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RÉSUMÉ 

Une police d'assurance reçoit une prime initiale et elle paiera les réclamations fu­

tures probables. En conséquence, l'assureur ne connaît pas tous les coûts futurs, 

ainsi que le calendrier des paiements. Par conséquent, l'un des plus gros passifs de 

l'assureur est mettre un capital de côté afin de couvrir tous ces paiements futurs. 

Parmi toutes les méthodes de réservation existantes en assurance générale, nous 

considérons deux modèles dans ce travail: le modèle stochastique de la Chain­

Ladder (ou le modèle de Mack Chain-Ladder) et le modèle linéaire généralisé (ou 

GLM) pour les réserves. La première est la technique la plus utilisée pour cal­

culer la réserve actuarielle et l'autre s'applique à un large groupe de sinistres qui 

appartenant à la famille exponentielle. L'existence d'un outlier (ou des valeurs 

aberrantes) dans l'ensemble de données créera une réserve sous-estimée ou sures­

timée pour les deux méthodes. Cette erreur de prédiction peut être grande et il 

est essentiel de modifier ces méthodes de manière à ce qu'elles deviennent moins 

sensibles et plus précises, même en présence de valeurs aberrantes. Dans cette 

étude, nous présentons le cadre général pour des statistiques robustes, ainsi que 

nous expliquons les approches basiques dans la réserve de perte telles que le mod­

èle stochastique de la chaîne et le GLM pour les réserves. Ensuite, nous étudions 

des versions robustes de ces modèles avant de passer par un exemple basé sur un 

ensemble de données réelles. 

Mots-clés: Statistiques robustes, provisionnement des sinistres, assurance générale, 

modèle Mack Chain-Ladder, modèle linéaire généralisé (GLM). 





ABSTRACT 

Insurance companies receive an upfront premium and will pay future probable 
claims. As a result, the insurer knows neither the future costs nor the payment 
schedule. One of the largest liabilities of the insurer is therefore to put capital 
aside in order to cover ali these future payments. 

Among ali existing reserving methods in general insurance, we consider two models 
in this work: the stochastic Chain-Ladder model (or Mack Chain-Ladder model) 
and the generalized linear model (or GLM) for reserves. The former is the most 
widely used technique to calculate the actuarial reserve and the latter is applicable 
for a wide range of claims which belong to the exponential family. The existence 
of an outliers in the dataset will result in an underestimated or overestimated 
reserve for both methods. This prediction error may be large and it is essential to 
modify these methods in a way that they become less sensitive and more accurate, 
even in presence of outliers. 

In this study, we introduce the general framework for robust statistics, as weil 
as explain basic approaches in loss reserving such as the stochastic Chain-Ladder 
modcl and the GLM for reserves. We then study robust versions of these models 
before going through an example based on a real data set. 
Keywords: Robust statistics, loss reserving, general insurance, Mack Chain-Ladder 
model, Generalized linear model(GLM). 





INTRODUCTION 

The evaluation of future profit or loss becomes more and more important every 

day. The market is so competitive and only insurance companies with an accurate 

plan can survive. At each moment, an insurance company needs to put aside a 

sufficient capital amount in order to be able to pay ali future liabilities generated 

by the contracts that have been sold to the clients. This capital forms the reserve 

(or provision) of the non-life company. Periodically, insurance regulators require 

an evaluation on this reserve in order to control the financial solvency of the 

company and to protect policyholders. 

For a very long time, aU calculations for evaluating loss reserve in insurance com­

panies were done using simple deterministic algorithms. But since the early 1990s, 

actuaries have started to propose more sophisticated stochastic methods to man­

age the solvency of the company. 

Two of the most important methods for estimating the outstanding reserves are 

the stochastic Chain-Ladder model (or Mack's model) and the generalized linear 

model (or GLM) for reserves. The ultimate goal of these methods is to accurately 

predict the amount of reserve but, as we will see, both methods are highly de­

pendent on the data. In fact, the stochastic Chain-Ladder model uses the daims 

history in order to predict future developments and the GLM for reserves uses 

daims history in order to estimate unknown parameters. Both approaches can 

quickly become inaccurate in case of existence of outliers. 

An outlier is a sample value that is significantly different when compared with the 

majority of the sample. It is not necessarily a wrong value, but it should always 
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be checked for a transcription error. The existence of an outlier could have a large 

effect on the estimation procedure as well as on the total reserve amount. It could 

cause reserve underestimation or overestimation and problems in the solvency on 

the insurance company. This is a well-known issue in several areas and many 

robust statistical methods have been developed to be less sensitive to the outliers 

(see Wüthrich et Merz (2008)). 

Since 1953, when Box fust gave the word "robust" its statistical meaning, this 

field has evolved considerably, although the concept already existed for several 

decades (see Stigler (1972) for more details). 

Several persons consider that the fundamental work in robust statistics was done 

in the 1960s, and the early 1970s by Thkey (1960, 1962), Huber (1964, 1967) 

and Frank Hampel (1971a, 1974). One of the possible reasons for this significant 

development was the accessibility of modern and fast computers. From the early 

1980s, robust statistics have experienced considerable growth and many of the 

most influential books in this field, such as Huber (1981), Hampel et al. (1986a), 

Rousseeuw et Leroy (1986) and Staudte et Sheather (1990), were written during 

this period. Several researches have appeared in recent years on applying robust 

analysis to loss modeling and to reserve evaluation. For example, see Gather 

et Schultze (1999), Wüthrich et Merz (2008) , Cantoni et Ronchetti (1999) and 

Verdonck et al. (2009). 

Based on Maronna et al. (2006) and Hampel et al. (1986b), we introduce "robust 

statistics" and all related concepts such as M-estimator in the fust chapter. In 

the second chapter, we present two of the most important reserving methods in 

non-life insurance: the stochastic Chain-Ladder model (based on Wüthrich et 

Merz (2008)) the family of generalized linear models (GLM) for reserves. In this 

chapter, we also study how sensitive are these methods to outliers. As a solution 

of high dependency of reserve to outlier data, we introduce a "robustified" version 
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of both models in Chapter 3. The robust stochastic Chain-Ladder model is based 

on Verdonck et al. (2009) and Verdonck et Debruyne (2011), while the robust 

GLM is based on Cantoni et Ronchetti (1999). Finally, we go through a real 

study case in the Chapter 4. 





CHAPTERI 

ROBUST STATISTICS 

In this chapter we introduce robust statistics and we present sorne measures of 

robustness such as the empirical influence function, the influence function and the 

breakdown point. 

Robust means model's, test's or system's ability to perform effectively and without 

failure while its assumptions or variables altered or violated. For statistics, a 

robust model can still provides insight to a problem despite having its assumptions 

altered. It is expected the robust statistics gives more reliable results than classic 

statistics. 

1.1 Introduction and Motivation 

Statistics play an important role in reducing and organizing information provided 

in a dataset. For instance, the sample mean summarizes the "central tendency" 

of a sample to a single value. Robust statistics go beyond that by offering good 

performance even if sorne standard assumptions such as normality, linearity or 

independence are not thoroughly verified. For example, robust methods will re­

main valid for samples drawn from a wide range of probability distributions and 

in particular from a non-normal distribution. 

Outliers can occur in a purely random manner in any distribution, but they should 
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always be checked for transcription errors, measurement errors, etc. They can 

ruin standard statistical methods because in the presence of outliers, most of 

the statistics often used in practice become useless and traditional estimators, 

such as maximum likelihood estimators or moment-based estimators, have poor 

performance (see Maronna et al. (2006)). Thankfully, many robust statistical 

methods have been developed to be less sensitive to the outliers. 

Let x= {x1,x2, ... ,xn} be a set of observed values. The sample mean x and the 

sample standard deviation s are defined by 

The sample mean is just the arithmetic average of the data and, as such one might 

expect that, it provides a good estimate of the "center" or "location" of the data. 

Likewise, one might expect that the sample standard deviation would provide a 

good estimate of the "dispersion" of the data. N ow we shall investigate how mu ch 

influence a single outlier can have on these estimates often used in practice. 

Example 1.1. We considera portfolio with 24 payments in thousands of dollars, 

in ascending order: 

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 

3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50 

3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95. 

The maximum sample value, 28.95, is meaningfully laryer than the remaining 

23 observations in the sample and the difference with its previous value {5.28) is 

very larye. This makes us think that it could be an outlier probably caused by a 
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misplaced decimal point. The original value could have been 2.895. 

We calculate the sample mean and the standard deviation which are x = 4.28 and 

s = 5.3. As we can see in the sample, there are only two observations above the 

mean which is an evidence for us to realize that the mean is not between the bulk 

of the data and it is not a good estimation of the central tendency of the data. 

After deleting the suspected outlier and re-calculating the sample mean and the 

standard deviation, we obtain x= 3.21 and s = 0.69. The new mean is between 

the eleventh and the twelfth number, which is a more reasonable estimate of the 

center of the data. Also, the standard deviation is over seven times smaller than 

it was in the presence of an outlier. 

To complete this introductory example, we are interested in the effect of any out­

lier on these two statistics. We assume that the value of the outlier is replaced by 

a random variable X which can take any values between -oo and +oo. Conse­

quently, the resulting sample mean will take values between -oo to +oo. Thus, 

we can say that a single outlier has an unbounded effect on the sample mean. 

Similarly, the standard deviation will take a positive value up to +oo and we can 

conclude that a single outlier has an unbounded effect on the standard deviation. 

The above example shows that deleting outliers is a simple way to handle the 

problem but it may cause sorne problems: 

• deletion is a subjective decision because the analyst has to decide when an 

observation is outlier enough to be removed from the sample; 

• by removing sorne "extreme" points in the sample, there is a risk of under­

estimating (or overestimating) location and/ or dispersion; and 
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• eliminating sorne points from the sample may affect sorne properties of statis­

tics ( unbiasness, etc.). 

As shown in the previous example, the sample mean and the standard deviation 

are not the best statistics, since they are highly infiuenced by outlirs. Fortunately, 

there are other options for estimating the central tendency and the dispersion of 

the data, for instance the median and the median absolute deviation. We rank 

the elements of a random sample (xl! x 2 , •.. , Xn) in ascending order 

and the sample median is defined by 

. {X(m), med1an x = 
( ) X(m) + X(m+l) 

2 ' 

ifn = 2m -1 

if n = 2m. 

In the introductory example, the sample median for the original sample is 3.37, 

while the sample median without the outlier is 3.37. Moreover, when the largest 

value in the sample (28.95) is replaced by a random value in ( -oo, +oo) , the 

sample median does not change. As the median is not infiuenced by the presence 

of an outlier, we conclude it is a robust alternative to the sample mean. We 

say that the median is resistant to outliers whereas the mean is not. In fact, 

the median can tolerate a proportion of outliers up to 50 % before it becomes 

arbitrarily large and useless. Formally, we could say that its breakdoum point is 

50 % whereas the breakdown point for the mean is 0 %. 

A robust alternative to the standard deviation is the median absolute deviation 
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about the median (MAD) which is defined by 

MAD(x) = MAD(x1, X2, ••• , Xn) 

= Median{lx- Median(x)l}. 

In order to compare the median absolute deviation about the median to standard 

deviation, we define a "normalized" version of the MAD (MADN) as 

MADN ( ) = MAD (x) 
x 0.6745 , 

where 0.6745 is the median absolute deviation about the median of a standard 

normal random variable. Indeed, we have 

1 
Pr[IZI ~y]= 2, 

where y is the unknown value and Z ""'Normal(O, 1). Therefore we have 

Since <1> (-y) = 1- <1> (y), we have 

y= <P-l (~) = 0.6745. 

In the Example 1.1, the normalized version of the MAD is 0.53 for the complete 

sample and it decreases to 0.5 after deleting the outlier (28.95). It pointed out 

that the (normalized version of the) median absolute deviation about the median 

is not influenced very much by the presence of an outlier and provides a robust 

alternative to the standard deviation. For the Example 1.1, we present the full 

results in Table 1.1. 

1.2 Measuring Robustness 

The basic tools to describe and measure robustness are the empirical influence 

function, the influence function and the breakdown point which are defined in 
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Table 1.1 Statistics in presence and absence of an outlier for Example 1.1 

statistics x s Median (x) MADN (x) 

in presence of outlier 4.28 5.30 3.37 0.53 

in absence of outlier 3.20 0.68 3.37 0.50 

subsections 1.2.1, 1.2.2 and 1.2.3. These approaches are part of the field called 

quantitative robustness in the literature (see Hampe! et al. (1986a) and Maronna 

et al. (2006)) because they really allow to measure the robustness of a statistic. 

Conversely, we introduce in subsection 1.2.4 a different way to describe the ro­

bustness of a statistic called qualitative robustness. In the following chapters of 

this document, we mainly focus on the empirical influence function and the in­

fluence function in order to measure the robustness of our estimators. Finally, 

mathematical definitions are gathered in Appendix A. 

1.2.1 Empirical Influence F\mction 

The empirical influence function is a measure of how a statistic is related to (or 

depends) a single point of the sample. This measure does not depend on the model 

since it simply relies on re-calculating the estimator with a different sample. 

In order to formalize the concept, we need1 a probability space {0, A, JP>} and 

two measure spaces {x,~} and {r, S}. We considera vector of independent and 

identically distributed (iid) random variables Xll ... , Xn, nE N, where 

xi :{n,A}--+ {x,~}. 

A sample from these random variables is denoted by x= {x1, ... , xn}· Finally, 

1 See Appendix A for the definitions of n, A, etc. 
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we define a statistic 

For the ith observation in the sample, the empirical influence function (EIF) of 

the statistic Tn is given by 

EIFi : X --t lR 

X 1---t n (Tn(Xi, ... ,Xi-i! x, Xi+l 1 ••• , Xn)- Tn(x)). (1.2.1) 

The empirical influence function measures the amount of change in the statistic 

if we replace the ith observation by an arbitrary value x. 

Example 1.2. We want to study the effect of a change of one of the observations 

in the sample of the Example 1.1 on both the sample mean and the sample median 

by using the empirical influence fu.nction {note that 28.95 is present in the sample}. 

As a first step, we have randomly selected the observation x19 and changed it from 

3. 7 to 6. 78. The new sample mean is x = 4.40 and for the sample median, the 

new value is 3.38. The value of the empirical influence fu.nction for the sample 

sample mean is 

E/F1g(6.78) = 24(T24(xl! ... ,xls,6.78,x2o, ... ,x24)- T24(x)) 

= 24( 4.40 - 4.28) 

= 2.88 

and for the sample median is 

E/Flg(6.78) = 24 (T24(x1, ... , X1s, 6.78, x2o, ... , x24)- T24(x)) 

= 24(3.38 - 3.38) 

=0. 
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This last value shows that the sample median is not affected when we replace the 

observation x 19 by a different value. 

As a second step, we evaluate the empirical influence function for an arbitrory 

value x and we create the plot presented in the Figure 1.1. This groph shows that 

the EIF for the sample mean is unbounded, that is to say the impact of an outlier 

on this statistic can be huge. 

EFfor __ _ 

10 15 20 

Figure 1.1 Empirical influence function for the sample mean (red line) and the 

sample median (blue line) 

1.2.2 Influence Function 

The influence function (/ F) is a measure of the dependence between an estimator 

and the model's distribution. It does not just rely on the sample data; instead, 

it considera the effect of a slight change of the distribution on an estimator. In 

arder to define the influence function in mathematical format we need to define 

sorne concepts. 
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Functionals 

Let F8 be the parametric cumulative distribution function (edf) and fs be the 

corresponding probability density function (pdf). We need to find an estimator 

for the parameter (} based on a dataset. For a random sample (X11 •.• , Xn), we 

define the empirical distribution function 

where l(A) is the indicator function of the event A. One should note that the 

empirical distribution function does not take in to account the order of the obser­

vations. 

An estimator of (} is 

It means that (1) Ô can be seen as the sequence of statistics {Tn; n ~ 1}, one for 

each sample size n, and (2) Ô does not depend on the order of the observations. 

Estimators are functionals or can be replaced by functionals. It means it exists a 

functional T: Or~ lR, where Or stands for the domain of T, such that 

(1.2.2) 

in probability when the observation are independent and identically distributed 

according to the distribution G in Or. 

Moreover, we assume that the functional T is Fisher consistent, that is to say 

that at the true model F, the sequence {Tn; n ~ 1} measures asymptotically the 

correct quantity. 

(1.2.3) 

where 9 is the parameter space of dimension p E .N. 
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Gâteaux-derivative 

The influence function is the limit of the Gâteaux derivative with respect to a 

smooth deviation, as the deviation approaches a point mass. The Gâteaux deriva­

tive limit provides a way to calculate the solution to the functional equation, where 

the influence function appears as the limit of the Gâteaux derivative. In this way 

the Gâteaux derivative limit provides a way to circumvent the need to try to guess 

the solution of the functional equation. 

