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PREFACE 

This thesis presents new statistical methods and programs for the analysis of high­

throughput screening (HTS) and high-content screening (HCS) data. When Dr. 

Makarenkov agreed to become my supervisor, he introduced me to Dr. Nadon from 

the Department of Human Genetics of McGill University and Génome Québec 

Innovation Centre. Drs. Makarenkov and Nadon proposed me to work on the 

development of new statistical methods and software in the field of HTS, explaining 

to me that HTS assays were prone to various systematic errors and that this topic was 

very relevant They introduced me to their scientific groups. When I began my 

literature review, I understood the urgent need to develop efficient and accurate 

statistical methods to detect and eliminate systematic errors from screening data. 

Although in the HTS field there exist already a number of systematic error 

elimination methods, I realized that this scientific direction had not been studied in 

detaiL Prof Makarenkov, Prof Nadon and I formulated together sorne important 

statistical issues that could be solved using new methods and software. I spent a lot of 

time in the laboratory to study the HTS process, formulating questions to the 

technical staff of the laboratory, studying the recommended scientific literature, and 

thus getting a better understanding of the origins of systematic error problem in 

screening technologies. 

In the first paper, published in Briefings in Bioinformatics, we reviewed systematic 

errors typical for HTS and HCS screens. This work led to the writing of my second 

article, published in Bioinformatics , where we proposed three new multiplicative 

error elimination methods. Based on the results of the second article, we wrote the 

third article, submitted to SLAS Discovery, which presents different additive and 

multiplicative bias models, including four new models. Dr. Makarenkov offered his 

expertise in HTS/HCS techniques. He helped me define the main objectives of my 



Il 

PhD thesis. Dr. Nadon gave me advices and recommendations conceming the use of 

statistical methods . Both Prof. Makarenkov and Prof. Nadon helped me write and 

review the three articles and the thesis. 

This PhD thesis includes multidisciplinary materials, so that it can be of interest to 

statisticians, bioinformaticians, and life scientists. The Introduction section of this 

thesis does not include a comprehensive literature review because it is present in the 

first article (Chapter I). My PhD thesis contains an introduction chapter, the three 

manuscript chapters, and a conclusion chapter. 
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RÉSUMÉ 

Le criblage à haut débit (CHD) et le criblage à haut contenu (CHC) sont des 
techniques expérimentales efficaces permettant aux chercheurs d'identifier un petit 
nombre de candidats potentiels parmi des millions de composés chimiques (ou par 
exemple, de petites molécules, d'ADN complémentaire, de petits ARN interférents) 
pouvant devenir de nouveaux médicaments. Durant les dernières décennies, les 
nombreux centres CHD/CHC ont été créés dans les campus universitaires (Peter et 
Roy 2011). Au cours des dernières années, les résultats des CHD/CHC ont trouvé des 
grandes applications dans la recherche biologique, par exemple pour l'étude des 
maladies orphelines comme le paludisme et la fibrose kystique (Brewer 2009; 
Okiyoneda et Lukacs 2012; Preuss et al. 2012) . 

Néanmoins, les données CHD/CHC peuvent contenir des erreurs systématiques (ou 
des biais spatiaux). Ces erreurs affectent généralement de manière significative toutes 
les mesures expérimentales, en augmentant ainsi le nombre de faux positifs et de faux 
négatifs retournés pas des méthodes de recherche de composés actifs. L'application 
des méthodes statistiques appropriées permet d'éliminer ou de réduire l'effet d'erreurs 
systématiques dans les données CHD/CHC. Plusieurs chercheurs (Brideau et al. 
2003, Makarenkov et al. 2007, Dragiev et al. 2011 et 2012) ont montré que les 
méthodes d'élimination des erreurs systématiques peuvent être appliquées avec succès 
aux données CHD/CHC expérimentales. Dans cette thèse, nous proposons de 
nouvelles méthodes et protocoles statistiques servant à réduire l'impact d'erreurs 
systématiques dans les analyses CHD/CHC. La thèse est divisée en trois parties 
principales correspondant à nos trois articles. 

Le premier article examine les technologies de criblage existantes et leurs biais 
associes. Ici nous décrivons les différents types d'erreurs systématiques 
caractéristiques aux données CHD/CHC. Nous parlons de l'avantage des mesures 
répliquées et randomisées pour obtenir une meilleure précision des résultats dans les 
campagnes CHD/CHC. Les principales méthodes statistiques qui sont utilisées pour 
éliminer les erreurs systématiques, essentiellement de type additif, sont également 
présentées. Dans ce premier article, nous évaluons la grandeur de l'erreur 
systématique présente dans les données CHD expérimentales publics. Nous 
proposons également un protocole de prétraitement des données général, adopté à 
l'analyse des données de criblage. 
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Le deuxième article présente trois nouvelles méthodes statistiques pour éliminer les 
erreurs systématiques multiplicatives. Pour détecter l'erreur systématique, nous 
utilisons le test non-paramétrique de Mann-Whitney U. Les biais spatiaux présents 
dans les essais sont corrigés via la résolution d'un système d'équations nonlinéaires 
ou par les procédures itératives d'élimination de biais. Nous montrons que les 
nouvelles méthodes de correction de données suppriment bien des erreurs 
systématiques multiplicatives présentes dans les lignes et les colonnes de chaque 
plaque de l'essai considéré. 

Le troisième article propose de nouvelles méthodes statistiques pour éliminer les 
erreurs systématiques du type additif et multiplicatif, en considérant les différentes 
interactions possibles entre ces erreurs. Nous utilisons les tests de Cramer-von-Mises 
et d'Anderson-Darling pour estimer la qualité de l'ajustement des valeurs originales 
par des valeurs corrigées et pour déterminer ainsi le meilleur modèle pour les données 
d'intérêt. 

MOTS-CLÉS : biais spatial, criblage à haut débit, criblage à haut contenu, erreur 
systématique, erreur additive, erreur multiplicative 



SUMMARY 

High-Throughput Screening (HTS) and High-Content Screening (HCS) are effective 
experimental techniques that allow researchers to identify a small number of potential 
drug candidates among millions of chemical compounds, cDNAs or RNAis. Over the 
last few decades, many HTS and HCS centers have been created in academie 
campuses (Peter and Roy 2011). Recently, HTS assays have also found large 
applications in biological research, e.g. , in studying orphan diseases like malaria and 
cystic fibrosis (Brewer 2009; Okiyoneda and Lukacs 2012; Preuss et al. 2012). 

However, as bas been noted in many studies (Brideau et al. 2003 , Makarenkov et al. 
2007, Dragiev et al. 2011 and 2012), HTS and HCS data are usually severely affected 
by systematic errors (i.e. , spatial biases) . These errors lead to an important increase in 
the number of false positive and false negative bits ( e.g., active compounds that have 
the potential to be developed into new medications). One possible solution to this 
problem is to apply statistical methods designed to minimize the impact of systematic 
errors on experimental HTS/HCS data. To this end, this thesis proposes new 
statistical methods, data pre-processing protocols, and software for reducing 
systematic errors from experimental high-throughput screening assays. The thesis is 
organized by publications. 

The first paper reviews existing screening technologies and their related biases. It 
describes the different types of systematic errors present in HTS and HCS data. The 
existing statistical methods and models proposed to eliminate systematic errors are 
also reviewed. In the first article, we also assess the magnitude of systematic error in 
experimental HTS data and propose a general data pre-processing protocol which can 
be recommended for the analysis of the current or next generation screening data. 
The second paper presents three new statistical methods for spatial bias correction 
meant to minimize the impact of multiplicative spatial biases. In our study, the 
presence of bias in rows and colurnns of a given plate is identified using the non­
parametric Mann-Whitney U test. Our data correction methods modify the data only 
in the bias-affected rows and colurnns. The usefulness of the new methods is 
demonstrated by a simulation study as well as by the analysis of publicly available 
ChemBank data. 
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In the third paper, we consider six bias correction models : two existing models and 
four new models . These models account for different possible interactions between 
additive and multiplicative spatial biases. We use the Cramer-von-Mises and 
Anderson-Darling tests to estimate the goodness-of-fit of the raw data by the 
corrected data and to select the most appropriate (additive, multiplicative or mixed) 
spatial bias model for the data at hand. 

K.EYWORDS : high-throughput screening, high-content screening, systematic error, 
spatial bias, additive error, multiplicative error . 



INTRODUCTION 

0.1. High-Throughput Screening and High-Content Screening 

High-Throughput Screening (HTS) and High-Content Screening (HCS) are popular 

biotechnological methods allowing researchers to test a large number of chemical 

compounds in order find a small proportion (around 1% or less) of potential drug 

candidates (i.e., chemical compounds with very high activity levels, also called bits). 

Nowadays, HTS and HCS assays are regularly used by the modem pharrnaceutical 

industry at the first step of the drug discovery process (Dove 2003 ; Kaiser 2008 ; 

Silber 201 0; Lachmann et al. 20 16). It bas been also demonstrated that the se 

technologies can be used successfully for studying various diseases, including the 

orphan diseases like malaria and cystic fibrosis (Brewer 2009; Okiyoneda and Lukacs 

2012; Preuss et al. 2012). As indicated in Malo et al. (2006) and Sirois et al. (2005), 

the drug development process usually contains the four following main steps (Figure 

0.1): 

1. Primary Screen: preparation of screening assay and primary bit detection; 

2. Counter screen and Secondary screen: bit identification for biological 

relevance and bit confirmation; 

3. Structural-activity relationship (SAR) and medical chemistry: identification of 

leads; 

4. Clinical trials: clinical compound selection, entry into human studies and 

regu1atory approval for a new drug. 
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Figure 0.1 The drug development process according to Malo et al. (2006) . 

During a typical HTS/HCS campaign, lasting over a few days, millions of chemical 

compounds and thousands of microtiter plates are usually analyzed (Agresti et al. 

2010). 
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In an HTS/HCS pnmary assay, the selected library of chemical compounds is 

screened against a specifie biological target to measure the intensity of the related 

inhibition or activation signal. 

Figure 0.2 presents typical HTS plates. In general, a standard HTS plate contains 

either 96, or 384, or 1536 wells. 

Figure 0.2 Typical HTS plates (96 wells, 384 wells and 1536 wells, respectively); 

source: https://shop.gbo.com/en/row/products/0110/0110_0040. 

The wells are arranged in a rectangular matrix pattern. The robots introduce an 

appropriate biological target culture into every well of a given plate, such as a 

protein, a small molecule, a cell, or a siRNA. After the incubation period, the 

measurements are taken to get the evaluations of biological activity in all wells of the 

plate using specialized automated analysis machines . The measurement of a well is 

usually considered as a single numeric value. Thus, the measurements of a plate 

obtained during the screening process can be represented by a matrix of numerical 

values. At the end of the screening process, statistical methods should be used to find 

the hits (i.e., the compounds with the highest activity levels) . 
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Figure 0.3 A typical HTS/HCS procedure. Blue colored wells contain negative 

controls, red colored wells contain positive controls and yellow colored wells contain 

the library compounds. 

Figure 0.3 presents an example of a typical HTS/HCS process (Menke 2002; Janzen 

and Bemasconi 2009; Macarr6n and Hertzberg 2011). This process uses the robotic 

liquid handling, automatic processing and scanning of plates, as well as sorne 

statistical tools to detect chemical compounds (i .e., bits) providing the best inhibition 

of the E. coli bacterium. The presented assay uses 96-well plates. 
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Figure 0.4 HTS robotic equipment usmg hundreds of pipettes; source: 

http:/ /whyfiles.org/20 14/stem-cell-advance. 

Recent improvements in drug discovery and in high-throughput screening permitted 

obtaining high resolutions even at the cellular level (Noah 201 0). The corresponding 

screening technology was named High-Content Screening (HCS). The detailed 

information about cell structure can be now obtained by extracting multicolor 

fluorescence signais. The main sub-categories of HTS and HCS technologies are the 

following: small molecules, complementary DNAs (cDNAs), and RNA interference 

(RNAis) . These sub-categories vary with respect to the target of interest. 

In the pharmaceutical industry the term small molecule is related to a specifie 

biological target such as a specifie nucleic acid or protein (Cram101 , 2012). Small­

molecules are used in drug discovery for target validation, assay development, 

secondary screening, pharmacological property assessment and lead optimization 

(Lazo et al. 2007). eDNA libraries are manufactured from messenger RNAs (mRNA 

molecules) (Brown and Song 2000). The transformation ofunstable mRNA template, 
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via reverse transcription, produces stable eDNA. Nowadays, the eDNA libraries are a 

very effective tool used in drug discovery. The biological process, in which a short 

RNA molecule suppresses gene expression by targeting specifie mRNA molecules 

for degradation is defined as RNA interference (RNAi). The researchers call this 

process silencing. This technique is frequent in drug discovery. Scientists use the 

RN Ais to silence genes. Nowadays, four types of RN Ai rea gents are applied in RN Ai 

screening technologies: dsRNAs (double-stranded RNA), siRNAs (small interfering 

RNA), shRNAs (short hairpin RNA), and endoribonuclease-prepared siRNAs 

(esiRNAs) (Mohr et al. 2010) . 

A more detailed description of small molecule, eDNA and RN Ai screens is available 

in Chapter I. The main biases characteristic for these screens are presented in details 

in Section 0.3. 

0.2 Systematic error in HTS/HCS screens 

Unfortunately, raw compound activity measures can be disturbed by two additional 

factors: random errors and systema.tic errors (or spatial biases) (Makarenkov et al. 

2007). Random error lowers screening precision and may affect false positive and 

false negatives rates (Box et al. 2005). Its negative impact can be minimized by using 

duplicate measurements (Malo et al. 201 0) or by blocking (Murie et al. 20 15). 

Ramadan et al. (2007) showed that random errors can be the cause of nonspecific 

phenotypes in specifie wells and lead to higher rates of false positives and false 

negatives. In contrast, Dragiev et al. (2011) suggested that random error, on the 

opposite of systematic error, usually bas a minimum impact on the hit selection 

process . 
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Definition Systematic error, or systematic bias, can be defzned as a variability of 

measurements taken at the same plate or assay locations, consisting of their 

systematic under or over-estimation (Kevorkov and Makarenkov 2005). 

Systematic error, or systematic bias, has been observed in many HTS/HCS assays 

(Brideau et al. 2003, Makarenkov et al. 2007, Lachmann et al. 2016). The origin of 

systematic error can be biological, human or mechanical. For instance, it can be due 

to different robotic and environmental factors, such as robotic failure, reader effect, 

pipette malfunctioning or other liquid handling anomalies, variation in the incubation 

time or temperature difference, and lighting or air flow abnormalities, present over 

the course ofthe entire screen (Heyse, 2002; Makarenkov et al., 2007). 

Different types of systematic error, including edge and batch effects (Soneson et al. 

2014 ), are described in detail in Chapter I of this thesis. 

0.3 Small molecule, eDNA and RNAi screens and the related systematic errors 

Small molecule screens: Small molecules can be either natural or artificial. These 

molecules are associated with a particular biopolymer. Kim et al. (2007) showed that 

a lot of small molecules are cytotoxic in hepatocyte replicon cell lines. These 

molecules are very susceptible to cytotoxic or cytostatic agents. Cytotoxic effects 

may be confused with antiviral activity when cytotoxic effects have lower luciferase 

signal reducing cells' vital activity. Chan et al. (2009) indicated that a substantial 

fraction of small molecules show aggregating behaviour. It usually happens because 

of nonspecific attachment to target proteins, resulting in false positive bits in 

experimental screening assays. Thus, the capability to effectively detect the 

substances with aggregating characteristics may rationalize the screening procedure 

by excluding uns table molecules from further examina ti on. Harmon et al. (20 1 0) 

indicated that many pathogenic Gram-negative bacteria represent a type three 
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secretion system (TTSS) . TTSS translocates effectors proteins into the cytosol of 

their eukaryotic cell targets. The authors mentioned that the molecules that interfere 

with assembly of TTSS are not efficiently detected in experimental HTS screens. 

They postulated that systematic error in small molecule screens often appears due to 

the fact that TTSS is preassembled prior to exposure to compounds and cells. 

Wootten et al. (20 13) mentioned that the individual G protein-coupled receptor 

(GPCRs) may be found in multiple receptor conformations and may be the cause of 

numerous functional reactions, bath G protein- and non G protein-mediated. This 

concept, referred to as biased agonism, is also known as functional selectivity, or 

stimulus systematic bias, or ligand-directed signaling, or ligand systematic bias 

(Kenakin 2011). We should mention that sorne interesting cases of ligand systematic 

bias for the glucagon-like peptide-1 were discussed in Willard et al. (20 12). 

eDNA sereens: eDNA libraries are essential tools for discovery and validation of 

novel drug targets in functional genomics applications, but they are not exempt of 

different biases. In one of earlier studies, Kopczynski et al. (1998) suggested that the 

representation of clones is underestimated or overestimated by sequence analysis 

encoding membrane-targeted proteins in the rough microsomes libraries. It happens 

due to systematic error related to cytosolic and nuclear proteins . Caminci et al. (2000) 

indicated that the process of generating full-length eDNA libraries may have sorne 

specifie issues. The authors mentioned that the process of preparation a full -length 

eDNA is more effective for short mRNAs than for long transcripts . Moreover, 

cloning and propagation are trickier for long cDNAs than for short cDNAs, therefore 

creating further size bias. Carninci and Shibata (2000) observed that the plasmid 

libraries were related to a cDNA-size cloning bias . This bias manifests itself as an 

increased cloning effectiveness of short cDNAs. Furthermore, the increase of eDNA 

clones can be related to the plasmid length during library amplification before 

normalization and/or subtraction. It means that the long clones are usually 

underrepresented after bulk amplification of the library. To overcome the issues 
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related to the library amplification, Carninci and Shibata developed a specifie eDNA 

data correction method. Fossa et al. (2004) demonstrated the aptitude of biopanning 

to enrich TAAs (tumor-associated antigens) from tumor eDNA libraries under 

determined experimental conditions. However, this enrichment may be related to the 

loss of positive clones as weil as to systematic error. Systematic error arises here from 

non-immunological factors (for example: inefficient protein presentation or delayed 

growth of phage-infected bacteria). Wan et al. (2006) suggested that the 

oligonucleotide synthesis is not entirely effective. It means that the probability of the 

presence of synthesis bias augments with every base added. Wan et al. suggested 

using only high-quality oligonucleotides because synthesis bias may be either 

included into the amplified product or may generate sorne other off-target effects. 

RNAi screens: Recently, RNA interference (RNAi) screemng has made great 

progress, evolving from a biological phenomenon into an effective method of drug 

discovery (Sharma and Rao 2009). Birmingham et al. (2009) mentioned that the 

transfection process is the main source of variability in siRNA screens. Transfection 

process produces cell stress and influences cell viability. It may have variable and 

indirect phenotypic influence in cellular assays . The target gene product can be 

decreased or practically erased in the cell by RNAi reagents . Due to these 

mechanistic factors , RNAi reagents require 48-72 hours for maximal effect, whereas 

small molecules can immediately affect their protein targets within a few hours. Such 

longer time intervals between cell plating and assay endpoint lead to a greater impact 

of cell culture and environmental variation on phenotypes and cause sorne important 

assay variability in RNAi screens. Zhang et al. (2008) underlined that a good plate 

design in HTS RNAi is needed to identify systematic error as well as to determine 

which normalization and data correction techniques should be used to reduce the 

impact of systematic error on both quality control and hit selection processes. Auer 

and Doerge (20 1 0) discussed so-called fane effect in RN Ai screens. The authors 

indicated that lane effect includes any systematic error that appear from the item at 
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which the sample is introduced into the flow cell until the samples are removed from 

the sequencing machine (i.e., badly-organized sequencing cycles and errors in base 

calling). Several publications have appeared in recent years to highlight that the main 

issue in RNAi screening is off-target effect (Birmingham et al. 2006; Buehler et al. 

2012; Chen et al. 2013 ; Das et al. 2013). This kind of error appears when a siRNA is 

processed by the RNA-Induced Silencing Complex (RISC) and down-regulates 

unintended targets . Echeverri et al. (2006) suggested that an initial origin of off-target 

effects is a comparatively buge tolerance for mismatches between the siRNA guide 

strand, the ultimate targeting molecule and the complementary target mRNA 

sequence, outside of the short 'core' targeting region. Sharma and Rao (2009) 

described three different types of off-target effect. Firstly, when a siRNA sequence is 

the same or nearly identical to a sequence present in an unrelated mRNA, the final 

degradation of the unrelated mRNA can establish a confounding phenotype. Thus, the 

final result is a false-positive hit. We can avoid this problem only if the related 

siRNA sequences are selected very carefully. Secondly, a siRNA may operate as 

microRNA and produce depletion of non-target proteins through mRNA degradation 

or translational block, where the 'seed region' of a siRNA pairs with a weakly 

complementary sequence in the 3' untranslated region of an unrelated mRNA. This 

problem is intrinsic to RNAi screens and is very difficult to solve. The last type of 

off-target effect is characteristic for mammalian cells. It is well known that even short 

siRNA can switch on the antiviral type I interferon response in a sequence­

independent way, particularly when saturating doses of siRNA or shRNA are 

supplied. 

0.4 Systematic errors specifie to HCS 

HCS-specific systematic biases can be divided into two types according to their 

spatial distribution (see Table 0.1): 
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1. Intra-well (per weil) bias appears when cells are not distributed uniform1y. It is 

arising while gathering data from a given well location. It usually happens when cells 

are clumped, which also changes cell adherence and morphology characteristics. 

Such an effect is called cel! count distribution systematic bias. It affects post­

processing steps and can skew results significantly if not enough images per well are 

taken. Another type of intra-well bias can appear because of cell cycle distribution 

heterogeneity when cells are in different stages of cell cycle, and thus treatments are 

affecting them differently. This usually bas an effect when analyzing treatment 

response and cell structure (Snijder and Pelkmans 2011 ). 

2. Intra-image (per-image) bias consisting of microscope-related errors is ar1smg 

while capturing images. One of the issues here is a non-uniformity of background 

light intensity distribution, which is slowly varying as well as systematic change of 

the spatial distribution of light in images. Such an effect can add or subtract 

intensities at any pixel location, thus affecting data quantification and statistical 

analysis, which, in turn, can affect cell segmentation and florescence measurements 

(Lo et al. 2012). 

Systematic bias can also occur if the focus is not maintained throughout all captured 

images. Out of focus images can impact on the cell segmentation (Bray et al. 2012). 

They can also lead to the issues in the identification of thresholds that consistently 

separate abjects of interest from background, thus reducing the accuracy of object 

segmentation and causing bias in the measured cell metrics that depend on both the 

pixel intensities and segmentation step (Lo et al. 2012). It is worth noting that image 

segmentation is vital for the viability HCS data. Identification of cells or sub-cellular 

structures and the related morphological "features" (such as fluorescent intensity, 

object shape, size and texture) are fully dependent on image segmentation. We should 

mention that, unfortunately, sorne "HCS-unfriendly" cell lines, which are still very 

clinically pertinent, for example human tumor cell line SK-BR-3 , grow only in 
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complex patterns. For such cell tines, one must be very careful when doing image 

segmentation, because errors in segmentation can arise more frequently, resulting in 

the inappropriate designation of partial or multiple cells as single cells. 

Another comrnon problem in HCS is that of fluorophore saturation and debris, which 

can affect the intensity measurement. It can occur if the settings are not optimal for 

every image, resulting in a higher than maximum signal for at least one pixel. Such 

an effect reduces the measured intensity value of the affected pixel, systematically 

biasing the intensity results (Brown 2007). In a typical HCS screen, in which 

hundreds or thousands of images are segmented, the review, classification and 

correction of the acquired images is a complex task requiring multiple statistical and 

medical skills. Systematic errors in these screens should be removed using 

appropriate correction and normalization methods (Hill et al. 2007). 

Table 0.1 Systematic biases specifie to HCS technologies 

Per weil intra-well) Per image (intra-image) 

Out-of 
Non-uniformity 

Fluorophore 
Cel/ coLm/ distribution Cel/ cycle distribution focus 

systematic bias 
saturation 

bias and debris 

Clumping of 
Ce lis 

Morphology-
Ce li Intensity 

ce lis 
adherence 

related error 
structure Segmentation error measurement 

error err or error 

0.5 Data normalization methods 

Normalization techniques used m HTS/HCS allow for transforming the 

measurements of a given plate (orwell location) in order to make them comparable 

over different plates (or well locations) of the same assay. We should mention that 

data normalization methods are not specifically designed to eliminate systematic 
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errors. The following simple normalization methods are commonly used in HTS/HCS 

technologies: 

Z-score: is a simple and well known method which allows one to transform the 

original data set into a normalized data set with the mean of 0 and the standard 

deviation of 1. The mean value of a given plate is first subtracted from all of its 

measurements. After that the values of all measurements are divided by the standard 

deviation of the plate. The equation that describes Z-score is as follows: 

A x if -
11 h e " d ct· el th mean and the standard x if = a , w er (""' an a are, respe IV y, e 

deviation the plate's measurements. 

Robust Z-score: is similar to Z-score, but uses the MAD statistic instead of the 

standard deviation of the plate. Also, in the Robust Z-score the median is applied in 

place of the mean to get a more robust statistical estimate. Robust Z-score 

x-med 
normalization is described by the following equation: x .. = u , where medis 

u MAD 

the median of all measurements of a given plate and MAD is its Median Absolute 

Deviation. The robust Z-score normalization is more robust to outliers compared to 

traditional Z-scores. For more details about the existing data normalization 

techniques the reader is referred to Chapter I. 

0.6 Statistical tests to detect the presence of systematic error in screening data 

Once the raw experimental data are normalized, statistical tests can be applied to 

them to detect the presence of systematic error. These tests allow for a judicious use 

of bias elimination methods and software which should be applied with caution. 

Makarenkov et al. (2007) indicated, for example, that spatial bias correction methods 

may introduce different biases into the data at band when applied to bias-free data. 

We will actively use bias detection techniques in Chapter II, in which we present new 
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bias correction methods assuming that the biased rows and colurnns of all plates are 

known. The main tests that have been used for bias detection in screening 

technologies are summarized below: 

Welch's t-test (Welch 1947) is an adaptation of Student's t-test. This test does not 

assume that the two data samples are drawn from populations with equal variances 

and that these populations have the same size. The measurements of a particular plate 

(or of a hit distribution surface) are divided into two samples: the first sample 

includes the values of the tested row or column and the second sample includes the 

rest of the plate's measurements. The null hypothesis, H 0, here is that the considered 

row or column does not contain systematic error. The equation that defines Welch's t-

test is as follows: t = f.l., - f.1.z . The measurements of a given plate are subdivided 
2 2 

!.L +~ 
N 1 N 2 

into two samples: S, - the first sample that includes the measurements of the tested 

row or column and S2 - the second sample that includes the rest of the plate's 

measurements . Here, f.1.
1 

is the mean of sample S, and f.1.z is the mean of sample S2 , 

sample S, contains N , elements and sample S2 contains N 2 elements, and s~ and 

si are the respective variances of S, and S2 . 

The Mann- Whitney U test is equivalent to the Wilcoxon rank sum test (Wilcoxon 

1945; Gibbons and Chakraborti 2011). lt is a nonparametric test. As in many other 

nonparametric procedures, the ranks of the scores are calculated. W e combine two 

populations and we assign the rank to each of the scores. The first lowest 

measurement obtains rank 1; the second lowest measurement gets rank 2, and so on. 

This procedure verifies the null hypothesis, Ho, which postulates that the two 

compared population distributions are identical. 

The Kolmogorov-Smirnov goodness-of-fit test (D'Agostino and Stephens 1986) 

preceded by the Discrete Fourier Transform (DFT) procedure (Cooley and Tukey 
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1965; a1so see Dragiev et al. 2011). To apply the DFT procedure to raw data we need 

first to unroll the plate's measurements matrix into a linear sequence of 

measurements . There are two natural ways to do so: 

• to construct this sequence beginning with the first row of the plate, followed 

by the second one, and so on, and 

• to construct this sequence beginning with the first colurnn of the plate, 

followed by the second one, and so on. 

DFT detects frequencies of signais that repeat each two, three, four, and so on, 

positions in the sequence and computes the amplitudes of each eventual frequency 

component. We apply the Kolmogorov-Smimov goodness-of-fit test to calculate the 

density spectrum y{ which occurs under the null hypothesis of no effect. The test 

statistic D can be determined usmg the following equation: 

D= max (F(y{) -k- 1,!5_-F(y{ )), where F(y{) is the number of 
I<;,k<;,Nx(NR+Nc) N N 

measurements in the density spectrum that are lower than or equal to y{. If values of 

D are large, this suggest the rejection of the null hypothesis which postula tes that the 

tested measurements have been drawn from random normally distributed data. 

0.7 Systematic error correction methods used in screening technologies 

The main purpose of systematic error correction methods is to eliminate the plate­

specifie and assays-specific spatial biases within the considered plate or assay. Plate­

specifie biases affect the data located in a particular row or colurnn of a given plate. 

