thesis 

to (1) investigate spatially explicit interactions between land-cover changes, fire 

behaviour, and fire suppression, and (2) evaluate system-level properties related to 

forest ecosystem resilience to natural and anthropogenic disturbances are innovative 

in several ways. First, land-use/land-cover changes are modelled as an emergence

contagion process, second the landscape dynamic meta-model has a fire suppression 

module sensitive to fuel loads spatial configuration, and third ecosystem resilience 

measures are based on species functional response traits and spatial network 

topology. In addition, in both examples, the landscape management approaches 

suggested are totally different from what is currently being done, challenging 

conventional management regimes. In conclusion, this thesis proposes broad and 

original methodologies to evaluate resilience-based scenarios for forest landscapes 

facing global changes. 

Keywords: model coupling; network analysis; disturbances reg1mes; forest 

resilience; landscape management. 



INTRODUCTION 

Humans have always interacted with their surrounding environment, making their 

living out of natural resources and agriculture (Foley et al., 2005). During the last 

three centuries, most rural societies progressively became industrialised, yet the 

human influence on the environment intensified and went way beyond the local scale 

(Goldewijk & Ramankutty, 2004; Ellis et al., 2010). Nowadays, interactions between 

humans and the environment are not restricted to regional scales neither to short time 

spans, but are spatially globalised and have temporally broadened (DeFries et al., 

2004; Lepers et al., 2005; Prins et al., 2011). In coupled human-natural systems, 

entities of both sub-systems interplay to create unique complex systems with 

properties and dynamics not belonging to any of the sub-systems (Liu et al., 2007). 

Human-natural systems, hierarchically self-organised around heterogeneous 

components, with non-linear dynamics emerging from multi (spatial, temporal, and 

hierarchal) scale interactions among them, with mechanisms that endlessly hold 

continuai adaptive cycles of growth, accumulation, restructuring, and renewal (Levin, 

1998; Gunderson & Holling, 2002). Indeed, feedback processes are typical of such 

complex systems, in which human activities alter the environment, while human 

well-being is affected by changes made on its environment (Liu et al., 2007). 

Negative feedbacks decrease the effects on the response, stabilizing the system, while 

positive feedbacks amplify them and may force the system to change state. Like 

emergent properties, vulnerabilities and risks of these systems also corne from the 
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complex interactions between the components ofboth human and natural sub-systems 

(Turner et al., 2003; Fischer et al., 2016). 

Forest landscapes as complex human-natural systems 

Highly managed forest landscapes are adequate study models to assess the dynamics 

of complex human-natural systems (Parrott & Lange, 2013; Pilotas et al., 2014; Spies 

et al., 2014). Landscapes are assemblages of natural and human-made features 

integrated in a considerable large area and result from cumulative spatio-temporal 

interactions between all entities herein. In forest landscapes, forest patches varying in 

size, composition, age, structure, and management condition are mostly intertwined 

with other vegetation (e.g. scrublands and prairies), agricultural lands, urban areas, 

water bodies, and road network (Cantwell & Forman, 1993). Many socio-economic 

activities (e.g. wood harvesting, crop irrigation, urban sprawl, tourism) have direct or 

indirect eff ects on forest ecosystems within these landscapes, altering forests 

composition, structure, and function (Poster et al., l 998a; Thenail et al., 2009). In 

addition, humans shape entire forest landscapes through land-use/land-cover change 

processes (i.e. transitions from one land-cover type to another) and active forest 

management (Dale et al., 2000; Puettmann et al., 2009). But in turn, changes exerted 

on these landscapes affect the capacity of forest ecosystems of providing essential 

ecosystem goods and services human well-being rely on (e.g. timber, carbon 

sequestration, water cycle regulation, pest control, crop production, and recreational 

activities) (Millennium Ecosystem Assessment, 2005; Carpenter et al., 2006; Mitchell 

et al., 2014). 
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One particularity of forest landscapes is that beyond anthropogenic pressures, natural 

disturbances such as wildfires, windthrows, insect outbreaks, landsides, or droughts 

are endogenous agents of system change (Attiwill, 1994). Natural disturbances are 

integral components of forest ecosystems, that are interlinked in many ways with 

both the human and the natural dimensions of the system (Raffa et al., 2008; Pausas 

& Keeley, 2009; Moritz et al., 2014). Disturbance regimes influence or trigger many 

ecological processes (e.g. regeneration, succession), drive spatial patterns of forest 

structure and composition, and create landscape heterogeneity through low and high 

intensity affected areas (White, 1979; Turner et al., 2001 ). Spatial legacies and 

biological remnants (forest stands or trees not removed by the disturbance) likely 

determine the post-disturbance successional pathways of the vegetation (Franklin et 

al., 2000). But the reverse is also true, patterns of vegetation structure and 

composition can to some degree dictate disturbances spreading and affectation. 

Hence, an insect pest will only target host trees and fires will likely spread according 

to fuel load spatial distribution (Turner & Romme, 1994; Holdenrieder et al., 2004). 

But above all, humans have the capacity to directly or indirectly modify natural 

disturbances regimes through forest management, land-cover transitions, fuel 

reduction treatments, aerial spraying campaigns, and fire suppression among many 

actions (Keane et al., 2002; Wermelinger, 2004; Syphard et al., 2007; Pechony & 

Shindell, 2010). 

Forest ecosystems, global change, and sustainable forest management 

As complex human-natural systems, actual forested landscapes face global changes 

with a multitude of effects and challenges (Ayres & Lombardero, 2000; Rounsevell 

& Reay, 2009; Allen et al., 2010; Reyer et al., 2015). First, climate warming and 

extreme climatic events alter biological and ecological processes (e.g. phenology, 



-
1 

4 

serai succession, productivity), and most of the consequences are not full y understood 

yet (Cramer et al., 2001; Johnstone et al., 2010). Second, natural disturbances 

regimes are predicted to shift and move beyond their natural range of variability 

under changing climatic conditions, becoming more severe, large, and frequent 

(Turner, 2010; Sturrock et al., 2011; Mori & Johnson, 2013). Even novel 

disturbances or compounded disturbances are expected to impact forest ecosystems in 

the near future (if this is not already the case), such as alien pest out breaks, extreme 

episodes of drought, or wildfires favoured by extensive tree defoliation by insects 

(Brown & Johnstone, 2012; Buma & Wessman, 2012; Oliva et al., 2014). Third, 

main historical land-cover changes have negatively impacted forest ecosystems 

though fragmentation and degradation by transforming natural lands to croplands or 

urban areas, and forest management has homogenised forest composition and 

structure by eliminating non-valuable timber species and promoting even-aged 

monocultures (Antrop, 2004; Puettmann et al., 2009). But anthropic changes on 

forest landscapes are also supposed to shift (Alexander et al., 2016). Yet, there is no 

clear consensus on future land-cover changes directions because these are system

dependent, obey to local to supra-national land management policies, and decisions 

are ultimately taken by single individuals, firms, or governments (Busch, 2006; van 

Asselen & Verburg, 2013). In general, land-use/land-cover changes have to satisfy 

increasing global demands for bio-energy, timber, food, water, and land for living 

(Balmford et al., 2005; Banse et al., 2011). These will potentially exert even more 

pressure on forest ecosystems. Lastly, what is even more relevant is that all these 

drivers of change are interlinked, influencing and even amplifying each other. 

The isolated implications of climate change, shifting natural disturbances regimes, or 

land-cover changes on forest ecosystems are being closely analysed (Chakraborty et 

al., 2000; Hanson & Weltzin, 2000; Cochrane & Barber, 2009; Prichard et al., 2017). 

But the cascading effects of coupled perturbations on forest landscapes are largely 



5 

unknown, being one of the big issues to address in a global change context (Paine et 

al., 1998; Buma, 2015), that has started to capture the attention of landscape dynamic 

modellers (Schumacher & Bugmann, 2006; Seidl & Rammer, 2016). Therefore, the 

inherent uncertainty associated to future environmental and socio-economic 

conditions make prediction of forest ecosystem dynamics a major challenge, and 

sustainable forest management even a more daunting task (Kimmins et al., 2007; 

Lawler et al., 2010; Lindenmayer & Cunningham, 2013). 

Nowadays, scientists, governments, managers, and stakeholders knowledgeable of 

forest ecosystems are more and more aware of intra- and inter-system connections, 

rapid environmental changing conditions, devastating effects of severe natural 

disturbances, climate warming, dependence on multiple forest ecosystem goods and 

services, out-dated methods and tools to represent forest dynamics, competition 

between land uses, and/or uncertain complex future for forest landscapes (Lawler et 

al., 2010). Concurrently, we are slowly starting to be committed to sustainably 

managing forest ecosystems by building adaptive capacity of human-natural systems, 

to ensure forest function, and thus ecosystem services provisioning, now and in a 

long future (Folke et al., 2002; Burton et al., 2003; Bennett et al., 2009; Allen et al., 

2011). On the whole, to achieve sustainability, forest landscape management should 

(1) target multiple objectives and quantify the unavoidable trade-offs, (2) recognise 

climate and natural disturbances regimes as permanents drivers of change, (3) 

incorporate the complexity ofhuman-natural systems, and ultimately (4) foster forest 

landscapes and forest ecosystems resilience (Spittlehouse & Stewart, 2003; Cubbage 

et al., 2007; Messier et al., 2013; Rist & Moen, 2013). 
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Forest ecosystem resilience 

Resilience is the capacity of a system to cope with exogenous constant pressures and 

high-intensity occasional disturbances, and learn from that process to be better 

adapted to future disrupting conditions (Holling, 1973, 1996; Gunderson, 2000). By 

coping with, it is understood that the system persists in its current form, keeping 

structure and fonction. Resilient systems have mechanisms to get unaltered or rapidly 

recover to the former state despite of cumulative degrading agents or sudden shifts in 

external conditions (Scheffer & van Nes, 2004; Cavers & Cottrell, 2015). Therefore, 

resilient forest ecosystems are those that through self-organization, adaptive 

strategies, and well-established regeneration patterns can maintain their main 

fonctions (Pausas et al., 2004; Ennos, 2015). For example, boreal forests in eastern 

Canada are recurrently affected by spruce budworm (Choristoneura fumiferana), a 

defoliator insect whose main host trees are mature balsam firs (Abies balsamea) and 

black spruces (Picea mariana). Outbreaks tend to occur every 30-40 years 

(Boulanger & Arseneault, 2004). Insect communities and trees populations are 

perfectly synchronised and alternate cycles of depletion-renewal-growth-stabilization 

(Holling, 1973; Bouchard & Pothier, 2010). The wildfire season of 1988 devastated 

the Yellowstone Park and its surroundings. Scientist predicted an ecological 

catastrophe. A few years after, forest ecosystems rapidly and richly regenerated, 

whereas the whole landscape became even more heterogeneous than before the 

wildfires (Poster et al., 1998b; Turner et al., 1999; Kashian et al., 2005). Similarly, in 

2002 a large severe fire in an Australian plateau burnt three main forest formations: 

rainforest, wet sclerophyll forest, and dry sclerophyll forest. It was expected that the 

canopy cover of both rainforest and wet sclerophyll forest was irrevocably removed. 

Though, seven years later there was no evidence of floristic composition changes in 

any forest type (Knox & Clarke, 2012). 
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How to operationalise forest resilience 

Even if there is empirical evidence that some forest ecosystems are resilient to natural 

disturbances, still little is known and agreed on how to guide forest landscape 

management to strengthen and enhance ecosystem resilience face to shifting 

disturbances regimes and climate change (Chapin III et al., 2004; Olsson et al., 

2004). In fact, many international and national environmental initiatives and policies 

advocate for increasing resilience and adaptive capacity of forest ( e.g. the guiding 

principles from the Environmental Protection Agency in USA (EPA, 2013), the 

Intergovernmental Panel on Climate Change (IPCC, 2014), or the Natural Resource 

Management Ministerial Council in Australia (NRMMC, 2009, 2010)). But at the 

operational level, a precise definition and appropriate ways to measure and monitor it 

are often not provided (Carpenter et al., 2001; Sterk et al., 2017). Indeed, managing 

for ecosystem resilience has used until now multiple interpretations and approaches 

(Chapin et al., 2010). Millar et al., (2007) for example, distinguished between 

strategies to improve either resistance, resilience, or even response capacity of forest 

ecosystems. Resistance options aimed at reducing forest exposure to disturbances, by 

for example, taking defensive actions in key strategic locations to avoid further 

incontrollable pest invasions. While strategies to improve response capacity to 

environmental change were based on assisted species migration, promoting species 

redundancy, and landscape connectivity (among others). As a measure of resilience 

some authors have proposed the time of recovery following a perturbation to return to 

the prior state (Newton & Cantarello, 2015), or even the rate of recovery defined at 

the species, stand, or ecosystem level, as the speed and extent these can restore to pre

disturbance levels (Palumbi et al., 2008; Cole et al., 2014). Other authors have 

focused on identifying potential recovery trajectories within the historical range of 

variability of the systems, as well as characterising the future range of variability to 

determine whether the system is resilience to changing disturbance regimes (Seidl et 
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al., 2016). All these multiple (and at the same time valid) approaches highlight a lack 

of consensus or general agreement on how to operationalise resilience and measure 

related concepts and properties (Rist & Moen, 2013; Timpane-Padgham et al., 2017). 

Conversely, to support decision-making processes targeting forest resilience in an 

uncertain global change context, the scientific community is already proposing 

updated innovative methodological approaches to uniformly evaluate and compare 

different forest landscape management regimes. For example, in the Great Lake 

forests (USA), the landscape dynamic model LANDIS-II was used to simulate four 

management strategies under three scenarios of climate change (a business-as-usual 

intensive even-aged management, an increase of protected areas in riparian zones, a 

less intensive management regime with longer rotation periods, and an assisted 

migration strategy of southem species as a mean to increase adaptability to a warming 

climate) and test the outcomes in terms of functional diversity following a wildfire 

(Duveneck et al., 2014; Duveneck & Scheller, 2016). The forest growth Forest 

Vegetation Simulator model was used to simulate the carbon dynamics of three 

planting treatments after disturbance (no action, a resilience-oriented strategy by 

planting local species, and a adaptation-oriented strategy by planting climatically 

suitable species) in southem Rocky Mountains (USA) (Buma & Wessman, 2013). 

Coupling a stand-level, forest-level, and habitat model served as a framework to 

support the decision-making process in development and implementation of a 

sustainable forest management plan for a region in north-eastem British Columbia 

(Canada) (Seely et al., 2004). 

In this thesis, I aim at contributing firstly, to the body of knowledge and work on 

quantitative robust methods and tools to address resilience-target forest landscape 

management questions in a context of global change and uncertainty (de Senna 
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Cameiro et al., 2013). Such analytical frameworks should (1) account for the 

complexity of forest landscapes understood as coupled human-natural systems, (2) 

include all the key elements, processes, and interactions driving system dynamics at 

the right spatial and temporal scales, that is incorporate the main anthropogenic (land

use/land-cover changes and forest management), natural (fires, insect outbreaks, 

windthrows ), and climatic factors of change, (3) allow exploring different scenario 

storylines, that is, alternative landscape management strategies never applied before, 

(4) be designed to support landscape-scale decision-making processes and favour 

participative scenario building, (5) incorporate uncertainty, and as muchas possible, 

and (6) be spatially explicit (Kelly et al., 2013; Verburg et al., 2013; Rammer & 

Seidl, 2015). 

Secondly, I mm at proposing a generic multi-evaluation of forest ecosystems 

resilience to disturbances. Other than characterise system resilience, it allows to 

measure the response of resilience-target managed forest landscapes too. This 

quantitative approach is based on species functional response traits to measure 

functional redundancy and response diversity, and network properties of the forest 

landscape viewed as a network of forest patches (Elmqvist et al., 2003; Pillar et al., 

2013; Craven et al., 2016). A network is a theoretical model of interconnected 

heterogeneous elements, represented as nodes connected by links. Networks have 

proved to be excellent models to capture the complexity of many systems, and 

network theories and analysis useful tools to describe structure, function, emerging 

properties, and system behaviour to node-removing, link-removing, and spreading

like disturbances (Newman, 2003; Boccaletti et al., 2006). Finding out properties and 

behaviours of forest networks studied for network archetypes, allows to extrapolate 

resilience-system features from theory to practice (Shirley & Rushton, 2005; 

Barthélemy, 2011 ). 
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Thesis objectives and structure 

The main objective of this thesis is to advance in building methodological approaches 

that (1) capture the complex dynamics of anthropised forest landscapes and/or (2) 

allow to quantitatively evaluate alternative landscape-scale forest management 

scenarios. Most of my current research questions focus on how forest ecosystems 

have to be managed today to become more resistant / resilience to current and future 

natural disturbances regimes (Carpenter, 2002). To this end, management strategies 

proposed here are to be applied in an uncertain global change context to face potential 

natural and anthropogenic perturbations impacting forest landscapes. I have selected 

two highly humanised forest landscapes to illustrate the application of these 

methodologies. The first landscape is Catalonia, a European Mediterranean region in 

northeast Spain. Catalonia is recurrently impacted by large intense wildfires during 

the summer season, forest mosaics have been homogenised in the last four/five 

decades due to rural depopulation, and enjoys a cutting-edge group of wildfire 

fighting specialists that focus on understanding interacting factors driving wildfires as 

an inherent part ofMediterranean ecosystems (among others) (Valladares et al., 2014; 

Otero & Nielsen, 2017). The second landscape is Centre-du-Québec region, an agro

forested mosaic lying on the eastem edge of the Saint Lawrence river in south-eastem 

Canada (Craven et al., 2016). Forests of Centre-du-Québec have been fragmented and 

homogenised by agricultural and timber harvesting activities, pest outbreaks and 

severe droughts are imminent threats, and most silvicultural management is still 

single-focus (Holling & Meffe, 1996; Dymond et al., 2010; Dodds & Orwig, 2011; 

Allen et al., 2015). 

The thesis objectives are addressed in three distinct but related chapters, even if each 

ofthem has been written as stand-alone. 
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Chapter 1 presents a generic spatially explicit land-use/land-cover change model to 

simulate any land transition following a demand-allocation approach. In a demand

allocation land-use/land-cover model, for every land transition, the demand is the 

quantity of land that have to change to the target land-cover (e.g. urban infrastructures 

for urbanization), while the model itself is responsible of the allocation of that 

demand, that is the spatialization of the change. In my modelling framework, the 

spatial allocation procedure builds on the assuinption that land transitions occur in 

two phases: change occurrence and change spreading (or contagion) (Rosa et al. 

2013). The procedure works with three parameters: rate of change occurrence, rate of 

change spreading, and acceleration of change-contagion. With a sensitivity analysis, I 

showed how the relation between change occurrence and change spreading determine 

the emergence and extent of multiple patterns of patches-of-change. I integrated this 

allocation procedure to the spatial explicit land-use/land-cover change model 

MEDLUC that mimics urbanisation, rural abandonment and agriculture conversion in 

Catalonia (at two spatial resolutions 1 km2 and 1 ha). 

Chapter 2 explores the spatial interactions between vegetation dynamics, wildfires, 

land-cover changes, and fire suppression by adopting a landscape dynamic meta

modelling approach. I built a meta-model by coupling the land-use/land-cover change 

model MEDLUC developed in Chapter 1 to the spatially explicit tire-succession 

model MEDFIRE already calibrated for Catalonia (Brotons et al., 2013). This new 

tool accounts for multiple interacting natural and anthropic factors of change driving 

dynamics of highly anthropised Mediterranean forest landscapes. I used it to explore 

plausible fuel load reduction management regimes based on agricultural conversion 

of scrublands and marginal forests (Moreira & Pe'er, 2018). Landscape management 

strategies sought at create more heterogeneous mosaics that could increase fire 

suppression effectiveness to ultimately shape the fire regime. I tested two contrasting 

hypotheses about non-linear responses of fire reduction over the landscape 
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heterogeneity gradient. Supported by percolation principles (Turner et al., 2001 ), new 

agricultural patches can enhance fire extinction capacity because high bumable fuels 

will progressively become less connected, being the fire spread behaviour non-linear 

close to the theoretical percolation threshold. 

Chapter 3 presents an innovative multi-criteria evaluation of forest ecosystems 

resilience to natural and anthropogenic disturbances based on species functional 

response traits and spatial network properties. The approach considers response 

diversity, functional redundancy, network connectivity, modularity, and centrality as 

key components /indicators of forest resilience. I first applied it to characterise the 

Centre-du-Québec region using a network representation of forest patches. Then, I 

investigated the variation of these five properties under distinct resilience-based 

management scenarios and following three main disturbances: drought episode, pest 

outbreak, and timber harvesting. The set of designed scenarios evaluated how 

resilience related properties behave according to (1) the amount of area managed, (2) 

the management strategy applied - functional enrichment of current forest patches 

versus plantation of new patches -, and (3) the species-trait function prioritised in the 

sylvicultural intervention. I tested the hypotheses that natural disturbances ( drought 

and pests) exert a stronger effect on ecosystem response diversity and functional 

redundancy than harvesting, that functional connectivity was largely decreases by 

harvesting (rather than by natural disturbances), but that ail management strategies 

could prevent to some extent ecosystem resilience loss. 

Finally, the main contributions, findings, and concluding remarks of my work are 

summarised in the last section of this the sis. 
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1.1 Abstract 

Land-use/land-cover (LULC) change models integrate the effects of anthropogenic 
drivers of landscape change. Spatially explicit LULC change models help at 
understanding the landscape mosaic that emerges from the interplay between local
scale decisions as well as regional and national policies. These models produce 
valuable spatially explicit scenarios of LULC change that underpin biodiversity 
impact and ecosystem services assessments. Most raster-based LULC change models 
adopt the demand-allocation approach to simulate land transitions (i.e. the 
transformation of one land-cover type to another for a given spatial unit). In a 
demand-allocation framework the expert fixes the demand (or quantity of change) 
and the LULC change model uses a spatial procedure to allocate the change (i.e. to 
select the cells to be transformed to the target land-cover type). Here, we propose a 
spatial allocation procedure that builds on the assumption that land transitions occur 
in two phases: change occurrence and change spreading (or contagion). The 
allocation procedure uses a sorted queue of cells waiting to undergone change. Three 
parameters (rate of change occurrence, rate of change spreading and acceleration of 
change-contagion) control the order of cells order in the queue, and ultimately 
determine the emergence and extent ofpatches-of-change. We performed a sensitivity 
analysis where we show that the relation between both rates (i.e. change occurrence 
and change spreading) allows patches-of-change expand before other patches arise or 
vice versa. We provide a simple protocol to implement the allocation procedure as the 
core of a spatial explicit LULC change model, and we applied this protocol in the 
development of a new model, called MEDLUC, that intends to replicate the most 
relevant transitions observed in Mediterranean landscapes: urbanisation, rural 
abandonment and agriculture conversion. For Catalonia, a region in NE Spain, 
MEDLUC reproduces the empirical patches-of-change distributions from a 16-year 
period at two spatial resolutions (1 km2 and 1 ha). Overall, our allocation procedure 
performs better than a null model for urbanisation and rural abandonment at both 
resolutions, while it does worse when modelling agriculture conversion. 

Keywords: Land Transitions; Transition-potential; Demand-allocation approach; 
Change occurrence; Change spreading; Power-law 
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1.2 Introduction 

Land-use/land-cover (LULC) spatial distribution emerges from the dynamic interplay 

between human and natural complex systems. Models of LULC change have become 

helpful tools to test hypotheses about anthropogenic and environmental drivers of 

change, to investigate feedback dynamics, as well as to anticipate possible future 

landscape changes (Brown et al., 2013). Two broad classes of LULC change models 

have independently emerged within social and natural sciences (Geoghegan et al., 

1998). Based on household surveys, agent-based models developed mostly within 

social sciences simulate the decision-making processes that result from the 

interactions among individuals and the environment (Parker et al., 2003). In many 

applications, agent-based models are used to explore land systems from a theoretical 

perspective (Janssen & Ostrom, 2006; Matthews et al., 2007) and are restricted to 

relatively small areas (Valbuena et al., 2010). Because agent-based models seldom 

incorporate explicitly the spatial dimension of the system, they have been mainly 

used to understand the processes rather than to project scenario outcomes, but see 

Gibon et al., (2010). On the other band, based on remote sensing imagery, interpreted 

orthophotos, or historie cartography, LULC studies in natural sciences first focused 

on recognizing land-cover spatial patterns and then on spatially characterizing land 

transitions and the processes underlying them. This knowledge was later used to 

develop spatially explicit LULC change models based on the empirical relations 

between observed drivers of LULC and resulting various landscape configurations 

(Veldkamp & Lambin, 2001). These modelling frameworks can integrate climatic, 

biophysical, or socio-economic factors of change operating from local to global 

scales to relate causes and consequences ofLULC changes (Lambin et al., 2001). 
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Spatially explicit LULC change models applied in a variety of research contexts have 

been used to anticipate and predict the effects of multiple land transitions on regional 

climate, greenhouse gas emissions, biodiversity, and socio-economic welfare at a 

range of different spatio-temporal scales (Rounsevell et al., 2006a; Schulp et al., 

2008; Nelson et al., 2009). Since LULC maps are essential for local and regional 

assessments of ecosystem service provisioning, the importance of LULC modelling 

has strongly increased in recent years (Metzger et al., 2006). In the future, models of 

this kind may become fundamental tools to accurately inform policy makers and land 

managers committed to sustainable development, biodiversity conservation, and/or 

climate warming mitigation (Rounsevell & Reay, 2009; Renwick et al., 2013). To be 

used for this purpose, LULC modelling tools need to be able to translate socio

economic trends or future land policies into spatially explicit LULC change 

projections that are easily interpretable and suitable to integrate in multidisciplinary 

assessments (Turner et al., 2007). However, this is not always the case, especially if 

the assumptions underlying land transitions are not made explicit or if the algorithms 

employed to spatialize scenario storylines are too complex and/or ambiguous. Thus, 

what often determines reliance on a spatially explicit LULC change model in a 

decision-making context is the model's transparency and flexibility, as well as the 

availability of standard procedures to validate the model and quantify the uncertainty 

on results (Sohl & Claggett, 2013). 

To model the complex social and ecological dynamics of any coupled human

environment system, many spatially explicit LULC change models have adopted the 

demand-allocation principle. In a demand-allocation framework, the quantity of 

change (i.e. the demand) is independently estimated first, followed by the 

spatialization of these quantities (i.e. the allocation) (Verburg et al., 2002). The two 

main advantages of this modular structure are: (1) model validation can be split in 

two independent analyses to better isolate different sources of error and uncertainty 
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(Pontius et al., 2004; Camacho Olmedo et al., 2015), and (2) since drivers of the 

quantity of change may not be the same as those driving the spatial location of 

change, this structure allows estimating both according to the most appropriate socio

economic and environmental factors (Veldkamp & Lambin, 2001). To apply this 

modelling approach to study the behaviour of a socio-ecological system, a previous 

step is to identify and describe the set of land transitions that potentially will take 

place on the system. A land transition is the transformation of a land-use/land-cover 

type (hereafter LCT), or a set of them, to a target LCT. For example, urbanisation 

may be defined as the transition between bare soil and abandoned crops to housing 

covers, while rural abandonment may be defined as the transition between 

agricultural lands to semi-natural vegetation areas. In many applications, the demands 

are extemally assessed using specialized quantitative socio-economic models 

(Asselen and Verburg 2013). Therefore, the key differences between demand

allocation LULC change models arise from the approach used to dynamically allocate 

the quantity of change in space. 

