
.. 

UNIVERSITÉ DU QUÉBEC À MONTRÉAL 

PROPRIÉTÉS ARITHMÉTIQUES DU E-POLYNÔME DU SCHÉMA DE 

HILBERT DEn POINTS DANS LE TORE BIDIMENSIONNEL 

MÉMOIRE 

PRÉSENTÉ 

COMME EXIGENCE PARTIELLE 

DE LA MAÎTRISE EN MATHÉMATIQUES 

PAR 

JOSÉ MANUEL RODRÎGUEZ CABALLERO 

JUIN 2018 



AVERTISSEMENT 

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, 

qui a signé le formulaire Autorisation de reproduire et de diffuser un travail 

de recherche de cycles supérieurs (SDU-522- Rév.Ol-2006). Cette autorisation 

stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles 

supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non 

exclusive d'utilisation et de publication de la totalité ou d'une partie importante 

de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus 

précisément, !l'auteur] autorise l'Université du Québec à Montréal à reproduire, 

diffuser, prêter, distribuer ou vendre des copies de. [son] travail de recherche à 

des fins non commerciales sur quelque support que ce soit, y compris l'Internet. 

Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part 

[de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf 

entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou 

non ce travail dont [il] possède un exemplaire. » 



REMERCIEMENTS 

Qu'il me soit permis, en terminant, d'exprimer à Srecko Brlek, Christophe Reutenauer 

Pierre Castéran et Christian Kassel toute ma reconnaissance pour l'intérêt qu'ils 

ont bien voulu porter à mes recherches. En plus, j'aimerais remercier 

1. l'Institut des sciences mathématiques (ISM); 

2. l'Université de Bordeaux; 

3. le Laboratoire Bordelais de Recherche en Informatique (LaBRI) ; 

4. l'Institut Mathématique de Bordeaux. 



TABLE DES MATIÈRES 

CHAPITRE I 
ON KASSEL-REUTENAUER q-ANALOG OF THE SUM OF DIVISORS 
AND THE RING lF3 [X]/X2lF3 [X] 1 

1.1 Introduction . . . . . 1 

1.2 The 7]-product (~~~~
3 

4 

1.3 Proof of the main results . 5 

RÉFÉRENCES 

CHAPITRE II 
A HODGE-THEORETICAL CHARACTERIZATION OF THE INTEGERS 
WHICH CANNOT BE PARTITIONED INTO AN EVEN NUMBER OF 

10 

CONSECUTIVE PARTS 11 

2.1 Introduction . . . . . . . 11 

2.2 Proof of the main result 13 

2.3 Final remarks 16 

RÉFÉRENCES 17 

CHAPITRE III 
ON A q-ANALOGUE OF THE NUMBER OF REPRESENTATIONS OF 
AN INTEGER AS A SUM OF TWO SQUARES 18 

3.1 Introduction . . . . . . . 18 

3.2 Proof of the main result 19 

RÉFÉRENCES 

CHAPITRE IV 
ON A FUNCTION INTRODUCED BY ERDOS AND NICOLAS 

4.1 Introduction ...... . 

4.2 Proof of the main result 

4.3 Sorne consequences of the main result . 

23 

24 

24 

25 

32 



v 

RÉFÉRENCES 35 
Appendices . . 37 

ANNEXE I 
FACTORIZATION OF DYCK WORDS AND THE DISTRIBUTION OF 
THE DIVISORS OF AN INTEGER 38 

A.1 Introduction . 

A.2 Preliminaries 

A.3 Generic case . 

A.4 General case . 

A.5 Final remarks 

RÉFÉRENCES 

ANNEXE II 
MIDDLE DIVISORS AND a-PALINDROMIC DYCK WORDS 

B.1 Introduction ......... . 

B.2 Generalized Vatne's Theorem 

B.3 Language-theoretic interpretation of middle divisors . 

B.3.1 Language-theoretic preliminaries 

B.3.2 Middle divisors 

B.4 Final remarks 

RÉFÉRENCES 

RÉFÉRENCES 

38 

41 

42 

44 

56 

58 

59 

60 

64 

66 

66 

68 

71 

73 

75 



RÉSUMÉ 

Le E-polynôme du schéma de Hilbert à n points dans le tore bidimensionnel, noté 

Cn ( q), est donné par la fonction génératrice 

Le polynôme Cn(q) est divisible par (q- 1)2 en Z[q]. On note Pn(q) le polynôme 

satisfaisant Cn(q) = (q- 1)2 Pn(q). Le but de ce mémoire est de démontrer de 

nouvelles propriétés arithmétiques satisfaites par Cn(q) et Pn(q). 

Mots clefs : E-polynôme, diviseur, triangle de Pythagore, partage en parties 

consécutives, mot de Dyck. 



,-----------------------------~-------------------------------------------------

INTRODUCTION 

La notion de schéma de Hilbert s'est présentée à Grothendieck (Grothendieck, 

1960) comme un moyen de remplacer en théorie des schémas les variétés de Chow. 

Cette notion très féconde joue un rôle fondamental en combinatoire algébrique, 

notamment le schéma de Hilbert à n points dans le plan affine apparaît dans les 

démonstrations de conjectures de Garsia et Haiman (Haiman, 2001), en particulier 

les deux conjectures nommées n! et (n + 1t-1
. 

Str0mme et Ellingsrud (Ellingsrud et Str0mme, 1987) ont étudié les homologies 

des schémas de Hilbert à n points dans les plans affine et projectif à l'aide 

de la méthode de Birula-Bialynicki (Bialynicki-Birula, 1973). En introduisant 

les cellules de Grobner, Conca et Valla ont trouvé en (Conca et Valla, 2007) 

une paramétrisation explicite de la décomposition de Str0mme-Ellingsrud qui 

est particulièrement convenable pour le calcul. Kassel et Reutenauer (Kassel et 

Reutenauer, 2018b) ont raffiné la décomposition de Str0mme-Ellingsrud, afin 

d'isoler les cellules de Grobner qui sont inversibles, ce qui permet de trouver 

la décomposition cellulaire du schéma de Hilbert (JF; x lF;) [n] de n points dans 

le tore lF; x JF;. En dénombrant certaines matrices inversibles associées à la 

décomposition cellulaire de (lF; x lF;) [n], Kassel et Reutenauer (Kassel et Reutenauer, 

2018a) ont trouvé une formule explicite pour le polynôme Cn(q) qui compte le 

nombre de points de (JF; x lF;) [n], ainsi que la fonction génératrice 

Gottsche et Soergel (Gottsche et Wolfgang, 1993, Théorème 2) ont trouvé un 
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isomorphisme canonique entre des structures de Hodge mixtes qui permet de 

calculer la cohomologie singulière d'un schéma de Hilbert X[n] à n points dans 

une variété donnée X en fonction de la cohomologie singulière de X. En utilisant 

cet isomorphisme, Hausel, Letellier et Rodriguez-Villegas (Tamas et al., ) ont 

trouvé la fonction génératrice des polynômes de Hodge du schéma de Hilbert 

(ex x ex)[nJ à n points dans le tore ex x ex. Il suit d'un résultat deN. M. Katz 

(Katz, 2008) que leE-polynôme de (ex x ex)[nJ coïncide avec Cn(q). 

Le point de départ de la présente recherche est la constatation du fait que les 

coefficients de Cn ( q) sont liés aux expressions bien parenthésées (mots de Dyck). 

Un tel motif dans les coefficients d'un E-polynôme n'a pas été rapporté dans 

la littérature de géométrie algébrique. En plus, nous allons montrer des liens 

entre les expressions bien parenthésées associées à Cn ( q) et certains fonctions 

arithmétiques utilisées dans de divers contextes par Erdéis, Hirschhorn, Tao et 

d'autres mathématiciens. 

Le présent mémoire est composé de 4 chapitres. Au chapitre I, on montre que le 

polynôme Pn(q) :=(~:\~~projeté sur l'anneau fini IF3 [X]/X21F3 [X], où X= q-1, 

est une fonction multiplicative. Au chapitre II, on montre un lien entre Pn(q) et 

les partages den en parties consécutives. Au chapitre III, on montre un lien entre 

Pn(q) et les hypoténuses des triangles de Pythagore primitifs. Au chapitre IV, on 

montre un lien entre Pn(q) et une fonction introduite par P. Erdéis et J-1. Nicolas, 

qui est liée à la distribution des diviseurs d'un entier et aux semi-périmètres des 

triangles de Pythagore. 

Ce mémoire repose sur plusieurs manuscripts qui ont été rédigés en Anglais 

pendant mes études de maîtrise et qui sont inclus dans le document. Le chapitre 

I consiste à l'insertion de l'article publié (Caballero, 2018). 



CHAPITRE I 

ON KASSEL-REUTENAUER q-ANALOG OF THE SUM OF DIVISORS AND 

THE RING lF3[X]jX2lF3[X] 

Abstract 

A q-analog Pn(q) of the sum of divisors of n was introduced by C. Kassel and C. 

Reutenauer in a combinatorial setting and by T. Hausel, E. Letellier, F. Rodriguez

Villegas in a Hodge-theoretic setting. We study the reduction modulo 3 of the 

polynomial Pn(q) with respect to the ideal (q2 + q + 1)1F3 [q]. 

1.1 Introduction 

Consider the infinite product 

The identity 

(1.1) 
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is attributed to L. Kronecker 1 (10). The particular case of (1.1), 

1 1 
-----
O(w) 1 ~ w 

(1.2) 

n, m 2: 1 

n'tm (mod 2) 

is attributed to C. Jordan (5, p. 453). 

Let Tn(w) E Z [w, w- 1] be the coefficient of qn in the Taylor expansion of (1.2) 

at q =O. Let Cn(q) E Z[q] be defined by Cn(q) := (q- 1)qnTn(q). C. Kassel and 

C. Reutenauer (6; 7) proved that, if q is a prime power, then there are precisely 

Cn(q) ideals I of the group algebra 1Fq [Z2
] of the free abelian group ofrank 2 such 

th at the quotient IF q [Z2
] 1 I is an n-dimensional vector space over IF q· 

T. Hausel, E. Letellier and F. Rodriguez-Villegas ( 3) proved th at Cn ( q) is the 

E-polynomial of the Hilbert scheme X[n] of n points on the algebraic torus X := 

ex x ex. It is natural to consider the obvions action of the group ex x ex on 

the variety X and to extend this action to the punctual Hilbert scheme X[n]. 

Let _K[nJ := X[nJ 11 (ex x ex) be the corresponding GIT-quotient (11). Denoting 

Pn(q) E Z[q] the E-polynomial of _K[nJ, it follows, using elementary Hodge Theory 

(4), that (q- 1)2 Pn(q) = Cn(q). 

In virtue of (1.2), 

n-1 

Pn(q) = :- 1 L (q'Y(d)- ql-'Y(d))' 

dln 
d odd 

where 1( d) := ~ (2; - d + 1). Using L'Hôpital's rule, it follows that 

Pn(1) = lim Pn(q) = O"(n), 
q-t1 

1. Kronecker's original identity is rather different, but it can be transformed into this one. 
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where a(n) is the sum of divisors ofn. In (1) we called Pn(q) the Kassel-Reutenauer 

polynomials because C. Kassel and C. Reutenauer studied sorne of their number

theoretical properties (6; 7; 8). A more informative name should be Kassel-Reutenauer 

q-analog of the sum of divisors. 

It is obvious that Pn(1) is divisible by 3 if Pn(q) belongs to the principal ideal 

[3]q.Z[q], where [3]q := q2 + q + 1 is the classical q-analog of 3. Nevertheless, the 

converse statement is not always true. In order to fix this correspondence, we will 

consider the reduction modulo 3 of the polynomials Pn(q), denoted 3Pn(q). The 

aim of this paper is to prove the following result. 

Theo rem 1. For any integer n 2:: 1, the following statements are equivalent : 

{i) Pn(1) belongs to the principal ideal3.Z; 

(ii) 3Pn(q) belongs to the principal ideal [3]q1F3[q]. 