Assay-specifie biases affect the data of the same weil location over ali plates of a 

given assay. Here, we present the most important methods, which have been used for 

bias correction in the HTS/HCS technologies. More methods are presented in Chapter 

I of this thesis. 
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R-score: The robust regression procedure is used to fit the regression model to the 

data in the R-score method. To assess the method's parameters, the rlm function from 

the MASS package of the R statistical language is applied. The equation that 

describes the R-score model (Wu et al. 2008) is as follows : xiJP = Jlp + R;p + C1P + riJP ' 

where xiJP is the compound measurement in row i and columnj of plate p , Jlp is the 

mean of plate p, R;p is the row bias affecting row i of plate p , C1p is the column bias 

affecting column j of plate p , and r up is the residual in well (i , j) of plate p. 

B-score: On the p 111 plate, the residual r iJp = xiJP- x iJP of the measurement located on 

the intersection of row i and column j is calculated by applying a two-way median 

polish procedure (Tukey 1977; Brideau et al. 2003 ). The residu al is obtained as the 

difference between the raw value XiJp and the fitted value xiJP. The model is defined as 

follows : xiJP = Jlp + R;p + C1P + riJP, where Jlp is the mean measurement of plate p , R;p 

is the bias affecting row i of plate p , and C1P is the bias affecting columnj of plate p. 

For every plate, the adjusted median absolute deviation (MAD) is calculated from 

rup's. The B-score estimates are obtained from the following equation: 

r. . 
B-score = ~ where MAD P = med {1 riJP - med (riJP ) 1}. 

p' 

Partial Mean Polish (PMP) : PMP (Dragiev et al. 2012), or additive PMP, is another 

extension of the well-known median po1ish procedure (Tukey 1977). PMP is an 

iterative method, in which the measurement correction is applied only to the rows and 

columns of a given plate that are affected by spatial bias (the bias location is assumed 

to be known in this method). 

Weil correction : This is an assay-specifie correction method that normalizes the data 

along the well locations of a given assay (Makarenkov et al. 2007). At first, Z-score 

normalization is carried out within each plate of the assay. Th en, a linear !east-square 

approximation is carried out for the measurements of each weil location of the assay. 
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Finally, Z-score normalization is applied once agam, but this time for the 

measurements of all weil locations of the assay. 

Diffusion Mode!: This method was designed to minimize the edge effect in the HTS 

RNAi screens (Carralot et al. 2012) . The method relies on a diffusion model using the 

Laplace operator: ob(i,j,t) = cx f.. x b(i,J,t), where b(i, j ,t) is the evaluated spatio-
ot 

temporal diffusion field in well (i, j) at time t (i .e., evaluated spatial bias), c is the 

diffusion coefficient, and f.. is the Laplace operator. 

Spatial and Weil Normalization (SPA WN): The SPA WN method first applies a 

trimmed mean polish procedure on individual plates to minimize row and colurnn 

(i.e. , plate-specifie) spatial biases (Murie et al. 20 13). It was shown that the trimmed 

mean approach has good a robustness (Malo et al. 2010; Murie et al. 2015). The R­

score model is used to fit the data. Second, a well normalization step is carried out to 

determine spatial bias template, using the median of the scores at well location (i, j) 

computed over all plates of the assay. The spatial bias template scores are subtracted 

from the scores obtained by the median polish procedure. Th us, SPA WN allows one 

to minimize both plate-specifie and assay-specifie spatial biases. 

0.8 Hit identification 

The goal of any HTS/HCS campaign is to identify the compounds with the highest 

activity levels (i.e ., hits). Statistical and bioinformatics tools can allow practitioners 

to ameliorate the precision and exactitude of the detected hits using an appropriate 

experimental design and analytical methods. This data analysis step is critical in high­

throughput screening. 

Sorne practitioners select as screenmg positives a fixed number, or a fixed 

percentage, of top scoring compounds (for example 1%, Nelson 2004) . Compounds 
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whose activity exceeds a fixed percent-of-control threshold may also be considered as 

bits (Malo et al. 2006). A key limitation of this strategy is that it is rather arbitrary 

and suffers from the absence of any probability model. 

The second strategy for bits detection is to find the compounds whose activity 

exceeds a threshold that is a function of the mean and the standard deviation of the 

data at band. As reported by Makarenkov and Zentilli (Makarenkov et al. 2007), the 

bit selection thresholds are usually established using the fl-CCJ formula for inhibition 

assays (here the bits are the values that are lower than this threshold) and fl+CCJ 

formula for activation assays (here the bits are the values that are higher than this 

threshold), where the mean value fl and the standard deviation CJ are computed 

separately for each plate. The constant c is usually set to 3.0, 2.5 or 3.5. 

A number of more robust statistical strategies for the bit identification have been 

described by Malo et al. (2006) and Birmingham et al. (2009). Among them we can 

mention the Random Variance Mode! (RVM, Wright and Simon 2003), the quartile­

based bit identification procedure in RNAi screens, which establishes upper and 

lower bit selection thresholds based on number of interquartile ranges (Zhang et al. 

2006), and an accurate Strictly Standardized Mean Difference (SSMD) method, 

calculating the ratio between the difference of the means and the standard deviation 

of the difference between positive and negative controls (Zhang 2007). 

For more details about the existing bit identification techniques the reader is referred 

to Chapter I. 
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0.9 Data randomization and replicate measurements 

Randomization is a very important part in a number of experimental technologies. In 

1925, Fisher introduced the concept ofrandomization in which experimental units are 

assigned to groups or treatment in a manner that the probability of assignment to any 

particular group or treatment is equal and unbiased (Fisher 1925). The work of Fisher 

indicates that the placement of testing units has to depend on a random unbiased 

process. The main advantage of randomization in screening technologies is that 

randomized experimental units can distribute the error in a way that does not 

introduce discrepancy to the experiment (Box 2006; Hall 2007; Murie et al. 2015). 

Consequently, the compound placement, both within each plate and each well 

location of an HTS assays, should be randomized in order to reduce the impact of 

systematic compound placement on the outcome of screening experiments. 

The hit identification accuracy can be also improved using replicates. Replicates offer 

the twin advantage of obtaining a greater precision of activity measurements and that 

of estimating the measurements variability (Malo et al. 2006). Due to the cost issue, 

primary screens each compound is usually evaluated only once. But in secondary 

screens the use ofreplicates is strongly recommended (Murie et al. 2013). We should 

mention that Malo et al. (2006) recomrnended the application of replicates even in 

primary screens. Nowadays it is standard practice to get at least three replicates per 

measurement, assuming that these replicates provide the benefits which exceeds the 

cost of short-dated considerations (Lee et al. 2000; Nadon and Shoemaker 2002). 

Obviously, replicated samples in HTS/HCS screens should be evaluated under the 

identical experimental conditions. 

A detailed discussion of the advantages of the data randomization and replication 

procedures is provided in Chapter I. 
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0.10 Thesis content 

My thesis is organized by articles. It includes an Introduction, three article chapters 

(Chapters I-III) and a Conclusion. The first paper reviews existing screening 

technologies and their related biases. It describes the different types of systematic 

errors present in HTS and HCS data. The existing statistical methods and models 

proposed to eliminate systematic errors are also reviewed. In the first article, we also 

assess the magnitude of systematic error in experimental HTS data and propose a 

general data pre-processing protocol which can be recommended for the analysis of 

the current or next generation screening data. 

The second paper presents three new statistical methods for spatial bias correction 

meant to minimize the impact of multiplicative spatial biases. In our study, the 

presence of bias in rows and columns of a given plate is identified using the non­

parametric Mann-Whitney U test. Our data correction methods modify the data only 

in the bias-affected rows and columns. The usefulness of the new methods is 

demonstrated by a simulation study as weil as by the analysis of publicly available 

ChemBank data. In the third paper, we consider six bias correction models : two 

existing models and four new models. These models account for different possible 

interactions between additive and multiplicative spatial biases. We use the Cramer­

von-Mises and Anderson-Darling tests to estimate the goodness-of-fit of the raw data 

by the corrected data and to select the most appropriate (additive, multiplicative or 

mixed) spatial bias model for the data at hand. We analyze the data generated by the 

four HTS technologies (homogeneous, microorganism, cell-based and gene 

expression), the three HCS technologies (area, intensity and cell-count) and the 

unique small-molecule technology represented in ChemBank (Seiler et al. 2008).The 

new methods presented in this thesis have been implemented in the C# and R 

programming languages and included in our AssayCorrector software. This program 

was implemented in Rand is freely available at CRAN (the AssayCorrector program 

bas been developed with my colleague Bogdan Mazoure, Master's student at McGill 

University) . 



CHAPTERI 

DETECTING AND OVERCOMING SYSTEMA TIC BIAS IN HIGH­

THROUGHPUT SCREENING TECHNOLOGIES: A COMPREHENSIVE 

REVIEW OF PRACTICAL ISSUES AND METHODOLOGICAL SOLUTIONS 

This chapter is a reproduction of the following article: Iurie Caraus, Abdulaziz A. 

Alsuwailem, Robert Nadon, and Vladimir Makarenkov. "Detecting and overcoming 

systematic bias in high-throughput screening technologies: a comprehensive review 

of practical issues and metbodological solutions." Briefings in Bioinformatics (20 15), 

16(6) 974-986. 

1.1 Abstract 

Significant efforts have been made recently to improve data throughput and data 

quality in screening technologies related to drug design. The modem pharmaceutical 

industry relies heavily on high-throughput screening (HTS) and high-content 

screening (HCS) technologies, which include small molecule, complementary DNA 

(eDNA) and RNA interference (RNAi) types of screening. Data generated by these 

screening technologies are subject to severa! environmental and procedural 

systematic biases which introduce errors into the bit identification process. We first 

review systematic biases typical of HTS and HCS screens. We highlight tbat study 

design issues and the way in whicb data are generated are crucial for providing 

unbiased screening results. Considering various data sets, including the publicly 

available ChemBank data (Seiler et al. 2008), we assess the rates of systematic bias in 

experimental HTS by using plate-specifie and assay-specifie error detection tests. We 

describe main data normalization and correction techniques and introduce a general 
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data pre-processing protocol. This protocol can be recommended for academie and 

industrial researchers involved in the analysis of current or next generation high­

throughput screening data. 

1.2 Introduction 

There bas been a growing interest in the development of high-throughput screening 

technologies over the last few decades (Shelat and Guy 2007), largely because 

screening methods promoted by the pharmaceutical industry have played a key role in 

drug discovery. The increasing computing power and miniaturization of screening 

equipment now allow for carrying out high-throughput screening analyses even in 

small academie laboratories. The most popular screening technologies used in drug 

design are high-content screening (HCS) (Giuliano et al. 2003) and bigh-throughput 

screening (HTS) (Brideau et al. 2003). Their different subcategories include small 

molecule (Inglese et al. 2007), complementary DNA (eDNA) (Chiao et al. 2005) and 

RNA interference (RNAi) (Auer and Doerge 2010) types of screening. In a typical 

HCS or HTS campaign, hundreds of terabytes of experimental data conceming 

molecule activity, specificity, and physiological and toxicological properties can be 

generated. These data should be processed using appropriate data mining and 

statistical methods and protocols in order to identify promising drug candidates (i.e., 

bits). One of the key challenges that need to be answered during the analysis of HCS 

and HTS data is the identification and successful elimination of bias (i.e., systematic 

error) in the measurements. In this review, we discuss the existing types of bias 

common to all high-throughput screening technologies and discuss their negative 

impact on the bit selection process. We underline the necessity of randomization of 

screened samples and indicate the advantages of using replicate measurements. We 

present the methods intended to detect systematic error and those designed to correct 

the data affected by it. We argue that the latter methods should be applied only when 
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the presence of a specifie type of systematic error in the data bas been confirmed by a 

suitable statistical test (Dragiev et al. 2011). Furthermore, we provide suggestions 

conceming which data normalization and correction techniques should be applied in 

various practical situations. Finally, we present a broad-spectrum data pre-processing 

protocol that can be used for the correction and analysis of screening data prior to 

assay quality estimation and bit selection steps. This protocol can also be used for 

detecting and removing bias in future HTS technologies involving sequential 

screening of multiple plates. To illustrate the results of our analyses, we examine 

publically available HTS and HCS data generated at the McGill University HTS 

laboratory (Figure 1.1 ), Chemistry Department of Princeton University (Figure 1.2), 

McMaster University laboratory - Data screened for McMaster Data Mining and 

Docking Competition (Figure 1.3), as well as those provided by the largest public 

HTS/HCS database (Seiler et al. 2008), maintained by Harvard University's Broad 

Institute (Figure 1.4). 

1.3 Screening technologies and related biases 

1.3.1 HTS and HCS technologies and their subcategories 

In this review, we focus on the two most widely used screening technologies: High­

throughput screening (HTS) and high-content screening (HCS). In a typical 

HTS/HCS primary assay, the selected library of chemical compounds is screened 

against a specifie biological target to measure the intensity of the related inhibition or 

activation signal (Malo et al. 2006). The size of the compound library can vary from 

hundreds to millions of items. Compounds are allocated across disposable microtiter 

plates of different sizes, typically including 96, 384 or 1536 wells. Weil locations 

within a plate follow a rectangular matrix pattern. Each compound is usually placed 

in a single weil. A sui table biological target culture ( e.g., cells or a bacterial enzyme) 

is then added to each well of the plate. It is common to conduct unreplicated HTS 



24 

experiments, although, as we show next, it is much more appropriate to obtain at 

minimum duplicate measurements . Processing the assay plates by HTS robotic 

equipment consists of a number of experimental wet-lab steps, including incubation, 

rising, and reagent additions to the biological culture of interest. Once the incubation 

period is over, the plates are scanned to obtain measures of biological activity 

characterizing the selected compounds. lt is worth noting that the obtained raw 

activity levels depend not only on putative biological activity, but also on systematic 

and random errors affecting the given screen. Data analysis steps, including statistical 

procedures for data norrnalization and data correction, should then be carried out to 

identify bits. 

The increasing capacity of computer storage deviees along with improvements in 

automation have allowed the use of HTS technologies to achieve resolution at the 

cellular level (Noah 2010). This related technology is called high-content screening 

(HCS). HCS is a screening method with multiple readouts that is based on 

microscopie imaging from a cell-based assay (Smellie et al. 2006) . HCS obtains 

detailed information of cell structure by extracting multicolor fluorescence signais. 

HCS bas three advantages relative to other screening techniques: (a) Cell-based 

analysis achieves high physiological correspondence, especially regarding drug 

screening; (b) Single cell analysis captures the heterogeneity of cell populations as 

well as the related individual response to treatments; (c) HCS generally bas low false­

positive and false-negative rates (Kozak et al. 2009). Thus, HCS technologies are 

commonly used in all areas of contemporary drug discovery, including primary 

compound screening, post-primary screening capable of supporting structure-activity 

relationships, early evaluation of ADME properties and complex multivariate drug 

profiling (Zanella et al. 2010). The Mytocheck (see http ://mitocheck.org) and 

ChemBank databases (Seiler et al. 2008) are among the rare online resources 

containing publically available HCS data. 
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Different subcategories of HTS and HCS technologies exist, depending on the target 

of interest. They comprise altering protein function using small molecules, increasing 

gene function using eDNA libraries and manipulating gene function using RNAi. 

(1) Small molecules: A "small molecule", which can be either natural or artificial, is 

defined in pharmacology as a molecule associated with a particular biopolymer - for 

example a nucleic acid or a protein (Cram101 , 2012). There is currently a significant 

interest in extending efforts to discover small molecules targeting proteins encoded in 

the genomes of humans and pathogenic organisms (Lazo et al. 2007). Furthermore, 

small-molecule screening technologies have applications in other areas of drug 

discovery, such as target validation, assay development, secondary screening, 

pharmacological property assessment and lead optimization. The combination of 

principles of molecular pharmacology with modern high-throughput (Inglese et al. 

2007) and high-content (Korn and Krausz 2007) technologies is critical for the 

success of these discoveries. 

(2) eDNA library: High quality, full-length eDNA libraries are essential for discovery 

and validation of novel drug targets in functional genomics applications (Brown and 

Song 2000). The discovery of reverse transcriptase permitted the transformation of 

unstable mRNA molecules into stable complementary DNA (eDNA) molecules. A 

comprehensive review of eDNA HCS can be found in (Buchser et al. 2014), and that 

of eDNA HTS in (Chiao et al. 2005 ; Honma et al. 2001). 

(3) RNA interference (RNAi): In the past decade, RNA interference (RNAi) bas made 

great progress, evolving from a biological phenomenon into an effective method of 

drug discovery (Sharma and Rao 2009). The two main advantages of RNAi screens 

compared to classical genetic screens are : (a) sequences of all identified genes are 

instantaneously identified and (b) lethal mutations are simple to determine because 

mutant recovery is not required (Boutros and Ahringer 2008) . The four types of 

RNAi reagents currently used in cell-based HTS are the following: dsRNAs, siRNAs, 

shRNAs and endoribonuclease-prepared siRNAs (esiRNAs) (Mohr et al. 2010). An 

important issue in genome-wide RNAi investigation is to combine both experimental 
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and computational approaches to obtain high-quality RNAi HTS assays and to 

overcome off-target effects (Amberkar et al. 2013; Buehler et al. 2012; Zhang et al. 

2008). A recent review by Knapp and Kaderali focuses on the analysis of RN Ai HCS 

data and presents an approach for statistical processing of high-content microscopie 

screens (Knapp and Kaderali 2012). 

1.3.2 Systematic error in screening technologies 

As with ail biotechnologies, screening data are prone to both random and systematic 

errors . Random error, which varies among measured HTS compounds, lowers 

screening precision and likewise affects false positive and false negatives rates . Its 

adverse effects can be greatly minimized by obtaining at !east duplicate 

measurements (Malo et al. 201 0). Systematic error (i .e., systematic or spatial bias) 

can be defined as the systematic under or over-estimation of measurements taken at 

the same plate or assay location (Kevorkov and Makarenkov 2005). Systematic errors 

can be the cause of nonspecific phenotypes in specifie weil, row or column locations 

and thus lead to higher false positive and false negative rates (Dragiev et al. 2011 ; 

Ramadan et al. 2007). Its adverse effects can be minimized by the application of data 

correction methods and study design procedures such as randomization and blocking 

(Malo et al. 2006; Murie et al. 2015). 

Systematic error can be due to various technological and environmental factors, such 

as robotic failure , reader effect, pipette malfunctioning or other liquid handling 

anomalies, unintended differences in compound concentration related to agent 

evaporation, variation in the incubation time or temperature difference, as weil as 

lighting or air flow abnormalities present over the course of the screening campaign 

(Heyse 2002; Makarenkov et al. 2007). Thus, bias causing systematic under- or over­

estimation of biological activity measurements can cause sorne inactive compounds 
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to be incorrectly identified as hits (i .e.,false positives) and sorne active compounds to 

remain undetected (i .e., false negatives). Systematic error can be well, row or column 

dependent. It can affect compounds placed either to the same well, row or column 

location over all plates of the assay (i.e. , assay-specifie error) or those located in a 

particular row or column of a single plate (i .e., plate-specifie error) (Dragiev et al. 

2012). 

Sorne specifie positional effects appearing in HTS/HCS screens as a consequence of 

bias are summarized below. One often overlooked hurdle of HTS technologies is the 

bat ch effect (Leek et al. 201 0). A ba teh effect, i.e., bias present in sorne continuous 

subsets of the data and absent in others, occurs when sorne continuous groups of 

plates are affected by laboratory conditions which vary during the experiment. 

Although batch effects are hard to detect in low-dimensional assays, HTS 

technologies provide enough data to detect and remove them (Leek et al. 2010). The 

edge effect, also called border effect, is another type of systematic error that consists 

in systematic under or over-estimation of the measurements located on the plate's 

edges. Carralot et al. (2012) indicated that although most repetitive errors in RNAi 

HTS can be generally controlled, sorne biases, such as edge effects, cannot be easily 

corrected due to well-to-well discrepancies inherent in the spatial structure of the 

plate. The cause of this effect is often unclear but medium evaporation or uneven 

treatment of the entire plate surface might be contributing factors (Arrnknecht et al. 

2005). Similarly to the plate-specifie edge effect, a more general assay-specifie row, 

column, or well location effects can occur in both HTS and HCS screens when the 

data located in a particular row, column or well location are systematically over or 

under-estimated across all the plates of the assay. On the other hand, a systematic 

intra-image bias, consisting of the microscope-related errors, arises while capturing 

images in HCS. One of the issues here is a non-uniformity of background light 

intensity distribution, which is a slowly varying and systematic change of the spatial 
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distribution of light in images. Such an effect can add or subtract intensities at any 

pixel location, thus affecting cell segmentation and florescence measurements, which, 

in turn, affect data quantification and statistical analysis (Lo et al. 2012) . 

Cell population context can also create systematic bias in high-content cellular 

screens and thus significantly influence results of HCS campaigns (Snijder et al. 

2009). A method allowing for normalizing and scoring statistically microscopy-based 

RNAi screens has been recently proposed (K.napp and Kaderali 2012) . This method 

exploits individual cell information of hundreds of cells per knockdown. The 

application of the proposed method and software (K.napp et al. 2011) led to the 

identification of new host dependency factors of the hepatitis C and dengue viruses as 

well as to higher reproducibility of results of the screening experiments . 

Figure 1.1 a illustra tes the presence of edge effects ( e.g. , the measurements in column 

2 are systematically overestimated) in the Harvard 164-plate assay (Helm et al. 2003; 

Kevorkov and Makarenkov 2005) . This assay consists of a screen of compounds 

inhibiting the glycosyltransferase MurG function of E. coli. Here, the binding effect 

of MurG to a fluorescent (fluorescein-labeled) analogue of UDP-GlcNAc was 

estimated. In this example, the threshold of j.J.-26 was applied to identify hits . The 

HTS Corrector software (Makarenkov et al. 2006) was used to calculate raw (Figure 

1.1 a) and B-score corrected (Figure 1.1 b) hit distribution surfaces (i.e., a hit 

distribution surface gives the number of hits per weil location found over all plates of 

the assay) . The edge effect observed in column 2, and partially in row V, in the raw 

data was successively eliminated by the B-score procedure (Brideau et al. 2003). 
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(a) (b) 

Figure 1.1 Systematic error in experimental HTS data (Harvard's 164-plate assay 

(Helm, et al., 2003)) . Hit distribution surfaces for the .u-20'hit selection threshold are 

shown for: (a) Raw data; (b) B-score corrected data. Well, row and column positional 

effects are illustrated. The data are available at 

http://www.info2.uqam .ca/~makarenkov_v/HTS/home.php/downloads/Harvard_164.zip. 

Similarly, image non-uniformity bias in HCS can be approximated and corrected by 

combining multiple images to generate a single image with an expected random 

spatial distribution of intensity values (Lo et al. 2012). Such an approximation 

represents the overall effect of bias on the imaging field estimated using an image­

averaging technique (Vassal et al. 2006). This positional bias can be detected by 

comparing the center of the image to its edges. In most cases, there is at least a two­

fold increase in brightness between center and edges. Figure 1.2 illustrates non­

uniformity bias present in a (96-well x 4-field) HCS plate of microtubule 

polymerization status screened in the HCS laboratory ofMcGill University. 
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Figure 1.2 Non-smoothed foreground (non-uniformity bias) for images of a single 

(96-well x 4-field) HCS plate of microtubule polymerization status generated in the 

HCS laboratory of McGill University is shown. The data are available at: 

http :/ /nadon-mugqic.mcgill. 

1.4 Methods and results 

1.4.1 Data randomization and use of controls 

The primary aim of statistical practice consists in estimating experimental error, and 

in the case of systematic error, in reducing the negative effect of this error (Box et al. 

2005) . Experimental design and statistical analysis methods should be applied to 

accomplish these objectives, although often underused in screening practice (Murie et 

al. 20 15). A fondamental approach for error reduction in experimental design must 

include control and randomization techniques (Hays 1994); R.A. Fisher introduced 

the concept of randomization in which experimental units are assigned to groups or 

treatment in a manner that the probability of assignment to any particular group or 
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treatment is equal and unbiased (Fisher 1925). The main advantage of randomization 

in screening technologies is that randomized experimental units can distribute the 

error in a way that does not introduce discrepancies to the experiment (Box 2006; 

Murie et al. 2015; Verdugo et al. 2009). Thus, order of plate processing and 

compound placements both within each plate and across replicate plates of HTS/HCS 

assays should be randomized in order to reduce the impact of systematic bias on the 

outcome of screening experiments. 

Controls contain compounds with well-known biological activity. Positive controls 

provide maximum possible activity measurements and negative controls provide 

minimum possible activity measurements. Controls are used in control-based 

normalization methods to render the screening data comparable across different plates 

and to establish assay background levels. Ideally, controls should be located 

randomly within plates, but in practice, only the first and the last columns of the plate 

are typically available for controls. The related systematic edge effect can be reduced 

by alternating the positive and negative controls in the available wells, so that they 

appear equally on each of the plate's rows and columns (Malo et al. 2006). Ifthe edge 

effect affects the control wells, it will also affect all of the plate's measurements 

because they are normalized relative to the control activities. Randomization of the 

position of compounds in the replicated experiments is also very important, but 

unfortunately, is often limited due to practical considerations when automatic 

spotting approaches or sorne of the available statistical pipelines ( e.g., cellHTS in 

BioConductor (Boutros et al. 2006)) not supporting control randomization are used. 

RNAi controls generally exhibit more inter-well variability than small molecule 

controls because of variations in transfection efficiencies (Birmingham et al. 2009). 

Cell-based biological controls are especially problematic because cell dumping or 

evaporation within different plate areas can lead to different growth conditions and 

thus to position-related bias (Carralot et al. 2012; Dragiev et al. 2011). 
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1.4.2 Advantages ofreplicated measurements 

Replicates offer the twin advantage of obtaining a greater preclSlon of activity 

measurements and that of estimating the measurements variability (Malo et al. 2006). 

The use of replicates allows one to reduce the uncertainty associated to a single 

measurement (i.e., standard error of the mean), as indicated in Formula 1.1: 

(1.1) 

where n is the number of replicates . Thus, carrying out two replicated screens reduces 

imprecision by 29%; carrying out three replicated screens reduces imprecision by 

further 13 %; and, carrying out four replicated screens reduces the imprecision by 

additional 8% (i .e., eliminating in total 50% of imprecision associated with a single 

measurement) . Therefore, the replicates make minimally and moderately active 

compounds simpler to detect. Two types of replicates exist: technical and biological 

ones. Technical replicates, which address the variability of the process, are repeated 

measurements of the same sample that represent independent measures of the random 

noise associated with equipment or protocols. Biological replicates, which mainly 

address the variability of the population but also reflect the variability of the process, 

are separate biological samples that were treated using the same protocol. When the 

sample population is unknown or has a higher variability, more biological replicates 

are needed. Increasing the number of technical replicates is important for a more 

variable technical protocol or when new screening equipment is used. Generally, 

biological variability is considerably greater than technical variability, so it is to our 

advantage to commit resources to sampling biologically relevant variables (Blainey et 

al. 2014). When planning for replication, researchers have to determine the 

proportion of variability induced by each experimental step to design statistically 

independent replicates and distribute the capacity for replication of the experiment 

across steps. Recognizing that obtaining even the minimal requirement of two 

replicates can be prohibitively expensive for sorne screens, Murie et al. (Murie et al. 
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2013) introduced the single assay-wide variance experimental (SAVE) design which 

can genera te statistical tests of biological activity based on replication of only a small 

subset of plates. 

Figure 1.3 illustrates the presence of the batch effect in the McMaster Test dataset 

including the original and replicated sets of plates (Elowe et al. 2005). The McMaster 

Test assay consisted of a sequence of 625 plates, each of which was screened twice 

(8xl2-well plates were used; the first and the last colurnns of each plate contained 

controls - these colurnns are not displayed here; the remaining 80 wells contained 

different compounds meant to inhibit the E. coli's dihydrofolate reductase) . The weil 

(8, 9) (i.e., weil (H,lO) - according to McMaster annotation; it is highlighted by a 

green box in Figure 1.3) displays a hit only in the replicated plates Rl, R2, R3 , R4, 

R5, R6, R7, R9 and RIO, but not in the original plates 1, 2, 3, 4, 5, 6, 7, 9 and 10. 

This batch effect is absent in the replicated plate R8 and disappears starting from the 

replicated plate Rll. Three of the hit compounds: MAC-0120363 (plates 1 and Rl), 

MAC-0121481 (plates 3 and R3) and MAC-0121668 (plates 5 and R5) were initiaily 

recognized as Average Hits by the McMaster competition organizers (the list of 

average hits contained 96 compounds whose average measurements, computed over 

the original and replicated screens, were lower than or equal to 75% of the reference 

control average), but ail of them were then rejected as false positives when the dose­

response relationship analysis of the selected compounds was carried out (Elowe et 

al. 2005). It is worth noting that only 96 of 50 000 screened compounds in this assay 

were recognized as Average Hits. 
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Figure 1.3 Batch positional effect appearing in the McMaster Test assay screened 

during the McMaster Data Mining and Docking Competition (Elowe et al. 2005). The 

first 24 plates of the assay are shawn (12 original and 12 replicated plates; the plate 

number is indicated on each plate; the replicated plates are indicated by the letter R). 