Most common spatially explicit LULC change models rely on regression-type 

methodologies to integrate socio-economic and biophysical factors of change. They 

derive either potential-transition maps that indicate the likelihood of a land transition 

(Pérez-Vega et al., 2012) or potential-occurrence maps that indicate the spatial 

suitability of land-cover types (Verburg et al., 2002; Castella & Verburg, 2007). Both 

types of maps are used to stochastically forecast the location of changes (i.e. the maps 

become the probabilistic basis to spatially-allocate the demand) (Poelmans & Van 

Rompaey, 2010). For example, the large family of CLUE models bases the spatial 

allocation on empirical multivariate logistic regressions (Verburg et al., 2002; 

Castella & Verburg, 2007; Verburg & Overmars, 2009). Spatial land-cover type 

suitability, derived from biophysical and socio-economic drivers specific of the 

studied region, leads the iterative spatialization of the demand while considering 
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competition between land-cover types for the most productive locations. Artificial 

neutral networks allow the integration of empirical data to learn about past functional 

relationships and, for example, predict urbanisation (Pijanowski et al., 2002) or 

deforestation (Mas et al., 2004). Sorne disadvantages of regression-type data-based 

methodologies are: (1) they do not allow distinguishing between empirically-good 

predictors of changes from the spatio-temporal mechanisms that determine 

occurrence, extent, and spatial configuration of changes (Rosa et al., 2013); (2) they 

are constrained by data availability of all the drivers of change at the spatial 

resolution of the model (Sohl et al., 2007); (3) the relations are static (Poelmans & 

Van Rompaey, 2010); and (4) they do not focus on the explicit modelling and 

validation of the spatial patterns of land-cover change (Brown et al., 2002). 

It has been argued that LULC change processes (chiefly urban development) are self

organising, path-dependent phenomena (Wu, 2002). On one hand, this means that 

although macroscopic patterns are regulated by upper-level administrative policies, 

they emerge from local factors, individual behaviours and the corresponding 

interactions (Verburg et al., 2004). On the other hand, this also implies that land 

changes derive from two interrelated processes: occurrence (or origination) and 

spreading (Clarke et al., 1997; Soares-Filho et al., 2002). A large family of models 

aiming to capturing these two processes have relied on a cellular automata (CA) 

approaches (White & Engelen, 2000). A CA operates over a n-dimensional grid, each 

cell is in a discrete system state (i.e. a LCT), and it updates to a new state according 

to the composition of the neighbourhood and specific expert-defined transition rules. 

Mainly applied to simulate urban growth, CA have also been useful to spatialize the 

dynamics in Amazonian landscapes (Soares-Filho et al., 2002). Customized cellular 

automata may allow for a higher control of when patches-of-changes initiate and how 

(or where) they expand (Ward et al., 2000; Liu & Phinn, 2003). But CA-based 

models operating at regional scales have been revealed to be extremely difficult to 
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calibrate for reproducing multiple, real LULC changes (Straatman et al., 2004; 

Dietzel & Clarke, 2007). Therefore, there is a need of approaches capable of 

modelling multiple LULC changes accounting for both occurrence and spreading in a 

simple yet flexible way. 

Here, we introduce a new spatial demand-allocation procedure for modelling LULC 

change dynamics. The novelty of this procedure is that it explicitly addresses the two 

phases inherent on land transitions: (1) land change occurrence (i.e. origination of a 

new patch-of-change) and (2) change spreading (or the spatial contagion of the land 

transition) that will generate the final spatial extent and configuration of that patch

of-change. LULC change occurrence and spreading have been identified as critical 

phases to explain observed patterns of land change, for example, those generated by 

deforestation in the Amazon (Rosa et al., 2013), or by urbanisation in Europe 

(Antrop, 2004). Our objective is two-fold: (a) To show that discretising land-cover 

transitions in two phases, occurrence and spreading, while assigning to these two 

processes variable rates can generate emergent patches-of-change that reproduce 

realistic spatial patterns of land-cover change; and (b) to show that the proposed 

allocation procedure is capable of reproducing multiple observed transitions at 

multiple spatial scales. We chose a regional landscape in the Mediterranean basin to 

test the applicability of our procedure and its ability to replicate empirical spatial 

patterns of change derived from urbanisation, rural abandonment, and agriculture 

expansion processes at 1 km2 and 1 ha. 

In the following section we first present in detail the proposed spatial demand

allocation procedure and provide basic guidelines to integrate it within a generic 

spatially explicit LULC modelling framework. We then address (a) by means of a 

sensitivity analysis using neutral landscapes. After that, we describe how we built 
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MEDLUC, a spatially explicit LULC change model that simulates urbanisation, rural 

abandonment, and agriculture expansion transitions in Catalonia (NE Spain). Finally, 

we address (b) by presenting a validation exercise of the MEDLUC model (at two 

spatial resolutions) based on the assumption that patches-of-change size distributions 

follow a power law distribution. 

1.3 Methods 

1.3.1 The spatial demand-allocation procedure 

We designed the spatial demand-allocation procedure to capture variability in the 

degree of spatial aggregation of transitions between land-use/land-cover types. Here 

LCT transition refers to specific state-changes between LCTs. Our procedure focuses 

on the distinction between two phases of land transitions: the occurrence and the 

spreading of changes. We assume that the following elements are available: an initial 

LULC raster map (with a certain number of LCTs), the definitions of the LCT 

transitions of the system, and the allocation demand Dzct for each transition. Dzct is the 

number of cells that will change to the targeted LCT in a way that the quantity of 

change for that transition will be satisfied. For each LCT transition, a spatial 

transition-potential variable describes the transition potential to the targeted LCT. 

This spatial variable accounts for the biophysical, cultural, and socio-economic 

drivers behind that transition, as well as the land use history or neighbourhood 

characteristics (Dendoncker et al., 2007). If transition-potential is not a probability of 

change (with its corresponding density fonction, derived for example from a logistic 

model) then it is used as a weighting variable. That is, its range of values is linearly 

scaled to [O, 1] and then it is used to prioritize the locations to undergone change. If 
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the transition-potential variable is not specified, then all cells are assurned to have 

equal potential. 

The algorithm to allocate the demand Dzct of a LCT transition for a given time step 

works as follows (Figure 1.1 ): Dzct cells are randomly selected according to the 

transition-potential variable. The selected cells (hereafter called initiating cells) form 

the pool of cells from which patches-of-change may originate. An initiation time 

value (Tini) drawn from an exponential distribution with rate À; is assigned to each 

initiating cell (see Equation 1). Initiating cells are sorted in a queue by ascending 

order of their Tini values. The first cell of the queue (i.e. the cell with minimum Tini) is 

then processed in six steps: 

1. The location on the LULC raster map updates to the targeted LCT. 

2. The cell is removed from the queue of active cells. 

3. The demand is decreased by one unit. 

If the demand still to be allocated is greater than 0: 

4. Its cardinal (rook) neighbours that can potentially change and have not already 

changed are activated; hereafter called spreading cells. Only neighbour cells 

that can switch to the targeted LCT can become spreading cells. 

5. For each spreading cell recently activated a value is drawn from an 

exponential distribution with rate Às. It is scaled by (Tini)k, where Tini is the 

processing time of the initiating cell of that patch-of-change, and added to 

Tsrc, the time of the cell that caused the activation ( either an initiating cell or 

another spreading cell). The result of this operation is the spreading time of 

that cell (Tsprd) (see Equation 2). 
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6. Spreading cells are added to the above-mentioned queue of cells according 

their spreading time values. 

The next first cell on the queue (i.e. the cell with smallest time, Tini or Tsprd) is 

processed following the same six steps, until all the demand is allocated. If the next 

cell at the front of the queue is from the initiating cells pool, a new patch-of-change 

will originate. However, because the Tsprd of a spreading cell can be lower than any 

Tini of the initiating cells currently on the queue, the spreading cell can become the 

next cell to be processed. In this case an existing patch-of-change will expand instead 

of originating a new patch. This is the mechanism that allows a LCT transition to 

spread through neighbouring cells. Once the demand is fully allocated, any cell 

remaining on the queue is discarded. The two equations that determine processing 

times for activated cells are: 

Tini ~ NEGEXP(Ài) 

Tsprd ~ NEGEXP(Às) . (Tinii + Tsrc 

[1] 

[2] 

Parameters Âi, Âs and k are quantities that stochastically control the speed of patch 

occurrence and spreading processes, to ultimately determine the spatial pattern of a 

transition. The transition-potential spatial variable is only used in the selection of the 

initiating cells pool, but the activation of the spreading cells is controlled by the {À.i, 

Às, k} pararneter set. The speed of occurrence of new patches is regulated by 

parameter Ài (or rate of change-occurrence). Setting Âi to larger values will lead to 

smaller times for patch creation (patches-of-change will be created relatively quickly) 

and hence the demand will more likely be allocated in a large number of relatively 



------------------------------------------------

24 

small patches. Parameter Às (or rate of change-contagion) is related to the rate at 

which the spreading cells are induced to change. Spatial patterns of LULC change 

will emerge from the interplay between Às and Ài, i.e. how fast patches expand in 

relation to formation of new patches. At higher values of Às the value of the 

exponential distribution will likely be small, and Tsprd will be doser to Tsrc. In such 

cases, if the rate of patches-of-change occurrence is low, cells undergoing change 

may aggregate around the initial cell, creating patches of larger size. Finally, 

parameter k controls the acceleration at which spreading cells are induced to change, 

i.e. it is the acceleration of change-contagion. In the algorithm, the parameter k 

controls the relative position of the spreading cells in the ascending-ordered queue in 

relation to the initial source cell. In other words, k regulates the inheritance between 

patch-of-change formation rate and change expansion. While Às influences the growth 

rate of patches-of-change equally (i.e. all faster or slower once initiated), k influences 

the growth rate of patches-of-change relative to the initiating time of the cells that 

originated them. 
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Figure 1.1: Flow diagram of the spatial procedure that uses an ascending-order queue 

of pixels susceptible to undergone change to allocate the demand of a land-cover 

transition (black squared boxes). The demand-allocation procedure is embedded in 

MEDLUC model's working diagram (grey boxes are all user-defined). 
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The spatial demand-allocation procedure can be used as the core of a spatially explicit 

LULC change model to simulate the LCT transitions of a given socio-ecological 

system. For clarity, here we summarize the required actions a modeller should 

perform beforehand (Figure 1.1): 

a. Initialise the spatial state variable accounting for the main LCTs of the system 

as a raster layer. 

b. Define the LCT transitions of the system by identifying the LCTs that are 

allowed from each target LCT. If there is more than one transition allowed for 

a given target LCT, then a sequence of transitions or temporal hierarchy has to 

be detailed (Rounsevell et al., 2006b). 

c. Set the minimum sojourn time per land-transition, sensu Soares-Filho et al., 

(2002). That is, the time span required to allow cells be affected by another 

land-transition after having changed. 

d. For each LCT transition, initialise the transition-potential variable. If it 

depends, among other factors, on the LCT spatial structure, the transition

potential will be dynamically updated. 

e. Fix the time horizon and the time step at which transitions occur. 

f. Estimate the demand for each transition at each time step. Demand units can 

be specified as number of cells or percentage of new cells ( over the area 

occupied by the targeted LCT or the whole area). 

g. Determine the {À,i, Às, k} parameter set for each transition. The parameter set 

can be dynamic, varying at each time step if needed. 
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The output of the model (per time step) are the LCT state variable updated, an 

auxiliary variable indicating the updated locations per land-transition, and a 

secondary state variable accounting for the time since the last change. 

1.3.2 Sensitivity analysis of the demand-allocation procedure 

We performed a sensitivity analysis to estimate the influence of each parameter from 

the demand-allocation procedure (Ài, Às, and k) on the final spatial distribution of the 

patches-of-change. To conduct the sensitivity analysis, we implemented a spatially 

explicit LULC change model based on neutral landscapes (Li et al., 2004; Gardner~ 

Urban, 2007). We used the SIMMAP software (Saura & Martinez-Millan, 2000) to 

generate a squared landscape of 180 km per side (32 400 km2) at 1 km2 of resolution, 

with four LCTs (urban, vegetation, agriculture, and water), and the level of 

fragmentation p set at 0.50. The parameter p specifies the spatial aggregation of the 

LCT, and ranges from 0 -total randornness- up to 1 -perfect aggregation-. Our 

reference to determine the LCTs and their abundance on the landscape was the 

European Environment Agency tree classification system adopted for the CORINE 

Land Cover (CLC) Program. The relative abundances of LCTs were fixed at 2 % 

urban, 47 % vegetation, 50 % agricultural land, and 1 % water. They correspond to 

the 1990 CLC abundances for the Mediterranean biogeographical region (EEA, 

2006). The sensitivity analysis was conducted for rural abandonment only (i.e. 

conversion of agricultural land to natural / semi-natural vegetation). The demand was 

proportional to the amount of change observed in the Mediterranean region between 

1990 and 2006 CLC datasets (EEA, 2006). We fixed a single time step at 16 years 

( covering the entire time period). Because neutral landscapes were void of 

biophysical or socio-economic drivers of change, the transition-potential spatial 

variable was set equal for all cells, meaning that there was no spatial priority where 

------------------------------------------- ----
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patches arose. W e designed a combinatorial set of experiments in which each 

parameter took a value from the following subsets: {0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 

15, 20} for À; and Às; {0.1, 0.3, 0.5, 0.7, 0.9} for k. For each experiment we replicated 

the demand-allocation procedure 20 times. 

W e verified that most of the patches-of-change s1ze distributions could be 

approximated using a power law statistical distribution. This means that, for the 

discrete variable patches-of-change size abundances S, if {p(s)} denotes the set of 

discrete probabilities, 

p(s) oc s-P [3] 

The fJ exponent of a power-law distribution identifies which are the predominant 

sizes. As f3 increases (and fJ is over 1) small patches-of-change account for an 

increasingly larger proportion, when fJ <l larger patches tend to dominate, and when 

f3 = 1 all patch sizes have equal contribution to the overall distribution. 

Power law distributions present heavy long upper tails because most of the samples 

gather around low values. Instead of characterizing this type of distribution by a 

common histogram, Pueyo (2006) suggested to use a histogram with multiplicative 

intervals for the bins. When the discrete probabilities {p(s)} are standardized by the 

size of the bin, we obtain the density of probability per bin {/(s)} than can be further 

compared. Following Pueyo (2006), we took multiplicative intervals [.U, .U+1
] with L 

= 2, and computed the central value s1 = y+v2 and the estimated probability density 

J ( sj) = ;j · ~ of bin j, where n1 is the number of patches in bin j and N the total 

number of patches. As the series {sj,/(sj)}. verifies Equation 3, we took logarithms 
J 
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to fit the parameter f3 by linear regression. Using this approach we obtained an 

estimation of f3 for each experiment and replicate. 

We characterized the spatial patterns of patches-of-change using four class metrics 

(Gustafson, 1998; Li et al., 2004): (i) the number of patches relative to the total 

demand allocated (i.e. the number of patches needed to allocate a 100-cell demand), 

(ii) the mean patch size, (iii) the maximum patch size, and (iv) the maximum fractal 

dimension index that describes the shape complexity of the patch (i.e. the irregularity 

on its perimeter), and is estimated as two times the logarithm of the patch perimeter 

divided by the logarithm of the patch area. We fitted log-log linear regressions 

between each response variable (the f3 exponent and the four class metrics) and the À;, 

Âs, and k parameters plus their respective interactions (k x À;, k x Âs, Â; x Âs), acting as 

independent variables. Responses to these factors were evaluated using analysis of 

variance. Analyses were conducted in the R statistical environment (R Development 

Core Team, 2008), using the functions provided in the 'poweRlaw' (Gillespie, 2014) 

and 'SDMTools' (VanDerWal et al., 2014) packages. 

1.3.3 Modelling LULC changes in a Mediterranean region using a spatially explicit 

demand-allocation LULC change mode! 

European · landscapes have historically evolved under a myriad of environmental and 

anthropogenic forces, leading to heterogeneous urban-rural matrices (Antrop, 2004). 

In the last decades many regions have experienced severe land transformations due to 

both exogenous (market liberalization, immigration, climate change) and endogenous 

( economic growth, population aging) driving factors. In Mediterranean countries the 

processes of land abandonment, agriculture expansion, and urbanisation ( e.g. city 
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expansions, urban sprawl, and second home proliferation) interacting with wildfires 

have largely shaped landscapes and altered ecosystem functioning during the last 

years (Moreira et al., 2011; Stellmes et al., 2013). We chose the northwest region of 

Catalonia, Spain (Figure 1.2) as representative of the three main LULC changes 

taking place in Mediterranean landscapes. In Catalonia, fire incidence ( ca. 10 % of 

the territory bumt since the 80's decade) and LULC change processes mostly explain 

the observed recent transformations on landscape composition and configuration 

(Diaz-Delgado & Pons, 2001; Badia et al., 2011; Puerta-Pii'iero et al., 2012) (Table 

1.1). 

We designed a LULC change model called MEDLUC (MEDiterranean LUlc Change) 

to spatially simulate the land transitions most frequently occurring in European

Mediterranean landscapes: urbanisation, rural abandonment, and agriculture 

expansion (Verburg et al., 2010). MEDLUC was implemented in the SELES 

landscape modelling platform (Fall & Fall, 2001) and is available under request. 

Following the protocol of the previous section (Figure 1.1 ), MEDLUC specifications 

for Catalonia are: 

a. We initialize the land-cover types spatial state variable using the 1993 Land 

Cover Map of Catalonia (www.creaf.uab.es/mcsc). Its hierarchic legend was 

re-classified into four major categories (Figure 1.2): urban areas and human

made infrastructures (e.g. roads), natural and semi-natural areas (e.g. forests, 

scrublands ), agricultural land ( e.g. crops, vineyards, orchards ), and others 

( comprising water bodies and bare soil). The series of Land Cover Maps of 

Catalonia are categorical vector maps derived by photo interpretation of 

orthophotos. W e rasterised the 1993 version at 1 km2 and 1 ha spatial 

resolutions. 
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b. We defined three land-cover transitions: urbanisation being the transition 

from natural vegetation and agricultural lands to urban areas, rural 

abandonment being the conversion from agricultural land to and semi-natural 

areas, and agriculture expansion being the inverse of rural abandonment. 

Urbanisation is modelled fi_rst, followed by agriculture expansion and, lastly, 

rural abandonment. This temporal hierarchy of the land-cover transitions is 

consistent with the amount of human effort or investment required. 

c. We did not have to fix the minimum sojourn time for any transition because 

only one time-step was simulated (see below). 

d. We wilfully decided to not deeply explore the actual biophysical and socio

economic drivers of each land transformation. However, vicinity composition 

of the cells subject to change and spatial interactions are relevant factors of 

change (White & Engelen, 2000; Dendoncker et al., 2007). Thus, we adopted 

the neighbour factor approach introduced by Verburg et al. (2004) to initialize 

the transition-potential variable. The neighbour factor Fi,!,d characterizes the 

weighted influence of the LCT l within the neighbourhood d of cell i. We 

considered a square neighbourhood d of 3 km size to compute it. 

e. The time horizon was fixed in 2009 and the demand was allocated in a single 

time step of 16 years. 

f. W e reclassified the 2009 version of the Land Co ver Maps of Catalonia series 

to the four major land-cover categories mentioned above. We assessed by cell

to-cell differences the demands of urbanisation, rural abandonment, and 

agricultural expansion at both spatial resolutions (Table 1.1 ). 

g. The {À,i, As, k} parameter set for each LCT transition and spatial resolution was 

set by calibration (see below). 



32 

Table 1.1: Observed land-cover change demands in Catalonia from 1993 to 2009 for 

the three land transitions, at 1 km2 and 1 ha of spatial resolution derived from the 

Land Cover Maps of Catalonia. 

Demand for : at : 

Urbanization 

Rural abandonment 

Agriculture expansion 

1 km2 

579 

1 319 

112 

1 ha 

68 999 

159 915 

35 494 
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Figure 1.2: 2009 Land Cover Map of Catalonia (32 1 OO km2) reclassified to four 

categories: urban in red, natural vegetation in green, agricultural land in yellow, and 

others in grey (a); zoom in for the land transitions observed between 1993 and 2009 

in the northeastem part of Catalonia at 1 ha (b ); and a situation map of Catalonia in 

the European context ( c ). 
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We evaluated the ability of the MEDLUC model to reproduce observed spatial 

patterns of change in Catalonia between 1993 and 2009 at 1 km2 and 1 ha spatial 

resolutions. Since we were less interested in the spatial structure of changes and their 

biophysical and socio-economic drivers, we focused on evaluating the emerging 

patches-of-change distributions. W e characterized the six empirical distributions of 

patches-of-change (i.e. urbanisation, rural abandonment, and agriculture expansion at 

1 km2 and 1 ha) as we did in the sensitivity analysis. First, we verified that empirical 

distributions could be approximated using a power law using the Vuong's test 

(implemented in the 'poweRlaw' R-package), a likelihood ratio test in which the null 

hypothesis is that the two compared distributions are equally far from the true 

distribution. After this verification, we determined the power-law fJ exponents of the 

observed distributions (/Jobs) by fitting log-log linear regressions. Lastly, we 

calculated the four class metrics listed above for each distribution. W e used the same 

combinatorial set of experiments described for the sensitivity analysis to calibrate the 

{Àt, Às, k} parameters. We ran 50 replicas of the model. The maximum likelihood 

parameter combinations were chosen based on the fJ exponent that best fitted the /Jobs 

exponent (see Annex A for calibration details). 

Because MEDLUC follows a demand-allocation approach, in each run the demand of 

any land transition was fully allocated. Thus, the generated maps were free of 

quantification error but not of location error (Pontius et al., 2004), which came from 

the initialization of the transition-potential variable and the stochasticity of the 

allocation procedure (Equation 1 and 2). We carried out an error quantification test 

based on the percentage of cells correctly classified (Kuhnert et al., 2005) and 

compared the predictive performance of MEDLUC with regard to a null model 

predicting absolute persistence (Pontius et al., 2004). Specifically, we first produced 

the cross-: tabulation analysis between the 1993 and 2009 versions of the Land Cover 

Map of Catalonia to retrieve the percentage of correct classifications (for each land-
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cover type) under the null model. W e then averaged the percentage of correct 

classifications of the cross-tabulation analysis between each replica of the MEDLUC 

model and the 2009 reference map. Pontius et al. (2004) introduced the concept of 

null resolution, or the finest resolution at which the tested model performs as well as 

the null model. Therefore, we took the 50 LCT output maps of the maximum 

likelihood experiment at 1 ha and generalized at successive 2-fold coarser resolutions 

to repeated the same map-to-map comparisons. 

1.4 Results 

1. 4.1 Sensitivity analysis of the demand-allocation procedure 

The three model parameters {À;, Às, k} of our procedure allowed reproducing a broad 

range of LULC spatial patterns (Table 1.2; Figures 1.3 and 1.4). Larger values of the 

rate of change occurrence À; increased the number of patches and decreased the 

maximum patch size (Table 1.2). That is, as À; increased patches started faster (i.e. 

closer intime) and they could not significantly grow in size (Figure 1.3). At higher 

rates of change-contagion Às, patches grew faster (Table 1.2) and fewer patches were 

needed to allocate the demand (Figure 1.3). The fractal dimension index measures the 

irregularity of patch shape: more complex perimeters results in index values equal or 

close to 2. In our framework, as patches increased in size they became more square

like in shape (Figure 1.3). By construction of the allocation procedure, the 

acceleration k amplified the effects of change contagion (Figure 1.3). Both Às and k 

positively interacted to allocate the demand in larger and more regular patches (Table 

1.2). Nevertheless, the k parameter was not redundant because it allowed controlling 
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change contagion in a non-linear way, thus broadening the variety of spatial patterns 

generated. 

A detailed examination of the interaction between model parameters showed that for 

a high rate of change-occurrence (À; = 20) and a low change-contagion values (Às = 

0.1), demand was always allocated in small scattered patches (i.e. power-law 

exponent had large values >l) (Figure 1.4, scenarios Al, Bl, and Cl). Distributions 

for these three scenarios had similar mean patch sizes, regardless of the value of k, 

but the largest patch was ca. 10-fold bigger for k = 0.5 than for k = 0.1(Figure1.4, 

scenarios Al and Cl). Thus, mean-equal distributions got fatter right tails depending 

on the change-contagion acceleration rate k. For the scenarios A2, B2, and C2 ( with 

the same change-occurrence than the previous ones, À; = 20), because rate of 

contagion was 100-times bigger (Às = 10), change spreading was faster and patches 

could grow up before others started (Figure 1.4). When we only decreased the rate of 

patch occurrence to À;= 0.25 (i.e. scenarios A3, B3, and C3), spatial patterns lost their 

salt-and-pepper effect and demand was allocated in a few more regular patches. For 

these three scenarios (with À;= 0.25 and Às = 10) the fJ exponent got doser to 1 

meaning that all patch sizes are equally represented (Figure 1.4). The effect of 

change-contagion acceleration was more evident at large Às (Figure 1.4): for all 

scenarios with Às = 10 ( either with À; = 20 or À; = 0.25) the mean patch size roughly 

doubled when k increased from 0.1 to 0.3 (Figure 1.4, scenarios A2 - B2 and A3 -

B3), and it roughly tripled when k went from 0.3 to 0.5 (Figure 1.4, scenarios B2 - C2 

and B3 - C3). 
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Figure 1.3: Contour plots of the estimated exponent of the power-law distribution 

(beta), the proportional number of patches to allocate a 100-pixel demand (nptch), the 
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mean patch size (mn.size), the maximum patch size (mx.size), and the maxim fractal 

dimension index (mx.frac) as a function of the model parameters À; (rate of land-use 

change origination) and Às (rate of land-use change contagion). In each column (from 

left to right) the model parameter k (intensity of contagion) takes value 0.1, 0.3, and 

0.5 respectively. 
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Figure 1.4: Patches of change generated by the demand-allocation procedure. One 

replicate for each of the nine selected scenarios is plotted. For these scenarios the {À;, 

Às, k} parameters are Al : {20, 0.1, 0.1}; Bl : {20, 0.1, 0.3}; Cl : {20, 0.1, 0.5}; A2: 

{20, 10, 0.1}; B2: {20, 10, 0.3}; C2: {20, 10, 0.5}; A3: {0.25, 10, 0.1}; B3: {0.25, 

10, 0.3}; C3 : {0.25, 10, 0.5} respectively. For each replica are given the estimated 

exponent of the power-law distribution (b), the proportional number of patches to 

allocate a 100-pixel demand (nptch), the mean patch size (mn.size), the maximum 

patch size (mx.size), and the maxim fractal dimension index (mx.frac). Plots' size is 

180 km2 and spatial resolution is 1 km. 



41 

1.4.2 Modelling LULC changes in a Mediterranean region 

In the last two decades, agriculture expansion m the Mediterranean reg1on of 

Catalonia has been a relatively rare process in terms of amount of change (Table 1.1) 

producing a scattered pattern of small patches-of-change (Table 1.3). Rural 

abandonment has been the most common transition in this region (Table 1.1 ), 

creating a spatial pattern dominated by relatively small patches-of-change but with a 

few contrasting large patches (Table 1.3). This pattern corresponds to the 

abandonment of marginal less-productive areas, but entire fields too (Bafoou et al., 

2013). Urbanisation is not negligible, 2.1 % of territory has been converted to human

made amenities by the expansion of existing urban areas, the enlargement of road 

infrastructure, or the popping up of new homes and urbanisation in the wildland 

urban interface (Catalan et al., 2008). 