It is worth mentioning that Theorem 1 depends upon the special properties of the 

number 3 in the sense that it cannot be generalized in the obvious way substituting 

3 and q2 +q+ 1 by p and qP- 1 +qP-2 + ... +q+ 1, respectively, for an arbitrary prime 

number p. Indeed, P81 (1) = 121 is a multiple of 11, but the reduction modulo 11 

of the polynomial P81 ( q) does not be long to the principal ideal ( q10 + q9 + q8 + 

... + q + 1)1Fn[q]. 

Given a commutative ring with identity R, we define an R-arithmetical function 

to be a sequence taking values in R. Traditional arithmetical functions correspond 

to C-arithmetical function. We will extend in the obvious way the definition of 

multiplicative function to ali R-arithmetical function, i.e. f(n) is multiplicative if 

and only if f(uv) = f(u)f(v) provided that u and v are relatively primes. 

Let R be the ring defined by the quotient R := IF3[q]/[3]q1F3[q]. Notice that the ring 

Ris isomorphic to IF3[X]/X21F3[X]. We will use the notation (a) :=a+ [3]q1F3[q]. 
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For each n E Z>I, let nPn(q) E R be defined by nPn(q) ·- (3Pn(q)). We will 

derive Theorem 1 from the following explicit formula. 

Theorem 2. The R-arithmetical function n t--7 nPn(q) is multiplicative. Furthermore, 

nPn(q) = \o-(n)- (q- 1) 0" (i)), (1.3) 

where o-(x) := 0 for all xE <Q\Z. 

In arder to prove Theorem 2, we will use an ry-product related to the arithmetical 

function n t--7 Pn ( -1+2-J=J) and we will consider a version. of this sequence in 

characteristic 3. 

ill=2f 1.2 The 1]-product '7( 3z) 

Let 

ry(z) := ql/24 II (1 _ qn), 
n2':1 

be the Dedekind ry-function, where q := e2trHz. An ry-product (9) is a function 

which can be expressed as 

II ry(mztm, 
miN 

for sorne finite sequence (am)miN of integers. Throughout this paper, we will focus 

on the 7]-product (9, pp. 158) 

(ry(z))3 

ry(3z) 
2: wx-y qx2+xy+y2, 

(x,y)EZ2 

where w := -1+
2
-J=J, which is related to the Diophantine equation 

(1.4) 

Let -3.\(n) be the coefficient of qn in (1.4). The arithmetical function .\(n) is 

multiplicative and for each prime number p and each integer k 2:: 1 we have the 
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formula (7, Equation (1.9)) 

-2, if p = 3; 

À (pk) := k + 1, if p = 1 (mod 3); (1.5) 

1+(-1t if p = -1 (mod 3). 2 

Using the identity (2, Proposition 2.29.) 

(7J(z))
3 = 1 _ 3 ~ Pn (w) qn 

1J(3z) L......J wn-1 ' 
n=1 

C. Kassel and C. Reutenauer obtained the explicit evaluation (7, Theorem 1.6. 

(b)) 

(1.6) 

The identity (1.6) is equivalent to the following result. 

Proposition 1. For each integer n 2: 1, 

(1. 7) 

Proof. Consider the auxiliary polynomial Qn(q) := Pn(q)- .\(n)qn-1
. Using the 

fact that Q[q] is an Euclidean domain, there are two polynomials Un(q), Vn(q) E 

Q[q], such that Qn(q) = Un(q) + [3JqVn(q) and Un(q) = aq + b for sorne a, bEZ. 

Furthermore, the polynomials Un(q) and Vn(q) are uniquely determined by these 

two properties. Notice that the Euclidean division may be performed in Z[q], sin ce 

[3]q is manie. Renee, Un(q), Vn(q) E Z[q]. Therefore,- (1.7) holds. D 

1.3 Proof of the main results 

Lemma 1. Consider the multiplicative function 6_1,3 : Z~1 --+ Z given by 

k {0, 
6-1,3 (p ) = 

1, 

ifp = -1 (mod 3) and k = 1 (mod 2); 

otherwise; 
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for any prime p and any k :2: 1. The Z[q]/[3]qZ-arithmeticalfunction n 1---7 L 1,3(n)qn-l+ 

[3]qZ[q] is multiplicative. 

Proof. Notice that q3 - 1 E [3]qZ[q] in virtue of the identity q3 - 1 = (q -

1) ( q2 + q + 1). Consider a pair of relatively prime positive integers n and m. 

Suppose that n "i= -1 (rnod 3) and m "i= -1 (mod 3). It follows that either at n = 
1 (mod 3) or m = 1 (mod 3), i.e. (n-1)(m-1) = 0 (mod 3). So, n+m-1 = nm 

(mod 3). Therefore, 

(L1,3(n)qn-l + [3]qZ[ql) (L1,3(m)qm-l + [3]qZ[ql) 

<5-1,3(nm)q(n+m-l)-l + [3]qZ[q] 

<5-1,3(nm)qnm-l + [3]qZ[q]. 

Now, negate the hypothesis that ni= -1 (mod 3) and mi= -1 (mod 3). Without 

loss of generality, suppose that m = -1 (mod 3). It follows that m is divisible 

by sorne prime number p = -1 (mod 3) and the exponent of p in the prime 

factorization of m, denoted k, is odd. Notice that the exponent of pin the prime 

factorization of nm is also k, because n is relatively prime with m. 

On the one hand 

because <5_ 1,3 (m) =O. On the other hand, 

because 6-1,3(nm) =O. 

Therefore, n 1---7 L 1,3(n)qn-l + [3]qZ[q] is multiplicative. D 
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Lemma 2. The R-arithmetic function n t--+ (a( n) - ( q - 1) a ( ~)) is multiplicative. 

Furthermore, the equality 

(-q- 1), ifp = 3; 

(-1), ifp = 1 (mod 3) and k = 1 (mod 3); 

( a(pk)- (q- 1) a (p;)) = 
(0), ifp = 1 ( mod 3) and k = 2 (mod 3); 

(1), ifp = 1 ( mod 3) and k = 0 (mod 3); 

(0)' ifp = -1 (mod 3) and k = 1 (mod 2); 

(1), ifp = -1 (mod 3) and k = 0 (mod 2). 

holds for any prime number p and any integer k :;::::: 1. 

Proof. Let m and n be relatively prime positive integers. Without lost of generality, 

we will suppose that m is not divisible by 3. The R-arithmetic function n t--+ 

(a( n) - ( q - 1) a ( ~)) is multiplicative in virtue of the identity 

(a(m)- (q -1)a (~)) (a(n)- (q -1)a (i)) = (a(m)) (a(n)- (q -1)a (i)) 
( a(m)a(n)- (q -1) a(m)a (i)) = (a( mn)- (q- 1) a (~n)). 

Let p be a prime number. Consider an in te ger k :;::::: 1. For p # 3 we have 

\ a(pk)- (q -1) a (p;)) =(a (pk))= (1) + (p) + (p) 2 + ... + (p)k 
(-1), if p = 1 (mod 3) and k = 1 (mod 3); 

(0), if p = 1 (mod 3) and k = 2 (mod 3); 

(1), if p = 1 ( mod 3) and k = 0 (mod 3); 

(0), if p = -1 (mod 3) and k = 1 (mod 2); 

(1), if p = -1 (mod 3) and k = 0 (mod 2). 

For p = 3 we have 
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1 ( 3k) ) 1 3k+l - 1 3k - 1 ) \a(3k)-(q-1)a 3 =\ 
2 

-(q-1)-
2

-

/ 3k - 1 3k - 1 ) 1 3k - 1 ) 
\3k+-2--(q-1)-2- =\3k+-2-(-q+2) =(-q-1). 

D 

Now, we proceed to prove Theorem 2. Proof.(Theorem 2) Let i5_ 1,3 (n) be the 

arithmetical function defined in Lemma 1. Let ..\( n) be the arithmetical fun ct ion 

defined in (1.5). Notice that L 1,3 (n) = 1 provided that .X(n) =1- O. It follows that 

.X(n)i5_1,3 (n) = ..\(n). Applying Proposition 1, 

In virtue of Lemma 1, n f---+ L 1,3 (n)qn-l + [3]qZ[q] is multiplicative. Recall that 

>.(n) is multiplicative. So, nf---+ >.(n) (i5_ 1,3 (n)qn-l + [3]qZ[q]) is multiplicative. We 

conclude that nf---+ RPn(q) is multiplicative. 

It follows from (1.5) that 

1, if p.= 3; 

2, if p = 1 (mod 3) and k = 1 (mod 3); 

>.(pk) mod 3 = 
0, if p = 1 (mod 3) and k = 2 (mod 3); 

1, if p = 1 (mod 3) and k = 0 (mod 3); 

0, if p = -1 (mod 3) and k = 1 (mod 2); 

1, if p = -1 (mod 3) and k = 0 (mod 2). 
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Reducing qn-I modulo [3]qZ[q], we have that 

[ -q - 1], if p = 3 ; 

[<LI,3(Pk)qPk-1] = 
[1], if p = 1 (mod 3); 

[0], if p = -1 (mod 3) and k = 1 (mod 2); 

[1], if p = -1 (mod 3) and k = 0 (mod 2); 

where [a] := a+[3]qZ[q]. Combining the expressions for À (pk) mod 3 and [6_1,3(pk)qPk_1], 

the identity (1.8) implies that the equality 

(-q-1), ifp=3; 

(-1), if p = 1 ( mod 3) and k = 1 (mod 3); 

nPvk(q) = 
(0), if p = 1 (mod 3) and k = 2 (mod 3); 

(1.9) 
(1), if p = 1 (mod 3) and k = 0 (mod 3); 

(0), if p = -1 ( mod 3) and k = 1 (mod 2); 

(1), if p = -1 ( mod 3) and k = 0 (mod 2). 

holds for any prime number p and any integer k ~ 1. In virtue of Lemma 2, the 

equality (1.3) holds. D 

Remark. In virtue of (1.9), the R-arithmetical function n t---+ nPpk(q) takes at 

most 5 values. These values are realized for each nE {1, 2, 3, 7, 21}. 

Now, we proceed to prove our main result. 

Proof.(Theorem 1) In virtue of Theorem 2, nPn(q) = 0 if and only if a(n) = 0 

(mod 3) and a (fi') = 0 (mod 3). Notice that a en = 0 (mod 3) is a consequence 

of the statement a(n) = 0 (mod 3). Renee, nPn(q) = 0 if and only if a(n) = 0 

(mod 3). D 
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CHAPITRE II 

A HODGE-THEORETICAL CHARACTERIZATION OF THE INTEGERS 

WHICH CANNOT BE PARTITIONED INTO AN EVEN NUMBER OF 

CONSECUTIVE PARTS 

Abstract 

Cànsider the algebraic torus (as a variety) X :=ex x ex and its Hilbert scheme of 

n points, denoted X[nJ. Let E ( X[nl; q) be the E-polynomial of the GIT 1 quotient 

.XN := X[nJ / jG, where G :=ex x ex is the algebraic torus (as a Lie group) and 

the action of G on X[n] is induced by the obvious action of G on X. We show a 

relationship between the coefficients of E ( X[n]; q) and the existence of a partition 

n = m + (m + 1) + (m + 2) + ... + (m + k -1), 

with m, k E Z~t, such that k even. 

2.1 Introduction 

Let X := ex x ex be the algebraic torus as a variety. Denote X[nJ the Hilbert 

scheme of n points on X. The Lie group G :=ex x ex acts on X in the obvious 

way. This action can be extended to X[nJ. So, we can define the GIT quotient 

X[n] := x[n] 1 /G. 

1. GIT is the abbreviation for Geometrie Invariant Theory. 
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The E-polynornial of _X[n], denoted E ( _X[n]; q), was studied by T. Hausel, E. 

Letellier and F. Rodriguez-Villegas (2) and independently 2 by C. Kassel and C. 

Reutenauer (4; 5; 6). 

The degree of E (_X ln]; q) is 2n - 2, it is self-reciprocal and all its coefficients are 

non-negative integers (5), i.e. 

n-1 

E ( _i[n]; q) = an,oQn-1 + L an,i (qn-l+i + qn-1-i), 

i=1 

(2.1) 

for sorne nonnegative integers an,o, an,b an,2, ... , an,n-1· The airn of this paper is ta 

prove the following result. 