Each original plate is followed by its replicate. Hits are shawn in blue. Green boxes 

emphasize well (8, 9) on each plate (i .e., well HIO, according to the McMaster 

annotation) where the batch effect occurs . The data are available at 

http://www.info2 .uqam .ca/~makarenkov_v/HTS/home.php/downloads/McMaster_12 

50.zip 

1.4.3 Identification of hits 

The identification of bits is the primary goal of any HTS/HCS campa1gn. Sorne 

screeners select as screening positives a fixed number, or a fixed percentage, of top 

scoring compounds. Compounds whose activity exceeds a fixed percent-of-control 

threshold may also be considered as hits (Gagarin et al. 2006; Malo et al. 2006). A 

wide range of more sophisticated hit identification techniques is available nowadays. 
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following simple types of data normalization, which do not correct for spatial 

systematic biases, are commonly used in screening technologies. 

Control Normalization is a control-based normalization method using the 

measurements ofboth positive and negative controls (Formula 1.2). 

A - x ij - f.l neg 
xu - ' 

f.1 pos - f.1 neg 
(1.2) 

where xu is the raw measurement of the compound located in weil (i, j), xu is the 

normalized value of the raw measurement xu, f.lpos is the mean of positive controls of 

the plate and f..l.neg is the mean of negative controls of the plate. 

Median Percent Inhibition (MPI) normalization is carried out as follows 

(Formula 1.3): 

xi = 100 x 1 - __ IJ - ' 
[ 

x .. ) 
Y med 

where medis the median of ali measurements of the plate. 

Z-score normalization is defined as follows (Formula 1.4): 

(1.3) 

(1.4) 

where f.1 and 0' are, respectively, the mean and the standard deviation of all 

measurements of the plate. 

Robust Z-score normalization can account for different scale and variability effects 

across HTS plates. It is less likely to produce biased scores because of outlying 

values of highly active compounds. Robust Z-score normalization is similar to Z­

score except that the median is used instead of the mean and the median absolute 

deviation (MAD) is considered instead of the standard deviation to obtain the outlier 

resistant dispersion estimates (Formula 1. 5) : 

A xu -med 
x .. = ---"'----

u MAD 
(1.5) 

where MAD is the median absolute deviation of measurements of the plate. 
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1.4.5 Systematic error detection tests 

Several error correction methods and software have been recently developed to 

minimize the impact of systematic bias (Dragiev et al. 2011). These methods and 

software should, however, be used with caution. Makarenkov et al. (2007) 

demonstrated that systematic error correction methods can introduce systematic bias 

when applied on error-free HTS data. The introduced bias may be less important as in 

the case of the well correction procedure (Makarenkov et al. 2007) or very important 

as in the case of the B-score method (Brideau et al. 2003). Thus, the presence ot 

absence of systematic bias in raw HTS data must be first confirmed by the 

appropriate statistical tests (Dragiev et al. 2011; Gibbons and Chakraborti 2011 ; 

Koziol 2010; Welch 1947). Systematic error detection tests that work well with 

screening data are summarized below. 

Welch's t-test: This test is based on the classical two-sample Welch's t-test for the 

case of samples with various sizes and unequal variances(Welch 1947). Two variants 

of this test can be considered in the framework of HTS/HCS analysis. The first 

variant concems its application to each row and each column of every plate of the 

assay. The second variant concems its application to the assay's hit distribution 

surface. The measurements of the given plate (or of the hit distribution surface) are 

subdivided into two samples: the first sample con tains the measurements of the tested 

row or column, while the second sample includes the remaining plate's 

measurements. The null hypothesis, H0, here is that the considered row or column 

does not contain systematic error. For the two considered samples, S1 with N 1 

elements and S2 with N2 elements, the two sample variances, s ~ and s; , are first 

calculated. Welch's t-test statistic can then be computed using Formula 1.6: 

JLI-~ t = ----F=~~= 
2 2 ' 

_s _l + -s_2 (1.6) 

N I N2 
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where J1 1 is the mean of sample S1 and J12 is the mean of sample S2 . The t-test 

value is then compared to the critical value corresponding to the chosen statistical 

significance level a in order to decide whether Ho should be rejected or not. Welch's 

t-test is usually applied when the data are normally distributed but the sample 

variances may differ. However, for moderately large samples and a one-tailed test, 

this statistic is relatively robust to violations of the normality assumption. 

X2 goodness-of-fit test: This test can be used to establish the presence or absence of 

systematic error in a hit distribution surface (Dragiev et al. 2011 ). The null hypothesis 

Ho here is the same as in Welch's t-test. The rejection region of Ho is P(X2 >Ca)> a, 

where Ca is the 1 distribution critical value, corresponding to the chosen parameter 

a and the number of degrees of freedom. For a hit distribution surface with N R rows 

and N c columns, one can test the presence of systematic error in a given row r by 

calculating the X,2 statistic (Formula 1.7): 

Ne ( -E)2 x: = 2:-X-'rJ"-. --

i= I E 

(1.7) 

where xrJ is the / h value in row r, E is the hits count of the whole hit distribution 

surface divided by the number of wells ( N R x N c ). The number of degrees of 

freedom here is N R -1. 

In the same way, the colurnns of the hit distribution surface affected by systematic 

error can be tested by computing the test statistic x; (Formula 1.8): 

N R ( E)2 x:= I X ie -

i= l E 
(1.8) 

The number of degrees of freedom here is N c - 1. 

Systematic error affecting a particular well location (i, j) and appearing along all 

plates of the assay can be also identified by computing the 1 statistic (Dragiev et al. 

2011) (Formula 1.9): 

(1 .9) 
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The number of degrees of freedom here is N R x N c -1. The following mam 

assumptions should be met for this test: (a) the observations are independent of each 

other, and (b) the expected bits count in each well location of the hit distribution 

surface should be at least 5. The number of degrees of freedom here is N R x N c -1 . 

The following main assumptions should be met for this test: (a) the observations are 

independent of each other, and (b) the expected hits count in each welllocation of the 

hit distribution surface should be at least 5. 

Kolmogorov-Smirnov test preceded by Discrete Fourier Transform: This method 

consists of Discrete Fourier Transform (DFT) (Cooley and Tukey 1965) signal 

analysis method followed by the Kolmogorov-Smimov (KS) test (D'Agostino and 

Stephens 1986). It is included in sorne commercial software intended to detect 

systematic error in screening data (e.g., in the Array Validator program described in 

(Kelley 2003)) . The KS test is a non-parametric test having the advantage of making 

no assumption about the distribution of data. As recently has been shown, Welch's t­

test usually outperforms the %2 goodness-of-fit test and the KS test preceded by DFT 

in the context of HTS analysis (Dragiev et al. 2011). A comprehensive simulation 

study involving artificially generated HTS data was carried out to compare the three 

above-mentioned tests in a variety of practical situations. The suc cess rate of the t-test 

was usually above 90%, regardless the plate size, the type, and the magnitude of 

systematic error, whereas the values of Cohen's kappa coefficient for this test 

suggested its superior performance, in the case of large plates and high level of 

systematic bias (Dragiev et al. 2011). 

Mann- Whitney- Wilcoxon (MWW) test: This test verifies whether two samples of 

measurements are identical. First, a suitable Type I error probability, o. , is chosen for 

the test and the data in two samples of interest, X 1 and X2, are ranked. The MWW test 

(Gibbons and Chakraborti 2011) is based on Formula 1.10: 

w; NI x (NI + N2 + 1) + c 
z = 2 

(1.1 0) 

aw 
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N J 

where N1 and N2 are the sizes of samples X1 and X2, and ~ = 2:Rank(X1k) is the 
k=l 

sum of the ranks of the first sample measurements. The correction factor, C, equals 

0.5, if the rest of the numerator of z is negative, or equals -0.5, otherwise. The 

standard deviation, (]' w , is determined using (Formula 1.11): 

(1.11) 

As this is a non-parametric test, it does not make assumptions about the underlying 

data distribution. 

Rank products test: Consider the expressiOn levels of n genes for k1 independent 

replicates in sample X1, and k2 independent replicates in sample X2. Let X um be the 

expression level of the /h gene in the /h replicate of the m1
h sample, where 

1::; i::; n, 1 ::; j::; k"' , 1 ::; m ::; 2. By ranking the expression levels X !Jm, X2;m, . .. , X nJm 

within each replicate j , we form the vectors Rum = rank()(;m), where 1 ::; RiJm ::; n and 

1::; m ::; 2. The sui table two-sample version of Breitling's Rank products statistic, RP, 

for the i1h gene can then be calculated by using (Formula 1.12) (Breitling et al. 2004; 

Koziol2010) : 

( 1.12) 

Genes associated with sufficiently large or small RP; values are marked for further 

consideration. A few assumptions for this non-parametric test are the following 

(Breitling et al. 2004): (a) relevant expression changes affect only a minority of 

genes, (b) measurements are independent between replicated plates (or screens) ; (c) 

most changes are independent of each other, and (d) measurement variance is about 

equal for all genes. The MWW and Rank products tests have been successively 

applied in the RNAi screening (Rieber et al. 2009) 
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To estimate the magnitude of systematic bias in experimental HTS data, we carried 

out a series of tests using the data extracted from the largest public HTS/HCS 

database (Seiler et al. 2008) Figure (1.4a) reports the average row and colurnn 

systematic error rates in raw HTS measurements obtained from 41 HTS assays (735 

plates in total) aimed at the inhibition of the E. coli bacterium. In this analysis, we 

considered all HTS assays related to the E. coli inhibition, that were available in 

ChemBank (Seiler et al. 2008) asto April 2014. The presented results were obtained 

by using Welch's t-test (Equation 1.6) with different values of the parameter a = 

0.01, 0.025, 0.05, 0.075 and 0.1. The null hypothesis here was that the considered 

row or colurnn did not con tain any systematic bias. Figure (1.4b) illustrates the 

average hit distribution surface error rates for raw data. The presence of systematic 

errors in an assay can be determined through the analysis of its hit distribution surface 

depicting the total hit counts per well location over all plates of the assay 

(Makarenkov et al. 2007). Thus, we estimated over all assay's plates the number of 

measurements with the values lower than the j.l-Ca threshold, where the mean value f..l 

and the standard deviation a were computed separately for each plate; the constant c 

was gradually set to 2.5 , 3.0 and 3.5 to account for the most popular hit selection 

thresholds. Here also, Welch's t-test was used to determine the presence or absence of 

systematic error. Similarly, Figure (1.4c) presents the average row and colurnn error 

rates for the background-subtracted measurements for the same 41 HTS assays 

(background-subtracted data were also extracted from ChemBank (Seiler et al. 

2008)), and Figure (1.4d) shows the average hit distribution surface error rates for the 

background-subtracted data. The Matlab 8.2 package (Gilat A. 2014) was used in our 

computations. The presented graphies suggest that the row and colurnn systematic 

bias is common to experimental HTS assays (i .e. , plate-specifie error)- at least 30% 

of rows and colurnns in the raw data and 20% of rows and colurnns in the 

background-subtracted data were affected by systematic bias (Figure 1.4a and c ). 

Moreover, systematic error is even more visible when analyzing hit distribution 

surfaces (i .e., assay-specifie error) - at least 50% of raw hit distribution surfaces and 
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65% of background-subtracted bit distribution surfaces were affected by systematic 

error (Figure 1.4b and d). 
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Figure 1.4 Proportion of rows and colurnns affected by systematic bias m 41 

experimental HTS assays (735 plates in total; control wells were ignored) aiming at 

the inhibition of the Escherichia coli. Experimental data were extracted from the 

Harvard University HTS databank (i.e., ChemBank (Seiler et al. 2008)). Here we 

show: (a) Overall row and column error rate for raw data; (b) hit distribution surface 

error rates for raw data; (c) overall row and colurnn error rate for background­

subtracted data; (d) bit distribution error rate for background subtracted data. The 

following hit selection thresholds were used to identify hits and establish bit 

distribution surfaces of the assays: fl-2 .5(]" (0), fl-3(]" (.6.) and fl -3.5(]" (o), where fl and (J 

are, respectively, the mean and standard deviation of the plate's measurements. 
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This section describes the statistical methods that are used for minimizing plate­

specifie and assay-specifie (i .e., across-plate well-location bias) systematic biases in 

screening technologies . Most of these methods allow the correction of overall plate 

bias as well. 

(1.13) 

R -scores: This plate-specifie correction method relies on Formula 1.13: 

where xüP is the compound measurement in row i and column j of plate p , fl p is the 

mean of plate p , R ip is the row bias affecting row i of plate p, C1p is the column bias 

affecting column j of plate p and r iJp is the residual in well (i , j) of plate p . These 

parameters can be estimated using, for example, the rlm function from the MASS 

package of the R language (Venables et al. 1994). The R-scores (Wu et al. 2008) are 

the model's residuals rescaled by dividing them by the standard deviation estimate of 

the regression function. 

B-scores: This method corrects the raw plate measurements by iteratively eliminating 

possible row and column positional bias (Brideau et al. 2003). The statistical model 

for the raw measurement xiJP is similar to (Formula 1.13). The B-scores method relies 

on a two-way median polish (MP) procedure (Tukey 1977) carried out separately for 

each plate of the assay to obtain the estimates of XiJp, flp, R ip and q P. The residual r iJp 

of the measurement in well (i, j) is then calculated as the difference between the raw 

measurement x iJP and its fitted value xüP: r iJP = XiJp- xüP . Finally, the obtained residuals 

are divided by the median absolute deviation of plate p (Formula 1.14): 
r. . 

B-score = ~ , where MAD P = med {1 rifP - med(rifP ) J}. 
p 

(1.14) 
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A variant of the B-scores method used in HCS (Gosai et al. 201 0) considers the mean 

true activity value, fl iJP> in well (i, j) in Formula ( 1.13 ), instead of fl p· 

Well correction: This assay-specifie correction method proceeds by data 

normalization along the well locations of the assay (Makarenkov et al. 2006; 

Makarenko v et al. 2007). At first, Z-score normalization (Formula 1.4) is performed 

within each plate of the assay. The following two steps are then carried out. First, a 

linear least-square approximation is performed for the measurements of each well 

location of the assay (this weB-specifie approximation is done across all plates of the 

assay). Second, Z-score normalization of the fitted measurements obtained from 

regression is carried out independently for each weil location of the assay (still across 

all plates of the assay). 

Robust well correction: This is another assay-specifie data correction procedure. Bach 

plate is normalized using robust Z-scores (Formula 1.5) and then the entire s~t of 

plates is ordered by date of processing and a robust regression line is fit to the data. 

This fitting is carried out independently for each well location across all plates of the 

assay as in the Well correction method. The obtained normalized residuals are 

considered as final corrected scores (Murie et al. 2015). 

Diffusion Mode!: This madel is designed to eliminate the edge effect in the HTS 

RN Ai screens (Carralot et al. 20 12). The process-specific diffusion process IS 

described by the following parabolic differentiai equation (Formula 1.15): 

CJb(i,j ,f) _ A b- (· . ) 
--'....:....::~-c x u x t,],l, 

èJt 
(1.15) 

where b (i , j , t) is the evaluated spatiotemporal diffusion field in well (i, j) at ti me t 

(i.e. , evaluated systematic bias), c is the diffusion coefficient and il is the Laplacian 

operator. The following boundary conditions are considered (Formula 1.16): 

{ ~(i, J , t l_= u~ V(i, j)E z' 1 r, 

b(z , ] ,t-0)-U0,'\I(t , j)E 1, 

(1.16) 

where U0 and U1 are the model's positive parameters; the madel also assumes that: 
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• at the initial time t = 0 of the dispensing, there is no edge effect on the given 

plate; 

• the effect strength depends on a physical difference between the inside 

parameter r and outside parameter Z2 
\ r of the given plate. 

Loess correction method: The loess error correction method evaluates the plate's row 

and colurnn effects by fitting a loess curve to each row and column of the given plate 

(Baryshnikova et al. 201 0; Murie et al. 20 15). The loess correction is defined by 

Formula 1.17: 

[r] [c·J ~ - i J 
X .. -X .. X- X-, 

lJ lJ r .. c .. 
lj lj 

(1.17) 

where xü is the raw measurement in weil (i, j), xü is the adjusted measurement in this 

weil, F; is the mean of the fitted loess curve for row i, c1 is the mean of the fitted 

loess curve for colurnnj, rü is the value of the fitted row loess curve for row i and 

colurnnj, and cü is the value of the fitted column loess curve for row i and colurnnj. 

Median Fi/ter: The median fil ter method (Bushway et al. 201 0) adjusts the intensity 

value of the given weil (i, j) using the median of the intensity values of the nearby 

wells . First, a row median filter, whose filter window includes the wells located on 

the same row i, within k wells of weil (i, j), is carried out. Second, a standard median 

fil ter procedure, its filter window in eludes the wells located within l wells of weil (i, 

j), is applied. The constants k and l usually equal 3 for the 1536-well plates, and 1 and 

2 for the 96-well plates. The method relies on Formula 1.18 to compute the adjusted 

measurements : 

x .. = x .. x( medP ), 
lJ lJ med .. 

Wij 

(1.18) 

where med P is the median intensity of plate p and medwü is the median intensity of 

wells included in the filter window ofwell (i,j) . 

SPatial And Well Normalization (SPA WN) : This two-step procedure gradually a pp lies 

a trimmed mean polish procedure on individual plates in arder to minimize row and 
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column systematic effects (Murie et al. 2013). The considered statistical model relies 

on Formula 1.13. Th en, a well normalization step is carried out to determine spatial 

bias template, SBTiJ, which is the median of the scores at welllocation (i, j) computed 

over all plates of the assay. The spatial bias template scores are subtracted from the 

scores obtained by the median polish procedure: PiJP = riJP- SBTiJ. Finally, the 

resulting scores are rescaled by dividing them by the median absolute deviation of the 

plate. Th us, SPA WN corrects for both plate-specifie and assay-specifie biases. 

Matrix Error Amendment (MEA) and Partial Mean Polish (PMP) : These algebraic 

methods are designed to modify only those rows and columns of the given plate that 

are affected by systematic bias (Dragiev et al. 2012). MEA and PMP methods rely on 

prior information conceming the presence and absence of systematic error in the rows 

and columns of the given plate. Such information can be obtained using a specifie 

version of Welch's t-test or the:! goodness-of-fit test (see previous section). One of 

the main advantages of the PMP method over MP and B-scores (Brideau et al. 2003) 

is that PMP does not reduce the original data to residuals, keeping the corrected 

measurements on the same scale with the original ones. 

Table 1.1 reports the discussed data normalization techniques recommended for the 

analysis of HTS and HCS data along with the underlying assumptions re garding their 

practical application. 
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Various plots that use robust statistical indices have been also suggested for detecting 

shifts and trends across time in large screening campaigns. Systematic bias within 

plates can be detected with visualization methods such as 2-dimensional beat maps 

and 3-dimensional wire plots, although typical plate-specifie bias patterns are more 

easily detected with auto-correlation plots that show the degree of correspondence 

between wells at various "lags" ( e.g., adjacent or separated by one well) (Murie et al. 

2015). Finally and somewhat counterintuitively, screens with few active compounds 

should show low correlations between replicate plates; for these screens, scatterplots 

which show high correspondence between replicate plates indicate across-plate weil­

specifie bias rather th an good biological reproducibility (Murie et al. 20 15). 

1.5 Discussion and conclusion 

We reviewed current knowledge on systematic bias affecting raw data in HTS and 

HCS technologies . First, we discussed the causes of systematic bias and its impact on 

the selection of correct bits in HTS and HCS experiments. The main steps of HTS 

and HCS screening protocols were presented along with the subcategories of 

screemng technologies, including small molecule, eDNA and RNAi screens. 

Positional bias effects characteristic of screening technologies, comprising batch 

effects, edge effects and well location effects, were discussed in detail. We 

highlighted that randomization of experimental units and use of replicates can 

significantly reduce the magnitude of systematic error. Data normalization techniques 

which correct for overall plate bias were presented, followed by the description of 

systematic error detection tests specifie to screening technologies. Finally, we 

discussed error correction methods, indicating under which assumptions and for 

which kind of spatial bias each of them should be used. In particular, we underlined 

the distinction between the plate-specifie and assay-specifie systematic biases and 

pointed out that data correction methods should be applied only if the presence of 

systematic bias was confirmed by the appropriate statistical tests . Otherwise, an 

unwanted bias can be introduced into error-free data. 
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Data pre-processing and correction protocol in screening technologies 

High-throughput 

screening (HTS) A libary of small molecules, peptides, RN Ai ~ 
or eDNA screened against a specifie target 

During Lhe screen ensure 

1 
1) Samples are randomized within each plate (or assay) 
2) Replicated screens of the assay are canied out 

1 
Aller the screen carry out 

--------~~~~------1) Data nonnalization (e.g., control normalization, z-scores) 
2) Systematic error detection tests to dctcnnine: 

a) error presence/absence (e.g., t-test,,r!goodness-of-fit test) 
b) positional effect (column, row, well-level effcct) 
c) error spccificity (plate, batch or assay-specifie) 
d) error type (additive or multl,.~·p~li.;.ca~t-iv_.e)..._ _____ , 

1 
Systematic error 

detected 

Execute the appropriate error correction mcthod(s) (e.g., 
Robust weil correction, SPA WN, PMP, diffusion model) 

Carry out assay quality estimation and hit identification 

High-content 

screening (HCS) 
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Figure 1.5 Recommended data pre-processmg and correction protocol to be 

performed prior to the hit identification step in high-throughput and high-content 

screenmg. 
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In order to surnrnanze our presentation, we describe here a general data pre­

processing and correction protocol (Figure 1.5), which could be used as a guide by 

academie and industrial researchers involved in the analysis of current or next 

generation screening data. The first required step concems general design of a 

screening campaign. The compound locations within each plate, as well as over all 

plates of the assays, should be randomized in order to redu ce the impact of systematic 

bias on the outcome of screening experiments . Moreover, whenever the campaign 

funding allows, several replicates of the compound library should be screened. 

Replicated screens provide both a greater precision of activity measurements and the 

ability to assess measurement variability (Malo et al. 2006). Once the assay 

measurements have been established, the appropriate data normalization procedure 

should be carried out to ensure the data comparability over different plates and 

screening conditions. Afterwards, systematic error detection tests should be carried 

out to confirm the presence or absence of systematic error in raw data (e.g. , Welch's 

t-test or / goodness-of-fit test). In particular, these tests can be applied to identify: 

(1) positional effects of systematic error, including row, column and well location 

biases; (2) error specificity, including plate, batch and assay-specifie biases; (3) type 

of systematic error, including additive (e.g., Robust well correction, SPA WN or PMP 

methods can be applied to eliminate this type of bias) and multiplicative (e.g., 

diffusion model can be applied to eliminate this type of bias) biases. If systematic 

error was not detected in the data, then no any correction method needs to be applied 

to them to avoid the risk of introduction of additional biases (Dragiev et al. 2011). 

Otherwise, the appropriate error correction method, preferably including a success of 

control step, should be carried out. Once systematic bias is minimized, assay quality 

estimation and hit identification steps can be carried out. It is worth noting that the 

plate-specifie correction methods ( e.g., PMP) can sometimes be applied in 

combination with the assay-specifie correction methods (e.g., Robust well 

correction). First, Welch's t-test can be carried out independently for each individual 

plate of the assay to detect the plate's rows and columns affected by systematic bias . 
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The measurements affected by bias can be subsequently corrected by using the PMP 

method, which keeps the corrected data on the same scale with the original ones. 

Second, Welch 's t-test can be performed over the hit distribution surface of the entire 

assay. If the test identifies the presence of systematic bias on the surface, the Robust 

well correction procedure can be carried out to remove the assay-specifie bias. An 

alternative solution to this problem could be provided by the methods which correct 

for both plate-specifie and assay-specifie biases ( e.g., SPA WN). 

Key Points 

• We reviewed current knowledge on systematic bias affecting experimental 

HTS and HCS data . 

• Study design issues and the way in which data are generated are crucial for 

providing unbiased screening results. Unfortunately, these key steps are often 

ignored by HTS practitioners. 

• Data correction methods should be applied only if the presence of systematic 

error bas been confirrned by the appropriate statistical tests. 

• Discussed sources of systematic bias and presented statistical methods and 

software intended to correct experimental screening data provide a unifying 

framework when considering new screening technologies . 

• We presented a general data pre-processing and correction protocol which can 

be used as a guide by academie and industrial researchers involved in the 

analysis of current or next generation screening data. 





CHAPTERII 

DETECTING AND REMOVING MULTIPLICATIVE SPATIAL BIAS IN 

HIGH-THROUGHPUT SCREENING TECHNOLOGIES 

This chapter is a reproduction of the following article: Caraus Iurie, Bogdan 

Mazoure, Robert Nadon and Vladimir Makarenkov. "Detecting and removing 

multiplicative spatial bias in high-throughput screening technologies", Bioinformatics 

(20 17), doi: 10.1 093/bioinformatics/btx327. 

2.1 Abstract 

2.1.1 Motivation 

Considerable attention bas been paid recently to improve data quality in high­

throughput screening (HTS) and high-content screening (HCS) technologies widely 

used in drug development and chemical toxicity research. However, several 

environmentally- and procedurally-induced spatial biases in these screens decrease 

measurement accuracy, leading to increased numbers of false positives and false 

negatives in bit selection. Although effective bias correction methods and software 

have been developed over the past decades, almost all of these tools have been 

designed to reduce the effect of additive bias only. Here, we address the case of 

multiplicative spatial bias. 

2.1.2 Results 



54 

We introduce three new statistical methods meant to reduce multiplicative spatial bias 

in screening technologies. We assess the performance of the methods with synthetic 

and real data affected by multiplicative spatial bias, including comparisons with 

current bias correction methods. We also describe a wider data correction protocol 

that integrates methods for removing both assay and plate-specifie spatial biases, 

which can be either additive or multiplicative. 

2.1.3 Conclusions 

The methods for removing multiplicative spatial bias and the data correction 

protocol are effective in detecting and cleaning experimental data generated by 

screening technologies . As our protocol is of a general nature, it can be used by 

researchers analyzing current or next-generation high-throughput screens. 

2.1.4 Availability and Implementation 

The AssayCorrector program (AssayCorrector), implemented in R, is available at 

CRAN. 

2.2 Introduction 

Growing interest of the pharrnaceutical industry bas stimulated the development of 

severa! effective screening techniques such as high-throughput screening (HTS) and 

high-content screening (HCS) . Modem HTS and HCS screening campaigns allow for 

examining hundreds of thousands of chemical compounds and generating gigabytes 

of experimental data (Lachmann et al. 20 16). These data need to be extensively 
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analyzed using appropriate statistical methods and protocols to detect potential drug 

candidates, called hits (Birmingham et al. 2009; Malo et al. 2006). A typical HTS 

assay is organized as a sequence of microtiter plates, featuring a grid of wells, which 

contain test samples. The most common plate formats consist of 96, 384, 1536 and 

3456-well plates. 

Spatial bias within plates (i .e., positional bias or systematic error) remains one of the 

major hurdles of experimental screening campaigns. It can be caused by a number of 

technical or environmental factors , including reader and pipette effects, liquid 

processing anomalies, unintended variations in compound concentration associated 

with agent evaporation, irregular changes in the incubation time, or temperature, 

lighting and air flow fluctuations (Heyse 2002; Makarenkov et al. 2007). Spatial bias 

is evident as systematic under- or over-estimation of specifie screen measurements 

(Kevorkov and Makarenkov 2005). It is a constant source of false positives (i.e. , 

inactive compounds incorrectly identified as hits) and false negatives (i .e., undetected 

active compounds) in screening technologies (Birmingham et al. 2009). Typically, 

spatial bias affect either compounds placed in the same well, row or colurnn location 

over all plates of the assay (i.e., assay-specifie error) or compounds from a specifie 

row or colurnn of a given plate (i.e., plate-sp ecifie error) (Dragiev et al. 20 12). As we 

will show in this paper, spatial bias can also be of the additive or multiplicative 

nature. 

Figure 2.1 illustrates an example of positional bias that affects the RNAi HIV 

inhibition assay screened at Pasteur Institute ofKorea (Carralot et al. 2012). This cell­

based assay uses HeLa P4 LTR-EGFP 2B4 cells, engineered to express the HIV 

cellular-entry receptors CD4 and CCR5. Both assay-specifie (Figure 2.1 a) and plate­

specifie (Figure 2.1 b) spatial biases are present in this assay. Moreover, these biases 

exhibit opposite trends . On one hand, higher hit counts can be observed in the middle 

of the hit distribution surface (Figure 2.1 a; hit counts per well location are depicted), 
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whereas lower hit counts can be observed at its edges (in rows A, 0 and P and in 

colurnns 23 and 24) . On the other band, the measurements in rows A, C and P and in 

columns 23 and 24 of Plate 7 (Figure 2.1 b) are systematically overestimated (bits 

correspond to the lowest measurements in inhibition assays). 

