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RÉSUMÉ 

Les processus de comptage ont un rôle majeur et des applications variées dans plusieurs 
domaines telles que la tarification, la réserve de perte, l'allocation du capital en assur­
ance. Avec toutes ces applications, il y a quelques risques ou des facteurs de risque 
qui dépendent sur un autre ensemble de risque ou des facteurs de risques, et cela con~ 
stitue précisément un grand intérêt pour les compagnies d'assurance. Ces compag­
nies d'assurance veulent construire des modèles spécifiques pour capturer quelques, ou 
toutes les, structures de dépendance existantes entre 1es risques connus. Quelques-uns 
de ces risques connus sont associés avec les processus de comptage. La modélisation 
de la dépendance utilisant la théorie des copules et les processus de comptage a attiré 
l'attention de plusieurs chercheurs ces dernières années. Dans ce mémoire, nous étu­
dions deux champs d'intérêt dans la modélisation de la dépendance avec applications 
en assurance et finance. Premièrement, nous étudions plusieurs méthodes de modélisa­
tion, les techniques d'estimation et l'implémentation des algorithmes qui sont utilisés 
dans la modélisation des copules autour des· processus de comptage. Par exemple, dans 
le deuxième chapitre deux de ce mémoire, nous allons étudier comment la modélisa­
tion de la dépendance est utilisée pour un risque bivarié ou pour des facteurs de risque 
telle que la classe Bonus-Malus et les comptes de réclamations du passé, le compte de 
réclamations et.la taille des réclamations, le compte de réclamations de deux processus 
de comptage différents qui se sont produits à partir du même événement,etc. Dans la 
deuxième partie du mémoire, nous scrutons et adressons quelques remarques autour du 
choix de quelques copules de la première partie 1 de ce mémoire, et nous présentons 
une discussion au sujet des approches utilisées. Cette deuxième partie du mémoire est 
motivée par le fait que différentes analyses vont choisir un ensemble différent de distri­
bµtions univariées pour ajuster les mêmes données et choisir différents types de copules 
pour modéliser les structures de dépendance. En fait, on cherche dans la secpnde par­
tie à répondre à la question : Devons-nous dépendre sur les marginales même si nous 
avons un ensemble large de données disponibles ? En dernier lieu; nous discutons à 
propos des estimés des vrais paramètres de copule et nous analysons un ensemble de 
vraies données. 

Mots-Clés : Processus de comptage, copule, structure de dépendance, paramètres de 
modèle, estimation, copule de Clayton, distribution conjointe, processus de Lévy. 



ABSTRACT 

Counting process has a major and several applications in different areas such as rate­
making, loss reserving and capital allocation in insurance. Within all these applications, 
some risks or risk factors depend on the other set of risk or risk factors and this depen­
dence is ofhigh interest to insurance companies, particularly rate-making actuaries and 
loss reserving actuaries. These insurance companies would want to build specific mod­
els that captures some or all the dependence structures existing between· the known 
risks. Sorne of these known risks are associated with counting process. Modeling de­
pendence using copula has drawn the attention of several authors in recent years. In 
this thesis, we study two areas of interest in dependence modeling with application in 
insurance and finance. First we study several modeling methods, estimation techniques 
and implemented algorithms that are used in copula modeling surrounding counting 
process. For instance, in chapter two of this thesis, we will study how dependence 
modeling is carried for bivariate risk or risk factors such current Bonus-Malus class 
and past count of claims, count of claims and size of claims, count of claims of two 
different counting processes that occurred from the same event etc. In the second part 
of the thesis, we investigate and address some concerns surrounding the choice of some 
the copulas in the first part of the thesis and present a discussion to the approaches that 
were used. This second part of the thesis is motivated by the fact that different analysts 
will select different set of univariate distributions to fit the same data and choose from 
different types of copula to model the dependence structures. In fact, the second part 
seeks to answer the question: Should we depend on the fitting of marginals even if we 
have large set of data available?. Lastly we discuss about the estimates of a true copula 
parameter as we analyze a real dataset. 

keyworkds: Counting process, Copula, dependence structure, model parameters, es­
timation, Clayton copula, joint distribution, Lévy process. 



INTRODUCTION 

Two events A and B are dependent if the occurrence of one event changes the proba­

bility of the occurrence of other event. For example, large values of event A always 

occur with large values of event B or large values of event A always brings about small 

values of event B. Linear dependence between two events is by far the most popular 

form of dependence in many disciplines especially in the financial community. lt is 

mostly measured with linear correlation coefficient (see chapter 1). Lawless (2014), in 

his article explained that, this linear correlation coefficient measures how close a point 

cloud is to a straight line. 

Though the linear correlation coefp.cient, among many dependence measures, for exam­

ple Kendall's Tau and Spearman's Rho, is by far the most popular dependence measure 

used, it is also often misunderstood as a general measure of dependence. The popu­

larity of this linear correlation coefficient started with the ease with which it can be 

calculated and it is a natural scalar measure of dependence in elliptical distributions 

(i.e. probability distributions that generalize the multivariate normal distribution there 

by forming an ellipse, for example the multivariate t-distribution). 

However, most random variables are not jointly elliptically distributed, and using linear 

correlation as a measure of dependence in such situations might prove very misleading 

(Erilbrechts et al., 2001). This motivated the use of concordance measures (see chapter 

1 ). Two random variables are co°:cordant when large values of ·one go with large values 

of the other. The most obvious application of the concordance is to use them to measure 

the strength of dependence empirically observed in some set of data. 

Recently in actuarial literature, the study of the impact of dependence among risks 
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has become a major and flourishing topic: Even in traditional risk theory, individual 

risks have usually been assumed to be independent, this assumption is very convenient 

for tractability but it is not generally realistic. Think for example of the aggregate 

claim amount in which any random variable represents the individual claim size of an 

insurer's risk portfolio. When the risk is represented by residential dwellings exposed to 

danger of an earthquake in a given location or by adjoining buildings in fire insurance, 

it is unrealistic to state that individual risks are not correlated, because they are subject 

to the same event cause (Campana & Ferretti, 2005). Many more research work in 

actuarial science among others may be found in Frees et al. (1996), Free and Valdez 

(1998) and Frees and Wang (2005). 

With the proliferation of large datasets from a variety of sources, perhaps the most 

pressing and ubiquitous challenge is posed by the need to "leverage/influence big data." 

This calls for ways to build dependence models involving hundreds, and even thousands 

of variables (Lawless, 2014). 

Unfortunately the traditional measures of dependence: the linear correlation coefficient 

among others such as Kendall' s Tau and the Spearman' s correlation coefficient, just 

by themselves cornes with some amount of limitations for bivariate distributions. An 

interesting concept that makes it possible to study dependence in broader terms was 

proposed by the American mathematician Abe Sklar in response to a question posed by 

his French colleague Maurice Fréchet is Copula. Copulas are useful tool to model de­

pendent data as they allow to separate the dependence properties of the data from their 

marginal properties and to construct multivariate models with marginal distributions 

of arbitrary form (Aristidis K. Nikoloulopoulos, Dimitris Karlis, 2007). For instance, 

in finance, copula is used in modelling dependence structures in the analysis of credit 

risks, the insolvency of several debtors at the same time or for insurances the risk of 

appearance of different daims at the same time have to be modeled to insure solvency 

of the bank and insurance, respectively, all the time. Modeling dependence between 
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asset retums and modelling the dependence between coinpanies default times are the 

most common financial modeling tasks for which copulas are applied frequently (Mai 

& Scherer, 2014). 

Count data occur in several areas in actuarial studies. In property insurance models, 

insurance daims count form a core part of risk theory. Also in health insurance, count 

data models have been widely used to estimate the predictors of health care demand. · 

Many studies on copula published has revealed some dependence structures that exist 

between these count variables and other known variables in the insurance and finance 

setting. In recent times, modeling in insurance is moving towards a broader perspective 

on assets and liabilities where dependencies between proeesses (for example different 

lines of business, count of daims from an insurance company and its main reinsurer, 

IBNR problem where late daims arise from the same event, and the distribution of the 

next daim arrival) are taken into account. 

The objective of my present work is to review some of the copulas used in models 

in the insurance and finance setting in order to explore some methods in constructing 

copulas, different estimation procedures and techniques used to select the best copula 

( as this task is no very easy in practice ). This will encourage more of the copulas being 

applied and stimulate further developments of copulas in this area. 



CHAPTERI 

MODELLING DEPENDENCE WITH COPULAS 

1.1 Overview of Modelling Dependence 

Suppose there are d variables Yl, ···,Yd and the data set consists ofyi = (yn, ···,Yid) for 

i = 1, ... , n considered as a random sample of size n; that is, the Yi are independent 

and identically distributed (i.i.d.) realizations of a random vector Y = (Y1, ... , Yd). For 

example, we can consider the data matrix Y given by: 

Y11 Y12 YB Yld 

Y21 Y22 Y23 Y2d 

Ynl Yn2 Yn3 Ynd 

Two goals are interesting here. First is to study the probabilistic behaviour of each of 

one of thè component of Y and second, is to investigate the relationship between them. 

Similarly, in dependence modelling, the steps are: 

(i) univariate models for each of the variables Y1, ... , Yd; 

(ii) copula models for the dependence of the d variables. 

In step (i), the choices for univariate parametric familles with two or more parameters 

depends on the modality, tail-weight, scale of dispersion and asymmetry. After the 

univariate models are chosen, next in step (ii) copula models must then be considered 
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to model the dependence. 

1.2 What are copulas? 

Informally, copulas are fonctions that join or "couple" multivariate distribution fonc­

tions to their one-dimensional marginal distribution fonctions (Nelsen, 1999). The pur­

pose of a copulais to "glue together the margins" or "couple the individual probabil­

ities" (hence the Latin term "copulare") in order to generate dependence between the 

variables (Genest & Neslehova, 2005). 

1.2.1 Historical Background on the Development of Copula Theory 

The history of copulas may be said to begin with (Fréchet, 1951). Fréchet's problem: 

given the distribution fonctions Fj (j = 1, 2, ... , d) of d random variables X1, X2, ... , Xd 

defined on the same probability space (.O.,!F,IID), whatcan be said about the setr(F1,F2, ... ,Fd) 

of d-dimensional distribution fonctions whose marginals are the given Fj? He added 

that, if the random variables X1 ,X2, ... ,Xd are independent then 

is a member of the set r( F1, F2, ... , Fd). However the problem is what then are the other 

members of this set? 

In 1959, Abe Sklar obtained the most important result in this respect, by introducing 

the notion, and the name, of a copula, and proving the theorem that now bears his name 

(Durante & Sempi, 2010). 

In a more simplest possible terms, let us consider the Maurice Fréchet's problem by this 

way. Suppose that X and Y are two fire daim amounts, say, for which we know how 

to compute the probabilities IID(X :S x) and IID(Y :S y) for any values x and y. Viewed as 
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fonctions of x and y, the probabilities F(x) = IP'(X ~ x) and G(y) = IP'(Y ~ y) are called 

the marginal distribution fonctions, or margins of X and Y . The question is then how 

to construct a model for the probability of the events { X ~ x} and {Y ~ y} occurring 

simultaneously, denoted IP'(X ~ x and Y ~ y), while ensuring that X has distribution 

F and Y has distribution G. Sklar (1959) suggested the equation below as an idea to 

answer the problem: 

IP'(X ~ x and Y~ y)= C{IP'(X ~ x),IP'(Y ~ y)} (1.1) 

where C is a specific fonction of two variables called a copula. From the above equa­

tion, one can say that copulas are expressed in the form; 

C{u, v} = IP'(U ~ u and V~ v). (1.2) 

1.2.2 Why Do We Care About Copulas? 

Copulas have been of interest to statisticians for two main reasons: firstly, as a way of 

studying scale-free measures of dependence; and secondly, as a starting point for con­

structing families of bivariate distributions, sometimes with a vew to simulation (Fisher, 

1997). In other words, we care about copulas because, copulas reveal the true nature of 

dependence between variables and lead to flexible multivariate models (Genest, 2011). 

Example ).2.1 

(Thefollowing example explains the intuition behind Sklar's work in afinancial setting 

(credit to (Cherubini et al., 2004)). 

Assume a product written on the Nikkei 225 and S&P 500 indexes which pays, at some 

exercise date T, one unit if both are lower than some given levels KNKY and Ksp. The 

price of this digital put option is: 

DP = e-r(T-t)Q(KNKY,Ksp) 
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Where Q(KNKY, Ksp) is the joint risk-neutral probability that both the Japanese and US 

market indexes are below the corresponding strike prices. Also, r is the discounting rate 

and t is the time we at which we are pricing the option. A put option gives the holder 

an option to sell the underlying as set at a strike price K if the price of the underlying 

asset at the time of expiration is lower than K. How can someone going to buy a put 

option recover a price that are consistent with the market price or in order words, how 

can a put option buyer pay for a price which he or she will end up exercising the option 

at time of expiration? 

In modelling, our first goal will be to study the probabilistic behaviour of each of the 

marginais and next we investigate their relationship. So we will need some models 

for the risk-neutral probability <CmKY that the Japanese Nikkei Index at time T will 

be below the level KNKY and also the risk-neutral probability Qsp that the US S&P 

Index at time T will be below the level Ksp. In financial terms, we are asking what 

is the forward price of univariate digital options with strike prices KNKY and Ksp; in 

statistical terms, we are estimating from the market data, the marginal risk-neutral 

distributions of Nikkei and S&P indexes. So our price can be written as; 

where C( ·, ·) is a bivariate function and has a basic requirement to be in the unit in- · 

terval in order to be able to represent a joint probability distribution. Other three 

requirements also cornes into mind. First, if one of the two events has zero probability, 

the joint probability that both events occur must also be zero and Secondly, if one event 

will occur for sure, ·the joint probability that both the events will take place is the same 

as the probability that the second event will be observed. Lastly, if the probabilities of 

both the events increase, then the joint probability should also increase. 

Below are some associated definitions and theorems. H-Volume is a volume contained 

by a rectangle [x1 ,x2] x [y1 ,Y2] of a 3 -dimensional fonction. 
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Definition 1.2.1 (2-Increasing) 

Let 0-:/= S1,S2 CR= extended real line on {-oo,+oo} and let H be a S1 x S2-+ R 

fonction. TheH-volume of B= [x1,x2] x [y1,Y2] isdefinedtobe: 

H is 2- increasing function if VH(B) 2:: 0 for all B C S1 x S2. 

Definition 1.2.2 (Grounded) 

Suppose b1 = maxS 1 and b2 = maxS2 exist. Then the margins F and G of H are given 

by 

F : S1-+ R, F(x) = H(x,b2), 

G : S2-+ R, G(y) = H(b1,y). 

Suppose also a1 = minS1 and a2 = minS2 exist, then His called grounded if: 

H(a1,Y) =H(x,a2) = 0, forall (x,y) E S1 x S2 

Definition 1.2.3 (Bivariate Copula) 

A bivariate copula function is a function C, whose domain is [O, 1 ]2 and whose range is 

[O, 1] with the following properties: 

(BCJ): C(x) = Ofor all x E [O, 1]2 when at least one element of xis O; 

(BC2): C(x, 1) = C(l,x) = xfor all x E [O, 1)2; 

(BC3): forall (a1,a2), (b1,b2) E [O, 1]2 with a1:::; a2 and b1:::; b2, we have : 

Vc([a,b]) = C(a2,b2)-C(a1,b2)-C(a2,b1) +C(a1,b1) 2:: O. 

Where (BCl) denotes Bivariate Copula or Axiom or property 1. 

The fonction Ve is called the C- volume of the rectangle [a, b] x [c, d]. 
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Theorem 1 (Sklar's Theorem) 

Let H be a bivariate distribution function with marginal distributions F and G. Then 

there exists a copula C such that: 

H(x,y) = C(F(x),G(y)) (1.4) 

Conversely, for any distribution functions F and G and any copula C, the function 

H defined above is bivariate distribution function with marginal distributions F and 

G.Furthermore, if F and G are continuous, then C is unique. 

Example 1.2.2 

Consider thefunction n(u, v) = uv. Thisfunction satisfies conditions (BCl), (BC2) and 

(BC3), and hence thefunction n(u, v) is a copula. 

1.3 Multivariate Copulas 

Inference for multivariate models and in particular higher dimensional copulas is a far 

less developed area of statistics than univariate applications. One reason for this is, that 

the likelihood usually is less tractable (Schepsmeier & Stober, 2014). 

This section presents a brief extension of the bivariate copula theory. A multivariate 

copula can be used to specify a multivariate distribution and every multivariate distri­

bution provides a multivariate copula. We extend the basic properties of the bivariate 

copulas to the multivariate case. 

Definition 1.3.1 (Multivariate Copula) 

A p-dimensional copula is a function C : [O, 1 ]P ---+ [O, 1] that satisfies: 

(MCI): C(u1, ... , Ui-1, 0, Uï+1, ... , up) = Ofor all 1:::; i:::; p, 

(MC2): C(l, ... , 1,u, l, ... , 1) = ufor all u in each of the p arguments, 



(MC3): Forai :s; b;,a;,bï E [O, 1],i = 1, ... ,p, 

2 2 

L ... L (-l)ii+ ... +iPC(u1,i1, ... ,up,ip) 2:: 0 
i1 =1 ip=l 

where Uj,1 = aj and Uj,2 = bjfor j = l, ... ,p. 

Theorem 2 (Sklar's Theorem - Multivariate Copulas) 
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Let H be a p-dimensional distribution fanction with margins F1, ... , Fp. Then there ex­

ists a p-copula C such that for all x;· E IR, 

H(x1, ... ,xp) .. C(F(x1), ... ,F(xp)) (1.5) 

If F1, ... , Fp are continuo us, then C is unique. 

Conversely, if Fi, ... ,Pp are distributionfanctions and C is a copula, then H defined by 

1.5, is a joint distribution fanction with margins F1, ... , Fp. 

1.4 Fundamental Computational Techniques U sed In Copula Theory 

1.4.1 The Fréchet-Hoeffding Bounds 

This is the original work of Hoeffding (1994) and Fréchet (1951) . Similar to the 

correlation coefficient and other. numeric dependence measures, there exist lower and 

upper bounds for ail copulas. This computational technique is mostly relevant when 

one is studying the most extreme negative and positive dependence within a family of 

copulas. 

Theorem 3 (Fréchet-Hoeffding Bounds) 

Let C be a copula. Then for every ( u, v) in [O, 1 ]2, 

max(u+v- l,O) :s; C(u, v) :s; min(u, v) (1.6) 



Pro of. Let ( u, v) be an arbitrary point in [ 0, 1 ]2. Sin ce: 

C(u, v) < C(u, 1) = u 

C(u, v) < C(l, v) = v 

* C(u, v) < min(u, v) 

Furthermore from (BC3) in Definition 1.2.3; 

Vc([a,b]) = C(a2,b2)-C(a1,b2)-C(a2,b1)+C(a1,b1) 2 0 

Vc([u, 1] x [v, 1]) = 1-u-v+C(u,v) 2 0 

C(u, v) 2 u+v-1 

* C(u,v) 2 max(u+v-1,0) 

Theorem 4 (Multivariate Copula - Bounds) 

For every copula C and any u in [O, l]P, 
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D 

In the multidimensional case of the Fréchet-Hoeffding bounds, the upper bound is still 

a copula but the lower bound is not. 