Patches-of-change size distributions for the for urbanisation, rural abandonment, and 

agriculture expansion observed in Catalonia between 1993 and 2009 followed a 

power law relationship when analyzed at both 1 km2 and 1 ha spatial resolutions (p

value of the Vuong's test was 0.37, 0.96, and 0.44 for the distributions at 1 km2 

respectively, and 0.91, 0.80, and 0.91 at 1 ha respectively). Power-law relationships 

were scale-dependent for the three transitions (Table 1.3). All power-law exponents fJ 

were greater than 1, indicating that small patches accounted for most of the area that 

has undergone change. 

The empirical urbanisation and rural abandonment processes generated similar 

patches-of-change distributions at 1 km2
, even if the distribution of urbanisation was 

evener (Table 1.3). Patches coming from rural abandonment were on average larger 
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than those originated from urbanisation. In the study area, agriculture expansion 

mostly occurred in 1-cell patches, being the largest patch only 4 km2
• Fractal 

dimension was roughly constant for all transitions. Similar spatial patterns were 

observed when 1993 - 2009 land changes in Catalonia were analysed at 1 ha (Table 

1.3 ), even if the magnitudes of change were not directly equivalent (Dietzel & Clarke, 

2007; Kyle et al., 2014). 

At 1 km2
, the three transitions were successfully replicated when the change

contagion rate As took relatively low values and the change-occurrence rate A; took 

high values (i.e. patches-of-change appeared concurrently). Emergent spatial patterns 

were dominated then by scattered, irregular, small patches, leading to fJ exponents 

greater than 1 (Table 1.4). The k change-contagion acceleration parameter increased 

from 0.1 for the agriculture expansion transition to 0.4 for the urbanisation and rural 

abandonment transitions. A lower k value reflected that agriculture expansion was 

mainly allocated in 1-cell patches. The modelled patches-of-change size distribution 

for urbanisation showed a longer right tail than the observed urbanisation distribution 

(Figure 1.5), meaning that the model produced a few large urban patches not 

observed in the studied period. 

At 1 ha, the estimated {A;, As, k} parameter set generated patches-of-change 

distributions similar to the observed ones for the urbanisation and the rural 

abandonment transitions (Figure 1.5). However, on average, the largest patch 

modelled was 10- and 2-folds bigger than the observed largest patches respectively 

(Tables 1.3 and 1.4). The best fitting parameters for the agriculture expansion 

transition did not completely reproduce the empirical distribution (Figure 1.5). 
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Each simulation replicate generated a distinct spatial distribution of changes (Annex 

B). On average, the MEDLUC model performed better than the null model at 1 km2 

when allocating spatially new urban areas and new natural / semi-natural areas (Table 

1.5). At 1 ha, the maximum likelihood parameterization of MEDLUC led to a 

percentage of correct classification higher than the null model when evaluating 

urbanisation, and still a good performance for allocating spatially rural abandonment 

(Table 1.5). At both resolutions, it failed at correctly allocating new agricultural 

patches (Table 1.5). The null resolution of MEDLUC predicting urbanisation and 

rural abandonment is 1 ha and 4 ha (cell size is 200 m) respectively, whereas it 

always performs worst than the null model when estimating agriculture expansion 

unless at a resolution 256 times coarser (Figure 1.6). 
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Table 1.4: Calibration results for the three land-cover transitions modeled in 

Catalonia between 1993 and 2009 at 1 km2 and 1 ha. The set of parameters {Ài, Âs, k} 

is given for the experiment that generates the patches-of-change distribution that in 

average minimize the difference between the estimated and the observed probability 

density functions. For these experiments are given the estimated power law Pest 

parameter for the mean probability density function of the patches-of-change size 

distribution, the relative number of patches to allocate a 1 OO-pixels demand 

(nptch.dmnd), the mean patch size (mean.size), the maximum patch size (max.size), 

and the mean fractal dimension index (mean.frac.dim). Metrics are averaged over the 

20 model's replicas except for the maximum patch size metric that the median is 

assessed. 

{Ài, Às, k} /3est nptch.dmnd mean.size max.size 
mean. 

frac.dim 

Urbanization { 15, 0.05, 0.4} 2.5 45 2.2 20 1.4 

1 km2 Rural 
{20, 0.1, 0.4} 3.1 61 1.6 10 1.4 

abandonment 

Agriculture 
{15, 0.25, 0.1} 4.2 89 1.1 3 1.3 

expansion 

U rbanization {10, 0.5, 0.5} 2.3 27 3.8 6 478 1.3 

1 ha 
Rural 

{ 1, 0.05, 0.5} 2.6 41 2.4 1 320 1.4 
abandonment 

Agriculture 
{2.5, 0.1, 0.3} 3.3 71 1.4 33 1.3 

expansion 
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Table 1.5: Percentage of cells correctly classified as urban, natural and semi-natural 

vegetation, agricultural land, and other land-cover types (water bodies and bare soil) 

by the null model and the MEDLUC model at 1 km.2 and 1 ha spatial resolution. 

Land-cover 
1 km2 1 ha 

types Null Null 
model MEDLUC difference model MEDLUC difference 

Urban 53 65 12 57 62 5 

Natural, semi-
93 94 1 91 89 -2 

natural 
Agricultural 

99 88 
land 

-11 96 81 -15 

Others 72 72 0 62 62 0 
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Figure 1.5: Probability density fonctions in a log-log scale for the patches-of-change 

size distributions at 1 km2 and at 1 ha of spatial resolution for the three main land

use/cover transitions occurred in Catalonia from 1993 to 2009. Each panel shows the 

empirical probability density ( empty black dots) and the distribution of the maximum 

likelihood experiment simulated by MEDLUC (full grey dots). 
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Figure 1.6: Percentage correct for three dynamic land-caver types (urban, natural and 

semi-natural lands, and agriculture) given by the Null model: the 1993 and 2009 

versions of the Land Caver Map of Catalonia are cell-by-cell compared at 1 ha and at 

multiple coarser resolutions. The mean percentages correct of the MEDLUC model 

correspond to the maximum likelihood scenario initially run at 1 ha and further 

generalized at multiple coarser resolutions. The mean percentages are averaged over 

50 runs. 
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1.5 Discussion 

1. 5.1 Strengths and limitations of the spatially demand-allocation procedure 

We have shown here that a simple allocation rule (i.e. apply the LCT transition to the 

cell with the lowest time of a queue of active cells) depending on three parameters 

(i.e. the rate of change occurrence, the rate of change contagion, and the acceleration 

of such contagion) allows generating a vast array of spatial patterns of change (Figure 

1.4). Yet, for each {Ài, Às, k} combination nota single, deterministic result emerges 

:from the allocation-procedure. Since the processing times of the initiating cells and 

the spreading cells are stochastic (i.e. its value is drawn from an exponential 

distribution of rate À; and Às respectively), a distinct spatial distribution of changes 

arises each time the procedure is run (Figure 1.1 ). In our two implementations of the 

allocation procedure (for the sensitivity analysis and for replicating empirical land

transitions), the three parameters {Ài, Às, k} were always constant intime and did not 

depend on spatial variables. However, one possible extension of the proposed 

allocation strategy would be to use explanatory factors to modulate allocation 

parameters across space or in time, if the drivers that influence change occurrence or 

change contagion rates are known. 

In the proposed modelling framework, the transition-potential variable influences the 

spatial distribution of new patches but does not affect change contagion. To include 

spatial constrains in change contagion, one could define a binary mask /tct for each 

LCT transitions and include this new term in Equation 2. This modelling decision 

aims at differentiating biophysical or socio-economic factors influencing where 

LULC changes tend to occur :from drivers of change determining aggregation 
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patterns. The contagion of a land transformation from the first changed location to its 

neighbours is not necessarily led by these same primary biophysical or socio

economic factors, but often is a common feature to that transition. For example, 

wildland urban interfaces have been developed in extensive areas with similar 

environmental characteristics, but house agglomeration differs from region to region 

(Radeloff & Hammer, 2005). A purely empiric regression model would probably fail 

to allocate housing units following a specific sparse pattern. Our approach allows 

differentiating between the spatial configuration derived from expansive processes 

( e.g. urban sprawl) vs. consolidation processes ( e.g. urban areas build up ), as 

observed in Mediterranean landscapes (Catalan et al., 2008). 

Our demand-allocation approach is applicable to simulate more than one transition at 

a time. Because the land transitions of a socio-ecological system are beforehand 

explicitly defined, a LCT can feed multiple transitions, which can lead to spatial 

allocation conflicts. Competition for locations can be mainly addressed from two 

perspectives: imposing a temporal hierarchy or allowing competition for the most 

preferable locations (Verburg et al., 2002; Rounsevell et al., 2006b ). Because only 

three land transitions of extremely different nature were modelled, an intuitive 

hierarchy was imposed in the current MEDLUC version. Nevertheless, the proposed 

framework has been built to allow land transitions to expand concurrently and 

compete for space according to their transition-potential variable and allocation 

parameters. If two transitions have identical land requirements, patches-of-change 

will potentially emerge in close locations but only one transition will effectively 

spread, the one with the faster occurrence and contagion rates (i.e. whose competitive 

advantage is higher). That is because the allocation procedure was designed to 

prevent more than one transition occurring at any location within a single time step. 

On the other hand, if the model is used dynamically (i.e. at least two time steps are 

simulated), then it is mandatory to establish the minimum sojourn time per land-
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transition, understood as the time before a cell can change state again. Because the 

modelling framework records the time since the last change, it tracks the locations 

available to change for any land-transition. If the minimum sojoum time is unknown, 

the most conservative approach is to set it at 0 (i.e. a transformed location will never 

change again). 

We calibrated the MEDLUC model to emulate the spatial patterns of LULC change 

observed in Catalonia at 1 km2 and 1 ha. Our calibration strategy focused on finding 

the parameter combinations that allowed replicating the general shape of the three 

empirical power-law distributions (but see Annex B), even if in general the model 

produced farter right tails at both studied scales (Figure 1.5). If required, a practical 

(top-down) solution may be to stop the contagion process when a user-defined 

threshold is exceeded or when the patch grows over a fixed landscape percentage. In 

addition, we compared the performance to correctly allocate transitions of MEDLUC 

with that of a null model. The null model, that by definition predicted a perfect 

persistence of any LCT, returned a higher percentage match than MEDLUC when 

simulating agriculture conversion of the 1993-2009 period (Figure 1.6). Because this 

transition is relatively rare in the study area (Table 1.1) and the area allowed to 

change represented 62% of the territory, the model could not capture the right 

locations of new agriculture areas with a transition-potential variable only based on 

the spatial distribution of agriculture in 1993. In this case, other biophysical or socio

economical drivers behind this transition should be incorporated in these variable. On 

the other hand, that the MEDLUC (using a transition-potential exclusively defined 

according to the spatial distribution of the target LCT per transition) performed better 

than the null model for urbanisation and rural abandonment, highlights the relevance 

of landscape configuration itself on influencing LULC change processes (Verburg et 

al., 2004; Dendoncker et al., 2007). 
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1.5.2 Comparison with other demand-allocation approaches 

The proposed allocation procedure assumes that land transitions occur in two phases: 

(1) change occurrence and (2) the spatial spreading ofthis change. The algorithm first 

selects multiple source cells from which patches-of-change will concurrently emerge, 

and then simulates transition contagion from source cells to their closest neighbours. 

This design is conceptually analogous to that adopted for modelling frameworks 

dealing with self-organising processes. Such approaches emulate the ignition events 

followed by the spatial spreading-like process; like forest fires and diseases (Rhodes 

& Anderson, 1998; Hargrove, 2000; Reed & McKelvey, 2002). The methodological 

design of our allocation procedure closely followed the CA philosophy: generate 

emergent spatial patterns from simple rules, in discrete time steps, over a landscape 

depicted by discrete cell states. But, instead of these rules being defined at the cell 

level, were defined at the transition (or process) level. In the CA approach, the 

likelihood of a cell to change state is function of a set of transition rules (and 

probabilities) and the state of neighbouring cells. Both the shape and size of the 

neighbourhood and its influence on central cell's state are mostly defined according to 

system's expert knowledge (White & Engelen, 2000). With our procedure we 

purposely reduced expert knowledge requirements and showed that a framework 

based on one rule is enough to generate reliable patterns of change. Indeed, the rule of 

"the cell with the minimum processing time (Tini or Tsprd) changes" is valid for any 

land transition modelled (with different transition rates Ài, Às, k to capture each 

process) (Figure 1.1). At the computational level, in a standard CA, at each time step 

all cells and their neighbourhoods are evaluated once ( either sequentially or 

randomly), while in our procedure no more than 9 x D 1tutc.trans cells (per land 

transition) while be evaluated and ordered in the ascending-order queue (Figure 1.1 ). 
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Other spatially explicit LULC change models also recognize the complex dynamics 

of LULC change processes and separately address different phases (or components) 

of a land transition. The SLEUTH urban growth model is a CA-based model that 

incorporates four rules ( spontaneous growth, breeding of a new urban core, urban 

expansion, and growth influenced by roads) to mimic different types of urban 

expansion patterns, such as isolated houses creation, urban centres consolidation, or 

urban sprawl (Clarke et al., 1997, 2007). SLEUTH rules are based on four drivers of 

urban growth, namely land cover, slope, transportation network, and protected areas 

(Clarke et al., 1997). Even if the model has been successfully world-wide used to 

mainly model urban expansion (Clarke et al., 2007), these a priori rules limit its 

generality to any region with other rules or set of factors driving urbanisation, such as 

distance to the coast, regional economic development, or the presence of touristic 

attractions (e.g. ski resorts, lakes). It is worth mentioning that a recent extension of 

SLEUTH incorporating a probability map based on other biophysical and socio

economic drivers enhanced model performance (Rienow & Goetzke, 2015). Our new 

LULC modelling framework has not been as widely applied (and calibrated for 

different regions with specific datasets) as SLEUTH, but it was a priori designed to 

(1) model more than one land-transition at a time, (2) include all the potential drivers 

of LULC change for each transition independently of model structure, and (3) 

acknowledge the time and path dependence of LULC changes while defining a 

straightforward rule for any transition. 

Another LULC change model taking into account neighbourhood influence on 

transitions probabilities is DINAMICA, which simulates deforestation and 

reforestation (from regrowing areas to mature forests) combining two spatial 

functions (Soares-Filho et al., 2002). At each time step, DINAMICA assesses the 

demand from LCT i to LCT j as a function of a transition rate and the composition of 

the landscape. The demand will be truncated to guarantee a minimum occupation of 
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LCT i. In our modelling framework, effective demand emerges from the availability 

of land to be converted to the target LCT. Note that DINAMICA does not allow land 

transitions from multiple LCT to a target one, but each transition happens between a 

pair of LCTs, the source and the sink. In contrast, in our approach the same process 

can model more than one transition ( e.g. urbanisation converts both natural and 

agricultural areas to urban ones). The first DINAMICA spatial transitional fonction 

simulates the expansion of a previous LCT patch, while the second generates new 

patches from seeds (Soares-Filho et al., 2002). The demand of transition from LCT i 

to j is always divided in two proportional parts by the user, each one to be allocated 

by one of these fonctions. Despite the modelling approach is different, combinations 

of the rates Âi, Âs, and k also govern new patches creation and expansion (via 

spreading) of existing ones with less top-down control on the amount of change 

allocated in each phase. Y et, we did not control the mean size of new patches, while 

in DINAMICA patches of each LCT follow a user-specified lognormal distribution. 

When a spatially explicit LULC change model simulates transitions occurring in 

parallel, a cell can be eventually claimed for multiple new land uses at the same time. 

Here we defined a sequential hierarchy of transitions, but this approach may not be 

suitable to simulate other situations, such as multiple agriculture conversion 

processes to different types of crops. In the CLUE model, competition for a location 

is solved by iteration (Verburg et al., 2002). Until the demand of each land transitions 

is not fulfilled, locations that can feed more than one transition will more likely 

change to meet the more demanding transition. The CA_ MARKOV model integrated 

in Idrisi software allocates changes according to a set of suitability maps (one per 

LCT), and if conflict arises in a cell it uses an algorithm based on a minimum

distance-to-ideal-point rule and weighted rank to determine the definitive LCT 

(Eastman, 2003). In our procedure, because the cells in the queue are ordered by 

processing time, the proposai of solving spatial competition by allowing all 
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transitions to occur concurrently is conceptually logical (Section 1.5.1), but remains 

to be tested against alternative solutions in future applications. 

1. 5. 3 Future land-use change scenarios 

Our LULC change modelling framework is suitable to spatialize both normative and 

exploratory scenario storylines (Rounsevell & Metzger, 2010). By adopting the 

demand-allocation premise, our framework facilitates translating agricultural policies, 

urban development plans, or land management decisions following global trends or 

regional policies. But most important, it considers an explicit simple description of 

each specific land transition. These are fully determined by the spatial transition

potential to the new LCT and the spatial characterisation of change occurrence and 

spread. This avoids restricting (or enabling) transitions to locations that meet a priori 

set of conditions. Therefore, our modelling approach should be able to spatialize 

exploratory scenarios that substantially change the driving factors behind any LULC 

change process. Future urban and rural development policies applied in a region can 

explicitly envisage novel spatial patterns or emulate those observed in close regions, 

instead of being empirically constrained by the past (Ward et al., 2000; Houet et al., 

2010). Our approach off ers the alternative to predefine the spatial aggregation of land 

transitions, while artificial, non historically-based transition potentials can be used to 

allocate LULC changes (Overmars et al., 2007). 
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1.6 Conclusions 

Dividing land transitions in two phases, change occurrence and contagion, is still a 

poor exploited approach in LULC change modelling. Here, we recognized the self

organising, spreading nature of LULC changes. W e succeeded in designing an 

algorithm that not only recognizes these two phases but proved to be enough simple, 

flexible, yet bottom-up to reproduce empirical patches-of-change distributions. 

Therefore, with this algorithm, we translated the focus from the spatial drivers of 

land-cover occurrence to the processes of change emergence and expansion. Multiple, 

scale-dependent factors and their corresponding spatio-temporal interactions are 

behind the occurrence and spreading of land transitions. Our modelling framework 

detaches where is more likely a LULC change occurs from the spatial process of 

change itself, but also allows overcoming limitations such as a poor knowledge of 

drivers or scarce data. 

We applied the allocation procedure to replicated observed land-transitions in a 

Mediterranean region, while only relying on landscape configuration to initialize the 

variable accounting for the emergence likelihood of patches-of-change. Even if our 

calibration mainly focused on the generated patches-of-change distributions, we 

compared the performance of the MEDLUC model to that of a null model, finding 

that our model only failed at allocating the rarest and sparsest process of change (i.e. 

agriculture expansion). This simple initialization of the potential-transition variable, 

done without other biophysical or socio-economic drivers of change, allowed the 

model at least not performing worse than a null model for two transitions, 

urbanisation and rural abandonment. 
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The demand-allocation procedure proposed here is applicable to spatially translate 

scenarios of LULC change. However, as seen in our application in Catalonia at two 

spatial resolutions, even if the maximum likelihood parameter sets kept a proportional 

relation across them, it is not possible to extrapolate parameters fitted for one 

resolution to another. If the model needs to be applied at different scales or to another 

region, a calibration of the demand-allocation procedure is required for each scale. 

However, the modular structure of the LULC change model provided facilitates 

model calibration and validation, enabling potential users to focus on defining the 

demands, the transition potential maps, and the set of parameters driving LULC 

change emergence to extent it for any land transition of interest. 
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2.1 Abstract 

In densely populated forest fire-prone landscapes, interactions between global change 
drivers have the potential of increasing the severity of natural disturbance regimes 
impacting forest ecosystems. Y et landscape mosaics play a crucial role in fire 
dynamics, recovering traditional agro-forest mosaics could mitigate the predicted 
increase on fire frequency and area affected by future fires. Here, we evaluated 24 
landscape management scenarios that combine agricultural conversion and fire 
suppression as a means of reshaping future fire regimes. Scenarios differed in the rate 
of agricultural conversion, the spatial pattern (aggregate vs. scattered), and the 
location of new agricultural patches. To quantify the interactions between vegetation 
dynamics, fires, land-cover changes, and fire suppression we adopted a spatially 
explicit landscape dynamic meta-modelling approach by coupling a tire-succession 
model and a land-use/land-cover change model. Applied to a Mediterranean region, 
new landscape mosaics empowered fire-fighting extinction capacity only after 15 
years (on average) of cumulative land transformations. An agricultural conversion of 
at least 100 km2·year-1 was required to significantly shape the fire regime. A 
conversion rate of 200 km2·year-1 substantially improved fire suppression 
effectiveness, but subsequent increases did not improve effectiveness. When 
aggregated, new agriculture patches contributed more effectively to fire reduction and 
decreased the edge effect on remaining forest patches. Agricultural conversion opens 
a new window for thoughtful long-term spatial planning aimed at minimizing the 
negative impacts of large wildfires on forest ecosystems. These alternative strategies 
could be used in other forest regions facing increasingly severe fire seasons to rethink 
their landscape management practices. 

Keywords: Landscape management; Pire-succession model; Land-cover change 
model; Fire suppression; Agricultural conversion; Mediterranean 
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2.2 Introduction 

Changing climatic conditions disrupt natural disturbance regimes affecting forest 

ecosystems (Dale et al., 2001; Turner, 2010). In all biomes, the impacts of future fire 

regimes are more uncertain than ever because of climate change and its interaction 

with other global change components (Bergeron et al., 2010; Bradstock, 2010; 

Batllori et al., 2013; McKenzie & Littell, 2017). Globally, fire regimes are predicted 

to become more severe, more frequent, and to affect larger areas (Flannigan et al., 

2013). But at regional scales prediction of future fire incidence is not straightforward 

(Moritz et al., 2012). Although the interrelationship between climate and vegetation 

partly explain fire incidence (Krawchuk & Moritz, 2011; Pausas & Ribeiro, 2013), in 

many regions of the world, hum.an derived factors usually drive fire regimes 

(Bowman et al., 2009; Archibald et al., 2013; Knorr et al., 2014). In coupled human

natural systems, fire regimes emerge from cross-scale and feedback interactions 

between fire ignitions, prevailing fire-weather conditions, landscape configuration, 

and fire suppression efforts. Lightning strikes are still the main cause of fires in 

remote areas (Stocks et al., 2002), whereas human presence is behind most of fire 

ignitions worldwide (Ganteaume et al., 2013; Hawbaker et al., 2013). In humanized 

landscape mosaics, low fuel conditions and fuel discontinuity generated by active 

forest management, prescribed burnings, agricultural activities, or human-made 

infrastructures have the potential to strongly shape fire regimes (O'Donnell et al., 

2011; Collins et al., 2015). However, even when landscape configuration and 

composition drive fire spread and intensity, fire impact still depends on fire-prone 

weather conditions, which actually determine the way in which fires "read" the 

landscape features and therefore respond to fuel discontinuities (Turner & Romme, 

1994; Moreira et al., 2011). Finally, fire suppression policies have usually advocated 

for a total fire exclusion, and due to the improvements in fire-fighter training, use of 

technology, and increased availability of economic resources, most fires are indeed 
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successfully extinguished over a broad range of conditions (Donovan & Brown, 

2005; Fernandes et al., 2016). Therefore, a fire regime cannot be treated as a top

down external force driving forest ecosystems dynamics, but rather as an inherent, 

dynamic component of the human-natural system, tightly linked to the territory in 

which it occurs and the society it affects (Tedim et al., 2016). 

Land-use land-cover (LULC) change, identified as a major component of global 

change responds to socio-economic development and related activities (Lambin et al., 

2001). Increasing demands for energy, water, and food from a growing population 

will intensify the anthropogenic pressure on natural resources like forests (Foley et 

al., 2005). In many countries, rapid deforestation processes, wildland-urban interface 

sprawl, plantations of both native and exotic species, agriculture intensification, or 

rural abandonment since the mid-20th century have transformed entire landscapes 

(Radeloff & Hammer, 2005; Rudel et al., 2005; Navarro & Pereira, 2012). The side 

effects of such land cover changes on disturbance regimes such as fires are starting to 

be assessed but are difficult to anticipate. For example, urban sprawl into semi

natural land covers non-linearly increases the exposure to wildfires (Syphard et al., 

2007; Vilar et al., 2016), while in fire-prone landscapes of southern Europe, both 

agriculture abandonment and afforestation have been associated to increases in tire 

activity (Moreira et al., 2001; Viedma et al., 2015). Yet, the compound cumulative 

impacts of LULC changes on tire regimes remain largely unknown. Large-scale 

human interventions ( e.g. urban expansion, sylvicultural treatments, forest 

plantations, grazing, agriculture intensification) continuously reshape fuels loads and 

their spatial arrangement, thus destabilize the self-organization dynamics of tire 

regimes and the balancing feedback loops between fire-adapted forest ecosystems and 

wildfires (Moreira et al., 2009; Vilar et al., 2016). 
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Understanding the interactions between shifting disturbance regimes, global wanning 

and LULC changes will allow us to anticipate undesirable impacts, as well as to 

estimate the results of specific management actions and policies (Doblas-Miranda et 

al., 2015). In highly humanized fire-prone landscapes novel combinations of global 

change drivers are expected to influence ecosystems in unprecedented, often non

linear responses leading to new, emerging environmental in which the resilience of 

the system can be compromised (Johnstone et al., 2016). The challenge lies here in 

building resilience-based forest management approaches that explicitly reduce 

vulnerability and exposure to known (and unknown) stressors (Chapin et al., 2010). 

Because past outcomes do not ensure future success (Gustafson, 2013), the 

development of new approaches to estimate the effects of management actions and to 

capture the spatio-temporal dynamics of humanized fire-prone landscapes which 

incorporate the uncertainty related to global change are urgently needed (Hantson et 

al., 2015). Non-correlative, process-based modelling approaches (1) combining 

multiple drivers of global change, (2) accounting for multi-scale interactions, and (3) 

explicitly dealing with uncertainty can be part of the solution. Models have to be 

scenario-oriented, spatially explicit, and incorporate fire behaviour and vegetation 

response to fire, but LULC changes (or forest management plans) and fire 

suppression too (IPBES, 2016). In particular, stakeholders and planners need a priori 

evaluation of the efficiency of fire-reduction strategies within a holistic context to 

provide (1) insights into the cumulative impacts of such policies on the land, (2) the 

potential time lag between the implementation and the benefits, and (3) any apparent 

long-term side effects on forest functioning. 

Here, we assess the interactions between wildfire, LULC change, and landscape 

management actions (i.e. fire suppression) in a high fire risk, densely populated, 

forested Mediterranean region. We adopt a landscape dynamic meta-modelling 

approach, coupling two existing spatially explicit models, a fire-succession model 
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(Brotons et al., 2013) and a LULC change model (Aquilué et al., 2017). The resulting 

meta-model accounts for spatio-temporal interactions between fire ignitions, fire 

spread (that depends on landscape composition and species fire sensitivity), fire 

suppression, LULC transitions, and ecological processes (mainly post-fire 

regeneration and afforestation). We focus on examining alternative fire management 

strategies that seek to reduce vulnerability of forest landscapes to fires while 

preserving functionally rich forest. We propose a set of scenarios aimed at restoring 

the heterogeneity of past Mediterranean landscapes by allocating new croplands and 

pastures to current less fuel constrained landscapes (Pausas & Fermindez-Mufioz, 

2012). We then evaluate effectiveness of treatments by quantifying the area 

suppressed when using the discontinuities in the landscape in relation to the amount 

of area that had burnt if these would have not been present. 