Severa! data normalization and quality control techniques have been proposed to 

allow for an efficient evaluation and validation of HTS and HCS assays (Birmingham 

et al. 2009; Brideau et al. 2003 ; Carralot et al. 2012; Dragiev et al. 2011 ; Dragiev et 

al. 2012; Kevorkov and Makarenkov 2005 ; Makarenkov et al. 2007; Malo et al. 2006; 

Shun et al. 2011; Zhang et al. 1999; Zhang 2008). The most popular data 

normalization methods used to compare experimental measurements across different 

plates of a given assay are Percent of Control (POC), Normalized Percent Inhibition 

(NPI), Z-score and robust Z-score (Birmingham et al. 2009; Malo et al. 2006). These 

methods, however, do not correct for spatial bias. A number of correction tools for 

the detection and removal of spatial bias from experimental screening data have been 

proposed (Caraus et al. 2015 ; Mpindi et al. 2015) . 
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(a) Hit map for raw RNAi HIV data 

Figure 2.1 Edge effects in the RNAi HIV inhibition assay, screened at Pasteur 

Institute of Korea (Carralot et al. 2012), shown within: (a) the assay bit distribution 

surface (i.e., overall bit counts per well location are depicted) and (b) Plate 7 raw 

activity levels. The bit selection threshold of ,u-1.219cr (or 1% of bits) was used, 

where ,u and cr were the mean and the standard deviation of the plate measurements, 

respectively. The samples whose measurements were lower than the threshold value 

were selected as bits. In (a), higher bit counts are in red and lower bit counts are in 

blue. In (b ), higher raw measurements are in blue and lower raw measurements are in 

red. The non-target wells located in colurnns 1 to 4 were ignored in our analysis. 

The popular B-score method (Brideau et al. 2003) relies on the median polish 

procedure (Tukey 1977) in order to remove plate-specifie spatial bias. Well 

Correction (Makarenkov et al. 2007) removes assay-specifie bias using Z-score 

normalization and linear regression across well locations. R-score (Wu et al. 2008) is 

a plate-specifie bias correction method which fits a robust linear model to 

experimental well measurements. Dragiev et al. (2012) presented the partial mean 

polish method intended for removing the additive plate-specifie spatial bias from the 

data by correcting the biased measurements only (i.e. , aPMP metbod). The SPA WN 
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method (Murie et al. 2013) uses an iterative approach based on trimmed mean 

polishing to minimize row and colurnn systematic effects within a given plate. Then, 

a well normalization step can be carried out to create a spatial bias template, which is 

used to correct assay-specifie bias. However, almost all data correction methods, 

including B-score, R-score, aPMP and SPA WN, employed in screening technologies 

are designed to remove additive type of spatial bias. A notable exception is the 

diffusion mode! (Carralot et al. 2012), proposed to eliminate edge effects in RNAi 

HTS due to multiplicative bias. 

The additive spatial bias mode! can be described by Equation (2.1 ): 

(2.1) 

whereas the multiplicative bias mode! by Equation (2.2): 

(2.2) 

where x iJP is the resulting (biased) measurement value in well (ij) of plate p, x iJP IS 

the original error-free measurement, R;p is the bias affecting row i of plate p, C1P is the 

bias affecting colurnnj of plate p and êiJp is the random error in well (ij) of plate p . 

The most straightforward approach for removmg multiplicative spatial bias in 

screening technologies consists of the use of a logarithmic transformation of raw 

measurements, followed by the application of one of the above-mentioned additive 

bias correction methods. However, a typical data preprocessing step in HTS consists 

of normalizing raw measurements (e.g., plate or well-wise using Z-score) prior to 

their correction and/or bit selection. Thus, the logarithmic transformation cannot be 

applied in many cases because the normalized measurements contain negative values. 

Furthermore, the multiplicative PMP method presented in Section 2.2.3 allows for 

minimizing multiplicative spatial bias by modifying only the biased measurements 

and keeping the corrected data on the same scale with the unbiased raw data. This 

property makes the data corrected by the proposed multiplicative PMP method 

directly comparable to those corrected by the additive PMP method (Dragiev et al. 
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2012). This is further exploited in our general data processing algorithm presented in 

Section 2.2.5, where we show how to select the most appropriate bias correction 

mode! (additive or multiplicative) for the data at band. Obviously, such a mode! 

selection algorithm could not be carried out if one of the two methods would work 

with the raw data, while the other with the log-transformed data. 

Once spatial bias has been removed from the data, assay quality estimation and bit 

identification steps can be carried out (Birmingham et al. 2009). The most popular hit 

selection procedure identifies as bits the samples whose measurements are lower (for 

inhibition assays) or higher (for activation assays) than the selected fl- C(J' threshold, 

where fl is the mean, (J' is the standard deviation of the targeted group of 

measurements, and c is the selected constant (often varying between 1 and 3). 

In this article, we describe and compare three novel methods for removmg the 

multiplicative spatial bias from experimental screening data. We then present a 

comprehensive bias correction protocol, which can be used to remove both additive 

and multiplicative spatial biases, as well as both assay and plate-specifie biases. We 

apply the methods to real data to correct the RNAi measurements generated during a 

genome-wide siRNA screen aimed at studying HIV -host interactions (Carralot et al. 

2012) and determine the dominant type of plate-specifie spatial bias characterizing 

the four HTS screening categories (homogeneous, microorganism, cell-based and 

gene-expression) available in the ChemBank database (Seiler et al. 2008). 

2.3 Methods 

2.3.1 Three new methodsfor correcting multiplicative bias 

Here, we describe and compare three new methods for correcting multiplicative 

spatial bias in screening technologies. These methods are designed to remove plate­

specifie bias. Ideally, compound measurements and hit counts should be uniformly 
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distributed over a given plate and the hit distribution surface of the assay. The first 

method, called NLMBE, salves a system of nonlinear algebraic equations in which 

the unknowns correspond to spatial biases, which affect specifie rows and columns of 

a given plate. The second method, called multiplicative PMP (mPMP), is based on a 

multiplicative partial mean polish procedure in which the mean of each row and each 

column affected by spatial bias is adjusted iteratively with respect to the mean of the 

unbiased plate measurements. Rows and columns affected by spatial bias can be 

detected, for example, by the Mann-Whitney U test (Gibbons and Chakraborti 2011 ; 

Wilcoxon 1945). This information is required by bath NLMBE and mPMP. The third 

method, called multiplicative B-score, is an adaptation of a 2-way median polish 

procedure (Tukey 1977) to the case of multiplicative bias. 

2.3.2 Non-Linear Multiplicative Bias Elimination (NLMBE) 

The first method proceeds by solving a system of nonlinear equations in which the 

unknowns correspond to systematic errors affecting the measurements of a given 

plate. Let x!iP be experimental measurements ofplatep, where (i = 1, ... ,m) and (j = 1, 

... , n), having m rows and n columns,. Assume that sorne rows and/or columns of p 

con tain spatial bias (as indicated for example by the Mann-Whitney U test) . Let ,u be 

the mean (or median) of the measurements of plate p that do not con tain spatial bias. 

The following system of nonlinear equations can be composed: 
n 

R x (""C xx / W)=nXJL, forall i=I, ... ,m, ip L.- jp yp lj 

(2.3) 

j=i 

Ill 

c jp x (IR ip xxijp / Wij ) = m X JL, for ail j = 1, .. . ,n , (2.4) 
i= l 

where R;p is the multiplicative bias affecting row i of plate p, C1p is the multiplicative 

bias affecting column j of p and W!i is the systematic measurement offset in well (iJ) 

across all plates of the assay. W;1 can be estimated directly from the assay background 
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surface. This system of nonlinear equations 1s obtained by summmg up all 

multiplicative bias terms corresponding to rows and colurnns of p . It includes rn + n 

equations and at most rn + n unknowns (i.e., biases R;p and C1p affecting the rows and 

colurnns of plate p). The values of R;p and Cjp that correspond to row i and colurnnj 

not affected by bias are equal to 1. Since in practice only a few rows and colurnns per 

plate are affected by spatial bias, this system will have more equations than 

unknowns . Such systems can be solved, for example, by using the Levenberg­

Marquardt (Moré 1978) method based on nonlinear !east-squares. Note that the 

Levenberg-Marquardt algorithrn bas a quadratic convergence rate. The corrected 

plate measurements xiJP (Equation 2. 2) can then be calculated taking into account the 

system's solution, i.e., the obtained values of R;p (i = 1, .. . ,rn) and C1p (j = 1, .. . ,n) . 

2.3.3 Multiplicative PMP method (mPMP) 

Our second method is based on an iterative procedure in which the mean of each row 

and each colurnn affected by systematic error is gradually adjusted with respect to the 

mean of the plate measurements not affected by spatial bias . Assume that rows r 1, r 2, 

. .. h and colurnns c1, c2, .. • , c1 of plate p con tain multiplicative spatial bias. First, for 

any row i affected by spatial bias (i = r 1, r2, .. . , rk), we calculate: 

(2.5) 

and for any colurnnj affected by systematic bias (j = c~, c2, . .. , c,), we calculate: 

(2 .6) 

where J.l; is the mean of row i, J.li is the mean of colurnnj, fJ. is the mean of the plate's 

measurements that are not affected spatial bias and WiJ is the systematic measurement 

offset in well (iJ) across all plates of the assay. When a large number of bits or 

outliers are expected, the means of the plate's unbiased measurements, rows and 

columns should be replaced by the corresponding medians in order to obtain more 
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robust parameter estimates. This iterative procedure should be repeated until a desired 

convergence threshold is reached. The time complexity of mPMP is O(mnl), where m 

and n are the plate dimensions and 1 is the number of iterations required for 

convergence. In practice, this method converges after a few iterations. Importantly, 

mPMP is usually much faster than NLMBE. The main advantages of the NLMBE 

and mPMP algorithms are that they modify only biased data and keep raw and 

corrected plate measurements on the same scale. 

2.3.4 Multiplicative B-score method 

We also present the multiplicative versiOn of the well-known B-score algorithm 

(Brideau et al. 2003). The conventional (additive) B-score is a robust data correction 

procedure widely used in experimental screening technologies. Our multiplicative B­

score transformation assumes the following bias mode!: 

(2.7) 

where Xifp is the estimated (biased) activity measurement in weil (iJ) of plate p , flp is 

the average of plate p , R;p is the spatial bias affecting row i, C1P is the spatial bias 

affecting column j and Wü is the systematic measurement offset in weil (iJ). Our 

method is based on a 2-way median polish procedure (Tukey 1977) in which 

subtractions are replaced by divisions in order to remove multiplicative spatial bias 

from ali rows and ali columns of p. The residual, riJp, of the measurement in weil (iJ) 

is defined as the difference between the raw measurement XiJp and its fitted value x üP : 

(2.8) 

where xiJP is the raw measurement in weil (iJ) of plate p. Finally, the B-score is 

calculated as follows : 



r. . 
Bscore = ~~ , MADP =median {1 rijp - median (rijp ) 1}, 

p 
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(2.9) 

where MADP is the adjusted median absolute deviation obtained from the residuals 

of plate p . The time complexity of the multiplicative B-score method is also O(mn!) . 

2.3.5 General data correction protocol 

Here we present a complete bias correction protocol that can be used to remove both 

multiplicative and additive spatial biases, which can be assay or plate-specifie. 

First, assay-specifie bias can be removed from a given assay by applying either the 

Well Correction (Makarenkov et al. 2007), based on Z-score normalization, or 

SPA WN (Murie et al. 2013), based on the robust Z-scores normalization, method. 

These methods normalize the measurements of specifie well locations in which the 

presence of spatial bias has been detected (Dragiev et al. 2011) . It is worth noting that 

the conventional Z-scores, when applied well-wise, allow for removing both additive 

and multiplicative spatial biases (Brideau et al. 2003). Following these 

normalizations, sorne data will become negative, thus making the use of the 

logarithmic transformation impossible. 

Second, we propose the following algorithm to detect and remove plate-specifie 

spatial bias . This algorithm should be a pp lied in turn on all plates of a given assay. 

Carry out the Mann-Whitney U test on each plate of the assay in arder to detect 

biased rows and columns. This test will allow us to compare the sum of ranks of a 

given row or column to the sum ofranks of the rest of the plate ' s measurements . 

If (spatial bias is detected in sorne row(s) or column(s) of the plate), then: 

1. Use the additive PMP method (Dragiev et al. 2012) to correct the plate's 

measurements. 
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2. Use the multiplicative PMP method to correct the plate's measurements. 

3. Carry out the Kolmogorov-Smimov two-sample test in order to compare first the 

distributions of unbiased measurements with those corrected by the additive PMP, 

and, second, the distributions of unbiased measurements with those corrected by the 

multiplicative PMP. Compute the p-values associated with these two corrections. 

4. If (either the additive or multiplicative p-value from the previous step is larger 

than the selected significance level a), then apply the correction algorithm that yields 

the highest p-value (i.e., additive or multiplicative PMP) to remove spatial bias from 

the plate's data; 

otherwise, the bias model for this plate is undetermined. 

Here, the Mann-Whitney U test is applied on a plate-by-plate basis. The 

measurements of a considered row or column of a given plate compose the first 

vector used in the Mann-Whitney U test and the rest of the plate's data compose the 

second vector used in this test. If enough evidence for the presence of spatial bias, 

expressed through the test's p-value, is obtained, the corresponding row or column is 

flagged as biased and removed from the computation. If no biased rows or columns 

have been found at the current iteration, the procedure is stopped. In our study, the 

maximum number of iterations allowed by the algorithm was limited to 50% of the 

total number of rows (when the presence of bias in rows was examined) and 50% of 

the total number of colurnns (when the presence of bias in columns was examined) of 

a given plate. 

It is worth noting that when the plate's background estimation is close to zero, the 

Mann-Whitney U test should not detect any biased row or column within a given 

plate. We compared the results of the Mann-Whitney U test to tho se of the t-test used 

by Dragiev et al. (2012) in terms of spatial bias detection, and found that the Mann­

Whitney U test is more robust in this context and thus better suited for spatial bias 
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detection purposes in screening technologies. The main advantages of the Mann­

Whitney U test compared to the t-test are that it does not make any distributional 

assumptions and is more robust to outliers. 

2.4. Results 

To evaluate the performance of the three spatial bias correction methods, we carried 

out simulations with artificially generated screening data. Afterwards, we compared 

the most successful of them, multiplicative PMP, to the existing data correction 

techniques such as B-score (Brideau et al. 2003) and diffusion model (Carralot et al. 

2012; Ogier and Dorval 2012) considering RNAi HIV inhibition assay, screened at 

Pasteur Institute of Korea (Carralot et al. 2012). We also used our general data 

correction protocol to assess the extent of plate-specifie bias across the data 

corresponding to different HTS categories available in ChemBank (Seiler et al. 2008). 

2.4.1. Simulation study 

Our simulation study was conducted using randomly generated 1 000-plate assays . 

The three considered plate sizes were as follows : 96-well plates (8 rows x 12 

colurnns), 384-well plates (16 rows x 24 colurnns) and 1536-well plates (32 rows x 

48 colurnns). The values of inactive activity measurements followed a normal 

distribution with parameters (j.1 = 7.344 and SD = 1), where f1 and SD were the mean 

and the standard deviation of the plate 's measurements. Active compounds (bits) 

were randomly added to the plates to obtain assays with the following bit 

percentages: 0%, 0.5%, 1%, 2%, 3%, 4% and 5%. Hit locations on each plate were 

randomly chosen following a uniform distribution. Hit measurements were generated 

via sampling from a normal distribution with parameters ~N(j.1-1.67SD, SD). A 
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multiplicative spatial bias was randomly assigned to sorne rows and columns of all 

plates of the assay. The bias value was selected following a normal distribution with 

parameters - N(O , C), with C equal to 0, O.lSD, 0.2SD, 0.3SD, 0.4SD and 0.5SD. 

In our simulations, the number of rows and columns of a given plate which could be 

affected by systematic bias was limited to a maximum of 4 rows and 4 columns for 

96 and 384-well plates, and a maximum of 5 row and 5 columns for 1536-well plates. 

A small random noise was also added to both hit and non-hit measurements on ail 

plates. The noise values followed a normal distribution with parameters - N(O, 

0.5SD) . The biased measurements of a given plate were generated using Equation 

(2 .2). The four following data correction methods were tested in our simulations: No 

Correction, NLMBE, mPMP, and multiplicative B-score. The Mann-Whitney U test 

was used in the NLMBE and mPMP methods to identify the rows and columns 

affected by spatial bias . The bits were chosen globally across ail assays by using the 

hit selection threshold of ,lLhs-1.67SD,s (i .e., ail measurements lower than ,lLhs-1.67SD,s 

were chosen as bits, where ,lLhs and SD 11s were the mean and the standard deviation of 

a given assay after the addition of both bits and spatial bias) . The performance of our 

data preprocessing techniques was assessed by measuring the total number of false 

positives (FP) and false negatives (FN) as weil as by computing the hit detection rate 

(i.e., the true positive rate) for all methods. 
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Figure 2.2 True positive rate, and combined false positive and false negative rate for 

96-well plate assays obtained under the condition that a maximum of 4 rows and 4 

colurnns of each plate were affected by spatial bias. Panels (a and b) present the 

results for datasets with the fixed standard deviation of spatial bias, equal to 0.3SD. 

Panels (c and d) present the results for datasets with the fixed bit percentage rate of 

1%. 

Two series of experiments were conducted, by varying either the bit percentage or the 

bias level. In the first set of experiments, 1000 different assays with a fixed standard 

deviation of bias, equal to 0.3SD, and the hit percentage rate varying from 0% to 5% 
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were generated for each plate size (there are no true positives for the case of 0% of 

bits; Figures 2.2-2.4a and b) . In the second series of experiments, 1000 different 

assays with the fixed hit percentage of 1% and the standard deviation of bias varying 

from 0 to 0.5SD were generated for each plate (Figure 2.2-4c and d). Figures 2.2, 2.3 

and 2.4 present the average results generated by the four compared methods for the 

96-well, 384-well and 1536-well plates, respectively. The results of our simulations 

suggest that the NLMBE and mPMP methods clearly outperformed the No 

Correction procedure regardless of plate size, hit percentage and spatial bias variance 

(see Figures 2.2 to 2.4). Moreover, NLMBE and mPMP usually outperformed the 

multiplicative B-score method. This trend is most noticeable with 96-well plates. The 

results of multiplicative B-score improved with the increase in plate size. It is worth 

noting that the multiplicative B-score method was very prone to generating false 

positives, especially for 96 and 384-well plates (see also (Mpindi et al. 2015) for a 

discussion on drawbacks of this method) . The NLMBE method generally achieved 

slightly better performances than mPMP in terms of detection rate (i.e., true positive 

rate). However, mPMP was slightly better than NLMBE in terms of the combined 

false positive and false negative rate. Considering that mPMP converges much fast 

than NLMBE, it can be recomrnended for reducing multiplicative spatial bias in HTS. 

Thus, the mPMP method was used in our experiments with real data presented in the 

next sections. 
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Figure 2.3 True positive rate, and combined false positive and false negative rate for 

384-well plate assays. Figure 2.2 panel description applies here. 
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(a) Detection rate(%), 1536-well plates 
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Figure 2.4 True positive rate, and combined false positive and false negative rate for 

1536-well plate assays . Figure 2.2 panel description applies here. 

Moreover, we also conducted simulations with higher bit rates, i.e. , up to 20% (see 

Figure 2.5), which may occur in secondary screening. As in this case the plate's (the 

row's or the column's) mean can be heavily affected by outliers, and because the 

values of bits can be viewed as outliers, we used the median instead of the mean in ali 

our calculations within the mPMP, NLMBE and multiplicative B-score methods 

when working with secondary screening data. We also used the median instead of the 

mean in the formula defining the hit selection threshold (i.e., Hils values:::; Median -
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C xSD for inhibition assays). These changes allowed our new methods, mainly 

mPMP and NLMBE, to achieve good correction and bit selection results , especially 

for large plates (Figure 2.5e and f) . 
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Figure 2.5 True positive rate for 96, 384 and 1536-well plate assays and high bit 

percentages (1% to 20%) obtained under the condition that a maximum of 4 rows and 
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4 columns of each plate were affected by spatial bias . Panels (a, c ande) present the 

results for datasets with the fixed standard deviation of spatial bias, equal to 0.3SD. 

Panels (b, d and f) present the results for datasets with the fi.xed hit percentage rate of 

20%. 

We also carried out a simulation involving different plate layouts and the proposed 

mPMP bias correction method. Precisely, we compared hit detection results obtained 

for 384-well plates (a) without controls (i .e. , ali of the plate's wells comprised regular 

screening samples ), (b) with the control layout corresponding to Figure 2.1 a in 

(Mpindi et al. 2015) (i.e., layout based on placing controls in column 1 and 24), and 

( c) with the control layout corresponding to Figure 2.1 b in (Mpindi et al. 20 15) (i .e., 

layout based on randomly scattering controls across the entire plate). The hit rate in 

this simulation varied from 1 to 20%. The positions of controls (but not their values) 

were taken into account in this simulation during the computation of the method's 

parameters. Even though superior results were obtained for plates with no controls, 

followed by plates with the scattered control layout, and, finally, by plates with 

controls located in the first and last columns, the results of this simulation, presented 

in Supplementary Figure 2.1, suggest that the control layout has no major impact on 

the performance of the multiplicative PMP method. The size of the plate remains a 

more important factor in this context. 

2.4.2 Analysis of the RNAi HIV HTS assay 

We applied the introduced mPMP algorithm to correct the RNAi HIV data generated 

during a genome-wide siRNA screen, which was aimed at studying HIV-host 

interactions. This screen was used by Carralot and colleagues (Carralot et al. 2012) to 

validate their diffusion correction model. To identify host factors involved in the 

interactions with HIV, an RN Ai screening of human cells infected by HIV -1 and 
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transfected with a genome-spanning siRNA library was carried out (for more details, 

see Supplementary Material 3 in Carralot et al. (2012). Carralot et al. (2012) showed 

that this screen was affected by multiplicative spatial bias, which was evident as edge 

effects . The original screen consisted of 68 plates with of size (16 x 24). Because 

colurnns 1 to 4 of ali plates contained only non-target elements, their measurements 

were excluded from our analysis . Thus, our experiments were carried out using the 

320 remaining measurements of each plate. The entire tested dataset is 

available at the following URL address: 

www.info2.uqam.ca/~makarenkov_v/HTS/downloads/RNAi_HIV _68.zip and the hit 

counts per welllocation represented in Figure 2.6a-f are available in Supplementary 

Tables ST1-ST6. 

As the RNAi HIV screen is an inhibition assay, the hits correspond to low values of 

measurements . Consider Plate 7 of this assay (see Figure 2.1 b or Figure 2.6g). First, 

we applied the Mann- Whitney U test to identify biased rows and colurnns present in 

this plate. The presence of spatial bias was detected in rows A to C, E, and M to P as 

well as in colurnns 23 and 24 of Plate 7. The Kolmogorov-Smimov test's p -value for 

the additive PMP (aPMP) model was 0.0025, while the p-value for the multiplicative 

PMP (mPMP) model was 0.2196 . The null hypothesis, H 0, here is that both unbiased 

raw measurements and corrected measurements come from the same distribution. 

Thus, the aPMP method provided strong evidence against the null hypothesis, while 

the mPMP method did not, at the selected significance level a(a was equal to 0.05 in 

our study) . This result suggests that spatial bias in Plate 7 follows a multiplicative 

model. 
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Table 2.1 Number of hits found in the RNAi HIV assay usmg: raw data (No 

Correction), data corrected by diffusion model, data corrected by additive B-score, 

data corrected only assay-wise, data corrected only plate-wise by mPMP, data 

corrected assay-wise and then plate-wise by mPMP, and data corrected plate-wise by 

mPMP and then assay-wise. The selected thresholds, ,u-1.3480", ,u-1.2930", ,u-1.2550" 

and ,u-1.2190", correspond to 1%, 2%, 3% and 4.13% ofhits, respectively. 

Number of bits found by the methods for four 

different bit selection thresholds 
ll- l.348u !l-t.293u !l-l.255u JJ-l.219u 

No Correction (raw data) 67 1 855 1036 1239 
Diffus ion mode! 677 874 1058 1270 
B-score 127 1 1460 1595 1719 
Assay-wise correction 85 1 1069 1215 1399 
Plate-wise correction (mPMP) 708 889 1050 1247 
Assay+plate-wise correction 944 1170 1341 1517 
Plate+assay-wise correction 750 920 1079 1284 

Using the RN Ai HIV experimental data, we compared the performances of seven data 

correction methods in terms of the number of hits (Table 2.1) and the data 

homogeneity, studied within Plate 7 (Figure 2.6g-l) and within the overall hit 

distribution surface representing the number of hit counts per well location (Figure 

2.6a-f and Table 2.2). The seven compared methods were as follows : No Correction, 

diffusion model removing multiplicative plate-specifie bias (Carralot et al. 2012), 

conventional (additive) B-score (Brideau et al. 2003) assay-wise correction by Well 

Correction (Makarenkov et al. 2007); this procedure removes both additive and plate­

specifie biases across a given well location), plate-wise correction by multiplicative 

PMP, plate-wise correction by multiplicative PMP followed by assay-wise correction 

using Z-score normalization, and assay-wise correction by Z-score followed by plate­

wise correction by multiplicative PMP. Our computations were carried out for four 

different hit selection thresholds consisting of 1%, 2%, 3% and 4.13% of hits (the last 

threshold was selected following (Carralot et al. 2012)) . Table 2.1 shows that the 

conventional B-score correction drastically overestimates the number of detected hits 

compared to raw data. In contrast, the diffusion model, plate-wise correction by 
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mPMP and the combined plate and assay-wise correction present hit totals close to 

that of raw data (see Table 2.1 and Figure 2.6). 

The application of the diffusion model to the RNAi HIV data led to a partial 

correction of the multiplicative edge effect affecting both Plate 7 and the assay's bit 

distribution surface (Figure 2.6h and b ). However, this correction was not enough to 

pass the i goodness of fit test for three of the four selected hit selection thresholds 

(Table 2.2). This test can be used in HTS to assess the deviation of the bit distribution 

surface from the expected (i .e., plane) surface (Makarenkov et al. 2007). The additive 

B-score technique removed an important part of the original edge effect at the 

expense of a significant increase in the number of detected bits (Table 2.1) and an 

inverse edge effect due to overfitting which can be observed within the corrected bit 

distribution surface (Figure 2.6c). Even though the B-score method was able to 

remove spatial bias from rows C and 0 and colurnn 23 of Plate 7 (Figure 2.6i), it was 

by far the worst method in terms of the i goodness of fit test used to assess the 

homogeneity of the bit surface (Table 2.2). Assay-specifie bias correction improved 

the uniformity of the hit count surface by removing from it the patterns of edge effect. 

The corrected bit surface passed the i goodness of fit test for all four bit selection 

thresholds. 
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Table 2.21 goodness of fit statistic (given for a= 0.01) for the hit distribution 

surfaces of the RN Ai HIV assay computed after the application of the following data 

correction methods: No Correction, diffusion model, additive B-score, assay-wise 

correction only, plate-wise correction only by mPMP, assay-wise correction followed 

by plate-wise correction by mPMP, and plate-wise correction by mPMP followed by 

assay-wise correction. The selected thresholds, ,u-1.3480", ,u-1.2930", ,u-1.2550" and ,u-

1.2190", correspond to 1%, 2%, 3% and 4.13% ofhits, respectively. 

j-goodness-of-fit of hit distribution surfaces 
,u-1.348u 

given for four hit selection tbresholds 
,u-1.293u ,u-1.255u ,u-1.219u 

Critica/ value 380.68 380.68 380.68 38G.68 
No correction (raw data) 366.26 408.91 477.51 529.91 
Diffusion mode! 369.97 421.64 480.30 537.12 
B-score 670.90 644.99 629.35 639.77 
Assay-wise correction 338.38 299.31 279.12 268.71 
Plate-wise correction (mPMP) 315.28 329.45 345.81 368.40 
Assay+p1ate-wise correction 300.07 282.85 280.95 268.21 
P1ate+assay-wise correction 302.16 282.09 280.18 261 .67 

However, an inverse edge effect pattern, similar to that introduced by B-score, can be 

observed on the corrected bit distribution surface (Figure 2.6d). Assay-wise 

correction was also unable to correct a strong edge effect present in row A of Plate 7; 

this edge effect was apparently much more significant within Plate 7 than within the 

rest of the plates of this assay. Plate-specifie bias correction via multiplicative PMP 

better corrected Plate 7's edge effects (Figure 2.6k) , but still conserved the outlines 

of the original edge effect in rows 0 and P (Figure 2.6e ). All hit count surfaces 

computed after the plate-wise correction were also successful in passing the 1 
goodness of fit test (Table 2.2). 
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Figure 2.6 Hit distribution surfaces and Plate 7 heatmaps for the following types of 

RNAi HIV data: (a,g) raw data, (b,h) data corrected by the diffusion mode!, (c,i) data 
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corrected by additive B-score, ( d,j) data corrected only assay-wtse, ( e,k) data 

corrected only plate-wise using rnPMP, and (f,l) data corrected both plate and assay­

wise. The results for the bit selection threshold of ,u-1.2190" are depicted. Figure 2.1 

description applies here. 