1.4.2 Switching from Distribution to Survival Functions 

In some applications, for example in the context of portfolio credit-risk modelling, it 

is very natural to consider survival fonctions rather than distribution fonctions. For 

instance the lifetime of a company is a random variable X taking only positive values. 

Modelling with exponential distribution ( the most popular distribution on the positive 

half-axis), we have its probability distribution fonction as: f(x) = Âe-h. The above 

distribution bas many nice and useful analytical properties such as: F(x) = e-Àx and 
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F(x)F(y) = F(x+y), where F(x) is the survival fonction of x. Multivariate concepts 

of the exponential distribution rel y on a treatment of multivariate survival fonctions. In 

order to apply copula theory for these concepts, thesurvival analog of Sklar's Theorem 

is necessary. 

Theorem 5 (Sklar's Theo:rem for Survival Functions) 

AfunctionF(x): Rd--+ [O, 1] is the survivalfunction of some random vector (X1,X2, ... ,Xd) 

if and only if there are, a copulas ê : [O, 1 ]d --+ [O, 1] and univariate functions F 1, ... , F d : 

R--+ [O, 1] such that 

The correspondence between F and ê is one-to-one if all survival fonctions F 1, ... ,_F d 

are continuous. 

Example 1.4.1 

Assume that (X1,X2) is a random vector on a probability space (.Q,JF,P) with dis­

tribution function F(x1 ,x2) := 1P(X1 ::; x1 ,X2 ::; x2), which admits the representation 

F(x1 ,x2) = C(F1 (x1),F2(x2) ),for x1 ,x2 E IR, with a bivariate copula C and two univari­

ate distribution functions F1, F2. Our goal will be to switch by computing the survival 

function of (X1,X2) and the survival copula ê ofC. 

F(x1,x2) ·- IP(X1 > x1,X2 > x2) 

1 - (1P(X1 ::; x1) U 1P(X2 ::; x2)) 

1 - 1P(X1 ::; x1) - 1P(X2 ::; x2) + 1P(X1 ::; x1,X2 ::; x2) 

1- (l -F1 (x1))- (l -F2(x2)) +C(l -F1 (xi), l -F2(x2)) 

F1 (x1) + F2(x2) -1 +C(l -F1 (x1), l -F2(x2)). 

Now from the above theorem, it implies that the survival copula can also be expressed 

as; 
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Mai and Scherer (2014), provided a lemma (on page 24) for the multivariate case where 

the dimension of the random vector is more than two (2). 

1.4.3 Invariance Under Strictly Monotone Transformations 

In finance, as an example, if dependence between the values of two stock prices at some 

future time point is modeled in terms of copula, their logarithmic values have the same 

copula. Also the conversion into other currencies by multiplication with the respective 

exchange rates or scale changes of credit spreads from percent into basis points have no 

effect on the dependence structure. This is what we call the invariance of the copula and 

this happens only when one applies a strictly monotone transformation to the random 

variables. 

Theorem 6 (Invariance of Copulas) 

Let X rv F and Y rv G be random variables with copula C. If a ( · ), /3 ( ·) are increasing 

functions on RanX and RanY, then a(X) rv Fa and /3 (Y) rv G13, have copula Ca/3 = C. 

Hence C is invariant under increasing transformation X and Y.Only the marginal laws 

changes. 

Proof. 

Ca/3 (Fa(x), G13 (y)) IP[a(X)::; x,f3(Y)::; y] 

Jp> [X ::; a-1 (X) ' y ::; 13-1 (y)] 

C(F( a-1 (x) ), G(/3-1 (y))) 

C(IP[X < a-1 (x)], IP[Y < 13-1 (y)]) 

C(IP[a(X) < x],IP[/3(Y) < y]) 

C(Fa(x), G13 (y)). 

D 
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1.4.4 Copula Derivatives 

In finance applications, most of the copulas used are absolutely continuous (Mai & 

Scherer, 2014). As a result, differentiating these copula fonctions is simple and forther 

usage of these derivatives cornes in handy. In practice, market participants are interested 

in knowing the risk of their portfolios. More often than not, they require the derivatives 

of copulas in order to calculate the observed Fisher information in multivariate models 

(Schepsmeier & Stober, 2014 ). Also, most methods of parameter estimation require the 

use of score fonctions. And as result, we would need the non-negative copula density 

c: (0, 1 )2 --+ [O, oo) associated to the above bivariate copula C(u1, u2) computed from a 

sucœssive partial differentiation which is given by: 

(1.8) 

It is obvious that, applying the chain rule to Sklar's theorem would yield the joint 

density fonction. Bouyé et al (2000) added that, this reduces to the joint density of the 

random vector (X1,X2), given in the relation below: 

(1.9) 

where fi and h are the density fonctions of F1 (x1) and F2 (x2) respectively. One main 

usefulness of copula density is that, with the marginal distributions a random vector, 

one can generate the joint distribution of that random vector and vice versa. 

Example 1.4.2 (Copula Density Function) 

Assume that the random vector (X1 ,X2) follows the joint normal standard density and 

that X1 and X2 obeys the univariate standard normal density. One can simply derive 



the copula density function by: 

f(x1 ,x2) 
fi (x1)h(x2) 

x?- A 
[-

1-e-'1] [-1-e-i] 
fin fin 

1 (2px1x2-xyP2-~p2) 

--;:::===;:e 2( i -p2) 

J1-p2 

Example 1.4.3 (Finding Conditional Distribution Functions from Copulas) 
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Another applied area of copula derivatives is finding a conditional distribution func­

tions from a copula. This can be seen in the partial derivative below: 

a a 
F(x1lx2) = :)F(x1,x2) = :)C(F1(x1),F2(x2)) 

ax1 ax1 . 
(1.10) 

1.5 How to Measure Dependence Structure In Copula Theory 

Dependence structure (for example positive and negative dependence, independence, 

etc) between random variables is completely described by their joint distribution fonc­

tion. Since the notion of dependence between two ( or more) random variables is not a 

simple mathematical concept, it is quite challenging to communicate information like 

the 'degree' ,'level' or 'type' of dependence. We are able to achieve a simplified version 

if the information is compressed into a single number that quantifies the degree of de­

pendence (Mai & Scherer, 2014). Most of the definitions and theorems relating to this 

chapter (with proofs) may be found in Nelson (1998), de Kort (2007) and Joe (2015). 

Below are some classical dependence measures that are used to quantify certain aspect 

(such as the strength or type of any dependence structure). 

1.5 .1 Classical Linear Correlation 

The basis of linear correlation is to tell us how well two random variables cluster around 

a linear, fonction. The. linear correlation coefficient measures the degree to which a 
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linear relation succeeds to describe the dependency between random variables. 

Definition 1.5.1 

For non-degenerate, square integrable random variables X and Y the linear correlation 

coefficient p is 

Cov(X,Y) 
p= 1 

(Var(X)Var(Y))2 
(1.11) 

If two random variables are linearly and perfectly dependent, then p = 1 or p = -1. 

Unfortunately, linear correlation is not invariant under non-linear monotonie transfor­

mation of random variables. 

Proof. Let X be a uniformly distributed random variable on the interval (0, 1) and set 

Y = xn, n 2:: 1. The random variables X and Y are perfectly positive dependent. 

The n-th moment of X is 

JE(Xn) = /1 :?dx = -1 1 . 
lo +n 

The linear correlation between X and Y is 

p = 
JE[XY] - JE[X]JE[Y] 

(JE[X2] - (lE[X])2) ! (JE[Y2] - (lE[Y])2) ! 
JE[xn+l] - lE[X]lE[Xn] 

(JE[X2] _ (JE[X])2) ! (JE[X2n] _ (JE[Xn])2) ! 
J3+6n 
2+n 

(1.12) 

For n = 1, the correlation coefficient equals 1, for n > 1 it is less than 1. Hence linear 

correlation coefficient is not invariant under increasing, non-linear transformation. D 

1.5 .2 Measures of Concordance And Expressing them as a Function of Copulas 

The notion 'concordance measure' was introduced by Scarsini (1984), who aimed to 

make the following intuition mathematically precise: Two random variables X1 and X2 
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are concordant when large values of X1 go with large values of X2. Concordance and its 

measures are introduced in this section to reflect the strength to which random variables 

cluster around a monotone fonction. 

Definition 1.5.2 

1. Two observations (x1,Y1) and (x2,y2)are concordant ifx1 < x2 andy1 < Y2 or if 

x1 > x2 andy1 > Y2· An equivalent characterization is (x1 -x2)(y1 -y2) > O. The 

observations (x1,Y1) and (x2,Y2) are said to be discordant if (xi -x2)(Y1 -y2) < 

o. 

' 2. if C1 and C2 are copulas, we say that C1 is less concordant than C2 ( or C2 is more 

concordant.than C1) and write C1 -< C2(C2 >- C1) if 

(1.13) 

Definition 1.5.3 

A measure of association Kc = Kx ,Y is called a measure of conèordance if: 

1. Kx ,Y is defined for every pair X, Y of random variables, 

2. -1 ::; Kx,Y ::; 1, Kx,x = 1, K-x,x = -1, 

3. Kx,Y = Ky ,x, 

4. if X and Y are independent then Kx,Y = Kcj_, 

5. K-x,Y = Kx,-Y = -Kx,Y, 

6. ifC1 and C2 are copulas such that C1-< C2 then Kc1 = Kc2' 

7. if {(Xn,Yn)} is a sequence of continuous random variables with copulas Cn and 

if Cn converges pointwise to C, then limn--+=Kxn,Yn = Kc. 

Lemma 1.5.1. Measures of concordance are invariant under strictly monotone trans­

formation of the random variables. Proof is shown in de Kort (2007). 
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1.5.3 Examples of Measure of Concordance 

Kendall' s tau and Spearman' s rho are two examples of the measure of Concordance. 

They are also the two standard non-parametric dependence measures that may be ex­

pressed in copula forms. 

Kendall' s Tau 

Let Q be the difference between the probability of concordance and discordance of two 

independentrandom vectors (X1,Y1) and (X2,Y2): 

(1.14) 

In case (X1,Y1) and (X2,Y2) are iid. random vectors, the quantity Q is called Kendall's 

Tau'!. 

Given a sample of {(x1 ,Yi), (x2,Y2), (x3,y3), ... , (xn,Yn)} of n observations fromrandom 

vector (X,Y), an unbiased estimator (t) of'! is 

c-d 
t:=-­

c+d 

where d is the number of discordants pairs and c is the number of concordants pairs. 

For the n observations, we can also express that; 

c+d = n(n-1). 
2 

Kendall's Tau and Spearman's rho (which is defined in this section) may be expressed 

in a copula form by the following theorems. For a proof, see Embrechets et al. (2001): 

Theorem 7 (Kendall's Tau) 

Let (X,Y)7 be a vector of continuous random variables with copula C. The Kendall's 

Tau of (X, Y)7 is given by: 



't" = Q(C,C) = 4 JJ C(u, v)de(u, v) -1, 

[0,1]2 
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(1.15) 

where the integral above is the expected value of the random variable C(U, V), with 

U, V rv U(O, l) has a joint distributionfunction C. 

Spearman' s Rho 

Let (X1,Y1), (X2,Y2) and (X3,Y3) be iid from the random vector (X,Y)7 with common 

joint distribution H, margins F, G and copula C. Spearman' s rho is defined to be 

proportional to the probability of concordance minus the probability of discordance of 

the pairs (X1, Y1) and (X2, Y3): 

Theorem 8 (Spearman's Rho) 

Let (X,Y)T be a vectorof continuous random variables with copula C. Then the Spear­

man's Rho for (X,Yl is given by: 

Ps(X,Y) = 12 // uvdC(u, v)-3 = 12 // C(u, v)dudv-3 (1.17) 

[0,1]2 [0,1]2 

Bence, if X r'-..J F and Y rv G, and we let U = ·p (X) and V = G(Y), then 

Ps(X,Y) = 12fjc(u,v)dudv-3=12E(UV)-3 

[0,1]2 

1E(UV)-i 
1 
12 

COV(U,V) 

Jvar(U)JVar(V) 

p(F(X), G(Y)) 
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1.6 Popular Families of Copulas In Insurance and Finance 

In insurance and finance, it is common to corne across certain popular families of bivari­

ate copulas. These families are mostly presented by their distribution copula fonctions. 

Aas (2004) helped in providing a summary to the most common families applicable to 

finance. 

C(u, v) = JP'(U :Su, V :Sv) = j_"= [= c(s,t)dsdt (1.18) 

where c( s, t) is the density of the copula. We will consider two parametric families of 

copulas; the copulas of normal mixture distributions and Archimedean copulas. The 

first are so-called implicit copulas, for which the double integral at the right-hand side 

of Eq.(1.18) is implied by a well-known bivariate distribution fonction, while the latter 

are explicit copulas, for which this integral has a simple closed form. 

1.6.1 Implicit Copulas 

Let us consider two implicit copulas: the Gaussian and the Students t-copulas. Both of 

them belong to the elliptical family of copulas. They do not corne with a simple closed 

form. 

Gaussian copula The Gausian copulais the copula generated by random variables that 

have a bivariate normal distribution, each with mean 0, variance 1, and correlation p. 

The Gaussian copula is given by 

l

<I>-l(u) l<I>-l(v) 1 x2 -2pxy+y2 
Cp(u, v) = 1 exp{-

2
(
1 2) }dxdy, 

-00 -00 2n(l - p2)2 - p 
(1.19) 

where p is the parameter of the copula, and <1>- 1 ( ·) is the inverse of the standard uni­

variate Gaussian distribution fonction. Due to the popularity of the multivariate nor­

mal distribution and the lack of knowledge about other multivariate distributions in the 
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pre-copula days, Gaussian copulas were naturally the first candidates to be applied by 

financial engineers when copula modeling became popular, Mai and Scherer (2014). 

Student's t-copula This copula allows for join fat tails and an increased probability of 

joint extreme events compared with the Gaussian copula. It is expressed as: 

- jtvl (u) ltv -1 (v) 1 x2 - 2pxy + y2 -(v+2)/2 
Cp,v(u, v) - 1 {1 + (l 2) } dxdy, (1.20) 

-oo -oo 2n(l _ p2)2 V - p 

where p and v are the parameters of the copula, and tv - l ( v) is the inverse of the stan­

dard univariate student-t-distribution with :V degrees of freedom, expectation O and 

variance v~2 • In finance, the Students-t dependence structure supports joint extreme 

movements regardless of the marginal behaviour of the individual assets. 

1.6.2 Explicit Copulas 

Implicit copulas are noted to have a drawback of complicated algebraic expressions and 

a great level of symmetry. These drawbacks motivated the such of many other families 

of copulas. Let us consider two explicit copulas: the Clayton and Gumbel copulas. 

Both of them belong to the Archimedean family of copulas. 

Clayton copula The Clayton copula is an asymmetric copula, exhibiting greater de­

pendence in the negative tail than in the positive. It is given by: 

(1.21) 

where O < 8 < oo is a parameter controlling the dependence. Perfect dependence is 

obtained if 8 -+ oo, while ô -+ 0 implies independence. 

Gumbel copula The Gumbel copula is also an asymmetric copula, but it is exhibiting 

greater dependence in the positive tail than in the negative. This copula is given by: 

1 

Cs(u, v) = exp(-[(-log(u))8 + (-log(v))8]"8), (1.22) 
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where 8 ~ 1 is a parameter controlling the dependence. Perfect dependence is obtained 

if 8 -+ oo, while 8 -+ 1 implies independence. 

1. 7 Counting Processes 

Definition 1.7.1 (Stochastic Processes) 

A stochasticprocess is a collection of random variables {Xt(w),t > O} where t is a 

time parameter and w is a path parameter. The process may be continuous (t takes on 

values on an interval) or discrete ( t = 0, 1, 2, 3, ... ) . 

Definition 1.7.2 (Counting Processes) 

This is a continuous time stochastic process {N(t),t ~ O} (with N(t) representing the 

total number of "events" that occur by time t) such that: 

1. N(O) = 0, 

2. N(t) is a non-negative integer number for each t ~ 0, 

3. N(t) is increasingforO::; s::; t, thenN(s)::; N(t), 

4. Fors< t, N(t)-N(s) equals the number of events that occur in the interval (s,t]. 

Instances that portray counting processes are situations where words (among many oth­

ers) such as arriving, entering, exiting and immigrating happen to be the keywords. In 

insurance environment, the word occurring tums up most to be associated with counting 

processes. For instance, daims occuring in the time interval ( s, t]. 

Properties of Counting Process 

Sorne counting processes may posses these properties: 

1. Independent Incremeo.ts: This means that the process from any point is indepen­

dent of that, which has already or previously occurred. 
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For all m ~ 1 and time parts O < to < t1 < ... < tm, the random variables N(to), 

N(t1)-N(to), ... , N(tm) -N(tm-1) are mutually independent. 

2. Stationary Increments: This also means that the process from any point on has 

the same distribution as the original process. For O ~ s ~ t, the distribution of 

N(s) ~ N(t) depends only on the length of the interval [s,t] and not on the time 

points s and t. 

Intuitively, independent and stationary increments properties simply means that the 

counting process can start all over again at any point intime (credit to Ross (2014)). In 

modelling the number of insuranée claim number, there are two main types of counting 

process associated with it. The Renewal Process and the Poisson Process. Ross (2014) 

added that, the Poisson process is a counting process for which the times between suc­

cessive events are independent and identically distributed exponential variables whilst 

the possible generalization of this Poisson process to have the times between succes­

sive events to be independent and identically distributed with an arbitrary distribution 

creates a Renewal Process. 

Let { N (t), t 2:: 0} be a counting process and let Wn denote the time between the ( n - 1 )st 

and the nt h event of this process, n ~ 1. 

Definition 1. 7 .3 (Renewal Process) 

If the sequence of nonnegative random variables {X1,X2, ... } is independent and iden­

tically distributed, then the counting process {N(t),t ~ O} is called a renewal process. 

Remark 1 

In general, renewal process do not have independent and stationary increments. 

Variables Definition, Relations and Fundamental properties 

1. N(t): Total number of insurance claims by time t. 
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2. Claim Arrival Times {Ti, T2, ... Tm}: Time of first arrival of a claim, Time of 

second arrival of a claim, ... , Time of mth arrival of a claim. Also O < To < T1 < 

... <Tm, 

3. lt is assumed that there is a finite number of claims in each finite interval. JP>(N(t) < 

oo) = 1. 

4. JP>(N(t) = 0) = JP>(T1 > t). 

5. For n 2:: 1,. JP>(N(t) = n) = P(Tn::; t < Tn+1) = JF(Tn::; t) - JP>(Tn+l ::; t). 

6. JP>(N(t) 2:: n) = JP>(N(o,t]) = JP>(Tn::; t). 

7. JP>(N(t) < n) = JP>(Tn > t). 

8. The claim inter-arrival times (W1, W2, ... , Wn) are positive random variables and 

that Tn = Ti + T2 + ... + Tn, 

9. JP>(W1 > t) = JP>(T1 > t) = JP>(N(t) = 0). 

Proposition 1 1. The renewal process has .finite values for each t > 0, 

JP>(N(t) < oo) = 1, 

. E(N(t)) _ 'l h 'l _ JE( ) 2. hmt-Hoo -t- - /1.-, w ere /1, - Wn . 