With the analyses of suppression effectiveness across a gradient of landscape 

heterogeneity, we aim at addressing two major research questions: (1) How will 

changing landscape configurations and active fire suppression reshape fire regimes in 

a fire-prone landscape, and (2) How will the forest cover spatial distribution be 

affected by cumulative conversions to agricultural land. The spatial arrangement and 

connectivity of fuels drive fire behaviour, but when connectivity is below a critical 

percolation threshold, fires are unlikely to spread and grow (Turner et al., 2001). 

Indeed, fire spread patterns behave non-linearly close to that theoretical threshold 

(Hargrove, 2000; Miller & Urban, 2000; Loehle, 2004; Abades et al., 2014). 

Therefore, we posit two contrasting hypotheses about non-linear responses of fire 

suppression effectiveness across the landscape heterogeneity gradient induced by 

agricultural land conversion (Figure 2.1 ). According to percolation theory, new 

agricultural patches can have a positive, non-linear effect on the fire extinction 

capacity because high burnable fuels will progressively become less connected. But 

we expect that this positive effect is likely to be specially weak in landscapes with 
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low agricultural land, even if it is likely to become stronger as this land use is more 

abundant (Figure 2. la). Conversely, in landscapes with already larger amounts of 

agricultural land, further agricultural conversion may have a disproportional eff ect on 

fire suppression effectiveness. Eventually, landscapes will slowly reach a maximum 

capacity of influencing the fire regime (Figure 2.1 b ). 
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Figure 2.1: Two contrasting hypotheses about the non-linear relations between fire 

suppression effectiveness and the amount of agriculture allocated in the landscape 

(i.e. demand). Horizontal line is at 0.5 of effectiveness while the vertical line 

indicates the demand leading at 0.5 of effectiveness. 
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2.3 Methods 

2.3.1 Study area 

We use European Mediterranean ecosystems as relevant, highly humanized, fire

prone landscapes susceptible to irreversible transformations under global change 

(Verburg et al., 2010; Batllori et al., 2013). Climate warming and interacting 

anthropogenic factors both driving forest distribution and vegetation dynamics make 

Mediterranean Europe highly vulnerable to severe fire events (Moreira et al., 2011; 

Moritz et al., 2012; Doblas-Miranda et al., 2015). In the last four-five decades 

southern Europe has experienced socio-economic transformations that have deeply 

altered traditional landscapes, mainly through the rural exodus from remote 

mountainous areas and the urban sprawl around cities and along the coasts (San 

Roman Sanz et al., 2013; Stellmes et al., 2013). Spatially continuous matrixes of 

relatively young forests with an abundant and dense understory now predominate in 

abandoned lands. Zero-fire suppression polices have led fuel loads build up even 

more (Tedim et al., 2016) exacerbating the fire paradox: even if most of the fires get 

extinct, a few large events remain uncontrollable and catastrophic (Gonzalez & 

Pukkala, 2007). However, in some regions, changes on forest landscape configuration 

have mitigate the favourable fire-weather conditions for intense and severe fire 

seasons (Fernandes et al., 2014). This opens a management perspective to develop 

innovative fire-prevention policies in such densely populated fire-prone areas (Calkin 

et al., 2015). 

Catalonia was identified as a characteristic fire-prone Mediterranean region in NE 

Spain for applying alternative landscape management scenarios targeting the 
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reduction of fire impacts (see Annex C for a full portrait). In Catalonia, wildfires are 

the main natural disturbance triggering most ecological processes and promoting 

landscape heterogeneity (Lloret et al., 2002). Most of the ignitions are human-related, 

either accidentally or intentionally (Gonzâlez-Olabarria et al., 2012). The systematic 

abandonment of traditional agricultural and farming activities during the last mid-

20th century has translated into an unstructured rewilding of ancient croplands and 

pastures (Cervera et al., 2016). Such recently established forests create homogeneous 

landscapes with fewer fire-breaks and present a fuel vertical continuity that facilitates 

the spread of crown fires (Lloret et al., 2002). Moreover, since the dramatic 1994 and 

1998 fire seasons in Catalonia, fire experts have devoted more efforts to 

understanding fire spread patterns according to synoptic conditions (Otero & Nielsen, 

2017). Nowadays, fire brigades are better able to anticipate fire behaviour and 

achieve successful fire suppression. 

2.3.2 The MEDFIRE, afire-succession mode! 

The MEDFIRE is a landscape dynamic model that integrates vegetation dynamics 

and fire regimes to investigate the interactions among ecological processes shaping 

Mediterranean landscapes (Brotons et al., 2013). The fire regime is modelled by a 

top-down approach, in this case, the annual target area to be burned and the fire size 

distributions are model inputs (Annex D). In a given model run, the annual target area 

is burnt with as many fires (of a predefined target area) are needed. However, the 

spatial distribution of fires and the realized fire perimeters emerge from the interplay 

between the ignition probability and the landscape configuration itself (as both forest 

composition and fuel abundance play a key role ). In the current version, fire ignition 

is a fonction of climate, road network, and landscape mosaic (Annex D). Pires spread 

following orography, main wind direction, and the most flammable fuels (Annex D). 
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Three mam fire spread patterns have been identified for Catalonia: convective, 

topography-driven, and wind-driven fires (Duane et al., 2016). Homogeneous fire 

regime zones are characterized by the proportion of fires that spread following each 

of the three patterns (Figure C.3). In the model, the fire spread pattern of a simulated 

fire is assigned according to the location of the ignition within a homogeneous fire 

reg1me zone. 

In our approach, post-fire regeneration and afforestation are the two most relevant 

ecological processes inducing changes at the landscape scale. The first is modelled by 

a state-transition approach. Probability of regeneration depends on the previous state 

(pre-fire tree species) and the presence of potential colonizers within a 2 km circular 

neighbourhood. This means that only species in the surrounding area are allowed to 

establish in the recently bumt locations. This restriction avoids the situation of having 

communities not observed in the study area artificially emerge on the landscape. 

Transition probabilities are based on empirical data from Rodrigo et al., (2004) and 

extrapolated to the study area by Brotons et al., (2013). When many species form the 

pool of potential states for a specific transition (13 in the case of post-fire 

regeneration), a raw state-transition approach may lead to a spatially uncorrelated 

regeneration, particularly noticeable in large bumt areas. Because post-fire 

regeneration tends to occur in patchy patterns, c.a. 40 % of the bumt locations mimic 

the regeneration pathway of their neighbours: a bumt location randomly adopts the 

same state of one of its 8 neighbours whenever these have already changed state 

(Brotons et al., 2013). The annual probability of scrubland colonization was 

calibrated as a logistic model of climatic, orographie, and forest explanatory variables 

(Annex D). 
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2.3.3 The MEDLUC, a land-use land-cover change mode! 

The MEDLUC is a spatially explicit land-use land-cover change model designed to 

reproduce any LULC transition (Aquilué et al., 2017). Given a LULC map with a few 

discrete categories, a land transition ( e.g. urbanization) is the transformation of a 

subset of categories (e.g. forest, scrublands and croplands) to a target category (e.g. 

urban areas). The MEDLUC is based on a demand-allocation approach. That is, the 

demand or quantity-of-change is user defined, while the model spatially allocates that 

quantity into patches-of-change. The spatial distribution of changes is driven by a 

transition-potential map while the allocation of transitions occurs in two phases: 

origination and extension of land change. A triplet of parameters control both the 

speed of new patches-of-change origination and the speed of change aggregation 

around the first source cell (Annex D). A simple algorithm gives MEDLUC high 

flexibility to mimic a myriad of patterns of change (Aquilué et al., 2017). The model 

has already been calibrated at 1 ha to reproduce the three main land transitions 

observed in Catalonia: urbanization, rural abandonment, and agricultural conversion 

(Aquilué et al., 2017). 

2.3.4 Couplingfire and land-use change models 

We dynamically coupled the MEDFIRE and MEDLUC models to spatialize our 

scenarios, that is, to allocate new agricultural land on the landscape and observe how 

the fire regime responds. The models share the same set of state variables (land

cover, time since last fire, and time since last LULC change), and processes of both 

models are influenced by and update these state variables. In the current application, 

the main state variable, the land-cover / forest-species map describes the composition 
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of the Catalan territory (Figure C.1). lt details the distribution of the 12 most 

abundant tree species, scrublands, grasslands, and other main land-covers (arable 

land, permanent crops, urban areas, bare soil, and inland water). When coupling two 

models, all processes occur sequentially (either at uneven or regular time intervals), 

so the effects on the landscape accumulate. We configured the MEDFIRE time step at 

1 year, while LULC changes occur every 5 years. Both models operate at the same 

spatial resolution of 1 ha. 

The crucial first steps when coupling the two models was to identify the processes in 

one of the models affected by the changes in the state variables induced by the other 

model, and vice versa. The next step was to design the processes to capture the 

dynamics of the system. In our modelling framework, fire behaviour was the bridging 

process between MEDFIRE and MEDLUC. Fires were sensitive to new land-cover 

spatial mosaics through ignition probability and fire spread. Ignition probability was 

function of the neighbourhood configuration, and according to calibration was higher 

in urban-wildland interfaces and agro-forest landscapes (Annex D). Fire spread was 

function of tree species flammability, and following calibration, we were able to 

determine that fire fronts advance faster and at higher intensity when cross forests and 

scrublands rather than croplands (Annex D). 

Whenever rural land abandonment or agricultural conversion processes occur, the 

newly generated semi-natural or agricultural patches, respectively, had to be 

integrated into the fire-succession model dynamics. Recently abandoned fields above 

an elevation of 1500 m were converted to alpine grasslands, otherwise became 

scrublands. The probability of being colonized by tree species increased with time, as 

for burnt scrublands. Scrublands and forests converted to agricultural land became 

either arable land (extensive cereals) or permanent crops ( orchards) following a 
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neighbouring rule that looks at the predominant type of agricultural land within a 500 

m radius. None of the LULC change processes (urbanization, rural abandonment, and 

agricultural conversion) were influenced by either fire impacts or vegetation 

dynamics. 

2.3.5 Afire suppression strategy sensitive to landscape corifiguration 

For this study, we were particularly interested in fire suppression strategies 

responsive to changes in landscape configuration. The aim here was to build a 

strategy that used agricultural patches as landscape opportunities to start fire 

suppression. We focused on the continuity of agricultural land (i.e. on detecting 

patches rather than isolated cells) to provide areas that are open enough to enable fire 

fighters to get close to the fire front. To implement this strategy, all advancing fire 

fronts of a growing fire recorded the amount of agricultural area burnt in their 

neighbourhood (understanding that two locations are contiguous if they share at least 

one vertex). Then, a suppression rule was established: when a fire front had already 

burnt in continuity Th ha of agriculture, suppression was activated. Hence, any future 

cell reached by that fire front would not effectively bum, whereas the target fire area 

would decrease anyways (Figure 2.2). The level of suppression was defined by the 

threshold Th; as Th decreases, the smaller the patch of agricultural land is required to 

start the suppression, and the stronger the contribution of this land type to halting 

advancing fronts (Figure 2.2). 
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Figure 2.2: Two wind-driven fires (A and C) and one convective fire (B) suppressed 

at high and low levels of suppression (Th = 5 and 15 ha, respectively). For each fire , 

the upper panel shows the land-cover types: (1) non bumt ( crop - yellow, green -

forest, brown - shrub, grey - urban in pastel), (2) bumt (same colour code but darker), 

and (3) suppressed (same colour code but even darker). The lower left panel shows 

the total bumt (black) and suppressed (light grey) area with the ignition point (dark 

grey). The lower right panel shows the progression of the fire front (from light grey to 
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black). Spatial resolution is 1 ha. The length of plots A and B is 1 OO cells, and plot C 

is 40 cells. The value in the lower left panel indicates the percentage of suppressed 

area. Fire suppression is barely activated in the 3000 ha wind-driven fire (A) at both 

thresholds because fire front advances in high intensity across scrublands and forest, 

buming them. The convective fire (B) is completely suppressed when Th is 5 ha 

(because the ignition point is located in the middle of an agricultural patch) but when 

the suppression is weaker (Th= 15 ha), the suppressed area is reduced to 63%. The 

500 ha wind-driven fire (C) clearly benefits from the agricultural area impeding the 

fire advance. 
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2. 3. 6 Landscape management scenarios 

Three alternative landscape management strategies were considered in accordance 

with potential public policies regarding land management in fire-prone landscapes. 

The aim of all strategies was to increase current agricultural area. Each strategy was 

characterized by a transition-potential map that prioritized where allocate new 

croplands (Figure 2.3). The Fire Management (FM) strategy assumed a specific 

interest in managing land for fire prevention. Thus, new croplands were located in 

high fire risk areas (Equation D.4). The Rural Development (RD) strategy related to 

policies for boosting the economy of marginal areas that were likely the target of past 

rural abandonment processes. Zones mostly covered by young forests and scrublands 

were prioritized to undergone change (Equation D.5). The Crop Productivity (CP) 

strategy was like a business-as-usual scenario, where new agricultural land was 

placed close to the current productive areas (Equation D.6). The transition-potential 

maps were indeed updated over time as natural areas progressively transform to 

agricultural areas (Equations D.4, D.5, and D.6). 
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Figure 2.3: Initial transition-potential map (year 2010) for the Fire Management (A), 

Rural Development (B), and Crop Production (C) storyline, respectively. 
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W e created a facto rial design to investigate how much, where, and under which 

spatial pattern agricultural conversion influenced fire regime (Table 2.1 ). All three 

strategies were tested with a certain level of demand of new agricultural land to be 

allocated, either following an aggregate (AGG) or a scattered (SCA) pattern (Figure 

D.2). The observed rural abandonment rate was used to set the demand for 

agricultural conversion, as a means to reverse the past trend. In Catalonia, in a 16-

year period, 1599 km2 were abandoned, that is ca. 100 km2·year-1 (CREAF, 2009). 

We decided to test four agricultural annual demands: D2 = 50, D = 100, 2D = 200, 

and 3D = 300 km2 ·year-1 (Table 1). As the MEDLUC time step was set at 5 years, the 

demands actually allocated by the model were five times those mentioned above 

(however, for clarity we will continue to refer to these annual rates of agricultural 

land conversion). In all scenarios, urbanization took place at half of the observed rate, 

that is 21.5 km2·year-1 (CREAF, 2009). A control scenario was set at this same rate to 

simulate only urbanization. Each scenario (3 strategies x 4 demands x 2 spatial 

patterns+ 1 control = 25 in total) was run 30 times for a 40-year period, from 2011 to 

2050 inclusively. Because LULC changes occurred every 5 years, the landscape 

composition was untouched for the first period, from 2011to2015. 

2.3. 7 Analysis of scenarios 

To quantify the effects of LULC changes on the fire regime over time, we measured 

three indicators in each scenario: (1) effectiveness, defined as the ratio at the fire level 

of suppressed area to target fire area, (2) leverage, or the amount of suppressed area 

in relation to the area transformed to agricultural land, and (3) the percentage of large 

fires (~ 500 ha). All three variables were assessed every 5 years, at the end of the 40-

year period, and for the last 20 years (from 2031to2050). We tested the significance 

of our scenarios with two AN CO V A analyses. We split the scenarios (Table 2.1) 
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according to the spatial pattern (AGG or SCA), set the demand as the continuous 

variable, and the strategy (FM, RD, or CP) as the categorical variable. We determined 

whether the scenarios performed as well as or better than the control scenario by 

comparing effectiveness distributions 2-by-2 with a Wilcox test. We also verified if 

effectiveness improved over time by comparing the first 5-year period benefiting 

from changes in landscape composition, the 2016 - 2020 sub-period, with subsequent 

5-year periods. To quantify the effects of LULC changes on forests, we characterized 

the spatial distribution of forests at the end of the period by measuring the mean patch 

core area and the mean shape index at the vegueria level (an administrative -

biogeographic division of the Catalan territory, Figure C.5). The shape index 

measures the complexity of the patch shape comparing its perimeter with that of a 

square of the same size. It is independent of patch size and increases from 1 for the 

most compact squared patch as patch shape becomes more irregular. 
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Table 2.1: Identification codes for the 24 landscape management scenarios that 

identify the strategy, the level of demand, and the spatial pattern for new agricultural 

land. 

Scenarios Strategies Demand (km2 · y-1) Spatial pattern 

CP D2 AGG 
50 (D2) 

Aggregate (AGG) 
CP D2 SCA Scattered (SCA) 
CP D AGG 

100 (D) 
Aggregate 

CP D SCA 
Crop 

Scattered 
CP 2D AGG 

Productivity 
Aggregate (CP) 200 (2D) 

CP 2D SCA Scattered 
CP 3D AGG 

300 (3D) 
Aggregate 

CP 3D SCA Scattered 
FM D2 AGG 

50 
Aggregate 

FM D2 SCA Scattered 
FM D AGG 

100 
Aggregate 

Fire 
FM D SCA 

Management 
Scattered 

FM 2D AGG (FM) 200 
Aggregate 

FM 2D SCA Scattered 
FM 3D AGG 

300 
Aggregate 

FM 3D SCA Scattered 
RD D2 AGG 

50 
Aggregate 

RD D2 SCA Scattered 
RD D AGG 

100 
Aggregate 

Rural RD D SCA 
Development 

Scattered 

RD 2D AGG (RD) 200 
Aggregate 

RD 2D SCA Scattered 
RD 3D AGG 

300 
Aggregate 

RD 3D SCA Scattered 
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2.4 Results 

Pire suppression effectiveness increased with conversion to agricultural land, but not 

always linearly (Figures 2.4a and 2.5). For scenarios with a low demand of 

agricultural land conversion (D2 and D), effectiveness remained almost constant over 

the entire period, except for the FM strategy, where it was slightly higher at the end 

of the period for the D scenario (Figure 2.5). For higher demands (2D and 3D), RD 

scenarios showed a linear increase in fire suppression effectiveness over time when 

spatial patterns were scattered, but a rapidly saturating effectiveness when spatial 

patterns were aggregated (Figure 2.5). This saturation behaviour applies for most FM 

scenarios. Although fire suppression eff ectiveness increased over time for most of the 

scenarios, a minimum amount of time was required to observe a significant increment 

(Table 2.2). Low demand scenarios (D2 and D) needed on average twice as much 

time as high demand scenarios (2D and 3D) to show an increase in fire suppression 

effectiveness (Table 2.2). Thus, land-cover changes need to take hold in the landscape 

before having a significant impact on the fire regime. 
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Figure 2.4: Relationship between (a) effectiveness, (b) leverage, (c) forest patches 

mean core area, and ( d) forest patches mean shape index at different agricultural 

demands (50, 100, 200, and 300 km2·year-1 are D2, D, 2D, and 3D respectively), 

according to the strategy (Forest Management, FM; Rural Development, RD; and 

Crop Productivity, CP) and the spatial pattern of new agricultural patches ( aggregate 

vs. scattered). Response variables are measured over the last 20 years of the simulated 

period. Solid black line in panel (a) indicates effectiveness of the control scenario 

with only urbanization, while in panels ( c) and ( d) it indicates the metric value of the 

reference year 2010. 



r---------~~· 

82 
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lustrum 
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Figure 2.5: Cumulative effect of agricultural conversion on fire suppression 

effectiveness for each of the 24 landscape scenarios (3 strategies, 2 types of 

aggregation, and 4 levels of demand) from 2016 to 2050 inclusively. 
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Table 2.2: Number of years required for a statistically significant improvement on 

fire suppression effectiveness for each scenario with respect to the effectiveness of 

the 2016-2020 period. Average number of years for improvement of the scenarios at 

the same demand level (µ6), of the scenarios at low vs. high demands (µ1 2), and of all 

the scenarios (µ24). Blank value means there were no statistically significant 

improvement over all the period. Acronyms D2, D, 2D, and 3D stand for the level of 

agriculture conversion demand in scenarios: 50, 100, 200, and 300 km2 ·year-1, 

respectively. 

Strategy: Crop Productivity Fire Management Rural Oevelopment 
µo µ1 2 µ24 

Pattern: Aggregate Scattered Aggregate Scattered Aggregate Scattered 

02 25 15 25 10 19 
21 

"O 0 20 25 25 25 15 25 23 
15 = ~ 20 25 5 10 5 10 15 12 e 10 

~ 3D 5 15 10 5 5 10 8 ~ 
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When analysing the performance of scenarios during the last half of the simulated 

period (20 years), we only found significant differences for a few scenarios (Figure 

2.4). When agricultural land was allocated following an aggregated pattern, under all 

strategies (FM, RD, and CP), the new configurations equally contributed to 

empowering fire suppression effectiveness (Table 2.3). The three strategies were 

equally cost-effective in reducing fires (Tables 2.3 and 2.4). On the other hand, when 

the allocation pattern was scattered, the number of patches and where these patches 

were allocated significantly modified fire suppression effectiveness (Tables 2.5 and 

2.6). Using this allocation pattern, at high demand (2D and 3D) the effectiveness 

steadily increased when patches were allocated in rural areas, whereas the 

effectiveness decreased when patches were allocated close to current agricultural land 

(Figure 2.4a). 

At the lowest agricultural conversion rate (D2), fire suppression effectiveness was in 

any case higher than in the control scenario (that without any agricultural transition; 

Table E.l). At demand D the mean effectiveness (over the 40-year period) was close 

to the base-line effectiveness (Table E.2). Even in the last 20 years, when LULC 

changes had accumulated, effectiveness remained almost unchanged for all D2 and D 

scenarios (Figure 2.4a). Thus, agricultural demand had to be large enough (at least 

2D) to have a notable effect on the fire regime, that is twice the effectiveness of the 

control scenario. However, when demand was greater (3D) fire suppression 

effectiveness reached a saturation point for many of the scenarios. This tendency was 

valid for all the strategies under the aggregate pattern (Tables 2.3 and 2.4). But, when 

applying a scattered pattern, it was only true for the RD strategy (Table 2.4) while the 

other two strategies (FM and CP) showed a sustained increase in effectiveness. 

'------------------------------------~----
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The leverage variable mirrored the tendencies observed for tire suppress10n 

effectiveness (Figure 2.4b ). This cost-benefit ratio behaved similarly for all the 

scenarios at the aggregate pattern (in accordance with effectiveness behaviour, Tables 

2.3 and 2.4). Leverage was reduced by half from D2 to D, whereas it did not 

experienced change for higher demands. This means that the pressure exerted on the 

territory by an increasing in agricultural land from D2 to D over the 40 years did not 

report a clear benefit on tire suppression efforts. For demands over D, LULC changes 

indicated linear benefits, that is the amount of land changed directly correlated to the 

area suppressed (Figure 2.5b ). Finally, the percentage of large fires (2: 500 ha) only 

slightly decreased as natural lands were converted to agricultural use, although this 

reduction was significant when compared with the control scenario (results not 

shown). 

Under all scenarios, the mean core area of forest patches decreased as agricultural 

demand increased (Figure 2.4c ). However, when agricultural land was aggregately 

allocated, forest core areas were better preserved (Figure 2.4c ). In this case, at the 

lowest demand level (D2), forests could even gain core area with respect to the initial 

configuration. Forest patches of different biogeographical regions were unevenly 

affected by agricultural conversion (Figures 2.6 and E.1 ). In central and southem 

coastal regions forest patches lost core area for any level of demand, while in 

mountainous regions forest accumulated more core area even at D and 2D demands 

(Figures 2.6 and E.1 ). That was because the expansion of agricultural land into 

forests, scrublands, and grasslands was compensated by both afforestation and fire 

suppression. Overall, the shape of forest patches became more irregular (mean shape 

index increases), but because of the loss of area, these forest patches also became less 

complex at the highest demand (Figure 2.4d). 
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Table 2.3: Analysis-of-variance (type II tests) of the interaction between the 

quantitative variable ( quantity of agriculture conversion, i.e. demand) and the 

categorical variable (strategy) on effectiveness of the scenarios when using an 

aggregate pattern. 

SumSq 

Demand 2.54607 

Strategy 0.03905 

demand:strategy 0.00396 

Residuals 1.82522 

Df F value Pr (> F) 

1 475.6755 < 2e-16 

2 3.648 0.02707 

2 0.3699 0.69107 

341 
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Table 2.4: Coefficients and significance of the linear model effectivenesslaggregate_pattem 

= f (demand, strategy). 

Estima te Std. Error tvalue Pr (>ltl) 

(Intercept) 8.28e-02 9.86e-03 8.397 1.22e-15 

Demand 8.84e-04 4.05e-05 21.85 < 2e-16 

FM 2.49e-02 9.72e-03 2.563 0.0108 

RD 2.03e-02 9.72e-03 2.093 0.037 
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Table 2.5: Analysis-of-variance (type II tests) of the interaction between the 

quantitative variable (demand) and the categorical variable (strategy) on effectiveness 

of the different strategies when using a scattered pattern. 

SumSq Df Fvalue Pr(>F) 

Demand 3.2647 1 630.303 < 2e-16 

Strategy 0.1672 2 16.143 2.00e-07 

demand: strategy 0.1591 2 15.362 4.09e-07 

Residuals 1.7662 341 
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Table 2.6: Coefficients and significance of the linear model e.ffectivenesslscattered_pattem 

= f (demand, strategy). 

Estima te Std. Error tvalue Pr (>ltl) 

(Intercept) 3.46e-02 l.Ole-02 3.426 6.87e-04 

Demand l.OOe-03 4.15e-05 24.116 < 2e-16 

FM 3.73e-02 9.97e-03 3.745 2.l le-04 

RD 5.33e-02 9.97e-03 5.351 l.60e-07 
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Figure 2.6: Proportional increase (triangles that point upwards) or decrease (triangles 

that point downwards) of the forest patches mean core area in the 7 vegueries 

(administrative - biogeographic division of Catalonia) as agricultural demand 

increases from D2 = 50, D = 100, 2D = 200, to 3D = 300 km2 ·year-1 (for the Rural 

Development strategy and the aggregate pattern of allocation). Grey background 

accounts for the standard deviation of the metric (that increase as grey become 

darker). 
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2.5 Discussion 

Conversion of natural and semi-natural land covers to agricultural land appears as a 

potential management alternative for reducing forest fire impacts on fire-prone, 

highly humanized landscapes (Moreira & Pe'er, 2018). Using a meta-modelling 

approach combining fire-succession and LULC changes, we were able to assess how 

land-cover changes induced non-linear responses on the fire regime of a 

Mediterranean region. Analyzing the fire regime over the last 20 years (once the 

landscape had already undergone a substantial amount of transformation), both of our 

hypotheses were partially supported (Figures 2.1 and 2.4a). When changes were 

aggregately allocated, fire suppression effectiveness remained almost unchanged at 

low demands, and current fire suppression levels were double only at higher demands 

(Figure 2.4a and Table E.1 ). This behaviour confirms in part our first hypothesis, that 

agricultural conversion has to be considerable to really contribute to an improvement 

in fire suppression capacity (Figure 2.la). However, further demand increases did not 

perform so efficiently: fire suppression effectiveness saturated. The capacity of the 

landscape to influence the fire regime reached a saturation threshold (Figure 2.1 b ). 

Even for relatively fire-resistant landscapes, or for conditions with low fuel loaded 

landscapes, under favourable weather conditions fires can still impact and spread 

across the territory (Loehle, 2004). We also detected a time lag between the 

implementation of the landscape management treatments and a significant increase in 

fire extinction capacity (Table 2.2). But the delay in empowering the fire extinction 

capacity decreased as the rate of agricultural land conversion increased (Table D.3). 