As both plate and assay-wise corrections passed thel goodness of fit test for ali four 

bit selection thresholds, they can be combined to obtain a more powerful bias 

correction technique. However, the order of their application is important as the 

results in Tables 2.1 and 2.2 suggest. While the results regarding the homogeneity of 

the bit distribution surface, reported in Table 2.2, give no ad van tage to one of the two 

methods, those re garding the total number of hits, reported in Table 2.1, show that 

plate-wise correction should precede assay-wise correction in the case of the RNAi 

HIV data. In fact, if the assay-wise correction precedes the plate-wise correction, a 

clear overestimation of the number of detected hits can be observed. 

It is worth noting that the most suitable order of application of the plate and assay­

wise corrections depends on the data only. For example, for a 5-plate assay presented 

in Supplementary Tables ST7-ST11 (see Supplementary Materials), the assay-wise 

correction (Supplementary Figures SF2 to SF6) should precede the plate-wise 

correction (Supplementary Figures SF7 to SF11) because otherwise the assay-specifie 

bias present in well locations (A, l2), (B,12), (C,12), (D, l2) and (E,12) cannot be 

effectively recognized (see Supplementary Tables ST7 to ST11). Further validation of 

selected hits should be conducted through the structure-activity relationships (SAR) 

analysis and the subsequent clinical trials. 

2.4.3 Analysis ofChemBank data 

We first examined 100 experimental assays from ChemBank (Seiler et al. 2008), 

which is the most complete public small-molecule assay database, in order to 
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determine the dominant type of plate-specifie spatial bias affecting the four available 

HTS screening categories, including HTS-homogeneous, HTS-microorganism, HTS­

cell-based and HTS-gene-expression assays (25 assays per screening category were 

considered). Figure 2. 7 shows the proportion of as sa ys, per screening category, 

affected by either additive, or multiplicative, or undetermined type of spatial bias. 

The algorithm presented in Section 2.2.5 was used to identify the most appropriate 

bias model for each plate examined. An assay was declared to be affected by additive 

bias when it bad more plates affected by additive than multiplicative or undetermined 

(see Step 4 of our algorithm in Section 2.2.5) type of spatial bias according to our 

algorithm. Similar considerations were applied for assays affected by multiplicative 

and undetermined types of bias. Our results demonstrate that the dominant type of 

plate-specifie spatial bias varies across screening categories. For example, additive 

bias has been dominant in homogeneous (52%) and microorganism assays (64%), 

white multiplicative bias has been dominant in cell-based (52%) and gene expression 

assays (48%). 
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Figure 2. 7 Plate-specifie bias detected across the four HTS screenmg categories 

available in ChemBank. 100 HTS assays (25 per screening category) were analyzed 

(see Supplementary Table ST12 for the ChemBank IDs of the assays). The control 

wells were removed from all screens prior to bias detection. The proportion of assays 

per screening category, affected by additive bias, by multiplicative bias, and by an 

undetermined type of bias is reported. No assays containing no biased plates at all 

were found in this experiment. 

We also investigated the presence of spatial bias in a comprehensive gene expression 

dataset (LlOOO) produced by the Library of Integrated Network-based Cellular 

Signatures (LINCS) (Duan et al. 2014; Lachmann et al. 2016). The considered LlOOO 

mRNA profiling assay contains gene expression measurements for tens of thousands 

of distinct cell perturbations. This is the largest 384-well gene expression 

measurement assay ever performed (Lachmann et al. 2016). We examined the 

measurements from the Normalized L1 000 dataset (available from the LIN CS 

consortium at: http: //lincsportal.ccs.miami.edu/datasets/#/view/LDS-1233). The 

dataset we analyzed included 7 816 microplates . It contained all the 15 available cell 

lines (A-375, A549, BT-20, HAlE, HCC515, Hep G2, HMEl , Hs 578T, HT-29, 
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LNCaP, MCF10A, MCF7, MDA-MB-231, PC-3 and SK-BR-3). In total, our analysis 

was carried out on 3 001 344 different gene expression profiles . The Normalized 

LlOOO dataset contains direct measurements for 978 genes (landmark genes), while 

for 22 000 more genes only the transcript amounts are available (Duan et al. 2014). 

Our analysis concemed these 978 landmark genes . Lachmann et al. (2016) have 

recently investigated the gene expression profiles from the L 1000 datas et and found 

that the vast majority of the tested plates were affected by spatial bias. In our analysis, 

we found that spatial bias affected 6 957 out of 7 816 (89.01%) of the tested 

microplates from the Normalized Ll 000 dataset, compared to 96.36% biased 

microplates found by Lachmann et al. (20 16) using an algorithm which combines 

spatial autocorrelation detection and principal component analysis. Precisely, we 

established that 25 .67% of the assay plates were affected by additive bias, 44.65% by 

multiplicative bias, 18.69% by an undetermined type of bias and 10.99% contained 

no bias (Figure 2.8). 
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Figure 2.8 Plate-specifie bias detected across 7 816 plates, including 3 001 344 gene 

expression profiles, from the Normalized LlOOO mRNA profiling assay. The control 

wells were removed from all screens prior to bias detection. The proportion of plates 

affected by additive bias, by multiplicative bias, by an undetermined type of bias, as 

well as of th ose having no spatial bias at all, is reported. When the Mann-Whitney U 

test detected no any biased row or column in a given plate, the plate was reported as 

containing no spatial bias . 

2.5 Discussion 

In this paper, we described three novel methods, called Non-Linear Multiplicative 

Bias Elimination (NLMBE), multiplicative Partial Median Polish (mPMP) and 

multiplicative B-score, for removing multiplicative spatial bias from experimental 

screening data. The performances of the new methods were assessed in simulations, 

which confirmed that both NLMBE and mPMP outperformed the multiplicative B­

score technique, which was prone to generating false positive hits. The NLMBE 

method yielded slightly better performances than mPMP in terms of the true positive 
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rate, while mPMP was better than NLMBE in terms of the combined false positive 

and false negative rate. Taking into account that rnPMP converges much faster than 

NLMBE, the former is recommended for correcting multiplicative spatial bias in HTS 

assays. The proposed NLMBE and mPMP methods correct only the measurements of 

rows and colurnns of a given plate in which spatial bias was detected by the Mann­

Whitney U test. This is the main advantage of these methods, compared to B-score 

(additive or multiplicative) and other data correction techniques that modify all the 

measurements of a given plate even though spatial bias is present in only a few of 

them. This property of the new methods allows us to address efficiently the over­

fitting issue. 

Moreover, we presented a general bias correction protocol, which can be used by 

HTS researchers to remove both assay and plate-specifie spatial biases. The plate­

specifie part of this protocol includes a new algorithm, based on the use of the 

additive (Dragiev et al. 2012) and multiplicative PMP methods and the Kolmogorov­

Smimov two-sample test to identify the most appropriate (i.e., additive or 

multiplicative) spatial bias model for a given plate. We also propose to carry out the 

Mann- Whitney U test to detect the presence of both assay and plate-specifie spatial 

biases . Importantly, the presented bias correction methods should be used cautiously 

since the application of error correction techniques on error-free data can introduce an 

additional bias that negatively affects the hit selection process (see for example the 

results of the multiplicative B-score method on error-free data in Figures 2.2-2.5). 

Thus, the application of spatial bias correction methods should be supported by 

statistical tests. Finally, we showed that the discussed methods for removing 

multiplicative spatial bias and the introduced general data correction protocol are 

effective in detecting and cleaning experimental data generated by screening 

technologies. For example, after analyzing the ChemBank data, we were able to 

determine that the additive type of spatial bias is dominant in homogeneous and 

microorganism HTS screens, while cell-based and gene-expression HTS assays are 
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mostly affected by multiplicative spatial bias. Clearly, the screening category has a 

direct impact on the nature of spatial bias (additive vs. multiplicative; see Figures. 

2.7-2.8) . In the future, it would be interesting to conduct sorne additional experiments 

in arder to establish whether the type of spatial bias also depends on sorne technical 

and environmental factors which can affect experimental screening campaigns, such 

as reader and pipette malfunctioning, unintended variations in compound 

concentration associated with agent evaporation, or temperature, lighting and air flow 

fluctuations . 

Mpindi et al. (2015) showed the importance ofQC metrics (e.g., Z' -factor, (Zhang et 

al. 1999)) and per-plate data visualization for identifying systematic errors in 

experimental HTS, especially for data with a high hit rate. It would interesting to 

compare in the future the performances of Z' -factor and the 1 goodness of fit test, 

which was used in this paper to assess the deviation of the hit distribution surface 

from a plane surface. The advantage of the 1 goodness of fit test is that it can be 

carried out when the control measurement information is unavailable for data at hand 

(as was the case of the RN Ai HIV assay analyzed in Section 2.2), butZ' -factor can 

provide a better indication of the presence of spatial bias for secondary screens 

involving high hit rates. The presented methods and data correction protocol have 

been implemented in the AssayCorrector package (AssayCorrector), which is freely 

available at CRAN. 
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2.6 Supplementary material 

Table STl Rit distribution for the raw RNAi HIV dataset computed for the JL-

1.219SD ( 4.13%) threshold. This hit distribution surface is presented in Figure 2.6a of 

the main manuscript. Columns 1 to 4 were discarded because they did not contain 

target compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
A 0 1 1 3 0 2 2 1 3 3 2 1 1 1 0 2 1 1 1 2 

B 3 1 6 3 5 7 3 1 3 3 3 6 6 2 1 3 3 1 1 3 

c 2 3 5 3 4 6 2 0 3 4 4 2 4 2 4 3 3 4 1 1 

D 3 8 3 5 6 10 4 7 9 4 10 5 7 8 4 6 8 5 3 4 

E 5 4 4 8 2 7 6 6 8 8 6 4 3 5 2 8 6 1 1 1 

F 4 4 4 2 5 2 9 5 10 7 4 7 3 5 8 6 1 3 3 2 

G 5 6 3 13 6 5 5 4 4 5 5 6 5 3 5 6 0 2 6 1 

H 3 7 2 10 3 5 1 5 9 4 5 7 9 4 6 9 2 3 3 0 

1 7 4 5 8 5 6 4 8 5 4 5 8 9 5 6 3 4 2 3 4 

J 4 4 5 9 4 6 1 8 4 12 2 10 10 7 6 6 6 1 4 1 

K 3 7 2 4 5 2 8 4 3 8 1 6 5 10 5 5 5 1 3 2 

L 3 2 8 5 6 3 7 9 2 6 9 7 4 6 5 3 4 2 3 1 

M 3 4 5 1 3 4 1 2 3 7 5 3 10 3 2 4 3 2 2 0 

N 3 3 5 5 2 1 2 0 2 4 2 1 2 1 6 3 1 3 1 1 

0 4 1 2 0 3 1 0 1 3 0 1 3 1 2 3 3 1 2 1 3 
p 3 2 1 0 2 0 2 1 3 1 2 1 3 2 2 1 4 4 1 3 
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Table ST2 Hit distribution for the RNAi HIV dataset corrected by the diffusion 

mode! and computed for the JL-1.219SD (4.13%) threshold. This hit distribution 

surface is presented in Figure 2.6b of the main manuscript. Columns 1 to 4 were 

discarded because they did not contain target compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
A 0 1 1 3 0 2 2 1 3 3 2 1 1 1 0 2 1 1 1 2 

B 4 1 6 3 5 7 3 1 3 3 3 6 6 2 1 3 3 1 1 3 

c 3 3 5 4 4 6 2 1 3 4 4 2 4 2 4 3 3 4 1 1 

D 3 8 4 6 6 10 4 7 9 4 10 6 7 8 4 7 8 5 3 4 

E 5 4 4 8 2 7 6 6 8 9 6 4 3 5 2 8 6 1 1 1 

F 5 4 4 2 5 2 9 5 Il 7 4 7 3 5 8 6 1 3 3 2 

G 6 6 3 14 6 5 5 4 4 5 6 6 5 3 5 6 0 2 6 1 

H 3 7 2 10 3 5 1 5 9 4 6 7 9 4 6 9 2 3 3 0 

1 7 5 5 8 5 6 4 8 5 5 5 8 9 5 6 3 4 2 3 4 

J 6 4 5 Il 4 6 1 9 4 12 2 10 10 7 6 6 6 1 4 1 

K 3 7 2 4 5 3 8 4 3 8 1 6 5 10 5 5 5 2 3 2 

L 3 2 8 5 6 3 7 9 2 6 9 8 4 6 5 3 4 2 3 1 

M 5 4 5 1 3 4 1 2 3 7 5 3 10 3 2 4 3 2 2 0 

N 3 3 5 5 2 1 2 0 2 4 2 1 2 1 6 3 1 3 1 1 

0 4 1 2 0 3 1 0 1 3 1 1 3 1 2 3 3 1 2 1 3 

p 3 2 1 0 2 0 2 1 3 1 2 1 4 2 4 1 4 4 1 3 
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Table ST3 Hit distribution for the RNAi HIV dataset corrected by B-score and 

computed for the JL-1.219SD (4.13%) threshold. This hit distribution surface is 

presented in Figure 2.6c of the main manuscript. Colurnns 1 to 4 were discarded 

because they did not contain target compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
9 12 9 14 10 13 9 9 7 16 12 10 8 9 7 7 8 8 11 

6 8 8 5 9 12 5 4 8 6 9 9 10 5 6 6 6 6 10 

5 5 7 6 5 6 4 3 3 4 9 6 3 2 7 3 7 8 10 

2 6 4 5 3 5 5 2 4 1 5 3 2 1 1 3 7 7 4 

5 4 2 4 4 6 4 2 3 2 4 3 3 3 3 5 7 3 5 

4 7 3 2 4 0 7 3 3 2 7 6 5 4 5 6 2 4 11 

4 4 3 5 2 5 4 4 1 3 3 5 2 2 3 1 3 7 8 

4 5 2 7 2 2 1 4 3 3 2 3 8 5 3 7 2 1 6 

7 2 1 3 2 3 1 4 4 3 2 6 5 3 1 2 5 3 5 

2 4 3 3 1 0 0 4 0 3 2 3 7 5 5 1 5 3 6 

3 3 2 6 4 1 5 3 3 3 4 2 5 3 4 2 4 5 4 

2 2 4 1 2 4 3 7 3 5 2 7 2 5 4 2 6 5 3 

5 7 5 4 5 5 1 5 2 5 8 4 4 5 3 4 3 8 7 

7 7 7 8 7 3 4 7 6 9 2 5 8 3 7 5 3 7 8 

8 5 7 6 8 7 4 3 6 4 3 8 4 2 9 6 8 Il 11 

10 7 9 6 10 4 9 8 7 Il 8 7 13 5 10 6 8 11 11 

24 
26 

13 

13 

15 

9 

Il 

4 

7 

14 

10 

12 

8 

6 

11 

14 

14 
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Table ST4 Hit distribution for the RNAi HIV dataset corrected assay-wise and 

computed for the JL-1.219SD (4.13%) threshold. This hit distribution surface is 

presented in Figure 2.6d of the main manuscript. Columns 1 to 4 were discarded 

because they did not contain target compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
A 3 6 6 6 6 7 6 6 4 5 3 3 6 5 6 6 5 6 6 7 

B 4 6 9 7 6 6 3 6 3 5 4 6 4 4 6 4 7 6 5 7 

c 4 3 4 0 3 3 2 1 5 6 2 0 1 5 3 2 3 7 5 6 

D 5 6 4 4 5 4 4 3 3 3 4 1 5 2 5 2 6 4 5 4 

E 4 6 5 7 4 5 6 8 4 2 3 2 7 4 1 3 3 5 6 7 

F 5 4 3 5 5 3 5 4 3 3 4 6 4 7 6 3 3 2 5 4 

G 5 5 6 2 5 4 3 4 4 5 5 2 3 2 4 5 7 3 9 8 

H 3 4 1 5 3 2 2 8 5 3 8 4 3 3 4 8 2 7 4 6 

1 8 4 5 2 4 3 4 2 10 1 2 6 4 4 7 2 5 2 4 5 

J 3 3 5 4 2 6 1 3 3 1 2 4 2 4 2 4 4 4 6 8 

K 3 3 1 3 4 4 5 3 1 1 4 1 5 4 4 5 4 2 4 6 

L 6 4 0 3 0 1 4 4 1 3 2 5 3 4 3 3 4 6 5 5 

M 4 9 5 1 8 6 4 2 5 4 6 2 1 4 3 4 3 3 9 7 

N 4 5 8 4 3 5 7 1 3 4 4 3 3 7 3 4 5 3 7 6 

0 4 5 4 3 5 8 4 4 7 4 3 4 5 4 7 7 9 5 9 9 
p 6 4 8 4 7 5 5 4 4 4 5 7 4 5 7 6 8 8 5 4 
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Table ST5 Hit distribution for the RNAi HIV dataset corrected plate-wise by 

multiplicative PMP and computed for the ,u-1.219SD (4.13%) threshold. This hit 

distribution surface is presented in Figure 2.6e of the main manuscript. Colurnns 1 to 

4 were discarded because they did not contain target compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
A 1 1 5 5 3 6 4 3 5 8 4 2 3 2 1 3 4 3 7 7 

B 4 1 5 3 5 5 3 1 3 3 3 5 7 2 1 3 2 2 1 5 

c 3 3 5 2 4 5 0 0 4 3 7 3 3 3 3 3 5 3 4 2 

D 3 5 3 6 4 7 4 7 5 6 8 4 4 7 4 7 6 6 3 7 

E 5 4 4 7 1 5 5 6 6 7 6 5 2 3 1 6 4 2 1 2 

F 4 5 4 3 3 0 8 6 9 6 3 7 2 3 8 4 1 3 3 5 

G 5 6 3 10 7 7 4 5 3 4 4 7 5 4 4 8 1 3 5 2 

H 3 7 2 7 2 4 2 4 6 2 5 5 Il 2 5 9 2 3 3 1 

1 3 4 4 8 4 5 1 6 6 5 4 6 7 4 4 5 2 2 3 6 

J 5 4 6 9 4 5 1 8 3 9 3 10 7 5 3 5 6 2 3 2 

K 3 6 3 5 4 2 8 3 3 7 3 5 6 7 6 5 5 3 4 7 

L 2 2 8 4 4 2 6 8 1 6 8 8 3 5 3 3 3 1 4 3 

M 3 4 4 1 2 4 0 3 3 5 4 1 6 4 2 4 3 3 1 0 

N 2 4 5 6 1 2 2 0 2 4 3 2 3 0 6 3 2 3 1 1 

0 4 1 2 0 3 1 0 1 4 0 1 4 1 3 4 3 3 2 2 5 

p 4 2 4 1 3 0 3 3 3 3 5 3 3 2 3 2 5 5 3 6 
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Table ST6 Hit distribution of the RNAi HIV dataset corrected plate-wise by 

multiplicative PMP and then assay-wise and computed for the ,u-1.219SD (4.13%) 

threshold. This hit distribution surface is presented in Figure 2.6f of the main 

manuscript. Columns 1 to 4 were discarded since they did not contain target 

compounds. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
A 4 2 5 5 7 5 7 5 6 7 4 6 6 5 6 5 8 7 8 4 

B 4 2 5 5 8 5 3 5 3 3 5 4 6 2 6 3 8 5 4 5 

c 2 3 2 1 3 5 2 3 7 4 5 2 0 3 4 3 5 7 3 3 

D 5 4 3 4 2 3 4 4 2 2 4 1 4 3 5 2 3 4 4 4 

E 5 4 4 6 2 4 5 9 3 1 4 2 3 3 1 3 3 3 3 4 

F 5 5 5 4 5 6 5 5 6 3 4 5 5 7 6 3 5 3 3 7 

G 5 6 3 3 4 4 3 4 5 4 4 3 3 4 2 6 6 3 9 6 

H 3 5 0 4 2 2 4 6 4 2 9 3 4 3 4 6 5 7 3 5 

1 7 5 3 2 7 3 2 3 9 0 0 3 5 6 6 3 4 2 4 6 

J 3 4 5 1 4 5 1 3 3 4 3 7 2 4 2 5 4 3 3 7 

K 3 3 2 2 4 2 4 3 2 1 4 1 5 3 3 3 5 2 4 10 

L 6 3 0 2 1 1 2 4 1 2 2 6 3 3 3 4 5 4 5 6 

M 3 7 5 2 7 5 4 3 5 4 3 1 1 2 3 4 3 3 5 6 

N 4 4 5 6 1 4 7 0 4 4 2 3 4 5 4 5 4 3 7 5 

0 0 1 4 0 4 3 4 2 5 4 5 4 6 4 6 5 6 5 5 4 

p 7 2 6 3 6 2 5 4 5 4 5 5 3 7 8 3 5 6 3 5 
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Supplementary tables ST7 -STll con tain synthetic data discussed in Section 2.2 of the 

main manuscript. This is a 5-plate assay used to illustrate the case where the assay­

wise correction should precede the plate-wise correction because otherwise the assay­

specifie bias present in weil locations (A,12), (B,12), (C, 12), (D,12) and (E,12) 

cannot be effectively recognized (see also Supplementary fi gures SF2 to SFll ). 

Table ST7 Plate 1 raw measurements of the synthetic dataset presented in Section 2.2 

of the main manuscript. 

1 2 3 4 5 6 7 8 9 10 11 12 
20.010 20.096 20 .016 20 .061 20.012 20 .067 20 .053 20.060 20.053 20 .099 20.074 40 .054 

20.025 20.018 20.064 20 .047 20.015 20 .045 20 .089 20.073 20.042 20 .036 20 .096 40 .086 

20.001 20.024 20 .093 20 .082 20.047 20 .034 20 .026 20 .030 20.075 20 .005 20 .034 40 .035 

20.070 20.070 20 .055 20.015 20.089 20.019 20 .026 20.008 20.094 20.009 20.026 40 .090 

20.075 20.059 20 .008 20.060 20.071 20.017 20 .016 20 .041 20 .025 20.046 20 .002 40.003 

20.065 20.086 20.024 20.033 20.097 20.057 20 .097 20.058 20.087 20 .029 20.099 20.084 

20 .070 20.006 20 .085 20.060 20 .046 20 .096 20.018 20 .006 20.044 20 .015 20.023 20.002 

20 .076 20.046 20 .039 20.049 20 .031 20.062 20.002 20 .044 20 .095 20.064 20.090 20.069 

Table ST8 Plate 2 raw measurements of the synthetic dataset presented in Section 2.2 

of the main manuscript. 

1 2 3 4 5 6 7 8 9 10 11 12 
20 .011 20 .072 20 .090 20 .058 20 .074 20 .006 20 .030 20.002 20.046 20 .019 20 .081 40 .094 

20.068 20 .033 20 .005 20 .095 20 .023 20.047 20 .008 20 .088 20.068 20 .087 20.005 40.001 

20.029 20.037 20.028 20.030 20.070 20.093 20 .074 20 .005 20.086 20.004 20.059 40 .035 

20.035 20.038 20 .066 20.07 1 20.034 20.082 20.074 20.032 20.013 20 .019 20.075 40 .010 

20.016 20 .004 20 .036 20.067 20.054 20.029 20 .049 20 .010 20 .086 20 .055 20.089 40 .000 

20.049 20 .022 20 .018 20.085 20.020 20. 003 20 .009 20 .037 20 .003 20 .033 20.087 20 .023 

20.001 20 .064 20 .063 20.04 1 20 .037 20.075 20.019 20 .055 20 .012 20 .083 20.054 20.013 

20.018 20 .070 20.010 20.009 20 .031 20.007 20 .064 20 .054 20.035 20 .050 20.017 20.083 
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Table ST9 Plate 3 raw measurements of the synthetic dataset presented in Section 2.2 

of the main manuscript. 

1 2 3 4 5 6 7 8 9 10 11 12 
20.060 20.019 20 .052 20 .030 20.096 20.065 20.056 20.065 20.088 20.058 20 .003 40.013 

20.023 20.035 20.008 20.081 20.020 20.013 20.023 20.029 20.042 20 .017 20 .099 40.028 

20.091 20 .026 20.024 20 .053 20.090 20.000 20 .097 20.041 20 .088 20.071 20 .008 40.061 

20.092 20 .023 20 .073 20.088 20.058 20 .079 20.046 20 .092 20.097 20.04 1 20.088 40.066 

20.064 20. 046 20 .046 20.010 20.073 20.038 20.055 20.028 20.036 20.031 20.080 40.077 

20.070 20 .069 20.016 20.063 20.013 20 .025 20.005 20 .080 20.059 20 .094 20.093 20.024 

20.066 20.059 20.055 20.058 20.031 20.020 20.000 20.014 20.075 20.018 20.039 20.031 

20.013 20.055 20.027 20.041 20 .073 20 .075 20.073 20 .001 20 .001 20.050 20.032 20.039 

Table STlO Plate 4 raw measurements of the synthetic dataset presented in Section 

2.2 of the main manuscript. 

1 2 3 4 5 6 7 8 9 10 Il 12 

20.003 20.055 20.066 20.059 20.005 20.047 20.026 20.099 20.02 1 20.004 20.04 1 40.008 

20.086 20 .037 20.009 20.072 20.01 1 20.003 20.054 20 .098 20 .044 20.0 18 20.036 40.065 

20.084 20.069 20.061 20.042 20.057 20.067 20.094 20.065 20.044 20.04 1 20.066 40.036 

20.088 20 .076 20.013 20.013 20.046 20.0 16 20.046 20 .050 20.086 20 .035 20.01 6 40.002 

20.055 20 .098 20.092 20.099 20.027 20.050 20.094 20.020 20.065 20.009 20.049 40.002 

20.012 20 .048 20.045 20.006 20.067 20.091 20.039 20.043 20.040 20.053 20.092 20.029 

20.017 20 .01 5 20.0 15 20.0 16 20.0 14 20.060 20.067 20.048 20 .01 8 20.093 20.040 20.072 

20.046 20.057 20.074 20.0 12 20.07 1 20.088 20 .021 20.028 20 .037 20.021 20.0 17 20.002 

Table STll Plate 5 raw measurements of the synthetic dataset presented in Section 

2.2 of the main manuscript. 

1 2 3 4 5 6 7 8 9 10 11 12 

A 20.033 20.045 20.007 20.042 20.093 20.092 20.062 20.026 20.001 20.028 20.080 40.037 

B 20.092 20.060 20.039 20.076 20.003 20.018 20.034 20.079 20.026 20.088 20.055 40.010 

c 20.072 20.000 20.0 12 20.045 20.042 20.065 20.040 20.090 20.0 16 20.095 20.035 40.073 

D 20.049 20.055 20.063 20.002 20.057 20.091 20.068 20.096 20.005 20.020 20.035 40.078 

E 20.087 20.099 20.084 20.06 1 20.059 20.089 20.006 20.05 1 20.064 20.073 20.096 40.01 3 

F 20.025 20.032 20.0 18 20.043 20.075 20.077 20.090 20.095 20.032 20.005 20.001 20.064 

G 20.004 20.015 20.094 20.034 20.021 20.071 20.00 1 20.099 20.059 20.070 20.031 20.067 

H 20.004 20.058 20.076 20.014 20.045 20.088 20.066 20 .060 20.002 20.028 20.089 20.064 
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Table ST12 Set of 100 ChemBank assays analyzed in our bias detection simulation 

described in Section 2.3 of the main manuscript (see also Figure 2.7 in the main text); 

25 assays per HTS screening category (Cell-based, Homogeneous, Microorganism 

and Gene expression) were considered. 