Definition 1.7.4 (Non-Homogeneous Poisson Process) 

The non-homogeneous poisson process with intensity function Â (t), t > 0 is a counting 

process {N(t),t > O} such that: 

1. {N(t),t 2:: O} has independent increments, 

2. limh~+oHP(N(t+h)-N(t) = 1)] = Â(t), 

3. limh~+o HJP>(N(t + h) - N(t) > 1)] = O. 
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The above definition means that, this counting process has the independent increments 

property and that, for the smallest time inter-arrival times, the probability of recording 

an insurance daim is equivalent to the intensity function Â(t), also, there is no possi­

bility to record more than one insurance daim within this same smallest inter-arrival 

times. 

Remark2 

The cumulative intensity function on [O,t] is given by: 

A(t) = fo' À(u)du 

Similary, the cumulative intensity function on~= [s,t] is given by: 

Theorem 9 

A(t) l À(u)du 

fo' À(u)du- la' À(u)du 

A(t) -A(s) 

(1.23) 

Let {N(t),t > O} be a Non-Homogeneous Poisson Process with intensity Â(t). Then 

the number of claims in the interval (s,t] follows a Poisson distribution with mean 

A(t) -A(s). That is: 

N(t)-N(s) rv Poisson(A(t)-A(s)) (1.24) 

In particular, on (O,t], N(t) rv Poisson(A(t)) with JE(N(t)) = Var(N(t)). 

1. 7 .1 Application of Compound Processes in Insurance 

In insurance, the insurer' s income consists of the annual premiums collected from the 

policyholder while the loss depends on the policyholder's behavior and the cost of each 

reported daim, making the profit of each insurance contract stochastic. Because of this, 
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it is of great interest for the insurance company both to be able to set suitable annual 

premiums based on the risk profile of the policyholder and to keep the policyholders 

with low risk profile that give higher profits. These concerns make it necessary for 

insurance companies to have good models for the number of insurance daims a policy­

holder will make, as well as the dependence between the number of daims in different 

products. 

In other words, rate-making forms acore part of insurance process that allows insur­

ers to be able to know their expected loss, expenses and make adequate provision for 

contingencies. In actuarial studies, the first step in ratemaking is to model the daim 

frequency distribution. That is the number of daims occurring over a particular period. 

Traditionally, the claim count distribution in general insurance is assumed to follow the 

Poisson or the negative binomial distributions, Samson and Thomas ( 1987) and Yip and 

Yau (2005). 

Definition 1.7.5 (Compound Poisson Process) 

Let {N(t),t > O} be a Non-Homogeneous Poisson Process, and let {Xi, i ~ 1} be a 

family of independent and identical random variable that is independent of the random 

variable N(t), then 
N(t) 

S(t) = [Xi 
i=l 

{S(t),t ~ O} is called a Compound Poisson Process. 

Remark 3 (Basic Properties of Compound Poisson Process) 

1. S(t) = 0, if N(t) = 0 

2. E(S(t)) = A(t)IE(X) 

3. Var(S(t)) = A(t)IE(X2) 

(1.25) 

In insurance, the random variable Xi represents the ith insurance daim size. S(t) de­

notes to total claims as at the time t. 
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1.8 Organization for the rest of this.Research Work 

The figures below provides a pictorial view of the organization of this work. This cur­

rent chapter presented the Copula Theory and the Counting Processes. The subsequent 

chapter, Chapter 2 will provide the multiple versions of the theories in Chapter 1 in the 

rnentioned aœa of this thesis as we review five( 5) published papers relating to this area. 
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CHAPTERII 

REVIEW OF DIFFERENT COPULAS RELATING TO COUNTING PROCESSES 

IN INSURANCE TOPICS 

2.1 Copula-Based Dependence Between Frequency and Class în Car Insur­
ance with Excess Zeros 

2.1.1 Introduction 

Although insurance ~as traditionally been built on the assumption of independence 

between variables (for example, claim counts are assumed to be independent on the 

size of daims· in several literature among other variables in the insurance industry) and 

the law of large numbers has govemed the determination of premiums, the increasing 

complexity of insurance and reinsurance products has led recently to increased actuarial 

interest in the modelling of dependent risks, Wang and Dhaene (1998) and Embrechets 

et al. (2002). 

The dependence between the daim frequency and the class occupied by an insured has 

been mentioned by many authors. For instance, Denuit et al. (2007) assumed that the 

distribution of the number of daims is related to the risk classes possessed in multi­

event Bonus-Malus scales. They also mentioned the dependence between the bonus 

class and annual expected daim frequency. 

In this paper, Zhao and Zhou (2014) were of the view that the current class occupied 

by a policyholder depends on his or her daims history and therefore proposed a model 
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for the dependence between the current bonus class occupied by the policyholder and 

the claim numbers in an insurance period using a bivariate copula fonction. In the next 

sub-sections under this topic, we will review this topic and conclude on how this topic 

has informed the research area of this thesis. 

2.1.2 Model Specification 

Variables Definition 

Consider the following variable definitions: 

1. n: the number of policies, 

2. i=l,2, ... ,n: the observed insureds, 

3. Ci,t: the bonus class occupied by ith insured at the beginning of period t, 

4. Ni,t: the number of claims reported by ith insured for the t-th time period, 

5. S: the total numb~r of classes, 

6. b: the level premium for the classs i.e. b = (b1,b2, ... ,bs)', 

7. di,t: the length of period that the ith policyholder stayed within a specific pol­

icy characteristics (risk exposure) at time t. For example di ,t is usually 1 when 

marital status of the insured i remains unchanged. 

Marginal Distributions 

We model claim counts for each period t as Ni,t rv Poisson( Âï,t) where the model pa­

rameter is ·a function given by; Âi,t = dï,1exp( a~,t + /3) with the necessary information 

on the observed insured i summarized in x which is called a covariate. The model is 
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given by: 

Â,~i,t 

P(Ni,t = ni,t) = nz.,t 
I 
exp(-Ài,t) 

z,t · 
(2.1) 

Next, we require the distribution of ~he current class. To do this, we consider first 

a reference from Denuit et al. (2007) and Zhao and Zhou (2014). They considered 

a bonus experience rating systems with six bonus-malus classes (i.e. S = s = 6), of 

which, level 5 is the starting class. A higher class number indicates a higher prernium. 

For a policyholder i, the class Ci,t+l in year t + l is a fonction of class Cï,t· Hence, 

recursive relation between subsequent classes is given below: 

max[l,Cï,t -1], ni,t = 0 

min[6, ci,t + 2], ni,t 2:: 1 

Since policyholders move from one class to the other class over time, the marginal 

distribution of Cï,t will have an inherent nature according to a transitional probability 

matrix (Ross, 2014), that is assumed to be associated with claim count. Denote tmn as 

claim for a policy to be transferred from class m to class n (m,n=l,2, ... ,6). Then the 

transitional rule denoted by T = (tmn)6x6 for claim count is given by: 

1 2 3 4 5 6 

1 {O}. {1} {2} 2:: {3} 

2 {O} {1} 2:: {2} 

3 {O} {1} 2:: {2} 
T= 

4 {O} 2::{1} 

5 {O} 2::{l} 

6 {O} 2:: {1} 

Next we define the transitional probabilities associated with T above. Denoting P(Ni,j = 
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k) by Pi,j,k for k=0,1;2 and 1-P(Ni,j::; k-1) by qi,j,k for k=l,2,3 where the duration 

j = 1, 2, ... , t - l and the period t = 2, ... , 1t means that the above transitional rule has a 

corresponding transitional probability l'i,j, written as; 

1 2 3 4 5 

1 Pi,j,O Pi,j,1 qi,j,2 

2 Pi,j,O Pi,j,1 

3 Pi,j,O Pi,j,1 
Pi,j =· 

4 Pi,j,O 

5 Pi,j,O 

6 Pi,j,O 

Hence, the marginal distribution of Cï,t is written as: 

t-1 
P(Ci,t = Ci,t) = (0,0,0,0, 1,0) TI l'i,j 

j=l 

where (0, 0, 0, 0, 1, 0) is the starting class vector. 

Modeling Dependence 

6 

qi,j,3 

qi,j,2 

qi,j,2 

qi,j,1 

qi,j,1 

qi,j,1 

(2.2) 

Considering a time long period of time, 1t, with the objective to compute limiting prob­

abilities and also, the bonus classes for the insw;ed i which would create a discrete 

stochastic process { Ci, 1, Cï,2, ... , Ci,T;}. lntuitively, each subsequent class only takes into 

account the most recent past class, we can arguably state that, the Markov Property is 

satisfied and hence, this discrete stochastic process creates a Markov Chain. 

1t 
P(Cï,1,Cï,2, ... ,Cï,1t) = P(Cï,1 = Ci,1) TIP(Cï,t+l = Ci,t+l I Ci,t . Ci,t) (2.3) 

t=l 
1t 

P(ci,1- = ci,1) TI P(Ni,i = ni,t I ci,i = ci,i) (2.4) 
t=l 

In this paper, Zhao and Zhou (2014) mentioned that, most literature at this point, will 

show that, P(Nit = nit I Cu =eu)= P(Ni t = ni i)
1 

in (2.3) . This means that, in a 
' ' ' ' ' ' 
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Bonus-Malus system, the distribution of the number of daims is independent of the 

current risk dass. Conversely, this is hard to justify in practice. Indeed, Denuit et 

al. (2007) justified that the distribution of the number of daims related to the risk 

dass in multi-event bonus-malus scales, Zhao and Zhou (2014) assumed such reverse 

dependency in their work. 

On the one hand, by considering the joint proba~ility distribution fonction between Ni,t 

and Ci,t· From (1.2.1), this joint probability distribution can be expressed by: 

P(Ni t =nit, cit = Cit) 
' ' ' ' 

P(Ni,t :::; ni,t, Cï,t :::; Ci,t) 

P(Ni,t :S ni,t ~ 1, Cï,t :::; Ci,t) 

P(N t < n · t C- t < c · t - 1) l, - z,, l, - l, 

+ P(Ni,t :::; lli,t - 1, Cï,t :::; Ci,t - 1) 

On the other hand, Zhao and Zhou (2014) ptoposed a bivariate copula to model the 

dependence between M,t and Ci,t through the cumulative distribution component (first 

term) of the above probability distribution. 

where: 

Cô(·, ·): bivariate copula fonction with copula parameter 8, 

F ( ·): marginal cumulative distribution fonction of Ni,t, 

G( ·): marginal cumulative distribution fonction of Ci,t. 

(2.5) 

In addition, practically, zero daims has the highest frequency in insurance daims 

dataset and as a result, the usual Poisson distribution alone cannot model efficiently 

the number of daims for an insured. In their paper, Zhao and Zhou (2014) captured 

this in the model by adding an extra parameter </>i,t to the Poisson distribution making it 

aZero-Inflated Poisson distribution. The parameter </>i,t represents the probability of no 

claim in the insurance period t for insured i. 



Remark4 

'Pi,t depends on a time-varying covariate Zi,t and it is given by.~ 

exp(z~ tY) 
'Pit = ' ! • 

'· 1 +exp(zitY) 
' 

Our Zero-Inflated Poisson distribution becomes: 

</>i,t + (1- </>i,t)exp(-Âï,t), ni,t = 0 

P(Nï,t = ni,t) = 
Â~i,t 

(1- m. )....!.Lexp(- 'l. ) 'f'z,t nit! '"'i,t , 
' 
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(2.6) 

Lastly, from Eq.(2.5), the copula fonction glues the two distributions so using (2.6) for 

a cummulative probability distribution in a case where there is no claim and a case 

when there is at least one claim, the cummulative probability distribution becomes: 

</>ï,t + (1-</>ï,t)Co(F(O),G(ci,t)), ni,t = 0 

C0 (F(ni,t), G(ci,t)) = (2.7) 

(1- </>i,t)C0 (F(ni,t), G(ci,t)), 

2.1.3 Parameter Estimation 

Though there is a large literature on how to select a copula for a given dataset, making 

an appropriate choice of copula that best fit for a given dataset is not an easy task. Zhao 

and Zhou (2014) in their paper selected the Clayton copula (which has a form belong­

ing to the Archimedian family of copulas) as the bivariate copula fonction C0 , since it 

has been shown to be the only absolutely continuous copula with time-dependent as­

sociation under a measure in Oakes Cross-Ratio fonction provided by Oakes (1989). 

The approach with the Clayton copula proposed in this paper can be similarly applied 

to other copulas. 

The form of a Clayton copula is expressed as: 

(2.8) 
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Given {xi,t,Zi,t,ni,t, Cï,t; i = l, ... , Tt} together withEq.(2.8), the model parameters a, /3, y 

and the copula parameter 8 can be estimated by maximizing the likelihood fonction. 

Intuitively, the foll likelihood fonction for insured i is given by 

Tt 
li(,) = P(Ci,1 = Cï,1) II P(Cï,t+1 = Cï,t+l I Cï,t = Ci,t) (2.9) 

t=l 

Tt 
P(C;,1 = Ci,1) ITP(Ni,t = ni,t I ci,t = Ci,t) (2.10) 

t=l 

P(c )IT
Tt (Lf,t)Ai,t(LT,t)l-Ai,t (

2 
ll) 

i,1 = Cï,1 P(C- _ c· ) · 
t=l l,t - l,t 

where tii t is an indicator fonction with: 
' 

(2.12) 

0 otherwise 

L},t </>i,t + (1 - </>i,t){ Cs(F(O), G( ci,t)) - Cs(F(O), G(ci,t - 1))} (2.13) 

LT,t (1- </>i,t){ Cs(F(ni,t), G(ci,t)) - Cs(F(ni,t - l ), G(ci,t))} 

Cs(F(ni,t),G(ci,t- l)) +Cs(F(ni,t- l),G(ci,t- l)). (2.14) 

. For example, at time t, when a policyholder is in the lowest class,Ci,t = 1 and it means 

that: 

Lf,t = </>i,t + (1- </>ï,t)Cs(F(O), G(l ).) and 

LT,t = (l -</>ï,t)Cs(F(nï,t),G(ci,t))-Cs(F(ni,t - l),G(ci,t)). 

For us to complete the estimation of parameters, we will need the first derivative of the 

Clayton copula with respect to one marginal distribution and also find its correspond­

ing inverse fonction. Example(l.4.3) in chapter 1 already shows that, finding the first 

derivative of the Clayton copula means we are looking for the conditional distribution 
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fonction from a joint distribution. The first derivative of the Clayton copula is given by: 

( 1 

. ~) _ -(0+1) [ o o ](o-1+1) Culv u v, u - vi,t vi,t + ui,t - 1 . (2.15) 

Its corresponding inverse fonction is given by: 

(2.16) 

2.1.4 Algorithm for Implementation 

In this section, our objective will be to draw paired samples of the random variables 

(Ci,t,M,t) from the dependence models above. Zhao and Zhou (2014), in their paper 

further implemented ( see simulation studies in section 4 of (Zhao & Zhou, 2014) ) the 

algorithm in this section to proof the accuracy of the dependence models above. Below 

are the algorithrn to draw paired samples of ( Ci,t, Ni,t): 

• Step 1: Draw hi,t from U[O, 1 ). 

If hi,t < </>i,t set Ni,t ~ O; otherwise continue from step 2 to the end, 

• Step 2: Draw T independent U[O, 1) random variables {l't,t}i=l ( where T is the 

total observed time periods) , 

• Step 3: Draw T independent U[O, 1) randorn variables {Yï,t}i=l ( set Yï,1 ~ 1, 

for class five since it the starting class ), 

-5 

• Step 4: Find Ui,t = [(1t,~+s) - 1 )~1° + 1] i, 

• Step 5: Draw the required paired samples by generating Cï,t with probability Vï,t 

from the marginal distribution in Eq.(2.2) and also by generating Ni,t from the 

· Poisson distribution with mean Â with probability Ui,t. 
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In this work, we implemented the above algorithm to the point of generating the paired 

samples of ( Cï,t, M,t) and observed how the dependence models reflected in it over a 

given period of time. See appendix for the R code to this work. 

2.1.5 Summary and Discussion 

In this work, we have seen that, in insurance the dependence in claim counting pro­

cess and Bonus-Malus rate-making class are two risks a rate-making actuary should 

account for during pricing. Among many other copulas, Clayton copula is used to 

model such dependence. It it noted that, techniques such as copula derivatives ( copula 

theory and counting process from chapter 1) play an ,important role in measuring the 

dependence and sampling from a copula (see R code provided in appendix). The max­

imum likelihood approach in estimating both model parameters and copula parameters 

was employed. Justification to the use of these models were doue by the authors Zhao 

and Zhou (2014) through a simulation study. 

Whereas in the United Kingdom, each insurer is free to design its own Bonus-Malus 

System (BMS), the regulatory environments in a country like Switzerland have a 

government-imposed BMS. Sorne other countries over time, also move from an old 

Bonus-Malus system to a new one. For instance Belgium started with a system that 

had 18 number of classes and later moved to a new one with 23 number of classes 

(among several other changes). These geographical differences and intemal transitions 

of Bonus-Malus systems among nations informed my research that designs of BMS dif­

fer. Furthermore, there are varieties of copulas to select from and choosing the appro­

priate copula for a given dataset makes it not an easy task. Despite these complexities, 

rate-making actuaries should account for dependence of these type in their work. 
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2.2 A Mixed Copula Model for Insurance Claims and Claim Sizes 

2.2.1 Introduction 

Estimating total loss incurred plays a very important role in pricing non-life insurance 

contracts and as a result, there has being the need for loss reserving actuaries to first 

build models that relates to this for any insurance portfolio. Avery common approach 

used by many loss reserving actuaries, basing on the compound Poisson model sug­

gested by Lundberg (1903), is the approach which models the average claim size and 

the number of daims independently and then defines the loss as the product of these 

two quantities. 

However, the assumption of independence can be too restrictive and lead to a systematic 

over or under estimation of the policy loss. This makes the independence assumption 

by Lundberg (1903) not always true. One example to substantiate this point is that, 

GschloBl and Czado (2007) in their work, detected a significant dependency between 

average claim size and number of claims when they analyzed a comprehensive car 

insurance dataset using a full Bayesian approach. 

In their paper, Czado et al.,(2012) proposed a joint model that explicitly allows a de­

pendency between average claim sizes and number of claims. This is achieved by 

combining marginal distributions for claim frequency and severity with families of bi­

variate copula. Furthermore, they allowed for more flexibility and generality in the 

type of dependency by extending the copula-based model to regression model with the 

help of Generalized Linear Regression Models (GLM). In the next sub-sections under 

this topic, you will see how. this topic is reviewed under dependence modelling with a 

bivariate copula and how it informs the research area of this thesis. 
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2.2.2 Model Specification 

Variables Definition 

Consider the following variable definitions: 

1. ft1: · the continuous daims size random variables for the ith ( i = 1, 2, ... , n) poli­

cyholder, 

2. ft2: the discrete daims count random variables for the ith (i = 1, 2, ... , n) policy­

holder. 

Marginal Distributions 

In this sub-section, our goal will be to define the marginal distributions needed for the 

dependence modeling. With reference to their paper, Czado et al.,(2012) considered a 

bivariate model where the margins follow generalized linear regression model (GLM) 

were built. Firstly, we begin by making ft1 E lR +, i = 1, 2, ... , n depend on a covariate 

Xi E JRP and assume that the daims size is a Gamma distributed variable. Under GLM 

(with also the link fonction) we will have: 

Yn rv Gamma(µil, v2
) (2.17) 

The density of Gamma(µn, v2) is specified by: 

2 1 1/v2-1 - Yi\ 
g1(Ynlµn, V ) := rc\/il e µilv 

with µil := E[fti] and Var[Yt1] = µJv2. G1 (.lµn, v) denotes the cumulative distribu­

tion fonction of ft1. We further assumed that, the parameter v is known and does not 

need to be estimated in the joint regression model. Also, we assume that the parameter 

v to be a dispersion parameter. 