We say that the functional T( G) is Gâteaux-differentiable at the distribution F 

in nT if it exists a real function a such that 

lim (T((1- t)F +tG)- T(F)) = J a( x) dG(x), 
t--+0 t (1.2.4) 

The Gâteaux-derivative generalizes the directional derivative. In particular, if we 

choose G =~x' the empirical distribution which gives mass 1 tox, we obtain 

~~ (T((1- t)F +/~x)- T(F)) _ J a(y) d~x(Y) 

- a(x). (1.2.5) 

Here T( G) is the asymptotic value of the estimator sequence {Tn; n ~ 1} as 

mentioned above. 

Back to the influence function 

Remind that we aim at evaluating what will happen when the data do not follow 

the model F exactly but they follow a different distribution G. To do that, we 

want to evaluate the one-sided directional derivative of T at F, in the direction 

of G- F, i.e. 

lim (T((1- t)F +tG)- T(F)). 
t--+0 t (1.2.6) 

This last expression is true for all distribution GE nT. In particular, if we want 

to evaluate the contamination effect of a point x on the estimator, we may assume 



that G =~x· Then, the influence function is defined by 

IF(x;T,F) = lim (T((l- t)F+t~x)- T(F)). 
t--+0 t 

If in Equation (1.2.5) we put G = F, we obtain 

~~ (T((l- t)F ~tF)- T(F)) = J a(y) dF(y). 

By putting together Equation (1.2.5) and Equation (1.2.8), we obtain 

J 1 F(y; T, F) dF(y) = O. 
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(1.2.7) 

{1.2.8) 

In order to clarify the concept of influence function and the notation introduced 

before, we consider the influence function of the arithmetic mean. Let the sample 

space be x= 1R and the parameter space be(}= 1R. We assume that the model's 

distribution is the standard Normal with probability density function 

xE 1R, 

the true value of the parameter is 00 = 0 and thus F90 =<P. The arithmetic mean 

is 

and the corresponding functional for all probability measures with existing first 

moment is 

T(G) = J udG(u). 

From Equations (1.2.3), we conclude that T is Fisher consistent 

T(FtJ) = j udFa(u) 

= J u(2n)-(1/2) exp-(1/2)u2 du 

=0. 
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0 is the value of the parameter e. 
By using Equation (1.2.8), it follows that 

IF(x·T F) = (lim Jud[(1-t)~+t~x](u)- Jud~(u)) 
' ' t-tO t 

= lim ((1- t) J ud~(u) + t J ud~x(u)- J ud~(u)) 
t-tO t 

= lim (0 + tx - 0) (1.2.9) 
t-tO t 

because J ud~(u) =O. Therefore 

IF(x;T,F) =x. (1.2.10) 

Moreover, we assume that the asymptotic normality assumption is verified (see 

Hampel et al. (1986a)) 

fa(Tn-:n(G)) weakly N(O,V(T,G)), 
n n-too 

(1.2.11) 

where V(T, G) is the asymptotic variance given by 

V(T,F) = J IF(x;T,F) 2 dF(x). 

we will define IF(x;T,F) in equation (1.2.7). 

Example 1.3. Suppose that the theoretical distribution of the data in Example 1.1 

is the standard Normal. We want to evaluate the influencefunction of2 estimators 

for the location parameter J.L: the empirical mean x and the median median(x). 

Obviously the empirical distribution is different since mean and variance are not 

0 and 1 respectively. In order to calculate the influence function for the functional 

Tn(G) = x, we use Equation (1.2.10) which is the arithmetic mean's influence 

function for the standard Normal distribution. For the median, we have 

T.(G) = argmin (~lx, -1'1). 
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It is easy to show that [1. = median(x) = 3.38 in our example. 

In Subsection 1.3, we show that the influence function of the median in this model 

is proportional to sign (xi - [1.). In this example, 

sign(xi- median(x)) = sign(xi- 3.38). 

The Figure 1.2 illustrates both influence functions for some values of x. As it 

has been illustrated in the figure, the influence function for the mean seems to be 

unbounded and the influence function for median is bounded. 

EFfor __ _ 

Figure 1.2 Influence Function for the arithmetic mean (red line) and the median 

(blue line) 

1.2.3 Breakdown Point 

The influence function, which describes the infinitesimal stability of an estimator, 

is a very useful tool for measuring the robustness but it has one major limitation: 

it is a local concept. Thus, it must be complemented by at least one more global 
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measure to assess the reliability of an estimator. This measure must show up 

to what "distance" from the madel distribution the estimator still gives sorne 

relevant information. The breakdown point of an estimator is the proportion of 

incorrect observations an estimator can handle before giving an incorrect result. 

The contamination should not be able to drive the estimator Ô to infinity, or to 

the boundary of the parameter space 9 when it is not empty, in order for the 

estimator Ô to give sorne information about 0. 

The breakdown point e* of the sequence of estimators {Tn; n ~ 1} at the distri­

bution Fis defined below. The evaluation of parameter is 8 00 as x goes to oo (x 

is a sample observation). 

Definition 1.1. The asymptotic contamination breakdown point of the estimator 

Ô at the distribution F, denoted by e*(Ô, F), is the laryest e* E [0, 1) such that for 

e* < ê, Ô00((1-e)F+eG) as afunction ofG remains bounded, and also bounded 

away from the boundary of e. 

We interpret the above definition in the following way: there exists a bounded 

and closed set K c 9 such that K n De = 0 ( where De denotes the boundary of 

the parameter space e) and 

Ôoo((1- e)F + eG) E K, 'Ve < e* and 'VG. (1.2.12) 

As we illustrate in Example 1.1, changing (or removing) one observation in the 

sample has a large impact on the estimated value of th~ mean. If we replace the 

larger value in the sample by an arbitrary large value, we obtain an arbitrary large 

value for the empirical mean. Therefore, we conclude that the breakdown point 

for the sample mean isO. Conversely, the sample median showed sorne resistance 

to the modification of an observation. We conclude its breakdown point is larger 

that O. Actually, it is possible to show that the breakdown point of the sample 
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median in this example is 50 %, which means it will be resistant up to 50 % of 

contamination in the sample (see Maronna et al. (2006)). 

The breakdown point is the smallest fraction of gross errors which can carry 

the statistic over all bounds. Somewhat more precisely, it is the distance from 

the model distribution beyond which the statistic becomes totally unreliable and 

uninformative. Finally, it measures directly the global reliability of a statistic. 

1.2.4 Qualitative Robustness 

We turn next to the definition of a global measure of the robustness of a statistic. 

This is, in sorne sense, a qualitative measure of the robustness of an estima tor. 

By qualitative, we mean a dichotomous measure (yes or no) of the robustness 

as opposed to a quantitative measure that evaluates the level of robustness of a 

statistic. 

In order to define the concept of qualitative robustness, we remind the well-known 

definition of the continuity of a real-valued function. 

Definition 1.2. Let 1 be an interoal in R and f : 1 --t R be a fu.nction. f is a 

continuous function at o: E 1, if\/€ > 0 there exists ~ > 0 such that \lx E 1, we 

have 

lx- o:l < ~ => IJ(x)- f(o:)l < f. 

Now, we generalize this definition to the case where we have a mapping between 

two metric space. 

Definition 1.3. Let (E, d) and (F, h) be 2 metric spaces and define the mapping 

f : E --t F. This mapping is continuous at o: E E if, 'Vf > 0 there exists ~ > 0 

such that \lx E E, we have 

d(x, a) < ~ => h(f(x), f(o:)) < f. 

--------------------- ------------
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This continuity makes it possible to evaluate the qualitative robustness of a statis­

tic. The original definition of this measure was given by Hampel (1971b). 

Definition 1.4. We considera space (O,A), P(O) the set of all probability mea­

sures which can be de fine on this space and a statistic Tn. For two distributions 

JP,Q E P(O), Tn is qualitatively robust at lP if'Vf > 0, there is d > 0 such that 

when n -t oo. Cr(Tn) is the cumulative distribution function of the statistics 

Tn calculated from a sample of size n of a random variable with distribution lP. 

Finally, 1r is an appropriate measure of the distance between two distributions. 

C! - p C! .,. ... 
- Q 

ao ao 
ci ci 

ao ao 
ci ci 

~ ~ 
"1: "1: 
0 0 

N N 
ci ci 

C! 0 
0 ci 

-4 -2 0 2 4 -4 -2 0 2 4 

x x 

Figure 1.3 Qualitative Robustness 

In Figure 1.3, we show on the left-hand side graph two theoretical cumulative 

distribution functions (for two random variables P and Q) which are close. On 
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the right-hand side, we illustrate the empirical cumulative distribution function 

of the statistic Tn based on both, the distribution Fp and Fq. Since the statistic 

Tn is robust, these two distributions are very close too. 

This approach has many practical limitations, mainly because of its dichotomy. 

Thus, we need a more detailed measure which can be used in practice. In the 

following sections we will introduce a "quantitative" definition of robustness. 

1.3 M-Estimators 

M-estimators are a very general class of estimators obtained by evaluating the 

minimum of sums of functions of data. By Maronna et al. (2006), as special cases 

of M-estimators we can point out 

• !east-square estimators (LSE) which are defined as the minimum of the sum 

of squared residuals; 

• maximum likelihood estimators (MLE) which are obtained by finding the 

maximum of the likelihood function with respect to a (vector-valued) pa­

rameter 8 on the parameter space 9. 

To illustrate the concept, we consider a random sample of size n from a parametric 

distribution f8 and a maximum likelihood estimator Tn = Tn(X11 X2 , .•• , Xn) 

which belongs to the class of M-estimator. The MLE is obtained by maximizing 

the likelihood function 
n 

(j = Tn = arg max II hn (Xi), 
TnE9 i=l 

or, equivalently, by minimizing the negative log-likelihood function 

n 

(j = Tn = argmin L -ln(/Tn(Xi)). 
TnE9 i=l 
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The idea behind an M-estimator is to generalize this last expression to 
n 

Ô= Tn = argmin L p (Xi, Tn), 
Tnee i=l 

where p is a function. 

To formalize the concept, we consider, as in Subsection 1.2.1, two measure spaces 

{x, l:} and {9 E JRd, S} where dis a positive integer and 0 E 9 is a vector of 

unknown parameters. An M-estimator T is defined through a measurable function 

P : x x e --+ JR. 

which maps a probability distribution F to the value T(F) E 9 that minimizes 

1 p(x, 0) dF(x). 

We assume that the function p has a derivative toP (x, 0) = 1/J (x, 0). Thus, an 

M-estimator can also be defined as the solution of 

(1.3.1) 
i=l 

or, equivalently, as the solution of 

l'I/J(y, T(G)) dG(y) =O. (1.3.2) 

Now, we are interested in finding a general expression for the influence function 

of an M-estimator. Let G = (1 - t)F + ttl.x in Equation (1.3.2) 

f 1/J (y, T((1- t)F + ttl.x)) d ((1- t)F + ttl.x) (y) = 0 

=> (1- t) f 1/J (y, T((1- t)F + ttl.x)) dF(y) 

+tf 1/J (y, T((1- t)F + ttl.x)) dtl.x(Y) = 0 

=> (1- t) f 1/J (y, T((1- t)F + ttl.x)) dF(y) 

+ t,P (x, T((1- t)F + ttl.x)) =O. (1.3.3) 
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Now we take the derivative of Equation (1.3.3) with respect to t and we should 

remember that T is a function of t. Therefore. 

! (/ (1- t),P(y, T((1- t)F + t~z)) dF(y) + t,P(x, T((1- t)F + t~z))) = 0 

=>-J '1/J(y, T((1- t)F + t~z)) dF(y) 

(1 _ )/ (&rp(y,T((1-t)F+t~x))) (âT((1-t)F+t~z)) dF() 
+ t âT((1- t)F + t~z) EJt Y 

+ '1/J(x, T((1- t)F + t~x) 

(
ô,P(x, T((1- t)F + t~x))) (âT((1- t)F + t~x)) = O 

+ t âT((1- t)F + t~x) EJt 

=> J '1/J(y, T((1- t)F + t~x))d(~x- F)(y) 

(1 _ t) J (&rp(y, T((1- t)F + t~x))) (âT((1- t)F + t~x)) dF( ) 
+ âT((1- t)F + t~x) 8t Y 

(
ô,P(x, T((1- t)F + t~x))) (âT((1- t)F + t~x)) = O (13 4) 

+ t âT((1- t)F + t~x) EJt •• 

Now, we calculate the limit of Equation (1.3.4) when t --t 0 

!~ (/ '1/J(y, T((1- t)F + t~x) d(~x- F)(y) 

(1 _ ) J (&rp(y, T((1- t)F + t~x))) (âT((1- t)F + t~x)) dF( ) 
+ t âT((1- t)F + t~x) EJt Y 

(
ô,P(x, T((1- t)F + t~x))) (âT((1- t)F + t~x))) 

+ âT((1- t)F + t~x) 8t 

=-J '1/J(y,T(F)) dF(y) 

+ '1/J(x, T(F)) ( âT((
1

- ~F + t~x)) lt=O dF(y) + 0 = 0, (1.3.5) 

where we assume that the order of derivative and integration can be switched. 

Making use of Equation (1.2.8) and Equation (1.3.2), we obtain 

'1/J(x, T(F)) + (ô,P(y, T{{1- t)F + t~x))) 1 dF(y) 
âT{{1- t)F + t~x) T({l-t)F+tAz)=T(F) 

x IF(x;T,F) =O. 
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Therefore, the influence function for a M-estimator is 

IF(x;T,F) = '1/J(x,T(F)) . 

(
81/l(y,T((l-t)F+ta.,))) 1 dF( ) 

-8T((l-t)F+ta.,) T((l-t)F+ta.,)=T(F) y 

(1.3.6) 

For a maximum likelihood estimator, the '1/J function is given by 

d 
'1/J(x, T) =-dT ln Ur( x)) 

and let T be the maximum likelihood estimator. Then, the influence function can 

be written as 

IF( ·TF-)= (-~ln(fr(x)))lr-T 
x, ' T {- J ~ln Ur(y))) lr=T(F:f) dFT(y) 

{-1r ln Ur( x))) lr=T 
(1.3.7) 

To conclude this chapter, we look at sorne special cases of influence function for 

maximum likelihood estimators. 

Example 1.4. We assume a location normal model 

F(x- J.L) = ~(x- J.L) 

where the likelihood fu.nction is 

n 1 
L = II- exp -0.5(xi - J.L)2 

i=l ...j2i 

and the log-likelihood fu.nction is 

n 

l = L)n ( .J2i) - 0.5(xi- J.L) 2
• 

i=l 

The derivative of the log-likelihood fu.nction with respect to the pammeter is 

al n 

- = L(xi- J.L), 
aJ.L i=l 
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then we put the derivative equal to zero to find the estimator 

n 

L (xi- JL) = 0 
i=l 

Let 1/J(x) =x and the influence function is 

x x 
1 F(x; x, Fx) = f y2 dFx(Y) = l =x, 

sin ce 

J y2 dFx(Y) = J y2 fx dy= Var(Y]- E[Y]2 = 1- 0 = 1. 

Example 1.5. We assume a location logistic model 

1 
F(x- JL) = 1 +exp{ -(x- JL)} 

where the density function is 

dF(x- JL) exp{ -(x- JL)} 
f(x- JL) = d(x- JL) = (1 +exp{ -(x- JL)} )2 • 

The likelihood function is 

L- IJn exp{ -(xi- JL)} 
- i=l (1 +exp{ -(xi - JL)} )2 

and the log-likelihood function is 

n 

l = L -(xi - JL) - 2ln(1 + exp-(zi-1')). 
i=l 

The derivative of the log-likelihood function with respect to parameter ( JL) is 
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then we put the derivative equal to zero to find the estimator 

2 exp 1-0 n ( -(z;-J~) ) 
~ (1 + exp-(z;-J~)) - -

n 

=* L2F(xi- JL) -1 = 0, 
i=l 

where there is no explicit solution for jL. Let '1/J(x) = 2F(x) - 1 and the influence 

function is 

I F(x; x, F~) ex 1/J(x). 

Example 1.6. We assume a location Laplace model where the probability density 

functin is 

f(x- JL) = 0.5 exp{ -lx- JLI}. 

The likelihood function is 

n 

L =II 0.5exp{ -lxi- JLI} 
i=l 

and the log-likelihood function is 

n 

l = L -ln(2) -lxi- JLI 
i=l 

jL = argmin (t lxi- JLI) 
l=l 

and 

jL = median( x). 

The derivative of log-likelihood function with respect to the parameter is 

az = { + 1 xi > JL 
8(x·- 11.) 1 

,.- -1 Xi< JL 

= sign(x- JL). 
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Therefore the influence fu.nction is 

(-~ln fT( x)) IT-T ex. 1/J(x) 
IF( x; x, Fmedian(x)) = f ( c~ .. lnfT(y))IT=T(Fi')r dFj(Y) 

since the integration in denominator is a constant. 