Theorem 3. For each integer n 2: 1, the following statements are equivalent : 

(i) for ali integers m 2: 1 and k ;:::: 1, the equality 3 

n = m + (m + 1) + (m + 2) + ... + (m + k -1) 

implies that k is odd; 

(~) > > > > an,O _ an,1 _ an,2 _ ··· _ an,n-1· 

1 t is worth rnentioning th at a fini te sequence s 1 , s2 , ... , sn if uni modal if and only 

if there sorne 1 ~ t ~ n such that 

2. C. Kassel and C. Reutenauer defined E ( _i[n]; q), in a rather combinatorial way, as the 

unique polynomial Pn(q) = E ( _i[nl; q) satisfying (q- 1)2 Pn(q) = Cn(q), where Cn(q) is the 

number of n codimensional ideals of the algebra lFq[x, y, x- 1
, y- 1

]. 

3. The expression of a number as a sum of consecutive numbers it is named polite 

representation. 
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A polynomial having non-negative coefficients is said to be unimodal if its sequence 

of coefficients is unimodal. So, ifE ( .XJnl; q) satisfies condition (ii) in Theorem 3, 

th en it is unimodal (the converse is not necessarily true). 

2.2 Proof of the main result 

We will use the generating function 

oo ( 1 _ tm)2 oo E (xJnJ; q) 
II - 1 + ( + - 1

- 2)"' tn (2 2) 
m=

1 
(1- qtm) (1- q-1tm) - q q ~ qn-1 ' · 

due toT. Hausel, E. Letellier and F. Rodriguez-Villegas (2) and independently to 

C. Kassel and C. Reutenauer (4). 

Lemma 3. The number of solutions (m, k) E (Z~1f of the equation 

n = m + (m + 1) + (m + 2) + ... + (m + k- 1), 

with k even, coincides with the number of odd divisors d of n satisfying the 

inequality d > ffn. 

Proof. This result is due toM. D. Hirschhorn and P. M. Hirschhorn (3). 0 

Lemma 4. Let n ~ 1 be an integer. For any divisor d of 2n, if d > ffn then 

n + - d - - - 1 > n > n - 1 > n + - - - d - 1 > O. 1 ( 2n ) 1 (2n ) 
2 d - - 2 d -

Proof. Consider an integer n ~ 1. Let d be a divisor of n. Suppose that d > ffn. 

The inequality d > ffn implies that d- 2:J > O. Using the fact that d- 2:J is an 

integer, it follows that d- 2:J ~ 1. So, n + ~ (d- 2:J- 1) ~ n. 

The inequality d- 2:J > 0 implies that 2:J - d < O. Using the fact that 2:J -dis 

an in te ger, it follows th at 2:J - d ::; -1. So, n + ~ (2; - d - 1) ::; n - 1. 
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For x 2: 1 and y 2: 1, we have the trivial inequality 

(x -1) (y -1) 2:2 (1- y). 

From the above inequality, it follows that xy = x- y+ 1. Substituting x = d and 

y = 2:l, we obtain 
2n 

2n > d-- + 1 - d ' 

which is equivalent to 

n + - - - d - 1 > O. 1 (2n ) 
2 d -

Lemma 5. Let n 2: 1 be an integer. For any divisor d of 2n, if d < ffn, then 

n+- --d-1 >n>n-1>n+- d---1 . 1 (2n ) 1 ( 2n ) 
2 d - - 2 d 

Proof. It is enough to apply Lemma 4 with d = 2:l. 

We proceed to prove our main result. 

Proof.(Theorem 3) The equality 

dln 

d = 1 (mod 2) 

qn+(2n/d-d-1)/2 _ qn+(d-2n/d-1)/2 

q-1 

follows from the combination of (2.2) with the classical identity (2, p. 113) 

1 1 
-----
O(w) 1- w 

n'/'- m (mod 2) 

attributed to L. Kronecker and C. Jordan, where 0( w) is the formai product 

0 

0 
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We can express E (.X:(n]; q) as the difference E ( _K(n]; q) = Rn ( q) - Sn ( q) of two 

polynomials given by 4 

Rn(q) 

dln 
d = 1 (mod 2) 

d >..tiTi 

djn 

d = 1 (mod 2} 

d <..tiTi 

qn+(d-2n/d-1)/2 _ qn+(2n/d-d-1)/2 

q-1 

qn+(2n/d-d-1)/2 _ qn+(d-2n/d-1)/2 

q-1 

Applying Lemmas 4 and 5, the coefficients of Sn(q) and Rn(q) are non-negative 

integerso Using the expansion q;_-11 = 1 + q + q2 + 000 + qn- 1, it follows from 

the explicit formulae for Sn(q) and Rn(q) that the coefficients from (201) can be 

expressed as an,i = a~,i - a;;,i, where 

a;;,i 

d odd, d < 5n, i ~ ~ ( 
2
; - d - 1) } , 

d odd, d > 5n, i ~ ~ ( d-
2
; - 1) } 0 

Notice that the functions Z~0 --+ Z~0 , given by i f--t a~,i and i f--t a;;,i, are both 

weakly decreasing 5 0 Renee, condition (ii) holds provided that d < J2ri for each 

odd divisor d of n, because in this case, a;;,i = 0 for ali io 

Suppose that do > ffn for a fixed odd divisor do of no On the one hand, a;;,io > 

a;;,io+1, where io := ~ (do - ~ - 1) 0 On the other hand, a~,io = a~,io+l, because 

the equality ~ (do - ~ - 1) = ~ ( 2; - d - 1) is impossible 6 for any odd divisor 

4. Notice that, if d = ffn, for sorne integer d, then d is even. 

5o A sequence s1, s2, oo., Sn is weakly decreasing if s1 2: s2 2: ... 2: Sn. 

6. This equality would imply that the product d do = 2n is even, while both do and d are 
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d of n. So, an,io < an,io+l· Hence, condition (ii) does not hold provided that there 

is at least one odd divisor d of n satisfying d > ffn. 

In virtue of Lemma 3, we conclude that conditions (i) and (ii) are equivalent. D 

2.3 Final remarks 

Consider the symmetric Dyck word (1) ((n)) := w 1w 2 ... wk E { +,-}*, whose letters 

are given by 

W; = {:: 

if ui E Dn \ (2Dn); 

where Dn is the set of divisors of n, 2Dn := {2d: dE Dn} and u1, u2 , ... , uk are 

the elements of the symmetric difference Dn6.2Dn written in increasing arder. This 

ward encodes the non-zero coefficients of ( q - 1 )E ( .X[n]; q). Theorem 3 admits 

the language-theoretical reformulation : condition (i) is equivalent to ((n)) 

+ + ... +-- ... -, for sorne s E .Z;::: 1. For details, see Appendix I (Annexe I) in --........----........--
s times s times 

this Memoir. 

odd. 
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CHAPITRE III 

ON A q-ANALOGUE OF THE NUMBER OF REPRESENTATIONS OF AN 

INTEGER AS A SUM OF TWO SQUARES 

Abstract 

Kassel and Reutenauer (5) introduced a q-analogue of the number ofrepresentations 

of an integer as a sum of two squares. We estahlish sorne connections between the 

prime factorization of n and the coefficients of this q-analogue. 

3.1 Introduction 

Let Aq := lFq[x, y, x-I, y-1] be the algebra of Laurent polynomials over the finite 

field lFq having precisely q elements. For any ideal I of Aq, we consider the quotient 

VI:= Aq/1 a.'l a vector space over lFq. Let Cn(q) be the number of ideals I of Aq 

such that dim VI = n. lt is known (2; 4) that Cn(q) is a polynomial in q of 

degree 2n. From a Hodge-theoretical point of view (2), Cn(q) can be described as 

the E-polynomial of the Hilbert scheme xlnJ of n points on the algebraic torus 

x:= ex x ex. 

C. Kassel and C. Reutenauer (3; 5) proved that r n(q) := Cn( -q) is a q-analogue 1 

1. A q analogue of f : Z~ 1 ---t Z~o is a sequence of polynomials (Pn(q))n~l such that 

Pn(l) = f(n). 
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of the number of solutions (x, y) E 'Z} of the equation n = x2 + y2
• 

A primitive Pythagorean triple is a triple (x, y, z) E (;~::::: 0 ) 3 satisfying x 2 + y2 = z2 

and gcd (x, y, z) = 1. Notice that, according to this definition, (1, 0, 1) and (0, 1, 1) 

are primitive Pythagorean triples. The aim of this paper is to prove the following 

results. 

Theorem 4. For any integer n ~ 1, all the coefficients off n (q) are non-negative 

if and only if n = 2k z, for sorne integer k ~ 0 and sorne primitive Pythagorean 

triple (x, y, z). 

3.2 Proof of the main result 

Denote 'Yn,i the coefficients of 
n 

rn (q) = 'Yn,oQn + 2:: 'Yn,i (qn+i + qn-i). 
i=l 

Lemma 6. Let n ~ 1 be an integer. For each i E [O .. n], rn,i = r~,i - r;;,i, where 

'"V+. ·= 
ln,t · # { kl2n: 

·- # {kl2n: 

k ( k + 2i + ( -1 t+k+i) 

2 

k ( k + 2i - ( -1 t+k+i) 

2 

Proof. The coefficients of 
n 

Cn(q) = Cn,OQn + L Cn,i (qn+i + qn-i) 
i=l 

are given by (3, Proposition 3.3.), 

2 2:: ( _1 )k tk(k+l)/2 

_ 1 + 2:: (-1)k (tk(k+l)/2 _ tk(k-1)/2), 

k2:1 

2:: (-1)k (tk(k+2i+l)/2 _ tk(k+2i-l)/2), 

k2:1 



for ail i 2: 1. So, for each i 2: 1, 

_ 1 + z:.:: (tk(k+(-l)k)/2 _ tk(k-(-l)k)/2), 

k~l 

z:.:: (tk(k+2i+(-l)k)/2 _ tk(k+2i-(-l)k)/2). 

k~l 

It follows that Cn,i = c~,i - c;;,i, where 

+ ·- # { kl2n: 
k (k + 2i + ( -1 )k) ~n}, cn,i 2 

c;;,i :~ # { kl2n 
k ( k + 2i - ( -1 )k) 

~+ 2 

By definition of r n(q), '"Yn,i = ( -1)n+icn,i· Bence, '"Yn,i = 1:i -1;;,i· 
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D 

Lemma 7. Let n 2: 1 be an integer. Considera divisor k of 2n such that k ~ 2!: 
(mod 2) and k < 2!:. Define 

u := {k, 
2n 
k' 

if k is odd; 

if k is even. 

For each >. E { -1, 1}, the following statements are equivalent : 

(i) there is some i E [O .. n] satisfying 

(ii) u = >. (mod 4). 

k ( k + 2i + ). ( -1 t+k+i) 

2 
=n; 

(3.1) 

(3.2) 
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Proof. Consider n, k and >. fixed. Notice that, for ali t E Z the congruence 

2t + >. ( -1)t = >. (mod 4) holds (it is enough to evaluate this expression at ali the 

possible values of t and >., assuming th at >. is odd). 

The equality (3.2) is equivalent to 

u + v + 2n = 2t + >. ( -1) t , (3.3) 

where v := 2n and t := n + k + i. Notice that 2n +v is a multiple of 4. Indeed, if 
u 

n is even, then both 2n and v are multiples of 4, so 2n +v is a multiple of 4. Also, 

if n is odd, th en ~ is an odd integer, so 2n + v = 2 ( n + ~) is a multiple of 4. 

The equality (3.3) implies the congruence 

u = >. (mod 4). (3.4) 

Suppose that (i) holds. There is sorne i E [O .. n] satisfying (3.2). The congruence 

(3.4) foliows. Hence, (ii) holds. 

Now, suppose that (ii) holds. There is sorne integer t ~ 1 satisfying 2t + >. ( -1 )t = 

u +v+ 2n, because any positive integer = >. (mod 4) can be expressed as 2t + 

>. ( -1/ for sorne t ~ 1 and we have u + v + 2n = >. ( mod 4). 