Secondly we let ft2 E No,i = 1,2, ... ,n be independent count random variables with 

covariate Zi E JR.q, the Poisson GLM (with also the link fonction) is given by: 
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l't2 rv Poisson(µi2) ' with ln(µï2) = ln(ei) + zd3 (2.18) 

The density of Poisson(µi2) is specified by: 

0 Yi2 < 0 

1 Yi2 -µ·2 Q 1 2 -. ,µi·2 e I Yï2= , , , ... 
Y12· 

and the corresponding cumulative distribution fonction is G2 ( · I µi2). 

Modeling Dependence 

At this point, either we have the form of the joint distribution already available or we 

have a specific, deemed to be approapriate and chosen to model the joint behaviour 

(by Sklar's theorem) of the two variables mentioned in the previous sub-section. From 

Eq.(1.4) in chapter 1, a joint distribution fonction of l't1 and Yà, F(yil,Yi2) may be 

expressed as: 

(2.19) 

Czado et al.,(2012) confirmed that, because the bivariate Gaussian copula C(·, ·IP) is 

a well investigaled and directly interpretable fonction in terms of correlation parame­

ter, they selected this copula. This joint distribution fonction is a mix of copula and 

regression. 

(2.20) 

where: 
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3. cf> ( ·) := univariate standard normal cumulative distribution fonction, 

4. c/>2 ( ·, · Ir) := bivariate normal cumulative distribution fonction with covariance r, 

5. r := (~ : ) where p is the Pearson correlation between the two normal scores 

above which are denoted by qn := cp-1(un) and qi2 := </J-1(ui2). 

Next, since we will need a likelihood fonction to estimate the model parameters, we first 

have to find the correspondingjoint density fonction of l't1 and l't2, f(Yi1,Yi2lµn, v, µi2, p ). 

This can be achieved by applying the copula derivatives techniques to Eg.(2.20). Also, 

Eq.(6.9) in Song and Song (2007) presented a form of the required density as: 

(2.21) 

where: 

1. Ci(un,ui2IP) := a!1C(u1,ui2IP)lu1=uil' 

2. Ci (un' un lP) := a!l C( u1; un lP) lu1 =Uil' 

At this point, the authors Czado et al.,(2012) recommended we consider the following 

notations and model representations for easiness. By denoting q1 := </J-1(u1) and the 

vector of qil and q;2 partitioned as x _ [ :: ] for the ith variable we.have: 
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Since det(r) = l -p2 we have: 

' 1 1qi2 1 2 
C1(un,uï2IP) = V exp{-

2
(
1 2)(q1p-x2) }dx2.(2.22) 

, 2nl(l -p2)1 -00 - p 

By transforming x2 = z,Jl - p 2 + pq1, it is clear that the above (Eq. 2.22) reduces to 

a cumulative distribution fonction of a standard normal distribution given by: 

Equivalently we get: 

1 qi2-qlp 1 -1~ exp{--z2}dz 
2rc -00 2 

cp ( </>-l ( Uï2) - pcp-l ( u1)) 

v1-p2 

-· Dp(u1, Uï2). 

' - </>-l(un) - pcp-l(u1) -
C1 (un, ualp) = </)( V 2 ) = Dp (u1, ui2). 

1-p 

Now the model in Eq.(2.21) can be represented as: 

f (Yn ,Yï2 lµï1, v, µi2, P) g1 (Yn lµil, v2) [Dp ( G1 (Yil lµn, v2), G2(Yï2lµï2)) 

Dp(G1(Ynlµn, v2),G2(Yï2- llµï2))]. (2.23) 

Remark5 

Czado et al.,(2012) added that, Eq.(2.23) may further be expressed as: 

where f Yï2 llti (Yï2 IYn, µil, v, µi2, p) is the conditional density of Yt2 given Yt1. 
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Remark6 

The last term in Eq.(2.23) reduces to zero when there is no claim (thus when lt2 = 0). 

Proof to this is shown in the appendix of the original paper. 

Thus more specifically, Eq.(2.23) may be rewritten as: 

Re~ark7 

g1 (Yn lµn, v2)Dp ( G1 (Yit lµit, v2
), G2(Yi2lµi2)) 

if Yi2 = 0 

g, (yn lµn, v2) { Dp( G1 (Yil !µ;1, v2), G2(Y;2 lµ,2)) 

-Dp(G1(Y;1!µ;1, v2),G2(y;2- llµ,2)} 

if Yi2 2:: 1 

(2.24} 

Eq.(2.24) can be used to find the conditional probability mass oflt2 given lt1 by divid­

ing the joint distribution by g1 (Yn lµil, v, µa). 

2.2.3 Parameter Estimation 

Method of Maximum Likelihood Estimation 

Consider the set of unknown parameter at this point is defined by 8 := (a', /3 1

, y), 

where the regression parameters, a in Eq. (2.17) and f3 in Eq.(2.18) whilst ris given 

by the Fisher's z-transformation r= !Zn(!~~ ) for r E lR. 

To ascertain the log-likelihood fonction, we begin by defining the design matrices as­

sociated with the covariate vectors to Yil and Yi2 including the intercepts respectively. 

Thus: 

X:= (xt,···,xnf 

Z := (z1, ... ,znl 
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N ext we build an indexed set, J : = ( i I i = l, 2, ... , n; Yi2 ~ l) which in tend to help us 

make a subset all observations with Yi2 ~ l. Correspondingly, X1 and Z1 are the design 

matrices restricted to the set J. Now the likelihood fonction conditional on Yi2 ~ l , Vi E 

J can be given as: 

The conditional log likelihood is given by: 

- [zn{l-g2(0,µï2)} + Ezn{g1(Yï1lµn,v2
)} 

iEJ . iEJ 

+ [zn{Dp(G1 (Yil lµn, v2), G2(Yï2I.Uï2)) 
iEJ 

Dp ( G1 (Yi! Il% v2
), G2(Y,'2 - I 1µ;2))} 

Method of Maximization by Parts 

(2.25) 

(2.26) 

In the maximum likelihood estimation method, there is the need to solve the score 

equation at the extreme points and verify if those points gives the maximum likelihood. 

This verification requires the oeed to compute second order derivatives of the foll like­

lihood fonction. When the full likelihood is so complicated, in other words, in a case of 

a high-dimensional full likelihood fonction, obtaining and verifying maximum points 

becomes unmanageable. 

Song et al.(2005) after mentioning some approaches that bypasses the above prob­

lem and their challenges, proposed a new algorithm called the Maximization by Parts 

(MBP). This algorithm strategically separate the part of the full likelihood fonction 

with easily computed second-order derivatives from the remaining part which is more 

difficult when finding the second-order derivative. The remaining part serves as a resid-
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ual part of the score equation to correct and ill).prove the efficiency of estimation. The 

second-order derivative is not needed in this remaining part . 

Similarly, since the full likelihood in Eq.(2.23) under our high-dimensional mixed cop­

ula regression model above would be a complex task, we first decompose the fonction 

into two parts. The first part which is straightforward in deriving the second-order 

derivative and the remaining part is used to update the solution of the first part to arrive 

at an efficient estimator of B. 

To begin with: 

1. decompose the unkown parameter 8 := (a', l3 1

, y) E JRP+q+l into 8 := ( (J~, a;) 
with (J~ = (a', l3 1

) E JRP+q and a; = y E lR and letting, 

2. l~ ( B~) must contain the marginal part of the conditional log~likelihood and is 

independent of y, 

3. ld( B~, r) must contain the copula part of the conditional log-likelihood and de­

pends on y. 

From the log-likelihood Eq.(2.26), we can simply define: 

l~(B1) :=ln(L~(B~)) := -Eln(l-e-µï2 )+ I'Jn(gi(Ynlµn,v2)) 
iEJ iEJ 

ld( 81, r) := ln(L'J( 81, r)) .- L, ln{ Dp ( G1 (yn lµn, v2), G2(Yi2lµi2)) 
iEJ 

Dp(G1(Ynlµn, v2),G2(Yi2- llµï2))} 

Next we apply the MBP algorithm by Song et al.(2005) to determine the MLE of B. 

(2.27) 
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For the MBP algorithm, we need the score fonctions of l~ ( B1) and ld ( B1, y). By differ­

entiation, it follows that; 

Similarly: 

rJ c (e) ~ µi1 a/3 lm l = - ./-Zi µ· _ l 
iEJ e il 

U sing the second order derivative, we arrived at a variance fonction by the Fisher In­

formation given by: 

Where m represents the number of elements in J. For us, to compute the score fonction 

of the dependency part l~ ( B1, y) we compute: 

(2.28) 

The above can be achieved when we find each partial derivative (See lemma in Ap­

pendix of the original article). Let us first consider the following definitions subse­

quently used in the partial derivatives. 
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3. Ga:= G2(Yi2 - l lµï2), 

4. dp ( u1, Ui2) := q, ( ~ _, ( "~ 1( "2
)) where q, ( ·) denotes the density of the standard 

1-p . 
normal distribution. 

Below are the partial derivatives which forms the components of Eq.(2.28) 

!__zc(l} )- ~ dp(Gï1,Gi2)-dp(Gï1,Ga) G'[1 -Gil -p . 
a d u1, Y - i..J _) ( -1 ( ) ) Xz a iEJDp(Gï1,Gi2)-Dp(Gï1,Gi2 </> </> Gil -j(l -p2 

;
13 

z'J( 01, r) 

ED (G· G·) ~D (G· a-) {dp(Gi1,Gi2)[p<f>-1(Gi2-</>-1(Gi1)] 
i El p z 1 , z2 p z 1 , i2 

dp( Gn, Gf2)[pr
1a;;: -cf,-

1(Gn)]} ,/(/-pz 

~ However, in their paper, Song et aL,(2005) imposed some common regularity conditions 

as well as information dominance (see condition (B) on page 1148 of Song et al.(2005)) 

to achieve convergence of an MBP-algorithm. Empirical evidence showed that an initial 

MBP algorithm based on Eq.(2.27) does not satisfy information dominance, so there is 

a need to modify the initial decompositon (Czado et al., 2012). For this we expand both 

components in our conditional likelihood Eq.(2.25). 
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To complete the expansion, first define this newly expanded likelihood L*(8) with its 

new decomposition as: 

L*(8) (2.29) 

(2.30) 

Next, define the component Lw( 81), that is the component we are using to expand 

Eq.(2.25) as a bivariate normal log-likelihood: 

with Yi= (Yil ,Yi2)', µ = (µn, µi2)' and Lw= ( 
1 pw) . The correlation Pw, is dif-pw 1 

ferent from the underlying parameter of the copula p. Czado et al.,(2012) in their work 

added that, this can be a pre-specified value estimated from a preliminary analysis of 

the data. 

Denoting the components in Eq.(2.29) by: 

l. L:n( 81) := L'fn( 81)L~( 81) I1iEJ g2(Yi2lµi2), 

2 L*(8 ) ·= Ld(e1,r) 
. d l, Î . L~(e1)ilïEJ82(Ydµi2)" 

The expanded log-likelihood of Eq.(2.29), l*( 8) takes a deconiposition of a form simi­

lar to Eq.(2.27). This is shown below: 

l*( 8) := ln(L:n( 81)) + ln(Ld( 81, r) ). (2.31) 

Considering further the following notations: 

l. l~ ( 81 ) : = ln ( L:n ( 81 ) ) , 
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wehave: 

z; ( 81) ·- . l~( 81) + ln(Il) + ln(Lw( 81)) 
iEJ 

ld(81,r) ·- ld(81)-ln(I1)-ln(Lw(81)) 
iEJ 

At this point, finding the first and second order derivatives of z:n ( 81) and ld ( 81, r) are . 

now easy. The Fisher Information corresponding to z:n ( 81) is given by: 

t,;,( lh) := -m-1 E[ ae:;e;1;;,( lh)J 

/~(81) +m-1 (Opxq Ûpxq ,) 

Ûpxq LiEJ µi2ZiZi 

+ m-1~(:: ::) (:1 :) (Lw)-! (µ~1 

:) (:: ::)' 

From Eq.(2.27): 

zc ( 0) z~ ( 01) + zd ( 01 , r) 

z; ( 01) + zd ( 01, r) 

and hence we will have the same score functions: 

az::n( 0) 
d81 

2.2.4 Algorithm for lmplementation: Poisson-Ga~a Regression Model 

Part 1: Algorithm to sample correlated pairs from a Poisson-Gamma Regression Model 

• Step 1: Generate the vector of means given by µil = exp( a1 + xn a2) and µi2 = 

exp(/31 + Zi2/3i), 
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• Step 2: Draw Yil from a Gamma(µn, v) distribution, 

• Step 3: Calculate Pk = fYàll'ti (Yi2 = kiyn,µn, v,µi2,P) for k = 0, l, ... ,k*, where 

Pk* :2:: ë and Pk* < e, e E (0, 1 ), here the copula parameter p, is pre-specified and 

will be updating in the MBP part of the algorithm, 

• Step 4: Draw Yi2 from {0,1, ... ,k*} with P(Yn = k) = Pk for k E {0,1, ... ,k*}. 

Part 2: The MBP part of the algorithm to estimate model parameters e : = (a', /3', f) 

• Step 1: Using the equations in (2.17) and (2.18), estimate the regression coeffi­

cients a and /3 by the method of likelihood estimation (thus we find [â{, /3{]), 

• Step 2: Set the initial value ep ~ [ â{, Pn , 
• Step 3: Using the method of bisection, obtain y from aza\~f ,r) = 0 and set the 

intial value f ~ y, 

4·S e2f-1 • Step . etpw ~ z:n-, 
e r+l 

• Step 5: For (k = 1, 2, 3, ... ) be updating the estimates oftheregression coefficients 

by a step of Fisher scoring, thus: 

k k-1 * k-1 -1 (azc( e) ) 
81 = el +{Im(81 )} d81 le1=ef-l,y=yk-l . 

Next, we solve the equation aza~e:,r) = 0 using bisection to obtain new y 

6 S e2f-1 
• Step : etpw~ z:n-, 

e r+l 

• Step 7: Stop when 11 ek - ek-11100 < 1 o-6 is met. Output 8 = [ e{, r]'. 

2.2.5 Summary and Discussion 

In their work, Czado et al.,(2012) implemented the above algorithm in a simulation 

studies. They further modeled similar dependence on a dataset which contained in­

formation on full comprehenesive car insurance policies in Germany in the year 2000. 
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During which they focused on allowing for dependence.between the joint distribution 

of the number of claims and the average claim size of each policy. This was to help 

them estimate expected total loss. For the marginal distributions, the average claim size 

was modeled with a Gamma distribution and the number of daims was modeled with a 

Zero-truncated Poisson GLM. They ended up concluding that, the estimated expected 

total loss using a mixed copula model is about 2 % smaller than the estimated expected 

total loss using the independent regression model. 

This paper also followed similar procedure outlined in section 2.1. It confiimed also 

that, in dependence modeling under counting procresses, one has to find first the uni­

variate models for each variable of interest and next introduce the copula model for 

the dependence of the variable of interest. This recent review in connection to how 

my research has been informed shows a new estimation technique (Maximization by 

Parts) for model parameters and copula parameters when the full likelihood fonction 

tums out to be extremely difficult tot estimate parameters. However, the numerical es­

timation under the lessons leamt in this paper may sometimes appear to numberically 

intensive if we consider other models other than the Poisson-Gamma Model. 
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2.3 Moments of the Aggregate Discounted Claims with Dependence Intro­
duced by a FGM Copula 

2.3.1 Introduction . 

In the area of insurance, Boudreault (2003) suggested that, in modeling natural catas­

trophic events, the total daim amount ( or the intensity of the catastrophe) and the time 

elapsed since the previous catastrophe are dependent. Also in risk theory, Albrecher 

and Boxma (2004) added that, if daim amounts exceeds a certain threshold, then the 

parameters of the distribution of the next inter-daim time is modified. Among many 

other literatures, Biard et al. (2011) also supposed that"the distribution of a daini 

amount has its parameters modified when several preceding inter-daim times are all 

greater or all lower than a certain threshold. 

In their work, Barges et al. (2011) model the dependence mentioned above between 

an inter-daim time and its subsequent daim amount with a specific copula and further 

went to present the first moment, second moment and a generalized mth moment of 

the aggregate discounted daims with dependence. ln the next sub-sections under this 

topic, we will review again a dependence modelling with a bivariate copula and how it. 

informs the research area of this thesis. 

2.3.2 Model Specification 

Variables Definition 

Consider the following variable definitions: 

1. X;: as the continuous daims size random variable for the ith (i = 1, 2, ... , N) daim, 

2. T;: the random variable for the time of daim Xi, 

3. lft: the inter-daim time random variable. 
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Marginal Distributions 

In actuarial risk theory, it has been assumed that the daim amount Xi, i= 1,2, ... are 

independent and identically distributed (i.i.d.) random variable (r.v's) and the interdaim 

times W1 = T1 and Wj = Tj - Tj-1, j = 2, 3, ... are also i.i.d. r.v's. The r.v's Xi and W;, 

i= 1,2, ... are classically supposed independent. 

Also, we consider a continuous-time compound renewal risk model for an insurance 

portfolio and we define the compound process of the discounted daims e-81txi, i=l,2, ... 

occuring at time î'ï, i= 1,2, ... by Z. = {Z(t), t 2:: O} with 

Z(t) = (2.32) 

0, N(t) = 0 

where N = {N(t),t 2:: O} is an homogeneous Poisson counting process and ô is the 

instantaneous rate of net interest. This last assumption also implies that Xi, i = 1,2,... are 

independent from N. 

The assumption of independence between the daim amount Xj and the inter-daim time 

Wj is relaxed to allow { ( Xj, Wj), j E N+} to form a sequence of i.i.d. random vectors 

distributed as the canonical random vectors (X,W) in which the components may be 

dependent.The components of (X,W) have marginals fx and fw respectively. 

Now recalling from Chapter 1 that IP(W1 > t) = IP(N(t) = 0), also N(t) is a homoge­

neous Poisson process which means that N(t) rv Poisson(f3t) 

IP(W1 > tlW1 = s) P(N(t) = 0) 

e-Pt 

Since the process from any point in time has the same distribution as the original pro-
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cess (stationary increment property), we have: 

fw(s) = f3e-f3s (2.33) 

Modeling Dependence 

In their paper, Barges et al. (2011) agreed to have restricted themselves with a specific 

structure of dependence between an inter-daim time and its subsequent claim amount. 

By this, i~ means that, they first focused on a set of copulas that captures light depen­

dence, admits positive as well as negative dependence and also independence between 

a set of random variables. Next, among all the copulas that have the above specific 

structure of dependence, the Farlie-Gumbel-Morgenstem (FGM) copula was selected 

to model dependence between the ith claim amount and the ith interclaim time was 

used. This is because it offers the advantage of being mathematically tractable (Cos­

sette et al., 2010). It is also known that the FGM copulais a Taylor approximation of 

order one of the Frank copula. The FGM copula is defined by: 

c:GM(u, v) = uv+ 8uv(l - u)(l -v) (2.34) 

for (u, v) E [O, 1]2 and where the dependence parameter 8 takes value in [-1,1]. 