This delayed effect confirms a positive feedback between the amount of new 

agricultural land and the fire extension capacity. Forest landscapes are complex 

systems that tend to gradually absorb changes, as long as these are not sharp and 

sudden (Reyer et al., 2015). It is frequent to observe a time lag or resistance to 

changes before any significant reaction occur (Scheffer et al., 2001 ). 
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When croplands were aggregately allocated the fire reg1me similarly responded 

(Figure 2.4a). We could ascribe this behaviour to the fact that the natural land 

available to accommodate new large agricultural patches was scarce, and became 

even scarcer over time (Figures E.2, E.3 and E.4). Close to the end of the period, the 

allocation prioritization of any strategy became similar (Figures E.3 and E.4). Thus, 

when patches were forced to be large, the landscape itself had a smaller or limited 

capacity for these patches to extend. The transition-potential map lost its predictable 

power and the spatial distribution of new patches tended to converge across 

strategies. But when agricultural land was sparsely allocated, both strategies that 

break forest continuity contributed to a larger extent to reducing fire impacts (Figure 

2.4a). Therefore, smaller agricultural patches have to be thoughtfully allocated to 

strengthen fire extinction capacity. 

At equal demand, treatments using an aggregate pattern reported on average a higher 

leverage (Figure 2.5b, Table E.2). The scattered pattern required more LULC change 

efforts to create potential fire breaks on the landscape. Moreover, in landscapes where 

croplands were aggregately allocated, forest core areas were better preserved, so 

avoiding negative edge-effects (Brudvig et al., 2012). Despite the applied 

transformation to agricultural lands, at intermediate demands (D), mean forest core 

area increased in the northern part of the study area, from west to east (Figures 2.6 

and E.1 ). Northern sub-regions contain most of the mature forest cover in Catalonia 

(Figure C.1 ). Thus, agricultural conversion could be compensated by increased fire 

suppression (that eliminates potential regeneration failures, i.e. forests becoming 

scrublands) and by afforestation (colonization of scrublands by woody plants). 

However, in south-central sub-regions, forest cover is already quite fragmented and 

cannot bear further pressure added by agricultural conversion. ln addition, 

afforestation in the south is slower than in the north because of higher fire recurrence 
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and less favourable conditions ( climate is drier and warmer) for forest species to 

establish in already stable scrublands communities (Lloret et al., 2005). 

2.5.J A meta-model for fire-prone landscapes integrating natural and 

anthropogenic drivers of change 

Our meta-model has proven to be a useful spatially-explicit tool to explore feedback 

interactions between natural and anthropogenic drivers of global change often 

neglected in most landscape-scale studies (Hantson et al., 2015). Modelling highly 

humanized fire-prone landscape dynamics from a coupled human-natural systems 

perspective mainly means to incorporate LULC changes, fire behaviour, fire 

suppression efforts, landscape management, and forest ecological processes. To our 

knowledge, our work is the first attempt to model for an entire fire-prone region the 

interplay between land-cover transitions, fire suppression, and fire behaviour in a 

landscape management context. At the local level, Loepfe et al., (2012) also used a 

modelling approach to evaluate agriculture conversion, close to and far away from 

croplands, as a fire smart management strategy. They combined this fuel-reduction 

strategy with an increase in fire suppression effectiveness and a reduction in ignition 

frequency with respect to the empirical base-line. They showed that the integration of 

long-term landscape planning efforts could help mitigate climatic effects on future 

fire regimes more than traditional fire extinction plans. 

This modelling framework allows us to explore the cumulative effects of landscape 

changes over time. A possible next important question may be: Until when these 

spatial legacies allow fire suppression efforts to benefit from opened landscapes? 

However, to study long-term cumulative effects and create plausible results, 
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landscape-scale models should explicitly include the impacts of climate change on 

ecological processes and disturbance regimes (Keane et al., 2015). Variations in 

temperature and precipitation would influence vegetation dynamics at the stand level, 

potentially altering biomass accumulation, post-fire regeneration, colonization of 

scrublands by woody species, and drought-induced mortality. Modelling vegetation 

dynamics in response to predicted climatic change has been addressed using multiple 

modelling approaches (from empirical-based to process-based), over a wide range of 

ecological scales (individuals, populations, functional types, mono-dominant forests ), 

and areas (from stands to biomes) (Peng, 2000; Mouillot et al., 2002; Seidl et al., 

2012). Though, all or some disturbance regimes, forest management activities, and 

LULC changes are missing in many of these studies (Keane et al., 2015; Rammer & 

Seidl, 2015). We plan to improve the MEDFIRE model by making productivity, 

recruitment, colonization, and mortality climate dependent. Once coupled to the 

MEDLUC model, we will then be able to explore longer timelines of such fire-prone 

coupled human-natural systems. 

2.5.2 Implications for managingfire-prone landscapes in view of global change 

Global change poses new challenges for researchers and governmental institutions 

interested in managing forests in a sustainable and resilient manner (Messier et al. , 

2015). Despite the widely accepted claim that climate change will increase 

vulnerability of fire-prone landscapes to more intense and recurrent wildfires, there is 

still room for improving to better cope with future conditions. Here, we have 

proposed alternative landscape-scale management options for reducing system 

exposure to a frequent severe natural disturbance and positively fostering ecosystem 

resilience in view of rigorous environmental pressures associated with global change 

(Chapin et al., 2010). We advocate, that in weather-driven fire regimes (sensu Pausas 
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& Femandez-Mufioz, (2012)), creating discontinuities on unstructured tire-prone 

landscapes will lead to significant gains in fire-fighting capacity. Through changes in 

the spatial distribution of forest cover, agricultural conversion seeks to prevent fires 

from buming out of control, and ultimately to diminish fire recurrence. It is already a 

first step in supporting ecosystem resilience in Mediterranean-type regions where 

large tires account for most of the burnt area and high recurrence and intensity 

endanger functionally rich ecological regeneration (Archibald et al., 2009). Hence, 

the opened gaps in irregular forests offer extinction opportunities to tire brigades by 

facilitating the access to the tire perimeter, reducing overall fuel-load and eventually 

tire intensity, and creating fire-breaks that contribute to slowing down or even 

stopping the advancing front (Loepfe et al., 2010). These strategies do not eliminate 

tire events from the system. Such a goal is economically unfeasible and ecologically 

undesirable (Donovan & Brown, 2005; Moritz et al., 2014). Actually, successful fire 

exclusion in fire-prone regions has triggered unprecedented fuel build-up and 

homogenized landscapes over decades (Keeley, 1999; Keane et al., 2002), creating 

the baseline conditions to overwhelm whatever tire suppression efforts are put in 

place when multiple major tires impact on a region. 

There is still an open debate about whether and how fuel management can mitigate 

tire risk under new global conditions. There is strong evidence showing that fuel 

management by itself cannot contribute to the reduction of neither tire incidents nor 

carbon emissions (Campbell et al., 2012; Price et al., 2015); although some 

modelling exercises have concluded that such approaches may control final bumt 

areas (Stephens et al., 2009; Khabarov et al., 2014). However, it is unlikely that 

sylvicultural interventions such as thinning or wood chipping and prescribed bumings 

can reasonably modify fuel loads and forest continuity to the point of altering high 

intensity tires because (1) at least 30% of the landscape has to be treated, which 

implies unacceptable economic costs unless economic profitability of this wood is 
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ensured, (2) random allocation of treatments greatly reduces efficiency, so a careful 

search of optimal locations is need, and (3) inadequate spatial aggregation of fuel 

treatments reduces the efficiency of the interventions (Finney, 2001; Loehle, 2004). 

When planning a fuel management intervention is important to identify the location 

of treatments and, to a lesser extent, their intensity (Ager et al., 2010). Only a few 

authors have used scenario exercises to investigate the role and location of fire 

management intervention areas on the fire regime (Parisien et al., 2007; Regos et al., 

2016). In the present study, we explicitly focused on finding out whether the location 

of the treatment (through the transition-potential map linked to each strategy; Figure 

2.3) and the spatial pattern (aggregate vs. sparse; Figure D.2) could influence the fire 

regime. Our results suggest that allocating crops in an aggregate pattern offers 

slightly more opportunities to suppress tires. But if socio-economic or environmental 

constraints restrict the allocation to smaller and sparse patches, then the spatial 

distribution needs to be carefully outlined and implemented. In such cases, it becomes 

crucial to collaborate with fire behaviour experts to identify strategic locations across 

the territory for fire pre-suppression activities. A strategic location for fuel 

management is defined as (1) an area with a specific forest structure that if 

appropriately managed can modify the behaviour of a future fire and prevent it from 

shifting to an uncontrollable wildfire, and (2) a geographic position accessible to the 

fire-fighting crews that is also likely to receive a burning front (Syphard et al., 2011). 

Thus, the combination of stakeholders knowledge and robust modelling tools 

integrating multiple natural and anthropogenic drivers of change becomes a win-win 

option to handle resilience-based forest management of fire-prone landscapes. 

Further studies should investigate the economic viability and social acceptance of 

such alternative fire-reduction treatments, as well as a detailed environmental impact 

to complete the data portfolio needed to fully inform a decision-making process. A 

careful economic and ecological monitoring of trade-offs over time is indeed advised. 
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It is highly likely that socio-political issues could arise if such treatments are to be 

implemented in a European Mediterranean region. Even if both the scientific 

community and stakeholders agree that current fire suppression policies are behind 

large devastating wildfires, society is not ready for rethinking fire prevention nor 

fuel-reduction management strategies yet (Calkin et al., 2015). Letting natural fires 

bum under strict control (as long as meteorological conditions are not extreme) is 

another sound option to reduce fire risk at the landscape level (Regos et al., 2014), 

and is already being applied in remote areas of Canada. Though, the inclusion of 

managed wildfires in forest plans across the United States has had little acceptance 

among the general public (North et al., 2015). Likely, agriculture conversion will find 

many detractors. But, unless we start to value the long-term ecological benefits and 

cost savings of alternative landscape management strategies over classic fire 

suppression, fire-prone regions will continue to be at risk of losing adaptation 

opportunities to cope with a changing future. 
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3.1 Abstract 

Forest functioning is currently being challenged by interacting drivers of global 

change. Cutting-edge forest management approaches advocate fostering forest 
ecosystem resilience. To support resilience-based forest management, new tools and 
methods to quantitatively describe forest resilience are needed. Here, we present a 
multi-dimensional evaluation of ecological resilience based on (1) species functional 

response traits and (2) forest network properties (e.g. connectivity, modularity, and 
centrality). Using a fragmented rural landscape in temperate south-eastem Canada as 
a reference landscape, we applied this new approach to compare a set of alternative 

management scenarios for the purpose of enhancing the resilience of forest patches to 
disturbances. Two contrasting strategies were implemented: functional enrichment of 
current forest patches, and an increase of the forested area through plantations. For 
both strategies the planted species were either biodiversity enhancer, drought tolerant, 

or pest resistant. W e investigated how the reference and the managed landscapes 
responded to three disturbances: drought, pest outbreak, and timber harvesting. All 
management actions increased both overall response diversity and connectivity. 
Indeed, when the less functionally diverse patches were managed first, functional 
enrichment was much more effective than plantations in increasing ecosystem 

resilience. Enriching with pest resistant species actually increased resistance to an 
outbreak more than twice compared to enriching through drought tolerant or 
biodiversity enhancer species. Biodiversity enhancer species mitigated drought 
effects equally as well as drought tolerant species. Thus, in fragmented forested 
landscapes facing unknown environmental conditions and disturbance regime shifts, 

the best insurance option is maximizing functional diversity of current forest 
landscapes, thus increasing biodiversity, rather than allocating new polycultures. In 

addition, forests could cope with harmful pest outbreaks only if tree species resistant 
to insects and disease predominate. 

Keywords: Network topology; Modularity; Centrality; Functional redundancy; 

Response diversity; Drought; Insect pest; Harvesting; Rural landscape 
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3.2 Introduction 

Forest ecosystems face rising temperatures, recurrent and prolonged periods of 

drought, extreme climatic events, biotic homogenization, fragmentation and 

anthropogenic degradation, altered natural disturbance regimes, and in many cases a 

combination of many of these environmental and anthropogenic pressures with 

unknown cascading effects on ecosystems functioning and overall biodiversity (Raffa 

et al., 2008; Lloret et al., 2012; Buma, 2015; Seidl & Rammer, 2016). Fostering 

biodiversity and functionally rich forest ecosystems is at the base of ecosystem 

services and goods provisioning, from which humans depend on (Gamfeldt et al., 

2008). Global change and the inherent uncertainty thus pose novel challenges in 

managing forests in a sustainable way. Y et, former and current management 

approaches do not often consider the need for adaptation of forest ecosystems to 

future environmental conditions (Gustafson, 2013). Different cutting-edge forest 

management approaches have been proposed, but thus far, the most promising option 

is to manage for forest resilience to ensure the provision of services and the 

adaptation of forest ecosystems to unknown future conditions (Messier et al., 2013). 

Resilience is here understood as the capacity of the ecosystem to absorb 

environmental changes (pressures) and cope with natural and anthropic disturbances 

(pulses) without losing its main functionality, while get better prepared to face future 

disrupting exogenous conditions (Holling, 1996; Gunderson, 2000). However, 

measuring and monitoring resilience, and ultimately managing for it in cornplex 

ecological systems such as forest landscapes, has proven to be challenging (Newton 

& Cantarello, 2015; Timpane-Padgham et al., 2017). 

Different approaches have been proposed to operationalise resilience management of 

natural ecosystems (Folke et al., 2002; Anthony et al., 2015). In forest ecosystems, 
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identifying the range of natural variability in an ecosystem determines the basins of 

attraction of the system which in tum allows one to measure recovery trajectories as a 

means of characterising resilience to natural disturbances (Seidl et al., 2016). Other 

approaches are based on key resilience indicators such as resistance to disturbance, 

time of recovery after a perturbation, and variability (Palumbi et al., 2008; Côté & 

Darling, 2010; Carpenter et al., 2011; Cole et al., 2014). However, as forest 

landscapes are intrinsically spatial entities, these approaches to quantify resilience do 

not take into consideration that disturbances and changing environmental conditions 

will corne up against the spatial organisation of forest patches in terms of their 

composition, age, size, and isolation (Turner et al., 2013). When considering forested 

landscapes as a set of individual forest patches (stands) within a matrix of altered 

natural and human-build elements, one can take a network approach to determine the 

resilience of such ecosystems (Gonzalès & Parrott, 2012). As such, Webb & Bodin 

(2008) enumerated five interdependent conditions that potentially can ensure the 

resilience (or robustness (Levin & Lubchenco, 2008)) of a network: (1) diversity of 

the components, (2) redundancy of these components, (3) modular structure, (4) 

control of flows within the system by central elements, and (5) connectivity between 

the components. Modular systems (or networks) are structured in modules or groups 

of highly interconnected elements (nodes) that are loosely connected to elements 

(nodes) of other modules (Solé et al., 2003). Central entities are those network nodes 

that concentrate most of the connections (hubs) and/or bridge two sub-sets of nodes 

that otherwise will be disconnected (connectors) (Estrada & Bodin, 2008). We 

acknowledge that these five conditions characterize the resilience of a forest 

landscape, but we recognize that ecosystem resilience can be better achieved by first 

targeting species with response traits specific to disturbances and changing conditions 

of the environment (Suding et al., 2008; Mori et al., 2013). Thus, to be resilient a 

forest landscape should have the following five complementary resilience related 

properties: functional redundancy, response diversity, landscape connectivity, 

modularity, and centrality. 
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By conserving functionally different species, ecosystem structure and functions are 

likely guaranteed and resilience maintained (Diaz & Cabido, 2001; Cadotte et al., 

2011 ). Response diversity contributes to ecosystem stability when natural 

disturbances, environmental changes, or anthropogenic pressures enable diff erent 

species to partition an available niche (Elmqvist et al., 2003; Mori et al., 2013). Yet, 

functional redundancy is also an important property that ensures that other species 

will be able to play the same role following natural and anthropogenic disturbances 

(Pillar et al., 2013). Redundancy has to be measured in a multi-dimensional 

functional space (Rosenfeld, 2002), and over the whole environmental gradient so as 

not to underestimate superfluous species that could become the main, even the 

essential, functional contributors (Wellnitz & Poff, 2001). As functionally equivalent 

species may not respond similarly to changing environmental conditions, it is 

imperative to differentiate effect traits (e.g. nutrient cycling or soil retention) from 

response traits (Naeem & Wright, 2003; Suding et al., 2008). 

To resist and/or recover from rapid climate change and compounded natural 

disturbances, forest ecosystems may benefit from high connectivity between patches 

(favouring exchanges of functionally distinct species, and genes) to foster adaptability 

to new environmental conditions. Indeed, after disturbances that can potentially 

remove entire forest patches, landscape connectivity of the biological remnants will 

be essential for forest landscape recovery (Franklin et al., 2000; Lindborg & 

Eriksson, 2004). On the other hand, although structured connectivity fosters 

ecosystem resilience, it can also have deleterious effects on the landscape when faced 

with a disturbance that can spread. For example, a highly connected forest landscape 

along with the right environmental conditions could contribute to a growing spatial 

distribution of a disease (e.g. the sudden oak death outbreak in Western US (Ellis et 
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al., 2010)). Similarly, continuous forest patches with a dense understory are more 

vulnerable to unexpected large wildfires than rural landscape mosaics or landscapes 

with strategic fuel breaks (Archibald et al., 2009; Syphard et al., 2011; Pausas & 

Femandez-Muîioz, 2012). Modularity or compartmentalisation has proven to be an 

effective defensive strategy against fire or pest and pathogen outbreaks because 

modules have the capacity of buffering the spreading of disturbance and thus 

avoiding ecosystem collapse (Stouffer & Bascompte, 2011). In a forest landscape, if 

modules (i.e. groups of highly connected similar forest patches) are completely 

disconnected or the dispersal potential of the perturbation is lower than the separation 

between these modules, then the capacity to limit the spread of the disturbance is 

high, but it will decline with modularity (Christley, 2005). Finally, centrality refers to 

the multiple ways an element can influence the flow of energy, nutrients, organisms, 

or genes across a landscape (Borgatti, 2005; Iyer et al., 2013). In a forest landscape 

network, central patches are those that: (1) contribute the most to the traversability of 

the landscape, that is the reachability of all nodes from any node, (2) actas a bridge 

between modules and often connect isolated nodes, (3) have higher recruitment 

potential (of functionally distinct species and variety of genes) because of their 

disproportional area, or (4) have a high proportion of the shortest paths between pairs 

of nodes within the network going through them, and thus form the backbone of the 

network (Urban & Keitt, 2001; Bodin & Norberg, 2007). Central patches in a forest 

landscape will therefore be responsible to gather, and disperse from, a large 

proportion of the species and functional diversity of the landscape. Identifying the 

central patches and their connexions also helps in the design of more effective pest

mitigation plans. Indeed, low centrality may weaken the response capacity of a 

landscape facing harmful attacks (Janssen et al., 2006). 

Here, we introduce a multi-dimensional evaluation of resilience that links tree species 

functional response traits (the selected traits describe how species respond to 



105 

changing environmental conditions, climate and disturbances) and the topology of the 

forest patches network. We provide precise measures for the two tree-level properties 

(functional redundancy and response diversity) and the three landscape-level 

properties (connectivity, modularity, and centrality) to quantify forest ecosystem 

resilience to disturbances. We show the applicability of the functional trait-network 

approach to assess the level of resilience of a rural landscape of mixed forest and 

agriculture patches in temperate south-eastem Canada where a long history of 

agricultural pressure and commercial harvesting of only a few species have resulted 

in a fragmented and homogenised forest cover. We then use a simulation approach to 

explore ways to improve landscape resilience by either functionally enriching current 

forest patches or increasing forest area with new multi-species plantations. Lastly, we 

examine how the reference and the simulated landscapes might respond to three 

disturbances that currently (or will in the future) impact temperate forests across 

eastem North America: timber harvesting, pest outbreaks, and drought (Boulanger & 

Arseneault, 2004; Hogg & Bernier, 2005; Cyr et al., 2009; Bonsal et al., 2011). We 

adopt a static modelling approach to analyse the behaviour of the five resilience

related properties of the initial, managed, and disturbed landscapes. We therefore do 

not account for the dynamic nature of the forest communities, nor the regeneration 

and establishment processes happening after any disturbance. 

We expect that overall resilience of this rural landscape will be relatively poor due to 

the low functional diversity of forest communities and the unstructured topology of 

the underlying network of forest patches (that is, a non-modular network with little 

key nodes that centralize and boost ecological flows ). We foresee that by managing 

this landscape with the proposed strategies (1) functional response diversity will 

increase under both management strategies, (2) but as a trade-off, functional 

redundancy will decrease, and (3) functional connectivity will improve, particularly 

in landscapes with new forest plantations. In addition, we hypothesise that (1) natural 
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disturbances rather than harvesting will mostly reduce functional response diversity 

(in both, the reference and the simulated landscapes), (2) pest outbreaks will be the 

most harmful disturbance because of the high specificity of this disturbance, and (3) 

harvesting will greatly alter network topology, reducing the connectivity of any 

network and likely removing important central nodes. 

This functional trait-network analysis approach will allow us to compare the 

resilience of the different simulated landscapes and the effects of various disturbances 

on these landscapes, and then propose efficient interventions to maximise resilience 

to global change factors. 

3.3 Materials and methods 

3. 3.1 Study area and sampling design 

The Central Quebec region (south-eastem Canada, 45°351 N - 46°341 N, 72°591 
-

71°221 W) is a rural mosaic of forest and agricultural patches ca. 7 000 km2 ( 40% is 

forest covert) in the temperate biome (Figure 3.1). We inventoried 42 sites across the 

landscape (hereafter the reference landscape) covering a wide range of ages, 

dominant forest types, and agriculture predominance (average area was 8.71 ± 1.25 

ha, mean ±SE). Within each site, we sampled 8 to 14 circular 0.02 ha plots (1 586 in 

total), spaced 50 m and 10 m away from the edges of forest patches (Craven et al., 

2016). All trees with diameter at breast height > 10 cm were included, and 34 tree 

species were identified (Table F .1 ). Tree communities were characterized by species 

abundance (# trees · ha-1
), and sites were then classified as either deciduous forest (> 
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75% deciduous species) or mixed forest (25 - 75% deciduous) according to the eco

forest maps of the region (MFFP, 2006). This binary classification allowed us to 

broadly characterize these two types of forest to be used later on the characterization 

of all forest patches in the region. On deciduous sites 32 species were found, whereas 

on mixed sites 27 species were found. To assess the functional diversity of tree 

cornrnunities, we selected eight functional traits that contribute to species capacity to 

respond to both multiple disturbances and environrnental changes. We focused on 

available response traits for the 34 species of the Central Quebec region, those 

directly related to disturbance coping such as drought, shade, and water-logging 

tolerance, and those related to resistance to and regeneration after disturbance such as 

maximum tree height, wood density, mode of reproduction, seed mass, and seed 

dispersal vector (Table F.2). Functional trait values were obtained from the TOPIC 

database (Aubin et al., 2012) and from the literature (Niinemets & Valladares, 2006; 

Miles & Smith, 2009), while species maximal seed dispersal distance was estimated 

following Tamme et al., (2014) (Craven et al., 2016) (Table F.2). 

3.3.2 Functional network 

W e sought to represent the fragmented rural landscape of Central Que bec as a 

network of forest patches. In this frarnework, nodes of a network represent forest 

patches, and each node accounts for the estimated intra-patch functional diversity of 

its tree cornrnunity. Network links exist between patches that are close enough for 

species to be able to disperse seeds, and account for the proportion of intra-patch 

functional diversity between nodes (according to species dispersal capacity). The 

resulting so-called functional network describes the spatial distribution and topology 

of tree cornrnunities, but also accounts for the whole functional diversity of the forest 
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landscape and the likelihood this functional diversity can disperse across the network, 

that is, the overall functional connectivity of the landscape. 

Based on a map of the study area (MFFP, 2006) accounting for forest and non-forest 

cover at a 1 ha · pixe1·1 resolution we first identified the forest patches (based on an 

eight-neighbour rule) and then calculated the minimum Euclidean distance between 

patches (calculated from their perimeter) using the SELES software (Fall & Fall, 

2001). Nodes of the network were defined as forest fragments larger than 5 ha; this 

lower limit of patch area constitutes the size of the smallest sampling site. We derived 

the complete graph representing the fragmented forest landscape, with n = 1060 

patches (average area = 264 ± 2706 ha, mean ±SE), with in-degree and out-degree of 

all nodes equal n-1, and links accounting for the minimum Euclidean distance 

between patches (Figures 3.1 and 3.2). 

We then estimated species richness, composition and abundance within each node. 

First, to estimate species richness, we built a species-area relationship for each forest 

type (mixed and deciduous) using the 42 surveyed sites and extrapolation methods 

implemented in the iNEXT R-package (Chao et al., 2014) (Figure 3.3). We treated 

mixed and deciduous forest cover separately as previous analyses revealed 

differences in functional and species diversity between these forest types (Craven et 

al., 2013). We completed 1000 random selections with replacement of groups of s = 1 

to 42 sites to fit a linear relationship between the average area (ha) and the size s of 

the group of sampled sites (it resulted in y= 0.002 + 0.115 ·x). Within the 1060 

patches, we identified the area corresponding to deciduous and mixed forest types 

(MFFP, 2006). We applied an interpolation by cubic splines of the species diversity 

curves (Figure 3.3) to estimate the number of species within each forest type area. 

These estimations were systematically truncated to 32 species in deciduous areas and 
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to 27 species in mixed areas to emulate species richness of the reference landscape 

(that is, to not estimate beyond the maximum observed diversity at the site scale ). 

Then, we estimated the species composition of each patch by selecting species from 

the regional pools of 32 deciduous and 27 mixed forest species weighted by species 

relative abundance per forest type (Figure F.1). Finally, we aggregated the 

abundances of the coïncident species to arrive at the estimated species richness of the 

network forest patches (Figure F.2). 

The functional diversity of tree communities within patches was quantified by the 

abundance-weighted functional dispersion index (FDis). FDis accounts for how 

functionally different the species are from one another in a community (Laliberté & 

Legendre, 2010), and is mathematically independent of species richness. Following 

Craven et al. (2016), FDis index was computed using a generalisation of the Gower's 

distance (Pavoine et al., 2009), and a lingoes correction was applied to get an 

Euclidean functional dissimilarity matrix (a species-by-species distance matrix based 

on the functional response traits of the eight species). 

Links between nodes of the network were established based on the distance between 

forest patches and their species composition. Two nodes of the network separated by 

a distance d were effectively connected only if at least one tree species could disperse 

(according to species dispersal capacity) up to that distance d. Because each node has 

a particular species composition, a link Lab could exist from node a to node b, but not 

necessarily vice versa. The weight of the directed link Lab was the proportion of 

functional diversity of the source node that could travel to the target node (i.e. Wab = 

FDisab / FDisa where FDisab was calculated for the tree sub-community in node a 

consisting only of species able to disperse to node b ). As a result, we then obtained a 

directed weighted graph (Figure 3.2). 
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Figure 3.1: Land-cover map of the Central Quebec reg1on with seven landscape 

elements at 1 ha spatial resolution (units on the x-axis and y-axis are in km). 
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Figure 3.2: Functional network representing the reference landscape. Node's size is 

proportional to the betweenness centrality index BCPC and node's colour varies along 

functional diversity index FDis. The BCPC index of anode measures the number of 

shortest paths between each pair of nodes that pass through that target node. Nodes 

with high BCPC values are those that control most of the network flow and constitute 

the backbone of the forest network. 
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3. 3. 3 Measures for the jive resilience related properties 

We quantified five properties that are thought to influence resilience: (1) landscape

scale response diversity RD, (2) landscape-level functional redundancy FR, (3) 

functional connectivity as the probability of connectivity index PC, (4) modularity Q 

of the of the network, and (5) centrality of each patch as the mean of the patch-level 

generalized betweenness centrality index BCPc. 