CHAPTERII 

CLASSICAL MODEL FOR RESERVE IN GENERAL INSURANCE 

2.1 Introduction and Motivation 

In Figure 2.1, we illustrate the typical development of a daim in non-life insurance. 

In many cases, it is not possible for the insurer to settle a claim immediately after 

its occurrence. The main reasons for such a delay are: 

• Reporting delay: in each type of line of business there is an acceptable 

period in which the insured can notify the insurer of the daim occurrence. 

For example, in liability insurance, reporting a claim can take years. In 

Table 2.1, we report sorne descriptive statistics about the rate of payment 

in various lines of business, while n is the accident year (see Denuit et 

Charpentier (2004)). 

• Claim verification: an insurance company may want to make ali necessary 

verifications about the accuracy and the authenticity of the claim. Obvi­

ously, it takes sorne time before the settlement to do this process. 

• Reopening of a case: in the case of gathering new information about an old 

case, it may be necessary to reopen the case and update the claim amount. 

At each moment, insurance companies need to have the sufficient capital aside in 
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Table 2.1 Rate of payment in various lines of business. 

n n+1 n+2 n+3 n+4 

Home 55% 90% 94% 95% 96% 

Car 55% 79% 84% 90% 99% 

Bodily injury 13% 38% 50% 65% 72% 

Public liability 10% 25% 35% 40% 45% 

order to be able to pay their future liabilities which are generated by the contracts 

that have been sold to the clients. This capital forms the reserve (or provision) 

of the non-life company. Periodically, insurance regulators require an evaluation 

on this reserve in order to control the financial solvency of the company and to 

protect policyholders. The core task of a reserving actuary is to calculate this 

reserve and to determine sorne characteristics of its distribution. 

On the evaluation date, daims are classified in different groups according to their 

stage of development. These groups are illustrated on Figure 2.1. When a daim 

has been reported before the evaluation date but has not been completely paid, 

we classify the daim as reported but not settled (RBNS). When the evaluation 

date is after the occurrence of the daim but before the reporting date, we classify 

the daim as incurred but not reported (IBNR). Finally, when the evaluation date 

is after the occurrence date but the daim has not started to be paid, the daim is 

reported but not (yet) paid (RBNP). Often, this last category is grouped with the 

RBNS class, as illustrated on Figure 2.1. In general insurance, it is not possible to 

have an accurate financial condition without an accurate unpaid daim evaluation. 

As noted, there are sorne elements that needed to be evaluated in order to estimate 

the total reserve amount: a provision for RBNS daims, a provision for RBNP 



,-----------------------------------------------------------------------------------------··---

31 

Occurrence Payment Closing 

ttTtion j j j j 
tl t2 t3 t4 ts t6 
~ 
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Figure 2.1 Claim development. 

daims, a provision for IBNR daims, an estimation for reopened daim, etc. 

2.2 Collective and Individual Approaches 

Existing models for loss reserving can be divided into two main groups based on 

the granularity of the database: one can construct models for reserve by using 

aggregated data, i.e., data summarized by occurrence period, by development 

period, etc., or by using very detailed database, i.e., by using individual covariates 

such as information on the daim, information on the policyholder, etc. 

2.2.1 Collective Approach 

For nearly 40 years, the lack of detailed and accurate databases has forced the 

insurance companies to develop stochastic models for aggregated inform~tion. 

Reserving actuaries summarize ali the information about daim payments and 

incurred losses in a development triangle, or run-off triangle. This structure shows 

the development of daims over time. It has an incrementai and a cumulative form. 
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In Table 2.2, there is a toy example of a run-off triangle for occurrence years 2010 

to 2012 and annual reporting periods. A run-off triangle can be read from a variety 

Table 2.2 Cumulative run-off triangle (in millions of dollars). 

Accident year 12 months 24 months 36 months 

'2010 

2011 

2012 

of perspectives: 

100 

110 

120 

150 

160 

170 

• each row represents one accident year, so in our example, the fust row 

contains daims with occurrence year 2010, the second row contains daim 

payments with occurrence in 2011 and so on; 

• each column represents age or maturity date: in the Table 2.2, the fust col­

umn contains daims payments after 12 months, the second column contains 

the cumulative daims payments after 24 months and so on; and 

• each diagonal represents one calendar year. In our example, the first diag­

onal (upper left corner of the triangle) is a portrait of the situation at the 

end of year 2010 and so on. 

More formally, a collective model is constructed for a run-off triangle with occur­

rence periods i = 1, 2, ... , 1 and development periods j = 1, 2, ... , J (without loss 



of generality we assume that J = 1 in the following) 

Cn 

Ct(J-t) Cu 

C2(1-1) 
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where Ci; represents the total cumulative amount of claims occurred in the ith 

period and paid up to period j. In order to calculate the reserve we need to 

predict the lower triangle in the above matrix 

Cu c12 cl(J-1) Cu 

c21 c22 c2(J-1) ê21 
Cat Ca2 êa(J-1) êai 

Cn ê/2 ê/(J-1) êu 

Then, the total amount of the reserve is predicted by 

1 1 

R = L êu - L Ct(I-t+l) 

t=l t=l 

There exist similar models for incrementai run-off triangles (see Hertig (1985), 

Renshaw et Verrall (1998a), England et Verrall (2002), Taylor (2000)). 

Collective models have been studied since the early 80s. An interested reader 

can consult Wüthrich et Merz (2008) for an almost complete overview. Among 

the collective models, the stochastic Chain-Ladder model (or Mack's model) has a 

special position because it produces the same reserve estimate as the Chain-Ladder 

algorithm and it does not make assumption about the underlying distribution of 

a claim amount (see Carrato et al. (1999)). Also, the mean square error of the 

predicted reserve amount can be calculated with an analytic formula. It will be 

presented in Section 2.4. 
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2.2.2 Individual Approach 

For individual (or micro-level) approaches, a detailed and accurate database is 

essential to predict the daim development and to estimate the parameters of the 

model. In recent decades, the availability of detailed information on each re­

ported daim and the development of strong computational tools allow creative 

researchers to propose individual approaches for evaluating loss reserves. Among 

these researchers Arjas (1989) and Norberg (1999) proposed an individual stochas­

tic structure within a continuons time framework. From this base, several other 

models have been developed, e.g., Arjas et Haastrup (1996}, Larsen (2007}, Zhao 

et al. (2009}, Zhao et Zhou (2010) and Antonio et Plat (2014). In a discrete time 

framework, Pigeon et al. (2013) and Pigeon et al. (2014) proposed an individual 

model based on the Chain-Ladder structure. 

This family of approaches offers a better performance when compared to collective 

models, allows for individual predictions and establishes a timejpayment schedule. 

Individual approach will not be studied in this research. 

2.3 Generalized Linear Models 

Generalized linear models (GLM) are a very popular class of approaches used 

to specify and to quantify the relation between a response variable and sorne 

covariates. Generalized linear models can model both individual and collective loss 

reserving approaches. The fust researchers who proposed loss reserving models 

based on generalized linear models were Renshaw et Verrall (1998a) and Renshaw 

et Verrall (1998b). 

Generalized linear models differ from linear models in three important points: 

• the distribution of the response variable is a member of the exponential 
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family (since the Normal distribution is a member of this family, the linear 

modelisa special case of GLM but it is no longer the only option); 

• the relation between the expected value of the response variable and the 

covariates (or independent variables) is not necessary linear: a link function 

describes the relation between those two components; and 

• the variance of the response variable is not necessarily a constant (as in 

the basic linear model) and can vary according to the expected value of the 

dependent variable. 

More details can be found in Appendix Band in McCullagh et Nelder {1989). 

The role of generalized linear models in general insurance is important because the 

Normal distribution is rarely a valid option to modelloss distributions. Moreover, 

the relation between the expected value of a claim and its characteristics is mostly 

multiplicative and hardly additive. 

Definition 2.1. Let Xii' where Xii = Cii- Ci(j-1), 2 ~ j ~ I and Xil = Cil, 

1 ~ i ~ I be incremental data. A generalized linear model for loss reserving is 

defined by 

i. incremental data Xii for different occurrence years {i1 =/= i2} and/ or different 

development years (j1 =/= h) are independent; 

ii. the probability density fu.nction of Xii is 

where (}ii is the canonical parameter, tPii is the dispersion parameter and a() 

and c() are two fu.nctions. 
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Based on Definition 2.1, we obtain 

E[Xïi] = 1-'ïi = a'(Bïi) 

Var[Xïi] = <PïiV[xïi] = <Pïia"(Bïi), 

where <Pïi > 0 and V[.] is a function called variance function. 

The model above has 1 x J unknown parameters. They need to be estimated using 

information in the run-off triangle which contains less than 1 x J observations. 

Thus, it is inevitable to add more structure (or constraints) in the model in order 

to decrease the number of unknown parameters. 

We assume a multiplicative structure such as 

where a:i stands for the accident year effect and tPi stands for the development 

period effect. Consequently, there remain 1 + J unknown parameters in the model: 

a:1, ... , a1 and tPt, ... , tPJ· 

By selecting the logarithmic link function, the model is straightforward and we 

ob tain 

To make the model identifiable, we add an additional constraint on the model: 
J 

L tPi = 1 or a:1 = 1. In the following, we choose a:1 = 1 which leads to ln (a:1) =O. 
j=l 

Then, the number of parameters to estimate is 1 + J - 1. 

ln order to write the model in the generalized linear model framework, we group 

the parameters in a vector as below 
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and we define design matrices as 

Ztj = [o 0 0 0 0 1 0 .. ·] 
zij = [o 0 1 0 0 1 0 .. ·] 

where 1 are in position i - 1 position 1 + j - 1. Hence, the linear predictor of the 

model is 

"'ii =ln (E[Xij]) =ln (JLii) = Zii/3· (2.3.1) 

Therefore the expected daim payment for cell ( i, j) is 

E[Xij] = exp{Zij/3} = exp{ln (ai)+ ln ('1/Jj)}, 

where a 1 = 1. 

All parameters can be estimated by a maximum likelihood approach which is 

available in virtually all statistical software. The estimation of {3 by maximum 

likelihood method is 

~= [Cn~ 

and therefore ~ evaluated by 

~ = exp{Zij~}. 

In order to evaluate the risk of our reserve estimates, we need to calculate the 

mean square error of prediction as defined in the Theorem 2.3.1. 

Theorem 2.3.1. The mean square error of prediction {MSEP) for the total paid 

amount Ei êi,J is 

MSEPr:., c,J (t êiJ) = L l/>ii V [Xii] 
i=l i+j>l 

+ 2: 
i+j>l,n+m>l 



38 

Proof Given 

the conditional mean square error of prediction (MSEP) for the total paid amount 

Eiêi,J, is 

MSEPE, Cul"' ( t êiJ) = E [ ( t Ô;, - t. C;J) 
2 

[V,] 

= E [( L Xij- L Xij)

2

IVI] 
i+j>l i+j>l 

=var[.~ XijiVI] + (.~ (xij- E[XijiVIl) IVI)

2 

•+J>l t+J>l 

=Var[L Xijl + (L (xij-E[XijJ))

2

, 
i+j>l i+j>l 

stoc. error est. error 

where for i + j > 1, Xij and V 1 are independent. By using the between-cell 

independence, we have 

MSEPE,ciJIVr (têiJ) = L Var[Xij] + ( L (xij- E[Xijl))

2 

i=l i+j>l i+j>l 

- ~1 >P;; V(X;;( + (~, (X;; - E(X;;[)) 

2 

We calculate the stochastic error and the estimation error separately and then we 

sum these up to obtain the ( conditional) mean square error of prediction for the 

total paid amount Ei êi,J. The difficult part is calculating the estimation error. 
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The unconditional MSEP is given by: 

MSEPE, c., ( t êa) ~ E [ MSEPE, Cu IV, ( t êu) l 
- L r~>ijv[xïjl+E[(L (xij-E[xïjl))

2

] 
i+j>I i+j>I 

Now we fust estimate the last part 

E[(L (xï;-E[Xïjl))

2

] 
i+j>I 

L E [(xii - E[Xïj]) ( Xmn - E[Xmn])] 
i+j>I,m+n>I 

{2.3.2) 

since Xii is not an unbiased estimator for E[Xïj] then {2.3.2) may have bias. The 

quadratic term in {2.3.2) will be approximated by 

Var[xïi] = Var[exp{ZïJP}] 

= exp{2ZiJ,B}var[exp{Zïi,â- ZïJ.B}] 

~ exp{2Zii,B}Var[zii,B] 

2 [A A] f = XïJZïiCov ,8, ,8 Zïi 

we have used the linearization exp{z) ~ l+z for z ~ 0, in third to fourth equality. 

The cross term in equation {2.3.2) will be approximated by 

Cov [ Xij, X mn] ~ exp{ Zij,B + Znmfi}Cov [ Zij,â + ZnmP] 

= XïJXnmZïiCov[,â,,â] z:nn 

Here we need to calculate Cov [.â, ,8] . We know Zi~> is the kth coordinate of the 
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design matrix then 

- (( L: var[xi;]-1 zi~>zi~>) ) -l 

i+j$1 k,l=1,2, ... ,I+J-1 

= H(p)-t. 

Th en 

i+j>l,n+m>l 

0 

2.3.1 The (Over-dispersed) Poisson Model for Loss Reserving 

If we choose V[JLi;] = (1)JLii (recall that JLii = E[Xi;]) and a logarithmic link 

function in the generalized linear model framework ( other choices possible for the 

link function. Here in order to respect multiplicative affect we choose logarithmic 

link), we obtain a Poisson model for loss reserving. It means that incrementai 

payments Xii are independent random variables following Poisson distributions. 

Since the constraint has no effect on the total reserve amount, we can choose 
J 

L 1/J; = 1 or a 1 = 1 and adapt the Zi; based on our choice. In the following, we 
j=l 

J 

use L 1/J; = 1 to simplify the presentation. 
j=l 

ln the Poisson model, parameters f3t, 1 ~ t ~ I +J -1 are estimated by maximum 



likelihood method as below: 

L(x; a, 1/J, /3) = II exp{ -o:i~~~(o:i'I/Jir~:•; 
i+j9 ,,. 

l(x; a, 1/J, /3) = L ( -o:i'I/Jj) +xii ln (o:i'I/Jj) -ln (xii!) 
i+j9 

l(x; a, 1/J, /3) = L -ez•;/3 + Xijzii/3 -ln (xii!) 
i+j9 

8l(x; a, 1/J, /3) - " ( 0 0 - z,;13)z .. - 0 1 1 J 1 8{3 - L.-! x,, e ,,t - ' t = ' ... ' + + ' 
t i+i9 
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(2.3.3) 

where zijt is the tth element in the matrix zij and, as we saw in the previous 

section, ln (o:i'I/Ji) = Zii/3· The solution of the system of equations given by (2.3.3) 

gives us estimated values for parameters {3. 

Here we calculate the MSEP for the total paid amount Li ciJ with a Poisson 

distribution. By Theorem 2.3.1, the MSEP for a member of the exponential 

family is 

i+j>l,n+m>l 

For a Poisson random variable, we have 4>ii = 1 and V(Xii) = 4>iiV(xii) -

V (Jl.ii) = Jl.ii. Th en 

H(~)-1 = ( ( L Var [xii J -
1 zi~> z8>) ) -

1 

i+o<I J_ k,l=1,2, .. o,l+J-1 

= ( ( L J.t.i/ z1;> zi~>) ) -

1 

i+o<I J_ k,l=1,2, .. o,l+J-1 

Therefore 

MSEPE, ciJ (t êiJ) = L Jl.ij + L XijXnmZijH(~)-1 
z:nn· 

i=1 i+j>l i+j>l,n+m>l 
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Poisson model has its limitations. In fact, it rarely happens that the expected 

value and the variance of an incrementai payment in a cell ( i, j) have the same 

value as assumed in the Poisson model. When the observed variance is higher than 

the observed expected value of the model, over-dispersion occurs. In other words, 

Var[liil > E[liil since we know that in the Poisson model, the theoretical variance 

is assumed to be equal to theoretical expected value. Over-dispersion is one of 

the most common issues in a dataset and it causes failure of the mean-variance 

relation. 

Suppose Yt, }2, ... , Yn are independently and identically distributed random vari­

ables following a Poisson distribution with expected value fJ, which is estimated 

by Y = E li/n. Based on the theoretical distribution, we have E[li] = fJ 

and Var[li] = fJ, while based on the empirical distribution, we may observe 

Var[li] = 4>8 = </>V(J.Li) where </> > 1. 