From Theorem 1 and Eq.(2.34) , the 'cumulative distribution fonction (cdf) for the 

canonicalrandom vector (X,W) is given as: 

Fx,w(x,t) . c:GM (Fx(x),Fw(t)) 

Fx(x)Fw(t) + 8Fx(x)Fw(t)(l -Fx(x))(l -Fw(t)) 

It follows from Eq.(1.8) and Eq.(1.9) that the corresponding joint probability density 

function (pdf) is given by: 

fx,w(x,t) c:GM (Fx(x),Fw(t) )fx(x)fw(t) 

(1 + 8(1-2Fx(x)))(l -2Fw(t))fx(x)fw(t) 
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Estimation of the FGM copula parameter 8 may be achieved through the method of 

maximum. likelihood estimation. In their paper, Barges et al. (2011) further focused 

on computing the moments of Z. = {Z(t),t ~ O}. This is because, if we know how to 

compute such moments, we can further calculate the total discounted cost of all daims 

made by time t, the expected value of this discounted cost and variances associated with 

it. In application, one will be able to find premium related to the risk of an insurance 

portfolio, easily use the moment matching methods in methods of estimation, determine 

solvency capital requirements among many others. The subsequent sections in this 

paper shows Jiow the first moment and the second moment respectively are denoted by 

µz(t) and µf\t) of Z. = {Z(t),t ~ O} are derived. 

First Moment 

Our goal here is to derive an explicit fomula for the first moment µz(t) of Z(t). We 

assume that E [X] < oo. Conditioning upon arrival for first claim X1 and considering 

0 s s s t: 

µz(t) Ez[Z(t)] 

Ew[Ez[e-osX1 + e-Ssz(t - s)] IW1] 

Ew [e-os Ez[X1 IW1 = s] + Ew [e-os Ez[Z(t - s) IW1 = s]] 

fo' e-0sE[XIW = s]fw(s)ds+ fo' e-0sµz(t-s)fw(s)ds. (2.35) 
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To be able to simplify Eq.(2.35), we need to simplify some terms. Taking the term 

E[XIW = s] for now, we have: 

E[XIW = s] 1= xfx1w=s(x)dx 

r= x!x,w(x, w) dx 
lo fw(w) 

1= xc:GM (Fx(x),Fw(s) )Jx (x)dx 

Ex[X] + (} 1= x(2-2Fx(x))(l - 2Fw(s))Jx(x)dx 

(} 1= x(l -2Fw(s))Jx(x)dx 

Ex[X] [1- (J(l -2Fw(s))J + (J[l -2Fw(s)] 1= [1- Fx(x)]2dx 

Ex[X] [1- 8(1-2Fw(s))] + 8[1- 2Fw(s)]Ex* [x*] 

Ex[X] + 8(l-2F;(s))[Ex*[x*]-Ex[X]] (2.36) 

whereEx*(x*) = J;(l-Fx(x))2dx. 

Furthermore, simplifying Eq.(2.35) means we should be able to convert the integrals 

into algebraic equations. We will need to make a Laplace transformation. 

Definition 2.3.1 (Laplace Transformation) 

Let the function f(t) be defined on [O, oo ), then its Laplace transform L{f} is another 

function J(s), which is defined as: 

](s) = L{f} := {
00 

e-st f(t)dt = lim {A e-st f(t)dt. 
lo A-+00 10 

Example 2.3.1 

Let f(t) = eat for some a E lR. Using the integration, 

where s > a. 
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From the example (2.3.1), the Laplace transformation of fw(w) may be expressed as 

fw(w) =L{fw} = (/3!s)· 

Substituting Jw(w), we rewrite Eq.(2.35) as follows: 

f1 /3 
µz(t) lo (f3+s)h(s;f3+8)Ex[X]ds 

+ 9 [Ex•[x*]-Ex[XJJ fo' 2f!oh(s;2/3+ ô)ds 

- e [ Ex• [x*]-Ex[xJJ fo' /3 ! 0 h(s;J3+ ô)ds 

f1 /3 + lo f3+Bh(s;f3+8)µz(t-s)ds (2.37) 

where the p.d.f of W is h(t; f3) = fw (t) = f3 e-f3t, that is an exponential distribution 

with mean ! and the Laplace transformation of W is h(t;/3) = E(e-tW) = 13!t· Also, 

we used 8 > f3. Taking another Làplace transformation but this time on both of sides 

of Eq.(2.37) and rearranging the terms is equivalent to: 

_ ( ) f3Ex [X] 
8 

/3Ex* [x*] 
µz r = r(8+r) + r(2{3+8+r) 

(2.38) 

· Definition 2.3.2 (lnvert Laplace Transform) 

If F(t) has the Laplace transform f(s), that is L{F(t)} = f(s), then the inverse Laplace 

transform is defined by L-1{f(s)} = F(t) and is unique apartfrom nullfunctions. 

Theorem 10 (Inverse Laplace Transform is Linear) 

Proof. For suitable well behaved fonctions F1 (t) and F2(t): 

L{aF1 (s) + bF2(s)} =.aL{F1 (s)} +bL{F2(s)} = afi (s) + bfi(s) 

Taking the inverse Laplace transform gives: 

aF1 ( s) + bF2 ( s) = L - l { a f1 ( s) + b h ( s)} 
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which is the same as 

aL- 1{fi (s)} +bL-1{h(s)} = L-1{ a/1 (s) +bh(s)} 

D 

The partial fraction of the component r(o~r) in the first term of Eq.(2.38) is given by: 

1 1 1 

r(8 + r) 8r 8(8 +r) 

Similar from example (2.3.1) and applying the above partial fractions, we obtain: 

e0 = 1 

Hence the required first moment becomes: 

(1 - eât) ( ) 1- e2f3+8t 
µ2 (t)=f3Ex[X] ô +Bf3 Ex*[x*]-Ex[X] (2/3+ 8) (2.39) 

Second Moment 

Our next goal is to find a formula for the second moment of Z(t), µ12
) (t) supposing 

E[Xi] < oo, for i = 1, 2. 



J.L12)(t) .E'z[(Z(t))2
] 

.E'w[.E'z[(e-<5sX1 + e-<5sz(t- s) )2] IW1] 

.E'w[e-Ws .E'z[X[ IW1 = s] + 2.E'w[(e-<5sX1 · e-fü .E'z[Z(t - s)]) IW1] 

+ .E'w[e-2ôs.E'z[Z(t-s)]IW1 =s] 
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fo' e-2osE[X2 IW = s]fw(s)ds+2 fo' e-2SsE[XIW = s]µz(t-s)fw(s)ds 

+ fo'e-2osµf\t-s)fw(s)ds (2.40) 

Similarly, we have: 

E[X21W = s] - 1o= :l- fx1w=s(x)dx 

- {

00 x2fx,w(x, w) dx 
lo fw(w) 

_ 1o= :i?-c{0M(Fx(x),Fw(s))fx(x)dx 

- Ex[X2] + 91o= :l-(2- 2Fx(x))(l -2Fw(s))fx(x)dx 

- 9 f :l-(1- 2Fw(s))fx(x)dx 

- Ex[XJ2 ( 1-9(1-2Fw(s))) 

+ 9 ( 1-2Fw(s)) 1o= 2x[l - Fx(x)]2dx 

- Ex[X2] + 9(1-2Fw(s)) ( Ex• [x*2]-Ex[X2
]) (2.41) 

substituting into Eq.(2.40), we have: 



µ12
) (t) Jo' e-28'Ex [X2 ]fw(s)ds 

+ O[Ex•[x*2]-Ex[X2
]] fo' e-28'(1-2Fw(s))fw(w)ds 

+ 2 fo' e-2SsEx[X]µz(t-s)ds 

+ W[Ex• [x*] - Ex[X]] fo' e-2Ss(l - 2Fw(s))fw(w)µz(t-s)ds 
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+ {1 e-2ôsµ(2\t-s)ds (2.42) 
lo z 

Similar to the Laplace transformation steps in the first moment: 

(/3 ! 2ô) h(s;/3 + 2ô)Ex[X
2
]ds 

*2 r 213 . f3 . + 8Ex*[x ] lo ((2/3 + 2ô)h(s,2/3 +28)- (/3 + 2ô)h(s,f3 +2ô))ds 

r /3 + 2 lo (/3 + 28 ) h(s;/3 + 28)Ex[X]µz(t-s)ds 

+ W([Ex•[x*]-Ex(X]]) fo\2/!2ô)h(s;2/3 +2ô) 

- (/3 !w/(s;/3 +2ô))µz(t-s)ds 

r f3 . (2) + lo (/3+ 2ô)h(s,f3+28)µ2 (t-s)ds 

Theorem 11 (Laplace Transform of a Combination of Terms) 

Consider the function f defined for all non-negative real numbers: 

- . 1 
f (r) = -r(_a_1 +-r )-( a_2_+_r_) .. -. (-a-n +~r) 

An equivalent combination of partial fractions to f is given by: 

- 1 1 1 1 
f(r) =ro-+n--+ri--+ ... +rn--, 

r a1 + r a2 + r an + r 

(2.43) 



where ro = a a 1 a and, i = 1, ... 'n 
1 2··· n 

1 n 1 
11=-- TI 

ai j=l;fl=i aj- ai 
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Also, since the inverse Laplace transform of a\r is e-a2t, the inverse J is given by: 

See proof of the above theorem in (Baeumer, 2003). 

Using theorem(l 1), take a Laplace transform on both sides: 

p,f)(r) = . 1 (h(r;2/3 +28) /3 [ 2] 

1- _!3_fi(r2f3 +2<5) r /3 +28Ex X 
f3+2ô ' 

+ e ([E * [ *2] _ E [X2]]) ( 2/3 ) ( 2/3 h(r; 2/3 + 2<5) 
X X X 2/3 + 2ô 2/3 + 2ô r 

/3 h(r; 2/3 + 28)) 
2/3 +28 r 

/3 -+ 2Ex[X] 2/3 + 2ôh(r;2f3 +28)µ,z(r) 

2/3 -
+ 2B[Ex*[x*]-Ex[X]])(

2
/3 +

28
h(r;2f3 +2<5) 

/3 - - ) - 2/3 +28h(r;2/3 +2ô))µz(r)] (2.44) 



This reduces to: 

- (2) ( ) µz r 
f3Ex[X2

] + 8 f3([Ex* [x*2
] -Ex[X2

]) + 2f3Ex[X] _ (r) 
- r(28 +r) r(2/3 +28 +r) 28 +r µz 

28 /3 [Ex* [x*] - Ex [X]]_ (r) 
+ 2/3 +28 +r µz 

_ /3 Ex [X2
] + 8 /3 ( [Ex* [x* 2

] - Ex [X2
]) 

r(28 + r) r(2/3 + 28 + r) 
+ 2 f3Ex [X] ( /3Ex [X] + e /3 [Ex* [x*] - Ex [X]) 

28 +r 28 +r r(2/3 +28 +r) 
+ 28 /3 [Ex* [x*] - Ex [X]] ( /3Ex [X] + e /3 [Ex* [x*] - Ex [X]]) 

2/3+28+r 28+r r(2/3+28+r) 

_ f3Ex[X2
] +ef3([Ex*[x*2]-Ex[X2

]) +2 /3 2 (Ex[X])2 
r(28+r) r(2/3+2_8+r) r(8+r)(28+r) 

+ 2èf32Ex[X](Ex*[x*]-Ex[X]) 
r(2/3 + 8 + r)(28 + r) 

+ . 
28 

/3 2 Ex [X] (Ex* [x*] - Ex [X]) 
r(2/3 +28 +r)(8 +r) 

+ 282 /3 2(Ex* [x*] - Ex [X])2 

r(2/3 + 8 + r) (2/3 + 28 + r) 
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(2.45) 
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Finally, after inverting the Laplace transformation, we have: 

2 1 - e-2Dt 2 ·2 1 - e-(2f3+28)t 
f3Ex[X )( 

28 
) + Bf3([Ex* [x* ]-Ex[X ])( 

2
/3 + 

28 
) 

1 -ôt -28t 
+ 2/32Ex[X2])(282 - e 82 + e282 ) 

1 e-(2f3+8)t 
+ 2B/3

2
Ex[X][Ex* [x*]-Ex[X]]( 28(2/3 + 8) (2/3 + ô)( ,_2/3 + 8) 

e-2& 

+ 28(-2/3 +8)) 
l e-& 

+ 28 /3
2 
Ex [X][Ex* [x*] - Ex [X]]( 8 (2/3 + 8) 8 (2/3 + 8) 

e-(2/3+28)t 

+ (2/3 + 8)(2/3 + 28)(2/3 + 8)) 

+ 29
2
/32(Ex[Xl[Ex,[x*]-Ex[X]])\2/3 + 2ô;(2/3 +O) 

e-(2f3+8)t e-(2/3+28)t 

8 (2/3 + 8) + 8 (2/3 + 28)) (2.4
6) 

See Barges et al. (2011) for how the generalized version, mth moment was derived. 

2.3.3 Summary and Condusion 

In modeling for dependence between risks in the area of insurance, dependence mea­

suring between inter-arrival claim time ( which is a component of a counting process) 

and discounted cost of claims with the F-G-M copula adds to literature in the area of 

this thesis. Basic theories in the chapter 1 such as the Sklar's theorem and copula den­

sities were useful in this work. The obvious method of parameter estimation will be the 

moment matching technique. 

In section 4 of their paper, Barges et al. (2011) presented some applications of these 

moments in two major areas of actuarial studies. First in premium calculation and 

secondly in evaluation of Value at Risk (VaR) by considering the method of moment 

matching to approximate the distribution of Z(t). For instance it was seen that, when the 
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dependencies is negative (positive), if on average, for a fixed period of time, the time 

elapsed between each daim _decreases (increases ), then the size of the daim amount 

increases (decreases)(Barges et al., 2011). 

However, the concepts of moments and distribution of aggregate daims under actuarial 

theory for loss reserving can go as far as determining solvency capital requirements 

and so there is the need for more literature to corne out with more and better forms of 

copulas that may be used when measuring for dependence between risks. 
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2.4 Modelling Dependence in Insurance Claims Processes with Lévy Copulas 

2.4.1 Introduction 

An event may give rise to daims of different types in a non-life insurance company. 

Examples of such events are: a) work-related accident resulting in ·daims for medical 

costs and ~llowance costs, b) Natural peril causing losses in motor and home classes of 

business. Any form of dependence in the costs has a potential implications for pricing, 

reserving, solvency, and capital allocation of an insurance company. Each of the claim 

type creates a stochastic processes. A natural choice in modeling is the compound 

Poisson process for each of the claim type. 

In such situations, the dependence between multiple compound Poisson processes and 

how to model it becomes of interest. One may want to model the dependence in fre­

quency and that of the dependence in severity. Embrechts et al.(2002), Denuit et al. 

(2005) and McN eil et al. (2005) remarked that, the reason for such an interest is that, 

deperidence in daims processes can have an impact on both frequency ( claim counts) 

and severity ( claim amounts) and this has direct implications on pricing, reserving and 

capital allocation of an insurance company. 

In their paper, Avanzi et al. (2011) first explored the ability of Lévy copulas to allow 

for a great range of dependence structures in multivariate compound Poisson process 

modelling and extended relating concepts to model dependence in frequency and sever­

ity. The goal of this paper is to use Lévy copulas to describe the dependence between a 

group of Lévy processes. We present a cross-sectional review to this paper by consid­

ering other relating papers such as: Esmaeili et al. (2010) and Velsen (2012) in the rest 

of this section. 
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2.4.2 Existing Approaches in Modeling Dependence in Multiple Compound Pois­
son Processes 

Approach 1: The Common Shock Based Approach 

This approach is intuitively represented in a common shock representation, for instance 

see Lindskog and McNeil (2003);Yuen and Wang (2002). In this approach we con­

sider daims occuring at the same time in two or more different classes according to 

an identical arriva! process and or apply a distributional copula to claim sizes occuring 

simultaneously. The bene:fits of using this approach are: a) We are able to account for 

a detailed separate dependence in frequency and dependence in severity, b) Also when 

we consider over alternative time horizons (consistently), we are able to account for 

dependence. 

Approach 2: The Distributional Copula Approach for Aggregate Claims over a given 
Time Horizon 

In this approach we focus on classes of business rather than the common shock events. 

We apply a distributional copula to the aggregate daim size of each class at a chosen 

time horizon to build a multivariate distribution of aggregate daim amounts. Another 

. way to do this is to apply a distributional copula to the aggregate number of daims 

over a given time horizon, for instance see McNeil et al.,(2015); Bargès et al.,(2009); 

Bauerle and Grübel,(2005); Genest and Neslehova, (2007). Among many other bene­

:fits, Avanzi et al.,(2011) added this approach possesses the benefit of relative parsimony 

in model specification. 

Limitations to the two approaches: 

1. The common shock based approach is parameter intensive as the number of di­

mensions increases and this is due to its flexibility, 
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2. Inferring copula for a', different titne horizon for the distributional copula ap­

proach is generally not possible. This approach also requires sufficient data for 

the aggregate claim amounts in each class of business for the given time hori­

zon so there is the possibility of inefficient use of data in cases where individual 

accident information is known. 

Approach 3: The Lévy Copulas Approach 

This third approach combines the benefits of the two approaches mentioned above. 

Lévy copulas approach similar to the original copula modeling of dependence except 

that this modeling approach uses the concept oftail integral instead of cumulative distri­

bution fonctions. This approach has a superior advantage over the others. For instance, 

it is time consistent, there is a coherent modeling of dependence in frequency separate 

to that of the dependence in frequency, and it makes full use of the data. The goal here 

is to build a multivariate fonction that joins the marginal tail integrals (i.e. the expected 

number of losses. over a given threshold) of the compound Poisson process for each 

class of business into a multivariate tail integral which completely specifies the desired 

multivariate ( dependent) compound Poisson process model. The subsequent sections 

are the theoretical basics needed in this approach. 

2.4.3 Dependence Modeling of Multiple Compound Poisson Processes with Lévy 
Copulas 

Consider the following properties for a special stochastic random variable (Xt)t:2:0: 

1. Xo = 0 a.s, 

2. Xt - Xs rv Xt-s - Xo Vs ::::; t, stationary increments, 

3. Xt -Xs JL <J(X,,r::::; s) Vs::::; t, independent increments, 

4. limt--+ o P(IXt -Xol > e) ~ 0 Ve> 0, continuity in probability. 



where 'rv' stands for 'same distribution' and 'JL' for stochastic independence. 

Definition 2.4.1 (Lévy Process) 

A Lévy process X= (Xt )t~O is a stochastic process Xt : Q-+ JRd satisfying ( 1-4 ). 
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This is to say that X starts at zero, has stationary and independent increments and is 

continuous in probability. 

Definition 2.4.2 (Compound Poisson Process with jump distribution µ and intensity Â,) 

Let N = (Nt)t2:'.0 be a Poisson process with intensity Â, and replace the jumps of size 

1 by independent iidjumps of random height H1,H2, ... with values in Rd and Hk;...; a 

jump distributionµ. This is a compound Poisson process: 

Nt 
Ct = LHk, 

k=l 

where Hk rv µ are iid and independent of N = (Nt )t~O· 

Remark8 

Compound Poisson processes are Lévy processes. See proof in Schilling (2014 ). 