Response diversity RD was measured as the FDis diversity index of the whole tree 

community in the network (Laliberté & Legendre, 2010). Network-level functional 

redundancy FR was calculated as proposed by Ricotta et al., (2016), FR= 1-RaoQ/D 

where RaoQ is the Rao's quadratic entropy (Equation F.l; that measures the average 

functional dissimilarity of an individual or community from the whole assemblage) 

and D is the Simpson Index (Equation F.2). Both indexes RaoQ and D are 

implemented in the FD R-package (Laliberté & Legendre, 2010). The connectivity 

index PC measures the probability that two points in the landscape are reachable 

within the same forest patch or through connected patches (Equation F.3) (Saura & 

Pascual-Hortal, 2007). By applying Equation F.1, PC accounts for the connectivity of 

functional diversity across the landscape. Modularity Q of the network was calculated 

by the edge-removal algorithm of Newman and Girvan, (2004) (Equation F.4), where 

removal prioritization is based on an edge betweenness index. A network with 

modular structure similar to that of a randomised network, has Q close to 0, while Q 

values above 0.3 indicate a significant community structure, whereas values above 

0.7 are rare (Newman & Girvan, 2004). The community structure and modularity Q 

were extracted with functions on the igraph R-package (Csardi & Nepusz, 2006). The 

BCPc centrality index captures the relevance of a particular node within the set of all 

shortest paths in the network (Equation F.5) (Bodin & Saura, 2010). Nodes with 
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relative higher BCPc index constitute the backbone of the network (Bodin & Norberg, 

2007). Values of connectivity PC, modularity Q, and functional redundancy FR 

indexes are in the range [O, 1 ], response diversity RD and centrality BCPc indexes 

have a default minimum of 0 but do not have an upper limit. We used Conefor 

software to compute the PC and BCPc indexes as it also handles directed non

complete weighted graphs (Saura & Tomé, 2009). 

3. 3. 4 Simulation of management strategies and forest disturbances 

W e simulated two distinct forest management strategies, functional enrichment of 

current forest patches and increase of forest area by establishing new plantations in 

non-forested areas. The functional enrichment strategy mainly sought to improve 

functional response diversity of tree communities, whereas in the plantation-based 

strategy the main goal was to enhance overall landscape functional connectivity. We 

first simulated three management intensities (or amounts of target area to be 

managed), 10 000, 40 000 and 70 000 ha, under both strategies, functional 

enrichment and plantations. That is, either 10 000 ha of current forest were 

functionally enriched or 10 000 ha of land were converted to forest polycultures. Both 

strategies were implemented at a density of 1 000 trees ha-1• We then focused on 

where to concentrate the managing efforts. In the functional enrichment strategy we 

differentiated whether enrichment should be done in the most functionally poor nodes 

(LessD in Table 3.1), in loosely connected nodes (Lowe in Table 3.1), or in highly 

connected ones (HighC in Table 3.1). Poorly connected nodes verified dPCk < 

mediank(dPCk), and highly connected dPCk ~ mediank(dPCk); where dPCk = 100·(1-

PC,J PC) and PCk is the same PC index after the removal of node k, and accounts for 

the node k contribution to overall network connectivity (Saura & Pascual-Hortal, 

2007). In any case, we limited the enrichment effort to a maximum of 2 000 ha per 
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forest patch. In the plantation strategy, two spatial distributions for plantations were 

considered: randomly scattered across the landscape (Rand in Table 3.1) or strictly 

along riparian zones (Ripa in Table 3.1) (Figures F.3 and F.4). New forest patches 

were allocated in agricultural land, scrublands, or recently harvested areas (Figure 

3.1), and spatially separated from current forest patches and other plantations by at 

least 1 ha. Plantation size was uniformly distributed in the ranges 50 ± 10, 200 ± 40, 

and 350 ± 70 ha respectively for the 10 000, 40 000, and 70 000 ha target area 

intensities. This resulted in 11 specific management strategies (Table 3.1). 

To implement these 11 management strategies, three tree species from the pool of 

species in the region were selected to either enrich a current patch or be planted in a 

new patch. Tree species with some key functional traits were prioritized to enhance 

forest resilience to disturbances and environmental change. Thus, species were 

prioritized according to (1) their relative abundance in the region, selecting the less 

abundant as a means to improving overall biodiversity (Table F.1), (2) their tolerance 

to drought, selecting the most drought-resistant (Table F.2), and (3) their vulnerability 

to pest, selecting the less pest-prone (Table F.2). Hereafter we refer to these selected 

species as biodiversity enhancer, drought tolerant, or pest resistant, respectively. We 

did not apply any social neither economic criteria to prioritize species selection as we 

were especially interested on fostering forest resilience to disturbances rather than 

improving financially value of forest. In total, we simulated 33 management 

scenarios: 11 strategies (Table 3.1) x 3 species selection criteria, running each 

scenario only once. In all scenarios, all planted trees were considered to be 

instantaneously mature (we did not consider any temporal element in our simulation). 
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Table 3.1: Code for the 11 management strategies identifying the amount of area to 

be managed and the type of target patch to be functionally enriched or the type of 

plantation. 

Area target to be managed (ha) or 

Strategy number of trees to be 

10 000 40 000 70 000 

Low Connected LowCIO 
Functional 

High Connected HighCIO 
enrichment 

Less Diverse LessDIO LessD40 LessD70 

Ran dom RandlO Rand40 Rand70 
Plantation 

Ri parian Ripa IO Ripa40 Ripa70 
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To test landscape behaviour to natural and anthropogenic disturbances, we simulated 

an episode of drought induced mortality, a severe generalized insect outbreak, and an 

intensive harvesting event. We imposed a 20% drought mortality, that is twice the 

rate of a catastrophic drought (Anderegg et al., 2012). Species <lied according to the 

drought tolerance index, but corrected so that less tolerant species <lied up to seven 

times more than the most tolerant species (following Gustafson & Sturtevant, 

(2013)). Thus, the two species least tolerant to drought, Abies balsamea and Tsuga 

canadensis, had only a 50% chance of survival. The widespread outbreak killed up to 

75% of all the pest-vulnerable species (Table F.2). We assumed then that different 

pest species (e.g. spruce budworm, emerald ash borer, brown spruce longhom beetle, 

forest ten caterpillar, and buttemut canker) severely affected the region at the same 

time, which may not be currently realistic but may occur in the near future (Logan et 

al., 2003). The harvesting was done by clear-cutting and affected 10 000 ha of forest 

(but never recent plantations) and cuts were preferably allocated close to urban areas. 

3. 3. 5 Comparing lands capes 

We computed the five properties related to forest landscape resilience for the 

functional networks corresponding to the 33 simulated landscapes. Each network 

property of the simulated landscapes was compared by a log response ratio (LRR) to 

the same property of the reference landscape. This comparison was done for non

disturbed networks and un der each disturbance ( drought, pest out break, and timber 

harvesting). The five properties were also plotted in a radar-chart with fixed 

minimum and maximum values: PC and Q had default minimum (0) and maximum 

(1) values, while for RD, FR and BCPC indexes, these were set at the absolute 

minimum and maximum values among all the networks, [0.281, 0.301], [0.895, 

0.905] and [0.37, 2.67] respectively. 
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3.4 Results 

3. 4.1 Resilience properties of the reference and simulated landscapes 

The reference landscape showed a high functional redundancy of 0.904 (maximum 

value is 1) but an overall response diversity of only 0.284, meaning that the current 

Central Quebec region is not functionally rich forest landscape but enough resistant to 

biodiversity loss because of the high functional redundancy. The connectivity of the 

functional network representing the reference landscape was reasonably high (0.68 

over the range [0,1]) meaning that was feasible and quite fast to traverse the network 

from any pair of random nodes. However, modularity was very low (or even 

inexistent), with a value of 0.23 < 0.3, the lower limit for modularity detection. That 

is, the network was not spatially structured in modules of highly interconnected forest 

patches but loosely connected with patches of other modules. Network mean 

centrality index was 1.29, indicating than a most of the patches are peripheral (Figure 

3.2). 

With both functional enrichment of forest patches and adding up new forest patches 

via forest plantations on the landscape, response diversity slightly increased (to the 

range [0.286, 0.288]) while functional redundancy showed a negligible decrease 

(Figures 3.4A and 3.4B; see Annex G for the values of the five properties of all the 

networks). In general, these two indexes always followed contrasting trends: if 

diversity goes up, redundancy then is forced down (Table G.1). As more area was 

managed, response diversity of the landscape increased no matter the strategy. But, 
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for any target area managed (Table 3.1), the functional enrichment strategy reported 

the highest increases. In particular, enriching the less functionally rich nodes was the 

most effective strategy, as it gave the highest response diversity increase per managed 

area. Both drought tolerant species and biodiversity enhancer species contributed to 

response diversity more than pest resistant species (Figure 3.4A). 

Functional connectivity improved under both management strategies, being greater as 

more areas were managed (Figure 3 .4C). The increase in landscape connectivity was 

similar no matter the strategy: new plantations did not appreciably increase 

connectivity more than enriched forest patches. Indeed, at 10 000 ha of target area, 

the most effective strategy for increasing functional connectivity was to enrich the 

less functionally rich nodes, rather than enriching high or low connected nodes or 

adding new patches via plantations (Figure 3 .4C, Table G .1 ). When biodiversity 

enhancer species were used when applying the different management strategies, 

connectivity was in general less favoured, likely because most of these species could 

not disperse over long-distances (Table F.1 ). The addition of new forest patches did 

not contribute to landscape modularity. Indeed, only when current forest patches were 

enriched with pest-resistant species did the modularity indicator increase slightly 

(from 0.23 up to 0.28; Table G.l). However, it still remained very low (< 0.3) 

ensuring that the landscape was organized in modules (Figure 3.4D). In enriched 

landscapes, many new functional links appeared, so central nodes (network 

connectors and/or hubs) strengthen their structure. Functional enrichment was 

specially designed to reinforce the functional diversity flow across networks, 

especially when poorly connected and less diverse nodes were treated (Figure 3.4E). 

At a fixed level of target area, central nodes were less abundant in planted than 

enriched landscapes, likely because only a few new plantations strategically allocated 

would become connectors of the network. Species selection criteria did not affect 

node centrality (Figure 3.4E). 
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Figure 3.4: Log response ratio of response diversity (A), functional redundancy (B), 

connectivity (C), modularity (D), and mean generalized betweenness centrality index 

(E) between the 33 managed networks and the reference network. 
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3.4.2 Forest disturbances in the reference landscape 

Response diversity and functional redundancy, the two properties directly associated 

to species functional traits, were negatively affected by the pest outbreak (but not by 

drought) and, as we hypothesised, did not vary following harvesting (Figure 3.5). 

Mostly harvesting, but also the pest outbreak, reduced network functional 

connectivity, but drought episode did not, and even had a tendency to increase 

connectivity (Figure 3.5, Table G.l). Modularity was invariant under any disturbance. 

The potential centrality of nodes was on average diminished by pest outbreak (Table 

G.l), compromising the dynamic flow across the network. Globally, both pest 

outbreak and harvesting greatly affected the backbone of the network (compare 

Figures 3.2 and G.2 and G.3), either by reducing the functional richness of the nodes 

or by eliminating some nodes, and consequently altering its structure. 
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Figure 3.5: The five resilience associated properties for the functional network of 

forest patches of the reference landscape, and once it was disturbed by drought, pest 

and harvest episodes. 
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3.4. 3 Response of the simulated landscapes to disturbances 

All 33 proposed management scenarios ( combinations of 11 strategies x 3 species 

selection criteria) reduced tree mortality by natural disturbances ( drought and insect 

outbreak). Functional enrichment strategies were in all cases more effective in coping 

with natural disturbances than strategies where new forest patches were added (Table 

3.2). This was especially true when the less functionally diverse patches were 

enriched with pest resistant species. Indeed, when both functional enrichment and 

new forest patch management strategies prioritised pest resistant species, pest

induced tree mortality was on average reduced by half compared to using drought 

tolerant or biodiversity enhancer species (Table 3.2). Comparatively, drought tolerant 

species were less effective in mitigating mortality. Drought tolerant and biodiversity 

enhancer species similarly contributed to reducing both drought-induced and pest

induced mortality, regardless of the management strategy implemented (Table 3.2). 
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Table 3.2: Percentage of trees killed by a simulated drought and a pest outbreak in 

the reference landscape and in the 33 managed landscapes (combining two 

management strategies (Table 3 .1) and a three species functional trait selection 

criterion, B stands for the biodiversity enhancer, D stands for the drought tolerant, 

and P stands for the pest resistant, respectively). Differences between the drought

and pest-induced mortality for each of the 33 managed landscapes are also shown. 

Treatment Disturbance Differences 
Strategy Criterion Drou2ht Pest Drou2ht Pest 

Reference 25.8 27.9 

B 23.0 24.5 -2.8 -3.4 
LowClO D 22.8 24.3 -3.0 -3.6 

p 23.4 21.8 -2.4 -6.1 

B 23.9 25.5 -1.9 -2.4 
HighClO D 23.8 25.5 -2.0 -2.4 

p 24.0 23.8 -1.8 -4.l 

B 22.l 23.3 -3.7 -4.6 
LessDlO D 21.9 23.6 -3.9 -4.3 

p 22.5 20.0 -3.3 -7.9 

B 20.6 21.6 -5.2 -6.3 
LessD40 D 20.3 21.0 -5.5 -6.9 

p 21.1 16.5 -4.7 -11.4 

B 20.3 20.9 -5.5 -7.0 
LessD70 D 19.9 20.7 -5.9 -7.2 

p 21.0 15.9 -4.8 -12.0 

B 24.0 25.8 -1.8 -2.1 
Rand IO D 23.8 25.6 -2.0 -2.3 

p 24.3 23.5 -1.5 -4.4 

B 23.9 25.9 -1.9 -2.0 
Ripa IO D 23.8 25.9 -2.0 -2.0 

p 24.3 23.5 -1.5 -4.4 

B 23.9 25.6 -1.9 -2.3 
Rand40 D 23.8 25.8 -2.0 -2.1 

p 24.2 23.5 -1.6 -4.4 
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B 24.0 25.7 -1.8 -2.2 
Ripa40 D 23.8 25.8 -2.0 -2.1 

p 24.2 23.5 -1.6 -4.4 
B 23.6 24.8 -2.2 -3.l 

Rand70 D 23.5 25.2 -2.3 -2.7 
p 24.0 22.8 -1.8 -5.1 
B 23.6 25.3 -2.2 -2.6 

Ripa70 D 23.6 25.6 -2.2 -2.3 
p 24.l 22.9 -1.7 -5.0 
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Because harvesting did not modify species richness in forest communities, both 

response diversity and functional redundancy were stable in all harvested landscapes 

(Table G. l ). Connectivity was systematically reduced under timber harvesting (Table 

G.l). Nonetheless, all strategies prevented to some extent the loss of connectivity, 

although enriched landscapes better mitigated connectivity loss due to harvesting 

(Figure 3.6). Pest outbreak consistently reduced functional redundancy and response 

diversity in simulated landscapes (the latter still being higher in functionally enriched 

landscapes than in planted landscapes) (Table G.l). However, both strategies could 

mitigate response diversity loss under a pest outbreak (Figure 3.6). On the other hand, 

drought did not substantially alter either response diversity or functional redundancy 

of simulated landscapes (Table G.1), suggesting that overall functional diversity was 

less affected by a drought episode. Landscape connectivity behaved similarly when 

disturbed by either drought or a pest outbreak, and a functional enrichment strategy 

prevented the loss of central nodes ( against all types of disturbances) more than 

plantations strategies did (Figure 3.6). 
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Figure 3.6: The five resilience associated properties: response diversity RD, 

functional redundancy FR, connectivity PC, modularity Q, and mean generalized 

betweenness centrality index BCPc for the functionally enriched (A, C, and E) and the 

planted landscapes (B, D, and F) affected by drought (A and B), pest outbreak (C and 
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D), and timber harvesting (E and F). The selected species were drought tolerant, pest 

resistant, and biodiversity enhancer for the simulated landscapes affected by drought 

(A and B), pest outbreak (C and D), and timber harvesting (E and F), respectively. In 

all radar plots the reference network has also been affected by the corresponding 

disturbance. 
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3.5 Discussion 

Our innovative approach links two tree-level properties (response diversity and 

functional redundancy) and three landscape-level properties ( connectivity, modularity 

and centrality), which all contribute to forest landscape resilience. Indeed, by 

combining forest functional diversity indicators and forest network topology 

characteristics, we could better account for resilience at the landscape scale. 

Moreover, this generic, broad-scale quantification of resilience could be extended to 

any ecosystem (as all are organized around interrelated components). We have 

applied it to a temperate rural landscape in south-eastem Canada. First, we were able 

to quantify critical resilience components of this forest ecosystem, but even more 

meaningful, we explicitly used this functional-network approach to quantitatively 

compare the response and variability of the five ecosystem resilience properties and 

overall resilience to different management strategies and disturbance regimes. 

We specifically compared two management strategies: functional enrichment of 

current forest patches versus addition of forest patches by planting polycultures 

across the landscape. Our simulations and analyses led us to conclude that functional 

enrichment of the less functionally diverse patches was the best management option 

to enhance resilience at the landscape scale. At a fixed level of management intensity 

(e.g. 10 000 ha), we found that targeting the most functionally poor patches gave the 

highest increase in response diversity, as expected, but functional connectivity 

benefitted most, even more than targeting low/high connected nodes or adding new 

forest patches. In addition, functional enrichment, especially of less diverse forests, 

was also the most cost-effective strategy to cope with natural disturbances ( drought 

and pest outbreak). Promoting functional diversity appears to be the most efficient 

management strategy for increasing overall forest resilience to disturbances. As forest 
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patches become functionally richer, they then become potential sources of higher 

diversity that in turn positively reinforce the system through dispersion (Martin

Queller & Saura, 2013). 

We therefore could verify our first hypothesis that forest management improved 

functional response diversity of this fragmented forested rural landscape with the 

trade-off that functional redundancy slightly decreased. Because both management 

strategies (enrichment and plantations) increased the presence of biodiversity 

enhancer, drought tolerant, or pest resistant species that were not particularly 

dominant in the reference landscape, the new planted species could notably contribute 

to improving forest diversity. lndeed, in all scenarios, response diversity showed the 

greatest improvement when biodiversity enhancer species were promoted. Y et, we 

thought that by adding new forest patches via pluri-specific plantations we would 

contribute to landscape connectivity more than by enriching current forest patches, 

but this was not the case. Instead, we showed that at a low management intensity (e.g. 

10 000 ha), functional connectivity was better reinforced when poorly diverse patches 

were managed, and at moderate and high intensities, the effect on connectivity was 

similar under both management strategies (Figure 3.4). Interestingly, the pest

resistant tree species in our study tended to have a larger dispersal area than the 

drought tolerant or biodiversity enhancer tree species as connectivity was greatly 

improved when pest-resistant species were added. 

We confirmed that timber harvesting did not alter either response diversity or 

functional redundancy, but modified landscape configuration as both network 

connectivity and centrality were negatively affected. Further, even by using our best 

management strategies to increase resilience through functional enhancement or 

addition of new forest patches, we could not maintain former levels of connectivity or 
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centrality. As well, we confirmed that pest outbreak greatly alters the landscape, not 

only by diminishing functional diversity but also reshaping the topology of the 

network as most of the connections are lost. Pest control, including monitoring and 

mitigation measures, as well as the planning of sustainable harvesting levels that take 

into account potential future disturbances should be mandatory management 

directives to sensibly contribute to forest landscape resilience. 

Network modularity, that is, the topological organization of network elements into 

groups of elements highly interconnected among them but loosely connected with 

elements of other groups was not relevant neither in the reference landscape neither in 

the managed ones. In the reference landscape, the spatial arrangement of forest 

patches did not follow any specific modular pattern, but the spatial distribution of 

forest species (and the corresponding functional diversity) neither. Both types of 

plantations, riparian and at random, were not designed to improve the modularity of 

the network and were therefore scattered across the landscape (Figures F.3 and F.4). 

The functional emichment of forest patches was not structured to reinforce network 

modularity, but simply targeted either poorly connected, highly connected, or 

functionally poor patches that were also heterogeneously distributed on the territory. 

Thus, any of the management strategies could indirectly alter the non-modular 

character of the reference landscape. 

3. 5.1 Limitations and further research 

One obvious limitation of this study is the static nature of our evaluation. All planted 

trees in either current or new forest patches were considered mature and ready to 

disperse their seeds. Although this approach is a very useful first step to evaluate the 
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potential impact of various planting strategies to increase the overall resilience of 

forest patches in a rural landscape, further work will need to implement a more 

dynamic approach. Such a dynamic modelling approach will allow us to determine 

(1) how the five resilience properties vary over time as a forest re-organises following 

various types of disturbances, (2) how tree communities regenerate after disturbance, 

but even more relevant, (3) if the forest is better adapted to cope with multiple types 

of interacting disturbances. Ultimately, we could observe the added value of these 

types of management strategies over time under various scenarios of climate change 

and invasive harmful insects and disease, and not only at a static point intime. 

The study of the adaptability of future tree communities to uncertain future conditions 

and how management can enhance forest ecosystems adaptation is still a major socio

ecological issue (Messier et al., 2013; Puettmann, 2014). Yet, to address these 

questions, it will be necessary to develop modelling frameworks that can integrate, at 

the right spatio-temporal scales, the interactions between climate, vegetation, 

disturbances, and biochemical processes (Keane et al., 2015), simulate how the 

system responds to diff erent management and planning scenarios (Parrott et al., 

2012), and quantify explorative scenario storylines and their associated uncertainty 

(Peterson et al., 2003; Rounsevell & Metzger, 2010). The next step in our research 

will be to adopt a dynamic and spatially explicit landscape modelling approach to 

include essential vegetation dynamics processes, mainly post-disturbance 

regeneration, growth, and mortality, all subject to future climatic changes, to study 

long-term forest landscape resilience. 

Network theory supports interpretation of hierarchical, interconnected, complex 

ecosystems. Network analysis has actually proven to be a valuable approach for 

depicting resilience of socio-ecological systems when faced with perturbations, 
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highlighting weaknesses and strengths, and potential maladaptations (Macfadyen et 

al., 2011; Moore et al., 2015). However, forest landscape resilience from a network 

perspective has been poorly explored (but see work by Craven et al., (2016)). 

Therefore, we advocate a holistic multi-dimensional approach that captures forest 

landscapes as spatial entities as well as essential drivers of forest ecosystem resilience 

to natural and/or anthropogenic disturbances. 
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CONCLUSION 

The main objectives of my thesis were twofold. Firstly, to develop methodological 

approaches for exploring how forest ecosystems respond to resilience-target 

management regimes and disturbances. Secondly, to provide guidelines for managing 

for resilience on highly anthropised forest landscapes facing global changes, notably 

shifting natural disturbance regimes. The methodological approaches developed in 

the framework of this thesis are intended to (1) capture the complexity of forest 

landscapes where human presence exert multiple pressures, (2) quantitatively explore 

landscape-scale management regimes for forest landscapes in an uncertain global 

change context, (3) test the response of the system to current or future natural 

disturbance regimes, ( 4) work at the landscape level rather than the stand lev el so the 

management strategies applied can effectively shape natural disturbance regimes, and 

( 5) explicitly quantify ecosystem properties directly related to resilience to 

disturbances. 

To address these challenges, I developed a generic demand-allocation procedure to 

model land-use/land-cover transitions. Chapter 1 provides the foundation of this new 

procedure and its use as the core of a spatially explicit land-use change model to 

mimic three main land transitions in a Mediterranean landscape. To investigate the 

potential of land-cover changes as a management option for shaping fire regimes in 

that Mediterranean landscape, Chapter 2 outlines how I coupled this land-use change 
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model to an existing fire-succession model. Finally, Chapter 3 presents an innovative 

multi-scale evaluation of forest resilience to natural and anthropogenic disturbances 

based on the functional response traits of different species and forest network 

topological features. I applied this approach in south-eastern Canada to evaluate 

whether a) functional enrichment of current forest patches or b) increased landscape 

connectivity enhances resilience of an agro-forested landscape. 

The demand-allocation land-use change model 

As outlined in Chapter 1, a major objective was to develop a generic spatially explicit 

demand-allocation procedure to mimic land-use/land-cover changes. In a demand

allocation approach, the demand or quantity of change is an input of the model (i.e. 

defined by the user) whereas the spatialization of that amount of change is the 

essence of the procedure. My allocation procedure focuses on land transition 

processes (e.g. rural abandonment) rather than on land-cover types (e.g. croplands vs. 

forest), and considers land-cover changes as a complex process with self

organization properties, such as fires or contagious diseases (Ward et al., 2000). 

This means that, firstly, the procedure is not rule-based at the cell-state level (as 

cellular automata approaches are (White & Engelen, 1993)), but rules are defined at 

the land transition level. Secondly, spatial patterns of change emerge from simple 

rules of land change origination and contagion. This allocation procedure is to be 

used in conjunction with a transition-potential map that accounts for the spatial 

likelihood the target land transition occurs. Uncertainty related to land-cover changes 

is then incorporated in the modelling framework through these transition potential 

maps and the stochasticity associated with the rate patches of change emerge and 

grow. 
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This new demand-allocation procedure was embedded in MEDLUC, a modelling 

framework designed to simulate land-use/land-cover changes in Catalonia (NE 

Spain). I calibrated MEDLUC to replicate the urbanization, rural abandonment, and 

agricultural conversion processes which occurred in Catalonia between 1993 and 

2009. The transition-potential map of each land transition (e.g. rural abandonment) 

was initialised as the neighbour factor (see Verburg et al., (2004)) of the target land

cover (e.g. scrublands). Such initialization was acceptable enough to simulate 

urbanization and rural abandonment in Catalonia (the two most abundant land 

transition processes during the targeted period of time ). This simple definition of the 

transition-potential maps assumes that land conversions tend to occur close to zones 

where the target land-cover prevails. Thus, land-use/land-cover changes seem to 

favour land-cover aggregation and overall landscape mosaic homogenization 

(Stellmes et al., 2013). Additionally, one could argue that transition-potential maps 

that include many social and environmental variables for their initialization are often 

dispensable (Mas et al., 2004; Soares-filho et al., 2013). Instead, transition-potential 

maps that only depend on landscape configuration variables would be of greater 

benefit if the land-use/land-cover change model explored plausible futures (Mas 

et al., 2014). If this were the case, transition-potential maps would be systematically 

(and automatically) updated as land transitions occurred by the modelling framework 

itself. Otherwise, future projections of the explanatory social and environmental 

variables would be required, and may not necessarily be available or reliable. 

Therefore, the land-use/land-cover change model MEDLUC is an excellent tool to 

downscale supra-national land-cover demands to the regional scale, and requires 

little information about drivers of land-transitions to forecast land-change 

spatial allocation. 
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Exploring interactions between land-cover changes, fire, and vegetation with a 

landscape dynamic meta-model 

Chapter 2 examined whether agricultural conversion ofnatural and semi-natural lands 

to croplands in a Mediterranean fire-prone landscape could shape its own fire regime. 

Fire incidence reduction due to an increase of agricultural land in the landscape is 

possible through a combination of three factors: the amount of highly-burnable fuel 

becomes reduced (and consequently fire intensity), the continuity of these fuels is 

disrupted, and accessibility to fire fronts is facilitated, so fire brigades are better able 

to rapidly reach a fire and suppress it. Overall, to quantify the effect of agricultural 

conversion on fire regimes, I measured the fire suppression effectiveness at the fire 

level as the ratio between the area effectively suppressed and the target area to be 

burnt. 

