manuscripta math. 62, 219 - 225 (1988) manuscripta
mathematica
© Springer-Verlag 1988

ELEMENTARY EQUIVALENCE AND CODIMENSION
IN p~-ADIC FIELDS

L. Bélair
I.. van den Dries

A. Macintyre

We give examples of fields elementarily
equivalent to a given finite extension of the p-adic
numbers but not containing a subfield of finite

codimension elementarily equivalent to the p-adics.

SECTION O. INTRODUCTION.

It is well known that an algebraically closed
field of characteristic zero contains a real closed
field of codimension 2. From the point of view of the
model theory of real closed fields, this means that a
field elementarily equivalent to a finite extension of
the real numbers R contains a subfield of the right
codimension elementarily equivalent to R . In this

note we show that this is not the case for any field K
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finite-dimensional over ¢ . Namely, for any finite
extension of Qp of a givzn degree d > 1, there
exists an elementary equivalent field which does not
contain a subfield of finite codimension elementarily
equivalent to Qp. So this is a point in which the
model theory of R and Qp differ. It is worth
noticing that the examples below have the simplest

possible value group, namely Z.

From the work of Ax-Kochen and Ershov we know
that the elementary theory of Qp is the theory of
henselian valued fields with residue field F_, and
discretely valued in a Z-group so that v(p) = 1. Let
pPCF be the above theory. Its models are called
p-adically closed fields. The model theory of finite
extension fields of Qp was studied in [PR]. The
only model-theoretic fact we shall need is that if K
is a finite extension of Qp and K1 C K a subfield

relatively algebraically closed in K then Kl < K,

i.e. the inclusion is elementary.

Our arguments rely on basic algebraic-geometric
facts, together with the completeness of Qp via
Baire's theorem. We can and shall assume everything
to take place in a fixed algebraic closure of Qp. If
F 1is a field then T denotes its algebraic closure.
We denote by Ap the field of algebraic p-adic
numbers, i.e. the p-adic numbers algebraic over the
rationals, and by A" the affine n-space. If I 1is

a polynomial ideal then V(I) denotes its zero set.
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SECTION 1. THE EXAMPLES.

Let K be a finite extension field of Qp of
degree d > 1. We know that K = ¢ (A) for some
b

algebraic number o. Let to,...,td_1 € Qp be

algebraically independent over Ap and let K1 be the

relative algebraic closure of
d-1
A (o,t. + t, 0t...+t i K. The K is
p (Gt * B0 g1 )i TR
elementarily equivalent to K and the transcendence

degree of K1 over Ap is 1. If KO < K1 is a

subfield of K, elementarily equivalent to QP and
of codimension d then tr deg KOIAp = 1.

Moreover:

LEMMA 1. Ky = Ky n Qp.

PROOF. KO has a unique Henselian valuation, which
is the restriction of the unique Henselian valuation

on Kl' Since K1 is a finite extension of KO’ the
valuegroup of K is of finite index in that of Kl.
Also, v(p) is the least positive value in KO,

hence K is an immediate extension of Ap. Therefore

0
Ap is dense in X, so A and KO have the same
p

(topological) closgre in the algebraic closure of Qp.
It follows that KO EiQp. Oon the other hand

K, n Qp is relatively algebraically closed in Qp
and so is a model of pCF. Since the extension

K, n QPIKO is algebraic the equality follows. O

We show below that there exists tO,..-,td_1 for
which K1 ne = Ap. Such t, prevent the existence
b i

and thus yield our example for K.

of a suitable KO
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Let us point out that an analogous construction for R
does not force KO = K1 N R, the reason being that
the field KO would not necessarily be archimedean

and hence not necessarily embeddable in R.

PROPOSITION. There exist to,...,td_1 EﬁQp which
are algebraically independent over Eé and for which
K, N = A .

1Qp p
PROOF. It suffices to find algebraically independent
ti such that for every irreducible polynomial

f(X,Y) € Ap(a)[X,Y]\Ap(u)[x] and every x € Qp, if

f(x,t, + t, o +...+ t ud—l) =0 then x €24 . 1In
0 1 da-1 P d-1
fact we find ti such that f(x,to+t1a+..+td_1@ )

# 0 for all x € Qp, so a fortiori fulfilling
the requirement with respect to Ap. Let

£(X,¥) Dbe such a polynomial and C be the affine curve

Lt defd Set X = + X 0 +...t X adfl and
it defines. e = x, * X, . -
BRI Foot let
¥ =y, +y@ Yg_1% and le
W= (u)’A (C) be the induced Weil restriction of

¢ for the eRtension Ap(d)[Ap (see [W]). TLet

01,...,0d be the d distinct Ap—embeddings of Ap(a)

in A . The affine variety W is isomorphic to the
o
product C 1 x...ngd over the Galois closure of