Definition 2.4.3 (Lévy Copula - Positive Lévy copula, Tankov, 2003 )' 

. For Lévy process with positive jumps, a ''positive Lévy copula" is defined to be a func­

tion C: [O, oo]d-+ [O, oo] which satisfies the following: 

1. C(u1, ... ,ud) is increasing in each component, 

2. C(u1, ... ,ud) = 0 ifui = Ofor any i = 1, ... ,d. 

3. Evaluating C at oo for all components except for the ith component which is eval­

uated at u produces margins Ci, i = 1, ... , d, which satisfy Ci ( u) = u for all u in 

[O, oo]. 

4. For all (a1, .. , ad), (b1, .. , bd) E [O, 00]d] and with ai '.S bi, 

Er1 "'LTd=1(-l)i1+ .. +idC(u1, ... ,ud) :S O where Ujl = aj and Uj2 = bj for all 

j = l, ... ,d. 
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2.4.4 Lévy Copulas and Compound Poisson Process 

In this sub section we will consider modeling dependence with Lévy Copulas as men­

tioned earlier. These modeling steps may be ordered chronologically with points Pl-P4. 

Pl: Let us consider the bivariate compound Poisson process S = { S1, Si} as our multi­

variate compound Poisson process. Decompose it into unique and common jumps, so 

that: 

S1(t) =Sy-(t)+sll(t) 

This decomposition can be further rewritten as: 

N2(t) 

[Yj 
j=l 

( 
Sy-(t) +S~(t)) 

st(t) +s~(t) 
Nf (t) Nil (t) 
Lx/+ [x)I 
i=l i=l 

Nf (t) NJ (t) 
L Yf + E Yjl 
j=l j=l 

(2.47) 

(2.48) 

where the superscript l_ and superscript 11 refers to unique and common respectively and 

Sy-(t) and Sf (t) are independent compound Poisson processes w~ilst S~ (t) and S~(t) 

are dependent compound Poisson processes whose jumps occur at the same time, for 

instance see Lindskog and McNeil (2003), Esmaeili et al. (2010). The three processes 

Sy- (t), Sf (t) and ( sll (t), S~ (t)) are compound Poisson processes and independent, Es­

maeili et al. (2010). However, we have a prior idea that, the joint survival fonction 
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of the jumps (yet to be explained in a subsequent lemma) may be dependent. For the 

purpose of clarification and consistency in notation, we will be considering Y is X2 and 

X isX1. 

Remark9 

ln general, the jump size dist~ibutions of sf (t) and S~ (t) are not identical but may 

be a mixture of jump size distributions ( see, for example, Mikosch (2009 ), Proposition 

3.3.4). 

P2: Moving further, we introduce the concept of tail integral of Lévy process. This 

measures its expected number of jumps (above a certain threshold) per unit of time. We 

can relate this to our compound poisson process by: 

ÂiF'ï(x), XE (0, oo) 

(2.49) 

oo, x=O 

where F'ï(x) is the survival fonction for the jump size Sï(t). 

Similarly, we may want to represent the tail integral of a bivariate compound Poisson 

process { S 1, S2} by: 

Â)'.F(x1,x2), (x1,x2) E (O,oo)2 

U1(x1) x1 E (O,oo),x2 = 0 

U2(x2) x1 = O,x2 E (0, 00) 

oo, (x1 ,x2) = (0, 0) 

(2.50) 

P3: Furthermore, we introduce our Lévy copula by employing Theorem (1). The main 

purpose of the copula we are introducing is to couple the marginal tail integrals to the 

joint tail integral. Let us first consider the definition below: 
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Theorem 12 (Sklars Theorem for Lévy Copulas ) 

Let U = U(·, ... ,·)be a d-dimensional tail integral with U1 (·), ... , Ud(·) as marginal tail 

integrals. then there exista Lévy copula ë such that: 

(2.51) 

IfU1(·), ... ,U4(·) are continuous on [O,oo], then this Lévy copulais unique. 

The bivariate case is shown below: 

(2.52) 

P4: In this additional step, Bocker and Klüppelberg (2008) contributed that, since the 

decomposition S 1 and S2 into unique and common components stems directly from 

the Lévy copula (as in P3), we need to have the Lévy copula readily available and 

also specify. the Poisson parameters and the jump size distributions as well. Below 

is a lemma to show how the Lévy copula affects both dependence in frequency and 

dependence in serverity in a bivariate compound Poisson process : 

Lemma 2.4.1. Arrival rate for the common jumps s!I, i = 1, 2 is: 

(2.53) 

The joint survival fonction for the common jump sizes is: 

(2.54) 

The marginal survival fonction for a common jump size are: 

(2.55) 
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Bach of the unique jumps in (S/-(t), i = l, 2) arrives at rates: 

Â·_1_ = k - À Il i = l 2 
l l ' ' 

(2.56) 

The marginal survival fonction for a unique jump size is: 

- _1_ _ 1 . -. 11 - Il • _ ~ (x) - À)- (\Fz(x) ,-À, ~ (x) ), z - 1, 2 
l 

(2.57) 

2.4.5 How Lévy Copulas are Built 

We will present two methods for building Lévy Copulas in this section. 

Method 1: Multivariate Lévy process using Sklar's Theorem 

Consider a d.:.mensional spectrally positive Lévy process with continuous marginal tail 

integrals. A positive Lévy copula C can be _constructed as: 

(2.58) 

Method 2: Constructing Archimedean families of Copulas 

For a fonction cf> : [ 0, oo] --+ [ 0, oo] with </) ( 0) = oo and </) ( oo) = 0 and a defined inverse 

<j)-1(. ), C(u1, ... , ud) = <j)-1( cf>(u1) + ... + </> (ud) ), where the inverse must satisfy: 

(-1/(</>~1t(z) > O,forz > O,k= l, ... ,d and (</>-1)(k) denotes the k-th derivative of 

the inverse of cf> ( ·) with respect to z. 

Remark 10 

When constructing Archimedean distributional copula, special care is needed in defin­

ing the inverse of the generator. The case of Lévy copulas is easier. Archimedean 

generators of Lévy copulas have a domain of [O, oo] and a range of [O, oo], so there is no 

needfor a ''pseudo-inverse" (Nelsen, 1999). 



74 

2.4.6 Comparing Dependence Structures among two (2) Lévy Copulas (LCl-2) 
under the current context 

This section presents the facts that Lévy copula allow for a wider range of dependence 

structures. We will begin by first referring the reader to some examples of Lévy copulas 

mentioned by Kettler (2006). Also, proof to the Theorem 6.1 in Kallsen and Tankov 

(2006) provides justification to why most of the examples are Lévy copulas. It is useful 

to consider the remarks below: 

Remark 11 (Lévy Copulas Density) 

The bivariate Lévy copulas density may be expressed as: 

(2.59) 

where Uï = Ui(xi), i = 1,2. 

Remark 12 (Expected Number of Common Jumps per unit Time) 

In each unit time, the number of common jumps on average is expressed as: 

(2.60) 

LC 1: Pure Common Shock Lévy Copulas 

Assuming independence between common jump sizes, we model dependence in corn­

mon jump frequencies by first considering the definition below: 

Definition 2.4.4 

The pure common shock Lévy copulas is given by 

8(u1 /\Â1)(u2/\Â2) 

+ [u1 -()iÂ2(u1 /\Â1)]Iui=oo 

+ [u2 - 81 Â1 ( u2 /\ Â2) ]lui =oo (2.61) 
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for O::; 8 ::; min(1
1

, l) and Â1,Â2 are the Poisson parameters of the bivariate Com­

pound Poisson process, also 8 is a parameter which will determine the intensity of the 

common jumps. For independence ë( u1, u2) = u1 u2 we will have: 

Â,11 ë8(Â1,Â2), 

ôÂ1Â2. (2.62) 

From the above, the dependence structure for Pure Common Shock Lévy Copulas is 

expressed as: 

1. Dependence in commonjump frequencies: ÂII = ôÂ1Â2, 

2. Independence in common jump severities. In other words, unique and common 

jump sizes are all independent and identically distributed within the different 

processes. 

Lemma 2.4.2. The pure common shock Lévy copula Eq.(2.4.4) satisfies the necessary 

conditions of a positive Lévy copula. 

Proof. 1. ë8(0,u2) = ë8(u1,0) = 0 is satisfied 

2. ë8(00,u2) = u2 and C8(u1, 00) = u1 is also satisfied, 

3. For all (a1,a2),(b1,b2) E [0,00)2, and with a1::; b1 and a2::; b2, 

ë8(b1,b2)-ë5(a1,b2) Lë8(b1,a2) +ë8(a1,a2) 

= 8[(b2/\Â2)-(a2/\Â2)][(b1 /\Â1)-(a1 /\Â1)] ~ 0 

4. For the case b1 = oo, b2 E [O,oo) and (a1,a2) E [0,00)2, 

ë8(b1,b2)-ë8(a1,b2)-ë8(b1,a2) +ë8(a1,a2) 

= b2 - a2 + 8(a1 /\ Â1) [(a2 /\ Â2) - (b2 /\ Â2] 2:: 0 

(2.63) 

(2.64) 

since 8(a1 /\ Â1) ::; 1 due to the restriction on 8. AU other cases are proven in similar 

way. D 
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See proof in section 3.3 of Velsen (2012) 

Lemma 2.4.3. A bivariate compound Poisson process with dependence specified by 

the pure common shock Lévy copula given by definition (2.4.4) with non-zero 8 has 

independent and identically distributed common and independent jump sizes within one 

process, and independent common jump sizes in both processes (See proof in Avanzi 

et al. (2011)). 

LC2: Clayton Shock Lévy Copulas 

In this section, we first recall that a distributional survival copula C of pli (x1 ,x2 ) satis­

fies: 

pli(x1,x2) =C(.Fi(x1),Â2P2(x2)) 

where A (x1) = pli (x1, 0) and P2 (x2) = pli (O,x2). 

(2.65) 

With reference to a Lévy Clayton Copula (Tankov, 2003) and as already specified in 

section 2.1.3 definition (2.8) and by substitution in relation to lemma (2.4.1 ), we have: 

(2.66) 

and 

(2.67) 

(2.68) 

which is the Clayton copula. The distributional copula C of F Il takes the form 
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which collapses to uv for 8 ..!- 0 and to min (u,v) for 8-+ oo. The frequency Â,11 implied 

by the Clayton Lévy copula takes the form 

(2.70) 

which collapses to zero for 8 +O and to min (Â1, Â1) for 8 -+ oo. In summary, for 8 ..!- 0 

the Clayton Lévy copula implies Â Il = 0 and independent components of sll. 

In a summary, the dependence structure for Clayton Shock Lévy Copulas is expressed 

as: 

1. Dependence in common jump frequencies: À Il = ( Â18 + Â.i-8 ) ! , 

2. Dependence in common jump severities by the copula parameter 8. 

2.4.7 Parameter Estimation 

As mentioned in the paper by Avanzi et al. (2011), fitting a bivariate compound Poisson 

process rneans that the Poisson parameters, marginal jump size distribution parameters 

and Lévy copula parameters are to be estimated simultaneously. Observing a compound 

Poisson process. continuously .over a time period is equivalent to observing all jump 

tirnes and jump sizes in this time interval, for instance see Esmaeili et al. (2010). So 

for us to begin, we consider a sample of jumps of a positive bivariate compound Poisson 

process observed up to time t = T. 

Let n be the total number of claims Gumps) occuring in a time interval of length T. 

The number ·of jumps in each class is n1 and n2. The number of claims common to 

both classes is nll and the number of claims unique to each class is expressed as nf 

and ni- respectively. The jurnp sizes in the first and second components are denoted by 

xf, ... , Xïiï and yf, ... , Yïiï respectively, while the sizes of the observed common jurnps in 
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( Il Il) ( Il Il ) both components are denoted by x 1, y 1 , ... , x nll 'Y nll • 

One cannot know in advance which of the jumps resulted from a common shock event 

so we break the total time interval into M intervals of equal width ( an example is month­

by-month, or quarterly). This breaking down of total interval must make it easier for 

one to assume that jumps from two different interval did not occurred as a result of 

the same common shock event. Below are some of the approaches proposed for the 

estimation of parameters. 

1. By Maximizing the Full Likelihood Based on all Possible Combinations of Num­

ber of Jumps within each Interval, 

2. By Maximizing all the likelihoods within each interval Based on number of 

jumps and expected jump Sizes, 

3. By Maximizing all the likelihoods within each interval based on number ofjumps 

and maximum jump sizes. 

ln the first approach, within each given interval (say a month), there can be n1 jumps in 

the first process and n2 in the second process. 

This means that O :::; nll :::; min( n 1, n2) and so given a certain number of common jumps 

( nll ), there are: 
(max(n1, n2)) ! (min(n1, n2)) ! 

(max(n1,n2)-nll)! (min(n1,n2)-nll)! 

possibilities of distributing the common jumps over the observed jump sizes as shown 

in Velsen (2012). Unfortunately this method is not computationally feasible. The sec­

ond approach has a simultaneous maximization for all parameters and this would be 

extremely complex when each interval is modelled with different type of Lévy copula. 

Getting a closed form expressions for the convolutions involved is intensive and may 

be computationally expensive also. We will be going by the third àpproach (which can 

be carried in two different sub-versions). 
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Moving on to the next step, the natural question that cornes up next is what likelihood 

function must be used. In our firstversion to third approach, we recall that in Eq.(2.48), 

the three processes Sf(t), Sr(t) and (sll(t),S~(t)) are compound Poisson processes 

and independent, see Esmaeili et al. (2010), where they derived (see Theorem 4.1) and 

represented the log-likelihood function for the bivariate compound Poisson process by: 

n1 

l(8,Â1,Â2,81,(h) = n1lnÂ1-Â1T+ [,Znfi(xi;81) 
i=l 

n2 

+ n1Â2 -Â2T + L lnfi(xi; 82) 
i=l 

+ f zn(I- aë,t~,Âlil=1<1Fi(xf;J 

+ f zn( 1- aëa~::,u2) lui=kP2(yf;o,J 
+ ë<5(À1, Â2)T 

f lna
2
ëô(u1,u2)) ' + i..J (2.71) 

i=I dui du2 
u1 =À1F1 (xi1 ;8I),u2=Â2F2(Yi1;e2) 

and assuming the existence of -a aa ë(u1,u2) for all (u1,u2) E (O,Â1) x (O,Â2). 
u1 u2 

Sections 4.1 - 4.3 of Velsen (2012), presents the third approach in a second version 

(which is proven that the likelihood converges to the likelihood provided in Eq.(2.71)) 

by deriving the forms of some discrete models (see the likelihood function in Equation 

(66) of Velsen (2012)). The likelihood mentioned in the third approach depends on the 

the following distributions: 

pll(x,y) = Âif1(x) [ (-aë(u,Â2F2(y))] + (aë(u,Â2)) 1 _ ] ( 2_72) 
l Â, Il du au u=À1F1 (x) 

Similarly, F} (x,y) takes the form of: 

pll(x,y) = Â2f2(y) [ (-aë(l1Fi(x), v))] + (aë(Â1, v)) 1 - ] 
2 Â,11 dV dV · v=Â2F2(Y) (

2
·
73

) 
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And the density f Il is given by: 

JII (x y)= éJ2Fi (x,y) = Â1Â2f1 (x)h(y) ël2ë(u, v) 1 

' dxdy lll dudv u=À1F1(x),v=À2F2(Y) 
(2.74) 

2.4.8 Maximizing the Likelihood Function by the Method of lnference Functions 
for Margins (IFM) 

The parameters of the process S = {S1,S2}, can be estimated by maximizing the like­

lihood fonction L with respect to all its entries simultaneously. Joe and Xu, (1996) 

suggested the· use of the IFM approach since maximizing the full likelihood can be­

corne numerically intensive for large datasets. 

The IFM method to maximize the likelihood fonction is comprised of two steps: 

1. Maximize the likelihood fonction (that has no dependence structure): 

Nj(T) 

Hj,si = (ljtj(T)eÀiT TI Jj((sj)z) 
l=l 

(2.75) 

where Sj is the vector of jumps of Sj within [O, T] to estimate the parameters 

(Â1,Â2, 81 and 82) of Sj with j = 1,2, 

2. Keeping the estimates (11, Â2, 81 and fh) constant, maximize the full likelihood 

fonction (with the dependence structure), l(ô,Â1,Â2, 81), to estimate the copula 

parameter 8. 

2.4.9 Algorithm for Implementation 

In this section, our objective is to sample many times from S = { S 1, S2} on a period 

[O, 1] and estimate its parameters. Assuming that the marginal jump size distribution 

fonction Fj with j = 1, 2 is given by Fj = 1 - e-8ix. 

The following steps summarize the implemented pseudo-algorithm (van Velsen, 2012) 
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• Step 1: Draw N[ and Nf from a Poisson distribution with frequency Âf and Â.ij_ 

respectively, 

• Step 2: Draw NIi from a Poisson distribution with frequency À Il, 

• Step 3: Draw Nr times from a uniform [O, 1] distribution. The resulting draws 

are the jump times of sf. The Nf- jump times of Sf are determined similarly, 

• Step 4: Draw Nr times from a uniform [O, 1] distribution and apply the inverse 

of F/ to each draw. The resulting numbers are the jump sizes of sf. The jump 

sizes of Sf are determined similary, 

• Step 5: Draw NIi times from a uniform [O, 1] distribution and apply the inverse 

of the marginal distribution defin~d as pll(x) := Fil(x) = pll(x,oo) to each draw. 

The resulting Xi with i = 1, ... , NIi are the jump sizes of S~, 

• Step 6: Draw NIi times from a uniform [O, 1] distribution. The resulting draws 

are denoted by Ui with i = 1, ... , NIi. Apply the inverse of the distribution fonction 
. pll (x y) Il Il dFII 

to Hx;(Y) = - 1-
11
-'- for all i = 1, ... ,N and where / 1 (x) = d;. The resulting 

!1 (x) 

numbers Yi with with i = 1, ... , NIi are the jump sizes of S~. In details, Hx; (y) can 

be obtained by: . 

Remark 13 

lim 1P'(AS1 S y!x SAS~ S x+ L\x) 
Ax.J.-0 

1
. lP'(x S ôS~ S x+L\x,AS~ S y) 
1m~~~~~~~~~~ 

Ax.J.-0 lP'(x SAS~ S x+L\x) 

1
. pll(x+&,y)-,Fll(x,y) 
1m~~~~~~~~ 

Ax.J.-0 Fil(x+L\x)-Fil(x) 

Fil (x,y) 

Ji1 (x) 
Hx(y). (2.76) 

Esmaeili et al. (2010) originally proposed the above algorithm but in the step where 
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Nt and N} are drawn, they sampled N1, N2 and NIi and calculated Nt and N} as 

Nt = N1 - NIi and N} = N2 - NIi. This sometimes ends up wi~h Nt < 0 and, or 

Nf- < O. 

Before we estimate the parameters, consider breaking down the observation period of · 

[0,1] into M intervals of equal length and with reference to Eq.(51-2) of Velsen (2012), 

determine Zn and Zi2 for i = 1, ... ,M. This results in an Mx 2 matrix z of maximum 

jump sizes. For all i = 1, ... ,M. Find the samples M1 and M2 to get an Mx 2 matrix fi 

for the number of jumps. 