In the over-dispersion (or quasi-) Poisson model, parameters f3t, 1 ~ t ~ 1 + J - 1 

are estimated by maximum likelihood method. f3t is the solution of system in 

Equation (2.3.3). 

Recall that we assume a logarithmic link function: li - exp (X:f~). We can 

estimate </> by using the Pearson chi-squared statistics 

2 - ~ (li - 'fiï)2 

x - L..J v(--·) , 
i=l J.Li 

where we assume, for simplicity, that n is the total number of observations. We 

define the scaled Pearson chi-squared statistic as 

X2 
X2_ 

B- -;r· 
and x: "' X~-p where p is the number of unknown parameters. 

As we know, the expected value of X~-p is n-p and we use the approximation 
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X'f ~n-p 

A X2 
l/1= -. 

n-p 

To calculate the MSEP for the total paid amount Ei CiJ, we use again the The­

orem 2.3.1 where we use the following definitions 

Therefore, we have 

Example 2.1. The run-off triangle presented in Table 2.3 shows the cumulative 

dataset used in Taylor et Ashe {1983}. As a first step, we evaluate the total 

Table 2.3 Cumulative run-off triangle from Taylor et Ashe {1983). 

1 2 3 4 5 6 7 8 9 10 

357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 

5 443160 1136350 2128333 2897821 3402672 3873311 

6 396132 1333217 2180715 2985752 3691712 

7 440832 1288463 2419861 3483130 

8 359480 1421128 2864498 

9 376686 1363294 

10 344014 
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reserve amount obtained by using the classical Poisson model for loss reseruing. 

Predicted values for each occurrence year and each payment period are presented 

in Table 2.4. The predicted total amount for the reserve, which is the sum of 

all predicted claims, is 18 680 856$ and the mean square error of prediction is 

12 843.46. Now if we multiply the incrementa[ value x2,1 by 10 and reevaluate the 

Table 2.4 Predicted incrementai triangle obtained from the classical Poisson model 

for loss reserving. 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 856804 

3 0 0 0 0 0 0 0 0 1018834 897410 

4 0 0 0 0 0 0 0 1310258 1089616 959756 

5 0 0 0 0 0 0 605548 725788 603569 531636 

6 0 0 0 0 0 383287 424501 508792 423113 372687 

7 0 0 0 0 334148 351548 389349 466660 388076 341826 

8 0 0 0 247190 226674 238477 264121 316566 263257 231882 

9 0 0 375833 370179 339456 357132 395534 474073 394241 347255 

10 0 94634 93678 92268 84611 89016 98588 118164 98266 86555 

amount of reserve we will obtain completely different predictions. These values 

are presented in Table 2. 5. The predicted total reserve amount is now 13 064 239$ 

and the mean square error of prediction is 8 310.85. 

The significant difference between the predicted total reserve amount before and 

after introducing an outlier shows that the Poisson model for loss reseruing is not 

robust. Binee the dispersion parameter 4J does not intervene in predictions, results 

for both Poisson modeZ and over-dispersed Poisson modeZ are identical. 
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Table 2.5 Predicted incrementai triangle in presence of an outlier, completed with 

classical GLM method. 

i 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 438841 

3 0 0 0 0 0 0 0 0 778247 446899 

4 0 0 0 0 0 0 0 1082322 809160 464651 

5 0 0 0 0 0 0 516774 585569 437780 251390 

6 0 0 0 0 0 325808 353007 400001 299047 171724 

7 0 0 0 0 278776 289155 313295 355002 265405 152405 

8 0 0 0 197960 179141 185810 201322 228123 170548 97935 

9 0 0 273943 267074 241685 250683 271611 307769 230093 132128 

10 0 150805 91872 89568 81054 84071 91090 103216 77166 44312 
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2.4 Stochastic Chain-Ladder Model 

The Chain-Ladder algorithm is a distribution free, purely computational, method 

for evaluating the reserve. It gives an estimated value for the expected ultimate 

cumulative claim amount but it says nothing about how good is this estimator, 

about the variability of the reserve amount, about the complete predictive distri­

bution, etc. 

The Mack's modelisa stochastic version of the Chain-Ladder algorithm, and it 

provides more information about the variance. (see England et Verrall (2002) and 

Wright (1990)). Suppose we have the information up to time T, then we define 

which is simply the upper left triangle (run-off triangle), and 

Bk= {Cii: i + j ~ 1 + 1,1 ~ j ~ k} Ç 'DI, 

with BI ='DI (see Figure 2.2 and Figure 2.3). 

Definition 2.2. The stochastic Chain-Ladder model is based on the following 

hypotheses: 

{CL1} cumulative payments for different occurrence periods are independent, i.e., 

(Ci;);=l, ... ,I is independent of (Ci';);=l, ... ,I for i =/= i'; and 

{ CL2} we have the following structure for the conditional first moment of Ci; {know­

ing the past cil, ... ' ci(j-1)) 

j = 2, ... ,1. 

Under hypotheses (CL1-CL2}, we have 

E[Cili'DI] = E[Ci!ICi(I-i+l)] = .XI-l.XI-2 x··· x .XI-i+lCi(I-Hl), 2 ~ i ~ 1. 

(2.4.1) 
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Figure 2.2 Set Bk. 

Equation (2.4.1) provides an algorithm to predict the ultimate payment knowing 

the information up to 1. Conditional on the values of development factors (.X;), 

the best estimate for the reserve amount for occurrence period i at time 1 is 

In practice, development factors are unknown and have to be estimated. U nder 

the assumptions (CL1-CL2}, the standard estimators for development factors 

are 
"'1-j c x. = L....i=l . i(j+l) 

J "'1-J c.. ' 
L....i=l IJ 

j = 2, ... ,1 -1. (2.4.2) 

Based on hypotheses in Definition 2.2, we can prove that (see Wüthrich et Merz 

(2008) for the detailed proof) 

• given B;, X; is an unbiased estimator of À;; 



48 

Figure 2.3 Set VT. 

• :X; is an unbiased estimator of À;; 

• :X0 , ... , :X; are non-correlated estimators; 

• given Ci(I-i), êil is an unbiased estimator of E(CiiiVI] = E[CiiiCi(I-i)]; and 

• êil is an unbiased estimator of E[CiJ]. 

The advantage of the stochastic version of the Chain-Ladder model is to enable the 

evaluation of the prediction error. In order to be able to calculate this prediction 

error, we need to modify the second hypothesis in Definition 2.2 as follows 

(CL2b) cumulative claim amounts Ci;, j = 1, 2, ... form a Markov chain. More 

precisely, there exist strictly positive factors À1, ... , À1_ 1 and variance pa-



rameters u~, ... , uL1 such that for 1 ~ i ~ 1 and 2 ~ j ~ 1, 

E[CiiiCi(i-1)] = À(i-1)Ci(i-1) 

Var[CiiiCi(i-1)] = Ci(i-1)uJ_1. 

Variance parameters are estimated by 

--2 1 
1

~
1 

(Ci(i-1) ..... ) 
2 

uj = 1 - J. - 1 L..., cij C-. - .Àj ' 
i=O IJ 

j = 1, ... ,1. 
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{2.4.3) 

Under the fust hypothesis in Definition 2.2 and Equation (2.4.3), we have (see 

Buchwalder et al. (2006) and Barnett et Zehnwirth (2000)) 

• given Bi, Ûj is an unbiased estimator of ui; and 

• ûi is an unbiased estimator of ui. 

When there is not enough data (I ~ J), Û(J-1) is obtained by extrapolation: 

To measure the quality of the daim reserve estimator, we want to consider the sec­

ond moment. Hence, we need to calculate the mean square error of the prediction 

(MSEP). 

Definition 2.3. Let X be a random variable and V be a set of observations. More­

over, we assume that X is a V-measurable estimate for E[XIV]. The conditional 

mean square error of prediction for the predictor X of X is 

MSEPxl'v(X) = E[(X- X)2 1V] 

= Var[XIV] +(X- E[XIV])2
• 
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The conditional mean square error of prediction is a measure of the quality of a 

predictor for the ultimate daim. Though in many cases, calculation of prediction 

distribution is not possible and numerical methods such as bootstrap or MCMC 

can be used to simulate the predictive distribution. 

In the decomposition of the mean square error of prediction, the first term on 

the right hand side is the stochastic error which is the error of the stochastic 

model and can not be eliminated. The second term on the right hand side is the 

estimation error which shows the uncertainty in the parameters estimation and 

conditional e:xpectation. 

For the mean square error of prediction of the total paid amount for occurrence 

year i, we have 

~ ~ 2 
MSEPcuiV;(Cii) = Var[CiiiV;) +(Cil- E[CiiiV;]) . 

Therefore to calculate the mean square error of prediction, we should calculate 

both errors separately: 

Var[CiiiV;) - Var[CiiiCi(I-i)] 

= E[Var[CiiiCi(I-1)] ICi(I-i)] + Var[E[CiiiCi(I-1)] ICi(I-i)] 
I-2 

= uL1Ci(I-i) II Àm + ÀL1Var[Ci(I-1)1Ci(I-ï)]. 
m=I-i 

After the iteration of this equation, we get 

I-1 I-1 j-1 

Var[CiiiCi(I-i)] = ci(I-i) L II À!uJ II Àm 
j=l-in=j+1 m=I-i 

I-1 I-1 
= L II À!uJE[Cï;ICi(I-i)] 

j=l-in=j+l 

I-1 2/\2 
2 ~ U; Aj 

(E[CiiiCï(I-i)]) L..J E[C.·IC. . ] . 
j=I-i IJ t(I-1) 
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This is the stochastic error of prediction of the total reserve amount for one 

occurrence year in the Mack's model. 

Now we have the estimation of conditional estimation error as below: 

j=l-i j=l-i j=l-i 

This will give us an estimate for the accuracy of the factor estimate X;. This 

equation can not been calculated since ÀI-i, ••• , >..1_1 are unknown. Although 

xl-il ... , XI-1 are known. We will determine the behaviour of x around >..and 

calculate the fluctuation amount in a fixed accident year. Then, the main prob­

lem is calculating the square of the estimated factor. We follow the conditional 

approach (see Wüthrich et Merz (2008)), in which the information in hand is 

Definition 2.4. 

i. hypothesis (CL1} in Definition 2.2 is valid here; 

ii. there are constants >..; > 0 , u; > 0 and mndom variables fi(j+l) such that, 

for i E { 1, ... , /} and j E { 1, ... , I - 1}, we have 

where 81 ={Ci;: i + j::; I + l,j = 1} , E[Eiü+I>I81] = 0, E[€~ü+1>l81] = 1 and 

E[Ci(j+l) > 0181] = 1. 

This condition on 8 1 is a guarantee that the cumulative amount will be positive. 

The reason is 8 1 has the fust column has all positive daim amount and all other 
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columns are based on the first column. Then, we will have this condition on 

proceed calculations. 

we re-sample the observations which will generate the estimated development 

factors given V 1 . Then by conditioning on the V 1 , we fix the denominator on the 

)..i and the only variable will be L: Ci(j+1) in the nominator. Here we generate 

new observations ëi(j+l) as: 

and, by using these new observations, we estimate the new development factors: 

I-j-1 

L:: ëi(j+l) 
i=1 
I-j-1 

L:: cij 

i=l 

I-j-1 

- Àj + 1-j~i L:: .;c:;fi(j+l)· 

L cij i=o 

i=1 

It is necessary to know ëï(i+1) and Xi are no longer constant values. The distri-
~ 

bution of Àj given Bi is the same as )..i. 

Theorem 2.4.1. Under the conditional probability measure Pr[.IVz], we have 

2 (!"~ 
= )..j + I-j-1 

L Cij 
i=1 



Pro of: 

i. 

ii. 

- E [ÀJ + L.I-~~~ C-. Ift ,JCij<;(;+tJ] 
i=1 1) i=1 

- E[À;] + E [ 1_~~ 1 .. 

1f 1 

.jCij€i(i+l)l 
Ei=1 c,, i=1 

À;+ 0 =À;. 

1-j-1 

E (À;+ 1-i~: L .jCij€i(i+I))2 

L ci; i=1 

i=1 

1-j-1 

- E[Àn + E ( 1_i~: L::: .;c:;fi(i+1))
2 

L ci; i=1 

i=1 
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Therefore, the estimation error is 

E [ ê" - E[Cü]Vx] r ~ q,_,)E [ Oî. s, -Jï.>-' )'] 
~ c~,_,>va{!ï, À;] 

~ ql-i) ( E Lrr.s, r-E Lrr.s, n 
~ C~Hl (!ï, E [:\; r -,!ï, ~) 

1-1 2 1-1 

c~I-i) 11 2 ui 11 = )..j + 1-j-1 
j=l-i 2: cij 

j=l-i 

i=1 
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~2 

)..j 

and the mean square error of prediction, which is the sum of the process error 

and the estimation error, is: 

- ~ 
MSEP Cul1>; (cil) (2.4.4) 

1-1 

11 
j=l-i j=l-i 

where we repl~e the unknown values by Equations (2.4.2) and (2.4.3) 

- ~ (C•I)2 c~ ûJ[~J + 111-1 (ûJ[~J + 1) -1) . MSEPculV;(Cu) = . L..., -- -
·=l-i cil j=l-i cil 

For the total mean square error, we sum up mean square error of rows and we 
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take in to account the correlation between rows 

MsEP,;. c., ( t. Ôu) ~ t. M§Ep Cu IV; ( êil) 

+ 2 I: ci(I-i)êk(I-i) (fi (x~+ ~-~L ---.. ) - fi x~) . 
1~i<k9 '=l-i Ei=O c,, j=l-i 

For detailed information, see Merz et Wüthrich (2010). 

Example 2.2. We use the same database (see Taylor et Ashe (1983}} which has 

been presented in Table 2.3. As a first step, we evaluate the total reserve amount 

with the stochastic Chain-Ladder model. The full matrix (observed and predicted 

Table 2.6 Run-offtriangle (observed and predicted cumulative paid amounts) with 

the stochastic Chain-Lad der model. 

1 2 3 4 5 6 7 8 9 10 

1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 5433719 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5285148 5378826 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835458 5205637 5297906 

5 443160 1136350 2128333 2897821 3402672 3873311 4207459 4434133 4773589 4858200 

6 396132 1333217 2180715 2985752 3691712 4074999 4426546 4665023 5022155 5111171 

7 440832 1288463 2419861 3483130 4088678 4513179 4902528 5166649 5562182 5660771 

8 359480 1421128 2864498 4174756 4900545 5409337 5875997 6192562 6666635 6784799 

9 376686 1363294 2382128 3471744 4075313 4498426 4886502 5149760 5544000 5642266 

10 344014 1200818 2098228 3057984 3589620 3962307 4304132 4536015 4883270 4969825 

cumulative paid amounts) is presented in Table 2. 6. The total reserve amount is 

18 680 856$ and the mean square error of prediction is 2 441364. 

As a second step we are going to manipulate one observation and calculate the 

total reserve amount again. We multiply the X 2,1 by 10 and we reevaluate the 

total reserve amount. The new full matrix is presented in Table 2. 7. The total 

amount of the reserve is now 13 064 239$ and the mean square error of prediction 
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is 3108 085. The significant difference between amounts shows that the stochastic 

Table 2. 7 Run-off triangle in presence of an outlier with the stochastic Chain-

La.clder model. 

2 3 4 5 6 7 8 9 10 

1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 3521180 4405201 5339095 6522384 6968129 7289125 7816929 8083101 8508147 8658952 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5183258 5275130 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4786228 5053302 5142871 

5 443160 1136350 2128333 2897821 3402672 3873311 4152087 4331228 4572913 4653967 

6 396132 1333217 2180715 2985752 3691712 4017 520 4306675 4492486 4 743169 4827240 

7 440832 1288463 2419861 3483130 3999904 4352911 4666205 4867528 5139139 5230229 

8 359480 1421128 2864498 3946820 4532389 4932390 5287392 5515515 5823284 5926500 

9 376686 1363294 2141541 2950702 3388482 3687528 3952933 4123481 4353574 4430740 

10 344014 782855 1229755 1694405 1945795 2117519 2269925 2367860 2499988 2544300 

Chain-Ladder method in presence of an outlier gives not a very accurate result for 

the amount of reserve. 

2.5 Influence Function 

2.5.1 Influence Function for the Generalized Linear Model for Reserves 

In this section we consider the influence function for the parameters' estimators 

~in the GLM for reserves. The non-robust version of {3 is a maximum likelihood 

estimator which is the solution of the following equation: 

I I-i-1 ( ) 
""' ""' Xïj - Jl.ij , _ O L., L., 1-'. . -
i=1 j=1 V[P,ij] IJ 

(2.5.1) 

For more details refer to Appendix B.3. We have seen the definition of l-'ii and 

V[J.Lï;] in section 2.3 . Also, J.L~; = :pl-'ii· As illustrated in Equation (1.3.6), the 

influence function for an M-estimators is proportional to 1/J(xï;, 1-'ï;). Therefore the 

influence function is proportional to ((xii- 1-'ï;) /V[J.ti;]) J.t~; and it is unbounded: 
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large deviations of the Xïj from its mean will have a large effect of the estimator. 