Ap(a) over A via the following isomorphism (ibid.)
p

) = (Xl,Y ,...,Xd,Yd)

@(xo,...,xd_l,yo,...,yd_1 1

where X, 6 = Zx,o,(aj) and Y, = Ey.O.(a?),
i J i i J 1
(a..) be the dxd matrix
1jj_1

j=0,...,d~-1. Let M

]

with (i,j)-th entry a_j Gi(a y and let
i
X, vy, X, ¥, be the column vectors obtained from the
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components x_, yj, Xi' Yi, respectively. Then M is
invertible and X = Mx, ¥ = My. The ideal (£94(x_,Y,),
i=1,...,4) is an ideal of definition for % 1x. . .xc %
Let W' Dbe the intersection of W with

X, =0,...,x

1 d-1 0 and let J be the ideal generated
o] . :
b 1 - £ = ... pd.
y the £ (Xi,Yi) and X1 Xj or j 2, d
LEMMA 2. We have &W' = V(J).

PROOF. The inclusion < is clear. On the other

hand if P = (Xl'Yl""'Xd'Yd) lies in V(J) then it
lies in C91x...xC%d ang X1 = X2 S .= Xd, Consider
the linear system X = Mx with the xi as unknowns.
If X1 = 0 then Xq = 0 = Xy =e..s Xd—% and ®—1P

is in W'. Otherwise, setting z, = XI X We get the

equivalent system 1 = Mz, where 1 denotes the
column vector whose entries are all equal to 1. Now
the first column of M 1is equal to 1, so by Cramer
z, = 1 and zj =0 for j > 1, whence @hlP lies in
w'. O

Using this lemma a straightforward computation of

transcendence degree shows that dim ¢W' < 1 and we

conclude, via ¢, that dim W' < 1.

Let T7W' be the set theoretic projection of W'
on the last d components, i.e. the set of
(YO'°"'yd—1) for which there exists a xo such that
(XO'O"°"O'YO"°"Yd—1) is in W'. Since dim W' < 1,
it follows that the Zariski closure TW'> of W' has
also dimension < 1. 1In order to use a Baire argument

for Qg to get the t, we isolate the following fact.
i
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d
LEMMA 3. ILet VcA be an affine variety of
o~ d
dimension n < d defined over AP— Then V N Qp has -

empty interior in Qg for the p-adic topology.

PROOF. For cardinality reasons every ball in Qg
contains a point with components algebraically
independent over Rg. This can be seen by proving by
induction on d that for any Bl,...Br in Qp and
any ball B in Qd there is a point P of B whose
coordinates are algebraically independent over

Q(B1

argument. For d = c¢ + 1, first choose last

,...,Br). For d =1 this is a simple cardinality

coordinate Br independent of Bl,...,Br, and then

+1
. C . .
work in Qp with 61,...,Br, Br+1 to get the first

¢ coordinates. O

It follows that %WTZ n Qd is a nowhere dense
subset of Qg in the p-adic tgpology, as is
V(g) n Qg for any g € Eg[xl,...,xd]. Considering
all the ©W'° thus obtained and all V(g), we
conclude by Baire's Theorem that there exists
(to,...,td_l) € Qg in the complement of all those
sets. These are the required ti and this concludes

the proof of the Proposition. O

SECTION 2. CONCLUDING REMARKS.

It is clear that in the above discussion we can
replace QD by any of its finite extensions and adjust

the arguments accordingly. Let us refer to a field

K as having the "codimension property" if any field
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elementarily equivalent to a finite extenéion of KX
contains a subfield elementarily equivalent to K and
of the same codimension. The field of rational numbers
® has, like R, the codimension property, but this
time it is related to undecidability. Indeed by Julia
Robinson's result, @ is definable in any fixed finite
extension field of itself. This is to be contrasted
with the situation of the reals, where both R and

€ are decidable, and the field of the p-adics which,
while not having the codimension property, is

decidable and has every finite extension decidable.
REFERENCES

[PR] A. Prestel and P. Roquette. Formally p-adic
Fields, Springer-Verlag, LNM 1050, 1984

[We]l A. Weil. Adéles and Algebraic Groups. Institute
for Advanced Study, Princeton, 1961

ADDRESSES
L. Bélair, A. Macintyre,
Department of Mathematics, Mathematical Institute,
Université de Montréal, University of Oxford,
Montréal, 24-29 St. Giles',
Quebec 83C 3J7, oxford,
Canada 0X1 3LB,

England
L. van den Dries,
Department of Mathematics,
University of Illinois at Urbana-Champaign,
273 Altgeld Hall,
Urbana,
IL 61801,
U.S.A.

(Received August 25, 1987;
in revised form May 30, 1988)

225