Finally, by the IFM approach, find the vectors s1 and· s2 of all the jump sizes of S 1 and 

S2 on [O, 1] respectively. Repeat the entire algorithm many times and based on each 

z, fi, s1 and s2, the parameters of S = { S1, Si} on a period [O, 1] are estimated. 

2.4.10 Summary and Discussion 

The concepts, Sklar's theorem, copula density and survival copula from chapter 1 to­

gether with the switch from distributional fonction to tail integral fonction were a core 

part of this work. This paper showed us that, the dependence structure can be sepa­

rated into two parts ( dependence among severities and dependence among frequency 

of claims ). Adding to the estimation methods we have reviewed from previous sections, 

the IFM method also provides an aid when the maximizing of a foll likelihood becomes 

extremely difficult to achieve. 

The algorithm explained above were implement by all the three (3) authors under dif­

ferent applications but interrelated circumstances. 



2.5 Multivariate Counting Processes: Copula and Beyond 

2.5.1 Introduction 
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In the previous section (2.4 ), we mentioned that in modeling insurance daim processes, 

one may consider more than one type of daim and may want to find out how dependen­

cies between the daim arrivai times· for different daim types can be modeled. Examples 

are that an event may give rise to two or more daims or a daim having a connection 

with many other daims in different spatial locations. Claim processes are examples of 

stochastic processes and the above situations may lead us to analysis of multivariate 

stochasti~ processes. We modeled dependence using the Lévy copula. 

Certain instances in modeling multivariate counting process calls for a researcher or a 

practitioner to go beyond the usual techniques of dependence modeling under copula 

theory. One of such instance is when we intend to mod~l dependence in multivariate ·. 

counting proèesses across time and across components simultaneously. This puts a lim­

itation to the use of the modeling techniques we have reviewed in the previous section 

up until now. 

The rest of this section is a simple overview of the original work done by Bauerle and 

Grübel (2005), as they discussed a new technique for the construction of dependence 

models of a multivariate counting processes with Poisson marginals.. Our goal will be 

to analyze a multivariate counting processes X = (X1, ... , Xd) with the property that, 

the one-dimensional marginal processes Xi are Poisson processes with constant rates Âï 

respectively, i = l, ... ,d, where Xi counts the daims of type i. See definition(l.7.2). 
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2.5.2 Model Specification 

Variables Definition 

Definition 2.5.1 (Counting Processes - Under Current Context) 

A counting process Xi as a family of non-negative, integer-valued random variables 

indexed by subsets A of the real line R, where Xi (A) denotes the number of events of 

type i with 'time stamp' in A. If observations start at time 0, then it is customary to 

work with t i---+ Xi([O,t]) as the random measure Ai---+ Xi(A) can then conveniently be 

described by its distribution function. 

Definition 2.5.2 (Borel Set) 

The Borel or topological sigma-algebra ( or <J-algebra) ~(S, r) of a topological space 

(S, r) is the <J-algebra generated by '!. The elements of ~(S, r) are called the Borel 

(measurable) sets of (S, r). 

Remark 14 

Stationary processes is a stochastic process whose unconditional joint probability dis­

tribution does not change when shifted in time. We can express time shift stationarity as 

a requirement that the distribution of the random vector (X1(Ai+t), ... ,XD(Ad+t) does not 

depend on t E JR. Here A 1, ... , Ad are Borel subsets of the real line and we have written 

Ai+t for the shifted set {x+t: x E Ai}. 

Marginal Distributions 

As stated earlier in chapter 1, in modeling multivariate counting process, we first have 

to study the probabilistic behaviour of each of one of the component of Y and second, 

is to investigate the relationship between them. 

Let us begin by considering the following variable definitions: 

1. ç = ( ç 1, <;2, ... , <;d): a d-dimensional random vector, 
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2. Fi, ... , Fd: a one .. dimensional distribution fonctions associated with the compo­

nents <;1, ... , <;d of the random vector. 

Modeling Dependence 

From theorem (1), the.joint distribution fonction F of a d-dimensional random vector 

ç = (<;1, Ç2, ... , <;d) can be written in the form: 

N ow, we intend to model dependence in multivariate counting processes X = (X1, ... , Xd) 

across time and across components simultaneously. 

Suppose now that we start observations at time O so that our multivariate counting 

process can be indexed by R +. Then for each t > 0, the transformation to uniform 

marginais can be applied to the individual random vector (X1 (t), ... ,Xd(t)) . This would 

result in a family ( Ci )t2':0 of copulas. 

In comparison to the above static situation this has two disadvantages. First, a whole 

family of copulas is inconvenient and will not corne in handy. Secondly, ( as this was 

explained in Remark (d) at the end of Section 5 of the original paper) , this family 

would not satisfy our demands, whereas in the random vector case the distribution is 

completely specified by the copula and the marginal distributions, the family (Ci~ 0) 

and the distribution of the component processes Xi, 1 :::; i :::;; d, together do not determine 

the finite-dimensional distributions of the multivariate counting process X. 

Two approaches to overcome the above difficulties are as follows: 

1. Lindskog and McNeil (2003) suggeste.d that, X can be assumed to be a multi­

variate Lévy process Gumps) which implies that the component processes can be 

regarded as thinnings of a basic (univariate) Poisson process. Thus dependence 
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of the marginal processes can be modeled only through the synchronicity of the 

jurnp, 

2. Pfeifer and Neslehovâ (2004), used static d-dirnensional copula to constructX( (0, T]) 

for fixed and fini te tirne interval T > O. Model the dependence of the cornponent 

processes by basing entirely on the dependence rnodeling of the total nurnber of 

clairns in the finite period of interest. 

N ow let us consider these two (2) approaches in detail. 

Approach 1: Consider the following variable definitions: 

1. Let ID : = { 1, ... , d} and for all D c ID, 

e(D) = 

where 

1, if i ED 

0, otherwise 

2. Jurnps X(t) - X(t-) are of the forrn e(D) and that a jurnp e(D) at time t rneans 

that the component processes Xi with i E D ( and only these) have a jurnp of height 

1 at time t. 

Since X is assumed to be a multivariate Lévy process Gurnps) in this approach-1, its 

representation can be written as: 

Xï(t) = [Nd(t) i = 1, ... ,d, (2.77) 
iED 
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where Nv are independent Poisson processes with rate Âv, D as above. The rates Âi of 

the marginal processes are related to the rates Âv by Âi = Li ED Âv i = 1, ... , d. A similar 

result has been used in Lindskog and McNeil (2003). 

Remark 15 

Lévy type counting processes have a very specific dependence structure: In the random 

measure notation, Xi (Ai) and Xj (A j) will always be independent if Ai nA j = 0 because 

of the independence of the increments of X. Hence, for such processes, dependence of 

the marginal processes is only possible via the synchronicity of the jumps. 

The condition that the marginal processes be constant rate Poisson processes implies 

that the paths of X are of pure jump type. If we assume in addition to the above that 

X is a Lévy process, then the Markov property and the homogeneity in time imply that 

the copula family described by its 'infinitesimal generator', the Lévy copula, which 

together with the other characteristics of a Lévy process is enough to specify the distri­

bution of the whole multivariate process, Cont and Tankov (2004 ). 

The processes Nv in turn can be obtained from univariate Poisson process N with rate 

À,= LDcIDÂD,i = 1, ... ,d, by independent marking of the points of Nwith probability 

PD= Âv/Â and then collecting the marked points into Nv. 

Approach 2: In this second approach, we begin by making two necessary considera­

tions: 

1. Instead of an infinite time space IR+, we consider a finite time interval (0, T] and 

condition on the final random vector X(T) = (X1 (T), ... ,Xd(T)) of the processes. 

2. Instead of the wholè family of ~opulas (Ct)t?:::O, a static d-dimensional copula can 

be used together with the condition that the components Xi( T) have a Poisson 

distribution with parameter Âi T, i = 1, ... , d, to construct the law of the vector 

X(T). 
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To obtain (X(t))o::;t:ST from the final random vector X(T) one canuse the familiar fact 

that conditionally on their total number in [O, T] being equal to n, the n points of a 

Poisson process with constant rate are independent and uniformly disributed on [O, T]. 

Hence, in the d-dimentional case, we obtain (X (t) )og:::;r from X(T) via 

Xï(T) 

Xi(t) = L 1[0,tJ(<;ij), 1 ~ i ~ d, 0 ~ t ~ T 
j=l 

(2.78) 

where Çij, 1 ~ i ~ d, 1 ~ j ~ Xï(T), are independent and uniformly distributed on [O, T]. 

Here lA denote the indicator fonction associated with the set A. 

Remark 16 

In this approach we makes use of the fact that the superposition of independence Pois­

son processes is again a Poisson process. 

Finally, dependence modeling of the component processes is thus based entirely on the 

dependence modeling of the total number of daims in the period of interest. 

Limitations of the two approaches: 

1. Lévy type counting processes have no dependence 'across time', and the depen­

dence 'across components' is of a very special nature. For this class of processes 

dependence modeling is reduced to the choice of thinning probabilities. 

2. Modeling by approach 2 is more flexible as the niodels can make use of the 

whole range of ( static) copulas, however they require the choice of a compact 

base interval [ 0, T]. If such an interval does not suggest itself from the application 

of interest, then both remedies known so far, letting either T tend to oo or patching 

together several such intervals, have their disadvantages, the second getting into · 

conflict with our assumption of time shift stationarity. 
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2.5.3 Dependence in Thinning and Shift (TaS) Models 

Resnick (1987) and Dale and Vere-Jones (2007), extended the Lévy models by incor­

porating random shifts of the individual points to build a new family of models called 

Models with Thinning and Shifts (TaS) models. The objective for introducing this 

model is to overcome some of the limitations mentioned in the above approaches. This 

section goes a bit beyond using copulas as measure of dependence. However, only the 

introductory part may be seen in this thesis. 

Constructing a TaS Model 

To build a TaS model, we will need: 

1. a background Poisson process N on IR with constant intensity À., 

2. a thinning mechanism described by aprobability distribution (pv)DcID> on P(ID>), 

the power set (set of all subsets) of ID>, as we mentioned in approach 1, 

3. and a sequence (l'z)tEZ (also called shifts) of independent d-dimensional random 

vectors, all with distribution Q. 

· The example below ( original version may be seen in Bauerle and Grübel (2005)) intro­

duces us to the the background process: 

Example 2.5.1 

Suppose the points of a process represents time points of natural catastrophes like 

earthquakes, fioods, hurricanes etc. An immediate damage to houses and cars which 

produces claims· in the non-life insurance branch is then mostly likely followed by 

claims in health insurance due to epidemics or general bad health conditions after the 

catastrophe. Thùs X1 and X2 would count claims in non-life and health insurance re­

spectively. In the context of this work, an extension of our models, where a single event 
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~ll1, 
.,-....... --~ .............. -_ ......................... _~--....._. ........ *"_ ................ ......., ........ ..._"*""' ................ I "'ti 
0 10 

Figure 2.1 This figure is an example combining thinning and shifts 

(background process) may generate more than one event in the individual component 

processes, may be of interest. 

Next, supposing we order the event time points (Tz)ZEZ of the background process in 

such a way that -oo < ... < T-2 < T_1 < To < 0::; T1 < T2 < ... < oo. The points 

for component Xi of X are now constructed by shifting those Tz that are not deleted 

for this component (which happens with probability LicDPD) by the amount Yzi,Yz = 

(Yz1, ... , Yid)• 

See the figure 2.1 for a better illustration. Source is Bauerle and Grübel (2005). 

Once the shifts are carried out, a Poisson process on ]Rd result whose points consist of 

the potential claim arriva! times for each of the d ( d = 2 in the above example) different 

claim types, with one point for each of the triggering events (the time stamps of the 

triggering events are lost in the process). Bach point of this d-dimensional proèess 

is additionally marked by the set D c Il)) of claim types that are going to survive the 

thinning step. After the second (thinning) step, we have independent Poisson processes 

on JRD, one for each D with PD> O. The number Xi(A) of daims of type i with time 

stamp in Ais now obtained by taking the sum of the number of points in these individual 
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processes that have their ith coordinate in A. 

It should be clear that this generalizes the Lévy model which we would obtain with Q 

concentrated on the zero vector. Also, this model is easy to simulate. We abbreviate 

the above by calling X a TaS model ('thin and shift') with parameter Â,p and Q, where 

À is the intensity of the Poisson base process, p = (pn)Dc[)) the thinning mechanism 

and Q the shift distribution. That these models satisfy our basic requirement of Poisson 

marginals is a standard fact from the general theory of point processes, see e.g. p. 138 

· in Resnick (1987): Shifting the points of a constant rate Poisson process (on JR) by i.i.d. 

amounts results in a constant rate Poisson process. 

In their paper, (Bauerle & Grübel, 2005) mentioned that a possible application of the 

TaS model is as follows: 

Example 2.5.2 (Source: Bauerle and Grübel (2005)) 

Continuing from the above example, consider Q, our shift distribution to be a product 

ofuniform distribution (0,1) and the exponential distribution with mean l, and simulate 

Y1 and Y2. The table (2.1) shows a segment of a simulated pathfor d = 2, with Â,{l} = 

Â{2} = Â{l,2} = 1 as seen in Eq.(2. 77). In the table, an event occurring at time 0.960 

gives rise to a claim of type 2 only; the corresponding delay is 0.230, so that the claim 

is registered a time 1.190. The event occurring at time 6. 022 is the first to trigger daims 

of both types. 

This example also helps to explain a technical point: Whereas, in order to emphasize 

the connection with the Lévy case, it suggests that first the thinning is done and then the 

shifts are applied, Table (2.1) lists also those shifts that because of the thinning later 

become irrelevant, such as the value Y1 = 0.316 in thefirst line. Because of our basic 

independence assumptions the order of the two operations irrelevant; in the proofs it 

will be more convenient to delete components in the second step. 
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Table 2.1 Illustration from the example: Source Bauerle and Grübel (2005) 

N Y1 Y2 D X1 X2 

0.960 0.316 0.230 {2} 1.190 

2.481 0.916 0.206 {l} 3.397 -

4.543 0.660 0.008 {2} 4.551 

4.987 0.308 0.463 {1} 5.295 -

6.022 0.455 0.369 { 1,2} 6.477 6.391 

6.773 0.663 5.642 {l} 7.436 -

7.211 0.328 0.429 {l} 7.539 -

8.440 0.181 0.533 { 1,2} 8.621 8.973 

Basic· Structural TaS Models 

Over here, our objective is to give a general description of the joint behaviour of 

X1 (Ai), ... ,Xa(Aa) by expressing the joint distribution in terms of these parameters. 

We need these definitions: 

Definition 2.5.3 

For subsets A1, ... ,Aa of~ and both D,D' C JD) with D CD' let: 

Aï,for i ED, 

1. M(D,D';A1, ... ,Aa) := B1x ... xBa,Bi := Af ,for i E D'\D, 

~' otherwise, 

2. e=e(D )=( 1, ... ,1 ): the d-dimensional vector. 

Definition 2.5.4 

We define a measure v(Q) on ~d by: 

v(Q)(A) := f Q(A-te)dt 
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for ail d-dimensional Borel sets A; here A - x denotes the set { a - x : a E A}. 

This measure plays an important role throughout the sequel. It is obvious from the re­

sult cited above on i.i.d. shiftings of constant rate Poisson processes that the marginal 

measures v(Q)ni, 1 :::; i:::; d, where 1ri:Rd-+ JR denotes the projection on the th coordi­

nate, are all equal to the Lebesgue measure. The following direct computation may be 

instructive: 

v(Q)ni(B) v(Q)(Ri-1 x B x Rd-i-1) 

fJRfJRd lJRi-IxBxJRd-i-1(X -te)Q(dx)dt 

fJRd fJR lB-x/t)dtQ(dx) 

l(B) 

for all one-dimensional Borel sets B. 

Theorem 13 (Distributional Representation of a TaS Model) 

Let X be a d-dimensional counting process of TaS type with base rate Â, thinning 

mechanism p = (p D) DcID> and shift distribution Q. Then, for any Borel subset A 1, ... , Ad 

of the real line, we have the following distributional representation: 

LlED Ç (D;A1, ... ,Ad) 

= 

where the random variables ç(D;A1, ... ,Ad),0 i= D CI[)), are independent and Poisson 

distributed with 

E (ç(D;A1, ... ,Ad))= ÂLncD' PD'v(Q)(M(D,D';A1, ... ,Ad)). 
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Theorem (13) has some useful qualitative and quantitative consequences, it displays, 

for example, the simple 'multiplicative' way that the parameters enter the dependency 

structure of the model. If Q is concentrated on the zero vector, in which case we have 

thinning only, then, for A = A 1 x ... x Ad, 

v(Q)(A) = J ôo(A-te)dt = l( {t E JR: te E A})= l(A1 n ... nAa), 

which identifies v ( 8o) as 'Lebesgue measure on the diagonal', i.e. the image of l under 

the transformation XE (R) i-+ (X, ... ,) E JRd. 

In their paper, (Bauerle & Grübel, 2005) with extra theorems investigated into greater 

details, the dependence structures using TaS models. However, the scope of my work 

is limited to modelling dependence using copulas. 

2.5 .4 Conclusion 

This findings in reviewing, this paper also got our research in this area informed. We 

found that, when one intends to model dependence of a multivariate counting processes 

, across time and across components simultaneously, further models which goes beyond 

what we have reviewed from sections (2.1-2.4) of this thesis. Further studies of these 

TaS models in other literature shows that it cornes with useful dependence properties. 



CHAPTERIII 

DATA, METHODOLOGY AND ESTIMATION 

3 .1 Overview 

This chapter marks the beginning of the second part of the thesis. In this chapter, our 

main goal is to present the approaches used for arriving at answers to the research 

question in the second part of this thesis. The sub-sequent sections will present the 

data used, methods employed in this work, parameter estimation techniques and in­

ference drawn during these procedures. We considered modeling only one aspect of 

dependence (which is common severities) as mentioned in LC2 of section 2.4.6 of this 

thesis. In other words, the chapter 3 is developed from ·a section under the context of 

the reviews made in chapter 2. The numerical part were carried using the R-software 

and Microsoft excel. 

3.2 Data 

From Embrechts et al. (1997) and McNeil (1997) we obtained the download of fire in­

surance daims dataset (source: http://www.ma.hw.ac.uk/ mcneil) which were collected 

at Copenhagen Reinsurance and comprise 2167 fire losses over the period 1980. They 

have been adjusted for inflation to reflect 1985 values and are expressed in millions of 

Danish Krone. There are five· columns in this dataset namely: 

1. Date: The day of claim occurence. 
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2. Building: The loss amount (mDKK) of the building coverage. 

3. Contents: The loss amount (mDKK) of the contents coverage. 

4. Profits: The loss amount (mDKK) of the profit coverage. 

5. Total: The total loss amount (mDKK). 

Total claim is the sum of a building loss, a loss of contents and a loss of profits. This 

dataset was used because of its readiness in availability and most importantly, its widely 

used in many literature presents some significant amount of reliability to this work. 

3.3 Methodology 

We begin by preparing the 2167 fire daims dataset for its usage. In an event of fire, 

there can be a building daim-type and or a content daim-type and in this thesis, we 

selected the building daims and the contents daims as our bivariate random variables. 

Univariate modeling and dependence modeling of these daim-type have already being 

well discussed underfüe main literatures under section (2.4) of this thesis so the choice 

of the univariate models and copula was an informed choice. However for the purpose 

of tandem in results, we still carried a univariate modeling. 