This fact has been illustrated in Example 2.1 where an over-dispersion Poisson 

model has been applied to a dataset. 

2.5.2 Influence Function for the Stochastic Chain-Ladder Model 

As we mentioned before, the Mack's model is a stochastic version of the Chain­

Ladder model. In order to evaluate the behaviour of this model, we need to 

calculate its influence function. Since the stochastic Chain-Ladder model is a 

distribution free model, we need to make sorne assumptions before proceeding: 

i. incrementai amounts Xii has a multiplicative structure Xii= aï'I/Jii and 

ii. Xii are independent random variables with a distribution belonging to the 

exponential family. 

We assume a logarithmic link function and we obtain 

lfwe assume that Xii ""'Poisson(ai'l/li), then the evaluated reserve will be identical 

to the one obtained from the stochastic Chain-Ladder model. We impose the 

condition EJ=1 tPi = 1 and the ai and tPi are obtained by maximum likelihood 

method. This corresponds to a multiplicative generalized linear model with ( over­

dispersed) Poisson errors and logarithmic link function. The parameters will be 

the same as the estimated parameters by the stochastic Chain-Ladder model. 

In order to estimate parameters, the equality of this logarithmic generalized linear 

model with the marginal totals method, has been used (see Kaas et al. (2009)). 

The sum of the ith row in the run-off triangle is 
J-i+l 

RSi = L Xij, 

j=l 



which is equal to ~~=~+1 âi;f;, and sum of the fh column is 

1-i+l 

cs;= Lxi;, 
i=l 

h. h . al t ""'I-i+l ....... • Î. I h fir f h ff 1 w 1c 1s equ o L..ti=l ai 'Pi· nt e st row o t e run-o triang e, we have 

1 

RSl = L Ôt ;;;j = ât, 
i=l 

• 1 A 

smce ~i=l 1/J; = 1. In the last column, we have only one observation, so 

Afterwards, we evaluate 

and 

cs1 = c;l;pl 
....... cs1 

---t 1/JJ = ~· 
a1 
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By repeating these steps, we find estimate all parameters and we obtain the general 

form 

-.. RS1 a, = ---~-=---
1- L :Pi 

j=l-1+2 

-- csl-1+1 
1/JJ-l+l = ""'' ........ ' 

L..ti=l a, 

for l = 1, ... , /. Now, we can see these estimators as functional in order to obtain 

their influence functions. 



59 

Theorem 2.5.1. For any distribution F and {X11 , •.• , Xn} "'F, the estimators 

of the stochastic Chain-Ladder model have the following functional representation 

E [""~ -l+l X ·] L..JJ=l lJ F 
Ta1(F) = 1 , 

1- L:;=I-l+2 T,p;(F) 
\Il= 1, ... ,1 

and 

\Il= 1, ... ,1. 

while E[·]p is the expected value of a random variable following distribution F. 

Moreover, these functionals are Fisher consistent. 

Proof We show these functionals are related to the stochastic Chain-Ladder's 

estimators. Suppose { x11 , ... , xn} is a random sample with empirical distribution 

Fn. We know E[X,;]Fn = Xij and we assume empty summation is equal to zero, 

therefore 

I 

= .E E[X1;]Fn 
j=l 

I 

= ,Ex1; 
j=l 
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We assume this is valid for Ta1 (Fn), ... , Ta1_ 1 (Fn) and T,/JJ(Fn), ... , T.p
1

_
1
+2(Fn) 

where l f= I. Then, we have 

By using the same induction principle, we prove the Fisher consistency of these 



functionals. Suppose Xii""' Fa,'f/J• a parametric distribution.Then, 

I 

= """E[X1;]F. L....J o:,,P 
j=1 

I 

= L:a11/J; 
j=1 

E[X11lJ.-: 
T,pr(Fo:,,p) = T. (F. a,)., 

0:1 a,,P 

a11/J1 
-
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We assume now this is valid for T011 (Fn), ... , Ta1_ 1 (Fn) and T,pr(Fn) 1 ••• , T,p1 _1+2 (Fn) 

where l =1 1. Thus, 

= 1 
1- E;=I-1+21/J; 

""[ -1+1 1/J . 
-a L.Jj=1 J 
- ~-"'--=I=---=-1+.....,.1-.,-•. 

L..Jj=l 'f/J 
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and 

0 

We use these functionals to define the following functionals which correspond to 

the evaluation of future daims xii 

Ta,t/J;=Ta,Tt/J; Vi=l, ... , Vj=l, ... ,J 
1 

T"'I .1• = ~ Ta·t/J· Vi= 1, ... 1 J L....j=I-i+2 Cli'l'i L.J ' J 

i=1-i+2 

1 1 

TEf=2EJ=I-i+2a,t/J; = L L Ta,'t/Jr 
i=2 i=1-i+2 

Since we know that E[Xii] = o:i1/;j, then 

1 

E[~] = L O:i'I/Jj 

i=1-i+2 

and 

1 1 

E[R] = L L O:(l/;j. 

i=2 j=1-i+2 

Here we are not interested in calculating the amount of reserve but we want to 

evaluate the influence function. For this purpose, we suppose {X11 , .•. , X11 } "'F 

and Fii is the distribution of Xii which is Poisson{o:i'I/J;). 
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To define a contaminated dataset, we assume that a small fraction € > 0 of the 

datais replaced by the value z and the remaining fraction (1- €) cornes from the 

original distribution F. 

Theorem 2.5.2. Let € > 0 and 0 ~ p ~ q ~ I and define the distribution as 

below 

'V(i,j) 1= (p,q) 
(2.5.2) 

elsewhere. 

Then, the influence functions of the functionals Ta1 , ••• , Ta1 and T,/11, ... , T.p1 are 

([ ] ) lim 
Ta1 (Fp,q,E,z) - Ta1 (F) 

IF z,p,q ;Ta11 F = 
E-+0 f 

- { ai[E:-r-lt2 IF((z,p,q);T..pi,F)) 

1-E{=r-wzWi 

z-ai"'/Jq+ai!E:-r-1±2 1 F((z,l,q);T..pi ,F)) 

1-E{=r -1+2 .Pi 

p 1= l 

p= l 

IF([ ]. T. F) = li T..pl-1±1 (Fp,q, .... )-T..pl-1±1 (F) 
z,p, q, .Pr-1+1! ~-+O E 

{ 

- WI-I±liE:-r {F((z,p,q);Ta;,F)) q f= I-l+ 1 
_ Li=1ai 

z-ap"'/JI-1±1 -.p1_1+1 Œt~-II~((z,p,I-l+1);Ta;•F)) q =I-l+ 1 
Li=1a, 

(2.5.3) 

Proof First, we need to define the estimators' functional forms corresponding 

to the contaminated distribution Fp,q,E,z which have been introduced in Equa-



tion (2.5.2). The functional form of â 1 is 

and the functional form of ;ji is 

p=l 

pfl 

p=l 

El(l-.o}Xu+.oz]e 
T,.1 (Fp,q, •• ~) ' 

EtXu]e 
Ta1 (Fp,q,<,z) l 

p = l,q = I 

p = l,q fI 

T,.1 (F)+E(z-T,.1 (F)T,pq (F)) 

ElXule 
Ta1 (F)+E(z-Ta1 (F)T,pq(F)) 

ElXule 
T01 (F) 

(1-E)Ta1 (F)T,p1 (F)+Ez 
T01 (F)+E(z-Ta1 (F)T,pq(F)) 

Ta1 (F)T,p1 (F) 

T,p1 (F) 

p= l,q= I 

p= l,qf I 

pfl 

p= l,q=l 

p= l,qf I 

pfl. 
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We suppose it is valid for Ta1 (Fp,q,E,z), •.. , Ta1_ 1 (Fp,q,E,z) and for T,p1 _1+2 (Fp,q,E,z) 
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, ... , T,p1 (Fp,q,E,z), where l < 1. Then we find Ta1(Fp,q,E,z) 

p = l 

p =1= l 

p=l 

1-E}=I-1+~ T.p;(Fp,q,<,z) 
p =1= l 

{ 

E:;;;~~~q Ta1 (F}T.pj (F}+(1-E}Ta1 (F}T.pq (F}+Ez 

- 1-EJ=I-1+2T.P;(Fp,q,<, .. ) 

- E!;;;~+1Ta1 (F}T.pj(F} 
1-E}=I-1+~ T.p;(Fp,q,<,z) 

p= l 

p=f=l 

{ 

E:;;;~~~q Ta1 (F)T.pj (F)+E(z-Ta1 (F}T.pq (F)} 

- 1-EJ=r-I±~T.p;(Fp,q,<, .. ) 
- E::~+1 Ta1 (F}T.pj(F) 

1-E}=I-1+~ T.p;(Fp,q,<, .. ) 

p= l 

p =1= l 

q=1-l+l 

q=/=1-l+l 

q=1-l+l 

q=/=1-l+l 

q=1-l+l 

q=/=1-l+l 

{ 

E~=1 Ta,(F}T.p1 _ 1t1 (F}+E(z-Tap(F}T.p1_ 1± 1 (F}} 

- Ei=1 Ta,(Fp,q,.,,.) 

- E~=1 Ta,(F}T.pl-1±1 (F} 

E!=1 Tai (Fp,q,.,,.) 

q=1-l+l 

q=/=1-l+l. 

Second, we calculate the influence function. It is enough to take the derivative of 

the functionals with respect to e. We calculate the influence function for Ta1 and 
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T..p1 then calculate the influence function for the general case of Ta, and T..p
1

_
1
+l: 

d 
I F([z, 1, q]; Ta1 , F) = df. Ta1 (Fp,q,E-,z)i€.=0 

d 
= df. (Ta1 (F) - f.Ta1 (F)T..p9 (F) + f.Z) 

=z- Ta1 (F)T..p
9 
(F) 

d 
IF([z,p,q];TauF) = df.Ta1 (F) 

=0 p > 1. 

It is the influence function for T01 , then with the same approach, the influence 

function for T..p1 is 

d 
IF([z,l,q];T..pnF) = df.T..p1 (Fp,q,E-,z)IE-=O 

-Ta1 (F)T.p1 (F)(z-Ta1 (F)T.p9 (F)) 1 
[Ta1 (F)+E-(z-Ta1 (F)T.p

9 
(F))J2 E-=0 q=f=n 

( -Ta1 (F)T.p1 (F)+z)[Ta1 (F)+E-(z-Ta1 (F)T.p1 (F)))-(z-Ta1 (F)T,p1 (F))[(l-E-)Ta1 (F)T,p
1 

(F)+E-z)l 
[Ta1 (F)+E-(z-Ta1 (F)T.p

1 
(F))]2 E=O 

q=n 

q=f=n 

q=n 

IF([z,p, q]; T..p,, F) = 0 p>l. 

lt is obvious that the influence function for these two functionals are unbounded. 
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Here we calculate the influence function for general cases 

d 
IF([z,p, q]; Ta" F) = df. Ta1 (Fp,q,~,z)l~=o 

~{ 

~{ 
~{ 

d E~=~+l T,.1 (F)T.p; (F)+~(z-T,.1 (F)T.pq (F)) l p = l 
ëiË 1 ~1 T. (F. ) ~=0 - L..Jj=I -1+2 t/J; p,q,<,• 

..4. E~;::;~+l Tai (F)T.pj (F) 1 

tU 1-~1 T. (F. ) ~=0 L..Jj=I-1+2 .P; p,q,•,• 

(z-T,.1 (F)T.pq (F))[1-E~-I-I+2 T.pj (Fp,q,<,.)] 

(1-E1=I-I+2 T.p;(Fp,q,.,.)]2 

p=f=l 

E~-I-1+2 1 F((p,q];T.pj ,F)!E~=i+l T,.1 (F)T.pj (F)+~(z-T,.1 (F)T.pq (F))]I 

+ [1-E1=I-1+2 T.p; (Fp,q,.,.)]2 E=O 
p= l 

E~=I-1+2 1F((p,q];T.pj ,F)!E~=i+l T,.1 (F)T.pj (F)]I 

(1-E1=I-1+2 T.p;(Fp,q,.,.)]2 ~=0 P =/= l 

(z-T,.1 (F)T.pq (F))[1-E~-r-1+2 T.p; (F)]+ E~=I-1+2 1F((p,q];T.p; ,F)!E~=~+l Ta1 (F)T.p; (F)] 

(1-E1=I-1+2 T.p;(F)]2 

E~=I-1+2 1F((p,q];T.pj ,F)(E~;::;~+l T,.I(F)T.pj(F)] 

(1-E1=I-1+2 T.p; (F)]2 

(1-E~=I-I+2 T.p;(F)][(z-T,.1 (F)T.pq(F))+Ta1(F) E~=I-1+2 1F((p,q];T.p; ,F)] 

(1-E1=I -1+2 T.p; (F)]2 

T,.l (F) E~=I-1+2 1F((p,q];T.pj'F) 

1-E1=I-1+2 T.p; (F) 

(z-T,.1 (F)T.p9 (F))+Ta1 (F) E~=I-1+2 1 F((p,q];T.p; ,F) 
- p = l 

1-E1=I-I+2 T.p;(F) 

Tai (F) E~-I-1+2 1F((p,q];T.pj'F) 

1-E1=I-I+2 T.p; (F) 
p =1= l 

p=l 

p =1= l 

p= l 

p=f:l 



and 

d 
IF([z,p, q]; T..p1 _ 1+1, F) = d€ T..p1_1+1 (Fp,q,E,z)IE=O 

~{ 

~{ 

~{ 

E!=1 /F((z,p,q];Ta1 ,F}[E!=1 Ta1 (F)T.p1 _ 1+1 (F}]I 

[E~=1 Ta,(Fp,q,<,z)]2 E=O 

q#l-l+l 

q=l-l+l 

q#l-l+l 

(z-Tap (F}T.p1 _ 1± 1 {F)}[E!=1 Ta1 (P}]-E!=1 1 F((z,p,q];Ta1 ,F}[E!=1 Ta1 (F}T.p1 _ 1± 1 (F}] 

[E~=1 Ta, (F)]2 

E!=1 /F((z,p,q];Ta.,F}[E!=1 Ta1 (F)T.p1 _ 1± 1 (F}] 

[E~=1 Ta1 (Fp,q,.,.a)]2 

q=l-l+l 

q#l-l+l 

E!=1 Ta1(F}((z-Tap(F}T.p1_ 1±\ (F}}-T.p1 _ 1± 1 (F} E!=1 IF((z,p,q];Ta,,F] q = J _ l + l 
[Ei=1 Ta,(F)]2 

T.p1 _ 1± 1 (F} E!=1 /F((z,p,q];Ta1 ,F} 

E~=1 Ta,(F} 

(z-Tap(F}T.p1 _ 1± 1 (F))-T.p1 _ 1+1 (F) E!=1 /F([z,p,q];T.p1 ,F) 

E~=1 T.p,(F) 

T.p1 _ 1± 1 (F} E!=1 /F((z,p,q];Ta1 ,F) 

E~=1 Ta1 (F} 

q#l-l+l 

q=l-l+l 

q#l-l+l. 
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D 

As a result, we see that influence functions for general cases of T01 and Tlh-1+1 are 

unbounded. Thus, the stochastic Chain-Ladder model is not robust and a small 

number of outlier(s) can have large effects on results. ln the next chapter, we 

present a robust version of this model. 



CHAPTERIII 

ROBUST PROCEDURES IN LOSS RESERVING MODELS 

3.1 Robust Generalized Linear Models 

The general framework of generalized linear models (GLM) for loss reserving has 

been discussed in Section 2.3. In this section, we introduce a robust version of this 

madel. To simplify the presentation and avoid unnecessary double subscripts, we 

replace x11 by x11 x12 by x2 and so on. 

We suppose that incrementai paid amounts Xi, i = 1, 2, ... , n = I + I belong 

to the exponential family such that E[Xi) = J.Li 1 Var[Xi) = V[p.i) and (see Equa­

tion (2.3.1)) 

The non-robust estimator of {3, which is the solution of Equation (2.5.1), has 

been studied in the previous chapter. We remind that this maximum likelihood 

estimator belongs to the general family of M-estimator. Thus, as showed in Equa­

tion (1.3.7), the influence function is given by the general expression 

I F(x; 'lj;, F) = M( 1/J, F)-11/J(x, p.), 

with 
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Moreover, the estimator hasan asymptotic Normal distribution with asymptotic 

variance 

0 = M('lj;, F)-1Q('Ij;, F)M('Ij;, F), 

where 

Q('lj;, F) = E (1/J(X, JL)'I/J(X, JLl] . 

