ELEMENTARY EQUIVALENCE AND CODIMENSION IN p-ADIC FIELDS

- L. Bélair
- L. van den Dries
- A. Macintyre

We give examples of fields elementarily equivalent to a given finite extension of the p-adic numbers but not containing a subfield of finite codimension elementarily equivalent to the p-adics.

SECTION 0. INTRODUCTION.

It is well known that an algebraically closed field of characteristic zero contains a real closed field of codimension 2. From the point of view of the model theory of real closed fields, this means that a field elementarily equivalent to a finite extension of the real numbers R contains a subfield of the right codimension elementarily equivalent to R. In this note we show that this is not the case for any field K

BÉLATR ET AL.

finite-dimensional over Φ_p . Namely, for any finite extension of Φ_p of a given degree d>1, there exists an elementary equivalent field which does not contain a subfield of finite codimension elementarily equivalent to Φ_p . So this is a point in which the model theory of $\mathbb R$ and Φ_p differ. It is worth noticing that the examples below have the simplest possible value group, namely $\mathbb Z$.

From the work of Ax-Kochen and Ershov we know that the elementary theory of Φ_p is the theory of henselian valued fields with residue field \mathbf{F}_p , and discretely valued in a Z-group so that v(p)=1. Let pCF be the above theory. Its models are called p-adically closed fields. The model theory of finite extension fields of Φ_p was studied in [PR]. The only model-theoretic fact we shall need is that if K is a finite extension of Φ_p and $K_1\subseteq K$ a subfield relatively algebraically closed in K then $K_1 \leqslant K$, i.e. the inclusion is elementary.

Our arguments rely on basic algebraic-geometric facts, together with the completeness of \mathfrak{P}_p via Baire's theorem. We can and shall assume everything to take place in a fixed algebraic closure of \mathfrak{P}_p . If F is a field then F denotes its algebraic closure. We denote by A the field of algebraic p-adic numbers, i.e. the p-adic numbers algebraic over the rationals, and by A the affine n-space. If I is a polynomial ideal then V(I) denotes its zero set.

BÉLATR ET AL.

SECTION 1. THE EXAMPLES.

Let K be a finite extension field of \mathfrak{Q}_p of degree d > 1. We know that $K = \mathfrak{Q}_p(\alpha)$ for some algebraic number α . Let $t_0, \ldots, t_{d-1} \in \mathfrak{Q}_p$ be algebraically independent over A_p and let K_1 be the relative algebraic closure of $\begin{array}{ll} A_p(\alpha,t_0+t_1\alpha+\ldots+t_{d-1}\alpha^{d-1}) & \text{in } K. & \text{Then } K_1 & \text{is } \\ \text{elementarily equivalent to } K & \text{and the transcendence} \\ \text{degree of } K_1 & \text{over } A_p & \text{is } 1. & \text{If } K_0 \subseteq K_1 & \text{is a} \\ \text{subfield of } K_1 & \text{elementarily equivalent to } \mathfrak{Q}_p & \text{and} \\ \text{of codimension } d & \text{then } \text{tr deg } K_0 \mid A_p = 1. \\ \text{Moreover:} \end{array}$

<u>LEMMA 1</u>. $K_0 = K_1 \cap \Phi_p$.

PROOF. K_0 has a unique Henselian valuation, which is the restriction of the unique Henselian valuation on K_1 . Since K_1 is a finite extension of K_0 , the valuegroup of K_0 is of finite index in that of K_1 . Also, v(p) is the least positive value in K_0 , hence K_0 is an immediate extension of A_p . Therefore A_p is dense in K_0 , so A_p and K_0 have the same (topological) closure in the algebraic closure of Φ_p . It follows that $K_0 \subseteq \Phi_p$. On the other hand $K_1 \cap \Phi_p$ is relatively algebraically closed in Φ_p and so is a model of pCF. Since the extension $K_1 \cap \Phi_p \setminus K_0$ is algebraic the equality follows. \Box

We show below that there exists t_0, \dots, t_{d-1} for which $K_1 \cap \Phi_p = A$. Such t prevent the existence of a suitable K_0 and thus yield our example for K.

BÉLAIR ET AL.

Let us point out that an analogous construction for \mathbb{R} does not force $K_0 = K_1 \cap \mathbb{R}$, the reason being that the field K_0 would not necessarily be archimedean and hence not necessarily embeddable in \mathbb{R} .

PROPOSITION. There exist $t_0, \dots, t_{d-1} \in \mathfrak{Q}_p$ which are algebraically independent over \widetilde{A}_p and for which $K_1 \cap \mathfrak{Q}_p = A_p$.

PROOF. It suffices to find algebraically independent t_i such that for every irreducible polynomial $f(x,y) \in A_p(\alpha)[x,y] \setminus A_p(\alpha)[x]$ and every $x \in \Phi_p$, if $f(x,t_0+t_1\alpha+\ldots+t_{d-1}\alpha^{d-1})=0$ then $x \in A_p$. In fact we find t_i such that $f(x,t_0+t_1\alpha+\ldots+t_{d-1}\alpha^{d-1})\neq 0$ for all $x \in \Phi_p$, so a fortiori fulfilling the requirement with respect to A_p . Let f(x,y) be such a polynomial and C be the affine curve it defines. Set $x=x_0+x_1\alpha+\ldots+x_{d-1}\alpha^{d-1}$ and $y=y_0+y_1\alpha+\ldots+y_{d-1}\alpha^{d-1}$ and let $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and let $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and let $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and let $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha^{d-1}$ and $Y=Y_0+Y_1\alpha+\ldots+Y_{d-1}\alpha+\ldots+$

where $X_i = \sum x_j \sigma_i(\alpha^j)$ and $Y_i = \sum y_j \sigma_i(\alpha^j)$, j = 0, ..., d-1. Let $M = (a_{ij})$ be the dxd matrix with (i,j)-th entry $a_{ij} = \sigma_i(\alpha^{j-1})$ and let $\underline{x}, \underline{y}, \underline{x}, \underline{y}$, be the column vectors obtained from the