Define i := t- n- k. In virtue of the hypothesis k < 2!:, we have that i ~ O. The 

equality (3.2) foliows. Hence, (i) holds. D 

Let da,m(n) be the number of dln such that d =a (mod m). 

Proposition 2. For all n ~ 1, 

(i) the sum of all positive coefficients of rn (q) is 4dl,4(n); 

{ii} the sum of all negative coefficients offn (q) is -4d3,4(n). 

Proof. Let >. E { -1, 1}. In virtue of Lemma 7, 2d>.,4(n) is the number of pair 
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(k, i), where k is a divisor of 2n and i E [ü .. n], satisfying (3.2). Applying Lemma 

6, we conclude that 

if À= 1; 

if À= -1; 

where 1:o + 2 L~=l 1:i is the sum of the positive coefficients of r n(q) and -1;;,0 -

2 L~=l 1;;,i is the sum of the negative coefficients of r n(q). D 

Now, we proceed to prove our main result. 

Proof.(Theorem 4) Let n 2:: 1 be an integer. Notice that n has no prime factors p 

satisfying p = 3 (mod 4) if and only if d3 ,4 (n) =O. In virtue of Proposition 2 (ii), 

the condition d3,4 ( n) = 0 is equivalent to the fact th at all the coefficients of rn ( q) 

are non-negative. E. J. Eckert (1) proved that the set of positive integers z for 

which (x, y, z) E (Z2:0 )
3 is a primitive Pythagorean triple, for sorne (x, y) E (Z2:0f, 

are precisely the positive integers without prime factors p = 3 (mod 4). Therefore, 

all the coefficients of r n(q) are non-negative if and only if n = 2k z, for sorne integer 

k 2:: 0 and sorne primitive Pythagorean triple (x, y, z). D 
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CHAPITRE IV 

ON A FUNCTION INTRODUCED BY ERDOS AND NICOLAS 

Abstract 

Erdüs and Nicolas (Erdüs et Nicolas, 1976) introduced an arithmetical function 

F ( n) related to divisors of n in short intervals J ~, t J . The aim of this note is to 

prove that F(n) is the largest coefficient of polynomial Pn(q) introduced by Kassel 

and Reutenauer (6). We deduce that Pn(q) has a coefficient larger than 1 if and 

only if 2n is the perimeter of a Pythagorean triangle. We improve a result due to 

Vatne (Vatne, 2017) concerning the coefficients of Pn(q). 

4.1 Introduction 

Erdüs and Nicola..<; introduced in (1) the function 

F(n) = max{qt(n): tE JR:}, 

where qt( n) = # { d : dln and ~ t < d :::; t}, and they proved that 

lim ]:_ '"""F(n) = +oo. 
x--++oo X ~ 

n~x 

( 4.1) 

(4.2) 

Kassel and Reutenauer introduced in (2) a q-analog of the sum of divisors, denoted 
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Pn(q), by means of the generating function 

(1 tm)2 oo P. ( ) 
II - - 1 + ( + - 1 - 2) ~ ~in 

(1- qtm) (1 _ q-1 tm) - q q L...J qn-1 
m~1 n=1 

(4.3) 

and they proved that, for q = exp et A)' with k E {2, 3, 4, 6}, this infinite 

product can be expressed by means of the Dedekind 17-function (see (4)). A 

consequence of this coïncidence is that the corresponding arithmetic functions 

n t-+ Pn ( q), for each of the above-mentioned values of q, are related to the number 

of ways to express a given integer by means of a quadratic form (see (2) and (3)). 

The aim of this paper is to prove the following theorem. 

Theorem 5. For each integer n 2: 1, the largest coefficient of Pn(q) is F(n). 

Using this result, we will derive that Pn(q) has a coefficient larger than 1 if and 

only if 2 n is the perimeter of a Pythagorean triangle. Also, we will prove th at 

each nonnegative integer mis the coefficient of Pn(q) for infinitely many positive 

integers n. 

4.2 Proof of the main result 

In arder to simplify the notation in the proofs, we will consider two functions 1 

f : lll --+ lll~ and g : IR.~ --+ IR., defined by 

f(x) 

g(y) 

~ (x+ JBn+ x2
), 

2n 
y--. 

y 

1. The function g(y) was implicitly used in Proposition 2.2. in (4). 

(4.4) 

(4.5) 
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Lemma 8. The functions f(x) and g(y) are wetl-defined, strictly increasing and 

mutually inverse. Furthermore, g(y) satisfies the identity 

g(y) = -g (2yn). (4.6) 

Proof. It follows in a straightforward way from the explicit expressions (4.4) and 

(4.5) that f(x) and g(y) are well-defined and strictly increasing. In particular, the 

inequality lxi< v2n + x2 guarantees that f(x) E JR~ for ali xE R 

On the one hand, for ali x E JR, we have 

( ) 
_ (f(x)-x-v2n+x2

) (f(x)-x+v2n+x2 ) _ 

g f(x ) - 2 f(x) +x- x. 

On the other hand, for ali y E JR~, we have 

f (g(y)) = !!_-!!. + ~ = !!_-!!.+!!_+!!.=y, 
2 y v \2Ty) 2 y 2 y 

where we used the inequality ~ + ~ > 0, provided that y > 0, for the elimination 

of the square root. 

Renee, f(x) and g(y) are mutualiy inverses. Furthermore, using the identity 

-g ( 2;;) ~ - C 2; - 2n\;) ~ - (;; - Ü ~ ~ -;; ~ g(y ), 

we conclude that ( 4.6) holds for ali y E JR~. D 

Lemma 9. For each integer n 2: 1, 

Pn(q) L i --- a. n-1 - n,,q' 
q iEZ 

(4.7) 

where 

an,i=#{d: dln and ~g(d):s;i<~g(2d)}. (4.8) 



Proof. By Theorem 1.2 in {3), 

where 

n-1 

Pn(q) = an,O qn-1 + L an,i (qn-l+i + qn-1-i), 

i=1 
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{4.9) 

The condition f(;i) < d ::; f(2 i) is equivalent to d ::; f(2 i) < 2 d. So, since g(y) is 

strictly increasing by Lemma 8, the expression ( 4.8) follows for ali 0 ::; i ::; n - 1. 

We will extend an,i to any i E Z using the expression ( 4.8) as the definition of an,i 

for i <O. 

Applying the identity ( 4.6) to ( 4.8), 

Substituting i by -i in {4.8), 

Now, we will prove that 

# { d: djn and 1 1 } 2 g (d) < -i ::; 2 g {2 d) {4.13) 

# { d: djn and 1 1 } 2 g ( d) ::; -i < 2 g {2 d) . 

Suppose that 

(4.14) 
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for sorne dln. Transforrning (4.14) into d = 2 (J-i), it foliows that dis even. So, 

-i = ~ g (2 d'), where d'= ~ is a divisor of n. 

Conversely, suppose that 
. 1 

- z = 2 g (2d)' (4.15) 

for sorne dln. Transforrning (4.15) into J = 2(d+i), it foliows that J is even. 

Furtherrnore, 2 d di vides n, because 2 d f = n and f E Z. So, ~ g (d') = -i, where 

d'= 2d is a divisor of n. Renee, (4.14) holds. 

Cornbining (4.14), (4.11) and (4.12), we obtain that 

(4.16) 

holds for ali 0 :::; i :::; n - 1. 

Furtherrnore, the bound -(2n- 1):::; g(y):::; 2n -1 for ali 1:::; y:::; 2n and the 

equality ( 4.8) irnply that 

an,i = 0 (4.17) 

for ali i E Z such that Iii 2 n. 

Using that (4.16) holds for ali 0:::; i:::; n -1 and that (4.17) holds for ali i E Z, 

with Iii 2 n, we conclude that the expression (4.9) can be transforrned into (4.7), 

where an,i is given by ( 4.8) for ali i E Z. D 

Lemma 10. Let Y1 and Y2 be two divisor8 of 2 n. If Y1 < Y2 then 

(4.18) 

Proof. Using the expression (4.5) we obtain that, for any real nurnber y> 0, 
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g(y+ 1)- g(y) > 1, (4.19) 

because g(y+ 1)- g(y) = 1 + y(!~l)' 

Let y1 and Y2 be two positive real numbers satisfying Y2 - Y1 ~ 1. By Lemma 8, 

the function g(y) is strictly increasing. So, ( 4.19) implies that 

(4.20) 

Furthermore, suppose that y1 and y2 are divisors of 2 n. It follows that g(y2 )-g(yt) 

is an integer, because of (4.5). In this case, the inequality (4.20) becomes 

(4.21) 

Therefore, (4.18) holds. D 

Now, we can prove our main result. 

Proof.(Theorem 5) By Lemma 9, the coefficient an,i is defined for ali i E Z by 

the expression ( 4.8). 

First, we will prove that the largest coefficient of Pn(q) is at most F(n). Take 

sorne j E Z satisfying an,J = max{ an,i : i E_ Z}. By ( 4.8), there are h = an,J 

divisors of n, denoted d1, d2 , ... , dh satisfying 

In particular, 

Applying f(x) to the inequalities ( 4.23) we obtain 
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(4.24) 

because f(x) and g(y) are mutually inverses in virtue ofLemma 8. So, we guarantee 

th at 

(4.25) 

whe:r:e t = 2d1 -é for ali é > 0 small enough. Renee, an,j ~ F(n), because of (4.1). 

Now, we will prove that there is at least one coefficient of Pn(q) which reaches 

the value F(n). Setting h = F(n) and applying (4.1), it follows that there are 

h divisors ofn satisfying (4.25) for sorne tE IR~. The inequalities (4.24) follow. 

Applying g(y) to (4.24) we obtain (4.23). 

Setting 

we have the inequalities 

g(dh) < 2j, 

2j < g(dh) + 1, 

g(dh) + 1 < g(dh) + 2, 

g(dh) + 2 < g(2 dl)· 

( 4.26) 

(4.27) 

( 4.28) 

( 4.29) 

( 4.30) 

The inequality ( 4.27) follows from ( 4.26). The inequality 2 j < g ( dh) + 2 follows 

from ( 4.26) and the stronger inequality ( 4.28) is obtained using the fact g ( dh) E Z, 
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derived from (4.5). The inequality (4.29) is trivial. Finally, the inequality (4.30) 

follows by Lemma 10, because dh and 2 d1 are divisors of 2 n satisfying dh < 2 d1. 

Combining (4.27), (4.28), (4.29) and (4.30) we obtain that 

(4.31) 

The inequalities (4.22) holds, because of (4.31) and (4.23). Renee, an,j = F(n). 

Therefore, the largest coefficient of Pn(q) is F(n). D 

Corollary. The largest coefficient of P~(q) is the largest value of h for which 

(4.24) holds. 

Example 1. The polynomial P12 (q) was computed in (2), 

p 12 (q) = q22 + q2l + q2o + ql9 + q1s + ql7 + ql6 + q1s + ql4 + 2q13 

+2ql2 + 2qll + 2ql0 + 2q9 + q8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1. 

Let us compute j such that a12,j = a12,-j are equal to the largest coefficient of 

Pl2(q). 

d 1 2 3 4 6 12 

g(d) -23 -10 -5 -2 2 10 

g(2d) -10 -2 2 5 10 23 

The equality F(12) = 2 implies the existence of 2 divisors of 12, for example 

d1 = 2 and d2 = 3, satisfying (4.24). In our case, 

2 < 3 < 2 . 2 < 2 . 3. 
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Applying g(y) to the ab ove inequalities, we ob tain a particular case of ( 4.23), 

-10<-5<-2<2. 

So, taking 2 j = g(3) + 1 = -5 + 1 = -4, we obtain a12,-2 = a 12,2 = 2, which are 

the coefficients of q9 and q13
. 

4.3 Sorne consequences of the main result 

Kassel and Reutenauer observed in (2) that Pn(q) has a coefficient larger than 1 

provided that n is a perfect number or an abundant number. The corresponding 

necessary and sufficient condition is given in the following result. 

Corollary. The polynomial Pn ( q) has a coefficient larger th an 1 if and only if 2 n 

is the perimeter of a Pythagorean triangle. 