Hi2h-throughput screenin2 (Cell-based) - 25 assays 
1 AdipocyteDifferentiation 1 Oi1Red0(913.0 191) 
2 AdipocyteDifferentiation2 NileRed( 1015.000 1) 
3 AdipocyteDifferentiation2 NileRed( 10 15 .0032) 
4 AdipocyteDifferentiation2 NileRed( 1 015 .0034) 
5 AnnotationDeve1opment BrdUCytoblot(900.0001) 
6 AnnotationDeve1~ment BrdUCytob1ot(900.0002) 
7 AnnotationDevelopment BrdUCytoblot(900.0021) 
8 AnnotationDevelopment BrdUCytoblot(900.0022) 
9 AnnotationDevelopment EthD 1 Staining(900.0005) 
10 AnnotationDevelopment JC 1 MitoDye(900.00 13) 
11 AR-NcoRBindingAssay_ raw {Lux()} (268.0 159) 
12 AR-NcoRBindingAssay raw {Lux()} (268 .0 173) 
13 AR-NcoRBindingAssay raw{Lux()}(268 .0217) 
14 AR-NcoRBindingAssay_ user{AvgLux()} (268 .0221) 
15 BreastCancerCeliProfiling_ CeliTiterGlo(915.0248) 
16 BreastCancerCeliProfiling JC 1 MitoDye(915 .0244) 
17 Cellular Auto fluorescence CpdAutofluor(908 .0049) 
18 Cellular Auto fluorescence CpdAutofluor(908.0 125) 
19 CeliViabi li tyProfi ling_ CeliTiterGlo( 1 019.000 1) 
20 Deacetylaselnhibition AcLysCytob lot( 1027 .0002) 
21 Endotheli alCellProfilingl Calcein-AM(9 1 0.0 153) 
22 Facioscapulohwnera!MD Calc(E 1-E2)( 1026 .001 0) 
23 FacioscapulohumeralMD Calc(E l -E2)( 1026.00 Il) 
24 FacioscapulohumeraiMD Lux Reporter( 1 026.0003} 
25 FacioscapulohumeralMD LuxReporter(1 026 .00 19) 

High-throughput screening (Homogeneous)- 25 assays 
1 ActinPo lymerization raw{FI() }( 144.0030) 
2 Acti nPolymerization user{Fo1d() }( 144.0031) 
3 AdipocyteDifferentiation 1 Oi1Red0(913 .0 190) 
4 AnnotationDevelopment BrdUCytoblot(900.0020) 
5 BRAF HRPCytoblot(l110.0001) 
6 BRAF HRPCytoblot( 111 0.0002) 
7 BRAF HRPCytoblot(lll0.0003) 
8 BRAF HRPCytob lot(1110.0005) 
9 Cellular Auto fluorescence CpdAutofluor(908 .0050) 
10 CMVPolymeraseBindingAssay raw {Pol(P)} (299 .0552) 
11 CMVPolymeraseBindingAssay_ raw {Pol(s)}(299.0543) 
12 CMVPolymeraseBindingAssay raw{Pol(s)}(299.0549) 
13 CMVPolymeraseBindingAssay raw {Pol(s)} (299 .0553) 
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14 CREBReporterAssay LacZReporter(l 029.001 0) 
15 CyclinReporterGeneCdh 1 user {F old()} (219 .009 1) 
16 DihydroorotateDehydrogenase Calc(E l-E2)( 1021 .003 3) 
17 DihydroorotateDehydrogenase EnzCoupledColor( 1021.0001) 
18 DihydroorotateDehydrogenase EnzCoupledColor( 1 021 . 0013) 
19 EColiFilamentation2006 Optica!Density( 1038 .001 0) 
20 GlycanaseActivity raw{Pol(P)} (295.0495) 
21 HoxDNA-BindingAssay_ FluorOligo( l 031 .000~ 

22 HoxDNA-BindingAssay_ FluorOligo( 1 031.0008) 
23 HoxDN A-BindingAssay FluorOligo( 1031 .001 0) 
24 KinaseinhibitorModifiers BrdUCytoblot(90 1.001 0) 
25 TrypanothioneReductase EnzCoupledColor(l 017 .0020) 

High-throughput screening (Microorganism) - 25 assays 
1 ABAggregationinhibitors Optica!Density( 11 03 .0009) 
2 AntibacterialAssay_ FluorProtein(ll 06.00 16) 
3 AntibacterialAssay FluorProtein(ll 06.0027) 
4 AspulvinoneUpregulation MetabColor(l 022.0007) 
5 Biofi lmForrnationAssay_ BacTiterGlo(l 059 .0006) 
6 ClathrinDependentMembraneTrafficking raw { Abs(Mut)} (31 0.0609) 
7 ClathrinDependentMembraneTrafficking raw { Abs(Mut)} (31 0.0613) 
8 ClathrinDependentMembraneTrafficking raw{ Abs(Mut)J(31 0.0625) 
9 ClathrinDependentMembraneTrafficking_ raw { Abs(Mut)} (31 0.0657) 
10 ClathrinDependentMembraneTrafficking raw{ Abs(Mut)} (31 0.073 7) 
11 ClathrinDependentMembraneTrafficking user{Fo ld(Mut) }(31 0.0733) 
12 ECo1iFi1amentation2006 Optica!Density( 1038.000 1) 
13 ECo1iFilamentation2006 Optica!Density( 1 038 .0002) 
14 EColiFilamentation2006 Optica!Density( 1038 .00 12) 
15 EColiFilamentation2006 Optica1Density( 1038 .0014) 
16 EColiFi lamentation2006 Optica!Density( 1038.00 16) 
17 EColiFi lamentation2006 Optica!Density(l 038.0022) 
18 EColiFi lamentation2006 Optica!Density(l 038.0023) 
19 EColiFilamentation2006 Optica!Density( 103 8.0024) 
20 PDERegulators Optica!Density( 1 091 .0043) 
21 Phosphatidylinosito!Kinase Optica!Density( 1 000.0008) 
22 Phosphatidylinosi to!Kinase Optica!Density( 1 000 .0027) 
23 PSACAntagonistScreen Optica!Density( 1035.00 16) 
24 Sul fur Assimilation user{Inh(BioB)} (130.00 18) 
25 SulfurAssimi1ation user{Inh(CysH) }( 130.0020) 

High-throughput screening (Gene expression)- 25 assays 
1 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0001) 
2 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0003) 
3 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0007) 
4 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0009) 
5 AndrogenSignalingGE-HTS GeneExprHTS( 1004.001 0) 
6 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.00 12) 
7 AndrogenSignalingGE-HTS GeneExprHTS(1 004.0014) 
8 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.00 16) 
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9 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.00 17) 
10 AndrogenSignalingGE-HTS GeneExprHTS( 1004.00 19) 
Il AndrogenSignalingGE-HTS GeneExprHTS( 1004.0021) 
12 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0028) 
13 AndrogenSignalingGE-HTS GeneExprHTS( 1 004.0030) 
14 GE-HTSApoptosis GeneExprHTS( 1055 .0005) 
15 GE-HTSApoptosis GeneExprHTS( 1055.00 15) 
16 GE-HTSNotch 1 Inhibition GeneExprHTS(1131.0083) 
17 GE-HTSNotch 1 Inhibition GeneExprHTS(1131.0089) 
18 GE-HTSNotch 1 Inhibition GeneExprHTS( 11 31.0092) 
19 MetabolismCellProfi1ing GeneExprHTS( 1020.0071) 
20 MetabolismCellProfi1ing_ GeneExprHTS( 1 020.0078) 
21 Neurob1astomaDifferentiation GeneExprHTS(1149.0007) 
22 Neurob1astomaDifferentiation GeneExprHTS(1149.0016) 
23 Neurob1astomaDifferentiation GeneExprHTS(1149.0039) 
24 Neurob1astomaDifferentiation GeneExprHTS(1149.0046) 
25 Neurob1astomaDifferentiation GeneExprHTS(1149.0047) 
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Figure SFl presents simulation results for 384-well plates with different control 

layouts (see the main text for more detail) . Spatial bias was set to 0.3SD. The 

following plate layouts: (a) (16x24)-well plate with no controls, (b) scattered control 

layout (with 22 control wells- as shown in Figure 2.lb in (Mpindi et al. 2015) and (c) 

layout with 32 control wells, located in first and last colurnns of the plate see (Mpindi 

et al. 20 15), were compared. 
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Supplementary figures SF2-SF11 present the corrected plate measurement maps for 

synthetic data discussed in Section 2.2 of the main manuscript (Supplementary Tables 

ST7-ST11 contain the raw data for this synthetic 5-plate assay) . Supplementary 

figures SF2-SF6 present the plate maps for the data corrected first assay-wise, and 

then plate-wise (using aPMP). Supplementary figures SF7-SF11 present the plate 

maps for the data corrected first plate-wise (using aPMP), and then assay-wise. 
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Figure SF2 Plate 1 data corrected first assay-wise, and then plate-wise (using aPMP). 



99 

2 3 4 5 6 7 8 9 10 11 12 
2.0 

A 

1.5 

B 

1.0 

c 
0.5 

D 

0.0 

E 

-Q.5 

F 

-1.0 

G 

-1 .5 

H 

-2.0 

Figure SF3 Plate 2 data corrected first assay-wise, and then plate-wise (using aPMP). 
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Figure SF4 Plate 3 data corrected first assay-wise, and then plate-wise (using aPMP) 
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Figure SF5 Plate 4 data corrected first assay-wise, and then plate-wise (using aPMP). 
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Figure SF6 Plate 5 data corrected first assay-wise, and then plate-wise (using aPMP). 
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Figure SF7 Plate 1 data corrected first plate-wise (using aPMP), and then assay-wise. 
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Figure SF8 Plate 2 data corrected first plate-wise (using aPMP), and then assay-wise. 
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CHAPTERID 

IDENTIFICATION AND CORRECTION OF ADDITIVE AND 

MULTIPLICATIVE SPATIAL BlASES IN EXPERIMENTAL HIGH­

THROUGHPUTSCREENING 

This chapter is a reproduction of the following article: !urie Caraus, Bogdan 

Mazoure, Robert Nadon and Vladimir Makarenkov. "Identification and correction of 

additive and multiplicative spatial biases in experimental high-throughput 

screening", DISC-17-0095, Revue SLAS Discovery, 2017 (submitted) . 

3.1 Abstract 

Data generated by high-throughput screening technologies are prone to spatial bias. 

Traditionally, bias correction methods used in high-throughput screening assume 

either a simple additive or, more recently, a simple multiplicative spatial bias mode!. 

However, these models do not always provide an accurate correction of 

measurements in wells located at the intersection of rows and colurnns affected by 

spatial bias . The measurements in these wells depend on the nature of interaction 

between the involved biases. Here, we propose two novel additive and two novel 

multiplicative spatial bias models accounting for different types of bias interactions. 

W e describe a statistical procedure which allows for detecting and removing 

different types of additive and multiplicative spatial biases from multiwell plates. 

We show how this procedure can be applied by analyzing data generated by the four 

high-throughput screening technologies (homogeneous, microorganism, cell-based 

and gene expression HTS), the three high-content screening technologies (area, 

intensity and cell-count HCS) and the only small-molecule microarray technology 

available in the ChemBank small-molecule screening database. The proposed 
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methods are included m the AssayCorrector program (AssayCorrector), 

implemented in R and available on CRAN. 

Keywords: Anderson-Darling test, Cramer-von-Mises test, data correction, high­

content screening, high-throughput screening, Mann-Whitney U test, partial mean 

polish, small-molecule microarray, spatial bias 

3.2 Introduction 

The amount of data generated by high-throughput screening technologies that can be 

used to identify active compounds, such as small molecules, siRNAs or gene 

expression profiles, bas exploded in recent years. This breakthrough has been 

triggered by a significant drop in the cost of screening technologies (Lachmann et al. 

2016; Montgomery et al. 2011). However, data generated by high-throughput 

screening technologies are often subject to different types of spatial bias which 

negatively influence the outcomes ofhigh-throughput screening campaigns (Caraus et 

al. 2015 ; Carralot et al. 2012). Spatial bias is usually caused by environmental (e.g. , 

irregular changes in the temperature, incubation time, lighting and air flow) or 

technical (e.g., pipette and reader effects) factors (Heyse 2002; Kevorkov and 

Makarenkov 2005; Makarenkov et al. 2007) . Plate-specifie spatial bias (i.e., plate­

specifie systematic error) is evident as an under or over-estimation of measurements 

in certain rows and colurnns of a given plate. Often spatial bias affects the edges of a 

given plate, causing so-called edge effect. The intersection of rows and colurnns 

affected by spatial biases can be of particular interest because the resulting activity 

measurements depend on the interaction between these biases. 

Plate-specifie spatial bias in high-throughput screemng has been traditionally 

assumed to fit the following additive madel (Malo et al. 2006) (Equation 3.1 ): 
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(3 .1) 

where x~P is the biased measurement value in well (iJ) of plate p , x iiP is the unbiased 

measurement value in this weil, 'ip is the bias affecting row i of plate p, c jp is the bias 

affecting columnj of plate p and ê iiP is the random error in well (iJ) of plate p . 

Recent studies have suggested that plate-specifie spatial bias can also be of 

multiplicative kind (Caraus et al. 2017) (Equation 3.2): 

(3.2) 

Correction methods based on different statistical procedures have been developed to 

remove systematic error using either the classical additive or classical multiplicative 

spatial bias models. For instance, the additive bias model was used in the following 

bias correction techniques: B-score (Brideau et al. 2003), R-score (Wu et al. 2008), 

additive Partial Mean Polish (Dragiev et al. 2012) (aPMP) and SPAWN (Murie et al. 

2013). The Diffusion model (Carralot et al. 2012) and the multiplicative PMP 

(mPMP) method (Caraus et al. 2017) are among a few multiplicative bias models. 

However, the issue of correcting measurements located at the intersection of biased 

rows and columns has not been addressed so far. 

In this paper, we introduce two additive and two multiplicative bias models, 

proposing different treatments of measurements located at the intersections of biased 

rows and columns, and a new statistical procedure, based on the use of the Anderson­

Darling (Anderson and Darling 1952) or the Cramer-von-Mises (Cramér 1928) 

goodness-of-fit tests, which allows one to select the most appropriate spatial bias 

model for a given plate. This procedure includes modeling bias effects by using 

traditional additive and multiplicative bias equations (Equations 3.1-3 .2) as well as 

the arithmetic and geometrie means to describe possible interactions between row and 

column spatial biases. The Mann-Whitney U test is used in our procedure in order to 

identify rows and columns of a given plate which are affected by spatial bias. A new 
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variant of the Partial Mean Polish algorithm (Caraus et al. 2017; Dragiev et al. 2012) 

will be used to remove systematic error from biased plate measurements. The 

discussed statistical procedure will be applied to analyze experimental data generated 

by high-throughput (HTS), high-content (HCS) and small-molecule microarray 

(SMM) screening technologies, publicly available at ChemBank (Seiler et al. 2008). 

3.3 Methods 

In this section, we present the statistical methods we propose to carry out in order to 

detect and remove additive and multiplicative spatial biases from multiwell plates 

used in screening technologies. Spatial bias present in rows and columns of a given 

plate is first detected using the non-parametric Mann-Whitney U test. Th en, the most 

appropriate additive or multiplicative bias model will be determined and the 

corresponding bias removal algorithm will be carried out. Six spatial bias models will 

be described here, including four new models . The Cramer-von-Mises (CVM) and 

Anderson-Darling (AD) tests will be used to assess the goodness-of-fit between raw 

and corrected screening measurements . 

3.3.1 Spatial bias detection in multiwell plates 

The non-parametric Mann-Whitney U test was applied to identify rows and columns 

of a given plate which are affected by spatial bias. In contrast to the t-test, which was 

used for example in Dragiev et al. (2012), the Mann-Whitney U test makes no 

assumptions about the underlying distribution ( e.g. , normality), is at ]east 86.4% 

asymptotically as efficient as the t-test (Hodges Jr and Lehmann 1956), and is robust 

to outlying observations. 

Our spatial bias detection algorithm proceeds by assessing the difference in the 

compound activity values between a given row or colurnn (Sample 1) and the rest of 
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the plate's measurements (Sample 2). Once all rows and colurnns have been assessed 

in turn, the row or colurnn with the smallest statistically significant p-value is added 

to the set of biased locations (i .e., rows and colurnns). The process continues either 

until convergence, i.e. , until no more significant p-values are found, or until a fixed 

proportion of rows and columns containing spatial bias has been found. 

3.3.2 Correction of plate-specifie bias 

Plate-specifie biases affecting rows and colurnns of a given plate p with rn rows and n 

colurnns can fit either the additive (Models 1-3 below) or the multiplicative (Models 

4-6 below) bias mode!, which can be described by the following equations (with 

1 ~ i ~ rn and 1 ~ j ~ n ): 

Model 1 - Additive model 

Correction: xb~) = x~P (initial condition- sarnefor al! rnodels); 

~(k+ l ) _ ~(k) c (k) ) c (k) ) c· . ... 1 ) xUP - xUP - f.i.;p - f.i.p - f.i. jp - f.i. p Iterative 10rmu a . 

Model 2 - Additive model with arithmetic mean at the intersection 

(3 .3) 

Mode!: x~P = xüP + r;P +EUP (when bias is present in row i and absent in colurnnj); (3.4) 

x~P = xüP + c jp +EUP (when bias is absent in row i and present in colurnnj); 

x~P = xüP + r;P ~ c jp +EuP (when bias is present in both row i and columnj); 

f.l. (k) + f.l. (k) 

'P JP ) (iterative formula). 
2 
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Model 3 -Additive model with multiplicative interaction of biases at the 

intersection 

Mode!: x~P = xijp + r;P + Eijp (when bias is present in row i and absent in columnj); (3.5) 

x~" = xijp + c jp + Eijp (when bias is absent in row i and present in columnj); 

x~" = xijp + r;" xc jp + Eijp (wh en bias is present in both row i and columnj); 

Correction: _x Ck+I) = _x Ck) - (J.L (k) - J.L )(J.L(k) - J.L ) (iterative formula) . 
UP UP 'P P JP P 

Model 4 - Multiplicative model 

(3 .6) 

Model 5- Multiplicative model with arithmetic mean at the intersection 

Mode!: x~" = xijp x r;" + Eijp (when bias is present in row i and absent in columnj) ; (3.7) 

x~P = xijp x cj, + Eij, (when bias is absent in row i and present in columnj) ; 

x~, = x ij, x ( r;" : c jp ) + Eijp (when bias is present in both row i and columnj); 

Correction : (iterative formula) . 
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Model 6- Multiplicative model with geometrie mean at the intersection 

Mode!: x~P = xiJP x r;P + ê iJP (when bias is present in row i and absent in colurnnj) ; (3 .8) 

x~P = xiJP xc Jp + ê iJP (when bias is absent in row i and present in colurnnj) ; 

x~P = xiJP x ~r;P xc Jp + ê iJP (when bias is present in both row i and colurnnj); 

C , A(k+l) 
orrectzon: x iJP = 

A( k ) 
Ji. x . 

P YP (iterative formula) , 
lfl.;~k) Ji.);) 1 

where x~P is the biased (i .e., observed) raw measurement in well (i,j) of plate p , XiJp is 

the unbiased activity measurement in well (i,j) of plate p , xiJP is the estimated 

measurement in well (i,j) of plate p , k is the iteration number, r ip is the value of 

systematic error (i.e., spatial bias) affecting row i of plate p , Cjp is the value of 

systematic error affecting colurnn j of plate p , fl. p is the mean of unbiased 

measurements of plate p , Ji.;p is the mean of measurements in row i of plate p, fl.;p is 

the mean of measurements in colurnn j of plate p, and fl.;p is the random error 

affecting well (i,j) of plate p. The random error êiJp is assumed to be small compared 

to the values of spatial biases Cjp and r ip· The impact of random errors on the hit 

selection process can be minimized by using compounds' replicates (Caraus et al. 

2015; Malo et al. 2006). In the additive models (Models 1-3), unbiased rows and 

colurnns have r ip = 0 and Cjp = 0, respectively, while in the multiplicative models 

(Models 4-6) unbiased rows and colurnns have r ip = 1 and Cjp = 1, respectively. 

Mode! 1 is the traditional additive mode!, which is assumed in many bias correction 

methods (Brideau et al. 2003 ; Dragiev et al. 2012; Murie et al. 2013). Mode! 2 is an 

additive mode!, which assumes that the row and colurnn biases at the intersections are 

combined through their arithmetic mean. Mode! 3 is an additive model, which 
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assumes that the row and column biases at the intersections interact in a 

multiplicative fashion . Mode! 4 is a recently introduced basic multiplicative bias 

model. Mode! 5 is a multiplicative mode!, which assumes that the intersection effects 

of row and column biases are combined through their arithmetic mean. Mode! 6 is a 

multiplicative mode!, which assumes that the row and column biases at the 

intersection are combined through their geometrie mean. Models 2 and 3 can be 

viewed as extensions of the additive Partial Mean Polish mo del (Mode! 1 ), while 

Models 5 and 6 can be viewed as extensions of the multiplicative Partial Mean Polish 

model (Model 4) . Partial mean polish algorithms(Caraus et al. 2017; Dragiev et al. 

2012) are variations of Tukey's median polish (Tukey 1977), which iteratively 

removes spatial bias from the rows and columns affected. 

3.3.3 Mode/ selection for removing plate-specifie spatial bias 

ln this section we present a data processing protocol which can be used to identify the 

most appropria te spatial bias mode! for a given plate. If the presence of spatial bias in 

a given plate has been detected using the Mann-Whitney U test, then we first partition 

ali wells of the plate into: (i) wells with no bias detected and (ii) wells located in 

biased rows and columns. Control wells should be excluded from ail computations. 

Wells affected by spatial bias can then be corrected using the six iterative methods 

(Models 1-6) discussed above. Our procedure generates seven sets of data: a set of 

unbiased wells and six sets of biased wells corrected by each of the six methods. The 

Anderson-Darling or Cramer-von-Mises test can then be used on the set of unbiased 

wells and on each of the six corrected sets of wells in order to assess goodness-of-fit 

of the corrections performed. The resulting p-values can then be used to determine 

the most appropriate bias model (among Models 1 to 6) for the data at band. ln this 

work, the significance leve! a was set to 0.01 for ali the three statistical tests being 

performed (Mann-Whitney U test, Anderson-Darling test and Cramer-von-Mises 
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test). It is worth noting that both the Anderson-Darling and Cramer-von-Mises tests 

can be used in the algorithm below, but the Anderson-Darling tests is preferred due to 

its higher power (Razali and Wah 2011). 

Our algorithm proceeds as follows: 

1. Perform the Mann-Whitney U test on eacb individual plate of the assay (i .e., 

plate-wise correction) to identify biased rows and columns. 

For each plate containing biased rows and/or columns, perform: 

n. Apply each of the six additive and multiplicative PMP algorithms 

corresponding to Models (1 -6) discussed in this section (see the related 

iterative formulas 3 to 8); 

111. Apply the Anderson-Darling or Cramer-von-Mises two-sample test on the 

corrected plates after the application of the six versions of the PMP algorithm. 

Compute the corresponding p-values (3 additive and 3 multiplicative); 

1v. If all additive and all multiplicative p-values are bigher than the selected 

significance level a; tben the bias model for this plate is the model with the 

highest p-value (low confidence); 

v. If all additive p-values are lower than the selected significance level a and all 

multiplicative p-values are bigber than a; , then the bias model for this plate is 

multiplicative (bigb confidence); 

v1. If all multiplicative p-values are lower tban the selected significance leve} 

a and all additive p-values are higher than a; th en the bias model for this plate 

is additive (bigb confidence); 

v11. If none of the conditions specified in Steps iv to vi apply, then the bias model 

is undefined; 

vn1. If the bias model bas been identified (i.e., it is not undefined), then correct the 

plate measurements using the corresponding bias correction procedure. 
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3.3.4 Traditional and modified Partial Mean Polish (PMP) algorithms 

In this section we present the details of the additive and multiplicative PMP 

algorithms corresponding to Models 1 to 6 discussed above. The main advantage of 

these algorithms compared to the popular B-score method of Brideau et al. (2003) is 

that they do not reduce the original measurements to residuals and do not modify the 

unbiased measurements . 

Our generalized PMP algorithm proceeds as follows: 

1. Let R={lj ,r2 , .. . , r
5 

IO$s<m} and C={c1, c2 , ... ,c, IO$t<n} be the sets of 

biased rows and columns of plate p(m x n) , respectively. Calculate the mean, flp, of 

ali unbiased measurements of p : 

1 
f.i. p = ( )( ) L x iiP m - s n - t ieR ,jeC 

(3.9) 

2. For each biased row i: 1::; i::; s, calculate the mean value, f.i. ,;p , of row r;: 

1 n . 

f.l.r;p =- L Xr; jp , and the esttmate of the row bias, êr;P. For each biased 
n j= l 

1 Ill 

colurnn j : 1::; j::; t, calcula te the mean value, f.l.c P, of column C/ f.l.c P = - L X;c P , 
1 1 m i= l 

1 

and the estimate of the colurnn error, ê CjP . Use the following equations to calculate 

the error estimates: 

and 

(Modell); 

(Model2); 

(Model3); 

(Model4); 



Jlc P 
and ê = - 1

-c· p 
1 Jip 
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(Model5); 

(Model6) . 

3. For all rows and columns affected by spatial bias, iteratively adjust their 

measurements using the error estimates determined in Step 2, i.e., for all 

i : 1 ~ i ~sand}: 1 ~ j ~ t, proceed as follows : 

,... ,.. " " 
x iJP = x iJP - er;p ec1p 

s 1 

(Modell); 

(Model2) ; 

(Model3); 

(Model4); 

(Model5); 

(Model6) . 

4. If L lêr;) + L iêc) > E, then go to Step 2, otherwise stop the algorithm. 
i= l j= l 

Here E is a small fixed positive threshold. 

3.3.5 Choice ofstatistical test to determine the bias mode/ 

The two following statistical tests, used in Step iii of the above-presented bias 

correction protocol, were examined in arder to assess the goodness-of-fit between 

raw and corrected measurements: Cramer-von-Mises (CVM) test and Anderson­

Darling (AD) test. The AD test is based on a quadratic empirical distribution function 

(EDF) statistic. Importantly, the AD test has been shawn to be the most powerful 
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among the EDF tests (Arshad et al. 2003). The Cramer-von-Mises test is a special 

case of AD which puts less weight on the tails of the distribution . It has been shown 

that the power of the Anderson-Darling test is higher than that of the Kolmogorov­

Smimov (Kolmogorov 1933), probability-plot, L moments and chi-square (y}) tests 

(Razali and Wah 2011). Moreover, the Anderson-Darling test is generally more 

powerful than the Cramer-von-Mises test (Laio 2004). These conclusions mirror 

those formulated by Stephens (Stephens 1986). 

3.4 Results and Discussion 

To assess the extent of plate-specifie bias in the HTS, HCS and SMM technologies, 

we examined 175 experimental assays from the ChemBank screening repository. 

ChemBank (Seiler et al. 2008) is a public small-molecule screening database created 

by the Broad Institute's Chemical Biology Program, which provides life scientists 

access to biomedically relevant screening data and tools. Here we considered all the 

eight screening categories available in ChemBank: HTS (homogeneous), HTS 

(microorganism), HTS (cell-based), HTS (gene expression), HCS (area), HCS 

(intensity), HCS (count) and SMM. Among the 175 examined assays we considered: 

25 assays of each HTS category, 8 assays of HCS (area - all available non-empty 

assays of this type in April 20 17), 18 assays of HCS (intensity - all available non­

empty assays of this type in April 20 17), 24 assays of HCS ( cell count - all available 

non-empty assays of this type in April2017) and 25 assays of SMM. The ChemBank 

IDs of these assays are presented in Supplementary Table 3.2 (see Supplementary 

Material). 

First, we calculated the proportion of plates with at least one row and at least one 

column under or over-estimation effect (i.e., having at least one intersection of biased 

rows and colurnns) . After analyzing a total of 2241 plates from the selected 175 

assays, we found that plates with intersections of biased rows and columns (51.9%) 
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were slightly more frequent than plates without such intersections ( 48 .1 %). Note that 

the difference between Models 1 to 3 and between Models 4 to 6 occurs only in the 

presence of intersections. Models 1 to 6 discussed in the Methods section allow us to 

take into account the complex nature of interactions between row and colurnn spatial 

bias es. 

Second, we assessed the distribution of the number of biased rows and colurnns per 

plate in the selected set of ChemBank assays. Figure 3.1 shows the distribution ofthe 

number of rows (Fig. 3.1 a) and colurnns (Fig. 3.1 b) per plate affected by spatial bias, 

computed over the 2441 plates of the examined ChemBank assays. The Mann­

Whitney U test was carried out to detect the presence of spatial bias within each plate. 

The presented results suggest that plates' colurnns tend to be more biased than plates' 

rows in experimental small-molecule screens. 
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Figure 3.1 Proportion of plates with the indicated number of rows (A) affected by 

spatial bias and number of columns (B) affected by spatial bias. The non-parametric 

Mann-Whitney U test was used to detect the presence of spatial bias within each 

plate. 
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Third, we carried out the correction of biased rows and columns following the 

procedure described in the Methods section. Plate-specifie error correction was 

applied on a plate-by-plate basis. It was applied only on plates in which the presence 

of spatial bias was detected by the Mann-Whitney U test. If the presence of spatial 

bias was identified within a given plate, then the detected biased measurements were 

corrected using the most appropriate additive or multiplicative bias correction madel 

according to our algorithm (see the Methods section). Evidence from the Anderson­

Darling and Cramer-von-Mises tests was used to select the best fitting madel. 

Figure 3.2 presents the madel selection frequencies for our six spatial bias models 

(Models 1 to 6) across the eight screening categories. Here, the Anderson-Darling test 

was used to assess the goodness-of-fit of the corrected measurements to the unbiased 

measurements . According to the Anderson-Darling test, HTS data tend to contain 

more spatial bias than HCS or SMM data. Moreover, HTS data followed an 

undefined bias madel more frequently than HCS or SMM data (23 .7%, 5.8% and 

16.3%, respectively) . 