In preparing the dataset, we only considered the 1502 non-zero daims in both variables 

(building daims and contents daims). We presented some descriptive statistics of the 

dataset. For th~ univariate modeling, two members of the transformed gamma family 

of distributions ( exponential distribution and the Weibull distribution) were considered 

for each of the two variables. Our selection confirmed the choices made by Esmaeili 

et al. (2010) and Avanzi et al.,(2011). However, one can also infer from theorem(6) 

copulas are invariant under preserving the order transformations, so the Lévy Clayton 

copula which were used to model the log-transformed univariate claims (see (2010) and 
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Avanzi et al.,(2011)) was used to model the dependence between the non-zero daims 

of each of the building claims and that of the content daims. 

N ext we considered some basic estimation method like the maximum likelihood esti­

rriation to find the univariate model parameters. 

After the above procedures, we proceeded to tackle three (3) different approaches in 

finding the Lévy Clayton copula parameter. Consider Xli as the random variable for 

building daims and X2i as the random variable for contents daims. Below are the three 

approaches: 

Approach 1 - Pure Lévy-Clayton copula empirical fit 

1. Do not assume any univariate model for both building daims and content daims, 

2. Calculate the cumulative distribution value for the pairs (Ui, V;) corresponding to 

the pair (X1ï,X2i) respectively by empirical methods, 

3. Using the Lévy-Clayton copula, calculate the log-likelihood value from (Ui, Vt), 

4. Maximize this value to estimate the copula parameter 8 (Note that this is the only 

parameterto estimate in this approach). 

Approach 2 - Pure Lévy-Clayton copula model fit (separate modeling) 

1. Assume univariate models for each random variable, building daims and content 

daims. Estimate the parameters of each model separately from each other using 

the dataset before moving to the next step, 

2. Generate the cumulative distribution value for the pairs ( Ui, V;) corresponding to 

the pair (X1ï,X2i) respectively by univariate modeling methods, 



98 

3. Using the Lévy-Clayton copula, calculate the log-likelihood value from (Ui, vt), 

4. Maximize this value to estimate the copula parameter 8 (Note that this is the only 

parameter to estimate in this approach). 

Approach 3 - Pure Lévy-Clayton copula model fit (ail-in-one modeling) 

1. Assume univariate models for each random variable, building daims and content 

daims. But do not estimate the univariate model parameters, 

2. With the help of Eq.(1.9) and the Lévy-Clayton copula, find the joint density of 

the two random variables, 

3. Find the foll likelihood fonction to the above, 

4. Maximize this fonction to estimate both the model parameters and the copula 

parameter 8 (Note that there will be five ( 5) parameters · to be estimated in this 

approach). 

3 .4 lnference - Estimation and Asymptotic Property 

3.4.1 Maximum Likelihood Estimation 

From the copula density fonction given by Eq.(1.8), one may want to estimate both 

the model parameters and the copula parameter. In our case, the five parameters to be 

estimated are (}building, Bcontents,abuilding, acontents and 8. 

Let 11 = ( 8building, Bcontents, abuilding, acontents, 8). The estimation of 11 can be achieved 

by the method of maximum likelihood estimation. The log-likelihood fonction to the 

above can be written as: 

n 2 n 

L(71;x) = L, [,logfi(Xik;ak,8k)+ [,logc(F1(x1i),F2(x2i);8) (3.1) 
i=lk=l i=l 
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We can say that, the maximum likelihood estimator fJ of the parameter 71 is the solution 

of 
é),C(17;x) =O. 

dlJ 
(3.2) 

let lJo be the true value of fJ. Under standard regularity conditions, consistency and 

asymptotic normality properties of the estimator fJ have been established; see for in­

stance Joe (1996). 

The asymptotic properties to the estima.tor is given by: 

vn(fJ -110)--? N(O,r 1 
). (3.3) 

The above represent convergence in distribution, where I is the Fisher Information ma­

trix. An alternative method of estimation is the lnference Functions for Margins (IFM) 

and this was mentioned in the previous chapter. 

3.4.2 The Profile Likelihood 

Suppose that the unkown parameter lfl, is partitioned as lfl = ( a, 8), where 8 is the pa­

rameter of interest ( eg. scale parameter from Wei bull distribution) and a is the nuisance 

parameter ( eg. shape parameter from Weibull distribution). We will need to estimate 

both, but our interest lies only in the parametet 8. The estimation of these parameters 

is done in two stages. 

Suppose that {Xi} are iid random variables, with density f(x; a, 8) where our goal is to 

find estimates for a and 8. The log-likelihood fonction is given by: 

n 

,Cn(8, a)='[ logf(Xi; a, 8) (3.4) 
i=l 

To estimate 8 and a, one canuse (â,ê) = argmax,Cn(8,a). The problem associated 
a,e 

with this is the difficulty associated with a direct maximization principles. First, we 
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suppose that, 8 is known, then we rewrite the log-likelihood fonction as ,Cn(8, a)= 

,C 8 (a) (ie. 8 is fixed and a varies). To estimate a we maximize ,C 8 (a) with respect to 

a, thus: 

âe = argmax,C e (a) 
a 

(3.5) 

Secondly, we do not know 8 in reality, we only pretended that we know it so for each 

estimated 8, we requini a corresponding âe. N ow since each 8 cornes with a new curve 

,Ce (a) over a, we can choose the 8 which is the maximum over all these curves. In 

other words, we evaluate: 

lin= argmax,Ce(âe) = ,Cn(8, â) (3.6) 
(J (J 



CHAPTERIV 

ANALYSIS, DISCUSSION AND CONCLUSION 

In this chapter, we will outline the major findings to the second part of the thesis. We 

first present an analysis to the results obtained from chapter 3, discuss the findings and 

finally conclude. 

4.1 Analysis of Results 

From chapter one, we understood that the copula parameter characterizes the depen­

dence structure between two random variables. surprisingly, each of the three (3) 

approaches (already mentioned in chapter 3) presents different values for the Lévy­

Clayton copula parameter. A major concem in a dependence study, is the ability to 

provide inference from a copula parameter. For instance, is there any form of indepen­

dence, or what will be the strength or degree of dependence between the two variables. 

From the findings below, we will like to compare the different estimates of parameters 

we are getting 'Yithin (from one iteration runs to the other) each approach and across 

the three (3) approaches. 
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Log-likelihood graph for delta (Approach - 1) Log-likelihood graph for delta (Approach - 2) 

Figure 4.1 This figure shows cornparison of estimated copula pararneter in Approach-

1 (left) to that in Approach-2(right) 
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1. Comparing Run-(3) to Run-(5) with respect to their maximum log-likelihood 

values in the third approach, one can see that the two values are closer ( ie. -

2.8887, -2.87103 and -2.87125789 see table 4.1). However, the copulas parame­

ter estimates are way too far from each other (ie. 0.312530019, 0.22819507 and 

0.19203675217 respectively). Thus, very close maximum likelihood value but 

different parameter estimates. 

Just within one approach, approach 3, it is difficult to know which copula param­

eter one should use to infer the dependence structure of the random variables of 

interest. 

2. Away from the third approach, the estimates for the copula parameter coming 

from the other two approaches are also different (see figure 4.1). One does not 

know whether starting the estimation with univariate models can produce the 

accurate copula parameter or not. So the question, as to which copula parameter 

to infer from still remains. 

There is a qualitative discretion here and it seems that researcher have not address this. 
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4.2 Discussion 

lnferring from the results and analysis presented above, as an attempt to measure de­

pendence between variables in the area of insurance, there is a higher chance that, the 

applied copula methods or procedures may be theoretically appealing but, the final de­

cisions may be subjective especially in terms of the copula parameter. 

Since we were unable to provide a precise answer as to which of the copula parameters. 

to conclude the studies with, similarly, we cannot be precise to conclude on whether 

anyone with large datasets should go ahead to model dependence by a parametric ap­

proach, or a non-parametric approach or strictly by data-dependent models. 

My assertion on this question is that, every analyst will certainly corne to this same 

point, but most of these analysts will loosely use the results for inference conceming the 

dependence structure of the random variable of interest. Also suppose one is accurately 

able to choose a copula from the numerous copula built, he or she will still have to 

provide an answer to this question. My personal view is that, there is currently no 

precise way to go about it. 

Sorne researchers would also want to look into the optimization procedures at our ex­

posure in recent times. ls the optimization tools we have at our exposure now, out of 

date? We understand that data are outcomes of random variables and repeats of the ex­

periment would generate different data and hence different estimates (ie. randomness 

in the sampling process) induces randomness in the estimator. However in a case such 

as the results produced from the three (3) different approaches, the same dataset was 

used under varying methods but we still arrived in a situation of significant randomness 

in the copula parameter estimates .. This may have to call for researchers to look into 

the optimization procedures we are exposed to once again, since optimization forms 

important part of dependence modelling with copulas. 
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4.3 Conclusion 

In this thesis, we found out that copulas are extremely useful tools in modeling depen­

dence in the area of counting processes with applications in insurance and finance. In 

insurance, joint behaviours associated with count of daims are of high interest to insur­

ance companîes and for that matter, the ability for researchers to corne up with some 

techniques in such a regard is commendable. 

The main contribution of this thesis is the central findings we presented during the in­

depth reviews of how copulas were used in modeling for each of the counting process 

context discovered in the published papers of chapter two. For instance, in chapter 

two of this thesis, among several other random variables associated with count data in 

insurance, we researched on how dependence modeling is carried for bivariate· risk or 

risk factors such current Bonus-Malus class and past count of daims, count of daims 

and size of daims, count of daims of two different counting processes that occurred 

from the same event etc. We observed how the Clayton copula, the· Farlie-Gumbel­

Morgenstern copula, the Gaussian copula and the Lévy-Clayton copula were used in 

modeling these joint behaviours. Copula parameters and model parameter estimation 

methods were also explored, for some of which we used the method of maximum like­

lihood estimation, the method of maximization by parts and also method of inference 

fonctions for margins. These methods of estimation were chosen based on the context 

or nature of the joint distribution fonctions. Computational, statistics and probabilistic 

techniques from the chapter one and Sklar' s theorem played an important role in this 

work. 

Despite the extreme usefulness of copulas, there is the need for improvements in the 

modeling techniques. For instance, the research question in the second part of the thesis 

remains, that is if we have a large set of dataset available and we want to estimate the 

copula parameters, we cannot say whether to use solely the dataset without assuming 
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any model to arrive at a copula parameters is the best or whether to assume marginal 

models for data and estimate the copula parameter (separately or jointly). In our work, 

we selected the dependence defined in one of the reviews made in chapter two and 

focused on the dependence among severities of insurance for two different counting 

processes. Our findings were that, each approach results to significantly different cop­

ula parameter. A deeper search into this will be considered as our further studies. 

Again, questions of precision in copula selection to model joint behaviours of different 

random variables remains unanswered. In chapter two of my thesis, the F-G-M copula 

was chosen because it is mathematically tractable under such a context. However no 

other scientific approach in selecting the appropriate. copula has been agreed on till 

date. Similarly, areas under modeling dependence of counting process in insurance and 

finance such as the multivariate joint behaviour of aggregate cost of insurance claims 

variable remains open for research. Then again, one may require a copula, which can 

jointly models or unifies all other copulas mentioned in specific contexts of this thesis. 

This area of research also remains open. 



APPENDIX A 

RESULTS 

Table A.1 Summary statistics of fire claim sizes in each class 

Statistics Building Contents 

Mean 1.82 1.32 

Standard Deviation 4.36 4.76 

Skewness 24.36 16.74 

Kurtosis 755.65 385.90 

Minimum 0 0 

Median 1.27 0.37 

Maximum 152.41 132.01 

Table A.2 Results from Weibull distribution (by Profiled Likelihood Estimation) 

â ê 

Building Claims data 1.06473 1.9325311 

Contents Claims data 0.691436 1.1211411 
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Empi, lcat cd f vrs lhe Modelscdf 

Build,ngOa,ms 

Figure A.1 This figure shows a cumulative distribution fit of Weibull mode) (red) and 

Exponential mode) (blue) 

i 
H . ' 
i 

E slimating alpha in Weibull Oist. (Building Claimsl 

.... 

Figure A.2 This figure shows profile likelihood estimation for Weibull model parame­

ters for Building random variable 



Table A.3 Number of unique and common fire daims 

Contents 

Item Claim No Claim Total 

Claim 1502 488 1990 
Building 

No Claim 177 0 177 

Total 1679 488 2167 

Table A.4 Results from Weibull distribution (by Mean Square Error Method) 

â ê log-likelihood Value 

Building Claims data 1.875782 1.57938231 

Contents Claims data 0.99497608 0.81455864 

3007.402 

3155.337 

Q--0 Plot - Samplas from Expone ntlal Model 

8 ulldi ngCi.lms 
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I 
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Figure A.3 This figure shows the Q-Q plots of the Exponential mode] and the Wei bull 

model 
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Table A.5 Results from estimating the copula paremters by Approach 1 

8 log-lik 

iteration runs-1 0.1 0.0312195036805278 

iteration runs-2 0.2 0.0494841338539416 

iteration runs-3 0.3 0.0599466836801341 

iteration runs-4 0.32 0.0613223019738393 

iteration runs-5 0.34 0.0624350381143784 

iteration runs-6 0.36 0.0633381647001194 

iteration rüns-7 0.38 0.0640175085023297 

iteration runs-8 0.4 0.0645728088660071 

iteration runs-9 0.42 0.0648310066346163 

iteration runs-10 0.43 0.0650065936923793 

iteration runs-11 0.44 0.0649530158118493 

iteration runs-12 0.46 0.0649067729452187 

iteration runs-13 0.48 0.0646779922063144 

iteration runs-14 0.5 0.0642340856182826 

iteration runs-15 0.6 0.0596522585989158 

iteration runs-16 0.7 0.0511834113777575 

iteration runs-17 0.8 0.0392615202052774 
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Table A.6 Results from estimation: copula paremters by Approach 2 

s log-lik 

iteration runs-1 0.1 -0.231919770352844 

iteration runs-2 0.2 -0.2169785997 66093 

iteration runs-3 0.3 -0.211538373422296 

iteration runs-4 0.32 -0.21127604185123 

iteration runs-5 0.33 -0.211150417885273 

iteration runs-6 0.34 -0.211177808877447 

iteration runs-7 0.36 -0.21136167567968 

iteration runs-8 0.38 -0.211665021449891 

iteration runs-9 0.4 -0.212246730358873 

iteration runs-10 0.5 -0.217500722607756 

iteration runs-11 0.6 -0.2265895877 40836 

iteration runs-12 0.7 -0.237670313655276 



APPENDIX B 

SOME FEATURES OF THE COPULAS USED IN THIS MATERIAL 

B.1 Farlie-Gumbel-:Morgenstem (F-G-M) Copula 

B .1.1 Formula for Distribution Function 

C ( u, v) = uv[ 1 + a ( 1 - u) ( 1 - v], -1 :::; a :::; 1. (B.1) 

B .1.2 Formula for Density Function 

The density fonction is symmetric about the point ( ! , i). Meaning the copula density 

is the same at ( 1 - u, l - v) and ( u, v). So the survival copula over that point is the sanie 

as the original copula. 

c(u, v) = 1 + a(l -2u)(l -2v). (B.2) 

B.1.3 Correlation Coefficient 

F-G-M Copula has correlation coefficient (p) to be î, and obviously ranges from -1 
1 to 3. 
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B .1.4 Dependence Properties 

U and V are positively quadrant dependent, positively regression dependent and likeli­

hood ratio dependent for O:::; a :s; 1 (Lai, 1978) and (Drouet Mari & Kotz, 2001). 

B .2 Clayton Copula 

B.2.1 Formula for Distribution Function 

C(u, v) = (u-0 +v-0 -1) s1 
(O,oo) (B.3) 

B .2.2 Formula for Density Function 

c(u, v) = ~ = (ô + l)(uv)-(0+1\u-0 +v-0 -1)-
2g+i (B.4) 

dudv 

B.2.3 Kendall's Tau 

ô 
'! = ô +2 (B.5) 

B .2.4 Low-Tail Dependence (LT) 

. . C(u, v) . (2u-0 -1) s1 
-1 

LT = lzmu-+0+ = lzmu-+0+ = 2 s (B.6) 
u u 

B .2.5 Truncation-Invariance Property 

This copula has a remarkable invariance under truncation (Oakes, 2005). This property 

makes it possible to synthesize points ina sub-region sample of a Clayton copula, with 

one corner at (0, 0). 



APPENDIX C 

RCODE 

C.1 R Code to implement algorithm in Section 2.1 

############################################################ 

# Step 1: Generate the three indepen sets of Uniform(0,1) 

############################################################ 

Ti<- 8 

Y_it <- runif(Ti) 

V_it <- runif(Ti) 

############################################################# 

# Step 2: Generate the dependent Uniform Dist through 

# the Clayton Copula 

############################################################# 

delta<- 0.5 #Low degree of dependence for now 

U_it <- ( (Y_it-(-delta/(1+delta))-1)*(V_it)-(-delta) + 1) 

-c-1/delta) 

############################################################ 

# Step 3: Generate the Number of Claims 

# Zero-Inflated Poisson Distribution 

############################################################ 

#Zero-Inflated Poisson Distribution is a Modified Poisson 



# Distribution so recaii theories of (a,b,1)Class 

# of Discrete Dist. 

h_it <- runif(Ti); x_it <- runif(Ti) ; z_it <- runif(Ti) 

alpha<- 0.5 ; beta <- 0.3; d_it <- 1 

lambda<- d_it * exp(x_it*alpha + beta) ;library("boot") 

phi_it <- inv.logit(alpha*z_it) ; 

k = (1 - phi_it) / (1 - exp(-lambda)) 

N_it <- c(rep(NA,8)) 

p <- c(rep(NA,8)) 

cummulat <- c(rep(NA,8)) 

Counter <- c(rep(NA,8)) 

for(j in 1:Ti){ 

p [j] <- phi_i t [j] 

cummulat[j] <- phi_it[j] 

Counter[j] <- c(rep(0,8))[j] 

while(cummulat[j] <= U_it[j]){ 

Counter[j] <- Counter[j] + 1 

if(Counter[j] == 1 ){ 

p[j] <- k[j] * lambda[j] * exp(-lambda[j]) 

}else{ p[j] <- p[j] * lambda[j] / Counter[j] } 

cummulat [j] <- cummulat [j] + p [j] 

} 

N_it[j] <- Counter[j] 

} 

N_it #Number of claims for insured i at time t. 

#################################################### 

# Step 4: Generate the Glass Vector: Using (2.2) 

#################################################### 
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C_it_final <- c(rep(NA,8)) 

C_it1 <- c(rep(NA,8)) 

C_it <- 5 

C_it1[1] <- C_it 

C it final<- C_it 

counter <- 1 

while(counter <= 8){ 

counter <- counter + 1 

if(N_it[counter-1] == 0) {C_it1[counter] <- max(1,C_it - 1) 

}else{C_it1[counter] <- min(6,C_it + 2*N_it[counter])} 

C_it <- C_it1[counter] 

C_it .... final[counter] <- C_it1[counter]} 

C_it_final ; cbind(C_it_final~ c(N_it,NA)) [1:8,] 

samples <- cbind(C_it_final, c(N_it,NA))[1:8,] 

samples 

############################################################## 
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