See Cantoni et Ronchetti (1999) for more details. As suggested by Cantoni et 

Ronchetti (1999), we assume in this chapter that 'lj;(x,JL) can be rewritten as 

'lj;(x, JL) =v( x, JL)w(z)JL'- a(/3), where 

1 n 

a(/3) = - L E[v(xi, JLi)] w(zi)JL~ 
n i=l 

and JLi = g-1 
( zi/3) with g( ·) a logarithmic link function. The term a(/3) makes sure 

that the estimator is Fisher consistent (proof is available in Cantoni et Ronchetti 

(1999), p. 19). Therefore, the influence function of the estimator of f3 is 

1 F(x; '1/J, F) = v( x, JL)w(z)JL'- a(/3) . 

-E[ ~(v(X, JL)w(z)JL'- a(.B))] 
This particular form for the influence function allows us to bound separately the 

impact of outliers in response variables (xi) and in covariates (zi)· The bounded 

function '1/J will result in a bounded influence function and thus the choice of '1/J 

plays an important role. 

3.1.1 The Structure of the Robust Poisson Model for Reserves 

In order to model reserves, we consider a specifie case of the robust generalized 

linear model. We assume that Xi rv Poisson with E[Xi] = V[Xi] = JLi· As 

suggested by Cantoni et Ronchetti {1999), a simple choice foi the weight function 

v(·) is 



with 

Xi - J.Li r. - ---=---:-7= 
' - V[J.Li]l/2 

and t/Jc(ri) is the Huber function defined as 

{ 

r 
tPc(ri) = 

(c) sign(r) 

lrl ~c, 

lrl > c, 
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(3.1.1) 

where c is a tuning constant which guarantees a level of effi.ciency of reserve. From 

empirical evidence (see Verdonck et Debruyne (2011)), the default value for this 

constant is c = 1.345. 

For the weight function w(·), one possible choice is 

where ~ is the ith diagonal element of the hat matrix H = Z(z7' z)-1 zT. Ac­

cording to Cantoni et Ronchetti (1999), this specifie choice for w(·) is not optimal, 

mainly because H does not have high breakdown properties. 

In the loss reserving process with the (robust) Poisson distribution, the model is 

based on a row effect and on a column effect (see Equation (2.3.1)). Therefore, 

it is really unlikely to have one or more outlier(s) in the Z matrix. Thus, we can 

choose the same weight for all observations or w(zi) = 1. 

Closer examination by Verdonck et Debruyne (2011) has showed that the default 

value c = 1.345 is usually too low. They suggest a new approach to define this 

tuning constant: fust adjusting the robust GLM with c = 1.345 and calculating 

residuals, then setting the new value of the constant c• to be the 75% quantile 

of the residuals' distribution and finally adjusting again the robust GLM with 

c = c•. The selection of a higher quantile will result in a higher effi.ciency but will 
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also result in a lower breakdown value. The 75% quantile is an optimal option 

which keeps a good balance between effi.ciency and robustness. 

There is a package (named robustbase) in R to estimate the robust GLM for the 

Poisson and the Binomial distribution robust model (see Maechler et al. (2016) 

for more details). 

3.1.2 The Influence Function of the Robust Poisson Model for Reserves 

We calculate the influence function for the model introduced below. In order to 

evaluate the function 1/J(x, JL) =v( x, JL)w(Z)JL'- a(/3), we need to find 

1 n 1 
a(/3) = - L E['I/Jc(rï)] w(zi) yVIJLJJL~ 

n i=l V[J.Li] 
1 n 1 

= ;; L E['I/Jc(rï)] (1) . r,;-:IL~· 
i=l v JLi 

Since the function 1/Jc(rï) takes different values in the two intervals lrl ~ c and 

lrl > c (see Equation (3.1.1)), it is necessary to open the summation 

lrïl < c 

::::} -c < j - JLi < c -yVIJLJ-
::::} -cyV[JLJ + J.Li ~ j ~ cyV[JLJ + J.Li. 
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Therefore 

a(/3) 
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Thus, the '1/J function is 

'1/J(x, J.L) = v( x, J.L)w(z)J.L'- a(/3) 

{ 

( ~) ZïJ.Li - a(/3) 

( (c):rJr;)) ZïJ.Li - a(/3) 

Since both cases are bounded, we conclude that the influence function is bounded 

for the Poisson model with Huber function. 

Example 3.1. The run-off triangle presented in Table 3.1 shows the cumulative 

dataset used in Taylor et Ashe {1983}. As afirst step, we evaluate the total reserve 

Table 3.1 Cumulative run-off triangle from Taylor et Ashe (1983). 

2 3 4 5 6 7 8 9 10 

357848 1124 788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 

5 443160 1136350 2128333 2897821 3402672 3873311 

6 396132 1333217 2180715 2985752 3691712 

7 440832 1288463 2419861 3483130 

8 359480 1421128 2864498 

9 376686 1363294 

10 344014 

amount with the robust GLM for reserves. Predicted values for each occurrence 

year and each payment period are presented in Table 3.2. The expected total 

amount for the reserve, which is the sum of all expected claims, is 18 839 333$. 

As a second step, we introduce an outlier in the second row by multiplying the 

value in the cell (2, 1) by 10. We reevaluate the total reserve amount with the 

robust GLM method. Predicted values for each occurrence year and each payment 
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Table 3.2 Predicted incrementai triangle. 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 878152 

3 0 0 0 0 0 0 0 0 1010600 900139 

4 0 0 0 0 0 0 0 1258065 1066615 950031 

5 0 0 0 0 0 0 608186 717086 607961 541510 

6 0 0 0 0 0 380249 415017 489329 414864 369518 

7 0 0 0 0 340042 363615 396862 467923 396716 353354 

8 0 0 0 258700 242192 258982 282662 333275 282557 251673 

9 0 0 387833 372590 348814 372995 407100 479995 406950 362470 

10 0 94083 95220 91478 85640 91577 99951 117848 99914 88993 

period are presented in Table 9.3. The total amount of reserve is 13 536 364$. 

As expected, we obtain completely different predictions. 

We have considered a decimal error mistake (by multiplying a value by 10) for 

various cells. As we can see in the Table 9.4, the effect of an outlier is not the 

same in the predicted reserve depending on its position in the run-off triangle. In 

sorne cases, it even make the robust GLM reserve greater than the classical GLM 

reserve. As expected, when there is an outlier in the last row, the robust method 

has no impact on the predicted reserve. 

As we considered in Section 3.1.1, the defaul value of c based on Verdonck et De­

bruyne (2011} is equal to 1.345. In the Table 9.4 you can find sorne example of 

reserve amount by Robust GLM method while the default c = 1.345. 

The modified option for c based on Verdonck et Debruyne {2011} has been studied 
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Table 3.3 Predicted incrementai triangle in presence of an outlier. 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 478054 

3 0 0 0 0 0 0 0 0 795062 476027 

4 0 0 0 0 0 0 0 1102697 828248 495896 

5 0 0 0 0 0 0 546073 623169 468069 280247 

6 0 0 0 0 0 335571 367270 419122 314807 188484 

7 0 0 0 0 285649 299933 328266 374611 281374 168467 

8 0 0 0 187585 170464 178988 195896 223553 167913 100534 

9 0 0 283180 266618 242284 254400 278431 317741 238659 142892 

10 0 146415 95647 90053 81834 85926 94043 107320 80609 48263 

Table 3.4 Predicted reserves (c = 1.345). 

outlier Classic GLM Robust GLM 

NO 18 839333 18839333 

(1,3) 15813130 15908930 

(2, 3) 16044692 15934573 

(3, 1) 14594660 15119785 

(4,3) 19166515 18992655 

(6,5) 27889017 26949513 

(10, 1) 60313152 61101893 

in section (3.1.1}. In the first run c = 1.345 and in the second run c is the 75th 

quantile of pearson residuals of the previous run. The degree of improvement in 

accuracy of evaluated reserve presented in the Table 3.5. 
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Table 3.5 Estimated reserve with modified c. 

outlier Robust GLM with modified c Robust GLM with fix c 

{2,1) 18177617 13536364 

{1,3) 18603226 15908930 

{2, 3) 18794322 15934573 

{3,1) 18070067 15119785 

{4,3) 19261166 18992655 

{6,5) 18905464 26949513 

{10, 1) 60555812 61101893 

As we see in Table 3.5, the reserve amount with modified c in presence of an 

outlier is less volatile than with a fix c. It shows modified c is prefered. 

3.2 Robust Version of the Stochastic Chain-Ladder Model 

The amount of reserve directly influences the insurance company solvency and the 

profit amount. We have shown, in Section 2.4, that outliers highly influence the 

total amount of the reserve in the stochastic version of the Chain-Ladder model, 

or Mack's model. Based on Verdonck et al. {2009), we describe in this section a 

method for robustifying this model. 

This method would be able to firstly recognize outliers in the run-off triangle and 

secondly smooths the detected outliers. It smooths the run-off triangle in such 

a way that the outstanding daim reserve is very close to the outstanding daim 

reserve without outliers. 
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3.2.1 Robust development factor 

In the stochastic version of the Chain-Ladder model, outliers have a large influ­

ence of the total amount of the reserve because this model is constructed from 

cumulative amounts. Thus, only one outlier in a column may impact all other 

columns. For example, an outlier in the first column affects all other columns and 

affects all development factors. The general idea to robustify the Mack's model 

is to consider incrementai data, as in the GLM approach, instead of cumulative 

data. This will decrease the impact of outliers and by using incrementai data, an 

outlier can affect at most two development factors. 

As shown in Equation (2.4.2), a development factor is the ratio of the sum of 

cumulative paid amounts for one development period to the sum of cumulative 

paid amounts for the previous development period. To robustify a development 

factor, we could replace this ratio by 

..... ( X·· ) 
>.; = mean xi ~~1 ·- . ·- • 

(j ) a-1,2, ... ,1-a+1, 1-2, ... ,1 

In Equation (1.2.10), we demonstrate that mean is not an appropriate choice in 

presence of outliers since it is very sensitive to them. However, we show that 

median is a better choice and thus, we may replace the mean by the median in 

order to obtain a robust estimator for development factor 

..... . ( xi; ) 
>.; = median xi ·-1 ·- . ·- . 

(j ) a-1,2, ... ,1-a+1, 1-2, ... ,1 

(3.2.1) 

Obviously, we can not control the impact of outlier in the last two columns (/ -1 

and /) by this method since there is only one row remaining and the mean and 

median of two observations are equal. Thus, it is important to be careful in the 

construction of a robust version of the Mack's model. In the next section, we 

present the model introduced in Verdonck et al. (2009). 
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3.2.2 The Structure of the Robust Chain-Ladder Model 

The model has been initially presented in Renshaw et Verrall (1998a) and Ver­

donck et al. (2009). For better understanding of this subject, an example will 

immediately calculate the algorithme step by step. 

We assume that each Xii follows an over-dispersed Poisson distribution with 

and 

where Xii is, as usual, the incrementai paid amount for occurrence period i and 

development period j, <P is the dipersion parameter and mii will be precisely 

defined in the following. We estimate <P as below 

""1 "'1-i+l (Xij - ffiïj)
2 

~ L...i=l L...j=l fflïj 

<P = n- (I + I- 1) 

In the first step we calculate development factors using Equation (3.2.1) with cu­

mulative data. In spite of the fact that development factors based on incrementai 

data are more robust, this approach, as explained by Verdonck et al. (2009), will 

work with cumulative data. Then, we construct the fitted run-off triangle in the 

following way: 

• the fitted cumulative paid to date diagonal, êi(J-i+l)! i = 1, 2, ... , J, is 

the same as the actual cumulative paid to date diagonal, Ci(I-i+1) 1 i 

1, 2, ... , J, SO êi(I-i+l) = Ci(I-i+1) 1 i = 1, 2, ... , J, is the fitted diagonal; 

• then we calculate backward the upper left part of the fitted triangle by divid­

ing the cumulative data by the previously calculated development factors; 

and 
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• finally, by subtracting two consecutive payments, we find incrementai pay­

ments, mi;= êi(j+l)- êi;, i = 1, 2, ... , 1 and j = 1, 2, ... , 1. 

By differencing cumulative fitted values, the two corner points (1, 1) and (1, 1) are 

the same as observed incrementai data. 

The Pearson residuals are defined as: 

Xi;- mi; 
ri;= ~. 

v 4>'mij 
(3.2.2) 

In order to detect outliers, we construct a classical Thkey boxplot based on Pearson 

residuals 

[Qt - 31QR, Q3 + 31QR], 

where Q1 and Q3 are residual's first and third quartiles. Outliers are most likely 

to be outside this interval and by comparing the residuals of the first column, ru, 

i = 1, ... , 1, to this interval we detect the outliers in the first column. We will do 

the same for the second column. If we detect an outlier, we adjust it in the first 

column as follows: we check the residual in the second column in the same row as 

the detected oulier value; if this value is also an outlier, we change the cumulative 

payment by the median of cumulative payments in the first column, however if 

the residual in the second column is not an outlier, we calculate the payment in 

the first column by dividing the second column cumulative payment by the first 

development factor. More formally, suppose rkl is an outlier. Then if rk2 is also 

an outlier, 

Ckt =median (Cu li= 1, 2, ... , 1), 

and if it is not, 

ckl = xk2 . 

median (~li= 1,2, ... ,1-1) 

After making the first column outlier free, we investigate other columns, but we do 

not use the residuals to find the outliers in other columns because they are based 
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on the development factors which have been calculated by using cumulative data. 

Therefore, we use the first column incrementai outlier free data and calculate the 

development factors as 

~} = median ( ~:~ li = 1, 2, ... , 1 - j + 1) , 2 ~ j ~ 1. 

Then, the future claims will be 

After fitting the upper triangle by multiplying first column incrementai claims by 

development factors, we calculate again the Pearson residuals, but instead of mi;, 

we use fitted incrementai claims Xi}: 

Residuals, except residuals of the first column, will be examined by using the 

boxplot as mentioned before but based on new ri;. The residuals detected as 

outlier are replaced by the median of ali residuals except residuals of the first 

column. For instance, suppose rl1 is an outlier, then it will be replaced by 

rl1 =median (rl;li = 1, 2, ... , 1- 1; j = 2, ... , 1- i + 1). 

At last, we back transform outlier-free residuals to incrementai data 

Data are robustified, then we can apply the usual stochastic Chain-Ladder model 

to evaluate the reserve. 

In this method, the two corner points Xn and X 11 can not be detected if they 

are outlier. X 11 is the first observation in the last claim year and it is the only 

observation in this year. By comparing this value with the median of the rest 



82 

of data in the first column, we realise if it is an outlier or not. If there is not 

much difference between these two values, it is not an outlier but in case of huge 

difference, we replace X 11 by 

median (X ti li= 1, 2, ... , I- 1). 

The X 11 case is more difficult ta handle because it is the only observation in 

the Jth development year. The proposed solution is an extrapolation of the last 

development factor by curve estimation based on previous development factors. 

If the extrapolated claim is close to the actual claim amount, it is not an outlier 

but if the two values are very different X 11 is an outlier and should be replaced 

by the extrapolated amount. 

Example 3.2. In order to clarify the algorithm of the robust Clain-Ladder model, 

the process will be presented step by step with a toy example based on the run-off 

triangle illustrated in Table 3. 6 

Table 3.6 Cumulative run-off triangle (in millions of dollars). 

Accident year 12 months 24 months 36 months 

2010 

2011 

2012 

100 

110 

120 

150 

160 

170 

• Step 1. We compute development factors, we calculate fitted values and 

dispersion parameter and we evaluate Pearson re_siduals: 

-- . (c12 c22) . (150 160) A2 = medtan Cu, 
021 

= medzan 
100

, 
110 

= 1.477 

-- (C1a) . (110) A3 =median 
012 

= medzan 
150 

= 1.1333. 
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The fitted run-off triangle based on the computed development factors is 

presented in Table 3. 7, where results are obtained as follow: 

Table 3.7 Evaluated run-off triangle (in millions of dollars). 

Accident year 12 months 24 months 36 months 

2010 

2011 

2012 

101.54 

108.31 

120 

150 

160 

X1a = 170 = X1a 

.X22 = 160 = x22 

Xa1 = 120 = Xa1-

~ 170 
X12 = 150 = 1.1333 
~ 160 
X21 = 108.31 = 1.

477 

Then we calculate the dispersion parameter as 

~~ ~~-i+l (x•rf'nï;)2 

4> = L...t&=l L...tj=l t'ni; 

n- (1 +1-1) 
~~ ~~-i+l (x,rm•;)2 

L...t&=l L...tJ=l m,; ----::-----__,::!..-
6- (3 + 3 -1) 

170 

~ 150 
X 11 = 101.54 = 1.