Proof. From the explicit formula for Pythagorean triples (see (5)), it follows in 

a straightforward way that 2 n is the perimeter of a Pythagorean triangle if and 

only if n has a pair of divisors d and d' satisfying the inequality d < d' < 2 d. So, 

the result follows from Corollary 4.2. D 

Vatne proved in (6) that the set of coefficients of Pn(q) is unbounded. The following 

result is a stronger version of this property. 

Corollary. Let an,i be the coefficients of Pn(q) as shawn in (4. 7) and (4.8). For 

any integer m ~ 0, the equality an,i = m holds for infinitely many ( n, i) E 71}, 

with n ~ 1. 

In the proof of Corollary 4.3 we will use the following auxiliary result. 

Lemma 11. Let h ~ 1 be an integer. If his a coefficient of the polynomial Pn(q), 

then h - 1 is also a coefficient of the same polynomial. 
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Proof. Consider two fixed integers n 2:: 1 and h 2:: 1. Let j be the largest integer 

su ch that an,j 2:: h, where an,j is given by ( 4.8). The inequalities ( 4.22) hold for h 

divisors of n, denoted db d2, ... , dh. Setting 

we have the inequalities 

i ·= r g (2 dl)l 
. 1 2 ' 

g(dh) < g(2d1), 

g(2d1) < 2i, 

2i < g(2d1)+1, 

g(2d1) + 1 < g(2d1) + 2, 

g(2 dl) + 2 < g(2 d2)· 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

The inequality (4.33) follows by (4.22). The inequality (4.34) follows from (4.32). 

The inequality 2 i < g (2 d1 ) + 2 follows from ( 4.32) and the stronger inequality 

(4.35) is obtained using the fact g(2d1) E .Z, derived from (4.5). The inequality 

( 4.36) is trivial. Finally, the inequality ( 4.37) follows by Lemma 10, because 2 d1 < 

2 d2 and both are divisors of 2 n. 

Combinii:J.g (4.33), (4.34), (4.35), (4.36) and (4.37) we obtain that 

(4.38) 

Combining (4.38) with (4.24), it follows that 
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Notice that (4.22) and (4.34) imply 

j < i. ( 4.40) 

In virtue of the expression ( 4.8), the inequalities ( 4.39) imply that 

an,i ~ h- 1. ( 4.41) 

The inequalities (4.40) and (4.41) imply that an,i = h -1, because j is the largest 

integer satisfying an,J ~ h. D 

Proof.(Corollary 4.3) 

Using (4.2), it follows that the range of F(n) is unbounded. By Theorem 5, the 

set of coefficients of Pn(q), for ail n 2: 1, is unbounded. 

Take an integer m ~ O. Consider a polynomial Pn(q) whose largest coefficient is 

h > m. Applying Lemma 11 severa! times, we will obtain that m is a coefficient 

of Pn(q). As there are infinitely many values of n such that Pn(q) has a coefficient 

larger than m, the equality an,i = m holds for infini tel y many ( n, i) E 71}, with 

n~l. D 
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CONCLUSIONS 

Plusieurs prédicats concernant les entiers positifs, qui sont apparus de dans le 

cadre classique de la théorie de nombres, peuvent être transformés de façon naturelle 

dans des propriétés des polynômes Cn(q) et Pn(q). Par exemple, 

1. a(n) est divisible par 3 si et seulement si Pn(q), réduit mod 3, appartient à 

1 'idéal principal ( q2 + q + 1 )JF 3 ; 

2. Il n'y pas m ~ 1 et k ~ 1 tels que n = m+(m+1)+(m+2)+ ... +(m+k-1) 

avec k pair si et seulement si an,o ~ an,l ~ an,2 ~ ... ~ an,n-1; 

3. n = 2kz pour h ~ 0 et quelque triplet pythagoricien primitif (x, y, z) si et 

seulement si tous les coefficients de Cn( -q) sont non-négatifs; 

4. n =~(x+ y+ z), pour triplet pythagoricien (x, y, z) si et seulement si Pn(q) 

a un coefficient plus grand que 1. 

Il y a une sorte d'« isomorphisme » entre une partie non-triviale de la théorie des 

nombres et la suite de polynômes Cn ( q). Par exemple, le théorème selon lequel 

le produit de deux nombres qui sont des hypoténuses de triangles de Pythagore 

primitifs est aussi un triangle de Pythagore primitif correspond au fait trivial 

suivant : le produit de deux polynômes à coefficients non-négatifs est un polynôme 

à coefficients non-négatifs. L'étude approfondi d'un tel «isomorphisme» mérite 

d'être l'objet de recherches ultérieures. 



Appendices 

37 



ANNEXE! 

FACTORIZATION OF DYCK WORDS AND THE DISTRIBUTION OF THE 

DIVISORS OF AN INTEGER 

Abstract 

In (2), we associated a Dyck ward ((n))>.. to any pair (n, À) consisting of an integer 

n ~ 1 and a real number À > 1. The goal of the present paper is to show a 

relationship between the factorization of ((n))>.. a.'i the concatenation of irreducible 

Dyck words and the distribution of the divisors of n. In particular, we will provide 

a characterization of À-densely divisible numbers ( these numbers were introduced 

in (1)). 

A.1 Introduction 

Zhang (7) established the first finite bound on gaps between prime numbers. In 

arder to refine Zhang's result, the polymath8 project led by Tao (1) introduced 

the so-called densely divisible numbers, which are a weak version of the classical 

smooth numbers. An integer n ~ 1 is À-densely divisible, where À > 1 is a real 

number, if for ali R E [1, n], there is at least one divisor of n on the interval 

[À- 1 R, R]. 
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Let L be a finite set of real numbers. Consider the set 

T(L;t) := U [P,P+t], (A.1) 
lEL 

endowed with the topology inherited from IR, where t > 0 is an arbitrary real 

number. It is natural to associate any integer n 2: 1 with the topological space 

'T>.(n) := T (L; t), 

where L := {ln d : dln} and t := ln À. It follows that an integer n > 1 is 

À-densely divisible if and only if 0,(n) is connected (see Proposition 5). 

In this paper, we will show a relationship between the number of connected 

components of T (L; t) and the factorization of the Dyck word ((S))>. introduced 

in (2), provided that L = {ln s : s E S} and t =ln À. From this general result, 

we will derive a characterization of À-densely divisible numbers in terms of the 

Dyck word ((n))>.., also introduced in (2). We recall the definitions of ((S))>. and 

((n))>. given in (2). 

Definition 1. Considera real number À> 1 and a 2-letter alphabet ~={a, b}. 

(i) Given a finite set of positive real numbers S, the À-class of Sis the word 

such that each letter is given by 

if /-Li E S, 

if /-Li E À S, 

(A.2) 

(A.3) 

for ali 0 ~ i ~ k-1, where J-Lo, /-Lb ... , /-Lk-l are the elements of the symmetric 

difference S6.À S written in increasing arder, i.e. 

À S ·- {À s : s E S} , 

S6.ÀS {J-Lo < /-LI < ... < /-Lk-1} . (A.4) 
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(ii) IfS is the set of divisors of n, then we will write ((n)) >.. := ((S))>... The word 

((n)) >.. will be called the >-.-class of n. 

The proof that ((n))>.. and ((S))>.. are Dyck words was given in (2). Also, the height 

of the Dyck path associated to ((n)) >.. coïncides with the generalized Hooley's .6.>..

function 

.6->..(n) :=max# { dln: dE] >-.- 1 R, R]}, 
R>O 

where R runs over the positive real numbers (see (2)). 

The main result in the present paper is the following theorem. 

Theorem 6. Let ).. > 1 be a real number. 

{i) For any integer n ;::::: 1, the number of connected components of T)...(n) zs 

precisely n ( ((n))>..). 

{ii) An integer n ;::::: 1 is >-.-densely divisible if and only if ((n))>.. is an irreducible 

Dyck ward. 

The function O(w), formally defined using diagram (A.5), is just the number of 

irreducible Dyck words needed to obtain the Dyck word w as a concatenation of 

them 1 . We will derive Theorem 6 taking S to be the set of divisors of n in the 

following more general result. 

Proposition 3. Let ).. > 1 be a real number. Consider a finite set of positive real 

numbers S. Define L := {ln s : s E S} and t := ln>-.. The number of connected 

components of T (L; t) is S1 ( ((S)) >..). 

1. We use the notation f!(w) in analogy to the arithmetical function f!(n) which is equal to 

the number of prime factors of n counting their multiplicities. 
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A.2 Preliminaries 

Con si der a 2-letter alphabet E = {a, b}. The bicyclic semigroup 2 B is the monoid 

given by the presentation 

B := (a, bi ab= E) , 

where E is the empty word. 

Let 1r : E* ----+ B be the canonical projection. The Dyck language V is the kernel 

of 1r, i.e. 

v:= 7r-l (7r (ê)). 

Interpreting the letters a and b as the displacements 1 + v'-1 and 1 - A in the 

complex plane C, we can represent each word w E 1i by means of a Dyck path, 

i.e. a lattice path from 0 to lwl, using only the above-mentioned steps and always 

keeping the imaginary part on the upper half-plane {z E C: lm z ~ 0}. For an 

example of Dyck path, see Fig A.l. lt is easy to check that V can be described as 

the language corresponding to ali possible Dyck paths. 

The language of reducible Dyck words is the submonoid 

V:= {ê} U {uv: u,v E V\{ê}} 

of V. The elements of the complement of V in V, denoted 

are called irreducible Dyck words. 

2. In this paper, the bicyclic semigroup is not just a semigroup, but also a monoid. We 

preserved the word ''semigroup" in the name for historical reasons. 
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It is well-known that V is freely generated by P, i.e. every word in V may be 

formed in a unique way by concatenating a sequence of words from P. So, there 

is a unique morphism of monoids n : V ---t N, where N is the monoid of non

negative integers endowed with the ordinary addition, such that the diagram 

V ------t P* 

'~',,~ l (A.5) 

N 

commutes, where V ---t P* is the identification of V with the free monoid P* and 

P* ---t N is just the length of a ward in P* considering each element of the set P 

as a single letter (of length 1). In other words, !1( w), with w E V, is the number 

of irreducible Dyck words that we need to obtain w as a concatenation of them. 

We will use the following result proved in (2). 

Proposition 4. Let S be a finite set of positive real numbers. For any real number 

>. > 1 we have that ((S)) À E V, i.e. ((S)) À is a Dyck ward. 

A.3 Generic case 

Given a finite set of positive real numbers S, we says that a real number >. > 1 is 

regular (with respect to S) ifS and). Sare disjoint. Otherwise, we say that >. > 1 

is singular (with respect to S). This notion was already introduced in (2). 

lt is easy to check that the number of singular values ( corresponding to a fini te 

set S) is finite. ln this section we will prove Proposition 3 under the additional 

hypothesis that ). is regular. The proof that this proposition also holds true for 

singular values of). will be deduced from the case for regular values in next section. 

Lemma 12. Let ). > 1 be a real number. Consider a jinite set of positive real 

numbers S. Suppose that ). is regular. Define L := {ln s : s E S} and t :=ln>.. 

The space T ( L; t) is disconnected if and only if ((S)) À is a redu cible Dyck ward. 
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Proof. Define L+t := {f+t: fEL}. We have LU(L+t) = {lnJ.Li: 0 ~ 

i ~ k - 1} because >. is regular. Here J.lo, J.L1, ... , J.lk- 1 are the nu rn bers appearing 

in (A.4). Consider the word ((S))>.. = Wo w1 ... Wk-1 as defined in (A.2). 

Suppose that T(L;t) is disconnected. In virtue of (A.1), for sorne 0 ~ j < k -1, 

we have lnJ.L1 + t < lnJ.lj+b i.e., ÀJ.lj < J.l]+ 1. lndeed, if for any 0 ~ j < k -1, we 

have lnJ.LJ+1 ~ lnJ.Lj + t, then the space T(L;t) = [lnJ.L0 ,ln(J.Lk-d + t] will be a 

connected. 

So, the list J.Lo, J.L1, ... , J.lj contains as many elements from Sas elements from>. S. 

lt follows from (A.3) that u := w0 w1 ... w1 satisfies Jula = Julb· So, u is Dyck word. 