Chapter 2 revealed three main findings from the analysis of the spatio-temporal 

interactions between agricultural conversion, fire behaviour, and fire suppression. 

Firstly, the relationship between the amount of new agricultural land (i.e. demand) 

and fire suppression effectiveness was not linear. This was especially evident when 

agricultural conversion followed an aggregate pattern. At low annual demands, fire 

suppression effectiveness remained almost constant, then it sharply improved at a 

higher demand, but subsequent demand increases did not result in a significant 

benefit to fire suppression. This means that (1) a considerable land conversion 

effort is required to change the connectivity pattern of highly-burnable fuels and 

therefore shape the fire regime in Catalonia, and (2) once the landscape is no 

longer fire prone, land management can no longer influence the fire regime? 

Secondly, to achieve the same level of suppression, less management effort was 

required when agricultural land was aggregated, rather than scattered. Fire 
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suppression effectiveness was, in most cases, greater when larger new agricultural 

patches interrupted highly-burnable fuels more efticiently. Moreover, aggregated 

agricultural land better prevented the loss of forest core area. Thirdly, there is a time 

lag between the implementation of the landscape management policy ( e.g. 

agricultural conversion) and the desired effect ( e.g. reduction of fire incidence). 

Indeed, the length of the time lag depends on the intensity of the management action 

( e.g. annual amount of land converted to agricultural land). Thus, when implementing 

these kinds of interventions, outcome monitoring needs to be managed over the long 

term. 

The development of the landscape dynamic meta-model outlined in Chapter 2, is 

one of the tirst attempts to include large scale impacts of human activities on 

Mediterranean forest landscapes (There has been a recent extension for LANDIS-II 

to integrate land-use changes in temperate forests (Thompson et al., 2016)). My meta

model captured the complex human-natural dynamics of the Mediterranean fire-prone 

landscape under study, quantified and compared the outcomes of alternative 

landscape-scale management regimes for shaping the fire regime, and provided a 

spatial scale suitable for guiding management policies to reduce the occurrence of 

large high-intensity fires in the Mediterranean. When coupling both models (the land

use change and the tire-succession), fire was the bridging element. Fire spread was 

sensitive to fuel content of the different land-cover types, but what is more relevant is 

my design for a fire suppression strategy which takes into account the changes on 

landscape configuration. As a result of my meta-modelling approach, we can, for 

the tirst time, quantify the contribution of new agricultural land on 

strengthening tire tighting capacity, and thus on controlling the tire regime of a 

tire-prone region. 
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Functional traits and network properties to characterise ecosystem resilience 

Chapter 3 focused on quantifying five forest ecosystem resilience related properties 

(e.g. response diversity, functional diversity, network connectivity, modularity, and 

centrality) of a temperate agro-forested landscape of south-eastem Canada (hereafter 

the reference landscape ). I also investigated the variability of these properties under 

two management strategies (functional enrichment and polyculture plantations) and 

under three disturbances ( drought, insect out break, and timber harvesting) aff ecting 

the reference and all the simulated landscapes. Actually, both management strategies 

were implemented at three rates of area managed (low, medium, and high), and 

combined with three trait-based criteria ( e.g. drought tolerant, pest resistant, and 

biodiversity enhancer). 

First of all, the management scenarios were all successful in increasing the response 

diversity of the reference landscape, becoming higher as area managed increased. The 

increase in functional diversity was offset by a slight loss in functional redundancy. 

These two metrics always varied in opposite directions. Functional enrichment (at 

low and medium rates) contributed more than plantations to increases in response 

diversity. In particular, enriching functionally poor patches was the most efficient 

strategy for improving response diversity. Landscape connectivity was similarly 

enhanced under both management strategies. However, enriching the less functionally 

rich patches was again the best cost-effective option. Centrality of the network 

backbone was also favoured by the enrichment of current forest patches rather than 

through new plantations. Therefore, functional enrichment of functionally poor 

patches was the most successful strategy in enhancing overall ecosystem 

resilience to disturbances. On one hand, when testing the reference and simulated 

landscapes to disturbances, using pest resistant species reduced, on average, a quarter 
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of the pest-induced tree mortality. However, drought tolerant species reduced about 

half of tree mortality during a drought episode. Indeed, biodiversity enhancer species 

performed as well as drought tolerant species in coping with natural disturbances. On 

the other hand, the functional enrichment based management scenarios were better in 

coping with disturbances than were plantations. Thus, mitigation / preventive 

treatments of current forest stands to potential pest attacks should be quite 

effective (as long as it would be feasible to forecast the target insect pest or disease). 

But to unknown / unpredictable environmental changes, fostering functional 

diversity is for now the best option. 

In Chapter 3, 1 developed a unique and innovative approach that links two tree

level properties and three landscape-level properties, ail of them potentially 

influencing forest landscape resilience to disturbances. This multi-evaluation of 

forest landscape resilience bridges (1) the capacity of tree species to cope with 

disturbances and new environmental conditions, characterised through target response 

functional traits and (2) the role landscape composition and configuration plays in 

fostering resistance and adaptability, characterised through the topological properties 

of the forest network. Thus, 1 used five metrics (response diversity, functional 

redundancy, network connectivity, modularity, and centrality) as indicators of 

forest ecosystem resilience. To support the resilience analysis, 1 synthesised the 

five indicators into a standardised pentagon display to compare the effect of 

management and disturbances ail at once on the whole set of indicators. This 

pentagon display clearly presents the overall management trade-offs and the 

ecosystem weakness. By incorporating response diversity and functional redundancy 

in resilience evaluation, we gain insights into the prevalence of functionally similar / 

dissimilar species giving stability to the ecosystem versus making it more vulnerable 

to environmental change. By combining both metrics, it is possible to elucidate how 

ecosystem functioning and thus ecosystem services provisioning may vary in 
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response to management actions and disturbance impact (Cadotte et al., 2011 ). But 

because forest landscapes are fundamentally assemblages of heterogeneous spatial 

entities (i.e. forest patches) interconnected through wind, water, moving organisms, 

or humans (that transport biological material), network theory can clearly contribute 

to discovering which landscape configurations are more resistant to some types of 

disturbances, and when cascading failures are more likely (Albert et al., 2000; 

Barthélemy, 2011). 

Management implications 

All taken together, the modelling approaches that I have developed at the landscape 

level can help to improve the management of fire-prone landscapes. Indeed, 

alternative landscape resilience management strategies have been proposed and 

evaluated in Chapters 2 and 3 for the Mediterranean fire-prone region of Catalonia 

and the fragmented agro-forested landscape of south-eastem Canada, respectively. 

Here, instead of providing or discussing precise management guidelines or schemes 

for each of the study areas of this thesis, I will highlight some issues to be aware of 

when managing forest landscapes in an uncertain changing context: spatial legacies, 

dynamic monitoring, and trade-offs. These issues have arisen from observations in 

the two investigated systems and in related studies. Firstly, the need to emphasise the 

importance of long-term studies for understanding both the legacies and cumulative 

effects on forest ecosystems of management practices currently being applied (James 

et al., 2007). As we know, footprints on ecosystem structure, composition, and 

fonction of silvicultural treatments can persist over centuries. Secondly, when 

analyzing the outcomes and impacts of a management plan, rather than looking only 

at a benchmark future (e.g. a snapshot in 2050 or 2100), try to focus on the trajectory 

of the system at shorter time intervals until reaching the target time horizon (Morgan 
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et al., 2007). This will allow for the detection of critical thresholds of the system that 

could otherwise go undetected. In Chapter 2, by analyzing the fire suppression 

capacity every five years under different landscape-scale agricultural conversion 

strategies, 1 could identify the time required (or equivalently, the amount of land 

change) to effectively strengthen the fire fighting system through a more 

disconnected, less fuel-loaded landscape. Thirdly, to recognise that significant trade

offs exist between specific practices for creating forest ecosystems more resistant to 

natural disturbances, and the overall mitigation directives to enhance system 

resilience to climate change and potential unknown environmental conditions (Côté 

& Darling, 2010). For example, the agricultural conversion strategies proposed in 

Chapter 2 were actually successful in reducing fire effects, but little is known about 

either the impact on key forest ecosystem services or on biodiversity, and may also 

conflict with bioenergy policies. In Chapter 3, increasing the presence of pest

resistant species was the most suitable treatment in the face of this imminent threat, 

but overall resilience of the system may be compromised if other response traits are 

not also boosted. Lastly, whenever possible adopt a participative scenario, 

collaborating with stakeholders, local agencies, and/or regional governments 

(Sturtevant et al., 2007). This ensures that perceptions from experts, the scientific 

community, and decision-makers about possible future scenarios are somewhat taken 

into account. But most importantly, modellers and analysts can be involved during 

the whole process, exchanging information with the participants about the 

assumptions being made, the uncertainties being incorporated, and the limits of the 

modelling approach adopted (Parrott et al., 2012; Van Berkel & Verburg, 2012). 

Limits of the methodological approaches 
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Spatially explicit landscape dynamic models presented in this thesis have been very 

helpful for testing hypotheses about pattern generation and interactions between 

natural and anthropogenic processes in forest landscapes, and in evaluating 

landscape-scale management scenarios to reduce exposure to forest wildfires. But this 

type of model does not consider individual agents as the driving force of system 

change. Purely agent- / individual-based approaches model the behaviour of 

individual heterogeneous agents with the capacity to evaluate a situation and its 

constraints and benefits, and make the best possible decision (Bonabeau, 2002). To 

move towards a more comprehensive understanding of the complexity of human

natural systems and be able to better inform natural resources management in a 

changing global context, modelling approaches have to move towards hybrid 

methods and/or pattern-oriented models (Grimm et al., 2005; IPBES, 2016). In such 

approaches, bottom-up and top-down driving forces should be adequately balanced, 

interactions should occur across spatial, temporal, and hierarchical scales, new 

structures and/or agent behaviours should also be possible (Parrott, 2011). The new 

generation of ecological models should focus on the emergence of higher level 

processes and patterns from the behaviour and interactions of lower-level entities of 

the system. In addition, it is imperative that models no longer rely solely on observed 

empirical conditions and relationships. Otherwise, the scope of such models will 

continue to be restricted to explaining the current state and unable to forecast 

ecological responses under new environmental conditions (Grimm & Berger, 2016). 

By usmg the multi-evaluation approach based on tree-level and landscape-level 

indicators, a holistic informative portrait of forest landscape resilience and its 

variability under different management scenarios and disturbances can be depicted. 

However, in Chapter 3 I did not simulate the evolution over time oftree communities 

within the agro-forested landscape. This has therefore limited our understanding 

regarding which management regimes were rnost effective in enhancing ecosystem 
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adaptive capacity, and which disturbances lead to regeneration failures. The planted 

trees were new sources of functional diversity that could actually spread and 

regenerate in adjacent stands. A simulation of forest ecosystem dynamics (including 

processes of regeneration, growth, colonization, and mortality) would highlight the 

positive feedback effects over time of functionally emiching current forest patches. 

Future research directions 

Landscape dynamic models are promising approaches for investigating the complex 

interactions between vegetation processes ( e.g. productivity, post-disturbance 

succession, mortality), natural disturbances (e.g. fires, diseases and insects, drought), 

and, whenever possible, biogeochemistry processes (e.g. evapotranspiration, nutrient 

dynamics). However, updates are needed in a global change context (Keane et al., 

2015). Firstly, landscape dynamic models should include the relevant effects of 

climate on all these processes, and secondly, anthropic activities altering forest 

ecosystems (e.g. forest management practices, land-cover transitions) should also be 

incorporated (Mayer et al., 2016). Indeed, to capture the response of vegetation to 

new environmental conditions, mechanistic approaches that describe the biological, 

chemical, and physical relationships between vegetation and the environment ( e.g. 

soil, climate) are preferable, rather than empiric models (Cuddington et al., 2013). 

However, an unavoidable trade-off exists between including as many mechanistic 

details as possible and the level of model complexity achievable and the working 

scale. 1 propose updating the meta-model resulting from coupling the land-use change 

model MEDLUC and the tire-succession MEDFIRE (Chapter 2) by, firstly, including 

vegetation processes such as productivity, establishment, and mortality sensitive to 

climate. To achieve this, a new state variable tracking forest biomass would be 

required. Thereby, episodes of drought-induced mortality could feedback in tires, and 
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vice versa, recurrent fires could feedback in vegetation regeneration capacity under 

water-stress conditions. Secondly, another consideration would be the designing and 

implementing of a forest management module to reproduce traditional sylvicultural 

interventions (e.g. commercial thinning, selection cutting, clear-cuts). It would be 

particularly interesting to implement European level bioeconomy related policies at 

the regional level (Scarlat et al., 2015). Increasing biofuel demands are thought to be 

supported by Mediterranean agro-forested landscapes too. Lastly, another avenue for 

improvement would be the inclusion in the modelling framework of an increasingly 

important biotic disturbance affecting Mediterranean forests, the pine processionary 

moth (Thaumetopoea pityocampa), that is expanding its geographic range due to 

climate warming (H6dar et al., 2003; Battisti et al., 2005). This would enable not 

only the studying of the effects of defoliation on vegetation, but also the interactions 

with other disturbances. 

In Chapter 3, I proposed precise metrics to quantify five properties related to forest 

resilience to disturbances, two based on species functional response traits, the other 

three on spatial network topology. We need further studies to investigate metrics and 

indicators for forest resilience, that allow us to capture and describe ecosystem 

adaptive and leaming capacities and the system's ability to recover from pressures 

and perturbations. Also, it is essential that indicators can anticipate and prevent 

undesired regime shifts, able to detect a priori irreversible changes of system state. 

For forest landscapes, resilience indicators should account for the functional 

complexity of the system. Further research is needed to elucidate the mechanistic role 

of response and effect of functional traits of tree species on the overall forest 

ecosystem resilience. But again network theory could hold the key to offering a 

generic approach for detecting essential behaviours related to system resilience (Gao 

et al., 2016). 
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One interesting, but not yet fully explored application of network models on forest

pathogens dynamics is the investigation of the potential spreading pathways of 

current or future outbreaks through host-tree patches, or even through transportation 

networks. Network-based studies tracking the spread of contagious human diseases at 

the local scale (by physical contact) and global scale (by travelling individuals) have 

provided important information to public health agencies (Meyers et al., 2005; 

Colizza et al., 2007). Similar approaches could be very informative for plant diseases 

(Jeger et al., 2007). For example, it would be interesting to identify connectors and 

hubs in living plant trade networks that may require a particular control to avoid an 

epidemic (Harwood et al., 2009). But more specifically, to dynamically model 

propagation of forest insects and/or diseases could help to identify critical 

connectivity thresholds, central nodes that control most of the spread, and potential 

dispersal routes across the network ofhost patches (Ferrari et al., 2014). 



ANNEXA 

CALIBRATION METHODOLOGY - CHAPTER 1 

We run the MEDLUC model over the Land Cover Map of Catalonia of 1993 to 

allocate the observed demand for urbanization, rural abandonment, and agriculture 

expansion transitions. We followed a combinatorial design to set the experiments. 

Each of one was characterized by a P-i, Às, k} set, where the parameters took values in 

Ai= As ={0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, 20} and k = {0.1, 0.2, 0.3, 0.4, 0.5}. 

These experiments were run 50 times for both spatial resolutions, 1000 m and 1 OO m. 

For each replicate of each experiment, histograms for the patches-of-change with 

multiplicative intervals for the bins were built (Pueyo 2006). We got 50 { sj, / (si)} . 
J 

series, where s1 = '2!+ 112 is the central value of bin j, and / ( Sj) is the estimated 

probability density. We averaged the probability densities at the bin level to 

determine the mean probability density of eachj bin, f(sj)· Scenarios were identified 

by the fJ exponent (again, fitted by linear regression) for the {sj,f(sj)}. average 
J 

distribution (Figure A. l ). To find the maximum likelihood scenario we assessed the 

root mean squared error (RMSE), between the probability densities of the observed 
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patches-of-change s1ze distribution and the above average simulated distribution 

(Equation A.1 ): 

RMSE = : f (f(sJ- f(sJ) 2 [A.1] 
j=l 

where f(si) is the observed probability density and f(si) the average of the 

simulated probability densities of binj. We chose the scenario retuming the lowest 

MSE as the best scenario replicating the observed patches-of-change size 

distributions. 
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Figure A.1: Probability density fonction for each run in a log-log scale (grey 

diamonds) and the mean density for each bin (red dot). The regression line is fitted 

for the mean densities (red dotted line) and the slope is fJ = 2.31. 



ANNEXB 

COMPLEMENTARYRESULTS -CHAPTER 1 

MEDLUC is a stochastic spatially explicit land-use / land-cover change model. For 

each scenario, multiple replicas will produce variable results. Here we show the 

likelihood of change for urbanization (Figure B.1 ), rural abandonment (Figure B.2), 

and agriculture expansion (Figure B.3) simulated at 1 km to replicate empirical 

demands of the 1993 - 2009 period. The likelihood is computed as the average of 1 OO 

replicas based on the MEDLUC spatial output describing the locations affected by a 

transitions. These three likelihoods are summarized as histograms (Figure B.4), 

showing a high allocation variability when simulating agriculture expansion (because 

there are no locations that regularly change) while there are a significant number of 

locations that often change under the urbanisation and rural abandonment processes. 
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Likelihood of change by urbanization 
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Figure B.1: Likelihood of change to urban areas in Catalonia as simulated by the 

MEDLUC mode! at 1 km2 when allocating 579 km2. 
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Likelihood of change by rural abandonment 
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Figure B.2: Likelihood of change to natural and semi-natural areas in Catalonia as 

simulated by the MEDLUC model at 1 km2 when allocating 1319 km2. 
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Likelihood of change by agriculture expansion 

Cl 
Cl 
a 
a 
"' ,,_ 
"'" 