Table 3.1 Contingency table of the number of plates affected by additive, 

multiplicative and undefined type of spatial bias, for the HTS, HCS and SMM 

technologies . 

HTS HCS SMM 

Undefined 362 24 115 

Additive 509 83 259 

Multiplicative 352 88 58 

Table 3.1 shows that the number of plates affected by additive, multiplicative and 

undefined type of spatial bias differed across the three technologies, as suggested by 

the J! test of independence ci" (4) = 97.32; p = 5x10-4
). Post-hoc tests showed that 

the proportion of HTS plates affected by undefined bias was significantly higher than 
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in HCS (i(l) = 25.38; p = 4.7x10-7
) , but not in SMM ci (1) = 1.38; p = 2.4x10-1

) 

plates. The proportion of plates in SMM assays affected by undefined bias was also 

higher than in HCS assays (p-value = 6.50x10-5
, i=l5.95). The two-by-two 

contingency tables were constructed by combining respective bias model and 

screening technologies plate counts . 
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Figure 3.2 Spatial bias mode! frequency based on evidence obtained from the 

Anderson-Darling test for high-tbroughput screening data (A)-(D), high-content 
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screening data (E)-(G) and small-molecule microarrays data (H). Control wells were 

excluded from ail computations. Darker portions of bars account for plates without 

intersections of rows and columns affected by spatial bias; in this case any additive 

model (Models 1-3) can be applied wh en spatial bias was classified as additive and 

any multiplicative model (Models 4-6) can be applied when spatial bias was 

classified as multiplicative. Lighter portions of bars corresponding to Models 1 to 6 

account for plates with intersections of rows and columns affected by spatial bias (in 

this case, the model yielding the largest p-value should be applied). 
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Spatial bias profile according to the Cramer-von-Mises test 
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Figure 3.3 Spatial bias model frequency based on evidence obtained from the 

Cramer-von-Mises test for high-throughput screening data (A)-(D), high-content 

screening data (E)-(G) and small-molecule microarrays data (H) . Control wells were 
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excluded from all computations. Darker portions of bars account for plates without 

intersections of rows and colurnns affected by spatial bias; in this case any additive 

model (Models 1-3) can be applied when spatial bias was classified as additive and 

any multiplicative model (Models 4-6) can be applied when spatial bias was 

classified as multiplicative. Lighter portions of bars corresponding to Models 1 to 6 

account for plates with intersections of rows and colurnns affected by spatial bias (in 

this case, the model yielding the largest p-value should be applied). 

Figure 3.3 depicts the bias model selection frequencies according to the Cramer-von­

Mises test obtained for data of the eight considered screening categories. Similarly to 

the AD test, evidence from the CVM test indicates that HTS data tend to contain 

more biased plates that do not correspond to any of the six bias models presented in 

our study (i.e., the bias model for HTS data was classified as undefined more 

frequently than for HCS and SMM data). In particular, the bias model was identified 

as undefined in 44.3% of HTS plates (computed over the four HTS screenmg 

categories), compared to 13.5% in HCS (computed over the three HTS screemng 

categories) and 19.5% in SMM. 

Figures 3.2 and 3.3 show that only 1.4% ofHTS (homogeneous) plates, 5.2% ofHTS 

(microorganism) plates, 7.6% of HTS (cell-based) plates and 2.4% of HTS (gene 

expression) plates were unbiased, contrary to 61.2% of unbiased HCS (area) plates, 

46.1% ofunbiased HCS (intensity) plates, 48 .6% ofunbiased HCS (cell count) plates 

and 38.9% ofunbiased SMM plates. Allp-values obtained by applying the McNemar 

test on two-by-two contingency tables (screening technologies versus bias model 

types) were below 1 x 1 o-3
. The number of unbiased plates, determined by the Mann­

Whitney U test, was same for both figures . 

Let us now examine in more detail the results presented in Figures 3.2 and 3.3. The 

McNemar test was used to test the differences in proportions mentioned below. 
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-For HTS homogeneous data (Figs. 3.2A and 3.3A), spatial bias was found in 

98.6% of plates. Here, the CVM test found the same quantity of plates corresponding 

to an undefined bias mode! as the AD test (56.6% compared to 41.8%,;! (1) = 0.16; 

p = 6.85x10-1
). Both the CVM and AD tests found that both multiplicative and 

additive bias proportions were not different for data of the HTS homogeneous 

category (;! (1) = 2.07; p = 1.50x10-1
). 

-For HTS microorganism data (Figs. 3.2B and 3.3B), spatial bias was found in 

94.6% of plates. The AD test identified much less plates with undefined spatial bias 

than the CVM test (25.0% compared to 42.7%, ;(-(1) = 51.51; p = 7.llxl0- 13
). Both 

the AD and CVM tests suggest that the additive bias models are more appropriate 

than the multiplicative ones for data of the HTS microorganism category (i(l) = 

11.73; p = 6.14x10-4
). 

- For HTS cell-based data (Figs. 3.2C and 3.3C), spatial bias was found in 

92.3% of plates. The CVM test suggested that 46.2% of plates have an undefined 

type of bias, compared to 21.6% of plates according to the AD test (;!(1) = 15.72;p = 

7 .34x 1 o-5). Both tests found th at the multiplicative spatial bias mode! is more 

adequate for plates of the HTS cell-based category than the additive one (i(l) = 

0.53;p = 4.65x10- 1
) . 

- For HTS gene expression data (Figs. 3.2D and 3.3D), spatial bias was found 

in 97 .5% of plates. Here, the AD test suggested that 6.5% of plates are affected by an 

undefined type of bias, compared to 31.7% of plates according to the CVM test (;!( 1) 

= 37.75 ; p = 8.03x10-10
) . The AD and CVM tests did not find a significant difference 

in proportions of HTS gene expression plates affected by multiplicative or additive 

type of spatial bias (;!(1) = 2.50;p = 1.14x10-1
). 

-For HCS area data (Figs. 3.2E and 3.3E), spatial bias was found in 38 .8% of 

plates. Both the CVM and AD tests determined that an undefined bias mode! is rather 

rare for this type of data (10.4% and 4.5%, respectively, ;(-(1) = 44.17; p = 3.01x10-
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11
). Here, both statistical tests found no significant difference between the 

multiplicative and additive spatial bias models ciO)= 0.22; p = 6.38x10-1
). 

-For HCS intensity data (Figs. 3.2F and 3.3F), spatial bias was found in 92.1% 

of plates. The CVM test identified that the bias madel was undefined for 20.6% of 

HCS intensity plates, compared to 7.9% found by the AD test ciO) = 80.65; p = 

2.70xl0- 19
) . Both the CVM and AD tests did not provide enough evidence that the 

additive and multiplicative bias models were present in equal proportions in plates 

generated by the HCS intensity technology ci (1)= 0.09;p=7.69x10-1
) . 

-For HCS count data (Figs. 3.2G and 3.3G), spatial bias was found in 51.4% of 

plates. Both the AD and CVM tests indicated that only a small proportion of plates 

follow an undefined spatial bias madel (4.9% and 9.5%, respectively, iCI)= 96.64; p 

= 8.30x10-23
). No significant difference in proportions of plates affected by additive 

or multiplicative bias was found here ci (1) = 0.74;p = 3.88x10-1
) . 

- For small-molecule microarrays data (Figs. 3.2H and 3.3H), spatial bias was 

found in 58.8% of plates. Here, the CVM and AD tests determined that 19.5% and 

16.3% of plates, respectively, follow an undefined bias madel ciO) = 294.35; p = 

5.61x10-66
). Both tests also suggested that the small-molecule microarrays data tend 

to be affected by additive bias more frequently than by multiplicative one ci (1) = 

9.1;p = 2.56x10-3
). 

In this work, we described two new additive and two new multiplicative spatial bias 

models along with a general bias detection and remo val procedure. W e presented 

evidence which suggests that all the six bias models (Models 1 to 6) considered in 

this study are relevant for the analysis of experimental high-throughput, high-content 

and small-molecule microarrays data. One of the challenges in spatial bias madel 

selection consists of minimizing the number of plates with undefined type of spatial 

bias. The AD test generally outperformed the CVM test in distinguishing between the 

additive and multiplicative bias models, which resulted in a lower number of plates 
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where spatial bias was classified as undefined. Overall, the AD and CVM tests were 

in agreement on the spatial bias model that should be used to correct the 

measurements of a given plate. However, because the AD test is generally more 

powerful than CVM (Laio 2004) and because it classifies fewer plates as being 

undefined, it can be recommended for analysis of experimental high-throughput 

screenmg assays. We also discovered that data generated by high-throughput 

screening (HTS) technologies are generally more prone to spatial bias than data from 

high-content screening (HCS) and small-molecules microarrays (SMM). While HCS 

and SMM data are more likely to follow one of the six considered bias models, the 

bias model in HTS was more frequently classified as undefined leaving more 

challenges for future investigations. 

3.5 Supplementary material 

Table 3.2 Set of 175 ChemBank assays examined in our plate-specifie bias detection 

simulation (see Figs. 3.1-3.3). Note that only 8 non-empty HCS Area, 18 non-empty 

HCS Intensity and 24 non-empty HCS Cell count assays were available in ChemBank 

(as of April 141
h, 2017) . For all other screening categories, 25 assays per data 

category were examined. 

High-throughput screening (Cell-based)- 25 assays 
1 AdipocyteDifferentiation1_ Oi1Red0(913 .0 191) 

2 AdipocyteDifferentiation2 _ N i1eRed( 1 0 15.000 1) 

3 AdipocyteDifferentiation2 _Ni1eRed( 10 15.0032) 

4 AdipocyteDifferentiation2 _ Ni1eRed( 1 015 .0034) 

5 AnnotationDeve1opment_ BrdUCytob1ot(900.000 1) 

6 AnnotationDeve1opment_ BrdUCytob1ot(900.0002) 

7 AnnotationDeve1opment_ BrdUCytob1ot(900.0021) 

8 AnnotationDeve1opment_ BrdUCytob1ot(900.0022) 

9 AnnotationDeve1opment_EthD 1 Staining(900.0005) 
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10 AnnotationDevelopment_JC 1MitoDye(900.00 13) 

11 AR-NcoRBindingAssay _raw {Lux() }(268.0 159) 

12 AR-NcoRBindingAssay _raw {Lux() } (268.0 173) 

13 AR-NcoRBindingAssay _raw {Lux()} (268 .0217) 

14 AR -NcoRBindingAssay _user{ A v gLux()} (268 .0221) 

15 BreastCancerCellProfi1ing_ CellTiterGlo(915 .0248) 

16 BreastCancerCellProfi1ing_JC 1MitoDye(915 .0244) 

17 Cellular A utofluorescence _ CpdAutofluor(908. 0049) 

18 Cellu1arAutofluorescence _ CpdAutofluor(908.0 125) 

19 CellViabilityProfi1ing_ CellTiterGlo( 1019.0001) 

20 Deacetylaselnhibition _ AcLysCytoblot( 1027 .0002) 

21 EndothelialCellProfiling 1_ Calcein -AM(91 0. 0 15 3) 

22 Facioscapu1ohumera1MD _ Calc(E1-E2)( 1026.001 0) 

23 Facioscapu1ohumera1MD _ Calc(E1-E2)( 1026.0011) 

24 Facioscapu1ohumeralMD _ LuxReporter( 1 026.0003) 

25 Facioscapu1ohumera1MD _ LuxReporter( 1026.00 19) 

High-throughput screening (Homogeneous)- 25 assays 

1 ActinPolymerization_raw{F1()}(144.0030) 

2 ActinPo1ymerization _user {F o1d()} ( 144.0031) 

3 AdipocyteDifferentiation1_ Oi1Red0(913.0 190) 

4 AnnotationDevelopment_ BrdUCytob1ot(900.0020) 

5 BRAF _HRPCytoblot(1110.0001) 

6 BRAF _HRPCytob1ot(1110.0002) 

7 BRAF _HRPCytoblot(1110.0003) 

8 BRAF _HRPCytob1ot(1110.0005) 

9 CellularAutofluorescence _ CpdAutofluor(908 . 0050) 

10 CMVPo1ymeraseBindingAssay _raw {Pol(P)} (299 .0552) 

11 CMVPo1ymeraseBindingAssay _raw {Pol(s)} (299 .0543) 

12 CMVPolymeraseBindingAssay _raw {Pol( s) } (299 .0549) 

13 CMVPolymeraseBindingAssay _raw {Pol(s) } (299 .05 53) 
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14 CREBReporter Assay_ LacZReporter( 1029.00 1 0) 

15 CyclinReporterGeneCdh 1_ user {F old()} (219. 0091) 

16 DihydroorotateDehydrogenase _ Calc(E1-E2)( 1 021 .0033) 

17 DihydroorotateDehydrogenase _ EnzCoupledColor( 1021.0001) 

18 DihydroorotateDehydrogenase _ EnzCoupledColor( 1021.0013) 

19 EColiFilamentation2006 _ OpticalDensity( 1038.001 0) 

20 GlycanaseActivity _raw {Po1(P) }(295.0495) 

21 HoxDNA-BindingAssay _Fluor0ligo(1 031 .0002) 

22 HoxDNA-BindingAssay _Fluor0ligo(1 031 .0008) 

23 HoxDNA-BindingAssay _Fluorüligo( 1031.001 0) 

24 KinaselnbibitorModifiers _ BrdUCytoblot(90 1.001 0) 

25 TrypanothioneReductase _ EnzCoupledColor( 1017 .0020) 

High-throughput screening (Microorganism)- 25 assays 

1 ABAggregationlnhibitors_ OpticalDensity( 11 03 .0009) 

2 AntibacterialAssay _FluorProtein( 1106.00 16) 

3 AntibacterialAssay _FluorProtein( 11 06 .0027) 

4 AspulvinoneUpregulation _ MetabColor( 1 022.0007) 

5 BiofilrnFormationAssay _ BacTiterGlo( 1059 .0006) 

6 ClathrinDependentMembraneTrafficking_raw { Abs(Mut)} (31 0.0609) 

7 ClathrinDependentMembraneTrafficking_raw {Abs(Mut)} (31 0.0613) 

8 ClathrinDependentMembraneTrafficking_raw { Abs(Mut)} (31 0.0625) 

9 ClathrinDependentMembraneTrafficking_raw {Abs(Mut)} (31 0.0657) 

10 ClathrinDependentMembraneTrafficking_raw {Abs(Mut)} (31 0.0737) 

11 ClathrinDependentMembraneTrafficking_ user {F old(Mut)} (31 0.073 3) 

12 EColiFilamentation2006 _ OpticalDensity( 1038.0001) 

13 EColiFilamentation2006 _ OpticalDensity( 1 038 .0002) 

14 EColiFilamentation2006_ OpticalDensity( 1038.00 12) 

15 EColiFilamentation2006 _ OpticalDensity( 1038.00 14) 

16 EColiFilamentation2006 _ OpticalDensity( 103 8.00 16) 

17 EColiFilamentation2006 _ OpticalDensity( 103 8 .0022) 
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18 EColiFilamentation2006 _ OpticalDensity( 1 038 .0023) 

19 EColiFi1amentation2006 _ OpticalDensity( 1038.0024) 

20 PDERegulators _ OpticalDensity( 1 091.0043) 

21 PhosphatidylinositolK.inase _ OpticalDensity( 1000 .0008) 

22 Phosphatidy1inosito1Kinase _ OpticalDensity( 1 000.0027) 

23 PSACAntagonistScreen _ OpticalDensity( 1035.00 16) 

24 SulfurAssirnilation_user{Inh(BioB)} ( 130.00 18) 

25 SulfurAssirnilation _user {Inh(CysH)} ( 130.0020) 

High-throughput screening (Gene expression)- 25 assays 

1 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.0001) 

2 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.0003) 

3 AndrogenSignalingG~-HTS _ GeneExprHTS( 1 004.0007) 

4 AndrogenSignalingGE-HTS _ GeneExprHTS( 1 004.0009) 

5 AndrogenSigna1ingGE-HTS _ GeneExprHTS( 1004.001 0) 

6 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.00 12) 

7 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.00 14) 

8 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.00 16) 

9 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.00 17) 

10 AndrogenSignalingGE-HTS_ GeneExprHTS( 1004.00 19) 

11 AndrogenSignalingGE-HTS _ GeneExprHTS( 1004.0021) 

12 AndrogenSignalingGE-HTS _ GeneExprHTS( 1 004.0028) 

13 AndrogenSigna1ingGE-HTS _ GeneExprHTS(1 004.0030) 

14 GE-HTSApoptosis_ GeneExprHTS( 1055 .0005) 

15 GE-HTSApoptosis _ GeneExprHTS( 1055 .00 15) 

16 GE-HTSNotch1Inhibition _ GeneExprHTS( 1131.0083) 

17 GE-HTSNotch1Inhibition _ GeneExprHTS( 1131.0089) 

18 GE-HTSNotchl Inhibition_ GeneExprHTS(1131 .0092) 

19 MetabolismCellProfiling_ GeneExprHTS( 1020.0071) 

20 MetabolismCel!Profiling_ GeneExprHTS( 1 020 .0078) 

21 NeuroblastomaDifferentiation _ GeneExprHTS( 1149 .0007) 
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22 NeuroblastomaDifferentiation _ GeneExprHTS( 1149.00 16) 

23 NeuroblastomaDifferentiation _ GeneExprHTS(l149 .0039) 

24 NeuroblastomaDifferentiation _ GeneExprHTS( 1149 .0046) 

25 NeuroblastomaDifferentiation _ GeneExprHTS( 1149.004 7) 

High-content screening (Area)- 8 assays 

1 Autophagy _AvVesicleArea( 1050.00 19) 

2 Au top ha gy_ A v V esicleArea( 1 050.0064) 

3 Autophagy _ AvVesicleArea( 1 050.0077) 

4 Autophagy _ AvVes icleArea( 1050.0 11 6) 

5 Autophagy _ VesicleAreaPerCell( 1050.00 16) 

6 Autophagy _ VesicleAreaPerCell(l 050.0079) 

7 Autophagy _ VesicleTotaiArea( 1050.00 15) 

8 Autophagy _ VesicleTotalArea(l 050.0084) 

High-content screening (Intensity)- 18 assays 

1 Autophagy _ EGFPVes7(1 050.0076) 

2 Autophagy_ VesicleAvlnt(l050.0018) 

3 Autophagy_ VesicleAvlnt(l050.0067) 

4 Autophagy _ VesicleAvlnt( 1 050.0080) 

5 Autophagy _ Vesiclelnt(l 050.00 17) 

6 Autophagy_ Vesiclelnt(l050.0083) 

7 BetaCatenin_Avgln(l152 .0003) 

8 BetaCatenin _ Avgln(l 152.0007) 

9 BetaCatenin_PosCellsW2_Int(l152.00 15) 

10 BetaCatenin_posCellsW2_Int(l152 .0019) 

11 BetaCatenin_ W2AvglntPosNuc(1152.0002) 

12 DNADamagelmagingScreen _pChk1 AvNuclnt(1 037 .0008) 

13 DNADamagelmagingScreen_pChk1 AvNuclnt( 1037.001 0) 

14 KLF2Regulators_KLF2-GFP _A vint( 1 085.0006) 

15 KLF2Regulators_KLF2-GFP _Int(I085 .0005) 

16 ProteinDegradationlnhibition _ MODCint( 1 053 .0006) 
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17 ProteinDegradationinhibition_MODCint(1053.0036) 

18 ProteinDegradationinhibition _ MODCint( 1053 .0044) 

High-content screening (Cell count) - 24 assays 

1 Autophagy _ Ce11Count(1 050.0007) 

2 Autophagy _ Ce11Count(1 050.0065) 

3 Autophagy _ Ce11Count(1 050.0078) 

4 Autophagy _ Ce11Count(1 050.0 117) 

5 Autophagy _ CellCountSupra 1 OPunctae( 1050.001 0) 

6 Autophagy _ CellCountSupra15Punctae( 1050.00 11) 

7 Autophagy _ CellCountSupra20Punctae(1 050.00 12) 

8 Autophagy _ CellCountSupra5Punctae( 1 050.0008) 

9 Autophagy _ CellCountSupra7Punctae( 1 050.0009) 

10 Autophagy _V esicleCount( 105 0. 00 14) 

11 Autophagy_ VesicleCount(1050.0081) 

12 Autophagy _ VesicleCountPerCell(1 050.00 13) 

13 Autophagy _ VesicleCountPerCell(l 050.0082) 

14 KLF2Regu1ators _ Cell Count( 1085 .0003) 

15 StemCellChernicalBio1ogy _ CellCount( 1 032.0652) 

16 StemCellChernicalBiology _ CellCount( 1 032.0657) 

17 StemCellChernicalBiology _ CellCount(l 032.0660) 

18 StemCellChernicalBiology _ CellCount( 1 032.0663) 

19 StemCellChernicalBiology _ CellCount( 1 032.0666) 

20 StemCellChernicalBiology _ LiveCells( 1 032 .0653) 

21 StemCellChernicalBiology _ LiveCellsPerCellCount( 1 032.0654) 

22 StemCellChernicalBiology _ Sox17PosPerCellCount( 1 032.0659) 

23 StemCellChemicalBiology _ Sox17PosPerCellCount( 1 032.0662) 

24 StemCellChemicalBiology _ Sox17PosPerCellCount( 1 032.0668) 

Small-mo1ecule microarrays - 25 assays 

1 Abeta40SMM _ AutoSNR( 1115 .0001) 

2 Abeta40SMM_AutoSNR(1115 .0002) 
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3 Abeta40SMM_AutoSNR(1115.0003) 

4 Abeta40SMM_AutoSNR(1115.0004) 

5 CFTRSMM_Manua!SNR(1098.0001) 

6 CFTRSMM _ Manua!SNR( 1 098 .0002) 

7 CFTRSMM_ManualSNR(1098.0004) 

8 CFTRSMM _ ManualSNR( 1 098.0005) 

9 CFTRSMM_ManualSNR(1098.0006) 

10 DHODHSMM_ManualSNR(1089.0001) 

11 EBNA1SMM_Manua1SNR(l159.0001) 

12 HIV-1NefSMM_ManualSNR(l150.0001) 

13 HIV-1NefSMM_ManualSNR(1150.0002) 

14 HPVE7SMM _ManualSNR( 1049.0001) 

15 LRP130_Manua1SNR(1140.0001) 

16 LRP130_ManualSNR(1140.0002) 

17 LRP130_ManualSNR(1140.0003) 

18 LRP 130 _ManualSNR( 1140.0007) 

19 MaleGermCellSMM _ ManualSNR( 1154.0009) 

20 MaleGermCellSMM _ ManualSNR( 1154.00 15) 

21 N euroS MM_ ManualSNR( 1 069.000 1) 

22 PETLigandSMM _ ManualSNR( 1153 .0001) 

23 PETLigandSMM_ManualSNR(l153 .0012) 

24 SMMDIV06Annotation _ AutoSNR( 1066.00 13) 

25 Transcription Factor Profile_ AutoSNR( 1125.0075) 



CONCLUSION 

High-Throughput Screening (HTS) and High Content Screening (HCS) are popular 

screening technologies which are widely used in the modem pharmaceutical industry. 

HTS/HCS technologies allow scientists to rapidly assess biological activity of a large 

number of candidate samples in order to detecta small number of active features (for 

example, small molecules or small interfering RNAs). HTS/HCS is usually the first 

step in modem drug discovery campaigns. This process is applied to screen a large 

number of chemical compounds. The samples that satisfy particular activity criteria 

are detected and retained for further testing. We should mention that the HTS/HCS 

technologies may also be used to study fundamental biochemical processes. 

Today HTS/HCS assays are applicable in both the pharmaceutical and academie 

contexts. This thesis research is at the interface between the computational, statistical, 

and !ife sciences. The impact of systematic errors (i .e. , spatial biases) on the results of 

the hit identification process, an important problem in the quantification of HTS/HCS 

assays (Malo et al. 2006, Makarenkov et al. 2007), was examined in this work. New 

methods for systematic error detection and elimination were presented and tested in 

simulations. The current knowledge of how systematic error affects HTS/HCS raw 

data was reviewed. We described the different types and causes of systematic errors 

typical for HTS and HCS technologies, as weil as the existing normalization and bias 

correction methods. We adapted two well-known statistical tests, i.e. , Welch's t-test 

(Welch 1947) and the Mann-Whitney U test (Wilcoxon 1945), for spatial bias 

detection in experimental HTS/HCS assays . We should mention that the spatial bias 

elimination methods should be used only if the presence of this bias has been 

demonstrated by statistical tests . We presented a comprehensive data pre-processing 

and correction protocol intended for experimental HTS/HCS assays. This protocol is 

of a general nature. Thus, the academie and industrial scientists involved in the 
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analysis of current or next generation high-throughput screening data can use our 

protocol in their screening experiences. lt is important to note that most of the 

existing bias correction methods are designed to minimize the impact of the additive 

type of spatial bias (Dragiev et al. 2012, Caraus et al. 20 17). It is also known that 

HTS RNAi primary screens can be affected by multiplicative spatial bias (Carralot et 

al. 20 12). However, the problem of elimina ting multiplicative spatial bias bas not 

been studied in detail. In this thesis , the ability to detect the presence of multiplicative 

spatial bias in HTSIHCS data was investigated by identifying the bias-affected rows 

and columns of all plates of a given assay, as well as by deterrnining the bias-affected 

well locations (i.e., well positions scanned across all plates of a given assay) . The 

possibility to detect the additive, multiplicative or mixed (i.e., including both additive 

and multiplicative bias interactions) types of spatial biases was studied in different 

practical situations. We first presented three new algorithms for correcting the 

multiplicative type of spatial bias. Our algorithms correct the values situated in 

plates' rows and colurnns containing multiplicative bias without modifying the rest of 

the (unbiased) data. We showed that our new algorithms can efficiently eliminate 

multiplicative bias from experimental HTS/HCS assays. We implemented the new 

algorithms and the related data correction protocol, allowing for removing both plate 

and assay-specifie biases as well as both additive and multiplicative biases, in the 

AssayCorrector R package (the URL address of the package is: https ://cran.r­

project.org/web/packages/ AssayCorrector/index.html). The proposed protocol can be 

readily used by researches working in HTS/HCS technologies . Furthermore, we 

studied the performances of the Anderson-Darling test (Anderson 1952) and the 

Cramer-von-Mises test (Cramér 1928) in terms of distinguishing between the additive 

and multiplicative spatial bias models. 

In Chapter I we presented the different types of systematic error common for 

HTSIHCS technologies such as batch effect, edge effect and spatial biases specifie for 

a given screening technology (e.g., non-uniformity bias). Using experimental HTS 
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data (Harvard's 164-plate assay; Helm et al. 2003), we presented an example of edge 

effect. To eliminate the presented edge-effect, we applied the well-known B-score 

method (Brideau et al. 2003). Similarly, an example ofnon-uniformity bias for a (96-

well x 4-field) HCS assay was given. We then described simple data normalization 

techniques used in HTS/HCS (Malo et al. 2006). These methods allow for making the 

results comparable over all plates of an HTS/HCS assay. We also discussed sorne 

useful tests for systematic error detection in experimental HTS/HCS campaigns, 

including Welch's t-test (Welch 1947), which can be applied in the case of samples 

with different sizes and different variances, and the Mann-Whitney U test (Wilcoxon 

1945). We examined the presence of systematic error in experimental HTS data from 

the popular ChemBank database (Seiler et al. 2008); in total 735 plates aimed at the 

inhibition of Escherichia coli were analyzed. One of the goals our study was to assess 

the proportion of rows and columns affected by systematic error in a large variety of 

publically available HTS assays. The Welch's t-test with five different values of the a 

parameter was carried out (i.e., with a = 0.01, 0.025, 0.05, 0.075 and 0.1) . We 

calculated the average row and column systematic error rates. Our experiments 

indicated that the row and column systematic error was very frequent in HTS data 

(i.e., at least 30% of rows and columns in the raw data and 20% of rows and colurnns 

in the background-subtracted data were affected by systematic bias, see Figure 2.4). 

In addition, we studied how systematic error influences the hit selection process in 

HTS. We found that at least 50% of raw hit distribution surfaces and 65% of 

background-subtracted hit distribution surfaces were affected by systematic error, 

making it difficult to identify true hits. In the second chapter we also highlighted the 

advantage of sample randomization and underlined the importance of using repli ca tes 

in experimental HTS/HCS campaigns. Furthermore, we provided guidance 

conceming which normalization and/or correction methods should used in different 

experimental contexts . Finally, we presented a broad spectrum data preprocessing 

protocol. This general protocol can be successfully applied for detecting and 
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eliminating spatial biases in experimental HTS/HCS data before the hit identification 

process. 