Therefore, ((S)) À is a reducible Dyck word, because its nonempty proper prefix u 

is a Dyck word. 

By Proposition 4, ((S)) À is a Dyck word. Suppose that ((S)) À is reducible. For sorne 

0 ~ j < k - 1 we have that the nonempty proper prefix u := w0 w1 ... Wj of ((S))>.. 

is a Dyck word. The relation Jula = Julb and (A.3) imply that the list J.Lo, J.l1, ... , 

J.lj contains as many elements from S as elements from >.S. So, >. J.lj < J.lj+1, i.e. 

lnJ.Lj + t < ln J.LJ+1. Using (A.1) we conclude that T (L; t) is disconnected. 0 

Lemma 13. Let >. > 1 be a real number. Consider a finite set of positive real 

numbers S. Suppose that À is regular. Define L := {ln s : s E S} and t :=ln>.. 

The number of connected components of T (L; t) is n ( ((S))À)· 

Proof. Let J.Lo, J.L1, ... , J.lk- 1 be the numbers appearing in (A.4). Consider the 

word ((S))>.. = w 0 w 1 ... wk_ 1 as defined in (A.2). By Proposition 4, ((S))>.. is a Dyck 

word. We proceed by induction on the number c ~ 1 of connected components of 

T (L; t). 

Consider the case c = 1. Suppose that T (L; t) is connected. By Lemma 12, ((S)) À 

is irreducible. Then c = 0. ( ((S))>..) = 1. 
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Suppose that the number of connected components ofT (L; t) is n ( ((S))>.), provided 

that T (L; t) has at most c-1 connected components for sorne c > 1. Assume that 

T (L; t) has precisely c connected components. By Lemma 12, ((S))>. is reducible. 

Let Pl, P2, ... , Ph be irreducible Dyck words satisfying ((S))>-. = P1P2 ... ph. 

For sorne 0 ~ j < k - 1 we have p1 = w0 w1 ... Wj. Notice that À !Ji ~ /-Lj < /-Lj+l 

for ali 0 ~ i ~ j such that /Ji E S. Indeed, this follows from the fact that both p1 

is a Dyck word. 

Set ting R = {J-Lo, 111, ... , /Jj }, it follows that ((S\R))>. = P2 P3 ... Ph· 

The space T (L\ ln(R); t), where ln(R) := {ln s : s E R}, has precisely c- 1 

connected components, because lnJ-Lj +ln À < ln!JJ+l· Applying the induction 

hypothesis, c- 1 = n ( ((S\R)) >-.) = h- 1. Bence, c = n ( ((S))>-.) = h. 

By the principle of induction, we conclude that the number of connected components 

of T (L; t) is n ( ((S))>-.). 

A.4 General case 

Consider a 3-letter alphabet r = {a, b, c}. We define the H ooley monoid C to be 

the monoid given by the presentation 

C := (a,b,cl ab= E,acb =ab, cc= c). 

Let r.p : f* -----+ C be the canonical projection. The Hooley-Dyck language 1i is the 

kernel of r.p, i.e. 

1i := r.p-1 (r.p(c)). 
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Associating the letters a, b and c to the displacements 1 + .J=I, 1 - H and 

1, respectively, in the complex plane C, it follows that each word w E 1i can 

be represented by Schrôder pa th, i.e. a lattice pa th from 0 to lwl, using only 

the above-mentioned steps and always keeping the imaginary part on the upper 

half-plane {z E C: lm z ~ 0}. For an example of Schrôder path, see Fig A.2. 

Notice that the language 1i corresponds to ali possible Schrôder paths having ali 

the horizontal displacements ( corresponding to c) strictly ab ove the real axis. 

The language of reducible Hooley-Dyck words is the submonoid 

ii:= {c} U {uv: u,v E 11.\{c}} 

of 11.. The elements of the complement of 1l in 11., denoted 

Q := 1l\il 

are called irreducible Hooley-Dyck words. 

It is easy to check that Q freely generates 1l. So, there is a unique morphism of 

monoids 8 : 1l ----+ N, where N is the monoid of non-negative integers endowed 

with the ordinary addition, such that the diagram 

(A.6) 

commutes, where 1l ----+ Q* is the identification of Q with the free monoid Q* 

and Q* ----+ N is just the length of a word in Q* considering each element of the 

set Q as a single letter (of length 1). 

Lemma 14. Let 'Y : f* ----+ E* be the morphism of monoids given by a H a, 

b H b and cH c. We have that 'Y(1i) Ç V. 
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Proof. Notice that the diagram 

(A.7) 

commutes, where 'ljJ is the morphism of monoids given by 'lj;(C) := 'Y(C), for each 

equivalence class C E C. 

Take w E 'Y(kerip). By definition, w 

equalities 

'Y( v) for sorne v E ker 'P· Using the 

1r(w) 1r ('Y( v)) 

'ljJ ('P(v)) 

'ljJ ('P(s)) 

7r( é)' 

we obtain that w E ker1r. Renee, 'Y(ker'P) Ç ker1r, i.e. 'Y(1i) Ç V. 

Lemma 15. The morphism 'Y defined in Lemma 14 satisfies 'Y ( Q) Ç P. 

Proof. Take q E Q. By Lemma 14, we have 'Y(q) E V. Also, we have 'Y(q) =!= s, 

because c* and Q are disjoint, where c* := {s, c, cc, ccc, ... }. 

Suppose that 'Y( q) = uv, for sorne u, v E V\ { s}. lt follows th at q = û v for sorne 

û, v E f* satisfying 'Y (û) = u and 'Y (v)= v. Using the commutative diagram A.7, 

the fact that 'ljJ is an isomorphism and the equalities, 



tp(û) '1/J-1 (7r ('y(û))) 

'1/J-1 (7r (u)) 

'1/J-1 (7r (.s)} 

'P (.s)' 
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we obtain that û E ker 'P = 11.. Similarly, v E ker 'P = 11.. Hence, q fÎ. Q, contrary 

to our hypothesis. By reductio ad absurdum, '"'( (Q) Ç P. 

Lemma 16. Given w E 11., we have 8 (w) = 0 ('y(w)), where '"Y is the morphism 

defined in Lemma 14, 8 is given by diagram (A.6) and 0 is given by diagram 

(A.S). 

Proof. Notice that the diagram 

1l -----+ Q* 

1 1 
V-----+ P* 

commutes, where V ---+ P* is the identification of V with the free monoid P*, 

1l ---+ Q* is the identification of 1l with the free monoid Q*, Q* ---+ P* is the 

morphism of monoids given by w t---t '"Y( w) for all w E Q (this fun ct ion is well

defined in virtue of Lemma 15) and 1l ---+ V is given by w t---t '"Y( w) (this function 

is well-defined in virtue of Lemma 14). It follows that 8 (w) = 0 ('y(w)) holds for 

each w E 11.. 

Lemma 17. Let o: : f* ---+ E* be the morphism of monoids given by a t---t a, 

b t---t band c t---t ab. We have that o:(1l) Ç V. 

Proof. Notice that the diagram 
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(A.8) 

commutes, where x is the morphism of monoids given by x(C) := a(C), for each 

equivalence class CE C. 

Take w E a(kery?). By definition, w 

equalities 

a(v) for sorne v E kery?. Using the 

1r(w) 1r (a( v)) 

X ('P(v)) 

X ('P(E)) 

7r(E), 

we obtain that w E ker1r. Renee, a(ker'P) Ç ker1r, i.e. a(tl) Ç V. 

Lemma 18. The morphism a defined in Lemma 17 satisfies a (Q) Ç P. 

Proof. Take q E Q. By Lemma 17, we have a(q) EV. Using the fact that a does 

not decrease length, we have that a(q) i- E, because E rf. Q. 

Suppose th at a( q) = uv, for sorne u, v E V\ { E}. It follows th at q = û v for sorne 

û, v E f* satisfying a (û) = u and a (v)= v. Using the commutative diagram A.8, 

the fact that x is an isomorphism and the equalities, 



cp(û) x-l (n (a(û))) 

x-l (n (u)) 

x-l (n (c)) 

<p (c), 
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we obtain that û E ker <p = tl. Similarly, v E ker <p = tl. Renee, q ~ Q, contrary 

to our hypothesis. By reductio ad absurdum, a (Q) Ç P. 

Lemma 19. Given w E tl, we have 8 (w) = n (a(w)), where a is the morphism 

dejined in Lemma 11, 8 is given by dia gram (A. 6) and n is given by dia gram 

(A.5). 

Proof. Notice that the diagram 

tl -----+ Q* 

1 1 
D-----+ P* 

commutes, where D --+ P* is the identification of D with the free monoid P*, 

tl --+ Q* is the identification of tl with the free monoid Q*, Q* --+ P* is the 

morphism of monoids given by w t--+ a( w) for all w E Q (this function is well

defined in virtue of Lemma 18) and tl--+ Dis given by w t--+ a(w) (this function 

is well-defined in virtue of Lemma 17). It follows that 8 ( w) = n (a( w)) holds for 

each w E tl. 

The following construction was previously used in (2). 

Definition 2. Given a finite set of positive real numbers S, let vo, v1 , ... , Vr-l be 

the elements of the union SU>. S written in increasing order, i.e. 



Su>..S = {vo < v1 < ... < Vr-d· 

Consider the ward 

[S].x := Uo ul u2 ... Ur-l E r*' 

where each letter is given by 

for ali 0 ::; i ::; r - 1. 

if Vi E S\ ( >.. S) ' 

if viE (>..S) \S, 

if viES n >..S, 
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Example 2. The Dyck path corresponding to ((126))2 = aabaababbabb is shawn 

in Fig A.l. The Schroder path corresponding to [126] 2 = acabcaabccabbcabcb is 

shawn in Fig A.2. 

Lemma 20. Considera finite set of positive real numbers S. For any real number 

>.. > 1 we have [S].x E 1l. 

Proof. We proceed by induction on the number of elements of S, denoted m := 

#S. 

For m = 0, we have [S].x = E E 1l. 

Given m > 0, suppose that for each finite set of positive real numbers S, we have 

[S].x E 1l, provided that #S < m. Take an arbitrary finite set of real numbers 

S having precisely #S = m elements. Denote v0 , v 1, v2, ... , Vr-1 the elements of 

SU >..S written in increasing arder. Consider the ward [S].x = uo u1 u2 ... Ur-l as 

given in Definition 2. 

The inequality >.. > 1 implies that there exists at least one integer i satisfying 

ui =/=a and 1::; i::; r- 1. Define j :=min {i: ui =/=a and 1::; i::; r- 1}. 
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Suppose that Uj =b. Setting S':= S\{v0 }, we have 

where the hat indicates that the corresponding letter is suppressed. Indeed, Àv0 = 

Vj and vo = v1 = .... = Vj-1 = a. 

By induction hypothesis, [S'].\ E 11.. Renee, [S].\ E 11., because it can be transformed 

into [S'].\ E 1{ using the relation ab= ê from C. 

Suppose that Uj = c and Uj+ 1 =b. Setting S':= S\{v0 }, we have 

By induction hypothesis, [S'].\ E 11.. Renee, [S].\ E 11., because it can be transformed 

into [S'].\ E 1{ using the relation acb =ab. 

Suppose that Uj = c and Uj+l = c. Setting S' := S\ {v0}, we have 

By induction hypothesis, [S'].\ E 11.. Renee, [S].\ E 11., because it can be transformed 

into [S'].\ E 1{ using the relation cc= c. 

Finally, suppose that Uj = c and uJ+1 =a. Setting S' := S\ {v0 }, we have 

By induction hypothesis, [S'].\ E 11.. Then using the rewriting rules from C, the 

word 



- -------------------------------------- ------------
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can be reduced to 

where ui 1 = b, and the ward obtained after the reduction uj_ 1 uh = E, 

can be reduced to the empty word using the rewriting rules from C. So, using the 

rewriting rules from C, the original ward [Sh can be reduced to 

and the ward obtained after the reduction Uj_ 1 Uj Ui 1 = acb = ab= E, can be 

reduced to the empty ward as we mentioned above. Renee, [S];. E 1i. 