0 
Cl 
Cl 

~~~ a 
Cl ,,_ 
"'" (? 
Cl 

100 

80 
Cl 
Cl 
Cl 

"' <D 

"'" 60 

Cl 
Cl 
Cl 40 
Cl 
Cl 
<D 

"'" 
20 

Cl 
a 
Cl 
Cl 

û "' .,., 
"'" 

0 

N 

Cl 
Cl 0 21.ll.....500,km Cl 
Cl -Cl 

"' UTM 31N - ED50 "'" 

250000 300000 350000 400000 450000 500000 

Figure B.3: Likelihood of change to agriculture land in Catalonia as simulated by the 

MEDLUC model at 1 km2 when allocating 112 km2• 
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Figure B.4: Density histograms of the likelihood of change (greater than 0) for the 

three land-transitions simulated by MEDLUC at 1 km2 in Catalonia. 



ANNEXC 

STUDYREGION: CATALONIA-CHAPTER2 

Catalonia is a 32 100 km2 region situated in the NW of the Mediterranean basin, on 

the Iberian Peninsula. Catalonia has a mostly Mediterranean climate, with wann 

summers and mild winters, but the areas further inland have a more continental 

climate, with drier and hotter summers. Its orography affects the climate, with the 

Pyrenees in the north, an extensive plain in the west, and the multiple mountain 

ranges stretching along the coast, all contributing to a heterogeneous landscape 

mosaic. A strong precipitation gradient occurs along a north-south direction, going 

from mesic to more xeric conditions. Currently, 60% of the territory is occupied by 

natural and semi-natural land, i.e. forests, scrublands, and grasslands in high altitudes/ 

at higher elevations; while croplands and orchards occupy 31 % (CREAF, 2009). The 

main tree genera are Pinus (e.g. P. halepensis, P. nigra, P. pinea, P. sylvestris, P. 

pinaster) and Quercus (e.g. Q. suber, Q. ilex, Q. faginea, Q. humilis), complemented 

by forests of Pagus sylvatica, Abies alba, and other less well represented species 

(Figure C.l). Most of the species have co-evolved with fires, developing fire-resistant 

and/or fire-adaptive strategies such as the ability to resprout (e.g. oak species), 

develop serotinous canes (e.g. P. halepensis), and/or to produce a thick protective 

bark (e.g. P. pinaster). They have also developed adaptations to cape with a severe 

water deficit during the summer seasons. However, predicted climate warming along 
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with an increase in fire occurrence and severity for these fire-prone systems can 

compromise species resilience to both fires and drought (Diaz-Delgado et al., 2002; 

Espelta et al., 2008). 

Forests and scrublands have increased in abundance at the expense of agricultural 

lands during the last five decades. A widespread economic and social transition from 

a rural-based to an industrial-/urban-based model has triggered a rapid and significant 

rural abandonment process. In only 16 years, from 1993 to 2009, ca. 1 600 km2 (that 

is 100 km2·year-1) ofmainly agricultural lands has been transformed into semi-natural 

forests (Table C.l ). Urbanization is responsible for 2.1 % ofland change in that period 

(Table C.l). Catalonia currently has a population of over 7.5 million, resulting in a 

33% population increase in the last 40 years (IDESCAT, 2016). Human population is 

mostly concentrated around the Barcelona hub, but distributed along the coast and a 

few transportation-communication axes (Figure C.l). However, the economic

territorial model has encouraged families to move to (or to have a second residence 

in) the urban-wildland interface, where houses are literally embedded in the forest. 

Such interfaces are very sensitive to fires because of the proximity to semi-natural 

lands with a high fuel load and a dense secondary road network that favours 

recreation activities that are known to increase fire ignition events (Badia et al., 2011; 

Gonzalez-Olabarria et al., 2012). In Catalonia, most of the ignitions are human

caused, either intentional or accidentai. 

During the last 36 years, 10.1 % of the territory bumed in fires of~ 50 ha (GENCAT, 

2016); whereas between 1975 and 1998, ca. 13% ofland bumed at least once (Diaz

Delgado et al., 2004) (Figure C.2). Pire suppression, with specialized forest fire 

fighter brigades, has been the main strategy for reducing fire impacts on Catalonia, 

and in general on all Mediterranean landscapes. Even so, some fires regularly burn 
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out of control every season, endangering human infrastructure, human life and 

valuable forest ecosystems. Experts and scientists are advocating for a new fire 

prevention strategy - a fire suppression model is needed not only for Catalonia, but 

for all the Mediterranean area, as global change factors are increasing fire risk in 

these areas. 
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Table C.1: Area (in km2) changed under each land transition in Catalonia during the 

reference period according to the Land Cover Map of Catalonia (versions 1 and 4), 

and the equivalent area changed in 1-year and 5-year time spans. The base amount 

used to set the annual agricultural conversion demand in our factorial design is shown 

in bold print. 

Demand for: 1993 to 2009 1 year 

Urbanization 690 43 

Rural abandonment 1599 100 

Agricultural conversion 355 22 

5 years 

216 

500 

111 
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Figure C.1: 2010 Land-caver and forest specres map, with the main roads and 

highways, and the four provincial capitals. 
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Figure C.2: Digital elevation map of Catalonia (range of [-5 , 3102]) and fire 

perimeters (~ 50 ha) for 1980 - 2015 in red. 
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Figure C.3: 72 homogeneous fire reg1me zones of Catalonia. Each zone is 

characterized by the predominant percentage of wind-driven, topographic-driven and 

convective fire spread types. Colours in the map are proportional RGB combination 

of wind-driven (red), topographic-driven (green), and convective (blue) fire spread 

types. Units on the x-axis and y-axis are in km. 
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Figure C.4: Orographie fire risk (10 classes). Units on the x-axis and y-axis are in 

km. 
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Figure C.5: Seven vegueries of Catalonia (administrative - biogeographical division). 

Units on the x-axis and y-axis are in km. 



ANNEXD 

INITIALIZA TION OF MEDFIRE AND MEDLUC MODELS - CHAPTER 2 

D.1 Landscape composition of Catalonia 

Landscape composition influences landscape level processes that are key to our 

system, such as the probability of fire ignition (Gonzalez-Olabarria et al., 2012) and 

the land-cover transitions (Aquilué et al., 2017). For fire ignition risk and land 

transitions the interplay between human presence on the territory and natural areas is 

relevant. In the current application of the meta-model, the land-cover I forest species 

state variable describes (at the finer spatial and thematic resolutions) the landscape 

composition of the study area. It is a categorical layer at 1 ha consisting of 19 classes: 

12 tree species, 2 semi-natural land (scrublands and grasslands), 2 agricultural land 

(croplands and orchards), and 3 non-productive land (urban, bare soil, and water). But 

to better capture the landscape mosaic at the neighborhood level we defined seven 

interfaces or mixed categories at 1 km2 (Table D.1, Figure D.1) following Gonzâlez

Olabarria et al., (2011). Three of these interfaces combine different land-cover types. 

The wildland-urban interface are zones where homes meet natural areas, the agro

urban interface are zones where urban areas meet agricultural land, and the agro

forestry interface is where semi-natural and natural areas mix with croplands and 
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pastures. To integrate the interface factor with both the probability of fire ignition and 

the potential-transition of each land-cover change process, we adopted the 

neighborhood factor introduced by Verburg et al., (2004). The neighborhood factor 

quantifies the presence or degree of influence of each interface at the cell level. It is 

computed as the proportional amount of an interface within a square neighborhood of 

size r (= 3 km) around each cell, weighted by the importance of the interface in the 

landscape. 
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Table D.1: Rules of reclassification of the state variable land-cover / forest species to 

derive seven broad interface categories. Because the rules are not exclusive, sorne 

cells of the original rnap ( 41 % ) were not classified in the first step. The rules were 

then relaxed, so 1 krn2 cells with a rnajority presence :'.'.: 75 % 80%? were assigned to 

one of the Urb, Crp, Nat, or Oth categories. Finally, cells characterized as Urban< 20 

% and Agriculture 2 15 % and (Forest + Scrubland + Grassland) 2 15 %, or 

(Agriculture+ Forest+ Scrubland + Grassland) :'.'.: 75 % were classified as CrpNat. 

ID Interface Rule 

1 Urb Urban:'.:: 80 % 

2 Crp Agriculture :'.'.: 80 % 

3 Nat Forest+ Scrubland + Grassland ~ 80 % 

4 Oth Bare soil & Water ~ 80 % 

5 UrbCrp Urban 2 20 % & Agriculture > 30 % 

6 UrbNat Urban 2 20 % & (Forest+ Scrubland + Grassland) > 30 % 
Urban< 20 % & Agriculture 2 20 % & (Forest+ Scrubland + 

7 CrpNat Grassland) :'.'.: 20 % 
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Figure D.1 : Initial interfaces map derived from the 2010 land-cover / forest species 

map of Catalonia (Figure C.1 ). Legend is for interfaces ID listed in Table D.1. Units 

on the x-axis and y-axis are in km. 
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D.2 The fire regime in the MEDFIRE model 

The MEDFIRE model applies a top-down fire regime defined by annual target areas 

and fire sizes. We compiled climatic data and fire statistics for the 1980 - 2010 period 

to empirically characterize the fire regime of Catalonia. Firstly, we classified as 

climatically adverse those years with a value of the cumulative soil water deficit 

(CSWD) index above 270 mm (Gil-Tena et al., 2016). CSWD is the average between 

the cumulative soil water deficit of the current and preceding years calculated 

following a Thornthwaite-type approach. Secondly, for each subset of years (normal 

vs. severe) we used fire stats to fit both annual burnt area distribution by a lognormal, 

and both fire size distributions by a power law (Brotons et al., 2013) (Table D.2). In 

the current application of MEDFIRE, as the annual burnt area of the first five years 

(from 2011to2015) was known, the model effectively burned the observed areas. 
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Table D.2: Parameters of the lognormal and power law distributions modeling annual 

bumt area and fire size distributions for Catalonia, respectively. 

Climatic Annual target area Fire size 
severity µ O' a Il 
Normal 7.81 1.40 3.63 0.78 
Severe 8.74 1.39 3.60 0.71 
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D.3 Probability of fire ignition 

The probability of ignition accounts for climatic, biogeographic, and human-driven 

factors and is dynamic as long as landscape configuration (due to land-cover changes) 

or climate vary over time (Equation D.l). We calibrated the probability for a previous 

study in the Catalan region (Gil-Tena et al., 2016) using fire ignition data from a 24-

year time span, representative climatic data, and the 1993 and 2007 versions of the 

Land Cover Map of Catalonia (http://www.creaf.uab.es/mcsc). 

logit (Ignition 1non-Ignition)=6.5 - 0.28· Temp - 0.0099·Precip + 

0.00035·Highw + 0.00020·Road + 0.00054·Rail + 0.58·Nat + 2.95· UrbNat + 

2.73·CrpNat + 0.099-Temp x Nat [D.1] 

where Temp: mean maximum summer temperature (in °C); Precip: mean 

accumulated spring and summer precipitation (in mm); Highw: density of highways 

(km/km2); Road: density of secondary roads (km/km2); Rail: density of railways 

(km/km2); Nat, UrbCrp, UrbNat, and CrpNat are Boolean variables indicating the 

presence of the respective interfaces as indicated above (Table D.l, Figure D.1). 

D.4 Fire spread rate 

Spread rate (SR) (Equation D.2) is calculated for its 8 neighbors following a 

polynomial model where explanatory factors are species flammability (SppFlam) 

(Table D.3), fuel load (Fuel), aspect (Aspect), slope in relation to fire front (Slope), 

and wind effect in relation to dominant wind direction (Wind). These explanatory 

variables are multiplied by weight-parameters (wSpp, wF, wA, wS, and wW; Table 
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D.4) representing the relative influence of each factor on tire front progression 

(Duane et al., 2016): 

SR= wW-Wind + wS-Slope + wA·Aspect + wFFuel + wSpp·SppFlam [D.2] 
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Table D.3: Flammability of land-cover types and tree species for each of the three 

fire spread patterns: wind-driven, topographic-driven, and convective. 

Wind-driven Topographic-driven Convective 

Pine 0.50 0.60 0.60 

Oak 0.45 0.50 0.50 

Other trees 0.40 0.40 0.40 

Scrubland 0.90 0.90 0.70 

Alpine grass 0.10 0.10 0.10 

Agriculture 0.15 0.15 0.15 



·-·-·~ -----·----~--------------------------------
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Table D.4: Weights of the five explanatory factors for spread rate according to the 

three fire spread patterns: wind-driven, topographic-driven, and convective. 

Factor Wind-driven Topographic-driven Convective 

Wind 0.43 0.09 0.15 
Slope 0.33 0.53 0.38 
Fuel 0.00 0.00 0.00 
SppFlam 0.21 0.39 0.48 
Aspe 0.04 0.00 0.00 



-------------------------------------------------
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D.5 Afforestation 

The annual probability of afforestation (Equation D.3) is a fonction of the number of 

forest ~ 15 years in a 150 m radius (ForNeigh), mean maximum summer temperature 

(Temp), mean accumulated spring and summer precipitation (Precip), potential 

summer solar radiation (RadSol), slope (Slope), and scrubland age (TSFshrub) (Gil

Tena et al., 2016). Only tree species over their maturity age within a 2 km circular 

neighbourhood are potential colonizers. A tree species is proportionally selected from 

this pool of species, whit conifers having twice the colonization power compared to 

oaks and other deciduous species. 

logit (Pafforestationlnon-afforestationJ = -11.62 + 2.951 ·ForNeigh - 0.9559.PorNeighA2 

+ 0.081 ·Temp - 0.00013·TempA2 + 0.0015·Precip - 0.000000068·PrecipA2 -

0.033·Slope + 0.00035·Slope A2 - 0.0039·RadSol + 0.00000074·RadSolA2 + 

0.37·TSFshrub - O.Oll·TSFshrubA2 - 0.0000033·TempxPrecip [D.3] 

D.6 The spatial contagion of changes in MEDLUC model 

The MEDLUC land-use/land-cover (LULC) change model relies on a demand

allocation approach to simulate LULC transitions, meaning that the amount of land 

claimed by each transition (i.e. the demand) is an input, while the spatialization of the 

demand is determined during the allocation procedure inherent in MEDLUC. In this 

modeling framework, the user defines each land transition as to the land-use/land

covers that potentially could change to the target land-cover. The spatial allocation 

procedure is general and flexible enough to simulate any land transition and replicate 

empirical processes of change observed in Catalonia, such as urbanization, rural 
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abandonment, and agricultural conversion (Aquilué et al., 2017). It consists of four 

basic steps for each LULC transition: (1) the number of cells are randomly selected 

according to a transition-potential map, (2) a processing time Tini following an 

exponential distribution of rate Ai is assigned to each initiation cell (Tini ~ 

NEGEXP(A;)); these cells are sorted in ascending-order according to Tini values, (3) 

the first cell in the queue undergoes change, and ( 4) a processing time as Tsprd ~ 

NEGEXP(As) x (Tinl + Tsrc is computed for the 4 neighbors; these cells are then 

returned to the ascending-order queue. Steps (3) and (4) are sequentially repeated 

until all demand is allocated and non-processed cells in the queue are discarded. The 

rate of change-occurrence A; determines the relative speed at which patches-of-change 

are created, the rate of change-contagion As indicates the speed at which land change 

spatially spreads, while k controls the acceleration of this induced change. 

The allocation procedure was calibrated to reproduce the empirical patches-of-change 

size distributions (at 1 ha of spatial resolution) extracted for Catalonia in a 16-year 

period (Aquilué et al., 2017). The maximum likelihood parameter combinations {A;, 

As, k} for urbanization, rural abandonment, and agricultural conversion transitions 

were {10, 0.5, 0.5}, {1, 0.05, 0.5}, and {2.5, 0.1, 0.3} respectively. In the present 

study, urbanization transition was allocated based on the observed patterns, while 

agriculture conversion was allocated following two extreme patterns (Figure D.2): an 

aggregate one was generated by the combination {0.25, 10, 0.3} and a scattered one 

by {2.5, 0.1, 0.3}. 
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Aggregate Scattered 

Figure D.2: Representation of the two spatial patterns (i.e. aggregate and scattered) 

adopted to allocate agricultural land in the landscape. New agricultural land (black 

patches) represents 10% of this neutral landscape, white areas cannot convert to 

agricultural land. Spatial extent is 1OOx1 OO cells. 
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D. 7 Transition-potential maps 

A transition-potential rnap describes where is more likely a LULC change occur. The 

transition-potential maps used to allocate new croplands in the Fire Management, 

Rural Development, and Crop Productivity strategy are derived frorn Equation D.4, 

Equation D.5, and Equation D.6 respectively. 

TPOTFM = (0.5 · FireRisk + 0.25 · NF_ UrbNat + 0.25 ·NF_ CrpNat) · Mask 

[D.4] 

TPOTRD = (0.5 · 100 I SlopePctg + 0.5 · NF_Nat) · Mask 

[D.5] 

TPOTcR = (0.2 · 100 I SlopePctg + 0.4 · NF_Crp + 0.4 ·NF_UrbCrp) · Mask 

[D.6] 

In Equation D.4, the spatial variable FireRisk is a categorical classification of the 

static fire risk based on orographie features (Figure C.4). The SlopePctg variable is 

the slope in% of the terrain. The NF_Crp, NF_Nat, NF_CrpNat, NF_UrbCrp, and 

NF_ UrbNat are the neighbour factors of agricultural, natural, agro-forest, agro-urban, 

and wildland-urban interfaces respectively (see the first section). Interfaces are 

aggregations of land-cover types at a coarser scale (1 krn2) better describing the 

landscape rnosaic. The neighbour factor of an interface, rneasured in a neighbourhood 

of size r indicates the influence of that land-cover within the neighbourhood inversely 

proportional to its presence on the landscape (Verburg et al., 2004). Here, it is 

calculated in a squared neighbourhood of size r = 3 km. We restricted new croplands 

to relative low altitudes (:'.S 1250 rn, that is the 99th percentile of current croplands 

elevation) and relative young forest (:'.S 97 years, that is the 901h percentile of forest 

age distribution). Mask is sirnply equal to (Elevation:::; 1250) and (Forest Age :::; 97). 



ANNEXE 

COMPLEMENT AR Y RESULTS - CHAPTER 2 

E.1 Fire suppression effectiveness and effects of agriculture conversion on 

mean forest patch core area 

To determine whether an agricultural conversion scenario performed better than the 

control scenario (in which no conversion took place), we compared the fire 

suppression effectiveness of each scenario during the 40-year period with the 

effectiveness of the control scenario. Because each scenario was simulated 30 times, 

we used a Mann-Whitney-Wilcoxon test to compare the effectiveness distribution of 

any pair of scenarios (Table E.l). We used this non-parametric test because 8 out of 

25 scenarios were not normally distributed. 
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Table E.1: Statistic and p-value of the Mann-Whitney-Wilcoxon test when 

comparing the effectiveness of each agricultural conversion scenario and the 

effectiveness of the control scenario (no conversion). The null hypothesis is that the 

two distributions are identical populations. Significance codes: 0 '***' 0.001 '**' 

0.01 '*' 0.05 '.' 0.1 '' 1. 

Scenario w E-value 

CP D2 AGG 507 4.06E-01 

CP D2 SPR 401 4.76E-01 

FM D2 AGG 513 3.58E-01 

FM D2 SPR 428 7.52E-01 

RD D2 AGG 570 7.72E-02 

RD D2 SPR 404 5.04E-01 

CP D AGG 640 4.53E-03 ** 
CP D SPR 536 2.08E-01 

FM D AGG 644 3.72E-03 ** 
FM D SPR 638 4.99E-03 ** 
RD D AGG 637 5.24E-03 ** 
RD D SPR 595 3.19E-02 * 
CP 2D AGG 811 5.87E-09 *** 
CP 2D SPR 743 5.76E-06 *** 
FM 2D AGG 848 3.02E-l l *** 
FM 2D SPR 797 3.06E-08 *** 
RD 2D AGG 835 2.31E-10 *** 
RD 2D SPR 835 2.31E-10 *** 
CP 3D AGG 879 5.93E-14 *** 
CP 3D .SPR 847 3.57E-11 *** 
FM 3D AGG 880 4.59E-14 *** 
FM 3D SPR 869 6.00E-13 *** 
RD 3D AGG 872 3.12E-13 *** 
RD 3D SPR 883 2.05E-14 *** 
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Table E.2: Mean fire suppression effectiveness of the 40-year period for each 

scenario (µE1), and aggregated at the demand level (µE6); and mean leverage of the 

40-year period for each scenario (µL1) and aggregated at the demand level (µL6). 

Scenario f!E1 f!E6 µL1 f!L6 
CP D2 AGG 0.13 0.28 

CP D2 SPR 0.10 0.24 

FM D2 AGG 0.12 
0.11 

0.30 
0.26 

FM D2 SPR 0.11 0.25 

RD D2 AGG 0.12 0.26 

RD D2 SPR 0.10 0.23 

CP D AGG 0.14 0.16 

CP D SPR 0.13 0.15 

FM D AGG 0.15 
0.14 

0.16 
0.16 

FM D SPR 0.15 0.19 

RD D AGG 0.15 0.17 

RD D SPR 0.12 0.14 

CP 2D AGG 0.23 0.13 

CP 2D SPR 0.22 0.12 

FM 2D AGG 0.24 
0.21 

0.15 
0.12 

FM 2D SPR 0.20 0.11 

RD 2D AGG 0.21 0.13 

RD 2D SPR 0.17 0.10 

CP 3D AGG 0.28 0.10 

CP 3D SPR 0.29 0.11 

FM 3D AGG 0.29 
0.27 

0.13 
0.11 

FM 3D SPR 0.26 0.10 

RD 3D AGG 0.28 0.12 

RD 3D SPR 0.25 0.10 

URB 0.11 
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Figure E.1: Proportional increase (triangles that point upwards) or decrease (triangles 

that point downwards) of the forest patches mean core area in the 7 vegueries for the 

scenarios allocating new agricultural land aggregately (AGG), under the storylines 

crop productivity (CP) and fire management (FM), and for the rate conversion rates 

of D = 100 km2 ·yea{1, 2D = 200 km2 ·year-' , and 3D = 300 km2 ·yeaf1• Grey 

background accounts for the standard deviation of the metric (that increases as grey 

becomes darker). 
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N 

0 50 100 

Figure E.2: Proportional increase (triangles that point upwards) or decrease (triangles 

that point downwards) of the forest patches mean core area in the 7 vegueries for the 

scenarios allocating new agricultural land scattered (SCA), under the storylines crop 

productivity (CP), fire management (FM), and rural development (RD), and for the 

rate conversion rates of D = 1 OO km2 ·year"1, 2D = 200 km2 ·year"1, and 3 D = 3 OO 

km2·year"1• Grey background accounts for the standard deviation of the metric (that 

increases as grey becomes darker). 
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E.2 Land avaîlable for agriculture conversion and evolution of transition-

potential maps 

As agricultural expansion takes place in landscapes, less natural and semi-natural 

land is available for the allocation of new croplands (Figure E.3). The initial 

percentage of land available for conversion to agricultural land is dictated by the 

amount of area covered by vegetation at altitudes :S 1250 m verifying that forest age :S 

97 years old. The spatial distribution of land available to undergo change varies by 

strategy as allocation of agricultural area is driven by different factors (Figure 2.3, 

Annex D). Likewise, the transition-potential is a dynamic variable that evolves as 

time goes on (and available land is converted to agricultural land) depending on the 

spatial distribution of land-cover types at each time step (Figures E.4 and E.5). Both 

spatial distributions depend on the amount of new agricultural land (i.e. the demand) 

and the allocating spatial pattern. 
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Figure E.3: Evolution of available percentage of land to undergo the transition to 

agricultural land according to the demand (D2 = 50 km2 ·yea{1, D = 1 OO km2 ·yea{ 1, 

2D = 200 km2 ·yea{1, and 3D = 300 km2·yea{ 1) allocated every 5 years over 40 years. 
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[F.1] RaoQ = Li Pi· [LjPj · ôij], where 0 <p;::::; lis the relative abundance of 

species i in a community, and 0 :S Ôij ::::; 1 the functional dissimilarity between 

species i and}. 

[F .2] D = 1 - Li Pi 2
, where 0 < p;::::; 1 is the relative ab un dance of species i in a 

community. 

[F.3] PC= LÎ=1 L}=1 f;fjPlj/Œdi) 2
, where n is the number ofnodes in the 

network,f; the FDis of node i, and PÎj the maximum probability of dispersion 

between nodes i and} (i.e. many path exist between i and}, pf,j is the most 

probable path). 

[F.4] Let be e a symmetric matrix whose element euv is the fraction of all edges that 

link vertices in community u to vertices in community v of a graph. Then, 

Q = Lu ( euu - aÜ) where au = Lv euv is the fraction of edges that connect 

to vertices in community u. 

[F.5] BCCc =Li Lj fdjPljk (i,j =/= k, ij E nm*) is the generalization of the BC 

metric for the node k, where f; the FDis of node i, nm * is the list of 

combinations of i and} (i=t=j) where k is included in the shortest path between 

i and j, and Pi/ is the maximum product probability between i and j 

belonging to nm*. 
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COMPLEMENTARY RESULTS -CHAPTER 3 
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Figure G.1: Functional network of the Central Québec landscape after a drought 

episode. Node size is proportional to the betweenness centrality index BCPC and node 

colour is as functional diversity index FDis. 
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Figure G.2: Functional network of the Central Québec landscape after a pest 

outbreak. Node size is proportional to the betweenness centrality index BCPC and 

node colour is as functional diversity index FDis. 



Response d'ive rsify 

• (0.10,0 .22) 
• (0.2.2,0 .25] 
0 (0.25,0 .27] 
• (0 .27 ,0.31) 

•' . . 
: . .. . 

Ce ntralify 

• • + 

• 1 

'-· 

. . . .. .. . ' 

.... 
. .. 
'I 

' . . ·. 
\ •' . ' • . . . . 

" ., 

. . 
• • 1 

"-;.·. 

.. ' · '• .. , . 
"'· . 

198 

• 1 • • 

1 • 
; .. . · . 
. -: . ., • : 

• 

Figure G.3: Functional network of the Central Québec landscape after timber 

harvesting. Node size is proportional to the betweenness centrality index BCPc and 

node colour is as functional diversity index FDis. 



199 

Table G.1: Values of the five resilience related properties: response diversity RD, 

functional redundancy FR, connectivity PC, modularity Q, and mean generalized 

betweenness centrality index BCPC for the rural landscape of Central Québec region 

(None - Reference), the simulated landscapes under the functional enrichment 

strategy (None - LowCIO, HighCIO, LessDIO, LessD40, and LessD70, see Table 3.1), 

and the simulated landscapes under the plantation strategy (None - Rand] 0, Ripai 0, 

Rand40, Ripa40, Rand70, and Ripa70, see Table 3.1). Planted tree species in both 

strategies were selected according to three trait-based criteria: biodiversity enhancer 

(B), drought tolerant (D), or pest resistant (P). The same values are reported for the 

reference and simulated landscapes affected by drought (Drought), pest outbreak 

(Pest) and timber harvesting (Harvest) disturbances. 

dis turban ce strate2y Criteria RD FR PC Q BCPC 

None Reference 0.284 0.904 0.68 0.23 1.29 

None LowClO B 0.291 0.900 0.78 0.23 1.69 

None LowClO D 0.291 0.900 0.78 0.23 1.79 

None LowClO p 0.290 0.902 0.78 0.25 1.46 

None HighClO B 0.289 0.901 0.75 0.23 1.41 

None HighClO D 0.289 0.901 0.76 0.22 1.43 

None HighClO p 0.288 0.902 0.77 0.28 1.38 

None LessDlO B 0.294 0.899 0.83 0.25 1.73 

None LessDlO D 0.294 0.899 0.81 0.23 2.34 

None LessDlO p 0.292 0.900 0.84 0.23 1.82 

None LessD40 B 0.297 0.898 0.83 0.23 2.47 

None LessD40 D 0.296 0.898 0.85 0.23 2.11 

None LessD40 p 0.295 0.899 0.86 0.23 2.58 

None LessD70 B 0.297 0.897 0.86 0.23 2.38 

None LessD70 D 0.297 0.897 0.88 0.23 2.67 

None LessD70 p 0.295 0.899 0.88 0.28 2.45 

None RandlO B 0.287 0.903 0.74 0.22 1.56 

None RandlO D 0.286 0.903 0.77 0.23 1.57 

None Rand IO p 0.286 0.903 0.77 0.23 1.52 

None Ripa IO B 0.287 0.903 0.77 0.22 1.64 

None RipalO D 0.286 0.903 0.79 0.23 1.34 

None Ripa IO p 0.286 0.903 0.77 0.23 1.25 
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None Rand40 B 0.293 0.900 0.78 0.23 1.88 

None Rand40 D 0.292 0.901 0.81 0.22 1.79 

None Rand40 p 0.291 0.901 0.82 0.23 2.14 

None Ripa40 B 0.294 0.899 0.83 0.22 1.51 
None Ripa40 D 0.291 0.901 0.83 0.22 1.76 

None Ripa40 p 0.291 0.901 0.83 0.22 1.62 

None Rand70 B 0.300 0.897 0.88 0.23 1.90 
None Rand70 D 0.296 0.899 0.90 0.23 2.26 

None Rand70 p 0.296 0.899 0.91 0.23 1.93 

None Ripa70 B 0.300 0.897 0.85 0.23 2.15 

None Ripa70 D 0.295 0.900 0.85 0.23 1.88 

None Ripa70 p 0.294 0.900 0.87 0.22 1.63 

Drought Reference 0.285 0.905 0.72 0.23 1.27 

Drought LowClO B 0.293 0.901 0.80 0.25 1.84 
Drought LowCIO D 0.293 0.901 0.79 0.23 1.61 
Drought LowClO p 0.291 0.902 0.81 0.23 1.53 

Drought HighClO B 0.291 0.902 0.77 0.23 1.43 

Drought HighClO D 0.291 0.902 0.78 0.23 1.70 
Drought HighClO p 0.289 0.903 0.79 0.23 1.53 

Drought LessDlO B 0.296 0.899 0.84 0.23 1.51 

Drought LessDlO D 0.296 0.899 0.82 0.23 1.72 
Drought LessDlO p 0.294 0.901 0.87 0.25 1.96 

Drought LessD40 B 0.299 0.898 0.83 0.23 1.83 
Drought LessD40 D 0.298 0.898 0.85 0.23 2.01 

Drought LessD40 p 0.296 0.900 0.88 0.23 1.88 

Drought LessD70 B 0.299 0.897 0.87 0.23 2.40 
Drought LessD70 D 0.299 0.898 0.88 0.23 2.60 

Drought LessD70 p 0.296 0.900 0.88 0.23 2.03 

Drought RandlO B 0.287 0.903 0.74 0.23 1.73 
Drought RandlO D 0.287 0.904 0.76 0.23 1.86 
Drought RandlO p 0.286 0.904 0.76 0.23 1.76 

Drought RipalO B 0.288 0.903 0.76 0.25 1.64 

Drought RipalO D 0.287 0.904 0.78 0.22 1.32 
Drought RipalO p 0.287 0.904 0.77 0.22 1.24 

Drought Rand40 B 0.295 0.900 0.80 0.23 1.74 
Drought Rand40 D 0.293 0.901 0.81 0.22 1.73 
Drought Rand40 p 0.292 0.902 0.83 0.22 2.17 

Drought Ripa40 B 0.295 0.900 0.83 0.22 1.61 
Drought Ripa40 D 0.292 0.902 0.83 0.22 1.74 
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Drought Ripa40 p 0.292 0.902 0.83 0.22 1.74 

Drought Rand70 B 0.301 0.897 0.88 0.23 1.81 

Drought Rand70 D 0.297 0.900 0.89 0.23 2.16 
Drought Rand70 p 0.296 0.900 0.47 0.22 1.20 

Drought Ripa70 B 0.301 0.897 0.85 0.23 1.28 

Drought Ripa70 D 0.296 0.900 0.86 0.23 0.37 

Drought Ripa70 p 0.295 0.901 0.48 0.23 1.33 

Pest Reference 0.281 0.902 0.61 0.23 0.93 

Pest LowClO B 0.289 0.899 0.73 0.23 1.55 

Pest LowCIO D 0.290 0.898 0.74 0.23 1.57 

Pest LowClO p 0.289 0.899 0.75 0.23 1.61 

Pest HighCIO B 0.287 0.899 0.70 0.22 1.21 

Pest HighCIO D 0.287 0.899 0.70 0.23 1.43 

Pest HighClO p 0.287 0.899 0.72 0.24 1.18 

Pest LessDlO B 0.293 0.897 0.81 0.23 1.44 
Pest LessDlO D 0.293 0.897 0.78 0.23 2.00 

Pest LessDlO p 0.293 0.898 0.81 0.23 1.96 

Pest LessD40 B 0.295 0.896 0.82 0.23 1.66 
Pest LessD40 D 0.295 0.896 0.83 0.23 1.78 

Pest LessD40 p 0.295 0.897 0.87 0.24 2.16 

Pest LessD70 B 0.296 0.896 0.84 0.23 2.10 

Pest LessD70 D 0.296 0.896 0.87 0.23 2.09 

Pest LessD70 p 0.296 0.897 0.87 0.27 2.13 

Pest RandlO B 0.284 0.900 0.71 0.22 1.57 

Pest RandlO D 0.284 0.901 0.72 0.22 1.64 

Pest RandlO p 0.284 0.901 0.73 0.23 1.60 

Pest RipalO B 0.285 0.900 0.73 0.22 1.58 

Pest Ripai 0 D 0.284 0.901 0.74 0.23 0.87 

Pest RipalO p 0.284 0.901 0.73 0.22 1.42 

Pest Rand40 B 0.293 0.898 0.78 0.22 1.85 

Pest Rand40 D 0.291 0.898 0.78 0.22 1.80 

Pest Rand40 p 0.290 0.899 0.79 0.23 2.17 

Pest Ripa40 B 0.293 0.897 0.79 0.22 1.69 

Pest Ripa40 D 0.290 0.899 0.82 0.22 2.31 

Pest Ripa40 p 0.291 0.899 0.79 0.22 1.67 

Pest Rand70 B 0.299 0.895 0.86 0.23 1.87 

Pest Rand70 D 0.296 0.897 0.86 0.23 1.48 

Pest Rand70 p 0.296 0.897 0.88 0.23 2.18 

Pest Ripa70 B 0.299 0.895 0.86 0.23 1.24 
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Pest Ripa70 D 0.295 0.897 0.85 0.23 1.98 

Pest Ripa70 p 0.294 0.898 0.87 0.22 ~4.78 

Harvest Reference 0.284 0.904 0.52 0.25 1.29 

Harvest LowClO B 0.290 0.901 0.61 0.24 1.64 

Harvest LowClO D 0.290 0.901 0.59 0.25 1.70 

Harvest LowClO p 0.289 0.902 0.67 0.25 1.74 

Harvest HighClO B 0.289 0.902 0.59 0.30 1.49 

Harvest HighClO D 0.289 0.902 0.61 0.24 1.57 

Harvest HighClO p 0.288 0.902 0.66 0.24 1.48 

Harvest LessDlO B 0.293 0.899 0.66 0.23 1.87 

Harvest LessDlO D 0.293 0.899 0.59 0.24 1.88 

Harvest LessDlO p 0.292 0.901 0.70 0.23 1.83 

Harvest LessD40 B 0.295 0.899 0.70 0.26 2.49 

Harvest LessD40 D 0.295 0.899 0.70 0.25 2.12 

Harvest LessD40 p 0.294 0.900 0.78 0.24 2.12 

Harvest LessD70 B 0.296 0.898 0.75 0.23 2.35 

Harvest LessD70 D 0.296 0.898 0.70 0.24 2.05 

Harvest LessD70 p 0.294 0.900 0.75 0.37 2.24 

Harvest RandlO B 0.287 0.903 0.54 0.25 1.41 

Harvest RandlO D 0.286 0.903 0.58 0.24 1.29 

Harvest RandlO p 0.286 0.903 0.59 0.23 1.44 

Harvest RipalO B 0.287 0.902 0.64 0.22 1.73 

Harvest Ripa IO D 0.286 0.903 0.65 0.24 1.57 

Harvest RipalO p 0.286 0.903 0.61 0.22 1.42 

Harvest Rand40 B 0.294 0.900 0.40 0.22 1.40 

Harvest Rand40 D 0.292 0.901 0.40 0.22 1.47 

Harvest Rand40 p 0.291 0.901 0.40 0.22 1.45 

Harvest Ripa40 B 0.294 0.899 0.48 0.23 1.51 

Harvest Ripa40 D 0.291 0.901 0.49 0.22 1.75 

Harvest Ripa40 p 0.291 0.901 0.49 0.22 1.53 

Harvest Rand70 B 0.300 0.897 0.71 0.33 1.88 

Harvest Rand70 D 0.296 0.899 0.69 0.25 1.76 

Harvest Rand70 p 0.296 0.899 0.78 0.24 2.06 

Harvest Ripa70 B 0.300 0.896 0.63 0.25 1.64 

Harvest Ripa70 D 0.295 0.900 0.63 0.25 1.48 

Harvest Ripa70 p 0.295 0.900 0.66 0.25 1.63 
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