In Chapter II we presented three novel algorithms for multiplicative bias elimination 

in HTS/HCS technologies . These algorithms are particularly well suited for RNAi 

primary screens, in which the number of active features is typically very small and 

the spatial bias is multiplicative (Carralot et al. 2012). The presence of bias was 

identified and visualized using the hit distribution surface of the assay (Makarenkov 

et al. 2007) . Such a surface can be computed by determining the number of selected 

active features (i.e., hits) for each weil location. Here, we applied the Mann-Whitney 

U test to identify rows and colurnns of a given plate or of a calculated bit distribution 

surface that are affected by systematic error (Caraus et al. 2017) . We compared our 

new data correction algorithms to the basic No Correction procedure using a well­

defined simulation protocol. The first algorithm, called Non-Linear Multiplicative 

Bias Elimination (NLMBE), salves a system of nonlinear equations in which the 

unknowns correspond to the systematic biases affecting rows and columns of a given 

plate. We applied the Levenberg-Marquardt method (Moré 1978) to solve this system 

of nonlinear equations. The second algorithm, called Multiplicative PMP (mPMP), is 

based on an iterative partial mean polish procedure in which the biased plate 

measurements of a given plate are iteratively adjusted (row and colurnn-wise) using 

the mean of the unbiased samples of the same plate. It is worth noting that if a large 

number of bits or outliers are expected for a given plate (i .e., > 10% of the data), then 

the means of the plate's measurements should be replaced by medians in arder to 

obtain more robust parameter estimates. Our third algorithm, called Multiplicative B­

scores, uses the same principle that the traditional B-score method (Brideau et al. 

2003). This new technique is based on a 2-way median polish procedure in which the 

subtractions are replaced by the divisions . To estimate the performance of the 

proposed algorithms, we conducted simulations with artificially generated screening 

data. We randomly generated 1000 HTS assays for each of the following plate sizes: 
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96-, 384-, and 1536-weil plates, adding to them hits (different hit percentages were 

generated) and spatial biases (biases of different amplitude were considered). The 

true positive rate and the combined false positive and false negative rates were 

calculated. The results of our simulations suggest that the NLMBE, Multiplicative 

PMP and Multiplicative B-score algorithms clearly outperformed the No Correction 

method in ail cases. The results presented in Figures 2.2-2.5 suggest that the NLMBE 

and the Multiplicative PMP algorithms were the best methods for correcting the 

multiplicative type of spatial bias. We recommend using the Multiplicative PMP 

algorithm for correcting multiplicative spatial bias because it converges much faster 

than NLMBE while providing similar data correction results . 

Moreover, a general data correction protocol was elaborated in the third chapter. This 

protocol can be used to eliminate both additive and multiplicative systematic errors; it 

is publicly available in the AssayCorrector package. This protocol ailows one to 

detect plate-specifie spatial biases by identifying the bias-affected rows and columns 

within ail plates of the assay (foilowing the results of the Mann-Whitney U test 

applied row and column-wise, respectively) as weil as assay-specifie spatial biases 

by identifying the bias-affected well locations (following the results of the Mann­

Whitney U test applied weil-wise). We propose to correct plate-specifie spatial bias 

using either the Additive or Multiplicative PMP (Partial Mean Polish) algorithm (the 

most appropriate spatial bias model and the corresponding algorithm can be either 

specified by the user or determined by the program foilowing the results of the 

Kolmogorov-Smimov two-sample test, the Anderson-Darling test or the Cramer-von­

Mises). The assay-specifie spatial bias can be corrected by carrying out robust Z­

scores within each plate of the assay and then traditional Z-scores across all of its 

weil locations. The usefulness of our new algorithms and protocol were confirmed by 

their application to publicly available data from ChemBank (Seiler et al. 2008) . 

Summing up the results , we can conclude that the additive type of spatial bias is 
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prevalent in homogeneous and microorganism HTS screens, whereas multiplicative 

bias is usually dominant in cell-based and gene-expression HTS assays. 

In Chapter III, four new spatial bias elimination models accounting for different types 

of bias interactions were presented. A new statistical procedure using the Anderson­

Darling and Cramer-von-Mises goodness-of-fit tests bas been described. This 

procedure can be carried out by HTS/HCS researchers to determine the most effective 

spatial bias models for a given plate. We showed how this procedure can be used in 

practice by examining data generated by: the four high-throughput screening 

technologies (homogeneous, microorganism, cell-based and gene expression HTS), 

the three high-content screening technologies (area, intensity and cell-count HCS) 

and a single small-molecule microarray technology, available in ChemBank. 

The methodology presented in this thesis is designed to minimize the impact of both 

plate-specifie (additive or multiplicative) and assay-specifie spatial biases. A plate­

specifie bias means that the observed bias patterns appear within a given plate only 

and may be different for different plates of the assay. An assay-specifie bias consists 

of a bias pattern that appears within all plates of a given assay. A typical example of 

an assay-specifie bias is the case in which a single well location (i .e. , measurements 

taken across all plates of a given assay and corresponding to a fixed well position) 

gives a very high or a very low reading. An assay-specifie bias can be removed by 

applying the traditional Z-score norrnalization plate-wise, first, and well location­

wise, second. The traditional Z-score norrnalization allows one to remove both 

additive and multiplicative biases when applied to the measurements of a given well 

location. Obviously, the presence of spatial bias in this well location should be 

primarily confirrned by an appropria te statistical test ( e.g., by the Mann-Whitney U 

test). 
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The main advantage of our method presented in Chapter III, compared to the No 

Correction strategy and the B-score method, is that it copes weil with both additive 

and multiplicative spatial biases by taking into account complex interactions between 

them. This was confirmed by our simulation study. Obviously, any bias correction 

method bas to be applied with caution. For instance, a high-throughput screening 

practitioner should always verify that ail tested samples are randomly distributed 

within given HTS/HCS/SMM plates. If the randomization condition does not hold, 

sorne areas of these plates can correctly give very high or very low readings . In this 

case, the application of bias correction methods may be rather damaging as an 

unwanted bias may be introduced into the data at band. 

The source code of the main methods developed in the framework of this doctoral 

project is presented in the Appendix section of this thesis. Overail, the new statistical 

methods presented in this thesis contribute to the reduction of systematic error in 

HTS/HCS screens as weil asto quality amelioration of the results of the HTS/HCS bit 

selection procedures. It is very important to note that the presented bias correction 

methods should be applied judiciously, i.e., after the presence of spatial bias was 

confirmed by statistical tests, because the application of these techniques ( e.g., of B­

score) on error-free data or on data including another type of bias (i.e., when the 

multiplicative bias is corrected using additive bias correction methods) can introduce 

a supplementary bias into data in band. 

In Chapters II and III of this thesis we considered new models for correcting either 

the additive or multiplicative type of spatial bias in HTS/HCS assays. Moreover, the 

new models presented in Chapter III assume different types of bias interaction 

(additive or multiplicative) on the intersections of the biased rows and colurnns of a 

given plate . In the future , it would be interesting to consider a more general model 

that assumes different values, and thus uses different variables, to account for the 

influence of additive and multiplicative biases. This general model, in which the 
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additive and multiplicative biases are completely independent, could be described by 

the following non-linear equation: xijp = x ijp x Ri~ xc~ +Ri; + CJP + ê ijp ' where x ijp 

is the resulting (biased) measurement value in well (iJ) of plate p , xiJP is the original 

error-free measurement, R~ is the multiplicative bias affecting row i of plate p , C~ 

is the multiplicative bias affecting colurnn j of plate p, R; is the additive bias 

affecting row i of plate p , CJP is the additive bias affecting colurnnj of plate p and EiJP 

is the random error in well (iJ) of plate p . This model leads to a particular system of 

non-linear equation for each plate of the assay. Sorne additional work should be done 

for elaborating a new efficient algorithm for determining and then removing both 

additive and multiplicative spatial biases defined by this general model. 

Our new methods have been designed to reduce multiplicative and additive spatial 

biases which are characteristic for HTS/HCS screens. However, these approaches are 

not powerful enough to completely eliminate errors in experimental HTS/HCS 

technologies, e.g., in siRNA screens. One of the main limitations of siRNA screens is 

a high rate of off-target effects (Birmingham et al. 2009). These effects can appear 

due to partial complementarity between the targeted siRNA and random mRNA 

transcripts of non-targeted genes. It is weil known that many false positive bits appear 

due to off-target effects. Thus, future developments could be focused on the 

elaboration of new statistical methods for predicting, detecting and reducing off­

target effects in siRNA screens and on a possible interaction between these effects 

and systematic biases. 



--------------------------

APPENDIXA 

SOURCE CODES 

I have implemented three new error correction methods to eliminate the 

multiplicative bias: 

• Multiplicative B-score method, 

• Non-Linear Multiplicative Bias Elimination method, 

• Multiplicative PMP method. 

The Multiplicative B-score method is an extension of the well-known (additive) B­

score algorithm (Brideau et al. 2003). This method is used to eliminate plate-specifie 

multiplicative spatial biases by reducing the original data to residuals . In order to 

detect the locations of rows and colurnns affected by multiplicative spatial bias we 

have implemented Mann-Whitney U test. The results of the Mann-Whitney U test are 

transferred to both the Non-Linear Multiplicative Bias Elimination and Multiplicative 

PMP methods . The presented bias correction methods and the Mann-Whitney U test 

were used to produce the simulation and real data experimental results for my second 

article (Caraus et al. 2017, Bioinformatics). 



APPENDIXB 

MANN-WHITNEY U TEST 

//This C# function performs the Mann Whitney U test for all rows 

//and colurnns of a given plate in order to detect 

//the biased rows and colurnns within it 

protected bool MannWhitneyUtest (Prj2Task T, Plate PL, int p, List<List<int>> 

MTestRows, List<List<int>> MTestColurnns, ref TestResult MTest, LogFile 

PLLog) 

{ 

bool Res = false; 

int Rows = PL.Rows(); 

int Columns = PL.Colurnns() ; 

inti, j ; 

List<int> MRows =new List<int>(); 

List<int> MCols =new List<int>(); 

int RowsTP = 0; 

int RowsFP = 0; 

int RowsTN = 0; 

int RowsFN = 0; 

int ColsTP = 0; 



int ColsFP = 0; 

int ColsTN = 0; 

int ColsFN = 0; 

StringBuilder SB = null; 

if (PLLog != null) 

{ 

PLLog.WriteLine() ; 

SB = new StringBuilder(); 

} 

Il Mann-Whitney U test by rows 

double CVl , CV2; 

double lefttail; 

double righttail; 

List<double> Rowltems; 

List<double> NotRowltems; 

for (i = 0; i < Rows; i++) 

{ 

Rowltems =new List<double>() ; 

NotRowltems =new List<double>(); 

int k; 

147 
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for (k = 0; k < Rows; k++) 

{ 

} 

if(k == i) 

{ 

} 

for U = 0; j < Columns; j++) 

Rowltems.Add(PL[k, j]); 

el se 

{ 

for U = 0; j < Columns; j++) NotRowltems.Add(PL[k, j]); 

} 

double[] Row = Rowltems.Cast<double>() .ToArray() ; 

double[] NotRow = NotRowltems.Cast<double>() .ToArray(); 

alglib .mannwhitneyutest(Row, Row.Length, NotRow, NotRow.Length, out 

CV 1, out lefttail, out righttail); 

bool RealError = T.IsTrueRowError(p , i) ; 

if (T.Alpha <= CYl) 

{ 

11 true - no error 

if (RealError) 



} 

} 

RowsFN++; 

el se 

RowsTN++; 

el se 

{ 

} 

Res= true; 

Il false- there's error detected by the test 

MRows.Add(i); 

if (RealError) 

RowsTP++; 

el se 

RowsFP++; 

if (PLLog != null) 

{ 

} 

if (MRows.Count > 1) SB.Append(", "); 

SB.Append(i .ToString()); 

SB.Append("(" + (RealError? "TRUE" : "F ALSE") + ")"); 

MTestRows.Add(TRows); 

149 
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MTest.FN += RowsFN; 

MTest.FP += RowsFP; 

MTest.TN += RowsTN; 

MTest.TP += RowsTP; 

if (PLLog != null) 

{ 

SB.AppendFormat(" [TP:{O} FP:{l} FN:{2} TN:{3}]", RowsTP, 

RowsFP, RowsFN, RowsTN); 

PLLog.WriteLine("Error detected in" + (RowsTP + RowsFP).ToString() + 

"rows: "+ SB.ToString()); 

SB.Length = 0; 

} 

Il Mann-Whitney U test by columns 

List<double> Colurnnltems; 

List<double> NotColumnltems; 

for U = 0; j < Colurnns; j++) 

{ 

Columnltems = new List<double>(); 

NotColumnltems =new List<double>(); 

int k; 



for (k = 0; k < Colurnns; k++) 

{ 

if (k == j) 

for (i = 0; i < Rows; i++) Colurnnltems.Add(PL[i, k]); 

} 

el se 

for (i = 0; i < Rows; i++) NotColurnnltems.Add(PL[i, k]) ; 

} 

} 

double[] Col= Colurnnltems.Cast<double>().ToArray(); 
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double[] NotCol = NotColurnnltems.Cast<double>().ToArray(); 

alglib.mannwhitneyutest(Col, Col.Length, NotCol, NotCol.Length, out 

CV2, out lefttail, out righttail); 

bool RealError = T.IsTrueColumnError(p, j); 

if (T.Alpha <= CV2) 

{ 

Il true- no error 

if (RealError) 

ColsFN++; 

el se 
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} 

ColsTN++; 

el se 

{ 

} 

11 false - there's error detected by the test 

Res = true; 

MCols .Add(j); 

if (RealError) 

ColsTP++; 

el se 

ColsFP++; 

if (PLLog != null) 

{ 

} 

if (MCols.Count > 1) SB.Append(" "); 

SB.Append(j .ToString()); 

SB.Append("(" + (RealError? "TRUE" : "F ALSE") + ")"); 

if (PLLog != null) 

{ 



} 
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SB.AppendFormat(" [TP:{O} FP:{l} FN:{2} TN:{3}]", ColsTP, ColsFP, 

ColsFN, ColsTN); 

PLLog.WriteLine("Error detected in " + (ColsTP + ColsFP).ToStringQ + " 

colurnns: "+ SB.ToString()); 

PLLog.WriteLineQ; 

PLLog.Flush(); 

} 

MTestColurnns.Add(MCols ); 

MTest.FN += ColsFN; 

MTest.FP += ColsFP; 

MTest.TN += ColsTN; 

MTest.TP += ColsTP; 

return Res; 



APPENDIX C 

MULTIPLICATIVE B-SCORE METHOD 

//This C# function performs the Multiplicative B-score method 

//applied to all measurements of a given plate 

public void BScorePlateMulti(Prj2Task T, int p, bool Print) 

{ 

double BSCORE_EPSILON = 0.05 ; 

double BSCORE_EPS_PERC = 0.01 ; 

int BSCORE_MAX_ITERATIONS =50; 

bool Printlter = false; 

Plate PL= T.BScoreDS[p] ; 

int Maxlterations = BSCORE_MAX_ITERATIONS ; 

int Rows = PL.wells.GetLength(O) ; 

int Colurnns = PL.wells .GetLength(l); 

double[] MRow = new double[Rows]; 

double[] MCol = new double[Colurnns] ; 

double[] R =new double[Rows]; 

double[] C = new double[Columns]; 

Array.Clear(R, 0, Rows); 

Array.Clear(C, 0, Colurnns); 



inti, j, k; 

int Iteration = BSCORE MAX_ITERATIONS ; 

double OldSum = 0.0; 

bool converge = false ; 

do 

{ 

Array.Clear(R, 0, Rows); 

Array.Clear(C, 0, Colurnns) ; 

Il Computing the median of the rows 

for (i = 0; i < Rows; i++) 

R[i] += MRow[i] = G.MedianlnPlace(PL.Row(i)); 

for (i = 0; i < Rows; i++) 

for (j = 0; j < Colurnns; j++) 

PL.wells[i, j] 1= MRow[i]; 

double RMed = G.Median(MRow); 

for (i = 0; i < Rows; i++) R[i] 1= RMed; 

Il Computing the median of the colurnns 

155 
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for U = 0; j < Columns; j++) 

C[j] += MCol[j] = G.MedianlnPlace(PL.ColumnU)); 

double WellSum = 0.0; 

for (i = 0; i < Rows; i++) 

for U = 0; j < Columns; j++) 

{ 

PL.wells[i, j] /= MCol[j] ; 

WellSum += Math.Abs(PL.wells[i, j]); 

} 

double CMed = G.Median(MCol); 

for U = 0; j < Columns; j++) 

C[j] /= CMed; 

converge = (Math.Abs(WellSum - Rows * Columns) < 

BSCORE _EPSILON) Il 

(Math.Abs(WellSum- OldSum) < 

BSCORE EPS PERC*WellSum); 
- -

OldSum = WellSum; 

} 

while (--Iteration > 0 && !converge); 



} 

double[] Resid =new double[Rows * Columns]; 

for (k = i = 0; i < Rows; i++) 

for (j = 0; j < Columns; j++) 

Resid[k++] = PL.wells[i , j] ; 

double ResMed = G.MedianlnPlace(Resid); 

for (i = 0; i < Resid.Length; i++) 

Resid[i] = Math.Abs(Resid[i] - ResMed); 

double MAD= G.MedianlnPlace(Resid); 

Il the following has been added for compatibility with HIS Corrector 

MAD *= 1.4826; 

if (MAD > 0.0001) 

for (i = 0; i < Rows; i++) 

for (j = 0; j < Columns; j++) 

PL.wells[i, j] 1= MAD; 
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APPENDIXD 

NON-LINEAR MULTIPLICATIVE BIAS ELIMINATION 

//This C# function performs the Non-Linear Multiplicative Bias Elimination 

Il method applied only to the bias-affected rows and colurnns of a given plate 

public void NLMBE(Prj2Task TT, Dataset DS, string Label, int p, 

List<int> ERows, List<int> EColurnns, bool Print) 

Plate PL= DS[p]; 

int Rows = TT.Rows; 

int Colurnns = TT.Columns; 

V my_object =new V(); 

my_object.ERows = ERows; 

my_object.wells = PL; 

my_object.EColumns = EColumns; 

my_object.Colurnns = Columns; 

my_object.Rows = Rows; 

int NR = ERows != null? ERows.Count : 0; 

int NC = EColurnns != null ? EColurnns.Count : 0; 

int N = NR + NC; 

Il Is there any row or colurnn affected by systematic error? 



if (N == 0) return; 

bool[] RFlag =new bool[Rows]; 

bool[] CFlag =new bool[Columns] ; 

Array.Clear(RFlag, 0, Rows); 

Array.Clear(CFlag, 0, Columns); 

foreach (int r in ERows) RFlag[r] = true; 

foreach (int c in EColumns) CFlag[c] = true; 

double Mu= 0.0; 

int i, j ; 

for (i = 0; i < Rows; i++) 

{ 

} 

if (RFlag[i]) continue; 

for U = 0; j < Columns; j++) 

{ 

} 

if (CFlag[j]) continue; 

Mu+= PL[i, j]; 

Mu != (Rows - NR) * (Columns - NC); 

double[] RMu =new double[Rows]; 

double[] CMu =new double[Columns] ; 
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Array.Clear(RMu, 0, Rows); 

Array.Clear(CMu, 0, Columns); 

1 /Computing the means of the rows to be corrected 

for (i = 0; i < Rows; i++) 

{ 

if (!RF!ag[i]) continue; 

for (j = 0; j < Columns; j++) 

{ 

RMu[i] += PL[i, j]; 

} 

RMu[i] /= Columns; 

} 

//Computing the means of the columns to be corrected 

for (j = 0; j < Columns; j++) 

{ 

if(! CF!ag[j]) continue; 

for (i = 0; i < Rows; i++) 

{ 

CMu[j] += PL[i , j]; 

} 



CMu[j] /= Rows; 

} 

//eliminates row and column effects 

if ((NR != 0) && (NC != 0)) 

{ 

int mm= Rows + Columns; // number off(i) equations 

double[] x= new double[mm] ; //initial values 

for (i = 0; i < mm; i++) 

x[i] = 1; 

x[O] = 2; 

x[1] = 2; 

double diffstep = 0.0001 ; 

double epsg = 0.0001 ; 

double epsf = 0; 

double epsx = 0; 

int maxits = 0; Il unlimited iterations 

//Nonlinear !east-squares optimization using function vector only 

//does not require to provide the partial derivatives . 

alglib.minlmstate state; 

alglib .minlrnreport rep; 
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11 crea te optimizer 

alglib.minlmcreatev(mm, x, diffstep, out state); 

1 /conditions 

alglib.minlmsetcond(state, epsg, epsf, epsx, maxits) ; 

1 /optimization 

alglib.minlmoptimize(state, function 1_ fvec, null, my_ object); 

1 /Optimization result 

alglib.minlmresults(state, out x, out rep); 

System.Console.WriteLine(" {0} ", rep.terminationtype); 

System.Console.WriteLine(" {0} ", alglib.ap.format(x, 5)); 

for (i = 0; i < NR; i++) 

{ 

for U = 0; j < Columns; j++) 

{ 

PL[ERows[i], j] = PL[ERows[i], j] * x[i]; 

} 

} 

for U = O;j < NC; j++) 

{ 

for (i = 0; i < Rows; i++) 

PL[i, EColumns[j]] = PL[i, EColumns[j]] * x[j + NR]; 



} 

} 

} //eliminate row effects 

else if (NR != 0 && NC == 0) 

{ 

for (i = 0; i < Rows; i++) 

{ 

} 

for (j = 0; j < Colurnns; j++) 

{ 

} 

if (RFlag[i]) 

{ 

PL[i, j] =Mu * PL[i, j] 1 RMu[i] ; 

} 

} //eliminate colurnn effects 

else if(NR == 0 && NC != 0) 

{ 

for (j = 0; j < Colurnns; j++) 

{ 
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} 

} 

} 

for (i = 0; i < Rows; i++) 

{ 

} 

if (CFlag[j]) 

{ 

PL[i, j] =Mu* PL[i , j] 1 CMu[j] ; 

} 

//general form fonctions 

public void functionl _fvec(double[] x, double[] fi , object obj) 

{ 

int i, j ; 

List<int> ERows = new List<int>(); 

List<int> EColurnns = new List<int>(); 

V my_object = (V)obj; 

ERows = my_object.ERows; 

EColumns = my_object.EColurnns; 



int Columns = my_object.Columns; 

int Rows = my_ object.Rows; 

double[ ,] Wells = new double[Rows, Columns] ; 

for (i = 0; i < Rows; i++) 

{ 

} 

for (j = 0; j < Columns; j++) 

{ 

Wells[i , j] = my_object.wells[i, j] ; 

} 

int NR = ERows != null ? ERows.Count : 0; 

int NC = EColumns != null ? EColumns.Count: 0; 

int N = NR + NC; 

if (N == 0) retum; 

boo![] RFlag =new bool[Rows]; 

boo![] CFlag =new bool[Columns]; 

Array.Clear(RFlag, 0, Rows); 

Array.Clear(CFlag, 0, Columns) ; 

foreach (int r in ERows) RFlag[r] = true; 

foreach (int c in EColurnns) CF!ag[ c] = true; 

double Mu = 0; 
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for (i = 0; i < Rows; i++) 

{ 

} 

if (RFlag[i]) continue; 

for U = 0; j < Colurnns; j++) 

{ 

} 

if (CFlag[j]) continue; 

Mu+= Wells[i , j] ; 

Mu /= (Rows- NR) * (Colurnns- NC); 

double[] f_row =new double[Rows]; 

for (i = 0; i < Rows; i++) 

f_row[i] =Mu* Columns; 

double[] f_col =new double[Colurnns] ; 

for (i = 0; i < Colurnns; i++) 

f_col[i] =Mu* Rows; 

double[] rr =new double[Rows]; 

for (i = 0; i < Rows; i++) 



rr[i]=l; 

for (i = 0; i < NR; i++) 

rr[ERows[i]] = x[i] ; 

double[] cc= new double[Columns] ; 

for (i = 0; i < Columns; i++) 

cc[i] = 1; 

for (i = 0; i < NC; i++) 

cc[EColumns[i]] = x[i + NR]; 

double[,] Rdiag =new double[Rows, Rows]; 

Rdiag = diag(rr); 

double[,] Cdiag = new double[Columns, Columns]; 

Cdiag = diag(cc); 

double[] rb= new double[Rows] ; 

alglib .rmatrixmv(Rows, Columns, Wells, 0, 0, 0, cc, 0, refrb, 0) ; 

double[] rw = new double[Rows]; 

alglib .rmatrixmv(Rows, Rows, Rdiag, 0, 0, 0, rb, 0, refrw, 0); 

for (i = 0; i < Rows; i++) 

fi[i] = rw[i]- f_row[i]; 

double[,] BTransp =new double[Columns, Rows] ; 
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} 

alglib.rrnatrixtranspose(Rows, Columns, Wells, 0, 0, refBTransp, 0, 0) ; 

double[] cb =new double[Columns]; 

alglib.rrnatrixmv(Columns, Rows , BTransp, 0, 0, 0, rr, 0, ref cb, 0) ; 

double[] re= new double[Columns] ; 

alglib.rrnatrixmv(Columns, Columns, Cdiag, 0, 0, 0, cb, 0, ref re, 0) ; 

for (i = 0; i < Columns; i++) 

fi[i + Rows] = rc[i]- f col[i]; 

public class V 

{ 

/*Global Variables*/ 

public List<int> ERows; 

public List<int> EColumns; 

public Plate wells ; 

public int Columns; 



public int Rows; 

} 

//function calculate the diagonal matrix 

public double[,] diag(double[] C) 

{ 

} 

double[,] CMu =new double[C.Length, C.Length] ; 

Array.Clear(CMu, 0, C.Length) ; 

for (inti = 0; i < C.Length; i++) 

CMu[i, i] = C[i] ; 

retum CMu; 
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APPENDIXE 

MULTIPLICATIVE PMP METHOD 

//This C# function performs the Multiplicative PMP method 

1 /applied only to the bias-affected rows and columns of a given plate 

public void rnPMP(Prj2Task TT, Dataset DS, string Label, int p, List<int> 

ERows, List<int> EColurnns, bool Print) 

{ 

int Rows = TT.Rows; 

int Columns = TT.Colurnns; 

int NR = ERows.Count; 

int NC = EColurnns.Count; 

int N = NR + NC; 

Plate PL = DS[p] ; 

int PMP _MAX_ITERATIONS = 200; 

double PMP _EPSILON= 0.001; 

Il Is there any row colurnn affected by systematic error? 

if (N == 0) retum; 

bool[] RFlag =new bool[Rows]; 

boo![] CFlag =new bool[Colurnns] ; 

Array.Clear(RFlag, 0, Rows); 

Array.Clear(CFlag, 0, Colurnns); 



foreach (int r in ERows) RFlag[r] = true; 

foreach (int c in EColurnns) CFlag[ c] = true; 

double Mu= 0.0; 

inti, j; 

double[] Non_Error_Matrix = new double[(Rows-NR)*(Columns-NC)]; 

Array.Clear(Non_Error_Matrix, 0, (Rows-NR) * (Colurnns-NC)); 

int k = 0; 

for (i = 0; i < Rows; i++) 

{ 

} 

if (RFlag[i]) continue; 

for U = 0; j < Colurnns; j++) 

{ 

if (CFlag[j]) continue; 

Non_Error_Matrix[k] = PL[i, j] ;k++; 

} 

alglib.samplemedian(Non _ Error _ Matrix, out Mu); 

//Computing the median of the Matrix 

double[] RMu =new double[Rows]; 
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double[] CMu =new double[Columns]; 

double[] R_copy =new double[Rows] ; 

double[] C_copy =new double[Columns]; 

Array.Clear(R_copy, 0, Rows); 

Array.Clear(C_copy, 0, Columns); 

Array.Clear(RMu, 0, Rows); 

Array.Clear(CMu, 0, Columns); 

int Loop = 1; 

double Converge= 0.0; 

double Diff= 0.0; 

do 

{ 

Diff= 0.0; 

Converge= 0.0; 

//Computing the median of the rows to be corrected 

for (i = 0; i < Rows; i++) 

{ 

if (RFlag[i]) 

{ 

Array.Clear(C_copy, 0, Columns); 

RMu[i]=G.MedianlnPlace(PL.Row(i)); 



} 

//Computing the median of the columns to be corrected 

for (j = 0; j < Columns; j++) 

{ 

} 

k= 0; 

if (CFlag[j]) 

{ 

CMu[j] = G.MedianlnPlace(PL.Column(j)) ; 

//elimination of the row effect 

for (i = 0; i < Rows; i++) 

{ 

for (j = 0; j < Columns; j++) 

{ 

if (RFlag[i]) 

{ 

Diff = Mu- RMu[i]; 

Converge += Math.Abs(Diff) ; 

PL[i, j] = Mu * PL[i, j] 1 RMu[i] ; 
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} 

} 

} 

1 /elimination of the column effect 

for (j = 0; j < Columns; j++) 

{ 

for (i = 0; i < Rows; i++) 

{ 

if ( CFlag[j]) 

{ 

PL[i, j] =Mu* PL[i, j] 1 CMu[j]; 

Diff= Mu- CMu[j]; 

Converge += Math.Abs(Diff); 

} 

} 

} 

} 

while (Converge > PMP EPSILON && Loop++ < 

PMP MAX ITERATIONS); - -

} 
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