By the principle of induction, we conclude that [S];. E 1i for any finite set of 

positive real numbers S. 

Lemma 21. Considera finite set of positive real numbers S. For any real number 

>. > 1, we have 1 ([S];.) = ((S))>., where 'Y is the morphism defined in Lemma 14. 

Proof. In· virtue of the identity (SU >.S)\(S n >.S) = S~>.S, the result follows 

just combining Definition 1 and Definition 2. 

Example 3. Lemma 21 can be illustrated by means of Fig A.1 and Fig A.2. 

Lemma 22. Considera finite set of positive real numbers S. For any real number 

>. > 1, the equality a ([Sh) = ((S))N holds for all >.' E ]>., +oo[ near enough to >., 

where a is the morphism defined in Lemma 17. 
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Proof. For any X E]À, +oo[, the change from S U À S to S U X S keeps fixed 

the points in S and it displaces the points in À S to the right. This displacement 

to the right can be made as small as we want just setting X near enough to À. 

ln particular, any point in Sn ÀS, after this transformation, becomes a pair of 

different points, one stays at the original position and the other one displaces to 

the right an arbitrary small distance. Notice that Sn X S = 0 for ali X E]À, +oo[ 

near enough to À (this guarantees th at X will be regular). Combining Definition 

1 and Definition 2, we conclude that a ([S]À) = ((S))N provided that X E]À, +oo[ 

is near enough to À. 

Example 4. Lemma 22 can be illustrated by means of Fig A.2 and Fig A.3. 

FIGURE A.l Representation of ((126)) 2 = aabaababbabb. 

U ffi ffiJ 1 FEN ffi W 
FIGURE A.2 Representation of [126] 2 = acabcaabccabbcabcb. 

-
FIGURE A.3 Representation of [126]2.001 ((126))2.001 

aabababaababababbabababb. 

Lemma 23. Let S be a finite set of positive real numbers. The step function 

]1, +oo[ ----+ N, given by À t-+ 0 ( ((S)h), is continuous from the right, i.e. given 

a real number À > 1, for each real number X E ]À, +oo[, we have 0 ( ((S)h) = 

0 ( ((S)) >-'), provided that X is near enough to À. 
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Proof. By Lemma 20, [S]À E 1-l. By Lemma 21, 'Y ([S]À) = ((S)),\, where 'Y is the 

morphism defined in Lemma 14. Using Lemma 16 we obtain 8 ([S]À) = 0 ( ((S)),x). 

By Lemma 22, a ([S]À) = ((S))N for all >..' E ].X, +oo[ near enough to À, where 

ais the morphism defined in Lemma 17. Using Lemma 19 we obtain 8 ([S]À) = 

0 ( ((S))N) for all >..' E ].X, +oo[ near enough to À. Therefore, 0 ( ((S))À) = 0 ( ((S))N) 

for all >..' E ].X, +oo[ near enough to À. 

Lemma 24. Let L be a finite set of real numbers. Consider the step function 

f :]0, +oo[---+ N such that h(t) is the number of connected components ofT (L; t). 

The function h(t) is continuous from the right, i.e. given a real number t > 0 we 

have h (t') = h (t) for all t' E ]t, +oo[ near enough to t. 

Proof. Let R0 , R1 , R2 , ... , Rk-l be the elements of L written in increasing arder, i.e. 

Denote c := h(t). In virtue of (A.1), we can write T(L;t) as the union 

of the pairwise disjoint sets [Rit, Ri2 + t], [Ri3 , Ri4 + t], ... , [ Ri2c-t, Ri2 c + t], for sorne 

subsequence i 1 < i 2 < i3 < i4 < ... < i2c-l < i2c of 0, 1, 2, ... , k - 1. So, for all 

t' E ]t, +oo[, the set T (L; t') can be expressed as the union 

where sorne of sets in the list [Rip Ri2 +t'], [Ri3 , Ri4 +t'], ... , [Ri2c-1' Ri2c +t'] may 

overlap among them. Assuming that t' is near enough to t, we guarantee that 

the sets [Rit, Ri2 +t'], [Ri3 , Ri4 +t'], ... , [ Ri2c-t, Ri2 c +t'] are pairwise disjoint. Hence, 
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h(t) = h(t') for ali t' E ]t, +oo[ near enough tot. Therefore, fL(t) is continuous 

from the right. 

Using the previous auxiliary results, we can prove Proposition 3. 

Proof.(Proposition 3) By Lemma 23, the step function ]1, +oo[---+ N, given by 

>. f--t n ( ((S))>..), is continuous from the right. By Lemma 24, the step function 

h : ]0, +oo[ ---+ N is continuous from the right, where h(t) is the number of 

connected components of T (L; t). Notice that the step function ]1, +oo[ ---+ N, 

given by >.f--t JL(ln>.)- D(((S))À), is continuous from the right, because the 

naturallogarithm is continuous on ]0, +oo[. By Lemma 13, h (ln X) -n ( ((S)) À') = 

0 for all X E ] >., +oo [ near enough to >. (this guarantees that X is regular). Renee, 

fL (ln>.)- n ( ((S)) À) = 0 follows by continuity from the right. Therefore, the space 

T (L; t) has precisely n ( ((S)h) connected components. 

Proposition 5. Given a real number >. > 1, an integern ~ 1 is >.-densely divisible 

if and only if 0.. ( n) is connected. 

Proof. Suppose that n is >.-densely divisible and 0.. (n) is disconnected. In virtue 

of (A.1), there are two divisors of n, denoted d <d', satisfying 

ln d + ln >. < ln d' 

and there is no divisor of n on the interval ]d, d'[. Using the fact that n is >.

densely divisible, there is a divisor of n on the interval [>. - 1 R, R], with 1 ~ R := 

>. (d + t:) < d' ~ n, for ali E > 0 smali enough. Notice that [>.~ 1 R, R] Ç]d, d'[. 

So, there is a divisor of n on the interval]d, d'[. By reductio ad absurdum, if n is 

>.-densely divisible th en 0.. ( n) is connected. 

Now, suppose that 0.. (n) is connected and n is not >.-densely divisible. Then there 

is sorne RE [1, n] such that there is no divisor of non the interval [>.-1 R, R]. 1t 
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follows that R > >. > 1, because 1 is a divisor of n. Let d be the largest divisor of 

n satisfying d :::; ). - 1 R. It follows th at d < n, bec a use ). - 1 R :::; >. - 1 n < n. Let d' 

be the smallest divisor ofn satisfying >.- 1 R <d'. Notice that >.-1R <d', >.d:::; R 

and there is no divisor of non the interval]d, d'[. 

Using the fact that 0.. (n) is connected, we have that 

[ln d, ln d +ln>.] n [ln d', ln d'+ ln>.] -1= 0. 

It follows that ln d' :::; ln d + ln>., i.e. d' :::::; ). d. So, ). - 1 R < d' :::; ). d :::; R. In 

particular, d' E [). - 1 R, R]. By reductio ad absurdum, if 0.. ( n) is connected th en n 

is >.-densely divisible. 

We proceed now with the proof of the main result of this paper. 

Proof.(Theorem 6) Statement (i) follows by Proposition 3 taking S to be the set 

of divisors of n. 

Take an integer n 2: 1. By Proposition 5, n is >.-densely divisible if and only if 0.. ( n) 

is connected. By Proposition 3, the space 0..(n) is connected if and only if ((n))>. 

is irreducible. Hence, n is >.-densely divisible if and only if ((n)) >. is irreducible. 

Therefore, statement (ii) holds. 

A.5 Final remarks 

Consider the finite field with q elements, denoted Fq. Let ZEBZ be the free abelian 

group of rank 2. For each integer n 2: 1, there is a unique polynomial Pn(q) such 

that for any prime power q, the value of Pn(q) is precisely the number of ideals 

I of F q [Z EB Z] satisfying that F q [Z EB Z] / I is an n-dimensional vector space over 

Fq. It was already observed in (2) that, as a consequence of an explicit formula for 

Pn(q) due to Kassel and Reutenauer (see (3) and (4)), the non-zero coefficients 
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of the polynomial (1- q) Pn(q) are determined by the Dyck word ((n)) 2 (see (2)). 

Combining these results with Theorem 6, the following result can be easily derived 

( we leave the details of the proof as an exercise). 

Theo rem 7. An integer n ;:::: 1 is 2-densely divisible if and only if all the coefficients 

of Pn(q) are non-zero. 
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ANNEXE II 

MIDDLE DIVISORS AND o--PALINDROMIC DYCK WORDS 

Abstract 

Given a real number À > 1, we say that dln is a À-middle divisor of n if 

~ < d :S y;::;;_ 

We will prove that there are integers having an arbitrarily large number of À

middle divisors. 

Consider the word 

given by 

where Dn is the set of divisors of n, ÀDn := { Àd : d E Dn} and u1. u2, ... , uk 

are the elements of the symmetric difference DnbÀDn written in increasing arder. 

We will prove that the language 

contains Dyck words having an arbitrarily large number of centered tunnels. We 

will show a connection between both results. 
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B.1 Introduction 

In order to compute the local zeta function of the Hilbert scheme of n points 

on a two-dimensional torus, Kassel and Reutenauer introduced the self-reciprocal 

polynomial 
n-1 

Pn(q) := an,oqn + L an,k ( qn-l+k + qn-1-k) 
k=1 

in (4) and (5), where the coefficients are given by 

The polynomial Pn(q) is a q-analog of the sum of divisors ofn (see (5)). Furthermore, 

taking q =exp ( 27rfl), for each m E {2, 3, 4, 6}, the corresponding arithmetical 

function n t-t Pn(q) can be expressed in terms of cla.'lsical multiplicative functions 

via modular forms (see (6)). 

We can express (q- 1) Pn(q) as follows (see (3.2) in (5)), 

(q- 1) Pn(q) = qn-1 

1::; k < m,mk = 2n 
k 'f= m (mod 2) 

qn-1 L (q(2n/d-d+1)/2 _ q-(2n/d-d-1)/2), 

dln 

d odd 

Notice that (2n/d- d + 1) /2 = (2n/d'- d'+ 1) /2 or (2n/d- d- 1) /2 = (2n/d'- d'- 1) /2 

implies that d =d'. Renee, the nonzero coefficients of (q- 1) Pn(q) are -1 and 

+ 1. So, it is natural to encode the non zero coefficients of ( q - 1) Pn ( q) by a word 
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over the alphabet {a, b}. Indeed, in (2) the word 1 

parametrized by a real number >. > 1, was defined for any integer n 2: 1 by means 

of the expression 

where Dn is the set of divisors of n, >.Dn := {>.d: d E Dn} and u1, u2, ... , uk 

are the elements of the symmetric difference Dn6.ÀDn written in increasing order. 

For>.= 2 we recover the non-zero coefficients of (q- 1) Pn(q). 

Interpreting the letters a and b as the parentheses "(" and ")" respectively, it 

follows that ali the parentheses in the word ((n))>.. are well-matched (see (2)). 

More technically, ((n))>.. E V, where 1) is the Dyck language over the alphabet 

{a, b}, i.e. the smallest subset of {a, b} *, with respect to the inclusion, satisfying 

E E 1), a 1) b Ç 1) and 1) 1) Ç 1). 

Following (1), we say that a word w E {a,b}* is a-palindromic ifûi = a(w), where 

w is the mirror image of w. Throughout this paper, a will be the morphism of 

monoids given by a t---+ b and b t---+ a. It was proved in (2) that the word ((n)) >.. is 

a-palindromic. 

The formai language 

is connected to the theory of divisors of integers (in the sense of (7)) in a non trivial 

way. For example, the fact that .Ce, where e is Euler's number, contains Dyck words 

1. The operator * is the Kleene star. For any set A, the set of ali strings over symbols in A, 

including the empty string é, is denoted A*. 
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having arbitrarily large height 2 is equivalent to the fact that Hooley's ~-function 3 

is unbounded (see (2)). 