477 

= 0.023310023 + 0 + 0 + 0.026442308 + 0 + 0 = 0.049752331. 

Finally, Pearson residuals based on 

are presented in Table 3. 8. 

• Step 2. We detect and modify potential outlier(s) in the first row. The 

classical boxplot interual is [-3.693 3.727]. 1fthe residuals in thefirst column 
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Table 3.8 Pearson residulals. 

i/j 1 2 3 

1 -0.68 0.99 0.00 

2 0.73 -1.06 

3 0.00 

is outside of this interval, it means that observation is an outlier and the 

correction of the first column is based on second column. Suppose rk1 is an 

outlier, then: 

if rk2 is not an outlier ck1 = . (~. ) 
med1an Xu 11=1,2,3 

ifrk2 is an outlierCkl = median(Cilli = 1,2,3). 

In this example, all residuals of the first column are inside the boxplot inter­

val therefore there is no change in the first column. 

• Step 3. we compute modified development factors 

~} = median ( ~:~ li = 1, ... , 3 - j + 1) , j = 2, 3. 

Then, we calculate fitted incrementai claims based on the first column ( outlier­

free) 

...... 1 ...... 1 . . 
xij = Xil\. 1. = 1,2, 1 = 2,3. 

Incrementai claims in second and third columns are presented in Table 3.9. 

Then, we detect outlier(s) in other columns (except the first one): 



Table 3.9 Incrementai daims 

i/j 2 3 

1 47.7 20.0 

2 52.5 

Table 3.10 Pearson residuals 

i/j 2 3 

1 1.47 0.00 

2 -1.55 

The residuals are presented in Table 3.1 O. Once aga in, the same rule as 

we used for the first column. The boxplot interval is [-5.31, 5.27]. By 

comparing the residuals we conclude there is no outlier(s) in the second and 

the third column. 

• Step 4. We can finally apply the classical Chain-Ladder model. 

Here we wish to show the effects of robustifying Mack Chain-Ladder with a real 

example: 

Example 3.3. We consider again the cumulative run-off triangle illustrated in 

Table 3.1. As a first step, we evaluate the total reserve amount with the robust 

version of the Mack's model presented in the previous subsection. The full run-off 

triangle, occurred and predicted amounts, are presented in Table 3.14. Obviously, 

this is identical to the full run-off triangle obtained with the traditional, non-robust, 

Mack's model. The total reserve amount is 18 680 856$. 
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Table 3.11 Occurred and predicted cumulative amounts. 

2 3 4 5 6 7 8 9 10 

1 357848 1124 788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 5433719 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5285148 5378826 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835458 5205637 5297906 

5 443160 1136350 2128333 2897821 3402672 3873311 4207459 4434133 4773589 4858200 

6 396132 1333217 2180715 2985752 3691712 4074999 4426546 4665023 5022155 5111171 

7 440832 1288463 2419861 3483130 4088678 4513179 4902528 5166649 5562182 5660771 

8 359480 1421128 2864498 4174756 4900545 5409337 5875997 6192562 6666635 6784799 

9 376686 1363294 2382128 3471744 4075313 4498426 4886502 5149760 5544000 5642266 

10 344014 1200818 2098228 3057984 3589620 3962307 4304132 4536015 4883270 4969825 

As a second step, we introduce an outlier in the second row by multiplying the value 

in the cell {2, 1} by 10. We reevaluate the total amount of reserve and the new full 

run-off triangle is presented in Table 3.15. Total reserve amount is 18 619 218$. 

As expected, we obtain completely different predictions. 

Table 3.12 Full matrix in presence of an outlier. 

1 2 3 4 5 6 7 8 9 10 

357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 373700 1257721 2191615 3374904 3820649 4141645 4669449 4935621 5360667 5455684 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5284199 5377860 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835040 5204252 5296496 

5 443160 1136350 2128333 2897821 3402672 3873311 4207008 4433274 4771807 4856386 

6 396132 1333217 2180715 2985752 3691712 4074539 4425572 4663593 5019713 5108687 

7 440832 1288463 2419861 3483130 4087970 4511889 4900601 5164171 5558516 5657039 

8 359480 1421128 2864498 4172880 4897494 5405359 5871046 6186810 6659246 6777279 

9 376686 1363294 2379988 3467065 4069116 4491079 4877998 5140353 5532880 5630948 

10 344014 1195296 2086703 3039820 3567681 3937645 4276885 4506910 4851065 4937049 

In order to study the effect of outlier(s) in different accident year and payment 
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period, we have had consider the decimal error mistake {by multiplying Xij by 10) 

for various cells. 

As we can see in Table 3.16, the effect of an outlier on the value of predicted 

reserve depends on the position of outlier in the run-off triangle. In sorne cases 

existing outlier make the Robust Mack Chain-Ladder reserve become greater than 

the Classical Mack Chain-Ladder reserve. But, it can be the opposite. 

The volatility of reserve in presence of an outlier in Robust Mack Chain-Ladder 

Table 3.13 Predicted reserve. 

Outlier Classic CL Robust MCL 

NO 18680856 18680856 

(1,3) 15813130 15908930 

(2,3) 16044692 15934573 

(3, 1) 14594660 15119785 

(4, 3) 19166515 18992655 

(6,5) 27889017 26949513 

(10, 1) 60313152 61101893 

method is less than classic Mack Chain-Ladder. We conclude the Robust Mack 

chain ladder is a less sensitive method in presence of outlier{s) then it is more 

suitable method. The reserve amount with this method can be less or more than the 

reserve which is evaluated by classical Mack Chain-Ladder. As expected when there 

is an outlier in the last raw, robust method has no impact on predicted reserve. 

Since in the last raw there is just one element, the robust method has no effect on 

it. 
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3.2.3 The Influence Function of the Robust Chain-Ladder Madel for Reserves 

Instead of calculating the theoretical influence function ( 1 F), we calculate the 

empirical influence function ( E 1 F). 

The reason behind not using the 1 F is if we replace the classical parameter es­

timates in the IF, it will fail to detect outlier(s) due to masking effects and if 

we replace the robust parameter estimates in 1 F, it will have a small 1 F because 

robust method down-weights the outliers. 

The calculation of EIF is complicated then here we just provide the general for­

mula based on Verdonck et Debruyne (2011) which does not provide proof and 

details. 

First, the unknown distribution function F has been replaced by the empirical 

distribution function Fn (see El Fin Section 1.2.1). Then, the stochastic version 

of robust parameter estimates âi and {3j has been used in the empirical influence 

function of the (non-robust) Chain-Ladder madel. At every observation (p, q) in 

the upper part of the run-off triangle, we assume that z = Xpq because we are 

considering the El F of the observation. Thus, we have 

and 

âf(Fn) (r::=I-l+2 EIFÎ3t(Xpq)) 
1 AB 

1- L:i=l-l+2 ,Bi (Fn) 
p =1= l 

p= l 

q=f=J-l+1 

Xi;- &;(Fn),êj_z+l(Fn)- ,êj_z+l(Fn) E:=l EIF&:<Xpq) 

E!=l âi(Fn) 

q=J-l+l. 
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By these equations, we measure the influence of daims Xpq in the run-off triangle 

on the values of â~, ... , âj and !Ji, ... , !Jj. 
In this thesis we just use the below example to compare Classic Mack Chain 

Ladder and Robust Mack Chain Ladder. 

Example 3.4. We consider again the cumulative run-off triangle illustrated in 

Table 3.1. As a first step, we evaluate the total reserve amount with the robust 

version of the Mack's model presented in the previous subsection. The full run-off 

triangle, occurred and predicted amounts, are presented in Table 3.14. Obviously, 

this is identical to the full run-off triangle obtained with the traditional, non-robust, 

Mack's model. The total reserve amount is 18 680 856$. 

Table 3.14 Occurred and predicted cumulative amounts. 

1 2 3 4 5 6 7 8 9 10 

357848 1124 788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 5433719 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5285148 5378826 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835458 5205637 5297906 

5 443160 1136350 2128333 2897821 3402672 3873311 4207459 4434133 4773589 4858200 

6 396132 1333217 2180715 2985752 3691712 4074999 4426546 4665023 5022155 5111171 

7 440832 1288463 2419861 3483130 4088678 4513179 4902528 5166649 5562182 5660771 

8 359480 1421128 2864498 4174756 4900545 5409337 5875997 6192562 6666635 6784799 

9 376686 1363294 2382128 3471744 4075313 4498426 4886502 5149760 5544000 5642266 

10 344014 1200818 2098228 3057984 3589620 3962307 4304132 4536015 4883270 4969825 

As a second step, we introduce an outlier in the second row by multiplying the value 

in the cell (2, 1} by 10. We reevaluate the total amount of reserve and the new full 

run-off triangle is presented in Table 3.15. Total reserve amount is 18619218$. 

As expected, we obtain completely different predictions. 

In order to study the effect of outlier(s) in different accident year and payment 

period, we have had consider the decimal error mistake (by multiplying Xij by 10) 
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Table 3.15 Full matrix in presence of an outlier. 

2 3 4 5 6 7 8 9 10 

357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463 

2 373700 1257721 2191615 3374904 3820649 4141645 4669449 4935621 5360667 5455684 

3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 5284199 5377860 

4 310608 1418858 2195047 3757447 4029929 4381982 4588268 4835040 5204252 5296496 

5 443160 1136350 2128333 2897821 3402672 3873311 4207008 4433274 4771807 4856386 

6 396132 1333217 2180715 2985752 3691712 4074539 4425572 4663593 5019713 5108687 

7 440832 1288463 2419861 3483130 4087970 4511889 4900601 5164171 5558516 5657039 

8 359480 1421128 2864498 4172880 4897494 5405359 5871046 6186810 6659246 6m279 

9 376686 1363294 2379988 3467065 4069116 4491079 4877998 5140353 5532880 5630948 

10 344014 1195296 2086703 3039820 3567681 3937645 4276885 4506910 4851065 4937049 

for various cells. 

As we can see in Table 3.16, the effect of an outlier on the value of predicted 

reserve depends on the position of outlier in the run-off triangle. In sorne cases 

existing outlier make the Robust Mack Chain-Ladder reserve become greater than 

the Classical Mack Chain-Ladder reserve. But, it can be the opposite. 

The volatility of reserve in presence of an outlier in Robust Mack Chain-Ladder 

method is less than classic Mack Chain-Ladder. We conclude the Robust Mack 

chain ladder is a less sensitive method in presence of outlier(s) then it is more 

suitable method. The reserve amount with this method can be less or more than the 

reserve which is evaluated by classical Mack Chain-Ladder. As expected when there 

is an outlier in the last raw, robust method has no impact on predicted reserve. 

Binee in the last raw there is just one element, the robust method has no effect on 

it. 



91 

Table 3.16 Predicted reserve. 

Outlier Classic CL Robust MCL 

NO 18680856 18680856 

(1,3) 15813130 15908930 

(2, 3) 16044692 15934573 

(3,1) 14594660 15119785 

(4,3) 19166515 18992655 

(6,5) 27889017 26949513 

(10, 1) 60313152 61101893 





CHAPTERIV 

CASE STUDY 

In this chapter we analyze a real dataset from a French-German general insurance 

company. The original dataset covers occurrence years from 1999 to 2010 (partial) 

and development years from 1999 to 2011. In our example, we restrict ourselves 

to years 1999 to 2008 to calibrate various classical and robust models, and we 

compare our prediction results with observed payments in 2009 and 2010. In Sec­

tion 4.1, we consider the generalized linear model for reserves and in Section 4.2, 

we present results with the stochastic Chain-Ladder model. Finally, we compare 

predictive distributions in Section 4.3 

4.1 Generalized Linear Model 

From the dataset, we construct the incrementai run-off triangle presented in Ta­

ble 4.1. In this table, development years 2009 and 2010 has been indicated. 

Here is the cumulative run-off triangle in Table 4.2. As we see in the table, de­

velopment of the claim's payment is not totally complete. The table shows most 

part of the daims has been paid in fust nine years. Then we conclude the claims 

which have occurred from 1999 to 2002 already have almost paid but the claims 

which has been occurred from 2003 to 2008 are still open and will develop. 
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Table 4.1 Incrementai run-off triangle. 

2 3 4 5 6 7 8 9 10 11 12 

224029 426494 191046 362554 45718 49109 42549 76976 5871 8353 1629 11852 

2 233083 362137 250703 169742 247624 36337 135285 54530 127599 22423 2901 

3 272653 380774 230831 152406 126 293 182292 157 453 102873 96262 12468 

4 270892 421649 259148 266317 237 599 241236 79175 27494 44302 

5 260786 327992 167296 266583 199633 103362 101611 38857 

6 290887 387624 266646 261402 74815 72981 290384 

7 269677 574012 319171 118667 215074 55194 

8 310502 581810 260756 124006 103965 

9 453875 503656 519766 358531 

10 559148 735001 412373 

Table 4.2 Cumulative run-off triangle. 

i 1 2 3 4 6 7 9 10 11 12 

1 224029 650524 841570 1204125 1249843 1298953 1341502 1418478 1424349 1432703 1434332 1448184 

2 233083 595221 845925 1015667 1263291 1299628 1434913 1489444 1617043 1639486 11142387 

3 272653 653428 884259 1036665 1162959 1345251 1502704 1605577 1701839 1714306 

4 270892 692542 951690 1218008 1455608 1696844 1776020 1803513 1847818 

5 260786 588778 756075 1022658 1222291 1325652 1427284 1486120 

6 290887 678512 945159 1206561 1281377 131143118 1844742 

7 269677 843689 1162860 1281528 1498802 111111798 

8 310502 892312 1153088 1277074 1381039 

9 453875 957532 1477297 1835829 

10 559148 1294150 1708523 

4.1.1 Classic Generalized Linear Model 

The expected values of future claims obtained with the GLM for loss reserving 

based on the original run-off triangle (see Table 4.1) are given in Table 4.3. De­

velopment years 2009 and 2010 has not been considered in this calculation. The 

estimations are achieved by maximum likelihood method. All calculations has 

been done in R software. By summing up all expected future daims we get an 

overall reserve of 6 982 482$ and the mean square error is 6 893. 
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Table 4.3 Predicted incrementai run-off triangle. 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 9484 

3 0 0 0 0 0 0 0 0 73694 9849 

4 0 0 0 0 0 0 0 97277 85982 11491 

5 0 0 0 0 0 0 97405 77945 68894 9207 

6 0 0 0 0 0 123486 103225 82602 73011 9757 

7 0 0 0 0 178108 140665 117586 94093 83167 11115 

8 0 0 0 288409 200338 158222 132262 105837 93548 12502 

9 0 0 332970 322785 224216 177081 148026 118452 104698 13992 

10 0 857438 492602 477 533 331709 261976 218992 175240 154892 20700 

4.1.2 Robust Generalized Linear Model 

In order to illustrate the interest of the robust version of the generalized linear 

model, we introduce an out.lier into the original run-off triangle (see Table 4.1) by 

multiplying one daim amount by 10. Then, we apply both, the classic and the 

robust generalized linear model on this modified run-off triangle. 

AU calculations have been done in R software using the "robustbase" package. 

Parameters are estimated with a maximum likelihood aproach. We present the 

results in Table 4.4. The position of an outlier has a direct impact on the amount 

of reserve, i.e., in presence of an outlier, the reserve amount becomes larger or 

smaller than the original amount of reserve. 

When there is no outlier in the run-off triangle, the reserve amount is 7 004 980$ 

and the mean square error is 7057. As we see in the Table 4.4, reserve amounts in 
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Table 4.4 Reserve amounts using the Classic and the Robust GLM in presence of 

outlier. 

Outlier Classic GLM Robust GLM 

No 6982482 7004980 

(1,3) 6650656 6194158 

(2, 1) 4197880 6753206 

(2, 3) 6747584 6863685 

(3,1) 4337635 6555842 

(4,3) 7614270 6347523 

(6,5) 8070429 7822721 

(10,1) 33902260 33238412 

the Robust GLM are very close to the amount of reserve in absence of an outlier 

(7004980$). We conclude that the robust version of the generalized linear model 

for reserves is an improvement and the reserve obtained with this approach is 

more accurate than the one obtained with the Classic GLM. For the last row, as 

e:xpected, the robust method has no impact on the amount of reserve. 

4.2 Stochastic Chain-Ladder Model 

As in the previous section, we consider only years 1999 to 2008 in our run-off 

triangle in order to adjust the stochastic Chain-ladder model (see the incrementai 

dataset in Table 4.1). 

4.2.1 Classic Stochastic Chain-Ladder Model 

Development factors:\; calculated based on Equation (2.4.2). The total amount 

of reserve is based on Equation (2.4.1) and the mean square errors are calcu-
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lated based on Definition 2.3. All calculations been done using the R software. 