BÉLAIR ET AL.

components x_j , y_j , x_i , y_i , respectively. Then M is invertible and $\underline{X} = \underline{Mx}$, $\underline{Y} = \underline{My}$. The ideal $(f^{O_i}(X_i, Y_i), i = 1, \ldots, d)$ is an ideal of definition for $C^{O_i}(X_i, Y_i)$. Let W' be the intersection of W with $x_1 = 0, \ldots, x_{d-1} = 0$ and let J be the ideal generated by the $f^{O_i}(X_i, Y_i)$ and $X_1 - X_j$ for $j = 2, \ldots, d$. LEMMA 2. We have $\Phi W' = V(J)$.

PROOF. The inclusion \subseteq is clear. On the other hand if $P = (X_1, Y_1, \dots, X_d, Y_d)$ lies in V(J) then it lies in $C^{O1}x \dots x C^{Od}$ and $X_1 = X_2 = \dots = X_d$, Consider the linear system X = Mx with the X_1 as unknowns. If $X_1 = 0$ then $X_0 = 0 = x_1 = \dots = x_{d-1}$ and $\Phi^{-1}P$ is in W'. Otherwise, setting $Z_1 = X_1^{-1}x_1$, we get the equivalent system 1 = Mz, where 1 denotes the column vector whose entries are all equal to 1. Now the first column of M is equal to 1, so by Cramer $X_1 = 1$ and $X_2 = 0$ for $X_1 = 1$, whence $X_1 = 1$ lies in $X_1 = 1$.

Using this lemma a straightforward computation of transcendence degree shows that $\dim\,\Phi W^{\,\prime}\,\leq\,1$ and we conclude, via $\,\Phi\,,\,$ that $\,\dim\,W^{\,\prime}\,\leq\,1\,.$

Let $\pi W'$ be the set theoretic projection of W' on the last d components, i.e. the set of (y_0,\ldots,y_{d-1}) for which there exists a x_0 such that $(x_0,0,\ldots,0,y_0,\ldots,y_{d-1})$ is in W'. Since $\dim W' \leq 1$, it follows that the Zariski closure $\overline{\pi W'}^Z$ of $\pi W'$ has also dimension ≤ 1 . In order to use a Baire argument for Q_D^d to get the t, we isolate the following fact.

BÉLAIR ET AL.

LEMMA 3. Let $V \subseteq A^d$ be an affine variety of dimension n < d defined over \widetilde{A}_p . Then $V \cap \mathbb{Q}_p^d$ has empty interior in \mathbb{Q}_p^d for the p-adic topology.

PROOF. For cardinality reasons every ball in \mathbb{Q}_p^d contains a point with components algebraically independent over \widetilde{A}_p . This can be seen by proving by induction on d that for any β_1, \dots, β_r in \mathbb{Q}_p and any ball B in \mathbb{Q}_p^d there is a point P of B whose coordinates are algebraically independent over $\mathbb{Q}(\beta_1, \dots, \beta_r)$. For d = 1 this is a simple cardinality argument. For d = c + 1, first choose last coordinate β_{r+1} independent of β_1, \dots, β_r , and then work in \mathbb{Q}_p^c with β_1, \dots, β_r , β_{r+1} to get the first c coordinates. \square

It follows that $\overline{\pi W}^Z \cap Q_p^d$ is a nowhere dense subset of Q_p^d in the p-adic topology, as is $V(g) \cap Q_p^d$ for any $g \in \widetilde{A}_p[X_1, \dots, X_d]$. Considering all the $\overline{\pi W}^Z$ thus obtained and all V(g), we conclude by Baire's Theorem that there exists $(t_0, \dots, t_{d-1}) \in Q_p^d$ in the complement of all those sets. These are the required t_i and this concludes the proof of the Proposition. \square

SECTION 2. CONCLUDING REMARKS.

It is clear that in the above discussion we can replace p by any of its finite extensions and adjust the arguments accordingly. Let us refer to a field K as having the "codimension property" if any field

BÉLATE ET AL.

elementarily equivalent to a finite extension of K contains a subfield elementarily equivalent to K and of the same codimension. The field of rational numbers \mathbb{Q} has, like \mathbb{R} , the codimension property, but this time it is related to undecidability. Indeed by Julia Robinson's result, \mathbb{Q} is definable in any fixed finite extension field of itself. This is to be contrasted with the situation of the reals, where both \mathbb{R} and \mathbb{C} are decidable, and the field of the p-adics which, while not having the codimension property, is decidable and has every finite extension decidable.

REFERENCES

- [PR] A. Prestel and P. Roquette. Formally p-adic Fields, Springer-Verlag, LNM 1050, 1984
- [We] A. Weil. Adèles and Algebraic Groups. Institute for Advanced Study, Princeton, 1961

ADDRESSES

L. Bélair, Department of Mathematics, Université de Montréal, Montréal, Quebec 83C 3J7, Canada A. Macintyre,
Mathematical Institute,
University of Oxford,
24-29 St. Giles',
Oxford,
OX1 3LB,
England

L. van den Dries,
Department of Mathematics,
University of Illinois at Urbana-Champaign,
273 Altgeld Hall,
Urbana,
IL 61801,
U.S.A.

(Received August 25, 1987; in revised form May 30, 1988)