Consider the set S := { aa, ab, ba, bb} endowed with the binary operation, that we 

will call central concatenation, 

u<lv := c.p- 1 (c.p(u)c.p(v)), 

where c.p : S* ---+ S* is the bijection given by 

c.p (c) 

c.p(xuy) 

é, 

( xy) c.p ( u) , 

for all x, y E {a,b} and u ES*. It is easy to check that (S,<l) is a monoid freely 

generated by S and having E as identity element. 

Example 5. For simplicity, we will identify the letters with the parentheses as 

follows a t-t "(" and b t-t ")". Consider the following examples of a product in 

(S, <l), 

((())) <l (()()) = ((((()())))), (()()) <l ((())) = (()((()))()). 

It is easy to check that (V, <1) is a submonoid of (S*, <1), which is freely generated 

by the set of what we will call centrally irreducible Dyck words, 

I :=V.\ (V. <lV.). 

2. The height of a Dyck word is the largest number of nested matched parentheses in it. 

3. This function, denoted ~(n), is the largest number of dln that can be put simultaneously 

on an interval of the form Jt, et] for ali real numbers t > 1. 
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where V.:= V\{c}. Let ct: (V,<l)--+ (Z~0,+) be the morphism of monoids 

given by 

ct(w) ~ { 
1 if w =ab, 

0 if w =!=ab, 

for ali w E I. Following (3), ct( w) will be called the number of centered tunnels 

of w. 

Example 6. Consider the following examples of centered tunnels, 

1()()}, (()()). 

Then, ct(w) = 2 for w = (()()). 

The aim of this paper is to prove the following language-theoretic result, implicitly 

related to the multiplicative structure of positive integers. 

Theorem 8. For any real number >. > 1, the language L>. contains Dyck words 

having arbitrarily large number of centered tunnels i.e. the set ct (C>.) is infinite. 

In arder to prove Theorem 8, we will generalize the definition of the so-called 

middle divisors (see (5) and (9)). We say that dln is a >.-middle divisor, where 

>. > 1 is a real parameter, if 

~ < d ::::; ...;>;;,. 

What is traditionally called a middle divisor is nothing but a 2-middle divisors as 

defined above. Notice that an,o, the central coefficient of Pn(q), counts the middle 

divisors of n. Vatne (9) proved that the sequence n t-+ an,o is unbounded. We will 

derive Theorem 8 from the following generalization of Vatne's result. 

Theorem 9 (Generalized Vatne's Theorem). For any real number >. > 1 and any 

integer M ~ 1, there is an integer. n ~ 1 having at least M >.-middle divisors. 

----------- ------------------------------
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B.2 Generalized Vatne's Theorem 

Lemma 25. Given a real number À > 1 and two positive integers a and b, define 

S>..(a, b) :={(x, y) ES>..: lxi :s; a and IYI :s; b}, 

where S>.. := {(x,y) E 71}: _Ir~/'< (ln2)x+ (ln3)y :s; !~>..}.The limit 

lim #S>..(a, b) = +oo 
min{a,b}-..+oo 

holds. 

Proof. In virtue of the Fundamental Theorem of Arithmetic, :~~ is irrational 

(an integer #- 1 cannat be simultaneously a power of 2 and a power of 3). Using 

Equidistribution Theorem we guarantee that any real number can be arbitrarily 

approximated by x+ :~~y, with (x, y) E 71}. So, the set 

{(ln2)x+(ln3)y: (x,y)EZ2
} 

is dense in R In particular, S>.. is infinite. 

The equality 

S>.. = U S>..(an, bn)· 
n21 

holds for any sequence of pairs of positive integers (an, bn) satisfying 

It follows that #S>..(a, b)-+ +oo as min{a, b}-+ +oo. D 
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We proceed to prove the generalization of Vatne's result. 

Proof.(Theorem 9) 

Take a real number À > 1 and an integer M ~ 1. Let S :>.. (a, b) be the set defined 

in Lemma 25. Take two integers a and b such that #S>..(a, b) >M. Define 

In virtue of the Fundamental Theorem of Arithmetic, for ali (x, y) E S>..(a, b) we 

have a unique divisor 

of n. Notice that the inequalities - 1~:>.. < (ln 2) x+ (ln 3) y~ 1~:>.. are equivalent to 

So, 

It follows that d is a À-middle divisor of n. Therefore, n has at least M À-middle 

divisors. D 



B.3 Language-theoretic interpretation of middle divisors 

B.3.1 Language-theoretic preliminaries 

For any xE S, let 

Cx : (S*, <l) --+ (Z>o, +) 

be the unique morphism of monoids satisfying 

l,(y) :~ { 
for ally ES. 

1 if x= y, 

0 if x# y, 
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Let (S*)"-pal be the set of u-palindromic words from S*. It is easy to check that 

( (S*)"-pal, <J) is a submonoid of (S*, <l), which is freely generated by su-pal := 

{ab, ba}. 

We will use the notation · for the concatenation (which is implicit in practice). 

There is a unique isomorphism of monoids 

~ : ( ( S* )"-pal ' <J) --+ ( {a, b} *' . ) 

such that w t---t ~w, where ~w is the unique word satisfying 

W = ~wu(~w)· 

Lemma 26. For all w E (S*)"-pa1
, 

Cab (w) = l~wla and Cba (w) = l~wlb· 

Proof. It immediately follows that Cab (c) = J~éla· 



For ali w E (S'' )""-pal, 

fab (a W b) = fab ( (ab) <J W) = 1 + fab ( W) 

1 + l~wla = la ~wla = l~awbla, 

fab ( b W a) = fab ( (ba) <J W) = 0 + fab ( W) 

0 + ~~wla = lb~wla = ~~bwala· 
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U sing the fact that ( ( S* )""-pal , <J) is freely generated by {ab, ba}, we con elude th at 

fab(w) = l~wla, for ali w E (S*)""-pal. 

In a similar way, it is easy to prove that, fba (w) = l~wlb, for ali w E (S*)""-pal. 0 

Let vu-pal be the set of CT-palindromic words from v. We have that (va-pal' <J) is 

a submonoid of (V, <J), which is freely generated by 

IŒ-pal :={ab} u {uCT(ù): u Ev.}. 

Lemma 27. For all w E (S*)a-pal, 

lwl = 2fab (w) + 2fba (w). 

Proof. For ali w E ( S* )""-pal, 

lwl lwla + lwlb 

l~wla + 10" ( ~w) la+ l~wlb + 10" ( ~w) lb, by definition of~' 
l~wla + l~wlb + l~wlb + l~wla because w is CT-palindromic 

2l~wla + 2l~wlb 
2fab (w) + 2fba (w), by Lemma 26. 

0 
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Lemma 28. For all w E va-pal, 

ct (w) = fab (w)- eba (w). 

Proof. Consider the morphism of monoids f : (va-pal, <1) ----+ (Z~0 , +) given by 

f (w) := fab (w)- eba (w). 

Notice that, f (ab) = fab (ab)- fba (ab) = 1- 0 = 1. 

Take w E za-pal\{ab}. We have that l~wla = l~wlb, because ~w is a Dyck word for 

ali w E za-pal \ {ab}. In virtue of Lemma 26, 

Using the fact that va-pal is freely generated by za-pai, we conclude that f(w) = 

ct( w) for ali w E va-pal. D 

B.3.2 Middle divisors 

Lemma 29. For any integer n 2: 1 and any real number >. > 1, we have 

fab ( ((n))>.) = # { dln: d f. ÀDn and d < ~}, 

where Dn is the set of divisors of n. 

Proof. By definition of ((n))>., the number of dln satisfying that d f. >.Dn and 

d < >. -J is precisely l~wla· The inequality d < >. -J is equivalent to d < J>:ri. So, 

l~wla = # { dln: d f. >.Dn and d < ~}. 

In virtue of Lemma 26, fab ( ((n))>.) = l~wla· Hence, 

fab ( ((n))>.) = # { dln: d f. ÀDn and d < ~}. 
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D 

Lemma 30. For any integer n 2: 1 and any real number ). > 1, we have 

l!ba ( ((n)) >.) = # { dln : ~ fi_ >.Dn and d < ~} , 
where Dn is the set of divisors of n. 

Proof. Notice that ..;>:;î fi_ Dn \ (>.Dn), because the equality d = ..;>:;î, with dln, 

implies that d = ).~ E >.Dn. It follows that 

l!ba ( ((n))>.) 
1 . 
21((n))>.l-l!ab (((n))>.), by Lemma 27, 

#Dn \ (>.Dn) -l!ab ( ((n))>.), by definition of ((n))>., 

#Dn \ (>.Dn)- # { dln: d fi_ >.Dn and d < ~}, by Lemma 29, 

# { dln: d fi_ >.Dn and d 2: ~} 

# { dln: d fi_ ÀDn and d > ~}, because ~fi_ Dn \ (>.Dn). 

Expressing d as {F for sorne d'ln, 

(i) the condition d fi_ >.Dn becomes {F fi_ >.Dn, 

(ii) the inequality d > ..;>:;i becomes d' < v/1· 

So, the equality 

l!ba ( ((n))>..) = # { dln : ~ fi_ >.Dn and d < ~} 

follows. D 
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Lemma 31. Let À > 1 be a real number. For each integer n > 1, there is a 

bijection An ----+ Bn, where 

An ·- {dln: 

Bn ·- { dln: 

Proof. For any d E An we have, 

d E ÀDn and d < ~} , 

~ E ÀDn and d < ~} . 

(i) ~ < ±J:Xrï = \11, because d < J:Xrï, 

(ii) ~ is a divisor of n, because d E ÀDn, 

(iii) ~ = ÀJ E À Dn, because d is a divisor of n. 
À 

It follows that the function fn : An ----+ Bn,.given by f(d) := ~' is well-defined. 

Also, f is injective, because it is strictly increasing. 

For ali k E Bn we have, 

(i) Àk < À\11 = J:Xrï, because k < \11, 
(ii) Àk E ÀDn, because k is a divisor of n, 

(iii) Àk is a divisor of n, because Àk = ~ and :k is a divisor of n in virtue of 
>.k 

the condition Ï E ÀDn. 

It follows that Àk E An. So, fn (Àk) =k. Renee, fis onto. 

Therefore, fn is a bijection. D 

Lemma 32. Let À > 1 be a real number. For any integer n 2:: 1, the number of 

centered tunnels in ((n)) >.. is precisely the number of À-middle divisors of n. 
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Proof. Consider the sets An and Bn defined in Lemma 31 and satisfying #An = 

#Bn. The number of middle divisors of n can be expressed as 

V1 < d ~ 5n} = # { dln : 

#{dln: d < 5n} - # { dln : d < V1} 
( # { dln: d < 5n}- #An) - ( # { dln: 

# { dln : d rf_ >.Dn and d < 5n} 

-# { dln : S rf_ >.Dn and d < V1} 
fab ( ((n)) >.) - fba ( ((n)) >.), by Lemmas 29 and 30 

c ( ((n))>.), by Lemma 28. 

D 

We proceed to prove our main language-theoretic result. 

Proof.(Theorem 8) 

Take a real number >. > 1 and an integer M 2 1. In virtue of Theorem 9, there 

is an integer n 2 1 having at least M À-middle divisors. In virtue of Lemma 32, 

((n))>. E L>. has at least M centered tunnels. D 

B.4 Final remarks 

1. For all n 2 1, fab ( ((n))2) the number of partitions of n into an odd number of 

consecutive parts and fba ( ((n))2) is the number of partitions of n into an even 

number of consecutive parts. Both results immediately follow combining 

Lemmas 29 and 30 with the main result from the paper (8). 

2. Let Coo be the real vector space of sequences of real numbers x = (xk)k:;::l 
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satisfying xk = 0 for ali k large enough. Consider the lineal functional L : 

Coo --+IR given by 

00 

Lx:= L (ln pk) Xk, 
k=l 

where Pk is the k-th prime number (we consider PI = 2). 

Let Coo (Z) be the Z-module consisting of x = (xkh:::: 1 E Coo for which 

xk E Z for ali k ~ 1. The method that we used to prove the Generalized 

Vatne Theorem may be extended, in arder to obtain more precise results, by 

considering sequences (x(n))n::::I of elements in Coo (Z) satisfying limn-Hoo Lx(n) = 

O. 
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