Package "ChainLadder" and function "MackChainLadder" are used for Classic 

Mack Chain-Ladder calculations. Robust Mack Chain-Ladder calculated by the 

algorithm in subsection 3.2.2 and the simulation carried out with the "BootChain­

Ladder" function. Detailed results for the dassic model are presented in Table 4.5. 

Table 4.5 Detailed results with the dassic stochastic Chain-Ladder model. 

i Reserve Std. error coef. of var. 

1 0 0 NaN 

2 9484 34618 3.652 

3 83543 115961 1.388 

4 194 751 132782 0.681 

5 253452 133401 0.526 

6 392084 175550 0.448 

7 624 737 236979 0.379 

8 991121 316454 0.319 

9 1442224 349665 0.242 

10 2991086 592948 0.198 

The evaluated development factor are in Table 4.6. As expected, the develop­

ment factors getting smaller as we get doser to the end of the development pe­

riod. The predicted cumulative run-off triangle with the dassic Chain-Ladder 

method is given in Table 4.7. The evaluated total amount of reserve with the 

dassic stochastic Chain-Ladder model is 6 982 482$ and the mean square error is 

1190 662. Here we are able to compare observed payments in years 2009 and 2010 

for daims occurred between years 1999 to 2008. It enables us to evaluate how 

accurate the Classic stochastic Chain-Ladder model is. In Table 4.8, we give the 
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Table 4.6 Development factors with the classic stochastic Chain-Ladder model. 

i 1 2 3 4 5 6 7 8 9 10 

1 2.53 1.35 1.25 1.14 1.10 1.07 1.05 1.05 1.01 1.00 

Table 4. 7 Run-off triangle with Classic stochastic Chain-Ladder. 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1626527 

3 0 0 0 0 0 0 0 0 1679271 1689120 

4 0 0 0 0 0 0 0 1873298 1959280 1970771 

5 0 0 0 0 0 0 1423058 1501003 1569897 1579105 

6 0 0 0 0 0 1404864 1508090 1590692 1663703 1673461 

7 0 0 0 0 1459636 1600302 1717888 1811982 1895150 1906265 

8 0 0 0 1441477 1641815 1800038 1932300 2038138 2131686 2144189 

9 0 0 1290502 1613288 1837504 2014585 2162612 2281064 2385763 2399755 

10 0 1416587 1909189 2386723 2718432 2980408 3199401 3374642 3529534 3550235 

results. As one can see, differences between observed and predicted payments are 

not very large. 

4.2.2 Robust Stochastic Chain-Ladder Model 

An outlying value introduce to the run-off triangle Table 4.1 by multiplying one 

daim amount by 10, one at the time. Applying the robust Chain-Ladder method 

on this adjusted run-off triangle results in the estimated reserve. ln Table 4.9, 

the evaluated reserve amounts by both robust and classic Mack Chain-Ladder are 

given. When there is no outlier, both models give the same amount of reserve. 

In the presence of outliers, as we see, the evaluated reserve in the robust Chain-
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Table 4.8 Predicted and observed cumulative payments. 

Case Predicted payment Observed payment 

{2,10) 1626527 1639466 

{3,9) 1679271 1701839 

{3, 10) 1689120 1714306 

{4,8) 1873298 1803513 

{4,9) 1959280 1847816 

{5, 7) 1423058 1427264 

{5,8) 1501003 1466120 

{6,6) 1404864 1354358 

{6, 7) 1508090 1644742 

{7,5) 1459636 1496602 

(7,6) 1600302 1551796 

{8,4) 1441477 1277074 

{8,5) 1641815 1381039 

{9,3) 1290502 1477297 

{9,4) 1613288 1835829 

{10,2) 1416587 1294149 

{10,3) 1909189 1706522 

Ladder model is very close to the reserve with no outlier. But in the classic Chain­

Ladder approach, evaluated reserves are much more different than the reserve 

with no outlier. Therefore the robust Chain-Ladder model is less sensitive against 

outlier(s) and provides a more reliable evaluation for the total reserve amount. 
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Table 4.9 Reserve amounts with the classic and robust Chain-Ladder model in 

presence of outlier. 

Out lier Classic C-L Robust C-L 

NO 6 982482 6982482 

(1,3) 6650656 6650656 

(2,1) 4197880 6872534 

(2,3) 6 747584 7000834 

(3, 1) 4337635 6966091 

(4, 3) 7 614270 6979768 

(6,5) 8070429 6905629 

(10,1) 33902260 33902260 

4.3 Percentile match 

In this subsection, we will simulate the run-off triangle based on the original trian­

gle with and without the presence of outlier, then we calculate different percentiles 

in order to have a more complete image of the risk associated with both models 

(classic/robust stochastic Chain-Ladderfgeneralized linear model). 

In the first step outcomes without any outlier will be considered. Can be seen in 

Table 4.10, total reserve is the same as we have calculated before (see Table 4.4 and 

Table 4.9 ). Using the robust method has no significant impact on the reserve and 

percentile outcomes. Now we put one outlier by multiplying the x2,1 by 10 in the 

run-off triangle. As we see in Table 4.11 using robust method in the stochastic 

chain ladder model has decreased the total reserve amount but decreases the 

percentiles significantly. In the generalized linear model (Poisson), using a robust 

method has a large effect on both the total reserve and percentiles. It makes the 
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Table 4.10 Reserve percentile various models without outlier. 

Outlier Total reserve s.e 99th 99.5th 

Classic C-L 

Robust Mack C-L 

6982482 

6422943 

GLM-Poisson 6 982 482 

Robust GLM-Poisson 7 004 980 

1190 662 9 756 725 10 089 200 11293 562 

7 48 512 10 524 593 11537 933 11664 600 

130 7 40 6 986 835 6 988 932 6 989 133 

126688 7009452 7011160 7011943 

Table 4.11 Reserve percentile in various with an outlier in position (2, 1). 

Outlier Total reserve s.e 99th 99.5th 

Classic C-L 

Robust Mack C-L 

GLM-Poisson 

4197880 

4116383 

4197880 

Robust GLM-Poisson 6 753 206 

1264 304 7151971 7 867 591 8 219 502 

1083685 4172744 4197023 4200057 

75 701 4 201326 4 202 331 4 203 018 

122 227 6 757 544 6 759198 6 760 024 

evaluation very close to the real reserve without the presence of an outlier. We 

conclude that the Robust GLM model gives us the most accurate evaluation of 

the reserve, since it has the smallest percentile interval and also the mean square 

error has decreased with presence of outlier. 





CONCLUSION 

In this study it has been showed that the outliers strongly influence the outstand­

ing amount of reserve. Outliers usually cause an overvaluation of the amount of 

reserve which causes companies to keep more reserve than needed. Even outliers 

can cause short estimation of reserve, in which case the result of short estimation 

could be catastrophic and cause bankruptcy. Therefore in order to evaluate a 

more accurate value of reserve it is important to use robust methods. We studied 

two methods of Mack Chain-Ladder and GLM in this research for which a real 

run-off triangle of a non-life insurance company was used. 

In Mack Chain-Ladder model, we first detect the outlier and then we modify 

the outlier data. As the examples result showed, the robust Mack Chain-Ladder 

method is more reliable than the classic Mack Chain-Ladder method. 

In GLM model, by comparing GLM and Robust GLM evaluated reserve, we con­

elude that robustifying improves evaluations. 

Nowadays, for each individual daim case, all of the details of progress can be 

recorded, which can help us to develop the individual approach. To expand this 

study and for further developing this subject, we recommend studying the indi­

vidual approach. 

--- -------------- ---





APPENDIX A 

MATHEMATICAL DEFINITIONS 

Definition A.l (Probability Space). The mathematical triplet (0, A, lP) defines 

a probability space which presents a model for a particular class of real-world 

situations. 

• n stands for the fundamental space (or sample space} is a set of outcomes. 

More precisely, we have 

n = { wi : i E I}, 

where I represents a set of indices such as I = {0, 1, ... } or I = {0, 1, 2, ... , N}. 

It is clear that by implementing the model we will have outcomes. Outcomes 

may be of different nature such as possibilities or experimental results. For 

example consider tossing a six-sided cube or die that has numbers 1 to 6. 

When the die cornes to rest, it will always show one number which is the 

outcome. 

Every run of the experiment mu.st produce exactly one outcome. If outcomes 

of different runs of an experiment differ in any way that matters, they are 

distinct outcomes. 

• A stands for the u-algebra. It is a collection of events that could happen. An 

"event" is a set of zero or more outcomes and it is a subset of the sample 
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space. Properties of a u-algebra defined on the sample space n are 

- A contains the empty subset, i.e., {0} E A; 

- A is closed under complementation, i.e., 'VA E A, we have Ac E A 

where Ac is the complement of A in 0; and 

- A is closed under countable unions, i.e., if A1 , A2 , A3 , ... are in A, 

then A1 U A2 U Aa U ... E A. 

• lP stands for the probability measure. It is a function returning an event's 

probability (between 0 and 1) 

1P : A --+ [0, 1] 

and having the following properties: 

- the probability of a countable union of mutually exclusive events must 

be equal to the countable sum of the probabilities of each of these events 

V'Aï -:/=Ai, lP (Aï U Ai) = lP (~) + lP (Ai), 

the probability of the sample space n must be equal to 1 

JP(O) = 1. 

Example A.l. We consider an arbitrary experiment which consists in obseroing 

car insurance claims. Thus, the fundamental space can be 

n =IR+ 

or 

n = JR+ \ {o}. 

Sorne examples of events are: 
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• observation of a claim of 800$; and 

• observation of a claim of more than 100$. 

Example A.2. Consider afundamental space n = {a,b,c,d}. Then an example 

of u-algebra on this space is A= {0, n, {a}, {b, c, d}}. 

Definition A.2 (Measure Space). A triplet (x,E,JL), where x is thefundamental 

space, E is a u-algebm over x and Jl is a measure (but not necessarily a probability 

measure}. A measure on a set is a systematic way to assign a number to each 

subset of that set intuitively interpreted as its size. 

A function Jl from E to the extended real number line (1R U +oo U -oo) is called 

a measure if it satisfies the following properties: 

• non-negativity: for allE in E, we have: JJ,(E) ~ 0; 

• null empty set: Jl (0) = 0; and 

• countable additivity (or u-additivity): for all countable collections {Ei}~1 

of pairwise disjoint sets in E, we have 

p (Q E•) ~ t,p(E•) 

One should note that a probability space is a special case of measure space. 

Definition A.3 (Functional). A functional is an opemtor or a function from a 

vector space to a scalar. Consider the mapping 

xo-+ f(xo) 

which is a function where x0 is the argument of the function f. In parallel, it is 

also possible to consider the mapping 

f-+ f(xo), 
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which is a functional. 

Example A.3. We consider a sample {2, 4, 6, 8, 10} and its sample mean. In a 

function format, we have 

5 

Ts(Xl, ... , Xs) = 1/5 Lxi 
i=l 

2+4+6+ 8+ 10 
-

5 

=6 

and in a functional format, we have 

where we put 

Then we have 

T(F) = J xdF(x), 

0, x<2 

0.2, 2::;x<4 

F(x) = Fs(x) = 
0.4, 4::;x<6 

0.6, 6::;x<8 

0.8, 8:::; x< 10 

1, x~ 10. 

T (Fs) = j xdF5(x) 

2+4+ 6+8 + 10 
5 

=6. 

In the function form, we can analyze the effect of a change in one (or more} value 
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of the sample 

G (t:) = Ts (X1 + ... + Xs + t:) 

= ~ (f+ 'txi) 5 
i=l 

2 + 4 + 6 + 8 + 10 + f 
-

5 
f 

=6+5, 

while in the functional fonn, we can analyze the effect of a change in the distri­

bution 

G (F*) = T5 (F5 + F*) 

= 1 xd(F5 + F*)(x) 

= 1 xdFs(x) + 1 xdF*(x) 

_ 2 + 4 + 6 + 8 + 10 1 dF*( ) - 5 + x, x 

= 6 + 1 x, dF*(x). 

If we choose 

{

0, 
F*(x) = 

1, 

x<E 

x~ f, 

we will have the same result which we had in function fonnat 

G(F*) = 6+ i· 





APPENDIX B 

GENERALIZED LINEAR MODELS 

B.l Exponential family 

The exponential family (EF) is a set of probability density functions defined by 

(
y(}- a(8)) 

fy (y) = c(y; l/>) exp 4> , (B.l.l) 

where a() and c() are known functions, (} is the canonical parameter and l/> is 

the dispersion parameter. Most of the commonly used distributions in actuarial 

science such as the Normal distribution, the Gamma distribution and the Poisson 

distribution are in the exponential family. 

This family provides an alternative parameterization framework for distributions 

which is useful to define sample statistics. 

Theorem B.l.l. Let Y be a random variable following a distribution from the 

exponential family. We have 

E[Y] = p, = a' ( 8) 

Var[Y] = lf>a"(8), 

where a'(8) and a"((}) are the first derivative and the second derivative of the 

function a() with respect to (}, respectively. 

----------- ----------------------------------------' 
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Proof An interested reader may consult Wüthrich et Merz (2008) for the proof. 

D 

Example B.l. Let Y be a random variable following a Poisson distribution with 

parameter À. The probability mass function is 

exp-.>. .,XY 
Pr[Y = y] = ___::___,.,y!-

expYln(.>.)-.>. 
-

y! 
y= 0,1, ... 

and 0 elsewhere. Therefore, fJ =ln (..X), c/J = 1, a(8) =À= exp9 and 

{

1/y!, 
c(y; cP)= 

0, 

y= 0,1, ... 

elsewhere. 

This shows that the Poisson distribution is a member of the exponential family. 

Moreover, we have 

d 
E[Y] = J.L = a'(8) =- exp9 = exp9 =À 

d8 
lP 

Var[Y] = c/Ja" ( 8) = 1 x d(J2 exp9 = exp9 = À. 

B.2 Caracteristics 

Let l'i (i = 1, ... , n) be independent random variables following a distribution 

in the exponential family with a probability density function given by Equa­

tion (B.l.1). Define 

The main characteristics of this model are 

• g() is a link function which determines how the mean is related to indepen­

dent ( explanatory) variables X; and 
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• the distribution of the response variable, Y, which depends on the function 

a( 0). 

Example B.2. Let Y be a mndom variable following a Poisson distribution with 

pammeter À and À = exp{ X' .8} . We want to determine the link fu.nction. 

The probability mass fu.nction is 

and 0 elsewhere. 

exp-À ,XY 
Pr [Y = y] = --=----,--­

y! 
expYln(À)-.x 

-
y! 

As we showed in the previous example 

{

1/y!, 
c(y; ~) = 

0, 

0 = ln(.X) 

a(O) =À= exp9 

~ = 1. 

y= 0,1, ... 

y= 0,1, ... 

elsewhere. 

Bence 0 = ln (.X) = ln (JL), and therefore g(JL) = ln(JL). So the link fu.nction is a 

logarithmic fu.nction. 

B.3 Parameters Estimation 

Here we want to estimate parameters .B and ~ by the maximum likelihood ap­

proach for a sample Yi, i = 1, ... , n where variables are independent. The log-
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likelihood function is 
n 

l(y;f3,l/J) = :L)n(f(yi;f3,l/J)) 
i=l 

Now by partial derivative we will calculate the maximum likelihood estimator for 

/3; as below: 

By definition 

Also, 

Jl.i = a'(Oi) -t (}i = (a')-1 (J.ti) 

g(p,i) = x:f3--+ ~ti= g-1 cx:f3). 

â(}i = ( â(}i) (ÔJ.ti) 
Ôf3t ÔJ.ti âf3t 
â(}i ô (a')-1 (~ti) 

-
ÔJ.ti ÔJ.ti 

1 1 
= a"((a')-1 (p,i)) = a"(O) 

1 l/J 
- -

Var[Yi] / l/J Var[}i] 
ô ~ti ag-1 x:f3 

-
Ôf3t âf3t 

= (g'g-!x:f3) (a:;:) 
Xit 

-
g'(J.ti) 

-t :;: = ( V~}i]) (g'~;)) . 
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Therefore 

t = 1,2, ... ,1. 

We solve the above equations to estimate {3. 

Example B.3. Y is a random variable following a Poisson distribution with pa­

rameter .À and .À = exp{ X' {3}. What is the condition of the first derivation for 

the maximum likelihood estimation of {3. 

The probability mass function of Y is 

and 0 elsewhere. 

exp-A .,Xli 
Pr[Y =y]=--=--­

y! 
expllln(A)-A 

y! 
y= 0,1, ... 

We know in the poisson distribution family the link function is logarithm function. 

Also 

therefore 

We have showed 
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and 

Therefore the condition of the first derivation is 

ôl(y;{3,~)- ~( . - ·) . 
B{3 - L- Ya l'a Xat 

t i=l 
n 

= L(Yi - ... \)Xit = 0, t = 1, 2, ... , k 
i=l 
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